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Abstract of the Dissertation

Volatility at High Frequency

by

Duke Whang

Doctor of Philosophy in Economics

University of California, Los Angeles, 2012

Professor Bryan Ellickson, Chair

The availability of software tools, high frequency data, and recent advances in

statistical inference all allow a greater study of continuous-time models of price

and volatility processes.

This research studies the structure of intraday stock volatility over a selected

group of stocks from 2007 to 2011. We use nearly every valid transaction in the

Trades and Quotes database to obtain a price series which is sampled every second.

We calculate realized variation (RV), the sum of squared log returns, to estimate

squared volatility.

We partition the trading day at the level of 100-second time intervals, and we

observe mean reversion in RV even at this time scale. We estimate a modified

Heston model for RV in which statistical criteria are used to detect volatility

jumps.
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CHAPTER 1

Introduction

Over the past fifty years finance has been revolutionized by the application of the

tools of continuous-time stochastic processes to financial markets. Starting with

the work of Fischer Black, Myron Scholes and Robert Merton in the 1970s, asset

pricing models within a continuous-time framework have been applied to a wide

variety of assets including stocks, bonds, derivatives, forward contracts, futures

contracts and much more. During the 1980s the theoretical basis of arbitrage

theory in continuous time was extended by David Kreps, Michael Harrison, Stanley

Pliska and others to the very general class of semimartingales, a class that allows for

price processes with jumps as well as the continuous-path processes (Itô processes)

that were the focus of the earlier work by Black, Scholes and Merton.

Unfortunately, empirical testing of the continuous-time theory has not pro-

gressed as rapidly as the theory. In the early 1980s, Robert Merton ([Mer80])

advocated the use of high-frequency data as a way to estimate the instantaneous

variances and covariances that are crucial to the asset-pricing models he and others

had developed. The key insight is that, with high-frequency data, it is “in principle”

possible to estimate second-order statistics (quadratic variation and quadratic

covariation) with great accuracy by subdividing time periods such as a day into

finer and finer subperiods (e.g., one-second intervals).

Starting in the 1990s high-frequency data for stocks became available to aca-

demic researchers. Financial econometricians followed Merton’s lead, estimating

quadratic variation and quadratic covariation using realized variation and real-
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ized covariation. Unfortunately, these estimators turned out to work poorly in

practice. Many financial econometricians concluded that asset prices must not be

semimartingales. Asset prices, according to this view, can be handled using semi-

martingale methodology only if the semimartingale is treated as latent. Observed

transaction processes are then the sum of the latent semimartingale and a noise

term, a conclusion with potentially disturbing conclusions for the theoretic edifice

built on those foundations.

Ellickson, Hood, Liu, Whang and Zhou ([EHL12]) [henceforth EHLWZ] chal-

lenges this commonly-held view, demonstrating that key parameters of the Heston

([Hes93]) model of stochastic volatility can be estimated quite accurately for the

30 stocks of the Dow Jones Industrial Average over the period 2001–2009 using

stock prices sampled once a second and estimating realized variation for every

5-minute interval during the trading day over the entire 9-year period for each of

these stocks. The statistical performance of the estimation is spectacular.

The main focus in this thesis is on improvements to the model presented in

EHLWZ (2012). This chapter summarizes the conclusions of the earlier paper.

The improvements center on the detection of data errors and a three-fold increase

in resolution. In Chapter 2 I describe the programming environment that allows

us to improve upon the earlier paper. Chapter 3 compares and contrasts the new

results with the old.

1.1 Pricing by arbitrage

The theory of pricing by arbitrage takes its most impressive and powerful form in

continuous time. The theory has its roots in Samuelson ([Sam65]) and in Merton’s

([Mer73]) reformulation of the Black-Scholes ([BS73]) model of derivative pricing.

Ross ([Ros76]) was the first to realize the potential of pricing by arbitrage as a

general theory of the pricing of financial assets. Harrison and Kreps ([HK79])
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developed no-arbitrage theory in discrete time, and Harrison and Pliska ([HP81])

were the first to recognize the relevance of semimartingale methodology for the

continuous-time case. Kreps ([Kre81]) pioneered the extension of the theory to

continuous time, and Delbaen and Schachermayer ([DS94],[DS98]) brought the

theory to a state which many experts regard as perhaps its final form.

Semimartingales are now regarded as the central concept in the modern theory of

stochastic integration. In discrete time, every stochastic process is a semimartingale.

In continuous time, fractal Brownian motion is an example of a stochastic process

that is not a semimartingale. Fortunately, the class of semimartingales is quite

broad, encompassing not only geometric Brownian motion but Itô processes with

stochastic volatility (such as the Heston ([Hes93]) model) and processes in which

price and/or volatility processes jump. Protter ([Pro04]) gives a accessible and

quite general treatment of stochastic integration for semimartingales. Delbaen

and Schachermayer ([DS98]) is widely regarded as the definitive treatment of the

general theory of arbitrage pricing for semimartingales.

Delbaen and Schachermayer ([DS94]) proved, for the class of semimartingales

with bounded jumps, the following version of the Fundamental Theorem of Asset-

Pricing Theory :

Theorem. If asset prices are semimartingales with bounded jumps and the NFLVR

condition holds, then there exists an equivalent martingale measure.

Their no-free-lunch-with-vanishing-risk (NFLVR) condition is a strengthening

of the no-arbitrage (NA) condition that suffices in discrete time. Equivalent

martingale measures allow modern financial theory to price assets.

A version of the fundamental theorem also holds for semimartingales with un-

bounded jumps, provided that the price processes are sigma-martingales ([DS94]).

Theorem. If asset prices are sigma-martingales and the NFLVR condition holds,

then there exists an equivalent martingale measure.
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Delbaen and Schachermayer ([DS05]) reprints the two key articles as well as five

other articles. They also provide a very useful 140-page “Guided Tour to Arbitrage

Theory.”

Itô processes are semimartingales with continuous paths and hence no jumps.

Brownian motion is the simplest form of an Itô process. In their pioneering work of

the 1970s, Black, Merton and Scholes assumed that stock price processes follow a

geometric Brownian motion, which means that the log price process is a Brownian

motion. If the stock-price process S = (St)t≥0 is a geometric Brownian motion and

X = (Xt)t≥0 where Xt = log(St), then the stochastic process X is the solution a

stochastic differential equation (SDE) of the form

dXt = µdt+ σdWt

where W is a Wiener process with drift 0 and volatility 1 (i.e, a standard Wiener

process). The parameter µ is called the drift and the parameter σ is called the

volatility of the stochastic process X.1

1.2 Quadratic variation

Associated with any semimartingale X = (Xt)t≥0 is another stochastic process

[X,X] = ([X,X]t)t≥0, called the quadratic variation of the process X. Quadratic

variation plays a key role in the development of stochastic integrals for semimartin-

gales.2 In the case of geometric Brownian motion

[X,X]t =

∫ t

0

σ2dt = σ2t

Consequently, if X has drift 0, [X,X]t is the variance of Xt at time t.

1Shreve ([Shr04]) provides an excellent textbook exposition of stochastic calculus from a
finance perspective.

2See Protter ([Pro04]) for a general development of stochastic integration for semimartingales.
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For a general Itô process with stochastic differential

dXt = µtdt+ σtdWt (t ≥ 0)

where µ and σ are stochastic processes defined on the same filtered probability

space as the Wiener process W , the quadratic variation process is given by

[X,X]t =

∫ t

0

σ2
sds (t ≥ 0)

More generally, suppose Xt is a jump diffusion with stochastic differential

dXt = µtdt+ σtdWt + dJt (t ≥ 0)

where J = (Jt)t≥0 is a jump process driven by a counting process with finite

intensity. Then the quadratic variation of X is given by

[X,X]t =

∫ t

0

σ2
sds+

∑

s≤t

(∆Js)
2

where ∆Jt := Jt − Jt− is the jump at time t.

1.3 Realized variation

In the mathematical literature on semimartingales, realized variation is the natural

way to estimate quadratic variation path by path. Let [0, 1] represent the time

interval of a trading day. Time begins at the market open t = 0 (9:30 AM for the

NYSE) and time ends at the market close at t = 1 (4:00 PM for the NYSE). A

remarkable fact about estimating the increment

[X,X]1 − [X,X]0
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to the quadratic variation process over the trading day is that we can increase the

precision of the estimate by sampling the process over finer and finer grids. In

particular, suppose we specify a grid GN that subdivides the interval [0, 1] into N

subintervals of equal length:3

GN = {t0, t1, . . . , tN}

where

0 = t0 < t1 < . . . < tN = 1

and ∆tj = 1/N for all j = 1, 2, . . . , N . By definition, the realized variation over

the interval [0, 1] is

RVG
N

[0,1] =
N∑

j=1

(∆Xtj)
2 (1.1)

The mesh of the grid Gn is the maximum spacing between adjacent times in the

grid,

mesh(GN) := max{∆tj : j = 1, 2, . . . , N}

Because we have specified uniform spacing, in this case mesh(Gn) = 1/N . As

N → ∞ (or, equivalently, the mesh of the grid goes to 0) RVG
N

[0,1] converges in

probability to the increment to quadratic variation over the interval [0, 1]: i.e.,

RVG
N

[0,1]

p−→ [X,X]1 − [X,X]0

Because we will always assume that our semimartingales have no jump at t = 0, it

follows that [X,X]0 = 0 and hence

RVG
N

[0,1]

p−→ [X,X]1

3It is not necessary that the points of the grid be equally spaced. We do so only to simply
the exposition.

6



1.4 Estimating QV within the trading day

High frequency TaQ data on U.S. equity securities are available starting in 1993. As

TaQ data became more widely available in the late 1990’s, financial econometricians

began to explore the potential of using realized variation to estimate quadratic

variation over the trading day. However, realized variation performed badly,

yielding estimates of volatility inconsistent with estimates of stock price volatility

using daily stock returns or from pricing formulas for derivative assets (implicit

volatility). To explain this failure, Anderson, Bollerslev, Diebold, and Labys

([ABD99]) introduced a graphical device called a (volatility) signature plot that

suggests realized volatility does not converge uniformly in probability to quadratic

variation on compact intervals, as semimartingale theory suggests that it should.4

For a given trading day, the signature plot plots an average of realized variation

estimates on the vertical axis where the average is taken over a collection of grids

with increasing mesh. The horizontal axis is the number K of subgrids with K = 1

representing the finest subgrid. For small values of K, the averages should be close,

but they are not. From this evidence, Anderson et. al. infer that asset prices are

not semimartingales.

Their paper has been very influential, leading most financial econometricians

working with high frequency data to abandon the hypothesis that log price processes

are semimartingales. Since the semimartingale hypothesis is of crucial importance

in dealing with continuous-time stochastic processes, econometricians assume there

is a latent process that is a semimartingale and that observed prices equal this

latent process plus an error:

Xt = X∗t + εt t ∈ [0, 1]

4See Mykland and Zhang ([MZ12]) for a clear and concise description of signature plots.
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where X∗t is the (unobserved) latent price and εt is noise. The noise is attributed

to “market microstructure.”

We admit to a distaste for the hypothesis that stock prices are latent. Investors

and stock exchanges have a lot invested in reporting transactions prices accurately.

As we will see, the TaQ data goes to considerable trouble to identify prices

corresponding to trades that were reversed because of errors of various sorts, trades

identified by a code that allows researchers to exclude such trades (which we do).

As we will also see, when we use realized volatility within the trading day, we

obtain very sensible estimates. Signature plots do behave as Anderson et al. say

they do. However, we suspect the reason for that, and the reason their realized

volatility estimates made little sense, is that they asked the wrong question. asking

• How much realized variation is accumulated over an entire day?

rather than

• How does realized variation behave over the course of a trading day?

1.5 Estimating QV over short intervals

EHLWZ (2012) and this thesis represent a return to the realized variation method-

ology, applied to intervals within each trading day. The current literature argues

that prices should be sampled very infrequently (once every 5 minutes) in order

to obtain accurate estimates of [X,X]1 (the quadratic variation accumulated over

a trading day) because prices are contaminated by noise. We propose instead

to sample prices as frequently as possible (once a second), to estimate quadratic

variation for much shorter intervals, and to compute realized variation directly

from observed prices.

Because we sample prices once a second, the grid we use to compute realized

variation is

8



GN = {t0, t1, t2, . . . , tN}

where N = 23400 is the number of seconds within a 6.5-hour trading day.5 The

gap between adjacent points of the grid is ∆tj = 1/23400, the length of a 1-second

interval expressed as a fraction of the interval [0, 1].

Thus far this is no different from what financial econometricians did in the late

1990s before realized volatility became discredited as an estimator. However, we

now group the 1-second intervals into blocks. Let H ⊂ G be the subgrid

H = {τ0, τ1, . . . , τM}

where M is the number of blocks in a trading day. We assume that τ0 = t0 = 0,

τM = tN = 1, and that the τi ∈ H are equally spaced (i.e., ∆τi = 1/M). The times

τj ∈ H are the boundaries the intervals we call blocks, the terminology used by

Mykland and Zhang ([MZ09]).

We define the quadratic variation accumulated over block i,

∆[X,X]τi := [X,X]τi − [X,X]τi−1

Because [X,X]0 = 0

[X,X][0,1] =
M∑

i=1

∆[X,X]τi

The realized variation over block i is

RVG
N

[τi−1,τi]
=

∑

tj∈G∩[τi−1,τi]

(∆Xtj)
2 (1.2)

Each of the terms (∆Xtj )
2 is a squared one-second log return, and there are N/M

5The trading day starts at 9:30:00 AM Eastern time and ends at 4:00:00 PM Eastern time.
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terms in the sum.

• In EHLWZ (2012) we set M = 78 (the number of 5-minute blocks in a

trading day) and N = 23400 (the number of seconds in a trading day), so

N/M = 300 (the length of a 5-minute block expressed in seconds).

• In Chapter 3 of this thesis, we set M = 234 (the number of 100-second blocks

in a trading day) which implies N/M = 100 (the blocks are 100 seconds

long).

1.6 The Heston model

In EHLWZ (2012) we estimate a Heston ([Hes93]) model of stochastic volatility

for the 30 stocks in the DJIA and for SPY (an exchange-traded fund that tracks

the S&P 500) over the period 2001–2009. In this section, I will briefly describe

the Heston model and the regression equation we derive. This regression equation

allows us to use our block estimates of realized variation to estimate the starting

value and speed of mean reversion of the Heston model.

Let ζt := σ2
t denote the squared volatility. The Heston model assumes that

dXt = µtdt+
√
ζtdWt

dζt = κ(ζ̄ − ζt) + γ
√
ζtdBt

whereXt is the log stock price, Wt andBt are Wiener processes (possibly correlated),

κ > 0 is the speed of mean reversion to the asymptotic mean ζ̄, and γ > 0 is the

volatility of volatility.6 In EHLWZ (2012) we let M = 78 and estimate RV for

each 5-minute interval for each of our assets over the nine year period from 2001

6We require γ2 < 2κζ̄, which guarantees that (with probability 1) the ζ process remains
positive for all t. The process ζ characterized by the Heston model is also called a CIR process
because of its use in the Cox, Ingersoll and Ross ([CIR85]) model of the short rate. The stochastic
process was first introduced into the mathematics literature by Feller ([Fel51]).
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to 2009.

For each trading day in our sample, the price process X and the volatility

process ζ are assumed adapted to a filtered probability space (Ω,F ,F,P) where

F = (Ft)t∈[0,1] denotes the filtration, a collection of increasing σ-algebras of the

probability space (Ω,F ,P). Because we assume that ζ0, κ and γ are measurable

with respect to the σ-algebra F0 at the beginning of the trading day, they act

as parameters (i.e., constants) during the course of the trading day. However,

we do not assume that F0 = {∅,Ω}, the trivial σ-algebra. Consequently, these

“parameters” are free to vary randomly from one day to the next.

Using the framework of Mykland and Zhang ([MZ09]) for justification, we

approximate the stochastic process [X,X] = [X,X]t∈[0,1] as a discrete-time process

on H (the partition points for the blocks). We derive from the Heston model a

difference equation on the partition H. Let h = 1/M denote the length of a block.

The SDE for ζt implies7

ζτi = ζ̄ + e−κh(ζτi−1
− ζ̄) + γe−κh

∫ τi

τi−1

eκu
√
ζu dBu

and hence

ζτi − ζτi−1
= (1− e−κh)(ζ̄ − ζτi−1

) + γe−κh
∫ τi

τi−1

eκu
√
ζu dBu

Since the Wiener process B is a martingale, the expectation conditioned on

Fτi−1
of the stochastic integral appearing on the right-hand side is equal to zero,

and hence

E[ζτi − ζτi−1
| Fτi−1

] = (1− e−κh)(ζ̄ − ζτi−1
)

7Shreve [Shr04] presents a derivation on page 152.
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This leads us to consider the linear regression

ζτi − ζτi−1
= β(ζ̄ − ζτi−1

) + ετi−1
(1.3)

where

β = 1− e−κh ∈ (0, 1)

ετi−1
= γe−κh

∫ τi

τi−1

eκu
√
ζu dBu

We use β rather than κ as our measure of the the speed of reversion of the process

ζ toward its asymptotic mean ζ̄.

We estimate this difference equation by replacing the increments to quadratic

variation over blocks i and i−1 by their corresponding realized variation estimates.

We estimate ζ̄ as the median of the ζi’s in the settled region from 10:40:00 AM

to 3:15:00 PM. The asymptotic mean ζ̄ is estimated separately for each trading

day. As in Mykland and Zhang ([MZ09]), we normalize the estimates to a rate per

trading day by dividing the increment to realized variation for each block by the

length of the block. The realized variation estimate for block i is then

ζ̂τi =
RVG

N

[τi−1,τi]

τi − τi−1

= M
(
RVG

N

[τi−1,τi]

)

In EHLWZ (2012) we demonstrate that for most trading days the volatility

estimate ζ̂0 for the first block is much higher than the median volatility estimate in

the settled region, which we define to be the period from 10:40:00 AM to 3:15:00 PM.

We interpret the high initial value to the build-up of uncertainty about the price

of the asset when markets are closed. Although the Heston process is stationary

and ergodic, most days it starts out of equilibrium. For that reason, the mean of

the estimates ζ̂i over the entire trading day typically overstates the asymptotic

mean. Consequently, we use the median of the realized variation estimates for the
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55 five-minute blocks in the settled region as the estimate of the asymptotic mean

ζ̄ of the process ζ. We emphasize that, contrary to the existing literature, we allow

this asymptotic mean to vary randomly from day to day.

1.7 Estimating the Heston model using 300-second blocks

In ELHWZ (2012) we estimate mean reversion for the 30 stocks in the Dow Jones

Industrial Average and for SPY, an exchange-traded fund that tracks the S&P

500. We estimate equation (1.3) separately for each of our 31 assets for each year

in our sample period 2001–2009. Table 1.1 lists the ticker symbols for each of the

stocks in our sample, which consist of the components of the DJIA in 2007.

Because we have 31 assets and 9 years of data, we ran 276 separate regressions.

Since there are approximately 250 trading days in a year and 77 pairs of adjacent

5-minute blocks in a day, a typical regression has 19250 (= 250 ∗ 77) observations.

Those regressions perform quite well. However, as demonstrated in EHLWZ (2012),

the performance of the regressions improves substantially by using the Heston

model to infer the presence of a jump component driving the volatility process in

addition to the Wiener component. On average our volatility jump filter detects

around 10 blocks per trading day that contain a volatility jump. When those

Table 1.1: Ticker symbols for the DJIA stocks used in EHLWZ (2012)

AA Alcoa AIG AIG AXP AmExpress
BA Boeing BAC BankAm C Citigroup

CAT Caterpillar CVX Chevron DD DuPont
DIS Disney GE Gen Elec GM GenMotors
HD Home Depot HPQ Hewlett Pk IBM IBM

INTC Intel JNJ JohnsJohns JPM JPMorgChase
KO CocaCola MCD McDonalds MMM 3M

MRK Merck MSFT Microsoft PFE Pfizer
PG ProctGamb T AT&T UTX UnitedTech
VZ Verizon WMT Walmart XOM ExxonMobil
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blocks are excluded from the regression, as our specification dictates they should

be, the precision of the estimates of mean reversion improves substantially and the

coefficients vary much less over time and across assets. When the blocks containing

volatility jumps are excluded, the typical annual regression for an asset has around

16250 observations. The filtering procedure to detect volatility jumps is discussed

in detail in EHLWZ (2012) and more briefly in Section 2.5 of the next chapter.

Table 1.2 reports the OLS regression estimate of the mean-reversion parameter

β of the Heston ([Hes93]) model of the quadratic variation process for each of our

assets, pooling the five-minute realized variation estimates for all of the trading days

in a year. Table 1.3 reports the corresponding t-statistic for each mean-reversion

parameter estimate. In the regression, the change in slope from one interval to the

next is the dependent variable and the gap between ζ̄ and the slope estimate in the

first of the pair of intervals is the independent variable. For example, for AT&T

in 2001, β = 0.77: 77% of the gap is eliminated in 5 minutes. The regression is

run without a constant term, and the median slope in the settled region (blocks 15

though 69) is used to estimate the asymptotic mean of the Heston process. The

final row gives the column medians.

When we pool the observations for trading days into an annual sample, we do

not treat the final block of one trading day as “adjacent” to the initial block of

the following trading day. The parameters of the Heston model within a trading

day are treated as measurable with respect to the initial information set F0 for

that trading day, but the initial information set is not the trivial σ-algebra {∅,Ω}.
Consequently, parameters such as the mean reversion parameter β, the asymptotic

mean ζ̄ or the value ζ0 can vary randomly from one day to the next. Our results

suggest that β may be nearly constant across days, but ζ̄ and ζ0 clearly do vary

across assets and over time.

The results almost speak for themselves. There are 279 separate estimates of
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Table 1.2: Estimates of mean reversion: 300-second blocks

2001 2002 2003 2004 2005 2006 2007 2008 2009
AA 0.87 0.87 0.82 0.92 0.66 0.69 0.70 0.90 0.88
AIG 0.73 0.83 0.83 0.37 0.64 0.72 0.93 0.99 0.60
AXP 0.82 0.80 0.85 0.88 0.76 0.88 0.63 0.98 1.00
BA 0.89 0.79 0.77 0.72 0.71 0.67 0.97 0.84 0.75

BAC 0.88 0.80 0.82 0.87 0.82 0.87 0.83 0.99 1.00
C 0.73 0.84 0.84 0.88 0.80 0.87 0.91 0.99 0.94

CAT 0.85 0.88 0.78 0.65 0.83 0.79 0.91 0.95 0.74
CVX 0.84 0.79 0.91 0.81 0.97 0.80 0.71 0.65 0.79
DD 0.84 0.83 0.99 0.82 0.73 0.71 0.76 0.80 0.84
DIS 0.77 0.81 0.78 0.78 0.81 0.77 0.65 0.80 0.81
GE 0.62 0.71 0.96 0.97 0.86 0.98 0.90 0.99 0.98
GM 0.86 0.91 0.87 0.88 0.74 0.73 0.95 0.86 0.75
HD 0.75 0.82 0.73 0.71 0.75 0.72 0.93 0.86 0.92

HPQ 0.71 0.81 0.78 0.75 0.77 0.79 0.73 0.86 0.78
IBM 0.74 0.78 0.76 0.75 0.69 0.77 0.70 0.82 0.96

INTC 0.80 0.87 0.91 0.93 0.83 0.83 0.80 0.91 0.84
JNJ 0.83 0.63 0.79 0.93 0.81 0.82 0.73 0.84 0.85
JPM 0.77 0.78 0.76 0.79 0.78 0.89 0.83 0.65 0.95
KO 0.86 0.96 0.91 0.79 0.78 0.89 0.87 0.75 0.85

MCD 0.80 0.77 0.75 0.89 0.83 0.79 0.70 0.84 0.99
MMM 0.90 0.82 0.77 0.88 0.72 0.79 0.76 0.66 0.77
MRK 0.77 0.85 0.84 0.83 0.70 0.88 0.77 0.79 0.90
MSFT 0.95 0.90 0.92 0.94 0.91 0.88 0.84 0.92 0.77
PFE 0.74 0.87 0.94 0.78 0.72 0.86 0.53 0.93 0.94
PG 0.77 0.82 0.82 0.85 0.89 0.83 0.62 0.73 0.98
T 0.77 0.91 0.82 0.92 0.85 0.81 0.81 0.92 0.88

UTX 0.80 0.82 0.80 0.75 0.72 0.66 0.75 0.84 0.82
VZ 0.80 0.83 0.91 0.81 0.75 0.78 0.73 0.85 0.95

WMT 0.97 0.84 0.87 0.77 0.89 0.80 0.81 0.73 0.89
XOM 0.81 0.79 0.76 0.91 0.83 0.89 0.72 0.87 0.98
SPY 0.76 0.60 0.68 0.81 0.71 0.90 0.88 0.68 0.98

Median 0.80 0.82 0.82 0.82 0.78 0.80 0.77 0.85 0.88
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Table 1.3: t-statistics for the mean reversion estimates: 300-second blocks

2001 2002 2003 2004 2005 2006 2007 2008 2009

AA 316.0 317.8 388.9 793.8 341.7 303.5 228.4 863.1 573.5
AIG 217.8 300.8 370.6 102.2 256.5 322.1 623.0 2573.3 117.0
AXP 266.2 244.5 365.7 382.4 295.0 514.5 205.9 1553.7 3324.5
BA 365.0 237.3 313.7 334.0 314.5 300.4 1118.7 507.0 440.3

BAC 291.9 266.5 393.4 461.4 412.0 498.9 491.8 1278.2 2891.1
C 181.1 306.5 364.6 452.1 346.6 454.4 781.6 1829.4 451.4

CAT 275.5 373.7 309.1 257.5 398.5 389.6 777.9 2013.6 436.0
CVX 286.7 200.1 516.1 383.3 920.7 347.6 231.6 265.3 360.2
DD 270.2 258.8 1558.0 351.4 286.3 293.7 337.0 497.7 541.3
DIS 316.9 301.3 328.7 336.3 428.2 373.3 360.5 422.8 476.2
GE 222.4 222.9 794.8 941.1 416.7 1089.9 686.0 2352.3 1227.0
GM 311.8 413.4 470.4 630.2 379.8 345.3 680.4 517.3 196.4
HD 277.9 307.9 347.2 299.5 339.0 342.7 694.2 544.2 665.5

HPQ 358.3 341.9 361.4 521.5 356.9 357.3 219.3 529.5 464.0
IBM 187.5 260.9 298.8 305.1 348.6 370.8 216.0 439.8 880.6

INTC 267.7 436.6 637.7 770.4 380.2 350.2 345.8 600.9 397.9
JNJ 258.4 211.2 327.5 604.1 357.7 427.7 331.4 471.4 575.5
JPM 225.4 283.5 316.7 353.5 303.8 501.5 368.1 319.8 776.2
KO 266.5 613.1 585.2 586.5 329.7 507.6 609.3 627.8 550.3

MCD 252.8 324.8 273.6 586.9 473.6 385.2 351.4 510.6 1568.8
MMM 334.9 231.4 265.5 533.3 416.1 343.8 384.5 408.0 436.4
MRK 204.9 293.8 419.7 489.1 218.2 563.7 656.7 534.2 728.8
MSFT 853.2 597.3 710.1 696.6 474.8 398.0 456.5 580.7 345.8
PFE 233.6 353.1 662.1 507.6 408.3 447.3 218.9 715.9 631.6
PG 199.0 239.4 283.1 636.0 681.5 481.9 315.0 379.0 1361.6
T 278.4 471.0 415.4 663.2 561.0 372.5 647.2 748.5 601.3

UTX 368.5 252.4 281.1 288.3 422.6 312.8 441.6 838.8 466.3
VZ 239.5 282.2 465.2 414.9 310.1 480.9 336.2 527.2 887.7

WMT 752.2 284.2 438.2 309.0 494.9 358.4 628.2 421.6 593.5
XOM 242.3 237.4 263.2 479.5 418.6 549.8 368.4 465.4 1175.5
SPY 575.1 154.3 211.4 240.4 178.8 351.5 1322.7 238.9 986.3

Median 270.2 284.2 365.7 461.4 379.8 373.3 384.5 529.5 575.5
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the mean-reversion parameter, one estimate for each combination of an asset and

a year. All of the estimates are highly significant. All t statistics are in 3 digits,

most well above 200. A few even reach four digits.

These results provide the baseline for the remaining two chapters of this disser-

tation. Impressive as these results are, they can be improved. I improve upon our

results in EHLWZ (2012) in several ways. The most important ways are (1) to

decrease the size of the blocks from 300 seconds (5 minutes) to 100 seconds, (2) to

handle more appropriately the issue of multiple transactions arriving in a single

second, and (3) to deal more effectively with the presence of anomalous prices.

I also change the sample period from 2001–2009 to 2007–2011. Eliminating

the first few years is dictated by the increase in resolution. Decreasing the size

of the blocks improves resolution from 78 blocks per day to 234 blocks to day,

but the number of sampled prices within each block falls. This decrease in the

sample size for the block estimates of realized variation has a potentially damaging

effect on the precision of our volatility estimates for each block. However, over

the period 2001-2011, trading volume has increased dramatically. As we will

see, for the period 2007 to 2011 the benefits of increased resolution much more

than compensate for the potential loss of precision of the block realized-variation

estimator.

1.8 Building a computational environment

Using high-frequency data on stock prices is a major conceptual challenge, similar

to the challenges faced in many disciplines as they become engulfed with massive

amounts of digitalized data. The challenge is not simply a matter of the cost of

data storage and appropriate software, but also the development of new tools and

modeling strategies appropriate to these new sources of data. Chapter 2 describes

the computational environment we have built, a process that took full advantage
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of my extensive background and experience as a computer scientist.

1.9 Improving the estimate of the Heston model

Chapter 3 presents the fruit of this effort to improve resolution, deal more effectively

with multiple transactions arriving per second and remove anomalous prices. Taking

as its baseline the results in EHLWZ (2012) that I have just reprised, Chapter 3

assesses the impact of the improvements made in this dissertation.
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CHAPTER 2

The Computational Environment

Development of appropriate computational environments is rapidly entering the

forefront of academic research. The world is awash with a flood of digitalized

information. Even in the humanities, access to digitalized manuscripts, articles,

books and images allows for an approach to literary, historical and other sorts of

humanistic research and discourse that seems qualitatively as well as quantitatively

new. Specialists in a narrowly defined fields living in dispersed areas of the globe

can set up specialized web sites that function both as repositories of digitalized

research material and analysis and as a platform for communication without the

need for physical proximity.

Of course, it is the physical and biological sciences where this process has

progressed most rapidly. Output from the recently opened CERN hadron collider

generates streams of digitalized images of particle collisions that in a few minutes

produces much more information than we have available in the TaQ database

from 1992 to the present. Molecular biologists must now cope with vast amounts

of information generated by the sequencing of the human genome as well as the

genomes of many other species. As is beginning to happen in the humanities,

much of this new style of academic discourse involves the joint efforts of teams

of researchers, and these teams interact cooperately as well as competitively in

creating joint systems of shared data and shared tools of analysis.

In our own small way my coauthors and I have been engaged in a similar venture.

In this chapter I will provide an overview of the computational environment we have
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built, illustrated by specific challenges we faced and how those challenges were met.

Fortunately, I brought to this endeavor an extensive academic background and

professional experience in computer science. A much more detailed description of

the environment is available in my manuscript entitled “R programming techniques”

([Wha12]).

Our motivation in constructing this computational environment has been

pragmatic, the only way we could cope with what, by the standards of economics

or finance, is an enormous amount of data using hardware that is powerful yet

affordable and software that allows us to build upon a platform of analytical tools

(“software”) that has been developing for many years. The tools we have built

will, in turn, be shared with others in that research community.

The major software tools we use are the Python scripting language, the Linux

operating system, the R statistical environment and the TeX typesetting environ-

ment. All are available as open source software, produced and maintained by a

community of users and available at no cost. As economists we know, of course,

that nothing is really free, and the open source movement recognizes that. Users

are required to acknowledge their understanding of the rights and obligations

expected of them as users and expected to acknowledge use of the platforms.

In broad outline, here are the major challenges that we have faced and how we

have met them:

• Transferring the TaQ data from the WRDS website to our Linux server

and restructuring it in a form suitable for analysis using the R statistical

package. The WRDS website provides the TaQ data in a SAS format. SAS

is a venerable statistical package that has been around for many decades.

It excels in managing databases of many different kinds, but it shows its

age when it comes to modern statistical analysis. Until a few years ago,

WRDS organized the TaQ data by month: data for all of the transactions
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for a given stock for a given month could be downloaded as a single file.

Downloading all of the data for say IBM over the period 2001–2009 involved

separate requests for 108 files (9 years, 12 files per year). However, the

volume of trades became so heavy in recent years that monthly files were

too large for SAS to handle. WRDS switched to daily files, which require

250 or so separate “requests” to download the data for a single stock for a

single year. They also have been working backward in time to convert all

the earlier monthly files to the daily format. Our environment automates

the downloading process, using the Python scripting language to send the

request for downloads to WRDS and to manage receipt of the data files as

they arrive to our server.

Accessing and transforming the TaQ data

The WRDS website provides the TaQ data in a SAS format. SAS is a

venerable statistical package that has been around for many decades. It

excels in managing databases of many different kinds, but it shows its age

when it comes to modern statistical analysis. Until a few years ago, WRDS

organized the TaQ data by month: data for all of the transactions for a given

stock for a given month could be downloaded as a single file. Downloading all

of the data for say IBM over the period 2001–2009 involved separate requests

for 108 files (9 years, 12 files per year). However, the volume of trades became

so heavy in recent years that monthly files were too large for SAS to handle.

WRDS switched to daily files, which require 250 or so separate “requests” to

download the data for a single stock for a single year. Eventually WRDS

will convert all of the old monthly files to the daily format. Our environment

automates the downloading process, using the Python scripting language

to send the request for downloads to WRDS and to manage receipt and

processing of the data files as they arrive at our server.
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Once at our server, we convert the SAS files for each stock for each trading

day in our sample to a R data frame, a flexible data object that can then

be manipulated in R’s object-oriented programming environment. These

conversion programs recognize the condition codes that SAS assigns to

individual transactions, codes that determine whether a transaction should

be analyzed or instead has been flagged as suffering from a “condition” that

caused the trade to be reversed or canceled. The R program selects the

transactions suitable for analysis, preserves the data relevant for further

analysis (the time of the transaction within the trading day, price, number

of shares traded, and the exchange on which the transaction occurred) and

creates a data frame containing that data.

Transferring the data from WRDS to UCLA and creating the R data frame

is by far the most time-consuming step in the analysis, requiring the better

part of a day to transfer the daily transactions data for a single stock for

the period 2007–2011 and create 1250 or so data frames (one for each of the

roughly 250 or so trading days in a year). Recently we upgraded to a 12-core

server, which greatly speeds up this process. In Section 2.1 I describe in

more detail the procedures uses to transfer the TaQ data from WRDS and

restructure it along the lines discussed above.

Reducing the data

The sample period for EHLWZ (2012) is 2001–2009. In the early years of

this period, trade volume was relatively low. This thesis focuses on the

period 2007–2011, where trade volume is much higher. As a consequence of

increased volume, there are many instances when several transactions are

recorded at the same second of the trading day. In EHLWZ (2012) we ignored

this problem, simply choosing the “last” transaction associated with a given

second. However, that means that the data we used in EHLWZ (2012) cannot
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be reproduced exactly by other researchers using the TaQ data because the

“last” transaction will depend on how they sort the data. In Section 2.2 we

address this problem, describing the program we use to reduce our daily data

frames to data frames that aggregate all transactions for a particular second

that trade at the same price. This innocuous step reduces the size of our

data frames by an order of magnitude, greatly reducing storage requirements

and simplifying data analysis. The data frame of reduced transactions can

be replicated exactly by other researchers using the TaQ data. Using the

reduced transactions data frame, we then construct a new data frame by

using all of the reduced transactions for a given second to construct a data

frame with one observation per active second.1 The price associated with

each active second is the price of the median share in the reduced transaction

date frame.2

Remarkably, despite the heavy transaction volume in our sample period

2007–2011, the proportion of seconds during a trading day for which there is

no transaction is quite high. This surprised us. The impact of high-frequency

traders has been the subject of much debate in the press in the past few years.

These high-speed trades are actually executed by computer algorithms (not

people) co-located within a few meters of an exchange in order to minimize

the distance electrons or photons have to travel to send or receive a message

from another computer algorithm. News reports claim that 2/3 of all trades

on US exchanges are now conducted this way. These algorithms routinely

buy and then sell the same shares within 150 milliseconds. We suspect

this is directly related to what we find in our data: trading volume has

become quite concentrated in less than one-half of the 23,400 one-second

intervals that make up the trading day, with the remaining intervals having

1We refer to seconds for which there is at least one reduced transaction as active seconds.
2More precisely, the median-share price for an active second is the median of the distribution

of price per share for that second with each share of stock traded in that second treated as a
separate observation.
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no transactions. The reduced data sets we construct potentially provide a

way to assess the impact of high-frequency trading by humans with reaction

times measured on the human scale of seconds rather than the scale of

milliseconds or microseconds that is the province of the computer algorithm.

Trimming the data

EHLWZ (2012) does almost no filtering of the price data, eliminating at most

20 or so prices for a stock for a year’s worth of transactions data. Nevertheless,

the estimates of the Heston model performed quite well. However, this thesis

takes a more systematic approach to trimming the data, creating a statistic

(which I call the influence statistic) that measures the influence (marginal

product) of an transaction on our estimate of realized variation for the

block in which that transaction appears. I use this influence statistic to

remove observations in a systematic way, improving the quality of the data.

Section 2.3 discusses this procedure.

Estimating intraday volatility

Section 2.4 describes the algorithms used to (1) construct estimates of realized

variation for every 300-second or 100-second interval of the trading day for

each of our stocks over the period 2007–2011 and (2) assemble these estimates

into data frames that can be accessed by our OLS regression routines.

Identifying volatility jumps

In Section 2.5 I describe how we implement the filters we use to distinguish

blocks that contain a volatility jump from those that do not. These filters

play a crucial role in EHLWZ (2012) and in Chapter 3 of this dissertation.
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2.1 Accessing and transforming the TaQ data

In EHLWZ (2012) our analysis focused on the 30 stocks that were components of

the Dow Jones Industrial Average in 2007 and an exchange-traded fund (SPY) that

tracks the S&P 500. A primary focus of this dissertation is increasing the resolution

of our quadratic variation estimates (i.e., decreasing the block size from 300 to

100 seconds). Trading volume increased rapidly from 2001 to 2009, the period

analyzed in EHLWZ (2012). Trading volume in the early years is probably too

low to yield realized estimates of realized variation for 100-second blocks. While

trading volumes vary from one Dow stock to another, for a relatively low-volume

stock such as Alcoa 600 transactions a day would be typical in 2001, yielding

perhaps 3 transactions on average in each of the 234 100-second blocks of the

trading day. For that reason, my thesis starts in 2007.

The improved computational environment discussed in this chapter allows me

to cope more effectively with the high trading volumes in later years. For that

reason, I extend the analysis two years, yielding an analysis period 2007–2011.

Some of the stocks that were in the DJIA in 2007 are no longer there, and other

stocks have been added in their place. Table 2.1 lists the stocks in the Dow

Industrials that are used in my analysis.

Table 2.1: Ticker Symbols for the Dow Industrials

AA Alcoa AXP AmExpress BA Boeing
BAC BankAm CAT Caterpillar CSCO Cisco
CVX Chevron DD DuPont DIS Disney
GE Gen Elec HD Home Depot HPQ Hewlett Packard
IBM IBM INTC Intel JNJ JohnsJohns
JPM JPMorgChase KFT Kraft KO Coca-Cola
MCD McDonalds MMM 3M MRK Merck
MSFT Microsoft PFE Pfizer PG ProctGamb

T AT&T TRV Traveler’s Companies UTX UnitedTech
VZ Verizon WMT WalMart XOM ExxonMobil
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Although C (Citigroup) is no longer part of the Dow-30, it is still actively and

publicly traded as of the time of this writing. Citigroup was never delisted from

any major exchange. It has been publicly traded throughout the period 2007–2011.

We will also include it in our analysis. On the other hand, AIG and GM, included

in our earlier analysis, were not always publicly traded in this period, and they

are excluded from the analysis.

The TaQ (Trade and Quote) database contains a record of all officially and

publicly recorded stock transactions in the United States. More specifically, TaQ

contains intraday trades and quotes for securities listed on the New York Stock

Exchange, the American Stock Exchange, the Nasdaq national market system,

regional exchanges, as well as over-the-counter trades. We use a version of the TaQ

database provided by Wharton Research Data Services (WRDS). In the version

we use, the time of each transaction (called the time stamp) is recorded to the

nearest second. Very recently, WRDS has begun providing a version of the data

with times recorded to the nearest millisecond, but that is not yet available to

researchers at UCLA, At WRDS, the TaQ data sets are stored as SAS data sets.

The trading day is the central focus of our research. In the R statistical envi-

ronment, the transactions data becomes the fundamental data object, represented

in R as a data frame. Here are some sample lines from the TaQ data for SPY on

2011.05.18 in its native SAS format, ordered by the time stamp (the column

labeled TIME).
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SYMBOL DATE TIME PRICE SIZE G127 CORR COND EX

1 SPY 18765 14414 133.30 100 0 0 P

2 SPY 18765 14414 133.35 200 0 0 P

3 SPY 18765 14544 133.47 100 0 0 F P

4 SPY 18765 14544 133.47 100 0 0 F P

5 SPY 18765 14544 133.62 300 0 0 F P

5100 SPY 18765 34198 133.26 100 0 0 T

5101 SPY 18765 34198 133.26 100 0 0 F Z

5102 SPY 18765 34199 133.25 100 0 0 T

5103 SPY 18765 34199 133.25 100 0 0 F T

5104 SPY 18765 34199 133.24 100 0 0 F T

5105 SPY 18765 34200 133.24 400 0 0 T

5106 SPY 18765 34200 133.24 200 0 0 T

5107 SPY 18765 34200 133.24 100 0 0 T

5108 SPY 18765 34200 133.24 600 0 0 T

5109 SPY 18765 34200 133.24 400 0 0 T

153433 SPY 18765 45624 133.8636 55000 0 8 @ M

183215 SPY 18765 49137 133.7727 110000 0 12 D

189280 SPY 18765 50003 133.8636 55000 0 10 @ M

318452 SPY 18765 61936 134.0025 1000000 0 12 D

The numbers on the left, the row numbers in the original TaQ data set, have

no relevance for us. The first variable, SYMBOL, is the ticker symbol of the asset,

in this case the exchange traded fund SPY. The next four variables describe the

date, time, price, and the number of shares of a transaction. They are followed by

condition codes and a variable identifying the exchange on which the transaction

occurred. More specifically,

• DATE is given in the SAS date format which is the number of days since the

beginning of 1960. In particular, May 18, 2011 is 18765 days after December

31, 1959.
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• TIME is the number of seconds after midnight. For example, 9:30:00 AM (the

start of the trading day) is 34200 seconds past midnight. From the listing, we

can see that on May 18, 2011, 5104 transactions in SPY occurred before the

market opened at 9:30:00 AM. We consider only trades during the trading

day, between 9:30:00 AM (TIME = 34200) and 4:00:00 PM (TIME = 57600).

• PRICE and SIZE are the transaction price and the number of shares traded,

respectively. If either PRICE or SIZE is non-positive (which rarely happens),

we delete that transaction. Prices are quoted to within a subpenny, one

hundredth of a penny.

The next three variables are “condition” codes, flags indicating problems with

transactions.

• G127 is a trade attribute, indicating the reason for a stopped trade. (It is

the combined “G”, rule 127, and stopped trade indicator). We delete trades

stopped for any reason, flagging trades that are replaced in the TaQ data set

by a “corrected” trade. (Specifically we delete all trades with a G127 value

not equal to 0). No rows in the listing are affected.

• CORR is the correction indicator. We delete trades which have a CORR indicator

which is strictly greater than 2. In the listing, we filter out the last 4 rows.

• COND is the sales condition code. We delete trades which have a COND code

which is not blank and which is not a member of the set {@, *, E, F}. No

rows in the listing are affected.

The final variable describes the exchange code :

• EX codes the exchange that executed the trade. In the listing, 5 rows

correspond to transactions on P (NYSE Arca), 9 on T (NASDAQ), 2 on M
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(Chicago), and 1 on Z (BATS). Note that none are on the NYSE (N) or on

AMEX (A)! Over the period 2001-2011 the fraction of trades for DJIA stocks

listed on the NYSE that were traded on the NYSE fell from over 90% in

2001 to less than 10% by 2009.

Although many statistical software packages (SAS, EViews, Stata, SPSS) could

deal with this data, several features of the data set pose difficulties for most

of these environments. Our sampled prices are irregularly spaced: some of the

23401 time stamps that could appear during the trading day do not appear, while

other time stamps may have several transactions. Inactive time stamps (seconds

without transactions) pose problems for techniques such as linear regressions.

Linear interpolation can be used to patch this difficulty, but we avoid this problem

entirely.

R is an open source statistical programming environment which offers the

flexibility to conveniently handle these problems. Many features of R facilitate

processing the TaQ database. In particular, the data frame is a natural represen-

tation of TaQ data. It is a two-dimensional matrix with named columns.3 Each

row of the data frame for a trading day represents a transaction and each column

represents a transaction attribute such as the execution time, price, volume, or

exchange.

The following sample R code imposes our initial filtering of the raw TaQ data

set. In this code ct.data is the name of the data frame that holds the raw TaQ

data, the input to the program. The name of the data frame produced by this code

is price.data. This data frame object contains the transactions not excluded by

the condition codes with variables such as time converted from SAS format to a

3Rows also have names, which are usually ignored. By default, the row names of a R data
frame are the strings associated with the positive integers between 1 and the number of rows.
(“1”,“2”, . . . ,“10” is a typical example of a set of row names). R data frames are quite similar
to SQL database tables.
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more convenient format for our analysis.4.

library(foreign)

ct.data = read.xport("ct.SPY .20110518. xpt")

## 34200 corresponds to 9:30:00

## 57600 corresponds to 16:00:00

min.valid.second = 34200

max.valid.second = 57600

valid.COND.codes = c("","@","*","E","F")

price.data = subset(ct.data ,

(CORR <= 2) & (COND %in% valid.COND.codes) &

(TIME >= min.valid.second) & (TIME <= max.valid.second) &

(PRICE > 0) & (SIZE > 0))

For the sample of rows listed above, only the rows which have row numbers between

5105 and 5109 remain after this initial filtering.

The filtering program not only implements the filter but also generates aggregate

statistics about the processed data. Figure 2.1 plots the median number of shares

traded for each year from 2007 to 2011 for our set of stocks and the SPY ETF. The

entries report trade volume (in millions of shares) for a specific stock in a given

year. For example, the median number of shares traded per day in IBM during the

year 2009 is approximately 6.6 million. Note that the vertical axis is shown on a

logarithmic scale.

We emphasize three of the financial companies and SPY in the graph. Note that

• The median daily volumes in 2011 for BAC (148.9 million) and for SPY (147.4

million) were almost equal.

4The subset operator selects all rows of a data frame which satisfy a boolean condition and
returns a data frame. This is quite similar to the select statement in SQL.
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Figure 2.1: Median Daily Volume in millions of shares. The vertical axis is plotted
on a log scale.

• C (Citigroup) achieved median volumes of 340.7 million shares in 2009 and

440.9 million shares in 2010.

For most of our companies, median daily volume peaked in 2009 or 2010, most

notably for the companies which had the greatest exposure to the financial sector.5

We have emphasized the median daily trading volume for BAC, C, JPM, and SPY.

It is remarkable that the median volumes for BAC (Bank of America) and C were

comparable or even exceeded the median volumes for SPY in 2009 and 2010. By

5The companies most exposed to financial sector risk were AXP (American Express), BAC
(Bank of America), C (Citigroup), GE (General Electric), JPM (JP Morgan), and TRV (Traveler’s).
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2011 SPY was back near the top in median daily volume among our sample of

stocks.

2.2 Reducing the Data

In the early years of the sample period 2001–2009 examined in EHLWZ (2012),

few time stamps were associated with more than one trade. In the sample period

2007–2009 that is the focus of this dissertation, it is commonplace to find time

stamps with more than one trade. In EHLWZ (2012) we reduced our data set to

at most one transaction per time stamp by sorting the file by time stamp and

selecting the “last” trade for each time stamp.

While this procedure is reasonable, it is not ideal: other researchers will not be

able to replicate our results exactly. If they download the WRDS data, do their

own sorting by time stamp and select the last trade for each time stamp, they will

almost certainly end up with a data set that differs from ours. Our ideal, which

we attain in the analysis presented here, is to create derived data sets that can be

replicated exactly from the WRDS website (or any other site that provides the

TaQ data) using our R programs.

This could be accomplished in many ways. The procedure we adopt here is

to reduce the data frames created by the programs described in Section 2.1 by

constructing a data frame with one reduced transaction for each active time stamp.

We order transactions lexicographically, first by (increasing) TIME of transaction

and then by (increasing) PRICE. Then we aggregate all transactions with the same

time and price by summing the shares traded. Finally, if a particular time stamp

has reduced trades with different prices, we construct a single transaction with

price equal to the price of the median share for that time stamp. We retain two

measures of share volume for that transaction, the total shares traded and the

shares traded at the price for the median share.
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This is the R code that orders transactions lexicographically, first by increasing

TIME and then by increasing PRICE:

price.data[["NUMBER.TRANSACTIONS"]] = 1

unsorted.reduced.data =

with(price.data ,

aggregate(cbind(SIZE , NUMBER.TRANSACTIONS)

∼ TIME + PRICE , FUN = sum))

sorted.reduced.data = with(unsorted.reduced.data ,

unsorted.reduced.data[order(TIME , PRICE ),])

The first statement creates a new column NUMBER.TRANSACTIONS, initialized to 1

for all rows. The second statement applies the sum function to aggregate SIZE

(the number of shares traded) and NUMBER.TRANSACTIONS for all sets of rows with

the same TIME and PRICE.6. Finally, the third statement orders the data frame

first by increasing TIME and then by increasing PRICE.

We display the first few lines for the reduced data set for SPY on 2011.05.18

when the program is applied to the snippet of WRDS data we used for illustration

in Section 2.1 (we show only the most relevant columns):

TIME PRICE SIZE NUMBER.TRANSACTIONS

34200 133.2400 14629 76

34200 133.2450 1200 7

34200 133.2490 200 1

34200 133.2500 48971 117

34200 133.2532 200 1

34200 133.2600 305519 43

34201 133.2400 2195 10

34201 133.2450 300 3

6The with operator allows us to refer to the column names of price.data simply by their
names. Absent the with operator, we would need to refer to price.data[["SIZE"]] rather
than the simpler expression SIZE. The use of cbind (“column bind”) allows us to aggregate both
SIZE and NUMBER.TRANSACTIONS “simultaneously” in a single statement
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In this example, there are 6 distinct prices with the 34200 time stamp. There

were 43 transactions at the share price of $133.26 with a total share volume of

305,519.

We next associate a single price with each active time stamp by computing the

price of the median share. In the data just exhibited, the median-share price

associated with time stamp 34200 is $133.26.7 Hansen and Lunde ([HL06a]) use

the volume-weighted average. They write

Multiple transaction prices often have the same time stamp. The

various transaction prices are all proxies for the (same) latent efficient

price at that particular point in time. Although it is unclear how to

best handle such observations, a simple and natural estimate of the

efficient price (at time t) is the average transaction price (at time t).

This was the approach that we took.

Applying an estimator to the raw data, as AMZ [Ait-Sahalia, Myk-

land, Zhang [AMZ05]] did, may give rise to the problem that the

resulting estimate depends on the ordering of the observations with the

same time stamp. As AMZ acknowledge, there is no reason to trust

the ordering of such observations, and it is not immediately clear to us

how sensitive various estimators, including the subsample estimator,

are to distorted ordering of the observations. In any case, we argue

that the aggregation of data by taking averages of prices with the same

time stamp improves the precision of many estimators of IV. ([HL06b])

One advantage to using the median-share price rather than the volume-weighted

price is that there is almost always a transaction with the median-share price. An

exception will occur only for a time stamp for which there is an equal number

7Note that the median-share price is not the median of the prices for the six reduced
transactions.
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of shares at or below one price and at or above an adjacent price in the lexi-

cographically ordered data set with the same time stamp, which happens very

rarely. On the other hand, if a time stamp in the reduced data set has multiple

prices, the volume-weighted average will rarely correspond to the price of an actual

transaction (in particular, the price will not be expressed exactly in pennies or

subpennies). The median-share price is also a more robust measure of the typical

price associated with a time stamp if some prices are extreme outliers.8

The following R code computes the share-weighted median price for each value

of TIME with at least one transaction.

library(plyr)

library(Hmisc)

weighted.median.price.df =

ddply(sorted.reduced.data , ∼TIME ,
function(df)

as.double(wtd.quantile(df$PRICE , df$SIZE ,

probs = c(0.5))))

names(weighted.median.price.df)[

names(weighted.median.price.df) == "V1"] =

"VW_MEDIAN"

The data frame containing reduced transactions is called sorted.reduced.data.

The first two lines of this code load R libraries: the plyr library provides the

ddply function, and the Hmisc library provides the wtd.quantile function. This

8Hansen and Lunde ([HL06a]) use transactions only from a single exchange, whereas we use
transactions from all the exchanges. For our initial processing, we use all of the TaQ data which
passes our filters, regardless of the exchange. Another difference is that Hansen and Lunde
later use a bid-ask quote filter for prices. Specifically, they discard any prices which are strictly
greater than 1.5 times the bid-ask spread away from the midpoint (the average of the bid and
the ask quotes). We use a filter which is based on increments to quadratic variation, which we
will discuss in Section 2.3.
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is a good illustration of how open source facilitates sharing of tools created by

many different researchers.

In the third statement, the ddply operator splits the sorted.reduced.data

data frame into separate data frames by distinct values of TIME.9 The ddply

operator then applies the wtd.quantile function to every such data frame (listed

as df above). (The values are given by PRICE, and the weights used for the median

computation is given by SIZE). ddply stores the value of the weighted median into

a column called V1. The fourth statement renames this column (V1) to VW_MEDIAN.

Here are some sample lines from our usual example, SPY on 2011.05.18. (We

show only the 2 most relevant columns)

TIME VW_MEDIAN

34200 133.26

34201 133.25

34202 133.25

34203 133.26

34204 133.26

How have the increased trading volumes of recent years affected the number of

prices within a second? There are differences between the financial sector stocks

(and we include SPY) and the rest of our sample of stocks. Figure 2.2 plots the

relative frequencies of prices within seconds.

Once again we can add features to our program that report the effect of the code,

allowing us to access (for example) how increasing trading volume in recent years

has affected the incidence of multiple prices associated with a time stamp. There

are differences between the financial sector stocks (and SPY) and the rest of our

sample of stocks. Figure 2.2 plots the relative frequencies of prices within seconds

for all of our stocks except for the three financial stocks and SPY. Remarkably,

9There are 23401 time stamps (in our case, seconds) during a trading day. In our example
day with SPY on 2011.05.18, 18228 time stamps were active seconds, time stamps associated with
at least one transaction. The ddply operator splits the original data frame into 18228 separate
data frames, one for each active time stamp.
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Figure 2.2: Relative Frequency of distinct prices per second (non-financials)

despite trading volumes that typically exceed (by a large margin) one transaction

per second on average, approximately 60% of seconds (in 2007, 2010, and 2011)

had no transaction at any price: i.e, they were inactive. We contrast this to the

frequency tables for the financial stocks and SPY shown in Figure 2.3 where for

most years less than one-third of seconds were inactive. (The fraction of inactive

seconds dropped to 0.23 in 2008 but has since increased to nearly 0.30.)
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Figure 2.3: Relative Frequency of distinct prices per second for the financial stocks
(BAC, C, JPM, and SPY)
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Table 2.2: Median Daily Reduced Prices (×10−3), 2007-2011

2007 2008 2009 2010 2011
AA 11.80 17.78 16.62 13.63 13.76
AXP 10.34 19.77 17.09 11.92 10.68
BA 10.97 15.69 12.47 10.42 10.21
BAC 14.79 32.69 44.32 34.84 32.10
C 17.99 30.38 33.67 39.33 32.31
CAT 11.05 16.19 18.44 13.74 18.52
CSCO 14.10 15.16 15.10 16.71 21.95
CVX 15.80 25.12 19.12 14.55 15.97
DD 8.00 13.05 11.63 9.70 10.55
DIS 9.22 12.95 11.93 10.83 10.77
GE 16.38 25.27 31.19 24.12 22.54
HD 12.68 16.68 13.78 12.07 10.83
HPQ 12.32 18.41 17.20 14.96 15.26
IBM 12.97 19.58 17.13 13.20 12.97
INTC 13.14 14.25 16.12 18.50 18.70
JNJ 12.38 15.50 16.31 13.34 14.15
JPM 13.65 32.15 30.63 22.40 21.75
KFT 8.77 11.16 10.99 9.73 9.25
KO 9.91 15.05 13.19 11.24 10.92
MCD 8.84 15.83 14.99 10.27 10.98
MMM 7.85 11.66 10.59 8.78 8.63
MRK 11.68 16.71 14.80 12.53 12.70
MSFT 13.60 17.96 17.81 18.66 19.89
PFE 14.37 17.53 19.85 19.31 18.34
PG 11.66 17.28 17.59 12.26 11.75
T 14.32 19.83 18.65 16.89 17.52
TRV 5.41 10.26 11.44 7.60 7.16
UTX 9.13 13.01 11.88 9.02 9.28
WMT 13.19 21.35 18.52 13.07 13.14
VZ 10.75 16.33 16.06 15.19 14.45
XOM 22.49 31.46 24.43 19.07 20.29
SPY 23.46 41.38 40.82 39.10 40.15
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Table 2.3: Median Active Seconds (×10−3), 2007-2011

2007 2008 2009 2010 2011
AA 9.03 11.94 11.35 9.24 9.10
AXP 7.93 12.08 11.02 8.16 7.31
BA 7.89 9.86 8.39 6.91 6.74
BAC 11.38 17.97 19.86 16.87 16.02
C 13.09 17.78 18.19 19.55 16.66
CAT 8.06 10.42 11.26 8.61 9.90
CSCO 10.98 11.14 10.61 10.57 13.06
CVX 10.92 13.56 11.39 9.28 9.47
DD 6.38 9.33 8.29 6.97 7.36
DIS 7.87 10.00 8.85 7.83 7.55
GE 12.56 16.13 16.85 13.96 13.25
HD 10.04 11.73 9.79 8.60 7.60
HPQ 9.65 12.40 11.44 10.07 10.16
IBM 9.00 11.03 9.90 8.19 7.52
INTC 10.48 10.66 11.07 11.52 11.72
JNJ 9.73 11.11 11.08 9.04 9.40
JPM 10.54 17.01 16.33 13.04 12.71
KFT 7.29 8.82 8.16 7.01 6.64
KO 8.19 10.91 9.42 7.91 7.59
MCD 7.40 10.71 10.08 7.26 7.62
MMM 6.08 8.04 7.18 5.98 5.70
MRK 9.15 11.64 10.32 8.60 8.57
MSFT 10.74 12.52 11.99 11.60 12.03
PFE 11.54 12.76 13.31 12.09 11.66
PG 9.05 11.70 11.41 8.59 8.09
T 11.11 13.59 12.49 10.96 11.14
TRV 4.63 7.31 8.03 5.70 5.26
UTX 7.01 9.01 8.12 6.30 6.30
WMT 10.24 13.69 12.04 9.18 8.86
VZ 8.86 11.51 11.10 9.94 9.53
XOM 14.18 16.25 14.16 11.78 11.89
SPY 15.24 19.36 19.31 18.72 18.89
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2.3 Trimming the data

Data reduction yields a collection of median-share prices, one for each active time

stamp, which we use to compute realized variation. Recall equation 1.2 from

Chapter 1:

RVG
N

[τi−1,τi]
=

∑

tj∈G∩(τi−1,τi]

(∆Xtj)
2 (2.1)

This is the classic realized variation estimator over block i if prices are sampled

uniformly over time. If prices are sampled once a second, it is the sum of squared

log returns contained in the interval [τi−1, τi]. In Chapter 1 we assumed that prices

could be observed every second, but noted that realized variation does not require

the sampling times to be uniformly spaced. Here we take advantage of that fact,

taking the sum over the median-share prices for the active seconds in the block.

Our focus in this section is on prices that have a large effect on our estimate

of realized variation for a block. To illustrate, we examine the price and realized-

variation processes for SPY on 2011.05.18. Figure 2.4 plots the median-share

prices and the associated realized-variation process constructed from those prices.

The value of the realized-variation process at time t is the sum of squared log

returns for the median-share price process up to time t.

We can see several instances in which the price process seems erratic, and the

realized variation process increases by an unusual amount at the same time. The

largest increase to realized variation results from a single median-share price at

10:41:37 AM associated with the time stamp 39487. Figure 2.5 provides a closer

look at these processes with a 5-minute local window including that time stamp.

Notice that the realized variation experiences two large jumps in a row. This is

the characteristic appearance of realized variation when an outlier price is present.

We list a portion of the data frame containing the median-share prices for the

active seconds and the reduced transaction date frame in the vicinity of time stamp
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Figure 2.4: Reduced price and RV processes for SPY on 2011.05.18
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39487:

TIME Price RV

38490 133.7300 0.2774447

38491 133.7200 0.2775007

38492 133.7200 0.2775007

38493 133.7000 0.2777244

38494 133.7100 0.2777803

38495 133.7100 0.2777803

38497 133.4167 0.3260029

38498 133.7100 0.3742254

38499 133.7100 0.3742254

38500 133.7100 0.3742254

38501 133.7100 0.3742254

TIME PRICE SIZE NUMBER.TRANSACTIONS

38494 133.7000 500 5

38494 133.7100 9053 40

38494 133.7150 200 2

38494 133.7200 3000 16

38495 133.7100 100 1

38497 133.4167 60000 1

38498 133.7000 19002 23

38498 133.7100 25393 102

38498 133.7150 100 1

38498 133.7200 18400 79

38498 133.7300 2300 16

A single trade of 60000 shares was executed at the price of $133.4167, while

the other prices in the vicinity had prices between $133.70 and $133.73. The trade

was quite large (60000 shares), so a large discount relative to neighboring prices is

not surprising.

We wish to filter out prices such as this which have a very large impact on

realized variation.10 We will create an influence statistic for every price observation

10There are two possibilities for such transactions. Some are data errors that were not caught
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that measures the extra increment to the estimate of realized variation caused

by that price. If the influence of a reduced price is too large, we will delete the

offending price and compute a new one for that time stamp.

To simplify notation, we temporarily denote Xtj as Xj and the realized volatility

estimator for the block [τi−1, τi] that contains Xj as RVG
N

i . We define the influence

statistic of Xj as

Influencej := RVG
N

i −RV
GN\{Xj}
i

=





(Xj+1 −Xj)
2 + (Xj −Xj−1)2 − (Xj+1 −Xj−1)2 if t0 < tj < tN ;

(Xτj −X0)2, if tj = t0;

(XN −XN−1)2, if tj = tN .

This is the marginal contribution of Xj to the realized variation of the block to

which Xj belongs.

Consider an interior index tj , t0 < tj < tN , and examine Influencej . To simplify

notation still further, let a := Xj+1 −Xj and b := Xj −Xj−1. As a consequence,

Xj+1 −Xj−1 = (Xj+1 −Xj) + (Xj −Xj−1) = a+ b).

Influencej = (Xj+1 −Xj︸ ︷︷ ︸
=:a

)2 + (Xj −Xj−1︸ ︷︷ ︸
=:b

)2 − (Xj+1 −Xj−1︸ ︷︷ ︸
=a+b

)2

= a2 + b2 − (a+ b)2

= −2ab

= −2(Xj+1 −Xj)(Xj −Xj−1)

= −2(∆Xj+1∆Xj)

= −2(Xtj+1
−Xtj)(Xtj −Xtj−1

)

by the TaQ correction codes. Others are extremely large trades, which have special prices quite
different from the adjacent prices. We will see circumstantial evidence later in this section that
our example day of SPY on 2011.05.18 has several instances of this phenomenon.
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Observe

• This last expression is exactly −2 times the (signed) bipower variation of

Xtj .

• The influence is 0 if Xtj = Xtj−1
or Xtj = Xtj+1

.

• The influence is negative if Xtj−1
< Xtj < Xtj+1

or Xtj+1
< Xtj < Xtj−1

.

• The influence is positive if Xi < min{Xi−1, Xi+1} or Xi > max{Xi−1, Xi+1}.

Our filter is based on this influence statistic. An outlier price has a large,

positive influence. A median-share price is flagged if its influence exceeds 0.20 of

the RV of a window of 201 observations centered on Xtj or if its influence exceeds

0.05 of the total RV for the day. If the price is greater than both the immediately

preceding median-share price and the median-share price that immediately follows,

we delete the maximum reduced-price of that second (and recompute the median

share price). We also delete the minimum reduced-price of a time stamp if the

median-price is less than the two immediately adjacent prices. (We strive to delete

the fewest number of reduced-prices). We iterate this process until we obtain a

series of median-share prices that do not fail this test.

Table 2.4 reports the median daily number of prices in the reduced transaction

data frame. Even on the most extreme days, the filter removes very few reduced

prices. Table 2.5 reports the maximum daily number of removed reduced prices.11

For example, on 2011.05.18 (the day we have used for illustrations) 16 prices

(corresponding to 18 transactions in the original data frame before reduction) were

removed. The average volume of the deleted reduced prices is 182137.5 which is

11To place these numbers in context, our stocks typically have several thousand active time
stamps each day, and the number of reduced prices exceeds that number (since each active time
stamp has at least one reduced price).
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much greater than the average volume for every reduced price (including these 16)

of 3132.779.

TIME PRICE SIZE number.original.transactions

1 38497 133.4167 60000 1

2 34842 132.9333 24000 1

3 35012 133.1000 143750 1

4 36538 133.3667 90000 1

5 38955 133.7000 175000 1

6 34705 133.1000 45000 1

7 49146 134.0000 1000000 1

8 50558 134.3200 50000 1

9 45082 133.8327 110000 1

10 37713 133.4048 105000 1

11 44026 133.6900 1200 3

12 43725 133.7500 504000 1

13 35431 133.4400 50000 1

14 55195 134.2441 510000 1

15 36903 133.4100 21250 1

16 37356 133.3700 25000 1

The impact of this filtering process on the RV process can be seen in figure 2.6.

The realized variation process appears nearly linear for most of the day, especially

during the middle of the day, which we will later designate as the settled region.
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Table 2.4: Median number of reduced prices removed per day

2007 2008 2009 2010 2011
AA 4 5 2 1 1
AXP 3 5 3 1 1
BA 4 5 2 1 1
BAC 5 13 4 3 2
C 7 11 3 1 2
CAT 3.5 4 3 2 2
CSCO 6 4 2 2 2
CVX 6 6 4 2 2
DD 3 3 1 1 1
DIS 3 4 2 1 1
GE 4 9 3 2 2
HD 4 5 2 1 1
HPQ 5 7 4 2 2
IBM 6 6 3 2 1
INTC 5 3 2 2 2
JNJ 4 5 4 2 2
JPM 6 9 6 3 3
KFT 3 3 1 1 1
KO 3 5 2 1 2
MCD 3 6 3 1 1
MMM 3 3 2 1 1
MRK 4 6 6 2 2
MSFT 5.5 4 3 3 2
PFE 3 5 4 1 1.5
PG 4 7 4 2 2
T 5 8 2 1 2
TRV 2 3 2 1 0
UTX 2 3 2 1 1
WMT 5 8 4 2 2
VZ 3 7 3 1 2
XOM 9 8 6 4 2.5
SPY 17 16 11 13 16
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Table 2.5: Maximum number of reduced prices removed per day

stock 2007 2008 2009 2010 2011
AA 61 89 125 42 19
AXP 44 84 79 28 17
BA 50 78 37 20 28
BAC 47 140 103 36 32
C 60 96 56 53 50
CAT 53 69 73 28 18
CSCO 47 53 19 20 23
CVX 58 121 50 30 45
DD 26 50 53 40 20
DIS 53 71 88 76 17
GE 43 185 141 52 26
HD 49 102 50 80 23
HPQ 47 122 95 149 17
IBM 59 79 47 18 22
INTC 29 42 15 10 16
JNJ 33 108 55 41 41
JPM 52 99 117 59 34
KFT 29 70 39 30 18
KO 23 129 68 36 36
MCD 26 127 59 39 27
MMM 39 80 46 20 12
MRK 46 127 75 44 17
MSFT 39 66 14 19 14
PFE 47 112 76 37 30
PG 32 106 88 33 27
T 44 85 67 43 21
TRV 28 44 54 13 7
UTX 28 50 77 22 11
WMT 34 88 76 20 30
VZ 28 61 117 40 19
XOM 85 94 88 39 38
SPY 134 107 136 96 47
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2.4 Estimating intraday volatility

Recall once again equation 1.2 from Chapter 1

RVG
N

[τi−1,τi]
=

∑

tj∈G∩[τi−1,τi]

(∆Xtj)
2

which gives the definition of realized variation accumulated over the interval

[τi−1, τi]. We now discuss our computational procedure for computing this realized

variation using median-share prices defined on the grid of active time stamps.

We use the diff and cumsum operators in R to compute realized variation for

price.data[["VW_PRICE"]].

## The log return on the first price is 0.

log.returns = c(0, diff(log(price.data[["VW_PRICE"]])))

delta.rv = (log.returns )^2

price.data[["RV"]] = cumsum(delta.rv)

Let n denote the sample size, the number of median-share prices within a

trading day. The diff operator takes a vector of size n, and returns a vector of

consecutive differences of size n − 1. (Log returns are simply differences of log

prices.) We prepend 0 to the log return vector log.returns for two reasons: (1)

the log.return of the very first price is 0 (by convention), and (2) we wish to

preserve the length of the vector. delta.qv is the vector (of size n) of increments

to realized variation produced by that corresponding price. The cumsum operator

takes a vector of size n, and returns a vector of size n of the partial cumulative

sums. Hence price.data[["RV"]] is a vector of size n which contains the value

of total realized variation at the corresponding time.

We illustrate with some some calculations for SPY on 2011.05.18 (We show

only the 3 most relevant columns):
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TIME VW_MEDIAN RV

34200 133.26 0.000000e+00

34201 133.25 5.631615e-09

34202 133.25 5.631615e-09

34203 133.26 1.126323e-08

34204 133.26 1.126323e-08

To compute the RV over an interval [τi−1, τi], we simply subtract the RV for

the last active time stamp before or equal to τi−1 from the RV for the last active

time stamp before or equal to τi. Fortunately, the findInterval function12 in R

allows us to easily compute the very last price before a given set of interval times.

The following R code computes the log return and the realized variation for each

interval.

12findInterval(t,v) is a built-in function in R-base which takes two arguments, a vector of
“targets” t and a vector of values v. This vector of values v must be (weakly) increasing. The
result is a vector of indices (into the vector of values v) which are the last indices which are
equal to or less than the values in t. We will apply findInterval by setting t to be our interval
boundary times and v as the observation times. The result vector will contain the indices to the
last times (and hence the last prices) before or at the interval boundary times.
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min.valid.second = 34200

max.valid.second = 57600

## Set interval.size to 100 for 100−second intervals

interval.size = 300

## This INCLUDES 34200

interval.boundary.times = seq(from = min.valid.second ,

to = max.valid.second , by = interval.size)

index.last.trades =

findInterval(interval.boundary.times ,

price.data[["TIME"]])

## This is necessary! (It handles the case when

## the first trade of the day occurs strictly after

## 34200).

index.last.trades[index.last.trades == 0] = 1

last.prices = with(price.data , PRICE[index.last.trades ])

log.returns.intervals = diff(log(last.prices ))

rv.intervals = with(price.data , diff(RV[index.last.trades ]))

2.5 Filtering volatility jumps

We now give the definitions of filters 1 and 2 as implemented in EHLWZ (2012).

• ζ̄ is the median ζ̂i for intervals i within the settled period from 10:40 AM and

3:15 PM. This is our estimate of the equilibrium level of squared volatility.

• ζT = ζ̄ + 3× (q0.75 − q0.25) is a threshold level, where q0.75 and q0.25 are the

75th and 25th percentiles of the realized variations during the settled period.

• τ ∗ is the end of the first interval i such that ζi ≤ ζT or the end of the first

interval i within the settled period, whichever interval comes first.
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Filter 1 identifies an interval i as a volatility jump if τi > ζT and τi > τ ∗. Filter

2 identifies an interval i as a volatility jump if ζi−1 > ζT and ζi > ζi−1. Below

we present R code which implements these filters. First, we start with some

rows of the aggregate.analysis.df data frame for our example day of SPY on

2011.05.18.

INTERVAL INTERVAL_START INTERVAL_END LAST_VW_PRICE cum.RV

1 34200 34300 133.17 6.855112e-07

2 34300 34400 133.09 9.904259e-07

3 34400 34500 133.10 1.251076e-06

4 34500 34600 133.06 1.542313e-06

5 34600 34700 132.97 2.044087e-06

The column cum.RV is the accumulated realized variation at the end of the inter-

val.13. Now we proceed :

13Basically, cum.RV is RVGN

[0,τi]
, the cumulative realized variation up to the end of the interval.

In simpler terms, it is the sum of squared log returns by time stamps (namely, second by second)
from the beginning of the day until the time stamp listed by INTERVAL END.
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## This corresponds to 10:40:00 and 15:15:00

begin.settled.region.time = 38400

end.settled.region.time = 54900

aggregate.analysis.df[["RV"]] =

diff(c(0, aggregate.analysis.df[["cum.RV"]]))

aggregate.analysis.df[["delta.RV"]] =

diff(c(0, aggregate.analysis.df[["RV"]]))

settled.region = subset(aggregate.analysis.df ,

(( INTERVAL_START >= begin.settled.region.time) &

(INTERVAL_END <= end.settled.region.time )))

zeta.bar = median(settled.region [["RV"]])

quartile.vector = as.double(quantile(settled.region [["RV"]],

probs = c(0.25 , 0.50, 0.75) , na.rm = TRUE))

## The difference between the 75th percentile and the median ...

interquartile.value = quartile.vector [3] - quartile.vector [2]

zeta.threshold = zeta.bar + 3 * interquartile.value

Now that ζ̄ (zeta.bar) and ζT (zeta.threshold) have been identified, we

compute the hitting time τ ∗ (hitting.time), and then create a column called

filter.status which equals 0 if the interval is not a volatility jump, 1 or 2 if

it fails filter 1 or filter 2, and equals 3 if it fails both filters. (Below, lag.RV for

interval i is simply ζi−1, the realized variation of the previous interval.14

14Note that there were intervals without trades. For several stocks and several days in our
data set, the first trade did not occur until after the first 100-second interval. However, there are
examples of trade stoppages within the trading day. One curious example is INTC on January
31, 2011. In particular, after a median price of $21.455 at 9:54:29, the next active second was
10:20:00 with a price of $21.10. (Trading was halted, pending the announcement of a $300 million
reduction to revenue, after a design flaw was found in a product).
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equilibrium.set.df = subset(aggregate.analysis.df,

(RV <= zeta.threshold ))

## This will work ... see below.

if (nrow(equilibrium.set.df) > 0){

first.time.below.threshold =

min(equilibrium.set.df[["INTERVAL_END"]])

} else {

first.time.below.threshold = Inf

}

## R does the sensible thing ... min(v, Inf) = v for any finite

## value v.

hitting.time =

min(begin.settled.region.time , first.time.below.threshold)

RV = aggregate.analysis.df[["RV"]]

RV.without.last = RV[-length(RV)]

aggregate.analysis.df[["lag.RV"]] = c(0, RV.without.last)

failed.filter .1 = with(aggregate.analysis.df ,

(( INTERVAL_START >= hitting.time) & (RV > zeta.threshold )))

failed.filter .2 = with(aggregate.analysis.df ,

((lag.RV > zeta.threshold) & (delta.RV > 0)))

aggregate.analysis.df[["filter.status"]] =

as.integer(failed.filter .1) + 2 * as.integer(failed.filter .2)

Here are some results of the computation. (We only show 2 columns)
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> aggregate.analysis.df[1:10, c("INTERVAL", "filter.status")]

INTERVAL filter.status

1 1 0

2 2 0

3 3 0

4 4 0

5 5 1

6 6 3

7 7 1

8 8 0

9 9 0

10 10 0

Intervals 5, 6, and 7 all failed filter 1, and interval 6 also failed filter 2.

2.6 Illustration

Figure 2.7 plots the 234 100-second realized variation estimates for SPY on May

18, 2007. This is the basic data used to estimate the Heston model in Chapter 3.

For each of the 250 trading days in 2007 for each of the years from 2007 through

2009 we could display a plot such as this for SPY, and the same is true for each of

the 32 assets in our sample.

Figure 2.8 plots the OLS regression line and the data points for SPY on the

same day, May 18, 2007. In Chapter 3 we will examine regression results like this,

except instead of a separate regression for each day in 2007, we look at a pooled

regression for all of 2007.
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Figure 2.7: Realized Variation estimates: 100-second blocks

There were 25 volatility jumps (out of 234 intervals total), as denoted by the solid

points on the graph. The left-side axis plots units of daily squared volatility times

104. (Namely, the interval RV is multiplied by 234 to compute the equivalent daily

variation). The right-side axis show the equivalent daily volatility numbers, in daily

% units. The settled level of squared volatility ζ̄ = 0.463 (×10−4) equals a settled

value of daily volatility σ̄ =
√
ζ̄ = 0.680%. The threshold value ζT = 0.777× 10−4

equals a threshold daily volatility σT =
√
ζT = 0.881%.
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Figure 2.8: A daily regression estimate for SPY

The solid points represent the 25 points (out of 233) which were identified by

filters 1 and 2. The solid line is the regression line for this day (without the solid

points), and the dashed line is the annual regression line (computed after pooling

all the intervals within the calendar year). The slopes for the daily and the annual

regressions are 0.7538 and 0.7294 respectively. The R2 values for the daily and

annual regression lines are 0.5803 and 0.6417 respectively. (Note that for linear

regressions without an intercept term, we do not have the usual interpretation of

R2 as the fraction of explained variance).
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CHAPTER 3

Estimating the Heston model: 2007–2011

In Chapter 1 I described the results of estimating the Heston model of stochastic

volatility using realized variation estimates for each 5-minute interval from the

beginning of 2001 to the end of 2009 for every stock in the Dow Jones Industrial

Average and for an exchange-traded fund (SPY) that tracks the S&P 500. Contrary

to what the existing literature suggests should happen, our estimation procedure

was very successful: the estimates of the mean-reversion parameter of the Heston

model were high-significant for every asset for every year of our sample.

Nevertheless, the results of EHLWZ (2012) can be improved. In Chapter 2 I

described an improved computational environment that makes this possible. In

this chapter, I assess the consequences.

In Section 3.1 I make a direct comparison of the estimates of the Heston model

using 100-second blocks rather than 300-second blocks for the realized-variation

estimates within the trading days. Section 3.2 demonstrates that these new

estimates can themselves be improved by eliminating a tiny fraction of 5-minute

blocks from the yearly regressions. We find that our estimates of mean reversion

are on average considerably higher with 100-second blocks than with 300-second

blocks. In Section 3.3 we make this comparison more explicit.

3.1 The effects of improved resolution

Chapter 1 presented the estimates of the mean-reversion parameter β and its

60



t-statistic for each of the nine years of our sample for each of the 31 assets (the

30 Dow stocks and SPY), a total of 279 parameter estimates and 279 t-statistics.

Because I have improved upon the identification of price anomalies, replaced the

“last” price in each block with the median-share price and changed the sample

period from 2001-2009, to make a direct assessment of the improvement we need

to estimate the Heston model using 300-second blocks as well as estimating it for

the higher-resolution 100-second blocks.
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Figure 3.1: Comparing mean-reversion estimates and t statistics.

Rather than use tables to present the results (as we did in EHLWZ (2012) and

in Chapter 1), here I plot the estimates and t-statistics in a single graph. The

two panels of Figure 3.1 adopt the same format, plotting the estimated coefficient
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β on the horizontal axis and the corresponding t-statistic on the vertical axis.

The top panel plots the estimates and t-statistics for the regressions that use

100-second estimates of realized variation. The bottom panel plots the estimates

and t-statistics for the regression that use 300-second estimates.1 Data points

correspond to a calculation for each asset-year, and hence there are 160 (= 32 ∗ 5)

points in each panel. Different plotting symbols are used to distinguish the 5 years

of the sample. It is apparent from the graph that the distribution of points has

shifted up and to the right: t-statistics tend to be even higher when the resolution

is increased, and the degree of mean reversion is higher. Since in the top panel, β

measures mean reversion over an interval one-third the length of mean reversion

in the bottom panel, this is truly remarkable. Mean reversion is even more rapid

than the very high value of mean reversion reported in EHLWZ (2012).

Figure 3.2 has a similar format except that we plot the standard error of the

estimate of β rather than the t-statistic. Once again the top panel reports the

results using 100-second blocks and the bottom panel the results for 300-second

blocks. estimates. When resolution is increased, the distribution of points shifts

down and to the right: the mean-reversion estimates tend to be higher and more

precisely estimated.

In Figure 3.2, the five different years are marked with different symbols. Because

it is difficult to distinguish the different years, in Figure 3.3 the plots for each of

the years are plotted in separate panels. The scale of each axis in these panels is

identical to the scale of the corresponding axis in Figure 3.2.

Each of the panels contains 32 data points, corresponding to each of our assets

for a given year. Most of the data points appear as a small dot. However, 4 assets

— SPY and the three financial assets BAC (Bank of America), C (Citigroup) and JPM

(JP Morgan) — are each marked with a different symbol. C exhibits extremely

large mean reversion, while the estimated mean reversion of SPY is relatively low

1We show the calculations after removing the 20 farthest outliers. See Section 3.2
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Figure 3.2: Comparing mean-reversion estimates and standard errors.

value.

In Figure 3.4 we compare the standard errors of β̂ of β using 100-second blocks

with the estimates using 300-second blocks. The solid line is the identity line,

where sβ100 = sβ300 . As we can observe, nearly all points (except for one) lie above

the line, indicating that we obtain more accurate estimates using shorter blocks!

The dashed line is the line y = x
√

3, the relationship we would expect from a

regression in which the number of observations has tripled with observations of

the same quality. This is what we meant earlier when we said that the benefits of

increasing resolution appear to more than compensate for the smaller “effective

sample size” of the price observations within each block.
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Figure 3.3: Comparing 100-second mean-reversion estimates and standard errors
over time.

The horizontal axis is the value of β̂, and the vertical axis is the
standard error. All of the axes have the same scales as the aggregate
version, Figure 3.2.
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Figure 3.4: Standard Errors of β̂ using 100-second intervals and using 300-second
intervals
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3.2 Deleting a few observations.

As discussed in Chapter 2, I have altered the procedure we used in EHLWZ (2012)

to remove anomalous prices. The procedure I use eliminates more anomalous

prices than EHLWZ (2012), but like EHLWZ (2012) the new procedure is still very

conservative (i.e., it removes very few prices).

In this section, we explore the effects of removing some anomalous observations

from our regressions. Each of our annual regressions for a specific stock contains

approximately 58,280 observations (= 233 ∗ 250, one observation for each of the

233 adjacent pairs of 100-second blocks in a trading day times 250 trading days

in a year). For each of our assets for each of the five years of our sample, we

identify the 20 observations that have the most influence on the estimate of the

mean-reversion parameter β and delete them from the regression.

Figure 3.5 compares the estimated mean-reversion parameter β̂ calculated with

and without the 20 most influential observations. The graph plots 160 points,

one for each of our regressions (= 32 ∗ 5, one point for each asset for each year of

the sample). On the horizontal axis is the estimate of β before excluding the 20

outliers from the regression. The vertical axis plots the estimate after the 20 most

influential observations have been deleted. The solid line is the identity function,

namely, the graph of y = x. If a point lies below the line, that means that deleting

the 20 outliers from the regression lowered our estimate of mean reversion. Most

of the points lie below the line.

For example, for SPY in 2010 twelve of the twenty outliers occurred on three

days: May 6, 2010 (the day of the notorious Flash Crash), the day preceding the

Flash Crash or the day after. These three days in May had a large impact on the

estimate of β for SPY in 2010 and for many of the other assets in our sample,

resulting in some cases in estimates of β close to one (its theoretical upper limit)

for that year. This strongly suggests that the Flash Crash was truly an anomaly.
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Figure 3.5: β̂ estimates with and without 20 outliers

The solid line is the identity line y = x. Points above the line are stocks and years

in which the 20 most distant points increased our estimated slope β̂.

Figure 3.6 plots the annual regression for SPY (with 100-second blocks) in

another year (2009), before eliminating the 20 outliers. The variables on both

axes have been multiplied by 104 to improve readability.2 In addition to the

regression line, I have plotted the 95%-confidence bounds, and I have boxed the

points which are outside the 95%-confidence band.

2In the regressions, realized variations are not scaled to a rate per trading day (i.e., they are
not multiplied by M = 234.
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Figure 3.6: The annual regression for SPY in 2009 (100-second blocks).

After deleting volatility jumps, there were 50,818 observations in this regression.

The solid line is the estimated linear regression. The estimated slope is β̂ = 0.9809,

with a standard error of 0.0006 and a t-statistic of 1674.1650. Of the 50818 data

points, 496 were outside of the ±1.96σ̂ bounds, shown with dotted lines. Note

that both β̂ and the t-statistic are unreasonably high. Several extreme outliers far

away from the origin exert an undue effect on the estimated slope coefficient and

its t-statistic.3

We now eliminate the 20 points farthest from the origin, and show the result

3For example, the average horizontal and vertical values (for all 50818 points) are −0.0021
and −0.0013 respectively (after multiplication by 104 to have the same scaling as the plot).
Points with horizontal or vertical values less than −1 are outliers.
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in Figure 3.7. The estimated mean-reversion coefficient β̂ decreased from 0.9809

to a much more reasonable value of 0.4395.
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Figure 3.7: The annual regression for SPY in 2009 (100-second blocks), without 20
outliers.

3.3 How strong is mean reversion?

In Section 3.1 we noted that our estimates of mean reversion within a 100-second

block are almost as large as the estimates we obtained in EHLWZ (2012) over

300-second blocks. This indicates a much faster speed of mean reversion. In this

section, we make the comparison more explicit.
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Recall the original Heston model from section 1.6 :

dXt = µtdt+
√
ζtdWt

dζt = κ(ζ̄ − ζt) + γ
√
ζtdBt

and the derived difference equation which we will use for linear regression, equa-

tion (1.3)

ζτi − ζτi−1
= β(ζ̄ − ζτi−1

) + ετi−1
(3.1)

where

β = 1− e−κh ∈ (0, 1)

ετi−1
= γe−κh

∫ τi

τi−1

eκu
√
ζu dBu

Here, h = ∆t, the time in one of our equally spaced intervals. Our estimate of β is

β̂, the ordinary least squares (OLS) estimate. Note that κ is scale-invariant (it

does not depend on our sampling frequency), but β does depend on the interval

h = ∆t.

Let ∆ denote 100 seconds4. Let β∆ denote the value of the mean-reversion

coefficient when the block length is 100 seconds (corresponding to M = 234)

and let β3∆ denote the value when we use 300 second intervals (corresponding to

M = 78). By definition,

β∆ = 1− e−κ∆

β3∆ = 1− e−κ(3∆)

4If we let [0, 1] represent time within the trading day, then ∆ = 100/23400 = 1/234
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Consequently,

e−3κ∆ = 1− β3∆

e−κ∆ = (1− β3∆)1/3

β∆ = 1− (1− β3∆)1/3

Figure 3.8 plots β̂3∆ (the 300-second estimates) on the horizontal axis, β̂∆

(the 100-second estimates) on the vertical axis, and the corresponding comparison

function y = 1 − (1 − x)1/3. All calculations were done after removing the 20

outliers from each regression. We see that the 100-second estimates are almost

always above the comparison curve. The estimates using 100-seconds suggest as

much mean reversion occurs in 100 seconds as occurs over 300 seconds, which is

astonishing. However, it must be noted that these estimates of mean-reversion

apply to consecutive intervals in which the second interval is not a volatility jump.

We will analyze the frequency of volatility jumps (as identified by filters 1 and 2)

for both 100-second intervals and 300-second intervals in the next section.
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Figure 3.8: Comparing mean-reversion estimates with differing resolutions.

The curve drawn is y = 1− (1− x)1/3, which is the comparison between β∆ = β100

(on the vertical axis) and β3∆ = β300 (on the horizontal axis). (Recall that

β∆ = 1 − (1 − β3∆)1/3). Note that for all but 1 of the 160 points shown, the

appropriately scaled speed of mean reversion for 100-second intervals is greater

than the speed of mean reversion for 300-second intervals.
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3.4 Volatility jumps

In our analysis we have applied the same volatility jump filters to our regressions

using 100-second blocks that EHLWZ (2012) applied to the regressions using

300-second blocks. Figure 3.9 compares the fraction of intervals removed by filters

1 and 2 with 300 second blocks with the fraction removed with 100-second blocks.
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Figure 3.9: Comparing the fraction of intervals removed by filters 1 and 2.

The solid line is the identity function y = x. Points above the line are stock-years

in which filters 1 and 2 removed a greater fraction of the 300-second intervals than

of the 100-second intervals.
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Figure 3.10: Comparing the fraction of intervals removed by filters 1 and 2, by
year.

The plots contain 160 points (32 stocks times 5 years). The axes indicate the

fraction of blocks that were removed. The fraction with 100-second blocks is on

the horizontal axis, and the fraction with 300-second intervals on the vertical axis.

The solid line is the graph of the identity, y = x, corresponding to equality of the

fractions of observations removed from the regression (or, equivalently, the number

of blocks flagged as containing a volatility jump). The numbers scale roughly in

proportion to the number of blocks, and hence the fraction of blocks flagged as

containing volatility jumps is about the same. Figure 3.10 provides a panel display

of the same information by year. The axes have the same scale as Figure 3.9.
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Section 3.4 shows the empirical distribution of the intervals flagged by our

filters 1 and 2. The horizontal axis is expressed in units of extra daily volatility.

The vertical axis shows the relative fraction of flagged intervals within that level

of extra volatility.

Section 3.4 shows the time series of the empirical distribution of the intervals

flagged by our filters 1 and 2. Both the horizontal and the vertical axes are the

same as the previous figure.

We can observe that for every year, our filters 1 and 2 flag more 300-second

intervals than 100-second intervals (as a relative fraction of the total number of

intervals) at the lowest level (volatility jumps of less than 0.5%). At higher levels

of excess volatility, our filters identify relatively more 100-second intervals than

300-second intervals as volatility jumps.

In general, the fractions are decreasing as jump levels increase, with the notable

exception for 100-second intervals in 2008 and 2009. In those years, there are more

intervals between 0.5% and 1% (daily volatility) than between 0 and 0.5%.

We will place these levels in perspective by looking at the time series of daily

ζ1 (the sum of realized variation over the day) as well as the daily ζ̄.

Figure 3.13 shows the values for ζ1 (total realized variation times 104) and ζ̄

(our estimate of the settled variation for each trading day over the period 2007–2011.

The axis on the right shows the daily volatility numbers in the units of percentage

volatility per day. (For example, a value of 4 on the left axis represents a value of

ζ = 4× 10−4, which corresponds to a daily volatility of σ =
√
ζ = 2× 10−2 or a

2% daily volatility). The dotted vertical lines on the lower panel correspond to the

FOMC (Federal Reserve Open Market Committee) announcement dates during

our analysis period from 2007 to the end of 2011. We can note the substantial

time variation both in realized variation (squared volatility) and in our estimates

of ζ̄ (squared settled volatility).

75



Hence, volatility jumps in excess of 1% daily volatility would represent a very

large fraction of the total daily realized variation for most of the trading days in

our sample.
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Figure 3.11: Relative Frequency of Volatility Jumps (identified by filters 1 and 2)

The horizontal axis represents the extra daily volatility (in percentage units) above

the equilibrium level of volatility. The vertical axis is the fraction of intervals which

have that extra level of volatility (between the value and the previous value). For

example, about 6% (respectively 7.6%) of all 100-second (respectively 300-second)

intervals were flagged by filters 1 and 2 and had a level of ζi which represented

between 0 and 0.5 percent level of daily volatility. The corresponding frequencies

for intervals with between 0.5 and 1.0 percent extra daily volatility were 3.9% (for

100-second intervals) and 2.8% (for 300-second intervals).
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Figure 3.12: Relative Frequency of intervals identified by filters 1 and 2, by year

See Section 3.4 for the definitions of the axes. Note that the scales of the vertical

axis change from year to year.
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Figure 3.13: ζ1 and ζ̄ for SPY, 2007–2011

ζ1 is the total daily realized variation, and ζ̄ is the total daily settled variation.

Equivalent daily volatility (in percentage units per day) is shown on the axis on

the right. The vertical lines correspond to FOMC announcement dates.
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3.5 Conclusion

In this work, we have refined the analysis of EHLWZ (2012) in several ways. We

used the tools and the techniques presented in Chapter 2 to handle the challenge

of an increasing number of transactions. We compute median prices for each active

time stamp, and then apply a price filter based on the marginal contribution to

realized variation, the influence of a price. We filter out outlier prices which have

a very influence on the realized variation within a local window. Both of these

techniques allow us to construct a more economically meaningful series of price

observations.

More importantly, we switch from the 300-second block resolution to the 100-

second block resolution in order to analyze the last 5 years through 2011 for our

set of 32 stocks. Several features of our analysis are noteworthy :

• After we pool our data for all the interval in a year, apply our filters 1 and 2,

and remove the 20 furthest outliers, we obtain estimates of mean reversion

(β̂) with extremely large t-statistics, which improve when we switch from

300-second intervals to 100-second intervals. All but 9 of the 160 t-statistics

exceed 200. (AXP (American Express) in 2007 produced the smallest t-statistic

(65.4) for the estimated β̂, and β̂ has an asymptotic 95% confidence interval

of 0.189 ± 1.96(0.003) = [0.183, 0.195]). A surprising finding is that the

standard errors of our estimated slope coefficients are comparable after we

divide by
√

3, which would result if we triple the number of observations,

but kept the observations of the same quality.

• Our estimates β̂ of mean reversion increase at the finer resolution of 100-

seconds, after we scale both β̂∆ (the 100-second estimate) and β̂3∆ to make

the estimates comparable.

• The relative frequency of volatility jumps, as identified by our filters 1 and 2,
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remains comparable. As we would expect, after switching to the more local

time scale of 100-second intervals, we detect a higher fraction (of the total

number of intervals) of extreme volatility jumps and a smaller fraction of

small jumps (after the appropriate scaling to daily levels).

• The performance of our Heston model linear regressions are substantially

improved after we removed a relatively small number of points from out

data set (namely 20 outliers from among annual regression data sets of over

50,000 observations).

The availability of software tools, high frequency data, and recent advances in

statistical inference all allow a greater study of continuous-time models of price and

volatility processes. This research validates Merton’s conjecture that high-frequency

data can contribute significantly to our understanding of financial markets.
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