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Abstract

The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to

create a comprehensive catalog of functional elements initiated shortly after the completion of

the Human Genome Project. The current database exceeds 6500 experiments across more

than 450 cell lines and tissues using a wide array of experimental techniques to study the

chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. muscu-

lus genomes. All ENCODE experimental data, metadata, and associated computational anal-

yses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking,

storage, unified processing, and distribution to community resources and the scientific com-

munity. As the volume of data increases, the identification and organization of experimental

details becomes increasingly intricate and demands careful curation. The ENCODE DCC has

created a general purpose software system, known as SnoVault, that supports metadata and

file submission, a database used for metadata storage, web pages for displaying the meta-

data and a robust API for querying the metadata. The software is fully open-source, code and

installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the

generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in

the manner of ENCODE. The core database engine, SnoVault (which is completely indepen-

dent of ENCODE, genomic data, or bioinformatic data) has been released as a separate

Python package.

Introduction

The Encyclopedia of DNA Elements (ENCODE) project (https://www.encodeproject.org/) is

an international consortium with a goal of annotating regions of the genome[1–6] initiated as

a follow up to the Human Genome Project[7]. The Data Coordination Center (DCC)[8–10] is

PLOS ONE | https://doi.org/10.1371/journal.pone.0175310 April 12, 2017 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Hitz BC, Rowe LD, Podduturi NR, Glick

DI, Baymuradov UK, Malladi VS, et al. (2017)

SnoVault and encodeD: A novel object-based

storage system and applications to ENCODE

metadata. PLoS ONE 12(4): e0175310. https://doi.

org/10.1371/journal.pone.0175310

Editor: Zhang Zhang, Beijing Institute of Genomics

Chinese Academy of Sciences, CHINA

Received: October 15, 2016

Accepted: March 23, 2017

Published: April 12, 2017

Copyright: © 2017 Hitz et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The software and

database models can be found at https://github.

com/ENCODE-DCC/encoded and https://github.

com/ENCODE-DCC/snovault. The production

website (generated by the above software) for the

ENCODE portal is http://www.encodeproject.org.

Funding: This work was funded by the National

Human Genome Resource Institute of the National

Institute of Health (https://www.genome.gov/)

under the following U41 grant and supplement:

U41HG006992. The funders had no role in study

http://github.com/ENCODE-DCC/snovault/
http://github.com/ENCODE-DCC/encoded/
https://www.encodeproject.org/
https://doi.org/10.1371/journal.pone.0175310
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175310&domain=pdf&date_stamp=2017-04-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175310&domain=pdf&date_stamp=2017-04-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175310&domain=pdf&date_stamp=2017-04-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175310&domain=pdf&date_stamp=2017-04-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175310&domain=pdf&date_stamp=2017-04-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175310&domain=pdf&date_stamp=2017-04-12
https://doi.org/10.1371/journal.pone.0175310
https://doi.org/10.1371/journal.pone.0175310
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/ENCODE-DCC/encoded
https://github.com/ENCODE-DCC/encoded
https://github.com/ENCODE-DCC/snovault
https://github.com/ENCODE-DCC/snovault
http://www.encodeproject.org
https://www.genome.gov/


charged with validating, tracking, storing, processing, visualizing and distributing these data files

and their metadata to the scientific community. During 6 years of the pilot and initial scale-up

phase, the project surveyed the landscape of the H. sapiens and M. musculus genomes using over

20 high-throughput genomic assays in more than 350 different cell and tissue types, resulting in

over 3000 datasets. ENCODE employs a wide range of genomics techniques[11,12]; [13]. To deter-

mine the transcribed elements including mRNAs, the GENCODE (http://www.gencodegenes.org)

project employs a team of biocurators who synthesize data from a wide range of assays to build

accurate gene models that address the full complexity of vertebrate transcription including alterna-

tive promoters, alternative splicing, and RNA editing[14]. These assays include sequencing selected

RNAs for promoter characterization, next-generation RNA sequencing and assembly methods for

detecting alternative splicing and for quantizing the level of RNA in different cellular contexts[15].

To determine transcriptional regulatory regions ENCODE uses DNase I[15,16] and nucleosome

positioning assays to locate regions of the chromosome accessible to regulatory elements, DNA

methylation assays and ChIP-seq of modified histones to define the overall chromatin architecture

[17][18], and ChIP-seq of transcription factors to determine the players involved in the regulatory

interactions[19]. To determine which regulatory elements interact with each other, ENCODE uses

ChIA-PET[19,20] and Hi-C[21]. To identify regulatory elements that operate on the RNA rather

than the DNA level, ENCODE employs RIP-seq[22] as well as a variety of computational assays

[23,24]; [25][23,24][26]. Over the current phase of ENCODE that began in 2012, the diversity and

volume of data has increased as new genomic assays are added to the project In addition to data

from experiments performed in diversity of biological samples, data from additional species (D.

melanogaster and C. elegans) [27] and other projects have been incorporated. Experimental data

are validated and analyzed using new methods, and higher level analyses have been included to

form a true Encyclopedia of genomic elements. The DCC currently houses experimental data and

metadata from ENCODE3 (the current ENCODE), modENCODE[28], ENCODE2[29](the phase

of ENCODE ending in 2012), mouse-ENCODE[29,30], Roadmap for Epigenomics Mapping

(REMC)[29–31], modERN (fly and worm experiments associated with ENCODE3) and Genomics

for Gene Regulation (GGR) (https://www.genome.gov/27561317). These contributions are sum-

marized on the ENCODE Portal at: https://www.encodeproject.org/about/data-access/.

The primary goals of the DCC are to track and compile the experimental metadata for each

experiment produced by the consortium. This metadata is an absolutely critical resource both

for internal consortium metrics and bookkeeping and to provide the best possible user experi-

ence for scientists and educators wishing to make sense of such a large corpus of datafiles,

experiments, and outputs[8–10].

One of the challenges in this field is keeping a flexible data model without sacrificing data

continuity and integrity. To this end, the SnoVault system includes an infrastructure to build

(quality or validity) data audits and reports to maintain data integrity. To resolve these con-

flicting design criteria, we have developed a hybrid relational/object database using JSON,

JSON-LD (http://json-ld.org/), JSON-SCHEMA (http://json-schema.org/), and PostgreSQL

(http://www.postgresql.org). For efficient searching and display, the data are de-normalized

and indexed in Elasticsearch (https://www.elastic.co/). These software components are

wrapped in a Python Pyramid web framework application which executes the business logic of

the application and provides the RESTful web API. The website itself, also called the “front-

end” is constructed using the ReactJS framework (https://facebook.github.io/react/).

A hybrid relational-object data store

Traditionally, biological databases have been implemented using a relational database model.

Relational database software, both open-source (e.g., MySQL or PostgreSQL) and commercial
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(e.g. Oracle), is ubiquitous on all current hardware. It is a robust system for maintaining trans-

actional integrity and keeping concepts normalized (storing each data only once, and connect-

ing them via foreign-key relations). In the SnoVault system, each major category of metadata

is a JSON object or “document” typically corresponding to an experimental component of a

genomic assay, such as an RNA-seq or ChIP-seq assay. For example, there are JSON objects

that represent a specific human donor, which can be linked to 1 or more biological samples

(biosamples) from that donor as well as objects that represent key reagents in an assay such as

an antibody lot that is used in a ChIP-seq assay or an shRNA used to knockdown a gene target.

In addition, objects represent the files and computational analyses required to generate these

files. In addition to objects that represent experimental components and reagents of a genomic

assay, there are objects that allow the grouping of these objects to represent a single biological

replicate and a grouping of biological replicates to represent a replicated assay.

These JSON objects are stored in our transactional implementation of an document store in

PostgreSQL. This low-level database is analogous to a commercial or OSS object/document store

like MongoDB (http://www.mongodb.com) or couchDB (http://couchdb.apache.org) with addi-

tional transactional and rollback capabilities. The other critical features we have added to “classi-

cal” object storage methods are JSON-SCHEMA and JSON-LD. JSON-SCHEMA is simply a

way to template JSON objects to control the allowed fields in each object and their allowed values

in each field. There are separate schema files for each object type, which are analogous to tables

in a traditional relational database. JSON-LD is a data standards format that provides a unified

and straightforward way of linking JSON objects via pointers or “links” (analogous to foreign

keys in a traditional relational database). These links are used in the metadata storage in a man-

ner analogous to foreign key relationships in a traditional relational model. These links allow our

software to “upgrade” objects to a new version of a schema when the schema changes. Our

upgrading system allows us to return objects that are compatible with the most current schema

without necessarily reindexing them in Elasticsearch; they are permanently upgraded when the

objects are PUT or PATCHed. Herein lies the critical advance we have made—JSON-LD and

JSON-SCHEMA allow us to strike a balance between the flexibility of an unstructured object

database and the data integrity and normalization features of a relational database.

To date, the encodeD system (built on SnoVault) contains 75 object types that are able to

handle over 40 different classes and flavors of genomic assays. The addition of new assays dur-

ing the course of the ENCODE project has resulted in minimal changes that often include the

addition of a new experimental properties in an existing object or a new object to allow new

relationships to be created among existing objects. The flexibility of the SnoVault system allows

the addition of these new properties or objects with minimal intervention from software engi-

neers. Data wranglers or other data scientists are perfectly capable of extending or modifying

the JSON-SCHEMA model, with only a small amount of training. The specific object types and

properties as defined in the schema are available directly from the API via the /profiles/ end-

point. For convenience, each object type has a profile endpoint as well, for example: https://

www.encodeproject.org/profiles/experiment.json.

We use the open-source python web framework Pyramid (http://www.pylonsproject.org/)

as the base python layer of our back end. Pyramid’s excellent buildout system (similar in prin-

ciple to “make”) allows us to manage our dependencies for python, node.js, and ruby and

makes installation on an arbitrary UNIX machine very straight forward.

One of the features of ENCODE DCC website and RESTful API is the ability to set permis-

sions (view, edit, or delete) on a single object independent of the objects that might refer to or

embed it. Data that are released are publicly viewable without needing a login at all, while

metadata that is still incomplete or in progress is available to view by consortium members.

Viewing permissions are defined by a combination of the release status of an object. Editing
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permissions are defined by a combination of the release status of an object and a membership

in a user group. An “admin” user group has permission to edit all objects, regardless of release

status. Individual users may belong to specific groups, as defined by labs, to allow editing of

data that are generated by that lab. An individual user may be authorized to edit only data for

1 lab or as many labs as appropriate. These user groups are only allowed to edit data that is not

released. In this way, we distinguish between “admin” level users (such as an ENCODE data

wrangler) who have full rights to all data; a “submitter” level user (someone from a production

lab) who can modify the objects of a lab that they submit for; a “consortium” user, who can

view all submitted data, and a “base” user, who can only view data that is released. Pyramid has

excellent support for detailed “Action Control Lists” (ACLs) which were utilized in our appli-

cation. The ability to edit and view can be customized by defining the set of permissions that

are granted to the specific group. Specifically, submitters from the ENCODE and GGR projects

are distinguished without our system; members of those groups may neither view or edit unre-

leased data from another group.

Indexing and performance optimization. One of the challenges in web database develop-

ment is to create a system that optimized both for WRITE access and storage and for READ

access. Storing data requires transactional integrity, flexibility of schema and some level of denor-

malization. Our JSON-SCHEMA document model using links to other objects for references ful-

fills this goal, but retrieving complex linked objects using multiple GETs for each linked object

(and so on down through the object tree) is very inefficient. We take the classical approach of

indexing denormalized data that we need to retrieve rapidly, but add some modern twists. Each

object or document in our system has a uuid that acts similar to a primary key in a relational

database. Using JSON-LD, we reference other objects by their object type and uuid, in the par-

lance of JSON-LD these are called links. Lists of objects or more complex data structures can be

used as well. Objects can be returned from the RESTful API either with or without embedded

linked objects using a URL query parameter (frame = object, frame = embedded, frame = raw or

frame = page). An embedded JSON-LD object is one in which it’s links have been substituted

with “copies” (or denormalization) of the linked objects (often just a subsection of the linked

objects; the details are specified in the python code for the views of each object type).

To make the database performant, and to enable rapid and faceted searching of the meta-

data database implemented in encodeD, we index all frames of all objects in Elasticsearch

(https://www.elastic.co/products/elasticsearch). Elasticsearch is a robust search and live index-

ing wrapper based around Apache Lucene (https://lucene.apache.org/core/). As new objects

are added to the database via POST or modified via PATCH, they are indexed in real time by

the indexer process.

The real-time indexing occurs according to the following rubric:

• When rendering a response, we record the set of embedded_uuids and linked_uuids used.

• The embedded_uuids are those objects embedded into the response or whose properties

have been consulted in rendering of the response.

• Any change to one of these objects should cause an invalidation.

• Linked_uuids are the objects linked to in the response. Only changes to their URL (i.e, the

canonical name of the link) need trigger an invalidation.

• When modifying objects, event subscribers keep track of which objects are updated and

their resource paths before and after the modification. This is used to record the set of ‘upda-

ted_uuids‘and ‘renamed_uuids‘in the transaction log.

• The indexer process listens for notifications of new transactions.

SnoVault and encodeD
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• With the union of updated_uuids and union of renamed_uuids across each transaction

in the log since its last indexing run, the indexer performs a search for all objects where

embedded_uuids intersect with the updated_uuids or linked_uuids intersect with the

renamed_uuids.

• The result is the set of invalidated objects which must be reindexed in addition to those that

were modified (recorded in updated_uuids.)

RESTful API. Programmatic interaction with the ENCODE DCC metadata database is

typically done through scripts written and executed on a local computer. These scripts interact

with the database through an industry-standard, Hypertext-Transfer-Protocol-(HTTP)-based,

Representational-state-transfer (RESTful) application programming interface (API). Data

objects exchanged with the server conform to the standard JavaScript Object Notation (JSON)

format. Each object type in the encodeD system (or any like system built with SnoVault) can

be accessed as an individual object or a collection (list) of objects. For example, to return a spe-

cific ENCODE experiment with the accession ENCSR107SLP, you can sent a “GET” request to

the URL: https://www.encodeproject.org/experiments/ENCSR107SLP/. Accessions and

unique names are aliased so that objects can be returned without referring to their object type

in the URL. For example, https://www.encodeproject.org/ENCSR107SLP returns the same

object. If the request is a browser, the JSON object returned is transformed into the webpage

HTML by the ReactJS front end (Fig 1).

Otherwise, Accept-headers (https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html) or

the URL query parameter format = json can be used to request that the system return text

JSON objects instead of HTML pages; but the URLs are precisely the same (Figs 2 and 3).

Because Elasticsearch indexes JSON objects, we can expose parts of the search API to allow

command-line or programmatic access to our full facet search capability.

Members of the ENCODE consortium use either the REST API or HTML forms to sub-

mit data files and metadata to the DCC. New objects are created in the database by a POST

request to the collection URL (for example, POSTing a valid biosample JSON object to the

biosamples collection URL (https://www.encodeproject.org/biosamples/) creates a new bio-

sample). Existing records are modified by a PATCH request to the object URL (for example,

posting {“assay_term_name”: “RNA-seq”, “assay_term_id”: "OBI:0001271"} to https://www.

encodeproject.org/ENCSR107SLP would change it from a ChIP-seq experiment to an RNA-

seq experiment). Connection between experiments objects and biosample objects is main-

tained by the “linking” objects for Replicate and Library. A Replicate is assigned to one and

only one Experiment, and references a specific Library created from (and linked to) the spe-

cific Biosample from which nucleic acid was extracted. Most submitters have several hun-

dred experiments, and use simple python scripts to post their metadata and upload their

datafiles to the DCC. For cases where a low throughput solution is expedient, a logged-in

submitter can edit the properties of objects that belong to a lab they submit for, using a sim-

ple HTML form interface.

When new objects are added or edited, the objects are compared against the schema of the

object to determine validity. A valid object (either POST, PUT, or PATCH) returns a “200”

and an invalid one returns “422” with a brief description of the error. Our JSON Schema

objects are, by design, quite permissive in the fields that they require. This approach was cho-

sen to encourage ENCODE submitters to provide as much metadata as possible as early in the

process, in effect “registering” experiments, biosamples, and antibodies before the complete

metadata is marshalled and even before the experiments themselves have been completed. The

earlier metadata is submitted to the DCC, the earlier we can catch irregularities, errors or data
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Fig 1. Object graph and embedding. The normalized object graph (linked set of documents) stored in PostgreSQL is framed

as an expanded JSON-LD document (embedded set of documents) before indexing into Elasticsearch and rendering in

JavaScript.

https://doi.org/10.1371/journal.pone.0175310.g001
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Fig 2. Software Stack. Schematic diagram of software stack showing different paths for page rendering. The

most efficient rendering is with the HTML rendered on the server and the embedded documents indexed in

Elasticsearch.

https://doi.org/10.1371/journal.pone.0175310.g002
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model confusions. We use PUT to create a wholly new object, POST to replace an existing

object in its entirety (except for uuid), and PATCH to update only specific properties of an

existing object.

One extension we have made to the JSON-SCHEMA representation of objects is to add

what we call “calculated properties”. The JSON-SCHEMA definition for a particular object or

document type is the minimum specification for properties that define the POSTing or crea-

tion of an instance of the object. For display and reporting purposes, the python code extends

objects by properties that are calculated from one or more existing object properties or even

Fig 3. Rendering Overview. Initial page loads are rendered to HTML on the server for immediate display on the client. Once the

JavaScript is fully loaded, subsequent page loads can be rendered on the client.

https://doi.org/10.1371/journal.pone.0175310.g003
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linked properties. For example, this is how we show the files that belong to an experiment. In

our system, files have a link to their “home” Dataset (of which Experiment is a sub-class). The

“Files” of an Experiment are a property that appears in the return JSON objects but is not spec-

ified in the schema. Instead, they are calculated as a “reverse link” from the file objects them-

selves. Note that when calculated properties are indexed, updating a “child” object like File, it

will result in the invalidation of the parent Experiment (or other home Dataset object) and

trigger a re-indexing of the parent in Elasticsearch.

A similar feature we have added are something we call Audits. Audits were developed to act

as cross-object type data integrity measures (in a way similar to triggers can be used by RDBS).

Audits are small snippets of python code that are checked whenever an object added or

updated (via POST, PUT, or PATCH). Because our system considers each object POSTed indi-

vidually, we cannot use the JSON-SCHEMA representation to validate properties across linked

data types. Generally speaking, a criteria of the object and its associated linked objects are com-

pared to look for violations (e.g., human donor object should not have a “lifestage” property)

or to track metadata inconsistencies (both replicates of an experiment should have the same

biosample ontology term) or quality metric (bam files are typically expected to have have a mini-

mum number of uniquely mapped reads). Audits are classified as ERROR (Red Flag), WARNING

(Orange Flag), NON-COMPLAINT (Yellow Flag), or INTERNAL ACTION (Grey Ambulance)

and are indexed with the page frame so that they can be displayed in the user interface (Fig 4).

These audits help us retain a relational-like integrity across our sophisticated data graph, and give

valuable feedback to submitter and wrangler alike. Finally, we use the audit system to report dis-

crepancies between the ENCODE submission standards and quality control metrics and the true

properties of the data and metadata. For example, if a particular experiment has low read mapped

Fig 4. Example of the “missing donor” audit. This audit appears on relevent web pages (and in JSON

return from the API), alerting submitters and DCC data wranglers that this epidermal keratinocyte biosample

is missing the (human) donor object from whom it was derived.

https://doi.org/10.1371/journal.pone.0175310.g004
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read depth (relative to standards set by the consortium for that particular class of experiment, it

will be reported on the user interface and API as a “Warning” with a yellow flag.

One of the drawbacks of not using a fully relational database backend is that one cannot

query with arbitrary joins across data types. For web applications, this is generally not a signifi-

cant drawback, because each web page or API end point has to be specified in the source code

anyway. Specifically, in our system we must either embed properties from linked object type B

into object type A, or perform multiple queries (GET requests). There are some purposes for

which this is inconvenient; for example creating database reports that span many objects. We

outline here three different approaches that can be used if more arbitrary queries are needed.

One approach is to simply use the python command line interpreter and the excellent requests

module (http://docs.python-requests.org/en/master/) to download collections of objects in

JSON and traverse them programmatically. This method is simple and straightforward but can

be a little tedious if multiple queries across many different object types is wanted. A second

approach is to query the postgreSQL database directly with psql. The objects are stored as

JSON-type fields in postgreSQL, and starting with version 9.4 the individual properties of the

JSON documents can be queried using the JSON operators implemented by postgreSQL. This

method is not suitable if you are interested in calculated or embedded properties of the objects.

Finally, we have added a utility to the SnoVault package that allows one to convert the JSON-

LD object graph into Resource Description Format or RDF (https://www.w3.org/RDF/). A

single API call to fetch all Objects (/search/?type = Item&limit = all&format = json) can be

dumped to a file locally. Our script, jsonld_rdf.py uses rdflib (https://rdflib.readthedocs.org/

en/stable/) converts objects to RDF in any standard format (xml, turtle, n3, trix and others).

Once in RDF, it can be converted to a SPARQL (https://www.w3.org/TR/rdf-sparql-query/)

store using a software package such as Virtuoso (http://semanticweb.org/wiki/Virtuoso.html).

It could also be integrated with the EBI RDF Platform[32,33]. In this way, the ENCODE meta-

data database (and any database created using SnoVault) can be made fully available to the

semantic web.

Front end. One of the advantages of using an object store where the documents are JSON

objects, is that JSON (JavaScript Object Notation) is the native format used in JavaScript front

end frameworks. No translations need to be made between the backend data structures and

the front end. We have implemented the web front end to encodeD in ReactJS (http://

facebook.github.io/react/) using JSX (http://jsx.github.io). ReactJS is a clean and efficient

library for user interface programming in JavaScript, and JSX allows us to use XML-like

stanzas in place of an HTML or XML templating system. We further optimized the perfor-

mance of ReactJS by compiling (from JavaScript to XHTML) the pages on the server using

a node (https://nodejs.org) process (Figs 2 and 3). Most object types have useful landing

pages in HTML that provide a human-friendly version of the raw JSON data, while collec-

tions of objects are accessed via the faceted search interface (https://www.encodeproject.

org/search/). We configure the facets for each object type in the JSON schema objects.

These are then translated into Elasticsearch aggregations providing rapid filtering and win-

nowing through data. We have recently implemented an Experiment matrix view (https://

www.encodeproject.org/matrix/?type=Experiment and Fig 5) and a spreadsheet report

view (https://www.encodeproject.org/report/?type=Experiment Fig 6) within the search,

expanding the modes in which our users can process our data. Individual experiments or

sets of experiments with browser-viewable files can be directly viewed at the UCSC genome

browser[34] via a track hub[32] created on the fly (Visualize Button), and we provide a

metadata driven method for downloading all data files associated with a specific search

using the “Download” button. From searching, one can drill down to a specific object page

to get detailed information on all the metadata collected for an object.
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Using Github and the cloud for rapid development and deployment. To enable rapid

software development and robust deployment, the ENCODE DCC has implemented cloud

dev-ops (development operations) code directly into the encodeD system. Using the cloud

effectively is a combination of a few small python and well-defined coding practices. Our cod-

ing practices start with git, and github. Git is a open-source distributed version control soft-

ware that is the state of the art in current software engineering. We manage bug requests and

feature requests (“Issues”) in tracking software, where each issue is assigned a number and a

developer. The developer creates a git branch specific to this issue and works on his or her

local version of the software (including a small text database or “fixture”). The branch code is

pushed daily to github so that the team is always kept up to date. Github is a web-based Git

Fig 5. The ENCODE portal data matrix. This page shows all experiments released at the ENCODE Portal, including the Roadmap for Epigenomic

Mapping Consortium (REMC). Experiments are organized by their biosample (tissue, cell or cell line) on the Y axis and by Assay type on the X-axis (A)

Facets select specific properties, such as target (histone, transcription factor) or experimental type (ChIP-seq, RNA-seq, etc.) (B) Facets apply specifically

to the biosample, including organism (human, mouse, fly, worm), type (tissue, immortalized cell line, stem cell, etc.) or organ system (as inferred from

ontological relations).

https://doi.org/10.1371/journal.pone.0175310.g005

Fig 6. The ENCODE portal report page. This page shows where metadata can be downloaded in spreadsheet format (csv). Report views exist for all

collection searches, for example, Experiment, Biosample or Antibody. (A) Standard ENCODE Assay facets to filter the rows of interest (in this case

Experiments). (B) Toggle between the report, matrix, and standard search output. (C) Select the columns (individual properties) that will appear in the

columns of your spreadsheet.

https://doi.org/10.1371/journal.pone.0175310.g006
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repository hosting service, which is free to open-source projects. We have written hooks to a

web-based continuous integration service called travis-ci (http://travis-ci.com), such that

when any branch is pushed to github, our testing suite is initiated on a virtual machine hosted

by travis-ci. This service is also free for open-source projects. Every 2–3 weeks, completed fea-

tures are collected into a “release candidate”, merged together, put through a manual Quality

Assurance (QA) process, and released to production. Release candidates or even specific fea-

ture branches that require full production databases or deeper QA, can be installed on specific

demonstration machines via a script that creates and “names” a virtual machine in the Ama-

zon Cloud (AWS).

We use postgreSQL Write-Ahead Logging (WAL;http://www.postgresql.org/docs/9.4/

static/wal-intro.html) and the software package WAL-E (https://github.com/wal-e/wal-e) to

maintain a consistent database across our production, test, and various “feature-demo”

instances created by engineers and data wranglers for testing and QA. A simple flag to the

deploy script configures each instance to be a production candidate, test (global testing) or

demo (local, in-house testing machine), and they immediately create a local copy of the post-

greSQL database via the WAL logs. The difference between a production instance and any

other instance, is that the production instance acts as the postgreSQL “master” and is the only

machine authorized to write to the WAL logs or to upload files to the production Amazon S3

bucket.

When the ENCODE DCC project moved to Stanford University in 2012, we had to

develop a software system that could handle all existing data and metadata from ENCODE,

incorporate distinct and additional metadata from modENCODE and REMC, as well as all

future ENCODE metadata. In many cases, the experimental assays, reagents, and protocols

were not yet fully defined when we began our work on encodeD, while experimental data

was being continuously created from existing ENCODE production labs. In short we had to

develop a system flexible enough to handle nearly arbitrary experimental definitions within

the field of genomics and epigenomics, yet still maintain strong data integrity and control

the input specification to preserve univocity in our data and metadata descriptions. Our

schema changes with nearly every software release, and the software is released in place

every 3–4 weeks, with almost zero disruption to submitting or viewing users.

Using encodeD or SnoVault in your project

Open source repository. All of the source code created by the ENCODE DCC is available

from GitHub: http://github.com/ENCODE-DCC/. SnoVault is a completely generic hybrid

object database with Elasticsearch interface. It is completely data agnostic and could be used

for any web database purpose. Our system used for the ENCODE DCC metadata database is at

http://github.com/ENCODE-DCC/encoded, which could be adapted to other projects that

specific store genomic data and metadata. Scripts and python modules specific to retrieving

and submitting metadata to the ENCODE DCC can be found here: https://github.com/

ENCODE-DCC/pyencoded-tools; we plan on adding a command-line interface in the future.

PyPi package. We have extracted the main Pyramid/JSON-SCHEMA/JSON-LD/Elastic-

search framework to a separate repository, and created a python package called SnoVault

(http://github.com/ENCODE-DCC/snovault). SnoVault is available from PyPi or other

python distribution systems. The main object-relational backend can be used for any project

regardless of content. Creating application specific code starts with modeling your data in

JSON using JSON-SCHEMA and JSON-LD. A small amount of custom code is required to get

the bare bones application running for item and collection pages, and from there frontend

components using ReactJS or any other system can be used to give your application a unique
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user experience. We have used the encodeD system to create a curation application and portal

for the ClinGen project (http://clinicalgenome.org; http://github.com/ClinGen/clincoded),

and it is currently being evaluated by other genomics Data Coordination Centers at Washing-

ton University (Saint Louis) and Harvard Medical School.
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