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ABSTRACT

Methods of analysis on a spherical earth are reviewed. The techniques are relevant to both point data and data from field
variables (functions that are continuous and everywheredefined on the sphere). The background mathematics and statistics applicable
to spherical surfaces are presented. The probability density function (pdf) for nearest neighbor distance on a sphere generated by a
Poisson processis derived. The use of spherical analysisin conjunction with global geographic information systemsisdetailed. This
review is relevant to researchers in geography, global change and related fields who study processes at global scales.
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1. Why use spherical analysis?

Over 100 years have past since the original publication of Flatland (Abbot, 1884), a
description of a culture cognizant of only two-dimensions, and their inabilities to grasp their
missing third dimension. The relatively recent sequel Sphereland (Burger, 1965) describes the
Flatlanders' attempts to grasp the spherical nature of their planet. That geographical analysis is
typically performed on a two-dimensional plane is a testimonial to the success of map projections
in allowing us to neglect the curvature of the earth and work with data that appears to originate on a
plane, much as a Flatlander would do. This success is due in part to the limited geographical
domains that characterize most research pursuits.

This situation is likely to change, as there is currently great interest in global-scale
phenomena, for which the curvature of the earth cannot be neglected in analytical formulations. In
a sense, analysis at the global level represents the "final frontier" for geographers, as little analysis
of this type has been carried out to date. Many analytic techniques are available for this task, but
their descriptions are widely dispersed in the literature of many fields: geology, astronomy,
meteorology, statistics, operations research, and computer science, among others.

This report provides a review of spatial analysis techniques in geography and earth systems
science that take into account the spherical geometry of the earth. It is oriented to both human and
physical geographers and should be of particular interest to global change researchers who analyze
global-scale databases. The primary objectives are to describe the intrinsic characteristics of
spherical data and the differences between planar and spherical analysis techniques. Working
examples of these techniques in geography and other fields are summarized and evaluated, and the
underlying mathematics clarified.

Spatial analysis can be defined as the formal analysis of spatial patterns and orientations,
with tools that include: point pattern analysis, interpolation, spectral analysis, search techniques,
location analysis, optimization, estimation, and forecasting. Examples of very large-scale
applications of spatial analysis include:

. Find the cost minimizing location for a global distribution center.

. Find the area of lowest concentration of some element, e.g. ozone.

. Find the mean international migration paths during a specified time period.

. Find the cross-correlation of two variables defined on the sphere.

. Determine whether an observed change in a global data set is statistically significant.
. Find the optimal satellite path given a set of constraints.

. Find the center of population of the former Soviet Union

. Identify the continental drift over a designated time epoch.

. Interpolate precipitation data over a region with sparsely situated weather stations
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Most geographical analysis tools have been derived for use on a two-dimensional plane.
Although the surface of the earth is two-dimensional to a first approximation, conventional
analysis techniques designed for the plane may not be applicable, as a result of the convergence of
the meridians at the poles. Three conceptual modeling approaches are used to apply and adapt
spatial analysis techniques to the sphere (Jupp and Mardia, 1989):

1. Projection: The sphere is projected onto a plane using a conventional map projection. Planar
analysis is performed on the transformed data in the two-dimensional space R2, and the results
mapped back onto the sphere.

2. Intrinsic: The sphere surface is considered an intrinsic space in its own right, with analysis
performed in the non-Euclidean space s2.

3. Embedding: The sphere is considered a constrained subset of the three-dimensional space R3.
Three-dimensional spatial analysis is performed, with a constraint imposed to limit solutions to the
sphere surface.



The projection approach is used implicitly in conventional studies that ignore the curvature
of the earth. Wilmott et al. (1985) and Turner (1986) demonstrate some of the difficulties met in
performing analysis on projected data, as no projection can simultaneously preserve both distances
and areas. Nevertheless, certain planar properties involving distance can be adapted to the sphere
using an equidistant mapping of the plane to the sphere, a strategy referred to as wrapping (Jupp
and Mardia, 1989). The second approach deals directly with the spherical domain, but requires a
considerable amount of trigonometric calculations. Such calculations are more computationally
intensive than addition or multiplication, a factor that should be taken into account in large real-time
applications. In the embedding approach, there is a larger storage overhead associated with the
extra (third) dimension, but computational time is reduced relative to the intrinsic approach. The
embedding approach will be used extensively in this review.

The amount of existing literature that is relevant to the present subject is quite varied.
Several textbooks and review articles are devoted entirely to statistics on the sphere (Watson,
1983; Fisher et al., 1987, Upton and Fingleton 1989, Chapter 10; Jupp and Mardia, 1989).
Statistics of functions on the sphere is the topic of the review article by Kaula (1967). Non-
statistical aspects of spherical analysis are much more scarce, with few applications specific to the
earth surface as the sphere. A monograph describing geographic information systems (GIS) for
global-scale data (Mounsey, 1988) does not address analysis in great detail, although brief reviews
of spherical analysis in geography are found in Goodchild (1988) and Tobler (1993). Thus, the
reader will find numerous opportunities to apply and extend the material presented here.

The organization of this review is as follows. Section 2 summarizes the pertinent
mathematics of spherical surfaces. The treatment includes material from spherical geometry,
trigonometry, calculus, and topology. Virtually all the underlying mathematics for the techniques
discussed later are included in this section. Section 3 introduces spherical probability distributions
that have been found to be useful.

Our subject spans two types of spherical analysis, corresponding roughly to analysis of
point data and "field" data. Examples of point data include locations of international airports,
weather radar towers, and large-scale supply centers. Point processes on a two-dimensional plane
have been well studied and are the subject of several books (Getis and Boots, 1978; Okabe et al.,
1992). However, study of spherical point data has been largely confined to the statistical
literature, and appears under the names "directional,” "orientation," or "vector" statistics (Fisher,
1987; Watson, 1983). This terminology arises because a point on the sphere can be associated
with a unit vector originating at the sphere center. For our purposes, a data point is a geographic
location on the earth surface, without any associated "direction." Point data analysis is the subject
of Section 4.

Analysis of functions on the sphere is the subject of Section 5. The primary emphasis is
upon analysis of fields, or functions that are continuous and everywhere defined on the sphere
surface; examples include elevation and temperature. Section 6 concludes with a discussion of
relevant issues that are likely to be important in the coming years, including potential applications
to global change.

The empbhasis of this review is on the differences between planar and spherical analysis. It
is specific to analysis on the surface of a spherical earth, and thus, the ellipsoidal nature of the
earth and its vertical dimension are not considered.

2. Spherical mathematics

This section contains the underlying mathematics that is used in the remainder of the
review. Included are sections on spherical geometry, trigonometry, and calculus. Also included
are sections on tessellations of the sphere and the spherical harmonic transform.

2.1 Points
A point on the surface of a sphere can be referenced using either spherical or Cartesian



coordinates. In spherical coordinates, a point is represented as (@, A), where @ is latitude and A is
longitude, each in radians. The sphere consists of the set of points:

S2={ (o, Ve R*|-n/2 <@ <m/2, 0SA<2m } . (2.1.1)

In Cartesian coordinates, nondimensional units are usually used, known as the direction cosines.
In this form, all points at the surface are unit vectors relative to the sphere center:

X
x=|y|l= xy.z) (2.1.2)

z
where the symbol / denotes transpose, with
S2={xe Rl IXI=1} . (2.1.3)

Spherical coordinates and direction cosines are related through:

X=COS 9 COS A, y=cos@® sinA, z=sin@ (2.1.4a)
o=sin"lz, A= tan-1 (y/x) . (2.1.4b)

The Jacobian of the transformation (2.1.4a) is

J(@, A)=cos @ . (2.1.4¢)
The direction cosines x are converted to dimensional units x* through:
X*= 1g X (2.1.5)

where rg is the radius of the sphere, assumed to be a fixed constant (typically, rg= 6371 km).
Two points x] and x2 are antipodal if x]=-x2. Antipodal points lie on either end of an
axis directed through the center of the sphere. Two points are orthogonal if

X1 * X2= 0 (216)
where

X1 * X2= (X1X2 + Y1y2 +2122)
=cos 0 (2.1.7)

where 0 is the angle between x1 and x3.
The spherical midpoint of a pair of points x and x2 is the point:

_ X +X, (2.1.8)
X, +x,|

mid

where for an arbitrary vectory,



lyl= (yey)172 . (2.1.9)
The midpoint in (2.1.8) is undefined if x{ and x) are antipodal.
2.1.1 Rotations

The coordinates of a point relative to a rotated pole can be obtained by multiplication with a
rotation matrix R:

x” = Rx . (2.1.10)
A rotation matrix is a special case of an orthogonal matrix, or a matrix that satisfies

A/A=1 (2.1.11)

and det A=%1. A rotation matrix corresponds to the case:
detR=1, (2.1.12)

while a reflection matrix corresponds to det A= -1. A reflection matrix reverses the orientation of a
set of points about a plane in addition to performing a rotation, but has little physical relevance.

To place the point X =(X0,y0,Z0) with spherical coordinates (@, Ag) at the north pole, the
rotation matrix has the form:

cos A,sin @, sin Ay sin @, —cos @,
R=|-sin A, cos A, 0 (2.1.13a)

cos A,cos @, sin A cos @, sin @,

XoZo I Wo YoZo/ Wy —Wg

==y, /W, X,/W, 0 (2.1.13b)
X9 Yo Zg
where
wo= (1 - zg2)112 . (2.1.14)

A more general form of (2.1.13a) can be used to align a particular meridian o with the prime
meridian in the rotated coordinate system:

cos A, sin @,cosy, —sin Aysiny, sin A,sin @,cos W, +cos A,siny, —cos @,cosy,

R =|—cos Aysin @,siny, —sin A cosy, —sin Aysin @, siny, +cos A,cosy, C€os @ siny,
cos A, cos @ sin A,cos @, sin @,
(2.1.15)

In general, it may be difficult to identify o a priori, as it is specific to the rotated coordinates.



However, yo+7 represents the longitude of the old north pole in the new coordinates; thus yg can
be selected on this basis.

2.2 Distance
The shortest distance between two points x1 and x7 is known as the great circle (or arc or

geodesic) distance. This distance is denoted s(x1, X2) or simply s, and is expressed in
dimensional units as:

s=r1g0 (2.2.1a)
=1g cos~l (x7° x2) (2.2.1b)
=1g cos™1 [sin @1 sin @ + cos Q1 cos @7 cos (A1-A2)] (2.2.1¢)

where 0 is the angle between x| and x3, and the range of cos~1 is taken to be [0,n]. Equation
(2.2.1c) follows from (2.2.1b) using the trigonometric identity:

X]°X) = sin Q1 sin @2 + cos @] cos ¢ cos (A1-Ap) . (2.2.2)

Comparing (2.2.1b) and (2.2.1c¢), distance computations are much simpler using direction
cosines, as the number of trigonometric calculations is greatly reduced.
Distances on the sphere satisfy the triangle inequality; that is, for three arbitrary points x1,

x2, and x3:

s(x1,X2) < s(x1,X3) + s(x3,X2) . (2.2.3)

Equality in (2.2.3) results only if the three points are collinear. The inequality can be used to show
that the distance between two points is greater than or equal to the x-, y-, or z- distances alone:

s(x1,X2) 2 rg Ix1-x2! (2.2.4a)
s(x1,x2) 215 ly1-y2l (2.2.4b)
s(x1,Xx2) 215 121-23| (2.2.4¢)

but less than or equal to the sum of the three quantities:
s(x1,X2) $r1g ( Ix1-x2! +lyq-y2l + 121-22! ) . (2.2.5)

In spherical coordinates, a parallel of latitude is not a great circle arc, and the corresponding
inequalities are:

s(p1.p2) < 1g ( 1AQl + IAM cos[ max( loyy 92D 1) (2.2.6a)

s(p1,p2) 2 1g IAQI (2.2.6b)

s(p1,p2) = rg IAM cos[ max(lpql,le2D)] . (2.2.6¢)
where

p1=(01.A1)  P2=(92.A2) (2.2.6d)

For short distances it may be possible to obtain an acceptable approximation to (2.2.1c)



using the first few terms of the series expansions:

sin 0=0-03/3'+05/5! + ...
cos 0=1-0272!+064/4 - .. (2.2.7a)

where

6!=06(0-1)(6-2)..1 . (2.2.7b)

In some applications, the small angle approximations

0 ~sin O (2.2.8)
82/2 = 1-cos 6 (2.2.9)

are used. When reading the literature on spherical analysis, one should be alert to formulas
derived using (2.2.8) or (2.2.9) to simplify calculations, and to use them with caution over large
distances.

Unlike the case on the plane, geodesic distance is not a convex function. A function g is
convex on a set if for all points X and x5 in that set,

glwx| + (I-w)xa] < wg(xq) + (1-w) g(x2) (2.2.10)

for all 0 < w < 1. In words, a function is convex if its value at a linear combination of two points
is less than or equal to the linear combination of functional values at the points. Nonconvexity
creates difficulties for optimization schemes, because it implies that local maxima may not be
global maxima. To see that spherical distance is not convex, let s represent geodetic distance from

the north pole, let w= 1/2, and let x| and x7 be a pair of points at latitude ¢= -7t/4, separated in

longitude by AA= 7. The right hand side of (2.2.10) is the distance from the pole to either of the
points, that is 37/4 rg. The left-hand side is the pole-to-pole distance nrg. While distance is not a
convex function over the entire sphere, it is convex on a spherical cap (see Section 2.4.2) of
spherical radius of /4 rg or smaller (Drezner and Wesolowsky, 1978).

2.3 Circles
2.3.1 Great circles
A great circle plays the same role on a sphere as a line on the plane. A great circle is
defined as the intersection of the sphere surface with a plane passing through the sphere center.
Geodesic distance always follows a segment of a great circle.
Points x on a great circle satisfy the general equation:

xec= 0 (2.3.1)

where ce S2. The point ¢ and its antipode -c define the axis or normal vectors of the circle, and
are poles of a coordinate system with both x| and x on the equator. The equation of the great

circle containing any two distinct points x1 and x5 is:

c= 212X (2.3.2)
|X1 xX2|



where the cross product is defined as the vector:

A A A

Xy z
X, XX, = det|x,y, z (2.3.3)
X,Y, 2,
= (y122 — Y221, Z1X2 - 22X], X1y2 - X2¥1)

The cross product is a location interior to the sphere (unless x] and x7 are orthogonal) with
magnitude:

IX] X X7l=sin @ . (2.3.4)

The perpendicular bisector of a pair of points is the great circle that is orthogonal to both
x1x x72 and (x1 +x2)/2. Thus,

_4 (X, XX,) X (X, +X,)

¢, =% (2.3.5)
b (%, XX,) X (%, +X,)|
The distance of a point x from the great circle with axis ¢, is
s=r,cos’ xxe (2.3.6)
Ix X ¢l

Two distinct great circles cross at exactly two points: a point and its antipode. This is

different from the planar case where parallel lines exist that never cross. The angle 0 between two
circles is that of their respective axes ¢ and ¢3:

6=cos™! (c1*cp) . (2.3.7)

An alternative means of representing a great circle is parametrically, relative to any two
orthogonal points x] and x2 on the circle. The great circle consists the collection of points

satisfying:
x(t) = (cost)x, + (sint)x, 0<t<2n) (2.3.8)

For some applications, it is desirable to define a directed great circle. A great circle is
directed when one of the two possible normal vectors ¢ and -c is specified. This is equivalent to
assigning an arrow to one of the two possible directions of traversal along the circle. In the
standard right-hand coordinate system, looking in the direction of the normal vector, this arrow is
directed clockwise.

A directed great circle divides the sphere into two hemispheres that can be labeled
"northern" and "southern". For the directed great circle associated with x1 X x2, the hemisphere
of an arbitrary point x3 can be determined from the sign of the quantity:

b=det(x;, X, X;)=(X,XX,)® X, (2.3.9)



For b>0, x3 lies in the northern hemisphere and for b<0, x3 lies in the southern hemisphere. For
b=0, x3 lies on the equator, and the three points are collinear.

Because c is itself a point in S2, there is a duality between antipodal axis points and their
associated great circle. A similar duality exists between a single point and its associated directed
great circle. For example, three points lie on a common great circle if and only if b=0 in (2.3.9);
thus by duality, three great circles meet at a point (and its antipode) if and only if

det(cq1 ¢2 ¢3) =0. (2.3.10)

Connecting any two nonantipodal points are exactly two great circle segments. The shorter
segment is known as the minor arc and the longer segment is the major arc. An infinite number of

arcs connect antipodal points, each with arc length rs. While distance on the sphere satisfies
s < mrg (2.3.11)
an arc may extend over the entire sphere; hence arc length § satisfies

§ <2mrg . (2.3.12)

A great circle arc can be represented parametrically as in (2.3.7) using a continuous subset
of the parameter space t. In this representation, two points are separated by the distance

s=rg Ix(t2) - x(t ) (2.3.13)

if
It2-t1l< . (2.3.14)

2.3.2 Small circles

Although the @=0 parallel of latitude is a great circle, other parallels are examples of small
circles. A small circle is defined as the intersection of the sphere surface with a plane not passing
through the sphere center. Its general equation is:

cex= sin O (2.3.15)

where 0 is the angle between any element of the circle and the north pole ¢. This circle has
circumference

S=2mWrgsin 6. (2.3.16)

Very little mention is made of small circles in texts of spherical geometry and trigonometry,
however, national and state borders are often small circle segments.

Connecting three arbitrary points X1, x2, and x3, no two of which are antipodal, is a
unique small circle. As this circle is normal to the plane containing the three points, the axis is
found from

_ X —X3) X (X, —X;)

=+ (2.3.17)
|(x; — %) X (x, -x,)|




The parameter 6 is obtained by inserting (2.3.17) into (2.3.15).

Just as a great circle splits a sphere into two hemispheres, a small circle divides a sphere
into an "interior" region and "exterior” region. The location of a point x4 relative to this circle can
be ascertained using:

b=det(x, - X, X,—X, X,—X)=(X, —X)X(X;—X,)® (X, —X,) (2.3.18)

Then, b> 0 if x4 is interior, b< 0 if x4 is exterior, and b= 0 if the four points lie on a common
small circle.

2.4 Regions
2.4.1 Spherical triangles

A spherical triangle has sides that are great circle arcs. On a sphere, the specification of
three noncolinear points uniquely define a pair of triangles, rather than a single one, because an
"inside" and "outside" triangle are produced. In classical spherical trigonometry, it is assumed that
all angles are less than 7 (180°), and thus the subject is limited to analysis of proper spherical
triangles (corresponding to the "inside” case). This restriction to proper triangles is also used in
the discussion that follows, however, improper spherical triangles may occur in actual GIS
applications.

The area S of a spherical triangle in dimensional units is

s=r2 Yo, -7l (2.4.1)

where @ are the interior angles of the triangle in radians. The sum of the three angles is always

greater than 7t (180°) and less than 37t (540°) (for a planar triangle, >X0i= ). The angle £xX,X;
of a spherical triangle can be calculated from the formula:

4] X, XX, X, XX
£XX,X,= cos | —t—Le 23 : (2.4.2)
I, x x| [x, xx,|

This angle can also be found in the spherical coordinate representation, by rotating coordinates to

place (92,12) at a pole. The angle is then equal to the difference in longitudes: IA1—A3] in the new
coordinate system. A FORTRAN subroutine for this calculation is given in Bevis and Cambareri
(1987).

On a sphere of fixed radius, the specification of the three angles uniquely defines the
triangle up to an arbitrary rotation. Thus, there is no concept on the sphere of similar triangles, or
triangles with identical angles but proportionally shorter or longer sides. An equilateral spherical
triangle has sides of equal length; an example is a quarter hemisphere.

The sum of the angular lengths of the sides of a spherical triangle is less than 27t (360°).
Any particular side is both less than 7t and less than the sum of the two other angles. The spherical
law of sines states that sines of angles are proportional to the sines of their opposite sides.

Denoting the three angles by a.,B, and v, and their opposite sides as a, b, and c, respectively:

sin o _sin B _siny (2.4.3)
sina sinb sinc ' o

Use of (2.4.3) to solve for an unknown side or angle produces ambiguous results because the arc



sin function is multivalued. This indeterminacy can be resolved by noting that the relative
magnitude of the angles is the same as that of their respective opposite sides.

The spherical law of cosines states that the cosine of a side equals the product of the
cosines of the other two sides plus the product of their sines, multiplied by the cosine of the
included angle:

cosc=cosacosb+sinasinbcosy (2.4.4)

Using the small angle approximations (2.2.7), this relation reduces to the planar form:

c2=2a2 +b2-2abcosy (2.4.5)

By duality, we can interchange the words side and angle in (2.4.4) to obtain an analogous formula
for the cosine of any angle:

cos Y= cos o cos B + sin o sin § cos ¢ (2.4.6)

A triangle containing a right angle is known as a right spherical triangle; such a triangle
may contain more than one right angle. A useful rule relating sides and angles in right spherical
triangles is Napier's rules of circular elements. To apply these rules, consider a right spherical
triangle with the right angle excluded, leaving the ordered sequence of five elements:

side, angle, side, angle, side
Considering this list as a cyclical sequence, Napier's rule states that the sine of the middle element
equals both: (i) the product of the tangents of its two adjacent elements and (ii) the product of the
cosines of the other two (non-adjacent) elements
Rules relating sides and angles of oblique spherical triangles (triangles with no right angle)
can be found in texts on spherical trigonometry (e.g. Morgan, 1951).

2.4.2 Spherical caps
The surface area contained within a pair of latitude bands is:

S=2mrg2 Isin @1 - sin @l . (2.4.7)

A special case of (2.4.7) is the spherical cap of spherical radius s, defined as the set of points with

arc distance less than or equal to s from a specified point. Setting ¢1= /2 in (2.4.7), and
switching to colatitude, a spherical cap has surface area:

S= 21 12 (1- cos (s/tg)) (2.4.82)
= 7is2 sinc? (s/2rg) (0 <'s < ) (2.4.8b)

where the sinc function is:

sinc@=sin6/96 (2.4.9)
The circumference of this cap is:

§=dS/ds= 21 rg sin (s/rg) (2.4.10a)



= 27s sinc (s/rg) . (2.4.10b)

The sinc function approaches 1 for small 8 (where sin 6= 0), and a planar approximation
may be justifiable in such cases. For a 1000 km arc length, neglection of this spherical correction
term induces only a 0.2% error in the area calculation; however, for a 5000 km arc length
(representing one-eighth the circumference of the earth), the error is 5%. The corresponding
planar approximation for P induces an error that is roughly twice as large. This is because for

small values of 0= r/rg, the ratio of errors is:

1- sinc ® 1-[1-6’/6+00"] _

= ~ 2.4.11
1-sinc?(8/2) 1-[1-67/12+0(8*)] ( )

where O(64) refers to terms of the fourth or higher power of 6.

2.4.3 Other regions
A spherical polygon is defined as a polygon whose sides are great circle segments. It can
be used to approximate any shape to any desired degree of accuracy using a sufficiently large
number of sides. The area of a spherical polygon with n vertices is:

S=r? [ioci -7(n-2)] : (2.4.12)

Kimerling (1984) provides an algorithm for carrying out this computation by accumulating
triangular areas.

A subset of the sphere is convex if it contains the arcs connecting all non-antipodal pairs of
points in the set. Examples of convex sets on the sphere include a point, a great circle, a spherical
cap of spherical radius less than or equal to Ttrg/2, and the entire sphere. An example of a

nonconvex set is a spherical cap of radius 3nrg/4 or extending in latitude from the north pole to

@=-1/4 (45° S).

The spherical convex hull of a set D is the intersection of all convex sets that contain D,
that is, the smallest convex set containing D. A subset of the sphere that lies entirely within a
hemisphere is referred to hemispheric. For a set of points that are hemispheric, the spherical
convex hull is also hemispheric. For points not hemispheric, the spherical convex hull is the entire
sphere.

2.5 Tessellation of the sphere

A tessellation of the sphere is a spatial decomposition that is exhaustive and mutually
exclusive (except perhaps along boundaries). Tessellations can be classified as either polyhedral
or empirical.

While it is desirable to subdivide the earth into regions of equal area and shape, this can be
done only by projection of the sphere onto one of the polyhedral solids. There are five regular
polyhedral (or Platonic) solids: the tetrahedron (4 equilateral triangles), hexahedron (cube) (6
squares), octahedron (8 triangles), dodecahedron (12 pentagons), and icosahedron (20 equilateral
triangles). There are 14 semiregular (or Archimedian) solids, or polyhedra with more than one
kind of regular solid as faces. For instance, the truncated icosahedron (White et al., 1992) has 12
pentagons and 20 hexagons.

Any further subdivision of the regular or semiregular polyhedra produces subregions of
either unequal shapes, unequal areas, or both. In the case of triangles, each can be recursively
subdivided into four smaller triangles. At a given recursion level, triangles at the same latitude
band have the same area, but these areas decrease monotonically with distance from the equator



according to the sinc of latitude (Goodchild and Shiren, 1992). In the recursion procedure, the
four generated triangles do not have the same angles as one another.

An empirical tessellation is an adaptive or data-driven decomposition based upon the
spherical Voronoi diagram. This tessellation is derived using a set of fixed generating points
X1,...Xpn. Each point within the convex hull of this set is assigned to its nearest Xj. The resulting

assignment produces the regions:
Vi= {xl s(x,xp) < s(x,xJ')}, j=1..,1-1,1+1,..,n (2.5.1)

Generation of a spherical Voronoi diagram is very similar to the generation of a planar
Voronoi diagram. The minor modifications required are discussed in Okabe et al. (1992), Lawson
(1984), Renka (1984), and Traversoni (1990). Arc distance replaces Euclidean distance and the
boundedness of the sphere produces changes in the planar equations relating the number of points,
edges, and Voronoi vertices.

Dual to the Voronoi diagram is a triangulation, formed by connecting points having a
common boundary in the Voronoi diagram. In a triangulation, there are 2n-4 triangles if the
convex hull is the entire sphere (Lawson, 1984). If instead, the convex hull is a proper subset of
the sphere (resulting if the points are hemispheric), the relation for the number of triangles is
unchanged from the planar form, with 2n-b-2 triangles for a convex hull having b boundaries.

An arbitrary point within a triangle can be represented in terms of local, barycentric
coordinates of either the spherical triangle or its projection onto a planar triangle. The resulting
coordinates are not equivalent in these two representations. The use of spherical barycentric
coordinates is discussed in Baumgardner and Frederickson (1985), while the planar form using a
projection onto the polyhedra solids is discussed in Goodchild and Shiren (1982).

2.6 Calculus
The derivative and integral of a function on the sphere are defined similarly to their planar
forms. Table 2.1 defines a few common calculus operations on the sphere. Calculus operations
are generally simpler to express in spherical coordinates, and such coordinates will be used
exclusively in this section.
The finite difference form of Laplace's equation on the sphere is (Swarztrauber, 1974):

zgi,j = W[COS(PUH)/Z(&H,J‘ - gi,j)_COS(p(i—l)IZ(gi,j - gi—l,j)]
1

+ ——
(r, coSPAL)’

(2.6.1)
(gi,j+1 _2gi,j+gi,j—1)

where subscript i is the latitude index and j is the longitude index. Algorithms for solving
Laplace's equation or the Poisson equation on the sphere are described in Swarztrauber and Sweet
(1979). FORTRAN subroutines can be obtained from the National Center for Atmospheric
Research in Boulder, Colorado. A geographic application is discussed in Tobler (1994).

Advection is defined as the transport of a substance by a fluid in motion. Advection of a
scalar quantity g on a sphere is defined as (Smolarkiewicz and Rasch, 1991):

-V(pg cos ¢)

where p is the density of the advecting medium (such as air or water), and is typically treated as a
constant.

The length of an arbitrary arc can be computed by the line integration f g ds, where the line
element ds is:



1/ /
Gradient Ve = 1[1/cos¢ dg oA
r,| dg/de
i 11 2og 1 9 dg
Lapl Vig= R PV 4
aplacian 8= [cosz o M cos ¢ 90 cos @ acp}
Biharmonic V4g=v2(vzg)
S 1 g, 1 [ O og 9 d'g 12 : og
. [C°S4(P P eos ol apah P30 T a0 P agn ) TeosTe 90 Pap” " Yoo
Divergence VeV= (15 cos )" (9V/oA + 8/09(V , cos 9))

Curl (vertical component) (VxV)ez=(r,cos®)” [0V, /A ~d(V, cos@)/ 00z

2n /2

Integral JgdS =1 J jgcoscpd(pdk
S 0-n/2
Line element ds=rg [cos2 [0) dn)2 + (d(p)2] 172
(meridional only) dsg=1g do
(zonal only) ds)=rg cos @ dA
Area element dS=rg2 cos @ do dA

Table 2.1 Calculus operators on the sphere. The notations V(p and V), refer to the components of
V in the meridional and zonal directions, respectively.



ds=rg [cos2 @ (dA)2 + (dg)2]1/2 . (2.6.2)
The area of an arbitrary region can be obtained from J g dS, where the area element dS is:

dS=rg? cos @ do d\ . (2.6.3)

2.7 Geometric aspects of spherical coordinates
Much of the difficulty associated with spherical analysis is based upon the singularities of
the spherical coordinate system at the poles. Many of the complexities disappear when working
with the direction cosine representation (Swarztrauber, 1981).

To represent a function g(¢, A) with continuity across the poles, it must be independent of
longitude there:

g(n/2, 0)= g(m/2, \) 0<A<2m
g(-/2, 0)= g(-1/2, A) 0<A<27 . (2.7.1)

For the stronger condition of cl continuity, or continuous first derivatives, the additional
requirements are:

dg(r/2%) _ ., 9g(n/2,0) ., dgn/2m/2)

5 ae/” 5 96 5 96 0<A<27 (2.7.2)
g-n/20) _  , 98(-m/2,0) ., dg(-T/2,m/2)
00 00 00

A more general treatment of the "pole problem” can be found in Boyd (1989).

Vector-valued functions are particularly affected by the singularities at the poles. For
example, a northward wind abruptly becomes a southward wind upon crossing a pole, and an
eastward wind becomes westward if it slides past a pole. In general, the zonal and meridional
components of a vector are discontinuous at the poles because of this change of sign. Analysis of
vector-valued functions is discussed in Section 5.4.

2.8 Spherical harmonic transform
The spherical harmonic transform represents the natural generalization of the spatial Fourier
transform to the domain of the sphere. When applied to a spherical data set, the transform

produces a change of independent variable from geographic location (¢, A) to an inverse measure
of spatial scale (m,n) (where large m and n represent small spatial scales). Index m represents the
zonal spatial scale (along latitude parallels alone) and index n represents the total spatial scale
independent of any preferred direction. The value of n-m represents the meridional spatial scale,

as the zonal and meridional spatial scales are additive, unlike the planar case where ktotal= (kx2 +
ky2)1/ 2. Both m and n are non-negative in the form of the spherical harmonics presented here,

and satisfy the condition m < n. The indices m and n can also be interpreted as wave numbers in

the zonal and total directions, respectively.
The spherical harmonic functions are defined as products of Fourier functions in longitude

and normalized associated Legendre polynomials in sine of latitude:

cos(mA) P7 (sin@) sin(mA) P (sin®) (2.8.1)



The transform of a function g(¢, A) is computed from its projection onto each of the spherical
harmonic functions (2.8.1):

a_ -——Jg((p,l) cos(mA) PT(sin ¢) dS
S

b, = [&(@,A) sin(mh) P](sin ) dS (2.8.2)
S

The ay,, and by, are the spherical harmonic coefficients used to represent and recreate the
function g as a linear combination of spherical harmonics:

glo.M) =), i[am cos(mA) + b__sin(mA)] PP (sin @) (2.8.3)

n=0m=0

The spherical harmonic representation provides equal area resolution over the entire sphere and
produces fields that are continuously differentiable at the poles from all directions. The selected
value of N in (2.8.3) is the truncation level and implies that the summation in (2.8.3) will have
(N+1 )2 terms.

Parseval's relation relates the square of the coefficients to the square of the function:

[ £2 dS= 33 p(m,n) (2.8.4)

where
p(m,n)= a’ + bl (2.8.5)

is known as the power spectrum. Equation (2.8.4) represents a decomposition of the integrated

value of f2 by spatial scale. The power spectrum as a function of n alone is obtained by
summation over all values of m for each n:

p(n)= Y (al,+ bl) (2.8.6)

This value is independent of the placement of the poles, as expected from the definition of total
wave number.

Once the spherical harmonic coefficients are known, the field can be easily created relative
to a rotated pole. This transformation is carried out by replacing ap, and by, with:

A = D Comnlpn Bun = 2, ComaDopn (2.8.7)
p=0 p=0

where cpmn are a function only of the distance that the pole has been rotated.

%he spherical harmonic functions are ordinarily computed on a regular grid, recursively
from known values at small m and n. The grid is usually equally spaced in longitude; the latitude
grid may be either equally spaced or with points that are the zeros of the Legendre polynomials.
Spherical harmonic functions and transforms are available in many standard mathematical software
packages (Mathematica, MATLAB, IDL). FORTRAN programs for performing spherical
harmonic analysis and synthesis are also available from the National Center for Atmospheric



Research in Boulder, Colorado.

For some applications, it will be desirable to know expressions for the gradient and
Laplacian of the spherical harmonic functions. Using standard identities for derivatives of
associated Legendre polynomials (Swarztrauber, 1981), the gradient of the spherical harmonics is:

Vlcos(mA)P™ (sin )] = @{- sin(mA)W" }

I cos(mA)V?Y
N (2.8.8a)

N cos(mA)W?

Visin(mA)P" (sin )] = YAB D (mAW,

I, sin(mA)V?
The basis functions V and W are linear combinations of P using the relations:
Wi =c Pl +c, P

(2.8.8b)

m _ m+l m—1
Vo' =c,P" +c¢,P,
where

c1= 1/2 [2n+1)(n+m)(n+m-1)/n(n+1)(2n-1)]1/2
o= 1/2 [(n-m)(n-m-1)/n(n+1)]1/2

¢3= 172 [(n-m)(n+m+1)/n(n+1)]1/2

c4= -1/2 [(n+m)(n-m+1)/n(n+1)]1/2

The Laplacian of the spherical harmonic functions is of a simpler form, as n(n+1)/rp2 is the
eigenvalue for that operator:

V*[cos (mA)P™ (sin@)] = 20D o5 (muyP (sin )
T
: . (2.8.9)

V?[sin(mA)P (sin@)] = n(n:— D sin(mA)P™ (sin @)
r

s

Spherical harmonics are usually applied to functions defined over the entire sphere.
However, for data defined only on a spherical cap, spherical cap harmonics can be used. In this
case, the index n is real-valued, rather than integer-valued, although only a finite number of
harmonics are required. The values of n are computed to satisfy simple boundary conditions at the
perimeter of the cap (Haines, 1985). Software for computing the appropriate values of n and for
carrying out the transform and its inverses are described in Haines (1988).

3. Spherical probability distributions

In this section, probability density functions (pdf) on the sphere are defined. The sections
are divided into continuous and discrete distributions, although distributions for one can be applied
to the other. Thus, point data can be well represented with continuous distributions where the

number of data points is large.



3.1 Continuous distributions

Many continuous probability distributions on the unit sphere have been studied in great
detail. Summaries can be found in Fisher et al. (1987) and Upton and Fingleton (1989; Chapter
10). Most of the interest in these distributions derives from directional statistics, in which the unit
sphere is a conceptual model for three-dimensional direction. Very few applications consider the
earth surface as the spherical domain. In this section, the relevant distributions for use in
geographical applications are described.

A probability density function (pdf) can be expressed in terms of either spherical
coordinates f(, A) or direction cosines f(x), and there is an important distinction between the two
forms. Consider a random variable on the sphere, such as the geographic distribution of birds,

with pdf f(¢, A). The proportion of birds in the latitude-longitude range
(¢,¢+d9) and (A,A+dD) (3.1.1)

is by definition f(¢, A) d@ dA. Note that on a unit sphere, dg dA# dS; therefore, f(¢, A) cannot be
interpreted as the bird density per unit area. In contrast, f(x) does have the desirable interpretation
of an areal density. The proportion of birds in the range:

(X, x+dx)= (x, x+dx), (y, y+dy), and (z, z+dz) x+dxe S2 (3.1.2)

is f(x) dx, where dx is in fact an areal unit. The difference between the two forms becomes
apparent using the Jacobian of the transformation (2.7.2):

f(@, A)= cos ¢ f(x) ; (3.1.3)

there is a cos ¢ factor is absorbed into the spherical coordinate form of the density f(¢, A). Asa
result of this difference, some authors define the probability density element (pde) dh:

dh= f(x) dx
=f(¢, A) do dA (3.1.4)

The pde is a probability (rather than a density) and is independent of the coordinate system.
All of the major continuous distributions on the sphere have pdf expressible as:

f(x)= ¢ eA(X) xe §2 . (3.1.5)

A summary of these distributions appears in Table 3.1. The constants ¢ are not shown in the table,
as they are often of a complicated form. A trivial special case is the uniform distribution, with pdf:

f(x)= (4m)-1 . (3.1.6)

This distribution is often used as a null hypothesis when testing for the presence of other
distributions. ‘

The rotationally symmetric class of distributions in Table 3.1 includes unimodal, bipolar,
great circle, and small circle distributions. Distributions in this class are of the form A(xep) and

are symmetric about the location pLe S2. They are described in Sections 3.1.1 through 3.1.3.
Distributions lacking rotational symmetry are discussed in Section 3.1.4.

Many statistical tests have been derived that assume an underlying unimodal distribution.
This is analogous to the situation on the plane, where the t test and F test assume an underlying



normal distribution. Other tests are slightly less restrictive, and only require an underlying
distribution that is rotationally symmetric (such as those listed as such in Table 3.1). A summary
of these tests can be found in Fisher et al. (1987). Few non-parametric tests have been adapted to
the spherical domain.

Other densities can be expressed non-parametrically either in terms of its moments or as an
expansion in orthogonal functions. This subject has been discussed by Beran (1979) and Watson
(1983) using a Fourier expansion, but has not been applied in practice. Sneyers and Isacker
(1980) discuss a similar approach on the unit circle for meteorological data.

3.1.1 Fisher distribution
The most useful unimodal distribution is known alternatively as the Fisher, von Mises, or

Langevin distribution. This distribution, denoted F(u,x), comes closest to representing the
generalization of the normal distribution to the sphere. While not satisfying all of the normal
distribution's properties, there are remarkable numerical agreements between it and competing
distributions (Watson, 1983), and it is reasonable to use the Fisher distribution as an all-purpose
unimodal distribution. The Fisher distribution thus represents a useful model for the random
errors associated with a regression or other least squares fit.

The parameters of the distribution are the mean location  and the dispersion or
concentration parameter ¥, with k>0. The concentration parameter is an inverse measure of
dispersion, with large k representing highly concentrated data and small K representing widely
dispersed data. For relatively large x,

K 1= o2 (3.1.7)
so that k can be interpreted directly as an inverse variance. The Fisher distribution has pdf:

f(x)= c eKH°X
=cekcosb (3.1.82)

where 0 is the angle between x and W using (2.1.7). The constant ¢ is:

c= K [47 sinh x]-1
=k e X [27 (1 - e2K))-1 : (3.1.8b)

This pdf has its maximum density at x= 1 (or 6= 0) where
f(w)=x [21 (1 - e2¥)1-1 (3.1.9)
and a minimum at the antipode -\ where
f(-p)= e 2K () : (3.1.10)

This distribution approximates the multivariate normal distribution for either small angles 6
or large ¥ (1>3) (Clark and Morrison, 1983). The approximating normal density has mean
location L, variance K'l, and zero correlation. In the limit K --> oo, the Fisher distribution



approaches a "point" distribution, while for k --> 0, it approaches the uniform distribution.
In the spherical coordinate form,

f(,\)= ¢ cos @ exp { K sin @ sin Qg + oS ¢ cos P cos (A-10) } (3.1.11a)
or with coordinates rotated so that 1 is at the north pole:
f(@,A)= ¢ cos @ eK Sin @ . (3.1.11b)

In (3.1.11b), the density is zero at the north pole (1/2,0), where the areal density form (3.1.8a)
has a global maximum! The spherical coordinate form (3.1.11b) conveys a geometric property of

the coordinate system at the point (the vanishing of area at latitude band ¢= 1/2) producing the
minimum there, rather than the property of the function itself. Diagrams comparing these two
forms are given in Fisher et al. (1987) and Mardia (1972).

The Fisher distribution is separable in latitude and longitude. The marginal distribution of

A is uniform over [0,2%]. The marginal distribution of @ is:

f()= Kk cos ¢ [2 sinh k]-1 eK SN @ 0<Q<T)
=xcos ¢ [1 -e2K]-1 gk (I-sin @) | 0<@<m) (3.1.12a)

a distribution discussed in Clark (1983). The quantity (1 - sin @) in (3.1.12b) has a truncated

exponential distribution on [0, 2] with rate . For large x, the [1 -e'z‘c]'1 factor is very close to 1

and can be neglected. For this case, the mean value of f(¢) is approximately L.
For later reference, it will be useful to make a change of variables and express (3.1.12b) in

terms of the distance of an arbitrary point from the north pole u. Converting to colatitude and
using (2.2.1a),

f(s)= k/rg (1-e-2K)-1 sin (s/rg) exp {-K[1- cos (s/rs)]} (0< s <mrg)  (3.1.13)
The inverse rg factor arises from the Jacobian of the transformation into dimensional units.

3.1.2 Circle and bipolar distributions
Bipolar and great circle distributions are axial, or symmetric about an axis, and satisfy the

condition f(x)= f(=x). These two classes of distributions share the same mathematical forms and
differ only in the sign of A in the exponent of (3.1.5); the sign reversal interchanges the roles of
maximum and minimum locations. The most common distribution of this type is the Dimroth-
Watson distribution (Watson, 1983):

f(x)= c exp { K(1ox)? } . (3.1.14)

At the surface of the earth, there are relatively few axial phenomena (magnetic poles and tides
represent exceptions) and relatively few great circle phenomena.

Processes with a peak density along a parallel (or other small circle) can be fitted to a small
circle distribution. Such a distribution is rotationally symmetric about an axis, with a peak density
at a small circle and local minima at each pole. Two small circle densities have been studied in the
statistical literature.



The Mardia-Gadsden distribution (Mardia and Gadsen, 1977) can be expressed in any of
the forms:

f(x)=c exp {KjU*x + Kplp X xI } (3.1.15a)
=cexp{KicosO+x2sin0} (3.1.15b)
=cexp {k cos (6 -8%} . (3.1.15¢)

Contours of this distribution are shown in Figure 3.1. In (3.1.15a), u is the axis of rotation, and
K1 and x?2 represent polar and equatorial concentration parameters, respectively. In the other two

forms, O is the angle between W and x. In (3.1.15¢), 6* represents the colatitude maximum and a

single concentration parameter is used. For 6*= 0 (or k2= 0), the Mardia-Gadsden distribution

reduces to the Fisher distribution with the same parameters x (or x1) and . For 8= /2 (or x]=
0), this distribution reduces to a great circle distribution. The constant c is complicated; it is
expressible using sums of Bessel or incomplete beta functions (Mardia and Gadsen, 1977).

The Bingham-Mardia distribution (Bingham and Mardia, 1978) has pdf:

f(x)= c exp {Kj[*X + Ky(uex)2} (3.1.16a)
= ¢ exp {-K(cos 0 - cos 6*)2} ) (3.1.16b)

The parameters Kj, K5, W, and 0* have the same interpretation as above.

Comparisons of the two small circle distributions are described in Mardia (1981). The
Mardia-Gadsden distribution appears to produce tighter confidence interval bounds, whereas the
Bingham-Mardia distribution produces smoother contours at the poles and a more easily
computable analysis of variance. Most of the theoretical sampling properties of these distributions

are restricted to the special case of large k.

3.1.3 Distributions lacking rotational symmetry
Three distributions lacking rotational symmetry are listed in Table 3.1. The Bingham
distribution (Bingham, 1974) possesses oval symmetry and has density expressible in either of
the forms:

f(x)= c exp { x(pjex)(Lo*x) } (3.1.17a)
=cexp {xXKx) . (3.1.17b)

In (3.1.17a), 1and u2 are locational parameters (the foci of an ellipse) and x has its usual
interpretation. In (3.1.17b), K is a symmetric 3x3 matrix. This distribution is axial and has five

parameters. o
The Fisher-Watson distribution is the product of Fisher and Dimroth-Watson distributions:

f(x)=cexp { Kxjpi*x + Kz(uzox)z }. (3.1.18)

This six-parameter distribution possesses plane symmetry.
Most of the distributions in Table 3.1 are special cases of the 8-parameter Fisher-Bingham

distribution:

f(x)=c exp { K1H1*x + K (U2*X)(U3eX) } (3.1.19)



Figure 3.1 Contours of a Mardia-Gadsden (or small circle) distribution centered at 0= /4 (45°
N).



Distribution type A(X) Name Parameters
Uniform 0 Uniform none
Distributions with rotational symmetry
Unimodal KlLex Fisher >0, 1
Great circle/Bipolar K(uox)2 Dimroth-Watson K*, W

Klp X x| Selby K*, W
Small circle KiHex + lcz(uox)2 Bingham-Mardia K1>0, k>0, |

KiUex + Kplp X xl

Distributions lacking rotational symmetry
Oval symmetry K11 #X)(Hox)

Planar symmetry KiH1ex +K2(},L20X)2

Mardia-Gadsden

Bingham

Fisher-Watson

General KiK1*x + Kp(npex)(u3ex) Fisher-Bingham

K1>0, x>0,

K, 11, U2
K1, K2,0 112

K1, K2,K1,H2, U3

Note that pex= cos 0 and It x xI= sin 8, where 0 is the angle between L and x.

* >0 for great circle distributions, k<0 for bipolar distributions

Table 3.1 Distributions on the sphere: f(x)=c eA(X) where ¢ is a normalizing constant.

Parameters [ are location parameters; parameters K are spread parameters.



which is a product of Fisher and Bingham distributions. Comparisons of the various members of
the family, including goodness-of-fit tests are found in Wood (1988). Methods of simulating data
from these distributions are described in Wood (1987).

3.2 Discrete distributions
Very few results for discrete distributions appear in the literature. The discussion will be
limited to the Poisson distribution, as there appear to be no references to other discrete spherical
distributions.

3.2.1 Poisson distribution
The Poisson distribution on the sphere is very similar to its two-dimensional planar form.
The number of points j in an area S is distributed as:

p()=e2S (QS)/j! forj=0,1,2,.. (3.2.1)

where Q is the expected number of points per unit area, or rate of the process. Typically, the area
of interest is a spherical cap (cf. (2.4.8a)). Poisson distributed data are randomly distributed over
the domain, a condition known as complete spatial randomness.

Common tests for complete spatial randomness are based upon nearest neighbor distances,
but no nearest neighbor tests have been adapted to the sphere, to date. Tests of this type require
formulas for the mean and standard deviation of the kth nearest neighbor distance from an arbitrary
point. A complication associated with a bounded domain such as the sphere, is that a kth nearest
neighbor may not exist at all. The probability of this occurring will be negligibly small in most
applications, but from a theoretical perspective, a nonzero probability of a distance taking on the
value infinity implies that the mean distance will be undefined. Thus, it is necessary to supply
additional information to insure that the moments of the nearest neighbor distances exist.

The simplest additional assumption is to condition upon knowledge that the relevant nearest
neighbor exists. It can be shown that given this assumption, the density function for the (first)
nearest neighbor distance has a marginal Fisher distribution (3.1.13). As this result appears to be
new, its derivation is given in Appendix A3.1.

A slightly stronger assumption is to condition upon knowledge that the number of
realizations of the random process is equal to n= 41rg2Q, where Q is the mean rate of the process.
This approach was followed by Scott and Tout (1989), who derived the pdf, mean, and variance
for the kth nearest neighbor. (Scott and Tout derive the form for n-1 random points, but the
formulas below are converted to their corresponding values for n random points.) The density
function for the kth nearest neighbor distance is:

n!
2"r (n=k)(k-1)!

sin(s / r,)[1+cos (s / 1,)]" “[L—cos (s /1] O0<s<mrg .

(3.2.2)

f (s)=

In particular, the nearest neighbor (k=1) has density:

f,(s)= Eg—sin(s/rs)[1+cos (s/r)I"" 0<s<mrg (3.2.3)
r

s

with expected value

E(s)=2(—2n—)!—7cr . (3.2.4)

2nn!2 N



For large n, this reduces to the planar form using Stirling's approximation:

E(s)= (m/n)1/2rg (3.2.5)
=12 Q12 (3.2.6)

using n= 41tr52§2. Scott and Tout (1989) state that the exact form for the standard deviation is
complicated and do not present it; the planar form for large n (Cressie, 1991) is:

o=~ (l/n- 1/4)112 Q-172 (3.2.7)

3.3 Bivariate distributions
The joint distribution of a pair of locations has been considered by several authors,
although the mathematics are quite complicated even for simple cases. A general form

f(x,y)= c exp {K]1(L1°X) + K2(u2°y) + x’Ay} (3.3.1)

where A is a matrix, is described in Mardia (1975) and summarized in Jupp and Mardia (1989).
In (3.3.1), the conditional distributions of x and y are Fisher distributed, but the marginal
distributions have a more complicated form. Rivest (1989) considers the special case of (3.3.1)
when rotational symmetry can be assumed.

3.4 Estimation of parameters

Estimates of the parameters of the Fisher distribution are usually obtained from the
maximum likelihood estimators:

i=2Zx,/n (3.4.1a)
coth(k)—-1/k=R/n . (3.4.1b)

where the resultant length R is defined as:
R=[ (Zxj)2 + (Typ2 + T2 112 . (3.4.1c)

For large x, coth(x) = 1, and (3.4.1b) reduces to:

= 1—(1%) . (3.4.2)

This estimate is biased, and some modified forms have been suggested (Fisher et al., 1987).

Estimation of the parameters 1 and 6 in the small circle distribution (3.1.11c) is achieved by
simultaneous solution of the set:

Y Uexj =cot 0% X I x xj |
Yxj=tan 0% X xj M xj/ L Xxjl+oOp (3.4.3)

where @ is a Lagrange multiplier to constrain the solution to the sphere. Iterative solutions are
described in Mardia and Gadsden (1977). Gray et al. (1980), Mancktelow (1981), and Schott et
al. (1991) describe additional procedures for estimating small circle parameters.



Appendix 3.A Proof that (conditional) nearest neighbor distance has a marginal Fisher
distribution
Consider a set of points generated by the Poisson process as in (3.2.1). A spherical cap
with area S contains no points with probability

p(O)=e‘QS (3.A.1)

If we follow the analogous reasoning as on the plane, the distance from the origin of the spherical
cap to its nearest neighbor has cumulative distribution function (cdf):

Fy(s)=1-¢42S (3.A.2)
and pdf:

f1(s)= dF,/ds
= -Q dS/ds e-$2S (3.A.3)

However, (3.A.2) and (3.A.3) are not correct as stated, because distance has not been restricted to
one-half the sphere circumference. This complication will be ignored temporarily, and will be
corrected below, by conditioning upon the distance lying in its proper domain. Using the spherical
cap formulas (2.4.8a) and (2.4.10a), (3.A.3) becomes

f,(s)=2n g sin (s/rg) exp {-21t§2rs2 (1- cos (s/rg)) } (s=20). (3.A4)
Defining
K= 2nQrg2, (3.A.5)
the nearest neighbor distance has density
f1(s)= K/rg sin (s/rg) exp {-k(1- cos (s/rg)} (s=20) . (3.A.6)

This differs from (3.1.13) by a constant and has distance properly restricted to the spherical
domain. Ifin (3.A.6), we condition upon knowledge that the nearest neighbor exists, this is
equivalent to conditioning upon 0 < s < 7trs, or multiplication by a constant. Thus, for it to
integrate to 1, its density can be no other than (3.1.13).

From (3.A.5), the parameter 2K in the Fisher density function can be interpreted as a
nondimensional rate parameter for a Poisson process on a spherical domain.

4. Analysis of point data

In this section, the analysis of point data is considered. Thus the dependent variable is
location on the sphere surface. The first section discusses sample statistics and exploratory data
analysis methods. The next section discusses regression and correlation measures for spherical
point data. Representation and search are the subjects of the following two sections, respectively,
topics that are particularly relevant to GIS applications. The section closes with an example from
location analysis.



4.1 Sample statistics
4.1.1 Measures of central tendency

Consider a random sample of point data x1= (X1, Y1, Z1), ---» Xn= (Xp, ¥n» Zpn) Where xije
S2 for each sample i. The sample spherical mean is the location:

X =(Zx,/R,Zy, /R,2z, /RY (4.1.1)
where the resultant length R is

R=[ (Zxi)? + (Zyi)? + (Tzp)? 112 (4.1.2)
The spherical mean is a point on the sphere surface; in contrast, the center of mass:

Xc= (Ixj/n, Xyi/n, Tz;my
=R/n x (4.1.3)

is interior to the sphere unless all the mass is concentrated at a single point.

Fisher and Lee (1983) discuss pooled estimation of the mean for the case where several
distributions are present. Tests for comparing mean locations are discussed in Fisher et al. (1987)
and Fisher and Hall (1990).

The spherical median is defined as the location x that minimizes the sum of distances to the
data points (Fisher 1985):

r, mianos“(xoxi) . (4.1.4)

i=l

Equation (4.1.4) is solvable numerically using most standard optimization package. The spherical
median and mean differ in that the former minimizes the average of cos-! (xxj) and the latter
minimizes the average of xexj.

4.1.2 Measures of dispersion
Several measures of dispersion have been defined on the sphere. The simplest dispersion
measure is the distance of the center of mass (4.1.3) from the sphere surface:

rs(l - R/n)

This distance is the spherical standard deviation and ranges from O for data entirely concentrated at
a single point to rg for spherically symmetric data. In the literature, this measure is incorrectly

referred to as a spherical variance.

Another measure of dispersion (Woodcock, 1977; Woodcock and Naylor, 1984) is
provided by the eigenvalues and eigenvectors of the matrix of second moments (or orientation
matrix) T where:

zxiz zxiYi inzi
Tzlixixle ZYixi Zylz ZYizi (4.1.5)
n< n
| Szx Szy, T2



= E(x x/).

This method should be used with caution, as it measures dispersion based upon perpendicular
distances from axes, rather than geodesic distances from points. Nevertheless, the eigenvalue
method is in common use and is described below.

Let (T1, 19, T3) represent the eigenvalues of T, with T <13 <13. The eigenvalues sum to
1 because this sum is equal to that of the diagonal elements of T

T +T) +13= IX2+ 2yj2 + Xz;2
=1 . (4.1.6)

The eigenvalues are also nonnegative because the matrix is nonnegative definite, which is a
consequence of:

3
x'Tx = lZ(xxf )* (4.1.7)
N

The magnitude of the largest eigenvalue T3 is a measure of the degree of clustering of the data, and
its associated eigenvector e3 identifies the location or principal axis about which the clustering

occurs. T3 satisfies 1/3 < 13 < 1, with the lower limit corresponding to uniformly distributed data
and no tendency to cluster. Larger values of 13 correspond to increasingly clustered data about the

axis e3; the upper limit 13= 1 corresponding to data confined to this single axis. The measure 13
does not discriminate between clustering about a point and clustering about a point and its
antipode. However, these two cases can be distinguished using the auxiliary measure R/n, as
R/n= 1 implies a single cluster and R/n= 0 represents an antipodal cluster pair. No such ambiguity
exists about the eigenvalue e3, as it is directed and identifies the single cluster center except where
this is not possible (as in the limiting cases of uniformly distributed or bipolar data).

The second largest eigenvalue 75 ranges in value from O to T3 and measures the degree to
which the data fall along a great circle. This great circle lies in the plane spanned by the

intersection of eigenvectors €2 and e3. The minimum value 3= 0 corresponds to the 13 =1 case
described above, with data concentrated along an axis. The maximum value )= 73 occurs for data
entirely confined to a great circle (except in the special case of uniformly distributed data).

Eigenvalue 1] should be interpreted as a residual value. It takes on its lower value of zero
for perfect fits to an axis or great circle, whereas, uniformly distributed data produce the maximum
value 11 = 1/3.

For large sample sizes, the standard error of the estimate of the spherical mean can be
estimated using the central limit theorem (Fisher and Lewis, 1983):

o=r1s(n— T (ux))!/2/R (4.1.8)

Unfortunately, this quantity is often referred to in the literature as a spherical variance.

Several tests for complete spatial randomness are compared in Fisher et al. (1985). One
common method uses the values of the eigenvalues of the second moment matrix T (4.1.5). These
eigenvalues are equal for uniformly distributed data. Support for the hypothesis of uniformity

occurs if the observed x2 value, defined by



x2=150/2 3 (15- 1/3) 2 (4.1.9)

exceeds the critical % value with 5 degrees of freedom.

4.1.3 Confidence intervals
Using (4.1.8), confidence regions can be placed around estimates of the spherical mean or
median. Two cases are considered, depending upon assumptions made about the underlying
distribution. If this distribution can be assumed to be rotationally symmetric, the confidence

region about the spherical mean is a spherical cap. For large sample sizes, X is approximately
distributed as a normal random variable. The cap has spherical radius:

s= 1 sin"1 [(-In o) 1"26/1g) (4.1.10)

where 100(1-0)% is the confidence level (typically o= .05). If rotational symmetry cannot be
assumed, an ellipsoidal cap about an estimate of the median can be computed (Fisher et al., 1987).

Where only small samples are available, confidence intervals can be generated using
bootstrap methods (Fisher and Hall, 1989). Confidence intervals for the best fitting small circle
latitude are discussed in Kelker and Langenberg (1982).

4.2 Regression and correlation
Regression on the sphere is the subject of the review article of Chang (1993). The general
spherical regression problem is to find the best fitting orthogonal matrix A such that

y= Ax (4.2.1)

where x and y are points on the sphere (Jupp and Mardia, 1980). There is no constant term in
(4.2.1) because all spherical translations are rotations.

A method for estimating A can be found in Fisher and Lee (1986). The residual of the fit
is usually assumed to be Fisher distributed with mean location Ax and unknown concentration

parameter K. Decision analysis problems relating to spherical regression are discussed in Kim
(1991). Matched regression on pairs of points is the subject of Prentice (1989). Jupp and Kent
(1987) find the best fitting time trajectory of spherical data; a continuous function R(t) is found on
the plane using the equidistant azimuthal projection of the sphere.

Several correlation coefficient measures have been defined for point data on a spherical
domain. The measure of Fisher and Lee (1986) will be described here, as it most closely
resembles correlation measures on the plane; others are described in Jupp and Mardia (1989).
Two variables x and y have correlation p= +1 if there exists an orthogonal transformation A such
that y= Ax with det A= +1 (Fisher and Lee, 1986; Stephens, 1979). If y= Ax with det A= -1,

then p=-1 and A represents a rotation plus a reflection. More generally, -1 < p < 1, with larger

magnitudes representing better fits to the respective models. The correlation coefficient p is
calculated as:

p=Sxy / (Sxx Syy)1/2 (4.2.2)
where

Sxy= det Y xi vi



Syy=det Tyjyi/ . (4.2.3)

Critical values of p are difficult to obtain, in general (Fisher et al., 1987).

One of the most successful applications of spherical analysis has been in the field of plate
tectonics, or continental drift. According to plate tectonics theory, continents in the distant past
have drifted as a rigid body (with occasional loss and gain of land mass). The problem is to find
the best fitting rotation matrix relating current continental positions to those suspected in the past
(Chang, 1986; 1993; Cox et al., 1990).

No autocorrelation measures for spherical data have been developed, and this area
represents a wide open field for research pursuits.

4.3 Representation
Voronoi polygons on the sphere were briefly described in Section 2.9. They can be
computed in an analogous manner to those on the plane (Lawson, 1984; Turner, 1986; Okabe et
al., 1992; Miles 1971). Lawson found that the time required to generate a triangulation on the

sphere is proportional to n5/4, where n is the number of points. This relation was derived
empirically, using values of n ranging from 25 to 500. Equations (2.1.8) and (2.3.5) are used to
find the midpoint and perpendicular bisector, respectively, of a pair of points.

If the generated polygons are triangles, the triangulation is not unique. For each pair of
triangles sharing a common side, a different triangulation results from switching the diagonal
element in the quadrilateral formed by the associated 4 vertices. Usually, sides of nearly equal
length are preferred to long, skinny triangles. Criteria for choosing between the two choices
include: maximizing the minimum triangle angle (Nielson and Ramaraj, 1987) and minimizing the
radius of the inscribed circle (Renka, 1984; Lawson, 1984).

Edges of a spherical polygon are usually stored by specifying the coordinates of the
endpoints. To represent an edge of angular length 7, an additional vertex (or pseudo-vertex) is
usually introduced along the edge.

White et al. (1992) and Brown (1993, 1994a, 1994b) discuss issues associated with
sampling on the sphere. Goodchild and Shiren (1992) discuss addressing schemes for regions
decomposed by the regular polyhedral solids (cf. Section 2.5).

Several polyhedral-based GIS have been proposed. The quaternary triangular mesh
(QTM) (Dutton, 1984; White et al., 1992) subdivides the globe based upon a projection of the
sphere onto the octahedron. Projection onto the dodecahedron is described in Wickman, Elvers,
and Edvarson (1984). Projection onto the dodecahedron has been proposed by Fekete (1990),
Fekete and Davis (1984), and Fekete and Treinish (1990), and onto the truncated icosahedron
(producing 12 pentagons and 20 hexagons) by White et al. (1992).

Very few working examples of GIS on a spherical domain are known. The large
geographic extent of a global GIS suggests the use of hierarchical data structures (Tobler and
Chen, 1986; Mark and Lauzon, 1985), to provide ready access to information at various
resolutions. The Hipparchus GIS (Lukatela, 1987) for geopositioning uses direction cosines as
the basic storage units, and three values are required to reference a location. This represents a
favorable tradeoff of storage vs. computational efficiency relative to the spherical coordinate form
(requiring only two storage values per location), as the number of trigonometric calculations 1s
greatly reduced.

4.4 Search and query algorithms
Hodgson (1992) described and tested an algorithm for finding the kth nearest neighbor on
the sphere using spherical coordinates. The essence of this algorithm is two criteria for reducing
the distance computation. The points are sorted according to latitude distance alone. If this
distance exceeds the kth closest distance identified thus far in the search, no further evaluations are
necessary. This result is justified using (2.2.6a) (distance on the sphere is at least that considering



latitude distance alone). Besides this stopping criterion, there is a partial distance evaluation
method. If the one-dimensional longitudinal difference is sufficiently large according to (2.2.6b),
it is not necessary to compute the full spherical distance. Hodgson noted that this algorithm is only
one of the commonly used search algorithms that could be adapted to spherical geometry.

A basic operation of a GIS is to determine whether or not a point is located within a
polygonal region. Bevis and Chatelain (1989) describe an algorithm and computer code for
carrying out this query for an arbitrary spherical polygon. On the sphere, it is necessary to specify
both the vertices of the polygon and another flag to indicate whether the "inside" or "outside" of
the polygon is to be represented. This redundancy can be resolved using the direction of vertex
numbering: clockwise numbering of vertices implies the outside polygon and counterclockwise
numbering represents the inside polygon (Bevis and Cambareri, 1987).

Bevis and Chatelain's (1989) algorithm resolves the ambiguity differently, by having the
user specify an interior point X. This point is used as the north pole in subsequent calculations.
The algorithm determines the number of polygon side crossings between the point of interest and
X; an even number of crossings implies that the point is inside and an odd number of crossings
indicates outside. A number of restrictions apply to the specification of this orienting point, as it
cannot be the antipode of a vertex and cannot lie on a great circle connecting neighboring vertices
of the polygon boundary. If either of these conditions are not met, another interior point must be
specified.

Renka (1984) and Lawson (1984) describe a query to determine which "side" of a directed
arc contains a specified point, using (2.3.9). They also discuss a query for determining whether a
point is interior or exterior to a small circle, using (2.3.18). General concepts of data depth and
distance using various metrics are discussed in Liu and Singh (1992).

4.5 Location analysis
The most developed application of spherical analysis in human geography is the spherical
location analysis problem. Its objective is to find the location x* that minimizes the sum of
weighted arc distances from a set of points x;:

min X w;j Is cos~! (xjox*) (4.5.1)

The planar version of (4.5.1) is known as the Weber problem. The spherical version is the subject
of the reviews of Litwhiler (1977) and Wesolowsky (1985).

In the spherical version, the objective function is not convex, in general. A simplification
results if the points lie along a great circle, in which case the optimum will be located at one of the
points xj (Drezner, 1981). Another simplification results if the points are hemispheric. In this
case, the search can be limited to the spherical convex hull of the points (Aly et al., 1979). If all
the points lie within a cap of spherical radius /4 rs, the distance function is convex, and a local
maximizer is guaranteed to be a global one. When the weights are sufficiently large, it is known
that the minimizing point must coincide with one of the data points. Conditions for this occurrence
are presented in (Katz and Cooper, 1980). Extrema solutions to (4.5.1) occur in antipodal pairs,
as a local minimum has the dual solution of a local maximum at its antipode.

A gradient method for solving (4.5.1) is described in Katz and Cooper (1980). Litwhiler
and Aly (1979) describe two additional algorithms: the point projection method and the alternating
direction search method. In the projection algorithm, the points are projected onto a plane with the
current best location as the pole. Standard planar search methods are applied at this point. The
cyclic meridian search alternates the search along a meridian and an orthogonal great circle. Xue
(1994) presents an algorithm for the spherical facility location problem that is globally convergent.
However, his study is restricted to points contained within a cap of radius of /4, where convexity
is assured. Drezner (1985) developed a finite algorithm without these restrictions. Extreme point

solutions to (4.5.1) are found by differentiating with respect to @ and A and setting each to zero.



5. Analysis of functions on the sphere

This section describes the analysis of functions defined on a spherical domain. Natural
applications of this material are to global datasets obtained by satellite or computer simulation. The
primary emphasis is upon fields, or continuous-valued functions that are everywhere defined. The
first three sections discuss scalar-valued fields, such as surface temperature, elevation, and
population density. These sections cover interpolation, gradient estimation, and correlations. The
fourth section describes vector-valued fields, such as wind and monetary flow. The final section
discusses representation of fields.

A field is characterized mathematically by a finite-valued function of location g(¢,A) or
g(x). The mean value of a field is defined as:

2n /2

_ 1
g=4—J J’g(tp,k)costpd(pdk ) (5.1)
T 0-m/2

The center of mass X, may be located either interior to, exterior to, or on the sphere and is defined
as:

ds
o _Jxeo0ds . (5.2)

© [emxds
The spherical center of mass is the extension of this point to the surface:

X = e . (5.3)

x|

This formula can be used to find the center of population of a large region.

5.1 Interpolation

The general interpolation problem is to estimate the value of g(x) using known values of
g(xj) for i= I,...n. Several interpolation methods are in use on spherical domains. The various
methods differ in the number of points used in the estimation procedure and in the way that the
g(xi) values are combined. The methods are discussed below in order of locality, beginning with
local methods and ending with global methods. Source code in most cases is available from the
authors cited below.

The tessellation method (Renka, 1984; Lawson, 1984) is based upon an empirical
tessellation of the sphere using the xj as generating points. This method uses the value of g(x) at
the nearest generating point xj and this point's three nearest neighbors. The convex hull of the
points is decomposed into spherical triangles using a Delauny triangulation (Okabe et al., 1992).
The gradient of the function is then estimated at each vertex xj, using a technique described in the
next section. The interpolated value at an arbitrary point X is obtained by identifying the triangle

that contains x and using a cubic Hermite interpolation based upon the values of g and Vg at the

neighboring vertices.
In the more general local method, g(x) is estimated using

g(x)= Y w(x,)g(x,) (5.1.1)
i=1



with w an inverse function of the distance s(x,xj). In (5.1.1), the number of points n' with
nonzero weights is dynamically determined based upon the amount of data in that region. Often,
only points within a designated radius (the radius of influence) are used (Theibaux, 1987). A

common choice for the weighting functions w is Fisher distribution functions with mean y and a
modified concentration parameter k, centered at each of the n' estimation points. These functions
are normalized through a division by n'":

w(xj)= F(1L,x)/n
=k(47n sinh k)-1 ekKH*Xj (5.1.2)

The amount of smoothing is controlled by the concentration parameter k, with smaller k producing
more smoothing (i.e. smoothing over a broader range). More smoothing (smaller k) is appropriate
where there are fewer data points and where the underlying data have greater variance.

For data that are relatively unimodal and isotropic, Diggle and Fisher (1985) suggest the
formula

k=1 nl/3 (5.1.3)

where the actual concentration parameter K is estimated using (3.4.1b). Willmott et al. (1985) and
Robeson and Willmott (1993) discuss applications of this method in climatology.

For more general data sets, the cross-validation method can be used to identify a suitable k.
The value of k is selected to maximize the log-likelihood function:

max Y log f(x;) (5.1.4)

where f is computed by deleting point i in the calculation:

f(x)= D W(x;X;) (5.1.5)
1)
An iterative method must be used to find the x that maximizes (5.1.4). Diggle and Fisher (1985)
have produced FORTRAN source code to carry out this calculation.

Dierckx (1984; 1986) describes the fitting of bicubic splines to spherical data. These
splines are semi-global, in that values of g at greater distances are included in the estimation
procedure. Global spline fits are described by Wahba (1981) and Freeden (1981) who use thin
plate splines to fit trigonometric functions in latitude and longitude. These splines are linear
combinations of spherical harmonics and have as many coefficients as the original field.

If the spherical harmonic representation of a field is known, interpolation is carried out by
evaluating (2.8.3) at the point of interest. This interpolation is "exact” if the coefficients are
exactly known. However, the usual interpolation problem is to obtain the coefficients using
limited and scattered data, a task requiring a method such as Wahba (1981) or Freeden (1981).

5.2 Gradient estimation
The gradient of a field is important both in its own right and as an intermediate function in
other calculations, such as interpolation. The gradient on the sphere is defined as:

1 |:1/cosq) ag/ax]

Vg= 5.2.1
& r,| dg/oe ( )

s



As with interpolation, the gradient may be estimated using either local or global information, or
may be computed exactly using spherical harmonic coefficients.

Estimation using local information is described in Renka (1984) and Lawson (1984). They
estimate the gradient at x, by fitting a bivariate quadratic function to data projected onto a plane.
An azimuthal planar projection is used with x as the point of zero distortion. The estimated
gradient is that of the fitted quadratic. This method is most suitable for interpolation over a
relatively small region to minimize projection errors.

A global fit provides potentially more accurate estimation of the gradient, at a greater
computational cost. Renka (1984) obtains the gradient of g as that which minimizes the curvature
of g, that is, the g that minimizes

Q=[g"ds (5.2.2)
S

This minimization problem is solved by differentiating Q with respect to the gradient and setting it
to zero, producing a set of simultaneous equations that can be solved numerically.

If the spherical harmonic coefficients of a field are known, it is simple to compute the
gradient of the field. The calculation is exact if the spherical harmonic coefficients are exactly
known. This is accomplished by applying the gradient operator directly to the expansion:

g(@, A)= Yan,, cos (mA) PT(sin @) + by, sin (mA) P](sin @), (5.2.3)
and noting that the coefficients are not a function of space:
Ve(@, M= Yay,, VIcos (mA) PI(sin @)] + Xby, V[sin (mA) Pl (sin @)] . (5.2.4)

Equation (5.2.4) can be rewritten using (2.8.8) as:

—sin(mA)W b cos(m?t)W“m}
cos(mA) V. ™| sin(mA) V"

(5.2.5)

N n
Vg(o.h) = izw/n(n +1) ) {ay,
m=0

rs n=0

where V and W were defined in (2.8.8b). Thus the gradient of a field can be generated using the
same spherical harmonic coefficients as the field itself, but with the modified basis set V and W.

5.3 Correlations
The autocorrelation of a field and the cross-correlation of two fields can be computed using

the spherical harmonics expansions of the fields. For isotropic processes, the spatial
autocorrelation is (Kaula, 1967):

C(8)= 1/8n2 I3 (apy2 + bpy2 ) Pp(cos 0) . (5.3.1)

where 0 is the angular separation of a pair of points. More generally, for two variables g1 and g3
the cross-correlation 1s:

C(8)= 1/8712 3.3 (a]mn @mn + P1mn D2mn) Pnlcos 6). (5.3.2)

Individual terms in the summation of (5.3.1) or (5.3.2) can be interpreted as the contribution to
the total autocorrelation or cross-correlation at each spatial scale. Kaula (1967) discusses other



statistical analyses using spherical harmonic coefficients.

For specific probability distributions on the sphere, it is possible to compute the
corresponding autocorrelation functions in closed form. For example, for uniformly distributed
data with mean density €2, the correlation function takes on the following form (Orsingher, 1984):

C(0)= 4nQ TT ( app? +bpp2 ) Pp(cos ) . (5.3.3)

5.4 Vectors

In some applications, the dependent variable is a vector-valued function of location.
Examples of vector functions include horizontal wind, heat or water flux, population migration,
topographic gradient, and ocean currents. Note that this use of the word "vector" differs from that
in Fisher et al. (1987), where geographic location is the dependent variable interpreted as a unit
vector relative to the center of the earth.

It was noted in Section 2.7, that a continuous vector field will have a discontinuous
representation in spherical coordinates at the poles, because the vector components change signs.
For applications where the function is zero at and near the poles, the discontinuity is not a
discontinuity at all (negative zero is still zero). In the more general case, it is not desirable to
compute the spherical harmonic decomposition of a vector by transforming the zonal and
meridional components as scalars, because the discontinuity of the field at the poles will "corrupt"
the spectrum. Instead, an alternative decomposition can be used to retain continuity of the
components across the poles.

This alternative decomposition is based upon Helmholz's theorem from fluid dynamics,
which states that a vector can be expressed as the sum of divergent and rotational components.
The associated spherical harmonic components are known as vector spherical harmonics.
Equation (5.2.5) represents essentially one half of the necessary expansion, because a gradient is a
purely divergent function, without a rotational component. It is trivial to generate the basis set for
the rotational contribution, because for any (m,n) pair, the divergent basis is orthogonal to the
rotational basis. Therefore, an arbitrary vector can be decomposed into divergent and rotational
components (represented with superscripts D and R, respectively) as (Swarztrauber; 1981, 1993):

N 1 —si AW AMW?
V(w,x)=22{a2,,[ sin(mA) "‘}rbD {C"S(m ) "’}

mn

720 m=0 cos(mA) V7, sin(mA) Vy,
MV in(mA) V;,
+a§m cos(mA)V_ +b§m sin(mA)V | (5.4.1)
—sin(mA)W 7, —cos(mA) W,

In general, a vector field requires two sets of coefficients, to represent the divergent and rotational
components, respectively. However, if the field is purely divergent or purely rotational, it can be
decomposed with a single app, byp pair, although it has both zonal and meridional components.

Most of the general properties of scalar spherical harmonic coefficients described in Section
2.8 have analogs for vector harmonic coefficients. Thus, the power spectrum of a vector is the
sum of the power in the divergent and rotational components:

p(m,n)= pP(m,n) + pR(m,n) (5.4.2)
where

p°(m,n) = (ap,)* + (b, )’ (5.4.3a)
p"(m,n) = (ak,)’ +(b5,)’ (5.4.3b)



Like the scalar harmonics, the vector harmonics represent an orthonormal set of functions.

Just as the gradient of a scalar field can be created using the same scalar coefficients as the
field itself, several derived quantities can be created using the same vector coefficients as the vector
field itself. The divergence, vorticity, streamfunction, and potential function of a vector field are
respectively,

N n
-(VeV)(p,A) = —l—zw/n(n +1) Z{agm cos(mA)P> + b>_ sin(mA) P! } (5.4.4a)
m=0

rs n=0

E(Q,A) = %Zw/n(n +1) i{aﬁn cos(mA)P? + bY sin(mA)P2}  (5.4.4c)
m=0

s n=0

N n
¥(p,A\) = rséx/n—_(i_-_'_—l);{aﬁn cos(mA)P? + bX sin(mA)P2}  (5.4.4d)

N n
Y {ap, cos(mA) Py, + by, sin(mA)P)}  (5.4.4b)
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As with scalar harmonics, the synthesis of a field using vector spherical harmonics
provides a smoothing over the domain. Wahba (1982) and Freeden and Gervens (1993) discuss
interpolation of vector-valued data on the sphere; Freeden and Gervens use vector spherical
harmonics to carry out the interpolation.

5.5 Representation

Spherical harmonics can be used as a means of storage of a field. If the spatial variations
are generally caused by variations at only a few spatial scales, and these scales are relatively
consistent across the domain, the number of coefficients of non-negligible magnitude will be
relatively few. Meteorological phenomena tend to be driven by atmospheric waves, and represent
a natural application for spherical harmonic storage.

Bess et al. (1989) describes how a ten-year monthly data set of Nimbus-6 and Nimbus-7
satellite data were stored as spherical harmonic coefficients. A total of 169 coefficients were
retained in storage, corresponding to N= 12 in (2.8.3). Killeen et al. (1989) used a spherical
harmonic representation to store upper atmospheric climatology from many runs of a general
circulation model (GCM). Vector spherical harmonic coefficients were used to represent the winds
and scalar harmonics were used to represent temperature and constituent densities.

A spherical harmonic representation of the earth's topography is given in Balmino (1993).
A spherical harmonic representation of the 0-1 global land-ocean function is given in Koppelt and
Biegel (1989). This function takes on the value O over land and 1 over the oceans and
demonstrates that a function need not be continuous to be represented with spherical harmonics.
Another geographical example is Tobler (1992), who represents the world population with
spherical harmonics.

6. Future directions

Surprisingly few applications on the spherical domain appear in the geographical literature.
This situation is apparently due to the preference for analysis over relatively small spatial scales
relative to the sphere. The success of the projection approach over these domains is undoubtedly a
contributing factor. The Hipparchus geopositioning system represents a lone example of a full-
scale GIS that accounts for spherical geometry. It is hoped that this review article will remedy this
situation. The Hipparchus GIS uses direction cosines rather than latitude-longitude as the basic
locational units, and the formulations in Section 2 suggest that this is a good idea for reducing



computational time requirements.

Goodchild (1988) and Tobler (1993) discuss several potential applications of spherical
analysis. Perhaps the most promising application of spherical analysis will be to global change
research. Nevertheless, few such applications using spherical geometry have been developed to
date.
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APPENDIX 1 Definition of symbols

A argument of exp in spherical statistical distributions
c axis of great circle

C(6) autocorrelation function

€ej eigenvector

f probability density function (pdf) on the sphere

F(u,x) Fisher distribution with mean | and concentration parameter
arbitrary function on the sphere

moment of inertia

identity matrix

spherical harmonic zonal wave number (along parallel of latitude)
spherical harmonic total wave number

number of points

truncation or upper limit for spherical harmonic total wave number

P  Legendre polynomial

75 5 g =0

p(m,n) power at wave numbers m,n

P,(8) zonal-average Legendre polynomial (m=0)
R resultant length of a data set

2 two-dimensional Euclidean space

3 three-dimensional Euclidean space
R rotation matrix

Ig radius of sphere (for earth, rg = 6371 km)

S distance

S arc length

S surface area

S2 the unit sphere

T matrix of second moments of a data set

X arbitrary point on sphere

A\ arbitrary vector-valued function on the sphere
o zonal derivative of Py

W=  meridional derivative of Py
X¢ center of mass
X direction cosine along x-axis



D R N

=8

A
by,

BE 6

direction cosine along y-axis
direction cosine along z-axis

concentration parameter of probability distribution
angle between two points

polygon angle

longitude

eigenvalue

latitude

mean location of probability distribution
rate of Poisson process
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