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Abstract

Category formation is constrained by three factors: the
perceptual structure of the domain being categorized, the
limitations and biases of the learner, and the goals that
trigger the learning process in the first place. Many
studies of categorization have paid attention to the effects
of the structure of the world and some to the biases due to
the learner’s prior knowledge. This paper explores the
third factor: how the goals of the agent at the time of the
learning episode affect what categories are formed. In
particular it presents an information theoretical account
that views categories as a means to increase the agent’s
chances of achieving its goals. One of the predictions of
the theory is that jnformation gain, the average reduction
of uncertainty induced by a category, is maximized when
the domain is partitioned into about 3 categories, the
closest integer to the irrational number e. This prediction
is confirmed by evidence derived from anthropological
studies of folk classifications of animal and plants by
different societies from around the world, and also by an
informal observation of the behavior of cognitive
scientists. Interestingly, e also emerges from
optimization analyses of memory search as well as from
experimental work on memory retrieval.

Introduction

“My problem,” George Miller admitted in his magical 1956
paper, “is that | have been persecuted by an integer.” My
problem is even worse. I have been persecuted by an
irrational number. The number e, base of the natural
logarithms, made its first apparition as I was developing a
functional analysis of categorization. Soon after, I found
that, far from being an isolated event, the number e had also
appeared, in no disguise, in other theoretical and empirical
areas of psychology. Not wanting to draw premature
conclusions from this precise coincidence, I looked at data
obtained in anthropological studies of biological folk
classification and, imagine that, there was e again. At this
point it has become too hard for me not to think of some
underlying pattern behind these occurrences. Either I am
suffering from Miller’s syndrome or this coincidence is
actually telling us something. I have decided that
submitting my symptoms for public scrutiny may be the
only way to solve this dilemma. So be it.
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Three factors constraining category acquisition

Category formation is affected by the structure of the stimuli
being categorized, the agent’s limitations and biases, and the
goals leading the agent to form the categories. The effect of
the structure of the world on human categories has received
extensive theoretical and empirical attention. Feature
matching (Rosch & Mervis, 1975; Tversky, 1977),
similarity to exemplars (Medin & Schaffer, 1978; Nosofsky,
1984), correlations among features (Billman, 1989), and
inter-feature predictability (Anderson, 1990; Corter & Gluck,
1992) are some of the characteristics of the input that have
been shown to constrain the process of category formation
and, consequently, determine which categories are most
likely to be acquired. The biases of the learner (Keil, 1990)
can be the result of innate, wired-in preferences (e.g. Spelke,
1990) or they can be imposed by different kinds of prior
knowledge such as implicit domain theories (Pazzani, 1991)
or even the language spoken by the learner (Cabrera &
Billman, in press). Finally, categories are also affected by
the goals of the agent. People can build categories in the
service of specific goals even when the category members
have litde in common perceptually (Barsalou, 1983).

These three factors are jointly responsible for what
categories end up being formed and how easily they are
formed. They can be seen as three forces that push the
process of category formation in different directions until
some equilibrium is reached. Although there may well be
cases where one particular factor becomes predominant, in
general, constraints of the three kinds will have an effect on
the resulting categories.

The functional view

The functional view of categories is an attempt to isolate the
constraints imposed by the goals of the learner on category
formation (Cabrera, 1994). It is based on the idea that
categories are formed by an agent in order to increase its
chances of achieving some goal. Imagine a person in a
certain context who is trying to decide which action aj to
perform out of a range of n possible actions. A possible
strategy that the person could use to optimize his choices
would consist of using his prior experience in this situation
to estimate the probabilities of success of each action,



P(c;). The person could then distribute his choices

proportionally to the probabilities of success of each action
or simply perform the action with the highest probability!.
There is no question that the knowledge of these
probabilities will be beneficial to the agent. However, there
is no guarantee that the selected action will in fact be the
right choice. In information theory, this situation is
described in terms of ypcertainty, a measure of the amount
of additional information the person would need in order to
be certain of choosing the right action.

Uncertainty can be computed mathematically according to
the expression

n
=Y P(a;)logy P(a;) (1)

i=1

whose result is given in bjts, the standard unit of
information.  Uncertainty is maximum when the
probabilities P(c;) are uniformly distributed, and zero when
one of the probabilities is 1 and the rest are 0. This is
consistent with the intuition that if the person knew that
there was only one successful choice, he would need no
additional information to behave optimally, whereas if all
the alternatives appeared equally good the person would need
some additional information before being able to make a
decent choice.

Suppose now that there is a relationship between some
variable aspect of the environment and the probability of
each of the actions being helpful for the person’s goals. Let
us refer to the different forms that that aspect of the
environment could take as stimuli, and to the set of all
stimuli, as the domain. If the person knew the exact
relationship between every possible stimulus and the
probability of success of each action, his chances of success
could increase considerably. In practice however, the large
(generally infinite) size of the domain is likely to preclude
the person from being able to experience every stimulus at
least once during his lifetime. Even if this were possible,
the person’s memory might not be large enough to store all
that information.

A less ideal but more feasible strategy would consist of
partitioning the domain into a set of m categories of
stimuli, Cj , and estimating the probabilities of success of
each action given stimuli from each of the categories,
P(e;1C;). This strategy may not completely eliminate the

person’s uncertainty, but it has the double advantage of
reducing the storage requirements to a few sets of
probabilities (one set per category), as well as to allow the
person o produce informed guesses for stimuli never
experienced before if category membership can be determined
on the basis of some perceptual characteristic. The
remaining uncertainty not captured by these conditional
probabilities can be quantified as

IFor the purposes of the analyses presented here it does not
malter what exact strategy (probability maximizing,
probability matching, etc) the agent uses.

n
—EP(GHCj)lng P(a;le) (2)
i=l

If for each category, only one of the conditional
probabilities were non zero --in other words, if category
membership reduced the choices to one-- uncertainty would
be eliminated. In general, even when things are not that
ideal, uncertainty will nevertheless be reduced whenever the
conditional probabilities P(a;IC j) are less uniformly
distributed than the prior probabilities P(a;). In other
words, the categories will be helpful to the agent if the
probabilities of success of the different actions within each
category are more unequal than they are across the entire
domain,

By combining the expressions for uncertainty prior to the
formation of the categories (Equation 1) and conditional
upon the categories (Equation 2), we can estimate the
information gain (IG) associated with a category C as the
average reduction in uncertainty induced by that ca!cgory
Given P(C_,), the relative frequency of occurrence of the

category, information gain is simply?:
16(Cj) =

n
P(Cj) Y [P(ai1C))log, P(a;1C)) - Plaz;)logy Pla;))| L
i=1

Maximizing information gain

The central hypothesis underlying the functional view of
categories (Cabrera, 1994) is that learners will always try to
maximize the information gain of the categories they form,
within the constraints, of course, of the world’s structure and
the learner’s limitations. In order to isolate the
consequences of this functional constraint, we first need to
make some simplifying assumptions that keep the other
constraints constant. We will assume, for instance, that the
structure of the world is such that any possible category is
equally salient perceptually, that stimuli are uniformly
distributed, and that the probabilities of success of the
different actions are uniformly distributed. These
assumptions are not intended to be representative of any real
situation in particular: they simply try to isolate the effects
of the information maximizing bias.

Let us assume a worst case initial scenario of maximum
uncertainty. In other words, let us assume that, in the
absence of any knowledge about the environment, all actions
are equally likely to be useful to the agent. If n is the
number of possible actions o, this assumption amounts to

saying that P(q;) = l for all @j. According to Equation 1
n

2This expression is identical in form to a measure of category
utility proposed by Corter and Gluck (1992). However, whereas
Corter and Gluck's measure was meant to capture inter-feature
predictability, information gain is defined with respect to the
agent's goals and actions, and is independent of the perceptual
structure of the categories.
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the total uncertainty in a situation like this will be logj n.

As we could expect, uncertainty increases monotonically
with the number of alternatives.

Let us further assume that the agent partitions the domain
into m contrasting categories that reduce uncertainty
uniformly and maximally. This assumption has three
implications. First, it implies that each category will reduce
the choices from n initial actions to k < n. Second, once a
category Cj has been determined, the remaining k actions
will have equal conditional probabilities of success

P(aiICj)=% whereas the rest n-k actions will have a

conditional probability P(a;ICj)=0. In information

terms, this means that uncertainty will be reduced from
logy n to log, k. Third, all categories must be equally

likely to occur: P(Cj-)= l
m

Let us consider the case where m <n (fewer categories
than actions). For the uniform uncertainty reduction
assumption to hold, k must equal n/m. For example, if the
agent has to decide among 8 possible actions but only forms
4 categories, uncertainty reduction will be maximized if each
of the categories reduces the choices to 2 actions. From
Equation 3, we can show that the average reduction of
uncertainty in this case will be:

1 logy, m
IG(C;)=—(logyn—logs k)=—— 4
(Cj)=—(log n~log; k) = —== @
IG =log2(m)/m
0.6 : r
05t ]
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2
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Figure 1. Information gain as a function of number of
contrasting categories (m < n).

Surprisingly, this expression does not depend on the total
number of actions: it only depends on the number of
categories. The shape of this function is shown in Figure 1.
It is O for m = 1, --obviously, having only one category that
includes the whole domain does not reduce uncertainty at all-
-, it peaks at m = 3 and then decreases monotonically with
m. The exact location of the maximum of this function can
1-Inm

be obtained as the zero of its derivative, — 5

m

which happens to occur at m = e (2.71828...). Since the
number of categories must be a positive integer, the actual
maximum is m = 3 (with an average information gain of .53
bits) followed very closely by m = 2 (.5 bits) and m =4 (.5
bits).

In the case where m 2 n, the assumption of uniform
reduction of uncertainty requires that each category reduce the
alternative actions to one (k = 1). This translates into a
reduction of uncertainty from logy n to zero, and therefore:

(1032,,_0)=l_°%nL" )

For any given number of alternative actions n,
information gain decreases hyperbolically with the number
of categories m. Since m 2 n, information gain will be
maximum when m =n. Having more categories than
alternative actions provides no additional reduction of
uncertainty beyond that obtained with only one category per
action. Instead, every additional category induces a cost that
is reflected on an overall lower probability of occurrence of
each individual category.

n=4 n=5

. n=2 - n=3

Figure 4. Information gain for two to four actions and one
to ten categories.

Figure 4 shows the average information gain forn =2 t0
S actions and m = 1 to 10 categories. For each n,
information gain was computed according to Equation 4 for
values of m < n and according to Equation 5 for m 2 n.
Notice how IG does not vary with n when m < n, but it
does so (decreasingly) for larger m’s. Also, with the
exception of n = 2, information gain is maximum for m =3
independently of n.
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Empirical support

The previous analyses show that, if the prior probabilities of
success are uniformly distributed across actions, and if
categories are formed which reduce uncertainty uniformly,
average functional utility is optimized when the domain is
split into e, that is, about 3, contrasting categories. But we
know that clear-cut categories like these tend to be the
exception rather than the norm (Smith & Medin, 1981) and
we also have no reason to expect that success probabilities
will actually be distributed uniformly in real situations.
Does this invalidate the conclusion? Not necessarily. The
assumptions are made to isolate functional constraints by
setting up ideal situations from the point of view of
functional utility. In every particular situation, world
structure as well as individual biases will moderate the
effects of functional constraints and will therefore determine
whether the categories that would be optimal from the point
of view of the agent’s goals are actually formed.

According to Anderson’s General Principle of Rationality
(1990, p.28), if having three categories is optimal for the
individual’s adaptation to the environment, we should expect
the human cognitive system to have developed (philo- or
ontogenetically) a tendency to organize knowledge in sets of
about three contrasting categories. To test this prediction I
turned to anthropological research. Ethnobiology is the
branch of anthropology devoted to the study of how human
societies view and use nature (Berlin, 1992). A great deal of

ethnobiological research has compared how different
societies classify the plants and animals in their natural
environments and how those classifications relate to the
taxonomies built by western scientists.

There is evidence suggesting that basic level categories of
animals and plants may be determined by perceptual
structure, whereas subordinate and superordinate categories
tend to be formed to fulfill specific cultural needs (Malt,
1994; Berlin, 1978). If this is right, the functional analysis
presented here would predict subordinate categories to
partition basic categories into sets of around 3 contrasting
categories and superordinate categories to group sets of
around 3 contrasting basic categories. We should therefore
expect folk taxonomies (o be organized at different levels of
abstraction in contrasting sets of about 3 categories on
average.

It tuns out that “a general principle of ethnobiological
classification is that folk species most commonly occur in
contrast sets of few (two or three) members” (Berlin, 1992,
p. 122). Table 1 summarizes data reported by Berlin (1992,
p. 126-128) on the frequency distribution of contrast sets
with two or more categories in different biological
taxonomies used by several linguistically unrelated
traditional societies according to detailed ethnobiological
inventories developed by himself and others. I have added in
the last two columns the mean and median of the
distributions of category set sizes corresponding to each
classification system. Overall, the average number of
contrasting categories was 2.982.

Table 1. Frequency distribution of biological category sets of different sizes.

Classification System 2 3 4 5 6 >7 Mean Median
Tzeltal plants (Mexico) 41 16 2 5 S 5 3.123 2
Aguaruna plants (Peru) 68 12 9 2 3 9 2,903 2
Wayampf plants (French Guyana) 47 13 4 2 3 7 2974 2
Hanunéo plants (Philippines) 224 53 15 9 5 16 2612 2
Tobelo plants (Indonesia) 142 13 22 7 3 12 2.754 2
Seri plants (Mexico) 32 7 3 3 1 2.907 2
Tobelo animals (Indonesia) 46 20 9 2 1 4 2.830 2
Tzeltal animals (Mexico) 25 18 5 3 2 1 2926 3
Wayampf animals (F. Guyana) 55 22 14 5 1 3 2.840 3
Huambisa birds (Peru) 36 9 2 0 0 0 2278 2
Huambisa fish (Peru) 8 4 1 2 2 1 3.389 3
Aguaruna mammals (Peru) 9 3 4 1 0 0 2.824 2
Cantonese fish (China) 6 7 5 3 1 9 4410 4
*Cog. Sci. concepts (Int’l.) 21 22 8 10 4 4 3.770 3

NOTE: Following Berlin’s own concerns about the origin of the data from Ndumba plants (mean = 4.800) and animals
(3.733), I have excluded them from my analyses (1992, p. 283). *The “Cognitive Science concepts” data come from an
informal inventory of numbered and alphabetized lists in the 1994 volume of the “Cognitive Science” journal (vol. 18).
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For comparison's sake, I estimated the frequency
distribution of category set sizes typically used by cognitive
scientists in describing their theories and defending their
claims. These data come from an informal inventory of all
the articles published during 1994 by the “Cognitive
Science” journal (Vol. 18). Specifically, it is based on the
length of numbered and alphabetized lists that appear in each
article. These data are particularly interesting because the
theoretical concepts developed by cognitive scientists rarely
rely on specific perceptual forms and may therefore be more
subject to functional biases than biological categories.
About 62.32% of the lists in the papers examined contained
two or three items (the frequency of three item lists being
slightly higher than two item lists), and 88.41% contained 5
or less (there were however two papers presenting
classifications consisting of 15 and even 16 items!). The
mean category set size was 3.770, slightly greater than the
mean of the biological taxonomies reported by Berlin (1992)
but within a similar range.

Converging Evidence and Conclusions

Category acquisition is constrained by (a) stimulus structure
--things that look similar tend to be categorized together--,
(b) the learner’s innate or acquired preferences --things that
we are programmed to categorize together or that we have
categorized together in the past tend to be categorized
together again--, and (c) the goals of the leamer --things that
require similar kinds of actions tend to be categorized
together. When these constraints agree, acquisition will take
place readily. Sometimes, one of the constraints may
overshadow the rest, as stimulus structure may do in the
case of biological basic categories (Berlin, 1978), prior
beliefs in the case of illusory correlations (Chapman &
Chapman, 1969), and the agent’s goals in the case of ad-hoc
categories (Barsalou, 1983). In general, however, categories
will result from some sort of compromise among the three
factors.

This paper has tried to isolate the consequences of the
third kind of constraint: the connection between the
categories and their function with respect to the agent’s
goals. Functional utility of a category was defined as the
amount of information the category provides about the best
actions to perform given some goal. Then, it was
demonstrated that, under a few simplifying assumptions,
having 3 contrasting categories (actually e) maximizes the
average information gain obtained from each category. This
prediction is supported by anthropological studies of
classification of animal and plants in traditional societies
around the world and also by the behavior of cognitive
scientists while reporting their research (this paper is no
exception).

Categorization is not the only aspect of cognition where e
appears to be an optimizing factor. Dirlam (1972)
demonstrated mathematically that a branching factor of 3
maximizes search efficiency in a hierarchical memory
structure if efficiency is defined as the maximum number of
items that need to be scanned in order to find a target piece
of information. In fact, 3 appeared, as it did here, as the
closest integer to the irrational e. Dirlam’s prediction was

later confirmed by a number of experimental studies of
human memory (Broadbent, 1975). These studies, in
combination, convinced Anderson (1993, p. 26) that the best
chunk size for the declarative memory system of his ACT-R
model might be three.

The optimizing power of e has also been noted in the area
of psychological testing. Tversky (1964) showed that
“given a fixed total number of alternatives for a multiple-
choice type test, the use of three alternatives at each choice
point will maximize discriminability, power and
information of a test” (p. 386). Although Tversky's finding
did not have a big influence in the testing community for a
number of reasons3, some of the points he raised in his
paper tie very nicely into the discussion at hand. In
particular, he suggested that his result might “shed some
light on the study of information coding and processing” (p.
390). He cited data pointing to three as the optimal number
of alternatives per variable in discrimination tasks and
conjectured that, under some assumptions, “the use of three-
level factors will minimize confusion and decrease memory
load” (p. 391).

Are all these findings mere coincidence? I do not think
so. If a branching factor of three optimizes search efficiency
in a hierarchically organized data set one would expect that
same factor to maximize the information gained from every
decision made at a decision point in the hierarchy, The two
are, in a sense, different ways of saying the same thing.

Do these findings contradict Miller’s number seven? I do
not think so either. Miller’s concern was about information
processing capacity limits (the second type of constraint if
you wish), not about optimal organization of knowledge.
The fact that most people might be limited to discriminate a
maximum of seven levels of loudness does not mean that
people will tend to organize sounds into sevens. In turn, the
idea that e optimizes information gain and search efficiency
should not be interpreted as an absolute bound, but as an
indication that there is an optimal number of contrasting
categories, “that performance will deteriorate if one goes
beyond it, and therefore, that the system will tend to
organize itself in chunks [contrast sets] of that size”
(Anderson, 1993; p. 27). If anything, these results are
compatible with Miller's: people’s discrimination capacity
allows them to organize things in triads.

The number e has a long history of extraordinary
appearances in mathematics and the natural sciences (Maor,
1994). In fact, e plays such an important role in differential
calculus that the logarithm base e is known as the natural
logarithm. Mathematicians, however, do not call e itself
natural because it can not be expressed without decimal
digits. They do not even consider it rational because it can
not be expressed as the ratio between two integers. It is
ironic that, as irrational as it is, e seems (o be an oplimizing
factor in some rational analyses of cognition. If I am not
suffering from delusions of persecution, this peculiar
irrational number may deserve to be upgraded to the rank of
“Rational”” Number.

31t seems that the assumption of a fixed total number of
alternatives is a rare constraint in the design of real tests
(Nambury S. Raju, personal communication).

186



Acknowledgments

I am indebted to the Spanish Ministry of Education and
Science and the U. S.. Information Agency (Institute of
International Education) for their financial and logistic
support through the Fulbright Scholarship program. I am
also grateful to Dorrit Billman, Beth Cabrera, Alex Kirlik,
Jack Marr, Ashwin Ram, Nambury Raju, and Tony Simon
for their challenging comments and suggestions.

References

Anderson, J. R. (1990). The Adaptive Character of
Thought. Hillsdale, NJ: Lawrence Erlbaum.

Anderson, J. R. (1993). Rules of the Mind, Hillsdale, NJ:
Lawrence Erlbaum.

Barsalou, L. W. (1983). Ad-hoc categories. Memory and
Cognition, 11, 211-227.

Billman, D. (1989). Systems of correlations in rule and
category learning: Use of structured input in learning
syntactic categories. Language and Cognitive Processes,
4, 127-155.

Berlin, B. (1978). Ethnobiological classification. In E.
Rosch and B. Lloyd (Eds.), Cognition and Calegorization.
Hillsdale, NJ: Lawrence Erlbaum.

Berlin, B. (1992). Ethnobiological Classification:
Principles of Categorization of Plants and Animals in
Traditional Societies. Princeton, NJ: Princeton
University Press.

Broadbent, D. E. (1975). The magic number seven after
fifteen years. In A. Kennedy and A. Wilkes, (Eds.),
Studies in Long Term Memory. London, UK.: John
Wiley & Sons.

Cabrera, A. (1994a). Functional and conditional
equivalence: Conceptual contributions from behavior
analysis. Proceedings of the Sixteenth Annual Conference
of the Cognitive Science Society, Hillsdale, NIJ:
Lawrence-Erlbaum.

Cabrera, A. & Billman, D. (in press). Language-driven
concept learning: deciphering “Jabberwocky”. Joumal of

Copnifian,

Chapman, L. J., & Chapman, J. P. (1969). Illusory
correlation as an obstacle to the use of valid
psychodiagnostic signs. Journal of Abnormal
Psychology, 74, 271-280.

Corter, J. E. & Gluck, M. A. (1992). Explaining basic
categories: feature predictability and information.
Psychological Bulletin, 111, 291-303.

Dirlam, D. K. (1972). Most efficient chunk sizes.

Cognitive Psychology. 3, 355-359.

Keil, F. C. (1990). Constraints on constraints: surveying
the epigenetic landscape. Cognitive Science, 14, 135-
168.

Malt, B. C. (1994). Category coherence in cross-cultural
perspective. Cognitive Science Technical Report UTUC-

BI-CS-94-03. The Beckman Institute, University of
Illinois.

Maor, E. (1994). e : The Story of a Number. Princeton,
N.J. : Princeton University Press.

Medin. D. L. & Schaffer, M. M. (1978). Context theory of
classification learning. Psychology Review, 85, 207-238.

Miller, G. A. (1956). The magical number seven, plus or
minus two: some limits on our capacity for processing
information. Psychological Review, 63, 81-97.

Nosofsky, R. M. (1984). Choice, similarity, and the
context theory of classification. Joumal of Experimental
Psychology: Leaming. Memory and Cognition, 10, 104-
114.

Pazzani, M. J. (1991). Influence of prior knowledge on
concept acquisition: Experimental and computational

results. Joumal of Experimental Psychology: Leaming.
Memory and Cognition, 17, 416-432.

Rosch, E. & Mervis, C. B. (1975). Family resemblance:
Studies in the internal structure of categories. Cognitive
Psychology, 7, 573-605.

Smith, E. E,, & Medin, D. L. (1981). Categories and
Concepts. Cambridge, MA. : Harvard University Press.

Spelke, E. S. (1990). Principles of object perception.

Cognitive Science, 14, 29-56.
Tversky, A. (1964). On the optimal number of alternatives

at a choice point. Journal of Mathematical Psychology,
1, 386-391.

Tversky, A. (1977). Features of similarity. Psychological
Review, 84, 327-352.

187



	Cogsci_1995_182-187



