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Abstract. A box-ball system is a discrete dynamical system whose dynamics come from
the balls jumping according to certain rules. A permutation on n objects gives a box-ball
system state by assigning its one-line notation to n consecutive boxes. After a finite number
of steps, a box-ball system will reach a steady state. From any steady state, we can construct
a tableau called the soliton decomposition of the box-ball system. We prove that if the
soliton decomposition of a permutation w is a standard tableau or if its shape coincides with
the Robinson–Schensted (RS) partition of w, then the soliton decomposition of w and the
RS insertion tableau of w are equal. We also use row reading words, Knuth moves, RS
recording tableaux, and a localized version of Greene’s theorem (proven recently by Lewis,
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1. Introduction

A box-ball system (BBS) is a collection of discrete time states. At each state, we have an injective
map from n balls (labeled by the integers from 1 to n) to boxes (labeled by the natural numbers);
each box can fit at most one ball. The dynamics come from the balls jumping according to
certain rules. Let Sn denote the set of permutations on [n] = {1, 2, . . . , n}. A permutation w
in Sn gives a box-ball system state by assigning the one-line notation of the permutation to n
consecutive boxes. Given a BBS state at time t, we compute the BBS state at time t + 1 by
applying one BBS move, which is the process of moving each integer to the nearest empty box
to its right, beginning with the smallest. See Figure 1.1. This version of the box-ball system was
introduced in [Tak93] and is an extension of the box-ball system first invented by Takahashi and
Satsuma in [TS90].

4 5 2 3 6 1

4 5 2 3 6 1

4 5 23 6 1

4 5 2 36 1

45 2 36 1

4 5 2 36 1

4 5 2 3 61

t = 0

t = 1

Figure 1.1: Performing a BBS move on w = 452361.

A soliton is a maximal consecutive increasing sequence of balls which is preserved by all
subsequent BBS moves. After a finite number of BBS moves, a box-ball system containing a
configuration w will reach a steady state, decomposing into solitons whose sizes are weakly
decreasing from right to left, that is, forming an integer partition shape. From such a state, we
can construct the soliton decomposition of the box-ball system, denoted SD, by stacking solitons
so that the rightmost soliton is placed on the first row, the soliton to its left is placed on the
second row, and so on. We obtain a tableau where each row is increasing but which may or may
not be standard. The soliton decomposition of a permutation w is the soliton decomposition of
the box-ball system containing w.

Figure 1.2 shows the state of the box-ball system containingw = 452361 from t = 0 to t = 4.
Note that steady state is first reached at t = 3. The soliton decomposition of w = 452361 is the
tableau

SD(w) =
1 3 6
2 5
4

.

In this example, the soliton decomposition is a standard tableau, but most permutations have
soliton decompositions which are not standard. The tableau SD(w) has shape (3, 2, 1). We will
refer to the shape of the soliton decomposition as the BBS soliton partition.
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4 5 2 3 6 1

4 5 2 3 61

t = 0

t = 1

4 5 2 3 61
t = 2

24
t = 3

t = 4

3 615

24 3 615

Figure 1.2: BBS moves starting at w = 452361.

The well-known Robinson–Schensted (RS) insertion algorithm is a bijection

w 7→ (P(w),Q(w))

from Sn onto pairs of standard size-n tableaux of the same shape [Sch61]. The tableau P(w)
is called the insertion tableau of w, and the tableau Q(w) is called the recording tableau of w.
The shape of these tableaux is called the RS partition of w.

The row reading word of a tableau is the permutation formed by concatenating the rows of
the tableau from bottom to top, left to right.

If r is the row reading word of a standard tableau T , then P(r) = T . (1.1)

For example, if w = 452361, then

P(w) =
1 3 6
2 5
4

, Q(w) =
1 2 5
3 4
6

.

The tableau P(w) has row reading word r = 425136. The insertion tableau of r is the ta-
bleau P(w). For more information, see for example the textbook [Sag20, Section 7.5].

The carrier algorithm given in [Fuk04] (which we review in Section 3) is a way to transform a
box-ball configuration at time t into the configuration at time t+1. At each step in the algorithm,
we insert and bump numbers in and out of a carrier filled with a weakly increasing sequence,
following a rule which should remind the reader of the RS insertion algorithm.

Our goal is to study the connection between the soliton decompositions and RS tableaux of
permutations. We now describe our main results.

1.1. Insertion tableaux and soliton decompositions

For the permutation w = 452361 used in the above example, we have SD(w) = P(w). However,
in general the soliton decomposition and the RS insertion tableau of a permutation do not co-
incide. Surprisingly, having a standard soliton decomposition tableau or having a BBS soliton
partition which equals the RS partition is enough to guarantee that the soliton decomposition
and the RS insertion tableau coincide.
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Theorem A (Theorem 4.2). Suppose w is a permutation. Then the following are equivalent:

1. SD(w) = P(w).

2. SD(w) is a standard tableau.

3. The shape of SD(w) equals the shape of P(w).

The key ingredients of our proof are Greene’s theorem (Theorem 2.2) and a result of Fukuda
which says that the RS insertion tableau is an invariant of a box-ball system (Theorem 3.3). The
proof that part (3) implies part (2) was suggested to us by Darij Grinberg.

1.2. Tableau reading words

We study the connection between steady-state configurations and row reading words.

Proposition B (Proposition 5.1). A permutation r is in steady state if and only if r is the row
reading word of a standard tableau.

Next, we represent a box-ball system state as an array containing integers from 1 to n called
the configuration array. This array has increasing rows but not necessarily increasing columns;
it also may not have a valid skew shape and it may be disconnected. Proposition B turns out to
be a special case of the following.

Proposition C (Proposition 5.2). A BBS configuration w is in steady state if and only if the
configuration array of w is a standard skew tableau whose rows are weakly decreasing in length.

We will prove Proposition C in Section 5 using the carrier algorithm. Note that Proposition C
is a corollary of a characterization for steady state given by Lewis, Lyu, Pylyavskyy, and Sen
in [LLPS19, Proof of Lemma 2.1 and 2.3].

1.3. Recording tableaux and time to steady state

We also study the relationship between the RS recording tableau of a permutation and the be-
havior of its box-ball system. The number of BBS moves required for a permutation w to reach
steady state is called the steady-state time of w. For example, as illustrated in Figure 1.2, the
steady-state time of the permutation 452361 is 3.

Theorem D (Theorem 6.7). If n ⩾ 5, let

Q̂ := 1 2 . . . n-2 n-1

3 4

n

.

If Q(w) = Q̂, then w first reaches steady state at time n− 3.

This particular recording tableau is special; we conjecture that all other permutations in Sn

have steady-state time smaller than n− 3.
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Conjecture 1.1. A permutation in Sn whose recording tableau is not equal to Q̂ has steady-state
time smaller than n− 3.

Furthermore, we conjecture that Theorem D is a special case of the following general phe-
nomenon.

Conjecture 1.2. If two permutations v and w are such that Q(v) = Q(w), then v and w have
the same steady-state time.

Conjecture 1.2 is proven in a sequel to this paper [CFG+22].
Remark 1.3. Conjecture 1.2 would simplify the proof of Theorem D; it would simply require
demonstrating that one single permutation whose recording tableau is Q̂ has steady-state
time n− 3.

1.4. Types of Knuth moves

The RS insertion tableau is preserved under any Knuth move [Knu70]. In contrast, the soliton
decomposition is only preserved under certain types of Knuth moves.

Definition 1.4 (Knuth Moves). Suppose v, w ∈ Sn and x < y < z.

1. We say that v and w differ by a Knuth relation of the first kind (K1) if

v = v1 . . . yxz . . . vn and w = v1 . . . yzx . . . vn or vice versa.

2. We say that v and w differ by a Knuth relation of the second kind (K2) if

v = v1 . . . xzy . . . vn and w = v1 . . . zxy . . . vn or vice versa.

In addition, We say that v and w differ by a Knuth relation of both kinds (KB) if they differ by a
Knuth relation of the first kind (K1) and of the second kind (K2), that is,

v = v1 . . . y1xzy2 . . . vn and w = v1 . . . y1zxy2 . . . vn or vice versa

where x < y1 < z and x < y2 < z.
Note that, when we apply a K1 move (respectively, a K2 move), the move may or may not

be a KB move. If we apply a KB move, then it is both a K1 move and a K2 move.
A proper K1 move is a K1 move which is not KB, and a proper K2 move is a K2 move which

is not KB.
When performing a Knuth move, if we replace an “xz” pattern with a “zx” pattern, we

denote this with a superscript “+.” Otherwise, if we replace a “zx” pattern with an “xz” pattern,
we denote this with a superscript “−.” For example, if x < y1 < z and x < y2 < z, the
move y1xzy2 7→ y1zxy2 is denoted K+

B .
We say that v andw are Knuth equivalent if they differ by a finite sequence of Knuth relations.

Using the localized version of Greene’s Theorem given in Section 2.2, we prove a partial
characterization of the BBS soliton partition in terms of types of Knuth moves.
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Theorem E (Theorem 7.1). If v and w are related by a sequence of Knuth moves containing
an odd number of KB moves, then SD(v) ̸= SD(w). If v and w are related by a sequence of
non-KB Knuth moves, then sh SD(v) = sh SD(w).

We also use non-KB Knuth moves to give a family of permutations which have steady-state
time 1.

Theorem F (Theorem 7.4). Let r be the row reading word of a standard tableau. If w is a
permutation which is related to r by one proper K1 move or one proper K2 move, then the
steady-state time of w is 1.

The paper is organized as follows. In the next two sections, we review materials in the
literature that we will use to prove our results. First, we review Greene’s theorem in Section 2.1
and Lewis, Lyu, Pylyavskyy, and Sen’s localized Greene’s theorem in Section 2.2. Next, we
review Fukuda’s carrier algorithm and its connection to the RS insertion tableaux in Section 3.
In Section 4, we prove Theorem A. In Section 5, we define the configuration array and use the
carrier algorithm to prove Proposition C. Section 6 is devoted to the proof of Theorem D. We
prove the two results involving types of Knuth moves (Theorem E and Theorem F) in Section 7.

2. Greene’s theorem and a localized version of Greene’s theorem

In the 1970s, Greene showed that the RS partition of a permutation and its conjugate record the
numbers of disjoint unions of increasing and decreasing sequences of the permutation, which
we explain in Section 2.1. Lewis, Lyu, Pylyavskyy, and Sen recently showed that the BBS soli-
ton partition of a permutation and its conjugate record a localized version of Greene’s theorem
statistics. They studied an alternate version of the box-ball system, so in Section 2.2 we reframe
their result to match our box-ball convention.

2.1. Greene’s theorem and RS partition

In this section, we review Greene’s theorem [Gre74, Theorem 3.1], which states that the RS
partition of a permutation and its conjugate record the numbers of disjoint unions of increasing
and decreasing sequences of the permutation. For more details, see for example Chapter 3 of
the textbook [Sag01].

Definition 2.1 (longest k-increasing and k-decreasing subsequences). A subsequence σ of w is
called k-increasing if, as a set, it can be written as a disjoint union

σ = σ1 ⊔ σ2 ⊔ · · · ⊔ σk

where each σi is an increasing subsequence of w. If each σi is a decreasing subsequence of w,
we say that σ is k-decreasing. Let

ik(w) denote the length of a longest k-increasing subsequence of w
and dk(w) denote the length of a longest k-decreasing subsequence of w.
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Theorem 2.2 ([Gre74, Theorem 3.1]). Suppose w ∈ Sn. Let λ = (λ1, λ2, λ3, . . . ) denote the
RS partition of w, that is, let λ = shP(w). Let µ = (µ1, µ2, µ3, . . . ) denote the conjugate of λ.
Then, for any k,

ik(w) = λ1 + λ2 + . . .+ λk,

dk(w) = µ1 + µ2 + . . .+ µk.

Example 2.3. Let w = 5623714. For short, we write ik := ik(w) and dk := dk(w). The longest
1-increasing subsequences are

567, 237, and 234.

The longest 2-increasing subsequence is given by

562374 = 567 ⊔ 234.

A longest 3-increasing subsequence (among others) is given by

5623714 = 56 ⊔ 237 ⊔ 14.

Thus,
i1 = 3, i2 = 6, and ik = 7 if k ⩾ 3.

Similarly, the longest 1-decreasing subsequences are

521, 621, 531, and 631.

A longest 2-decreasing subsequence (among others) is given by

52714 = 521 ⊔ 74.

A longest 3-decreasing subsequence (among others) is given by

5623714 = 52 ⊔ 631 ⊔ 74.

Thus,
d1 = 3, d2 = 5, and dk = 7 if k ⩾ 3.

By Theorem 2.2, the RS partition is equal to λ = (i1, i2− i1, i3− i2) = (3, 3, 1) and the
conjugate of the RS partition is µ = (d1, d2− d1, d3− d2) = (3, 2, 2). We can verify this by
computing the RS tableaux

P(w) =
1 3 4
2 6 7
5

, Q(w) =
1 2 5
3 4 7
6

.
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2.2. Localized Greene’s theorem and BBS soliton partition

In [LLPS19, Lemma 2.1] and the blog post [Lew19], Lewis, Lyu, Pylyavskyy, and Sen presented
a localized version of Greene’s theorem. They studied an alternate version of the box-ball system,
and in this section we reframe their result to match our box-ball convention.

Definition 2.4 (A localized version of longest k-increasing subsequences). If u is a sequence,
let i(u) denote the length of a longest increasing subsequence of u.

For w ∈ Sn and k ⩾ 1, we define

Ik(w) = max
w=u1|···|uk

k∑
j=1

i(uj),

where the maximum is taken over ways of writing w as a concatenation u1 | · · · | uk of consec-
utive subsequences. That is, we consider all ways to break w into k consecutive subsequences,
sum the i(uj) values for each way, and let Ik(w) be the maximum sum.

If u is a sequence of ℓ elements, an integer m ∈ [ℓ−1] is called a descent of u if um > um+1.

Definition 2.5 (A localized version of longest k-decreasing subsequences). Let

D(u) :=

{
0 if u is empty
1 + |{descents of u}| otherwise.

For w ∈ Sn and k ⩾ 1, we define

Dk(w) = max
w=u1⊔···⊔uk

k∑
j=1

D(uj),

where the maximum is taken over ways to write w as the union of disjoint subsequences uj of w.
Notice that we only require u1, . . . , uk to be disjoint, not consecutive, in contrast to the procedure
for calculating Ik(w).

The following lemma is a corollary of [LLPS19, Lemma 2.1].

Lemma 2.6 (A localized version of Greene’s theorem). Suppose that w ∈ Sn. Let
Λ = (Λ1,Λ2,Λ3, . . . ) denote the BBS soliton partition of w, that is, let Λ = sh SD(w). Let
M = (M1,M2,M3, . . . ) denote the conjugate of Λ. Then, for any k,

Ik(w) = Λ1 + Λ2 + . . .+ Λk,

Dk(w) = M1 +M2 + . . .+Mk.

Example 2.7. Let w = 5623714, the permutation used in Example 2.3. For short, we write
Ik := Ik(w) and Dk := Dk(w). Then

I1 = i(w) = 3 (since the longest increasing subsequences are 567, 237, and 234),
I2 = 5 (witnessed by 56|23714 or 56237|14),
I3 = 7 (witnessed uniquely by 56|237|14), and
Ik = 7 for all k ⩾ 3.
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We have

D1 = D(w) = 1 + |descents of 5623714| = 1 + |{2, 5}| = 3,

D2 = 6 (one can take subsequences 531 and 6274, among other partitions),
D3 = 7 (one can take subsequences 52, 631, and 74, among other partitions), and
Dk = 7 for all k ⩾ 3.

By Lemma 2.6, we have that sh SD(w) = (I1, I2− I1, I3− I2) = (3, 2, 2) and its conjugate
is (D1, D2−D1, D3−D2) = (3, 3, 1). We can verify this by computing the soliton decomposi-
tion SD(w), which turns out to be the nonstandard tableau

1 3 4
2 7
5 6

.

Note that, in this example, SD(w) ̸= P(w), demonstrating Theorem A. Also, in this example,
sh SD(w) = (3, 2, 2) is smaller than shP(w) = (3, 3, 1) in the dominance partial order.

Corollary 2.8. If w ∈ Sn, then the BBS soliton partition of w is smaller or equal to the RS
partition of w in the dominance partial order.

Proof. Let Λ = (Λ1,Λ2,Λ3, . . . ) denote sh SD(w) and let λ = (λ1, λ2, λ3, . . . ) denote shP(w).
Then, for all k = 1, 2, . . . , we have

Λ1 + Λ2 + · · ·+ Λk = Ik(w) by localized Greene’s theorem (Lemma 2.6)
⩽ ik(w) since Ik(w) gives the length of a k-increasing subsequence of w
= λ1 + λ2 + · · ·+ λk by Greene’s theorem (Theorem 2.2).

3. Fukuda’s carrier algorithm

In this section, we review the carrier algorithm and the fact that the RS insertion tableau is an
invariant of a box-ball system (BBS).

3.1. Carrier algorithm

The carrier algorithm is a way to describe a BBS move as a sequence of local operations of
inserting and bumping numbers in and out of a carrier filled with a weakly increasing string. A
version of the carrier algorithm was first introduced in [TM97], and the version of the carrier
algorithm we use in this paper comes from [Fuk04, Section 3.3]. Given a BBS state at time t,
the carrier algorithm is used to calculate the state at time t + 1. We describe the process in
Algorithm 1. Note that, after each insertion and ejection step, the sequence in the carrier is
weakly increasing.
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Algorithm 1 The carrier algorithm [Fuk04].
1: begin carrier algorithm
2: Set e := n+ 1, so that e is considered to be larger than any ball
3: Set B := the configuration of the BBS at time t, where each empty box is replaced with

an e and the first (leftmost) element of B is the integer in the first (leftmost) nonempty
box in the configuration and the last (rightmost) element of B is the integer in the last
(rightmost) nonempty box of the configuration

4: Let ℓ denote the number of elements (including the e’s) of B
5: Fill the “carrier” C —depicted —with n copies of e
6: Write B to the right of C
7: begin Process 1: insertion process
8: for all i in {1, 2, . . . , ℓ} do
9: Set p to be the ith leftmost element of B

10: begin element ejection process
11: if an element in C is larger than p then
12: Set s := smallest element in C larger than p. If s = e, pick the leftmost e
13: Eject s from C and put it immediately to the left of C
14: insert p in the place of s
15: else
16: Set s := the leftmost (smallest) element in C
17: Eject s from C and put it immediately to the left of C
18: ▶ Note: There are now n− 1 elements in C
19: Shift each element of C to the left by one
20: Place p in the rightmost location in C
21: ▶ Note: There are now n elements in C
22: end if
23: end element ejection process
24: end for
25: end Process 1: insertion process
26: begin Process 2: flushing process
27: while there are non-e elements in C do
28: Set p := e
29: Perform the element ejection process (see line 16)
30: end while
31: end Process 2: flushing process
32: ▶ Note: The current elements to the left of C correspond to the t+1 state of the BBS
33: end carrier algorithm
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Example 3.1. We compute the configuration at time t = 3 of the box-ball system from Figure 1.2
by applying the carrier algorithm to the configuration at time t = 2. Following Algorithm 1, we
set B := 452ee136. The carrier algorithm then proceeds as follows.

begin Process 1: insertion process
eeeeee 452ee136

e 4eeeee 52ee136

ee 45eeee 2ee136

ee4 25eeee ee136

ee42 5eeeee e136

ee425 eeeeee 136

ee425e 1eeeee 36

ee425ee 13eeee 6

ee425eee 136eee

end insertion process

begin Process 2: flushing process
ee425eee 136eee← e

ee425eee1 36eeee← e

ee425eee13 6eeeee← e

ee425eee136 eeeeee

end flushing process

The elements ee425eee136 to the left of C correspond to the configuration at time t = 3 given
in Figure 1.2.

3.2. The RS insertion tableau is an invariant of a box-ball system

Remark 3.2 ([Fuk04, Remark 4]). The carrier algorithm can be viewed as a sequence of Knuth
moves. Consider the insertion of p into the carrier. Note that, since our carrier can carry n
elements, if p ̸= e, then the carrier must contain a number (possibly e) greater than p. If p = e,
then no number in the carrier is greater than p.

First, suppose p ̸= e, and let Cp denote the smallest element in the carrier which is greater
than p.

(i) If Cp is the smallest element in the carrier, then the insertion process is equivalent to ap-
plying a sequence of K−

1 moves

Cpz1z2 · · · zℓ−1zℓ p
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Cpz1z2 · · · zℓ−1pzℓ
...

Cpz1pz2 · · · zℓ−1zℓ
Cp pz1z2 . . . . . . zℓ .

(ii) IfCp is the largest element in the carrier, then the insertion process is equivalent to applying
a sequence of K+

2 moves

x1x2 · · ·xm−1xmCp p

x1x2 · · · xm−1Cpxmp
...

x1Cpx2 · · · xm−1xmp
Cp x1x2 · · ·xm−1xmp .

(iii) If Cp is neither the smallest nor the largest element in the carrier, then the insertion process
is equivalent to applying a sequence of K−

1 moves

x1x2 · · ·xm−1xmCpz1z2 · · · zℓ−1zℓ p

x1x2 · · ·xm−1xmCpz1z2 · · · zℓ−1pzℓ
...

x1x2 · · ·xm−1xmCpz1pz2 · · · zℓ−1zℓ
x1x2 · · ·xm−1xmCppz1z2 · · · zℓ−1zℓ

followed by a sequence of K+
2 moves

x1x2 · · ·xm−1xmCppz1z2 · · · zℓ−1zℓ

x1x2 · · ·xm−1Cpxmpz1z2 · · · zℓ−1zℓ
...

x1Cpx2 · · ·xm−1xmpz1z2 · · · zℓ−1zℓ
Cp x1x2 · · ·xm−1xmpz1z2 · · · zℓ−1zℓ .

Next, suppose p = e. Then p is greater than or equal to every element in the carrier, and the
insertion process is equivalent to applying the trivial transformation

x1x2 · · ·xn p

x1 x2 · · ·xn p .

Theorem 3.3 ([Fuk04, Theorem 3.1]). The RS insertion tableau is a conserved quantity under
the time evolution of the BBS, i.e., the RS insertion tableau is preserved under each BBS move.
More precisely, let Bt be the state of a box-ball system at time t. Let B′

t be the permutation
created from Bt by removing all e’s. Then P(B′

t) is identical for all t.
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Example 3.4. As shown in Figure 1.2, the configurations 452361, ee45e2136, eeee452ee136,
and eeeeee425eee136 are in the same box-ball system. As Theorem 3.3 tells us, the permuta-
tions 452361, 452136, and 425136 have the same RS insertion tableau

P(452361) = P(452136) = P(425136) =
1 3 6
2 5
4

.

Corollary 3.5. Letw be a permutation. If r is the row reading word of SD(w), thenP(w)=P(r).

Proof. Let r be the row reading word of SD(w). By definition of the soliton decomposition
tableau, we know that r is the order in which the balls of w are configured once we reach a steady
state. Therefore, r is a state in the box-ball system containing w. Theorem 3.3 tells us that the
RS insertion tableau is preserved under a sequence of box-ball moves, so P(w) = P(r).

Example 3.6. Let w = 5623714, the permutation from Section 2, and let r be the row reading
word of SD(w). We have

SD(w) =
1 3 4
2 7
5 6

, r = 5627134, and P(w) =
1 3 4
2 6 7
5

= P(r).

In Example 3.4, the soliton decomposition coincides with the RS insertion tableau of the
box-ball system, but in Example 3.6 these two tableaux do not coincide. In the next section we
discuss when SD(w) = P(w).

4. When the soliton decomposition and the RS insertion tableau coincide

In this section, we will prove Theorem 4.2. One direction of our proof uses the following lemma,
which was communicated to us by Darij Grinberg.

Lemma 4.1. Suppose S is a row-strict tableau, that is, every row is increasing (with no restric-
tions on the columns). Let r be the row reading word of S. If shS = shP(r), then S is standard,
that is, every column of S is increasing.

Proof. Suppose S is not standard. Then S has two adjacent entries in a column which are out
of order. Indexing our rows from top to bottom and our columns from left to right, this means
there is a column (say, column c) for which the entry in some row k is bigger than the entry
immediately below it. Let y be the entry in the k-th row, c-th column of S, and let x be the entry
immediately below it (in the k + 1-th row, c-th column of S).

Since r is the row reading word of S and since each row of S is increasing, we can construct
a list of k disjoint increasing subsequences of r: The first k − 1 increasing subsequences of r
are the first k − 1 rows of S. The k-th increasing subsequence starts in row k + 1, column 1
of S, moving along the same row until we get to column c (with entry x), then going up to row k
above (which has entry y), then continuing to the end of row k.
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The length of the k-th increasing subsequence is larger (by 1) than the length of the k-th row
of S. So the total number of letters in our list of k disjoint increasing subsequences of r is larger
by 1 than the total length of the first k rows of S. Thus, Greene’s theorem (Theorem 2.2) says
that the total length of the first k rows of the RS insertion tableau P(r) of r is larger (at least
by 1) than the total length of the first k rows of S. Therefore, the shape of S is not equal to the
shape of P(r).

The following theorem gives a characterization of permutations whose soliton decomposi-
tions are equal to their RS insertion tableaux.

Theorem 4.2. Let w be a permutation. Then the following are equivalent:

1. SD(w) = P(w).

2. SD(w) is a standard tableau.

3. The shape of SD(w) equals the shape of P(w).

Proof. Certainly (1) implies (2) and (3). We will show that (2) implies (1) and (3) implies (2).
Let r be the row reading word of SD(w). By Corollary 3.5, we have

P(w) = P(r). (4.1)

First, we show that (2) implies (1). Suppose that SD(w) is a standard tableau T . Since r is
the row reading word of T , we have P(r) = T by (1.1). Combining this equality with (4.1), we
get P(w) = P(r) = T = SD(w).

Next, we show that (3) implies (2). Let S denote SD(w), and note that SD(w) is a row-
strict tableau by construction. Suppose shS = shP(w). Since P(w) = P(r) by (4.1), we
have shP(w) = shP(r), so shS = shP(w) = shP(r). Because S is a row-strict tableau, the
permutation r is the row reading word of S, and shS = shP(r), Lemma 4.1 tells us that S is
standard.

Corollary 4.3. Let w be a permutation. Then the following five statements are equivalent:

1. SD(w) = P(w).

2. SD(w) is a standard tableau.

3. The shape of SD(w) equals the shape of P(w).

4. For all k ⩾ 1, we have
Ik(w) = ik(w).

5. For all k ⩾ 1, we have
Dk(w) = dk(w).

The symbols Ik and Dk are the statistics from localized Greene’s theorem (Section 2.2)
and ik and dk are the statistics from Greene’s theorem (Section 2.1).
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Proof. For short, we write ik := ik(w), Ik := Ik(w), dk := dk(w), and Dk := Dk(w). By
localized Greene’s theorem (Lemma 2.6),

the shape of SD(w) is (I1, I2− I1, I3− I2, . . . ) and
the shape of the conjugate of SD(w) is (D1,D2−D1,D3−D2, . . . ).

By Greene’s theorem (Theorem 2.2),

the shape of P(w) is (i1, i2− i1, i3− i2, . . . ) and
the shape of the conjugate of P(w) is (d1, d2− d1, d3− d2, . . . ).

Combining these facts, we conclude that sh SD(w) = shP(w) if and only if Ik = ik for all k ⩾ 1
if and only if Dk = dk for all k ⩾ 1.

Example 4.4. Let w = 5623714. From Examples 2.3 and 2.7, we have I2(w) = 5 < 6 = i2(w).
So all the other items of Corollary 4.3 must also be false.

5. Reading words and steady states

We study the steady-state configurations of a box-ball system. The main result of this section
(Proposition 5.2) is a corollary of [LLPS19, Proof of Lemma 2.1 and 2.3].

5.1. Reading words of standard tableaux

The permutations which reach their steady state at time 0 are precisely the row reading words of
standard tableaux.

Proposition 5.1. A permutation r has steady-state time 0 if and only if r is the row reading word
of a standard tableau.

In particular, if r is the row reading word of a standard tableau T , then T = SD(r). In the
next section, the standard tableau in Proposition 5.1 is generalized to standard skew tableaux
whose rows are weakly decreasing in length.

5.2. Reading words of standard skew tableaux

A BBS state can be represented as a configuration array containing the integers from 1 to n
as follows: scanning the boxes from right to left, each increasing run (maximal consecutive
increasing string of balls) becomes a row in the array. A string of g empty boxes indicates that
the next row below should be shifted g spaces to the left. Note that this array has increasing rows
but not necessarily increasing columns; it may be disconnected and it may not have a valid skew
shape.

Proposition 5.2. A BBS configuration is in steady state if and only if its configuration array is
a standard (possibly disconnected) skew tableau whose rows are weakly decreasing in length.

We will give a proof in Section 5.3.
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Example 5.3. Letw = 5623714, the example we use in Section 2. The following are the box-ball
system states from time t = 0 to t = 4 and their configuration arrays.

t = 0 5 6 2 3 7 1 4 e . . .
1 4
2 3 7
5 6

t = 1 e e 5 6 e 2 7 1 3 4 e . . .
1 3 4
2 7

5 6

t = 2 e e e e 5 6 e 2 7 e 1 3 4 e . . .
1 3 4

2 7
5 6

t = 3 e e e e e e 5 6 e 2 7 e e 1 3 4 e . . .
1 3 4

2 7
5 6

t = 4 e e e e e e e e 5 6 e 2 7 e e e 1 3 4 e . . .
1 3 4

2 7
5 6

In this box-ball system, all configurations at time t ⩾ 1 are in steady state.

Example 5.4. The following is an example of a non-steady-state BBS configuration and its
configuration array. Note that the configuration array is a standard skew tableau but its rows are
not weakly decreasing in length.

. . . e 1 3 7 e 2 4 6 9 e e 5 8 e . . .
5 8

2 4 6 9
1 3 7

5.3. Separation condition

A ‘separation condition’ for steady state is given in statement (43) in [LLPS19]. In Lemmas 5.5
and 5.6, we reframe this characterization for steady state in terms of our version of the box-ball
system. Proposition 5.2 follows directly from these two lemmas.

Lemma 5.5 (Separation condition). Let a BBS configuration be in steady state. Suppose two
adjacent solitons L (the left soliton with length ℓ) and R (the right soliton) are separated by g
empty boxes, where g < ℓ. Then, for i = 1, 2, . . . , ℓ− g,

the i-th smallest ball of the right soliton R is smaller than
the (i+ g)-th smallest ball of the left soliton L.

Proof. We apply one BBS move to the configuration via the carrier algorithm. Suppose
L = L1L2 . . . Lℓ and R = R1R2 . . . Rr are the two leftmost solitons.
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Our initial setup with n copies of e in the carrier is

ee · · · e
carrier

L1 . . . Lℓ

g copies︷ ︸︸ ︷
e . . . e R1 . . . Rr . . .

First, we simply insert L1, . . . , Lℓ into the carrier. Since L is increasing, each time we insert a
ball of L, we eject a copy of e. We get

ℓ copies︷ ︸︸ ︷
e . . . e L1 · · · Lℓ ee · · · e

g copies︷ ︸︸ ︷
e . . . e R1 . . . Rr . . . (5.1)

Next, we insert the g copies of e into the carrier and eject L1, . . . , Lg:

e . . . e L1 . . . Lg︸ ︷︷ ︸
first g balls

ℓ− g balls︷ ︸︸ ︷
Lg+1 · · ·Lℓ ee · · · e R1 . . . Rr . . .

Since we started with a steady-state configuration, the left soliton L must stay intact at the end
of the carrier algorithm. So, for each i = 1, . . . , ℓ− g, as we insert Ri, we must eject Lg+i, and
get

e . . . e L1 . . . Lg Lg+1 . . . Lℓ︸ ︷︷ ︸
ℓ− g balls

R1 · · · Rℓ−g ee · · · e Rℓ−g+1 . . . Rr . . .

So we must have Ri < Lg+i for i = 1, 2, . . . , ℓ− g, as needed.
After we insert the rest of the elements of R into the carrier, we have

e . . . e L1 . . . Lℓ

r−ℓ+g
copies︷ ︸︸ ︷

ee . . . e R1 · · · Rr ee · · · e . . .

If we have a third soliton located to the right of R, we would be in the same situation as (5.1). We
then repeat the same process for the rest of the solitons and arrive at the same conclusion.

Lemma 5.6 (Sufficient condition for steady state). Suppose a BBS configuration w satisfies the
following.

1. The configuration array of w has rows of weakly decreasing length.

2. The configuration array of w is standard; that is, if two adjacent maximal consecutive
increasing blocksL (the left block with length ℓ) andR (the right block) ofw are separated
by g empty boxes such that g < ℓ, then, for i = 1, 2, . . . , ℓ− g,

the i-th ball of the right block R is smaller than
the (i+ g)-th ball of the left block L.

Then w is in steady state.
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Proof. Suppose w is the configuration at time t. We apply the carrier algorithm to get the con-
figuration at time t + 1. Suppose L = L1L2 . . . Lℓ and R = R1R2 . . . Rr are the two leftmost
increasing runs (maximal consecutive increasing blocks of balls).

Prior to applying the carrier algorithm, we have

ee · · · e
carrier

L1 . . . Lℓ︸ ︷︷ ︸
first run

g copies︷ ︸︸ ︷
e . . . eR1 . . . Rr︸ ︷︷ ︸

second run

. . .

First, we insert each of L1, . . . , Lℓ into the carrier and eject an e each time. We get

ℓ copies︷ ︸︸ ︷
e . . . e L1 · · ·Lℓ ee · · · e

g copies︷ ︸︸ ︷
e . . . eR1 . . . Rr (5.2)

Next, we insert the g copies of e into the carrier and eject L1, . . . , Lg. There are two cases: either
(a) g ⩾ ℓ or (b) g < ℓ.

(a) First, suppose that g ⩾ ℓ. Then all of L1, . . . , Lℓ are ejected and the carrier is now empty:

e . . . e L1 . . . Lℓ︸ ︷︷ ︸
first run

g−ℓ︷ ︸︸ ︷
e . . . e ee · · · e R1 . . . Rr︸ ︷︷ ︸

second run

. . .

We proceed by inserting R1, . . . , Rr into the carrier. Since R is increasing, we eject r copies
of e’s:

e . . . e L1 . . . Lℓ

g−ℓ︷ ︸︸ ︷
e . . . e

r︷ ︸︸ ︷
e . . . e R1 · · ·Rr ee · · · e . . .

(b) Second, suppose g < ℓ. After L1, . . . , Lg are ejected, we have

e . . . e L1 . . . Lg︸ ︷︷ ︸
first g balls

ℓ−g balls︷ ︸︸ ︷
Lg+1 · · ·Lℓ ee · · · e R1 . . . Rr︸ ︷︷ ︸

second run

. . .

We proceed by inserting R1, · · · , Rr into the carrier. We have ℓ ⩽ r by assumption part (1)
and Ri < Lg+i for i = 1, 2, . . . , l − g by assumption part (2). Therefore, as we in-
sert R1, . . . , Rℓ−g, we must eject Lg+1, . . . , Lℓ, and we get

e . . . e L1 . . . Lg Lg+1 . . . Lℓ︸ ︷︷ ︸
ℓ−g balls

R1 · · ·Rℓ−g ee · · · e Rℓ−g+1 . . . Rr . . .

After we insert the rest of the elements of R into the carrier, we have

e . . . e L1 . . . Lℓ

r−ℓ+g︷ ︸︸ ︷
ee . . . e R1 · · ·Rr ee · · · e . . .
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In both cases, at time t+1 there are at least r−ℓ+g empty boxes to the right ofL. Since ℓ ⩽ r,
we have g ⩽ r − ℓ + g, so there are at least as many empty boxes to the right of L as at time t.
Furthermore, the increasing run L stays together.

If we have a third increasing run S = S1 . . . Ss to the right of R (with a gap of g′ empty
boxes), we would be in the same situation as (5.2). After inserting the elements of S into the
carrier, we would have

e . . . e L1 . . . Lℓ

r−ℓ+g︷ ︸︸ ︷
ee . . . e R1 . . . Rr

s−r+g′︷ ︸︸ ︷
ee . . . e S1 · · ·Ss ee · · · e . . .

Again, there are at least as many empty boxes to the right of R at time t+1 than at time t, and R
stays together.

At the end of the carrier algorithm, the increasing runs stay together, their order stays the
same, and the gap of empty boxes between each pair of adjacent sequences is at least as large as
at time t. The new configuration satisfies both part (1) and (2) of the assumption. By induction,
subsequent carrier algorithm applications leave the order of the increasing runs unchanged, so
these increasing runs are in fact solitons.

By the two lemmas above, we have Proposition 5.2: a box-ball configuration is in steady
state if and only if (1) its configuration array has rows of weakly decreasing length and (2) each
column of the configuration array is increasing.

6. A recording tableau giving n–3 steady-state time

In this section, we prove Theorem 6.7, which states that all permutations in Sn with a certain
recording tableau have box-ball steady-state timen−3. We conjecture that all other permutations
in Sn have steady-state time smaller than n− 3 (Conjecture 1.1).

Theorem 6.7 turns out to be a special case of a general phenomenon, which is proven in a
sequel to this paper [CFG+22]: if two permutations have the same recording tableau, then they
have the same BBS steady-state time (Conjecture 1.2).

6.1. A recording tableau giving n–3 steady-state time

Definition 6.1. If n ⩾ 5, let Q̂ denote the tableau

1 2 . . . n− 2 n− 1

3 4

n

.

Let Sn(Q̂) be the set of permutations w ∈ Sn such that its recording tableau Q(w) is equal to Q̂.
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Example 6.2. For n = 5, the five permutations of Sn(Q̂) are the following.

45132 25143 35142 45231 35241

For n = 6, the sixteen permutations of Sn(Q̂) are as follows.

451362 251463 351462 452361 352461 561243 261354 361254
461253 561342 261453 361452 461352 562341 362451 462351

Note that one of our running examples, 452361, is in S6(Q̂). As illustrated in Figure 1.2, its
steady-state time is 3 = 6− 3.

Remark 6.3. It follows from Definition 6.1 that the RS algorithm induces a bijection from Sn(Q̂)

onto the set of standard tableaux of shape (n−3, 2, 1), soSn(Q̂) is counted by the sequence [OEI,
A077415].

The rest of this section is devoted to proving Theorem 6.7, which states that every permuta-
tion in Sn(Q̂) has steady-state time n− 3.

6.2. Lemmas for Theorem 6.7

Lemma 6.4. Let n ⩾ 5, and suppose w ∈ Sn(Q̂). Then w is not the union of two increasing
subsequences.

Proof. The recording tableau of w is equal to Q̂, which has height 3. Therefore, the RS partition
of w has three parts. By Greene’s theorem (Theorem 2.2), w is not the union of two increasing
subsequences.

Lemma 6.5. Let n ⩾ 5, and suppose w = w1w2 . . . wn ∈ Sn(Q̂). Thenw satisfies the following.

1. w3 < w4 < · · · < wn−1

2. wn < w2

3. w1 < w2

4. w3 < w1

5. w3 < w2

6. w4 < w2

Proof. Since w ∈ Sn(Q̂), the recording tableau of w is equal to Q̂. We will use the inverse RS
algorithm1 to construct w. Let P = P(w) and Q = Q(w). Denote the entries in the top row

1For definition of the inverse RS algorithm, see, for example, the textbook [Sag01, Section 3.1].
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of P by a1, a2, . . . , aq (where q = n− 3), the second row of P by b1 and b2, and the entry in the
third row of P by c1. Hence, the starting pair P and Q is

P = a1 a2 a3 a4 . . . aq − 1 aq

b1 b2

c1

Q = 1 2 5 6 . . . n− 2 n− 1

3 4

n

Since P is standard, we know that b1 < c1. The other entry b2 in the second row is larger
than b1. If b2 < c1, let by equal b2. Otherwise, let by be b1. In other words, we let by denote the
largest element in the second row which is smaller than c1. Similarly, let ax denote the largest
element in the first row which is smaller than by. The first step of the inverse RS algorithm tells
us that wn = ax.

After the first step in the inverse RS algorithm, we get the pair of tableaux

Pn−1 =
α1 α2 α3 α4 . . . αq − 1 αq

β1 β2

Qn−1 =
1 2 5 6 . . . n− 2 n− 1

3 4
.

We now pause to observe two facts that will be referenced at the end of this proof. First, note
that Pn−1 is standard by definition of the inverse RS algorithm. Thus,

α1, α2, . . . , αq is increasing. (6.1)

Second, we note that
ax < β2, (6.2)

as we now explain. Recall that wn = ax, so, using the original RS algorithm, we insert ax
into Pn−1 to get P . Since row 1 of Pn−1 and row 1 of P have the same size, we know that ax
bumps a number in row 1 of Pn−1 to row 2. Let

ai denote the smallest entry in row 1 of Pn−1 which is greater than ax.

The RS algorithm replaces ai with ax and bumps ai to row 2. Since row 2 of Pn−1 and row 2
of P have the same size, we know that ai bumps a number in row 2 of Pn−1. So ai must be
smaller than β2. Since ax < ai, we have ax < β2. This concludes our explanation for (6.2).

We also note that

β1 < β2, (6.3)
α1 < β1, and (6.4)
α2 < β2, (6.5)

since Pn−1 is standard. We will reference these inequalities at the end of this proof.
If n > 5, the numbers n − 1, n − 2, . . . , 6, 5 are in the first row of Q, so the next steps in

the inverse RS algorithm are to remove elements αq, αq−1, . . . , α4, α3 from Pn−1, in that order.
Hence, the last n− 4 letters of w are α3, α4, . . . , αq−1, αq, ax.
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The new pair of tableaux is

P4 =
α1 α2

β1 β2

Q4 =
1 2

3 4
.

Note that 4 is the bottom right corner of Q4. Since α2 < β2 by (6.5), we know that α2 is the
largest element in row 1 of P which is smaller than β2. So w4 = α2, and the last n − 3 letters
of w are α2, α3, α4, . . . , αq, αq−1, ax.

The new pair of tableaux is

P3 =
α1 β2

β1

Q3 =
1 2

3
.

Note that 3 is in the second row of Q3. We know from (6.3) that β2 is larger than β1, so α1 is
the largest element in row 1 smaller than β1. Thus, w3 = α1. So the last n − 2 letters of w
are α1, α2, α3, α4, . . . , αq, αq−1, ax. The new pair of tableaux is

P2 =
β1 β2 Q2 =

1 2
.

We then remove β2 and β1 from P2, in that order.
Therefore,

w = β1β2︸︷︷︸
increasing

α1α2α3α4 . . . αq−1αq︸ ︷︷ ︸
increasing

ax.

We now have all the necessary information to prove all parts of the lemma.

1. The subsequence w3, w4, . . . , wn−1 is increasing because it is equal to the sequence α1,
α2, . . . , αq, which is increasing due to (6.1). This proves part (1).

2. We have wn < w2 from (6.2), since wn = ax and w2 = β2. This proves part (2).

3. We have w1 < w2 from (6.3), since w1 = β1 and w2 = β2. This proves part (3).

4. We have w3 < w1 from (6.4), since w3 = α1 and w1 = β1. This proves part (4).

5. We have w3 < w2 since w1 < w2 and w3 < w1. This proves part (5).

6. We have w4 < w2 from (6.5), since w4 = α2 and w2 = β2. This proves part (6).

Lemma 6.6. Suppose w = w1 . . . wn ∈ Sn(Q̂).

1. Either wn = 1 or w3 = 1.

2. If w3 = 1, then w1 = 2, w4 = 2, or wn = 2.

3. If w3 = 1 and w1 = 2, then w4 = 3 or wn = 3.
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Proof. 1. Supposewn ̸= 1. Since bothw1, w2 andw3, . . . , wn−1 are increasing subsequences
by Lemma 6.5(3),(1), either w1 = 1 or w3 = 1. Since w3 < w1 by Lemma 6.5(4), we
must have w3 = 1.

2. Assume w3 = 1. We will show that w2 ̸= 2 and that none of w5, . . . , wn−1 is equal to 2
(hence w1 = 2, w4 = 2, or wn = 2). Since w3 < w2 and w4 < w2 by Lemma 6.5(5),(6)
and since w is a permutation, we must have 2 < w2. Similarly, since w3 < w4 < w5 <
· · · < wn−1 by Lemma 6.5(1) and since w is a permutation, each of w5, . . . , wn−1 must be
larger than 2.

3. Suppose w3 = 1 and w1 = 2. We will prove that w2 ̸= 3 and none of w5, . . . , wn−1

is equal to 3 (hence w4 = 3 or wn = 3). Since wn /∈ {1, 2}, we have 2 < wn. By
Lemma 6.5(2), we have wn < w2. So 2 < wn < w2, which implies that w2 is larger than 3
(since w is a permutation). Similarly, since w3 < w4 by Lemma 6.5(1) and w1 = 2, we
must have 2 < w4 < w5 < · · · < wn−1 by Lemma 6.5(1). So each of w5, . . . , wn−1 is
larger than 3 (since w is a permutation).

6.3. Proof of Theorem 6.7

Theorem 6.7. If n ⩾ 5, every permutation in Sn(Q̂) has steady-state time n− 3.

Proof. Suppose w = w1 . . . wn ∈ Sn(Q̂) is the box-ball configuration at time 0. We will show
that w first reaches steady state at time t = n− 3.

Let j be the smallest number in {3, 4, . . . , n − 1} such that wn < wj . We claim that the
box-ball configuration at time t = 1 is

e e w1w2︸ ︷︷ ︸
increasing

block

n−5
copies︷ ︸︸ ︷

e e e . . . e x 1 y1 y2 . . . yn−4︸ ︷︷ ︸
increasing block

, (6.6)

where x = wj , there are (n− 5) copies of e between w2 and x, and y1 < y2 < · · · < yn−4.
To prove this claim, consider the following cases. Due to Lemma 6.6, these five cases cover

all possibilities.

1. wn = 1

2. w3 = 1 and wn = 2

3. w3 = 1, w1 = 2, and wn = 3

4. w3 = 1, w1 = 2, and w4 = 3

5. w3 = 1 and w4 = 2
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First, suppose wn = 1. Lemma 6.5 tells us that w3 is smaller than each wi except for wn = 1,
so we must have w3 = 2 and j = 3:

w1w2 w3︸︷︷︸
2

w4w5 . . . wn−1 wn︸︷︷︸
1

.

Since w1 < w2 and w4 < w5 < · · · < wn−1 and since w4 < w2, applying one box-ball move
to w results in the configuration

e ew1w2

n−5︷ ︸︸ ︷
e e e . . . e w3︸︷︷︸

x

1w4w5 . . . wn−1

where there are (n− 5) copies of e between w2 and x = w3 = 2.
Second, suppose w3 = 1 and wn = 2:

w1w2 w3︸︷︷︸
1

w4w5 . . . wn−1 wn︸︷︷︸
2

.

Since w1 < w2 and w4 < w5 < · · · < wn−1 and since w4 < w2, applying one box-ball move
to w results in the configuration

e ew1w2

n−5 copies︷ ︸︸ ︷
e e e . . . e w4︸︷︷︸

x

1 2w5w6 . . . wn−1

where there are (n− 5) copies of e between w2 and x = w4. In this case, w3 = 1 is not bigger
than wn = 2, but w4 must be bigger than wn = 2 since w4 /∈ {1, 2}, so j = 4.

Third, suppose w3 = 1 and w1 = 2 and wn = 3. Lemma 6.5 tells us that w4 is smaller than
each of the wi (except for w3 = 1, w1 = 2, and wn = 3), so w4 must be 4:

w1︸︷︷︸
2

w2 w3︸︷︷︸
1

w4︸︷︷︸
4

w5 . . . wn−1 wn︸︷︷︸
3

.

Using the same reasoning as in the previous two cases, applying one box-ball move to w results
in the configuration

e e w1︸︷︷︸
2

w2

n−5 copies︷ ︸︸ ︷
e e e . . . e w4︸︷︷︸

x

1wnw5w6 . . . wn−1

where there are (n− 5) copies of e between w2 and x = w4. In this case, j = 4 since w3 = 1 is
not larger than wn = 3 but w4 = 4 is.

Finally, suppose we have one of the last two cases, so w3 = 1 and w4 < wn:

w1w2 w3︸︷︷︸
1

w4w5 . . . wn−1 wn︸︷︷︸
larger

than w4
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Since w1 < w2 and w4 < w5 < · · · < wj−1 < wn < wj < · · · < wn−1 and since w4 < w2,
applying one box-ball move to w results in the configuration

e ew1w2

n−5 copies︷ ︸︸ ︷
e e e . . . e wj︸︷︷︸

x

1w4w5 . . . wj−1wnwj+1 . . . wn−1

where there are (n − 5) e’s between w2 and x = wj . In this case, j ⩾ 5 since w4 is smaller
than wn. This concludes the proof of our claim that the box-ball configuration at time t = 1 is
as given in (6.6).

Now we perform another box-ball move to reach the configuration at t = 2. If n > 5, in the
configuration at t = 2, there are (n− 6) e’s between w2 and x:

e e e ew1w2

n−6
copies︷ ︸︸ ︷

e e . . . e x

n−4
copies︷ ︸︸ ︷

e e . . . e 1 y1 y2 . . . yn−4︸ ︷︷ ︸
increasing block

.

In fact, at each BBS move, the increasing sequence w1, w2 moves together two spaces to the
right, the singleton xmoves one space to the right, and the increasing sequence 1, y1, y2 . . . , yn−4

moves n − 3 spaces to the right. So the number of e’s between w2 and x decreases by 1 after
each BBS move. The configuration at t = n− 4 is

. . . e e ew1w2 x e e e . . . e e e 1 y1 y2 . . . yn−4︸ ︷︷ ︸
increasing block

.

We claim that
x < w2,

which we now prove. Recall that x = wj , where j is the smallest number in {3, 4, . . . , n − 1}
such that wn < wj . If w2 < wj , then w1 < w2 < wj < wj+1 < · · · < wn−1 and the remaining
wi’s form two increasing subsequences of w whose union is w. This contradicts Lemma 6.4, so
indeed x < w2.

Since x < w2, we have either x < w1 < w2 or w1 < x < w2. If x < w1 < w2, then the
configuration at t = n− 3 is

. . . e e w1 xw2︸︷︷︸
increasing

block

e e . . . e e 1 y1 y2 . . . yn−4︸ ︷︷ ︸
increasing block

.

If w1 < x < w2, then the configuration at t = n− 3 is

. . . e e w2 w1 x︸︷︷︸
increasing

block

e e . . . e e 1 y1 y2 . . . yn−4︸ ︷︷ ︸
increasing block

.

Either way, the configuration array at t = n− 3 is a standard skew tableau whose rows have
length n− 3, 2, and 1. By Proposition 5.2, the configuration at t = n− 3 is in steady state.

The configuration at t = n− 4 is not yet in steady-state, as the relative positions of w1, w2,
and x in the configuration at t = n − 4 differ from the configuration at t = n − 3. There-
fore, t = n− 3 is the minimum steady-state time of w.
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7. Knuth moves

We study how types of Knuth moves (Definition 1.4) play a role in a box-ball system. In Sec-
tion 7.1, we prove that a non-KB Knuth move preserves the shape of a soliton decomposition and
that a KB move changes it (Theorem 7.1). In Section 7.2, we prove that every permutation which
is one non-KB Knuth move from a row reading word has steady-state time 1 (Theorem 7.4).

7.1. Soliton decompositions are preserved by certain Knuth moves

Using the localized version of Greene’s Theorem given in Section 2.2, we prove a partial char-
acterization of the shape of SD in terms of types of Knuth moves.

Theorem 7.1. Suppose v and w are two permutations in the same Knuth equivalence class.

1. If v and w are related by a sequence of Knuth moves containing an odd number of KB

moves, then SD(v) ̸= SD(w).

2. If v and w are related by a sequence of non-KB Knuth moves, then sh SD(v) = sh SD(w).

Proof. To prove part (1), we observe that a K+
B move decreases the number of descents by 1,

and a K−
B move increases the number of descents by 1. Since the height the partition sh SD(w)

is equal to
D1(w) = 1 + |{descents of w}|

by Lemma 2.6, it follows that applying an odd number of KB moves to w changes sh SD(w).
To prove part (2), suppose x, y ∈ Sn are related by a proper K1 or proper K2 move. Due to

Lemma 2.6, it suffices to prove that Dk(x) = Dk(y) for all k. This breaks down into two main
cases: case (i), where y = K+

1 (x), and case (ii), where y = K+
2 (x). These further divide into

the following subcases, where a < b < c in all cases:

i. (a) y = · · · bca or y = · · · bcad · · · with c < d
x = · · · bac or x = · · · bacd · · ·

(b) y = · · · bca or y = · · · bcaa′ with a′ < a
x = · · · bac or x = · · · baca′

ii. (a) y = cab · · · or y = · · · dcab · · · with c < d
x = acb · · · or x = · · · dacb · · ·

(b) y = cab · · · or y = · · · a′cab · · · with a′ < a
x = acb · · · or x = · · · a′acb · · ·

The proofs are similar for each case. We include a partial proof of case (ia). Suppose

y = · · · bca
x = · · · bac
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or

y = · · · bcad · · ·
x = · · · bacd · · ·

where a < b < c < d. The idea is to show that Dk(y) ⩽ Dk(x) and Dk(x) ⩽ Dk(y) for all k,
from which the result follows.

Let k ⩾ 1. To show Dk(y) ⩽ Dk(x), suppose that u1, . . . , uk are disjoint subsequences of y
such that

Dk(y) = D(u1) + · · ·+D(uk).

We will produce disjoint subsequences u′
1, . . . , u

′
k of x where

D(u1) + · · ·+D(uk) ⩽ D(u′
1) + · · ·+D(u′

k).

First, suppose that c and a are in different subsequences. Then set u′
i := ui for each 1 ⩽ i ⩽ k.

Since D(u1) + · · ·+D(uk) = D(u′
1) + · · ·+D(u′

k), we have Dk(y) ⩽ Dk(x).
Next, suppose that b, c, and a are in the same subsequence uj of y. Define u′

j to be the
subsequence of x which is obtained from uj by swapping c, a with a, c. Define u′

i := ui for
all i ̸= j. Then, since a < b < c, we have

D(uj) = D(. . . , b, c, a, . . . ) ⩽ D(. . . , b, a, c, . . . ) = D(u′
j),

so Dk(y) ⩽ Dk(x).
Lastly, suppose that c and a are in the same subsequence, say u1, and b is in a different

subsequence, say u2. Write u1 as a concatenation

u1 = ( . . . , c)︸ ︷︷ ︸
u1
1

⊔ (a, . . . )︸ ︷︷ ︸
u2
1

of two subsequences u1
1 and u2

1, respectively. Write u2 as a concatenation

u2 = ( . . . , b)︸ ︷︷ ︸
u1
2

⊔ ( . . . )︸ ︷︷ ︸
u2
2

of two subsequences u1
2 and u2

2, respectively. Define

u′
1 := u1

2 ⊔ u2
1 = ( . . . , b) ⊔ (a, . . . ),

u′
2 := u1

1 ⊔ u2
2 = ( . . . , c) ⊔ ( . . . ),

and u′
i := ui for all i /∈ {1, 2}. Then, since a < b < c,

D(u1) + D(u2) ⩽ D(u′
1) + D(u′

2),

so Dk(y) ⩽ Dk(x). The proof of the reverse inequality Dk(x) ⩽ Dk(y) is similar.
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Theorem 7.1 allow us to use Knuth moves to find a subset of permutations whose soliton
decomposition and RS insertion tableau coincide.

Corollary 7.2 (Corollary of Theorem 4.2 and Theorem 7.1). Let w ∈ Sn, let T = P(w), and
let r be the row reading word of T .

1. If w is related to r by a sequence of Knuth moves containing an odd number of KB moves,
then SD(w) ̸= P(w) = T .

2. If w is related to r by a sequence of non-KB moves, then SD(w) = P(w) = T .

Example 7.3. The permutations 362514 and 632514 are the reading words of the tableaux

1 4

2 5

3 6

and

1 4

2 5

3

6

respectively.

Figure 7.1 (respectively, Figure 7.2) shows all permutations in the Knuth equivalence class
of r = 362514 (respectively, r = 632514). The corresponding soliton decomposition is drawn
next to each permutation. An edge with label K1 (respectively, K2) indicates that the Knuth
move is a proper K1 (respectively, K2) move. An edge with label KB indicates that the Knuth
move is both K1 and K2. The permutations are arranged such that they form a subdiagram of
the Hasse diagram of the right weak order2 on the symmetric group S6.

7.2. Permutations one proper Knuth move from a row reading word

Theorem 7.4. Let r be the row reading word of a standard tableau. Suppose w is a permutation
which is related to r by one proper K1 move or one proper K2 move. Then w has steady-state
time 1.

If w is one KB move from the row reading word of a standard tableau, then the steady-state
time of w may be 1 or greater than 1. See Example 7.5.

Example 7.5. The corresponding steady-state times are given next to each permutation in the
two Knuth equivalence classes of Figures 7.1 and 7.2.

In Figure 7.1, the permutation 362154 is one K−
B move from r, and its steady-state time

is t = 2. Another permutation, 326514, is also one K−
B move from r, and its steady-state time

is t = 1.
In Figure 7.2, we can perform a K−

B move and also a proper K+
1 move on r (see Lemma 7.6).

The permutation 635214 is one proper K+
1 move from r, and its steady-state time is t = 1,

illustrating Lemma 7.9.
2For definition of the right weak order, see, for example, the textbook [BB05, Section 3.1].
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r = 362514, t = 0
1 4
2 5
3 6

362154, t = 2

1 4
2 5
6
3

326514, t = 1

1 4
2 5
6
3

326154, t = 21 4
2 5
6
3

321654, t = 1

1 4
5
6
2
3

KB KB

K1 K2

KB

Figure 7.1: The Knuth equivalence class of r = 362514, with their soliton decompositions and
steady-state times.

326541, t = 1

1 4
2
5
6
3

362541, t = 2

1 4
2 5
3
6

365241, t = 2

1 4
2 5
3
6

365214, t = 1

1 4
2 5
3
6

635214, t = 1

1 4
2 5
3
6

635241, t = 2

1 4
2 5
3
6

632541, t = 1

1 4
2
5
3
6

r = 632514, t = 0

1 4
2 5
3
6

632154, t = 1

1 4
5
2
3
6

KB

K2

K1
K2

K1K2

K1

KB

KB

Figure 7.2: The Knuth equivalence class of r = 632514, with their soliton decompositions and
steady-state times.
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7.2.1 Proof of Theorem 7.4

Theorem 7.4 follows from the following four lemmas.

Lemma 7.6. Let r = r1r2 . . . rn be the row reading word of a standard tableau P .

1. If one performs a K−
1 move on r, the move is KB.

2. Suppose we are able to perform aK+
1 move yxz 7→ yzx (where x < y < z) on r. If r1 ̸= y,

we must have
r = r1 . . . rℓ y x︸ ︷︷ ︸

decreasing

z . . . rn−1 rn (7.1)

where r1 > r2 > · · · > rℓ > y > x. The tableau P must be of the form given in
Figure 7.3, where the entry y is in its own row, and the row immediately above y starts
with entries x, z.

3. If one performs a K+
1 move on r, the move is not KB.

... · · ·
a1 a2 a3 · · ·
x z b1 b2 · · ·
y (possibly with no bi’s)
rℓ...
r1

Figure 7.3: General form of a standard tableau P whose row reading word can undergo a K+
1

move.

Proof. First, we prove part (1) of the lemma. Suppose we perform a K−
1 move yzx 7→ yxz

(where x < y < z) on r. Since r is the row reading word of P , the tableau P must contain a
subtableau

x b

y z
or

x . . . b

. . . y z
.

Since the rows and columns of P are increasing, we must have x < b < z. Thus, r must contain
a consecutive subsequence yzxb′ where x < b′ ⩽ b < z, so the K−

1 move yzx 7→ yxz is K−
B .

Now suppose we perform a K+
1 move yxz 7→ yzx on r. First, we prove part (2).

Since x < y < z and P is standard, the entry y must be the only element in its row in P ,
that is, the rows of P containing x, y, z are of the form

x z . . .

y
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If r1 = y, then we are done. Suppose r1 ̸= y, and write r = r1r2 . . . rℓyxz . . . rn. Since the rows
of P are weakly decreasing in length, the rows of P below y are of size 1. Since P is standard,
we have r1 > r2 > · · · > rℓ > y. So r is of the form given in (7.1) and P is of the form given
in Figure 7.3.

Finally, to prove part (3) of the lemma, we prove that this K+
1 move is not a KB move.

If rn = z, then we know this K+
1 move is not KB. Suppose rn ̸= z, so r = r1 . . . yxzb . . . rn for

some b. Since r is the row reading word of P , either the entry b is immediately above x in P or
the entry b is immediately to the right of z in P :

b · · ·
x z

y

or
x z b · · ·
y

Since P is standard, either b < x or z < b. Either way, this K+
1 move is not KB.

Lemma 7.7. Let r = r1r2 . . . rn be the row reading word of a standard tableau P .

1. It is impossible to perform a K+
2 move on r.

2. Suppose we are able to perform a K−
2 move zxy 7→ xzy (where x < y < z) which is not

a KB move on r. If r1 ̸= z, we have

r = r1 . . . rℓ z x︸ ︷︷ ︸
decreasing

y . . . rn−1 rn (7.2)

where r1 > r2 > · · · > rℓ > z. The tableau P must be of the form given in Figure 7.4,
where the entry z is in its own row, and the row immediately above z starts with entries x, y.

... · · ·
a1 a2 a3 . . .

x y b1 b2 b3 · · · bm
z (possibly with no bi’s)
rℓ
...
r2

r1

.

Figure 7.4: General form of a standard tableau P whose row reading word can undergo a K−
2

move which is not KB.
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Proof. First, we prove part (1) of the lemma. Assume (for the sake of contradiction) that one
could perform a K+

2 move on r. Then r must contain a xzy pattern. Hence, since r is the row
reading word of P , the tableau P must contain the following subtableau:

y . . .

x z

Notice that y is north or northwest of x but x < y. This is a contradiction to the fact that P is a
standard tableau. Therefore, we cannot perform a K+

2 move on r.
Next, we prove part (2) of the lemma. Suppose we perform a K−

2 move zxy 7→ xzy on r
which is not a KB move. If r1 = z, then the last two rows of P are of the form

x y · · ·
z

,

so P is of the form given in Figure 7.4.
Suppose r1 ̸= z, and write r = r1 . . . rℓ z x y . . . rn−1 rn. Since our K−

2 move is not KB,
we must have either rℓ < x or z < rℓ. Since P is standard and x is in the first column, we
cannot have rℓ < x. So z < rℓ. Therefore z is in its own row in P . Since the rows of P
are weakly decreasing in length, the rows of P below z are of size 1. Since P is standard, we
have r1 > r2 > · · · > rℓ. So r is of the form given in (7.2) and P is of the form given in
Figure 7.4.

Remark 7.8. In general, a K−
2 move on the row reading word of a standard tableau may (or may

not) be KB.
The proofs of the next two lemmas, Lemmas 7.9 and 7.10, are similar.

Lemma 7.9. Suppose r = r1r2 . . . rn ∈ Sn is the row reading word of a standard tableau P .
Let w be a permutation which differs from r by one proper K1 move. Then w first reaches its
steady state at t = 1.

Proof. By Lemma 7.6, applying a K1 move that is not KB to r must be a K+
1 move yxz 7→ yzx

such that

r = r1 r2 . . . rℓ y︸ ︷︷ ︸
decreasing

x z . . . rn−1 rn

w = K+
1 (r) = r1 r2 . . . rℓ y︸ ︷︷ ︸

decreasing

z x . . . rn−1 rn

where r1 > r2 > · · · > rℓ > y (if r1 ̸= y) and x < y < z.
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We apply the carrier algorithm to w. First, we insert r1, r2, . . . , rℓ, y into the carrier. Since
these are decreasing, we eject e, r1, r2, . . . , rℓ from the carrier in consecutive order:

e e · · · e
carrier

r1 r2 r3 . . . rℓ−1 rℓ y︸ ︷︷ ︸
decreasing

z x . . . rn

e r1 e e · · · e r2 r3 . . . rℓ−1 rℓ y︸ ︷︷ ︸
decreasing

z x . . . rn

e r1 r2 e e · · · e r3 . . . rℓ−1 rℓ y︸ ︷︷ ︸
decreasing

z x . . . rn

...
e r1 r2 . . . rℓ y e e · · · e z x . . . rn

Next, we insert z into the carrier. Since the only non-e entry in the carrier, y, is smaller than z,
we eject an e:

e e r1 r2 . . . rℓ e y z e e · · · e x rℓ+4 . . . rn

Next, we insert x into the carrier. Since x < y < z, we eject y and get

e e r1 r2 . . . rℓ e y x z e e · · · e rℓ+4 . . . rn

Note that the string
x z rℓ+4 . . . rn−1 rn

is equal to the consecutive subsequence rℓ+2 . . . rn−1 rn of r. This string is the row reading word
of the subtableau (possibly with no bi’s)

... · · ·
a1 a2 a3 · · ·
x z b1 b2 · · ·

of P , where P is given in Figure 7.3. Since this subtableau has the shape of a partition and
has increasing rows and columns, completing the carrier algorithm yields the configuration at
time t = 1:

e e r1 r2 . . . rℓ e y

0 or more
copies︷ ︸︸ ︷

e e . . . e x z b1 b2 b3 . . . a1 a2 . . . . . . rn−1 rn e e · · · e .

The configuration array at t = 1 is the skew tableau created by taking P and shifting some
of the rows to the right. Since P is standard tableau with partition shape to begin with, the
configuration array is a standard skew tableau with weakly increasing rows. By Proposition 5.2,
the configuration at t = 1 is in steady state.
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Lemma 7.10. Suppose r = r1r2 . . . rn ∈ Sn is the row reading word of a standard tableau P .
Let w be a permutation which differs from r by one proper K2 move. Then w first reaches its
steady state at t = 1.

Proof. By Lemma 7.7, applying a K2 move that is not KB to r must be a K−
2 move zxy 7→ xzy

to r such that

r = r1 . . . rℓ z x y . . . rn−1 rn

w = K−
2 (r) = r1 . . . rℓ x z y . . . rn−1 rn

where r1 > r2 > · · · > rℓ > z (if r1 ̸= z) and x < y < z.
As in the proof of Lemma 7.9, we apply the carrier algorithm to w. We insert the decreasing

sequence r1, r2, . . . , rℓ, x into the carrier and eject e, r1, r2, . . . , rℓ, in that order. As we insert z
and y, we eject e and z, in that order:

e · · · e
carrier

r1 r2 r3 . . . rℓ x︸ ︷︷ ︸
decreasing

z y . . . rn−1 rn

e r1 e e · · · e r2 r3 . . . rℓ x︸ ︷︷ ︸
decreasing

z y . . . rn−1 rn

e r1 r2 e e · · · e r3 . . . rℓ x︸ ︷︷ ︸
decreasing

z y . . . rn−1 rn

...
e r1 r2 . . . rℓ x e . . . e z y . . . rn−1 rn

e r1 r2 . . . rℓ e x z e . . . e y rℓ+4 . . . rn

e r1 r2 . . . rℓ e z x y e . . . e rℓ+4 . . . rn

Note that the string
x y rℓ+4 . . . rn−1 rn

is equal to the consecutive subsequence rℓ+2 . . . rn−1 rn of r. This string is the row reading word
of the subtableau (possibly with no bi’s)

... · · ·
a1 a2 a3 · · ·
x y b1 b2 · · ·

of P , where P is given in Figure 7.4. Since this subtableau has the shape of a partition and
has increasing rows and columns, completing the carrier algorithm yields the configuration at
time t = 1:

e e r1 r2 . . . rℓ e z

0 or more
copies︷ ︸︸ ︷

e . . . e x y b1 b2 b3 · · · a1 a2 . . . rn−1 rn e e · · · e .
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The configuration array at t = 1 is the skew tableau created by taking P and shifting some
of the rows to the right. Since P is standard tableau with partition shape to begin with, the
configuration array is a standard skew tableau with weakly increasing rows. By Proposition 5.2,
the configuration at t = 1 is in steady state.
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