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Abstract

Across languages there are certain characteristics
which they share. Linguists, trying to explain lan-
guage universals, have come up with different theo-
ries: They argue for (1) the innateness of general
linguistic principles, (2) the communicative func-
tions reflected in linguistic structure, (3) the psy-
chological demands placed upon language users, or
(4) grammar-internal explanations. This paper tries
to explain some of the morphological universals in
the framework of a connectionist network, support-
ing the third approach. Employing simple recurrent
networks, a series of experiments were done on var-
ious types of morphological rules. The results show
that the model’s performance mirrors the extent to
which the different types of rules occur in natural
languages. The paper explains how the model has
discovered these universals.

1 Introduction

The study of language universals has been a ma-
Jjor focus of modern linguistics for at least the past
three decades. Why do languages share the univer-
sal properties that they do? Why do languages ex-
hibit the range of variation that they do? Why are
certain logically possible properties not found in any
human languages? In attempting to answer these
questions, it appears that linguists can be grouped
according to four different theories. as explained by
Hawkins (1988):
Some argue for the innateness of general lin-
guistic principles housed within a language
acquisition device (LAD) which enables the
new-born child to acquire the particular lan-
guage of his/her community with remarkable
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speed and despite impoverished mput. Oth-
ers argue for a more social. rather than a bio-
logical, foundation to language: the commu-
nicative (discourse-pragmatic) functions that
language users perform are reflected in lin-
guistic structure. Yet others appeal to the
psychological demands placed upon language
users in the production and comprehension of
language in real time. These so-called "pro-
cessing’ demands are also argued to be re-
flected in 1ts structure, as are certain intrin-
sic properties of our human perceptual and
cognitive apparatus. Finally, there are more
grammar-internal explanations. whereby one
part of the grammar i1s claimed to be ex-
plained by another. for reasons essentially of
mternal consistency. (p. 3)

This paper tries to explain some of the morpho-
logical universals in the framework of a connection-
1st model. My approach in this paper is one that 1s
based on the demands of learnability and processing
(third approach from the above quote).

Employing simple recurrent networks, a series of
experiments were done on various types of morpho-
logical rules. The results show that the model’s per-
formance mirrors the extent to which the different
types of rules occur in natural languages. The paper
explains how the model has discovered these univer-
sals.

2 Experiments
2.1 Method

I use a relatively constrained three-layer network,
one in which feedforward connections are supple-



Figure 1: Architecture of the network

mented by limited feedback connections. Figure 1
shows the network architecture used for the experi-
ments.

The architecture shown in Figure 1 is a slight
modification of the simple recurrent network devel-
oped by Elman (Elman. 1990). Since morphological
processes are temporal. we need to have some kind
of short-term memory to store the previous events.
The feedback connections from the hidden layer to
the input layer serve this purpose.

The Form clique in the input and output layers
consists of 8 units representing a phonological seg-
ment. Each Meaning clique consists of 7 units, 6
of which represent a stem meaning and 1 of which
represents a grammatical feature of the input word
(0 for the absence of that feature. e.g. singular, 1
for the presence of the feature. e.g. plural). The
network has a variable number of hidden units and
an equal number of Context units.! Each of the first
two cliques receives input from the outside. while the
Context units receive a copy of the activations on the
hidden layer from the previous time step. The hid-
den units receive activations from the input layer.
feeding the output layer. In addition. the activa-
tions on the hidden layer are fed back to the Context
units. The output layer receives activations from the
hidden layer. The output layer produces outputs
in accordance with the current form and meaning
and predicts the next input form. Given the cur-

1The size of hidden layer was decided empirically, that
is, pilot run was done for each experiment. and the network
which gave the best performance was chosen.

rent form and meaning. the network is trained to
replicate them on one part of the output layer (au-
toassoclation) and to predict what comes next in
the sequence (prediction). My concern is with the
arbitrary relationship between forin and meaning;
hence we need not concern ourselves in this paper
with genuine semantics. The solid arrows denote the
learnable one-to-many connections from the units on
the lower levels to those on the higher levels. For ex-
ample, any given unit on the input layer connects to
all the on the hidden layer. The dashed arrow de-
notes the fixed one-to-one connections. on which no
learning takes place with only one connection from
a given higher level unit to a single lower level unit.
There are no intra-level connections i the units in
any clique or between cliques. The standard back-
propagation learning rule (Rumelhart. Hinton, and
Williams. 1986) 1s used to train the network.

This network has the capacity to associate form
with meaning as well as form with form and mean-
ing with meaning. Thus it can perforin the task of
the production of a sequence of segments given a
meaning.

The results indicate that the network like this is
capable of learning various types of morphological
rules. That is, given training on the singular, but
not the plural of tone. the network was later able to
generate the appropriate plural suffix following the
stem.

For example, the network was trained on pairs
like the following:

(1) ZONE + SINGULAR --> /zon/
(2) ZONE + PLURAL --> /zonz/
(3) TONE + SINGULAR --> /ton/

and then it was tested on pairs like the following to

see if it then yielded correct phonological forms:
(4) TONE + PLURAL --> /tomn/ + 77,

where the 1items in capitals represent meanings.

Input words were composed of sequences of seg-
ments. Each segment consisted of a binary vector
which represents modified Chomsky-Halle phonetic
features (Chomsky and Halle, 1968): 1 for the pres-
ence of a particular feature and 0 for its absence. as
shown in Figure 2. Each segment type was uniquely
specified as a binary vector of 8 features.

There were 20 words for each simulation. Ten
sets of randomly generated artificial words were used
for each experiment. Twelve of these were desig-
nated “training” words, 8 “test” words. For each of
these basic words, there was an associated inflected
form. For convenience, | will refer to the uninflected
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features 8

vocalic high back anterior
coronal voice strident round

classification 16

P 00010000
b 00010100
t 00011000
d 00011100
K 01100000
g 01100100
1 00010010
v 00010110
s 00011010
z 00011110
i 11000000
e 10000000
a 10100000
u 11100001
° 10100001
# 00000000

Figure 2: Phonemes represented as binary vectors
according to the feature matrix similar to that of

Chomsky-Halle.

form as the “singular” and the inflected form as the
“plural” of the word in question. The network was
trained on both singular and plural forms of the
training words and only on the singular forms of
the test words. Words were presented one segment
at a time. The network was trained on the autoasso-
ciation and prediction task. It was tested if it then
vielded correct morphological forms.

To test the network’s performance on the pro-
duction task, I gave the network the appropriate
segments for the stem successively, along with the
meaning of that stem and the number unit on for
plural. I then examined the prediction output units
at the point where the plural morpherme should ap-
pear. Based on Euclidean distance, each output pat-
tern was converted to the nearest phoneme.

2.2 Results

The morphological processes used were classified
into three different categories: (1) addition, (2) dele-
tion, and (3) mutation, and experimeunts were con-
ducted on different types of rules; ones which are

Table 1: Results of morphological process experi-
ments. “% Segs Correct " refers to the percentage
of all the segments which the network predicted cor-
rectly, while *% Affs Correct” refers to the percent-
age of correctly predicted affixes.

% Segs Correct | % Affs Correct

Suffix 82.3 82.5
Prefix 62.0 76.3
Infix 73.5 42.5
Pre-del 12.5

Mid-del 23.8

Post-del 37d

Reversal 22.5

rarely found in human languages as well as ones
which are commonly found. as shown below:

1. suffixation (4 assimilation):
gob -> gobz

fik -> fiks,

2. prefixation (+ assimilation): fik -> sfik,

gob -> zgob

. infixation (gemination): ipa -> ippa

= W

. initial deletion: fik -> ik

(S}

. medial deletion: ippa -> ipa
6. final deletion: fik -> fi

7. reversal: fik -> kif

The network succeeded on rule types which are
common 1n human languages and failed on those
which are rare or non-existent. Types 1 and 2 are
common, types 3-6 less common, and type 7 non-
existent. The results are summarized in Table 1.

3 Discovery of Universals

The model shows clear evidence of having learned
morphological rules. The degree of mastery of the
rules mirrors the extent to which the different types
of rules occur in natural languages. In this section.
I will explain how the model has discovered some
universals.

3.1 Affixation and Deletion

The network performed much better on the affixa-
tion tasks than on the deletion tasks. The reason
is that for the affixation tasks. the model had to
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predict the segment following the current phoneme,
while for the deletion cases its task was to predict
the phoneme that would come after the next one if
it were not deleted. For the latter task. there is a
gap between the current phoneme and the one that
1s to be predicted. making it more difficult for the
network to predict the correct segment. (‘onsider
the following three cases:

(5) /tap/ + /#/ and /tap/ + /s/
(6) /tam/ + /#/ and /tam/ + /z/
(7) /tap/ + /#/ and /ta/ + /#/

Problems (1) and (2) are somewhat easy, as In
each case the identity of the last phoneme depends
on the penultimate phoneme. The different contexts
created by the penultimate phoneme are sufficient to
ensure that different predictions can be made for the
last phoneme. However, for (3). the final phoneme,
that is. the word boundary, comes after the final
phoneme 1n the stem for the singular case. while
it comes after the second phoneme for the plural
case. To predict the word boundary correctly in
both cases. the network must develop different inter-
nal representations relative to the second phoneme
for each case. (Indeed. the hidden unit activations
have to be different if different outputs are to be pro-
duced.) Only in this way can the network generate
the correct final phoneme (and in the next time step
the word boundary) for the singular case and simply
the word boundary for the plural case. Since the pre-
diction tasks are the same for both cases up to the
second phoneme. the network tends to develop the
same hidden representations. This “homogenizing”
process seems to strongly hinder learning in deletion
tasks. Servan-Schreiber. Cleeremans. and McClel-
land (1988) report similar findings 1n their study on
learning two arbitrary sequences of the same length
and ending in two different letters such as:

PSSS P and TSSS T
They report:

...the predictions in each sequence are iden-
tical up to the last letter. As similar outputs
are required on each time step, the weight ad-
justment procedure pushes the network into
developing identical internal representations
at each time step and for the two sequences -
therefore going in the opposite direction than
is required. (p. 29)

The very nature of the back-propagation learning
rule and the structure of the model enable correct
prediction of the affixed phonemes but make diffi-
cult the prediction of the segments after a phoneme
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is deleted. This is one explanation for the univer-
sal tendency of natural languages to exhibit many
affixation processes, but few deletion processes.

3.2 Affixation and Assimilation

The network was able to generate the appropriate
forms even in the prefix case when a “right-to-left”
(anticipatory) rule was involved. That is, the fact
that the network was trained only on prediction did
not limit its performance to left-to-right (persevera-
tive) rules since it had access to a static “meaning”,
permitting it to “look-ahead” to the relevant feature
on the phoneme following the prefix. What makes
this interesting is the fact that the meaning patterns
bear no relation to the phonology of the stems. The
connections between the stem meaning input units
and the hidden layer units were being trained to en-
code the voicing feature even when, in the case of
the test words. this was never required during train-
ing. For examiple, consider the following training set
of artificial data.

(8) FIK®> + SINGULAR --> /fik/
(9) FIK + PLURAL --> [/stik/
(10) KOB + SINGULAR --> /kob/

When the network predicted the prefix of the word
“KOB" for plural,
(11) KOB + PLURAL --> 7?7 + /kob/,

it had available to 1t the characteristics of the first
phoneme in the stem: among them notably the voic-
ing feature. The meaning “KOB" has /k/ associated
with it as its first segment. Thus the network knows
that it has to produce /s/. since the grammatical
feature unit 1s on and /k/ is voiceless.

In any case. it is clear that right-to-left assim-
ilation 1n a network such as this is more diffi-
cult to acquire than left-to-right assimilation. all
else being equal. Cross-linguistic studies of mor-
phology have revealed an asymmetry in the fre-
quency of affixing processes in favor of suffixing
over prefixing (Hawkins. 1988). meaning that there
are at least fewer opportunities for the right-to-left
process.® I am unaware of any concrete evidence
that would support left-to-right assimilation as eas-
1er than right-to-left assimilation. though in trying

2 As explained before, the items in capitals represent mean-
ings. Since the word is a made-up one, stem meaning is
arbitrary.

20f course, this does not necessarily mean that left-to-
right rules are more common than right-to-left rules. In fact.
right-to-left stress rules are more common than left-to-right
ones.
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to explain the asymmetry between the processes
Hawkins and Cutler (1988) argue that:

...the linguistic and psycholinguistic evi-
dence together suggest that language struc-
ture reflects the preference of language users
to process stems before affixes, in that the
component preferred for prior processing re-
ceives the most salient (initial) position in the
word, the component to be processed second
a less salient position. That is, the suffix-
ing preference results in stems generally being
ordered before affixes because language users
prefer to process stems before affixes. (p. 311)

Why does the network find infixation most dif-
ficult among three suffixation cases? Consider the
suffixation and prefixation cases. The affixes to be
predicted 1s either /s/ or /z/, differing only in one
phonetic feature, 1.e. voicing. For the infixation
cases, the task is to double the phoneme just seen,
making the affixes different for each word tested.
The variation of affixes to be predicted is much big-
ger in the infixation tasks than in the suffixation or
prefixation tasks. Presented with the novel word,
the network 1s prone to make more erroneous pre-
dictions in the infixation cases.

Whatever reason there might be, it is very en-
couraging to see that the model performs in a way
that mirrors human language: suffixation i1s more
frequent across languages than prefixation. and both
are considerably more frequent than infixation.

3.3 Reversal

What is it that makes the reversal rule. apparently
difficult for human language learners. so difficult for
the network? Some aspects of the rule were learned.
In 49% of the cases the network produced a CVC
syllable as the plural form. What it could not do
was to predict the correct consonants for the past
tense.

Consider what happens in the suffix or pre-
fix cases. The input consists of the sequence of
phonemes representing the stem of a word, together
with the stem meaning seen during training and the
plural. not seen in this combination during training.
Given a novel set of patterns, the network treats it
as a combination of two sorts of patterns it has seen
before: one of which is a sequence of phonemes rep-
resenting the stem of a word, excluding the affix,
along with the stem meaning; the other of which is
the plural input, along with the feature of the seg-
ment that determines the appropriate plural form.
The relevant phonetic feature is readily available in
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the suffix case as a part of the input. In the prefix
case, as argued in the previous subsection, it is avail-
able as an acquired property of the stem meaning.

For the reversal case. if we think of the novel
item in the form of a set rather than a sequence,
then exactly the same set of segments is used for
both singular and plural words. More importantly,
however, since the network’s task is to predict the
next segment, there can be no sharing at all between
the singular and plural forms in terms of prediction.
Patterns on the hidden layer develop in response to
prediction, so we should expect little similarity be-
tween context inputs for singular and plural words.
As a result, the network does not have much ma-
terial available for interpreting the novel reversed
words. Presented with the novel plural form, it
1s more likely to respond based on similarity with
a word containing a similar sequence of phonemes
(e.g., gip and gif) than respond with the correct
Iirror-image sequence.

4 Limitations and Extensions

Despite its successes, this model is far from an ad-
equate account of the explanation of language uni-
versals. Among many of the possible morphologi-
cal processes, only a few that are typical word con-
struction types and are also easy to implement were
selected. Equally as important as the networks’s
ability to easily handle only those rules which oc-
cur in human languages, is the need for the model
to explain more complex morphological phenomena.
First, it should be able to account for reduplication.
since the high frequency of reduplication in human
languages implies that the model should be able to
handle this kind of process. For the model to be
able to produce words using this process. the current
model may need to be substantially modified. Redu-
plication requires a primacy-oriented STM: such a
model would have to focus on the beginnings of se-
quences because without the first segment, it would
be very difficult, if not impossible, to predict the
rest of the sequence of the word. Once a cue was in-
put, the network would have to reproduce the part it
had seen so far. A static representation of segments
that encodes sequences, not just the contexts of the
segments might be needed in this case. This static
representation, then, could be used to reproduce the
desired sequence when given the correct cue. The
current model is designed to encode the contexts of
segments, and its STM is therefore recency-oriented,
since it is trained to predict the next segment; vet [
am not sure if it would accommodate a static repre-
sentation. The model might need some kind of help



to acquire some knowledge of the syllable structure,
as well as other features.

Another morphological process that is very chal-
lenging to the current model is that of metathesas,
the transposition of two phonemes in a word. As
demonstrated by the reversal experiment, this kind
of process might be extremely difficult, if not impos-
sible. for the model to acquire.

The experiments reported here were carried out
on only a small, and severely restricted input cor-
pus. Only 20 artificial words were considered in each
simulation run. To be able to claim the plausibility
of this model as an adequate system that can pro-
cess morphological phenomena, | need to expand my
research to a bigger data set. | used artificial lan-
guage data for all the experiments, partly because
it was simpler. One of the biggest drawbacks of
this approach is that it cannot take into account the
phonotactics of real human languages.

5 Conclusion

In this paper. some of the morphological universals
were explained in the framework of a connectionist
network. The study reported here is meant to model
human learning and processing. attempting to un-
derstand language universals in terms of psycholog-
ical demands. I do not believe that the work de-
scribed in this paper necessarily makes strong claims
that human perceptual processes are learned by the
model used here (the model might not be the right
one after all) and it remains to be seen how much
my approach to the relatively trivial processes dealt
with must be modified to deal with more complex
processes and the elaborate mechanisms for han-
dling them posited by traditional phonologists, but
it gives an example of the kind of contribution con-
nectionism can make to the search for language uni-
versals and their explanation.
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