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Abstract

First-Principles Approach to Materials Discovery, Design and Optimization:
Applications to Transition-Metal Alloys and Functional Materials

by

Maarten de Jong

Doctor of Philosophy in Engineering - Materials Science and Engineering

University of California, Berkeley

Professor Mark Asta, Chair

This dissertation broadly describes efforts related to materials discovery, design and op-
timization using a first-principles approach based on density functional theory (DFT).
The two main application areas comprise transition-metal alloys and functional materials.
The research involving transition-metal alloys aims at finding cost-effective replacement
strategies for rhenium (Re). Elemental Re exhibits profuse deformation twinning under
mechanical loads and has a high ductility. It is shown that the twinning characteristics of
Re and its ductility are correlated with its anomalously low {112̄1} twin-boundary energy.
The origin of this twin-energy anomaly is related to the presence of icosahedral structural
units on the {112̄1} twin boundary. These structural units are stabilized near d-band fill-
ings corresponding to Re. The {112̄1} twin-boundary energy can be lowered further by
decreasing the d-band filling with respect to elemental Re. This increases the intrinsic
ductility according to three independent ductility parameters employed in this work: i)
Pugh’s ratio of bulk to shear modulus, ii) Yoo’s ratio of surface to twin energy and iii) an
ideal-strength criterion. Based on new insights in the relation between d-band filling, defect
energies and intrinsic ductility, several candidate alloys for Re replacement are proposed.
Ru-based alloys with additions of Ta, W and Re are shown to be potential replacement
candidates. The last part of this dissertation describes high-throughput calculations that
have culminated in the two largest databases of elastic and piezoelectric tensor properties
available to-date. The workflow for doing such calculations is described, along with vari-
ous checks to ensure the accuracy of the calculated physical properties. The database with
elastic-tensor properties is expected to be of use in a number of fields where discovery of
new materials with desired values of elastic stiffness or (lattice) thermal conductivity are of
interest. Further, data mining and machine learning can be applied to better understand
elastic properties and their physical descriptors. Several novel piezoelectric materials are
discovered as part of this work. Some of these exhibit a high intrinsic piezoelectric response
and may serve as a starting point for a process in which the piezoelectric response is op-
timized by alloying and microstructure engineering. As such, this database can support a
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search for future replacement candidates of the widely used piezoelectric materials such as
Pb(ZrxTi1−x)O3 (PZT) that contain lead.
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Chapter 1

Introduction and Background

An alloy can be defined as a mixture of at least 2 elements, of which at least 1 is
a metallic element. The atoms can be distributed more or less randomly over the lattice
sites and yield a solid solution, certain atoms can cluster together, forming different phases,
embedded in a matrix or ordering can take place, creating an intermetallic compound. For
solid solutions, the alloy properties, such as mechanical strength and ductility, are in part
determined by the chemical composition. The field of alloy design and alloy physics is
very rich and includes an extremely large space of possible alloy compositions and phases,
giving rise to a wide variety of distinct properties, ranging from mechanical to electrical
and thermal to optical properties. Desired material properties can be designed by carefully
tuning the alloying elements present and their respective compositions. This is not an easy
task due to the enormous amount of potential alloy compositions and the lack of simple
rules to translate alloy compositions directly into properties of interest. For this reason, re-
search in the field of alloy design has historically been very active and remains so up to now.

The field of alloy design and materials science and engineering in general, has
experienced a surge of new computational methods and algorithms in the past 2 decades
to calculate various materials properties. Many of the underlying theories on which these
modern techniques hinge, have been around since the 1960’s or even earlier. J.W. Gibbs
laid out his theory on thermodynamics and applied it to alloys in 2 pivotal papers published
in 1876 and 1878 [1, 2]. In the decades after, important progress was made in the field of
alloy kinetics and diffusion. M. Von Laue, W.H. Bragg and W.L. Bragg made important
contributions to X-ray diffraction and confirmed the crystalline nature of metals and al-
loys [3, 4]. In the 1930’s, W.L. Bragg and E.J. Williams for the first time discussed long
and short range ordering and their relation to atomic interaction energies [5]. W. Hume-
Rothery made important contributions to the field of s-p bonded and transition metal
alloys specifically in 1926-1927, when he showed - among other things - that the d-electron
count per atom plays a crucial role in the solubility of these metals into each other [6]. In
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the 1940’s, 1950’s and 1960’s, several important theoretical concepts for studying alloys
were introduced such as the Monte Carlo method by N. Metropolis and S. Ulam in 1949 [7]
and the cluster variation method by R. Kikuchi in 1950 [8]. Of particular importance to
this work were the theories by P. Hohenberg and W. Kohn (1964) [9] and by W. Kohn and
L.J. Sham (1965) [10] which led to the introduction of density functional theory (DFT).
This provided a starting point for ab-initio quantum-mechanical calculations on materials.

Even though modern theories such as DFT have been around for over 50 years,
recent advances in computer science, algorithms and technology have only recently made
the practical implementation of some of these state-of-the-art techniques possible. This has
allowed computation to help contribute recently to a great increase in the understanding
of alloys and the physics governing their behavior. Examples can be found in several fields,
such as aluminum alloys [11], magnesium alloys [12], shape memory alloys [13], and super-
conductors [14]. A very new subfield within materials science is that of high-throughput
(HT) calculations [15, 16], in which the power of large-scale supercomputers is harnessed
to calculate material properties on large, unprecedented scales. By applying modern tech-
niques such as data mining and machine learning to the generated datasets, it is hoped
that the fundamental descriptors underlying a given material property can be revealed,
which can aid in the optimization and design of novel materials.

In the first part of this work, transition metal alloys are studied, with an emphasis
on elastic properties, ductility, ideal strength and planar defects. Transition metals and
alloys have the potential to exhibit attractive properties such as high melting tempera-
tures, high strength, high stiffness, high ductility, high fracture toughness and superior
corrosion and erosion resistance. However, unfortunately the attractive properties are usu-
ally not simultaneously present in an alloy. For example, a trade-off often exists between
alloy strength on one hand and ductility on the other hand. Low ductility can be a lim-
iting factor especially in hexagonal closed packed (HCP) transition metals and alloys, in
which the limited number of slip systems can inhibit dislocation slip and plastic flow [17].
This leads to complications in both the manufacturing process of components made out of
such materials and during the operational lifetime of the component. For this reason, the
literature includes an extensive body of experimental and computational research, aimed
at identifying alloying strategies that increase a material’s ductility while maintaining its
other attractive properties.

The difficulty of modeling ductility is in part that this property spans multiple
length and time scales, see Fig. 1.1. On an electronic and atomic level, the Peierls barrier
represents the energy barrier a dislocation has to overcome to glide along its slip plane and
contribute to plastic flow and ductility. The Peierls barrier is related to shear modulus,
which is a property that also finds its roots on the electronic and atomic level. This is the
domain in which DFT typically operates. On a higher lengthscale, ductility is governed
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by the interaction of dislocations with each other and with other defects such as grain
boundaries, twin boundaries, impurities and second phase particles. Such phenomena are
modeled for example with molecular dynamics (MD), Monte Carlo (MC) [18] or discrete
dislocation dynamics (DDD) [19]. On a yet higher length and time-scale are continuum
models that typically use approximations and constants from lower length scales to build
models that disregard the discrete nature of materials and approximate their behavior by
continuum laws. One such technique is the finite element-method (FEM) [20], another is
Crystal Plasticity Modeling (CPM) [21, 22]. The microstructure of an alloy plays a big role
in establishing its ductility is a function of many variables, such as the material’s chemical
composition and the details of its processing history. At the mesoscale level, techniques are
available to predict microstructural features an alloy. Phase field (PF) [23] models allow for
the simulation of microstructure evolution at the mesoscale, while accounting for arbitrarily
complex grain morphologies. On the same level of time and length scales, Thermo Phys-
ical (TP) and Thermo Chemical (TC) models provide access to various thermodynamic
properties of different phases of an alloy. A popular approach is the Calculation of Phase
Diagrams (CALPHAD) formalism [24]. This class of models collects and assesses experi-
mental and and theoretical information on phase equilibria and thermochemical properties
for a given alloy system. The Gibbs free energy is used to describe the thermodynamics
of each phase and the resulting mathematical models are combined to calculate phase dia-
grams, often including metastable phases. Such models provide valuable insights into the
attainable microstructure of alloys with a given composition. Also, manufacturing avenues
may be suggested to create alloys with targeted microstructures.

1.1 Hexagonal Close Packed Rhenium

Much of the work in this thesis is devoted to the HCP transition metal rhenium
(Re). Interest in this metal stems from observations that it exhibits unique mechani-
cal properties such as the absence of a ductile-brittle transition and a high ductility at
room temperature [25, 26]. The high ductility of Re, in combination with other attrac-
tive properties such as high strength and a high melting temperature, cause Re to be a
potentially interesting structural material. Unfortunately, the exceptionally high cost and
limited worldwide reserves of elemental Re have resulted in a limited use of Re-based alloys
[27, 28]. Rhenium is currently being used in some applications where extremely demanding
operating conditions are involved, such as rocket nozzles and nuclear reactors. It is clear
that there exists a need for finding cost-effective replacement strategies for Re, without
significantly altering its attractive mechanical properties, including the ductility [25].

In this dissertation, the first chapters will present results of an in-depth compu-
tational investigation into the elements that are feasible replacements candidates for Re.
The aim is to retain or improve the ductility of Re by alloying in either of 2 ways. The first
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Figure 1.1: Different computational modeling techniques sorted by time and length scales:
First-principles, Molecular Dynamics (MD), Monte Carlo (MC), Phase Field (PF), Thermo
Chemical (TC) / Thermo Physical (TP) models and the Finite Element Method (FEM).

approach is to start with Re and identify less-expensive and more abundant solutes that
it can be alloyed with, while maintaining or improving upon the ductility of the original
material. This will yield a Re-based alloy that is somewhat less costly than pure Re. In
the second approach, we seek to identify materials where Re is replaced completely and a
new Re-free alloy is designed with elements that are less expensive and more abundant,
while yielding comparable properties.
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1.2 High-Throughput Calculations of Materials Properties

In the second part of this dissertation, we describe the results of HT-calculations
for elastic properties and piezoelectric properties of inorganic crystalline compounds. This
work is motivated by the observation that even though over 50,000 inorganic crystalline
compounds are known to exist in nature, only for a fraction of those (typically 0.1 % - 0.3
%), important material properties such as elastic constants, piezoelectric constants, band
gaps and dielectric constants are known, either from experiments or computationally. This
lack of data represents a problem in a number of ways. First, it complicates the selection
of materials with a set of desired properties for a given application, for example a certain
stiffness to weight-ratio. Second, it hinders the development and optimization of current
materials and the discovery of new materials. Third, the available materials property data
in the literature is rather scattered and finding information can be rather time-consuming.
Also, the materials property data in the literature is often obtained under different ex-
perimental conditions, which makes comparisons sometimes difficult. HT-calculations can
alleviate these problems by making available large, searchable databases of materials prop-
erties calculated in a consistent manner.

1.3 Overview of Dissertation

The outline of this dissertation is as follows. In Chapter 2, the basic theory and
methodology underpinning most of the work presented in this dissertation is presented. In
particular, the “nuts and bolts” of density functional and density functional perturbation
theory are reviewed. Density-functional-theory calculations are commonly performed on
relatively small unit cells in combination with periodic boundary conditions, which compli-
cates the simulation of disorder in materials. In Chapter 2, methods are reviewed that can
be used to approximate substitutionally disordered solids in small unit cells with periodic
boundary conditions.

Chapter 3 starts with a review of intrinsic ductility parameters, based on elas-
ticity, defect energetics and ideal strength. Only the intrinsic ductility parameter based
on elasticity will be studied in the remainder of Chapter 3, the other formulations are
considered in later chapters. Subsequently, the methodology and computational details
pertaining to Chapter 3 are described. In the results section, the structural and elastic
properties of pure rhenium are first presented. Subsequently, the elastic and structural
properties of Re-rich transition-metal alloys are presented. Trends in the intrinsic duc-
tility and lattice constants as a function of solute type are revealed and in the following
section, the energetics of Re-rich alloys are presented. Finally, in the discussion section,
the obtained results are interpreted and put in the physical context of d-band filling and
canonical d-band theory.
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In Chapter 4, the energetics of twin boundaries in HCP metals and alloys are
investigated. The crystallography of twinning and the accompanying nomenclature is in-
troduced first. A study of twin boundaries in elemental HCP metals is presented next
and interesting behavior of the twin energies with d-band filling is discussed and particular
attention is paid to the twin-energy anomaly that occurs near half d-band fillings. The
effect of alloying is presented next, followed by an explanation of the twin-energy anomaly
in terms of structural stabilities and icosahedral building blocks that are present on certain
types of twin boundaries. Some avenues towards rhenium-replacement are discussed next.
The chapter ends with a discussion and conclusion.

Chapter 5 is closely related to Chapter 4 and discusses in more detail some of
the methodologies developed as part of this work to study the energetics of planar defects
in substitutionally disordered HCP alloys. After the introduction, the methodology is laid
out, including discussions on the geometry of the twin boundary cells, unstable stacking
faults and surfaces. The generation of the supercells is discusses next, followed by a dis-
cussion of the computational methods. Subsequently, the discussion and results sections
are presented, first for the classical simulations and then for the quantum-mechanical sim-
ulations. This chapter ends with a summary and conclusions.

In Chapter 6, intrinsic ductility is studied from the perspective of ideal strength.
After the introduction, the methodology is discussed, with particular focus on elastic in-
stabilities in HCP metals under stress and the Wallace formalism. Also discussed are the
formalism to calculate higher-order elastic constants and the computational methodology.
In the results and discussion section, the occurrence of elastic instabilities is discussed and
the analytical model is compared to the DFT results. The effect of d-band filling is dis-
cussed next, followed by conclusions.

Chapter 7 is dedicated to high-throughput calculations of elastic properties of
inorganic crystalline compounds. This chapter comprises recent research efforts that cul-
minated in the creation of the largest database of elastic properties to-date, consisting of
full elastic information of over 2,200 (at the time of writing) inorganic crystalline com-
pounds. After first presenting a background and summary of the work, the methods are
described in detail, together with the high-throughput workflow. The results including
a graphical representation are presented next, followed by a detailed verification of the
computational methodology and an extensive comparison to experimental measurements
of elastic properties.

Chapter 8 describes a computational high-throughput study of piezoelectric prop-
erties of compounds and is motivated by the lack of information on piezoelectric material
properties, which hinders the development and discovery of new piezoelectric materials.
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This chapter starts with describing the background of this work. The computational
methodology, the compound selections and workflow is subsequently described. The next
section describes the data records and gives a broad overview of the results and presents
several newly discovered, high potential-piezoelectrics that were unveiled in this study.
The final section in this chapter describes the verification of the computational methods
employed in the piezoelectricity-calculations and presents comparison with selected exper-
imental results.

Chapter 9 provides a summary and conclusions of the work presented in this
dissertation. Further, suggestions for future work are made.
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Chapter 2

Basic Theory and Methodology

Density Functional Theory (DFT) has now become one of the standard tools
for the first-principles modeling of materials. In this chapter, a review of DFT is laid
out, discussing the basic theorems, algorithms and approximations. Also included are
short discussions of the virtual crystal approximation and density functional perturbation
theory, as these methods have been used in part of the work presented in this dissertation.

2.1 Density Functional Theory

2.1.1 Problem definition

Consider an ensemble of N nuclei at positions (R1, R2, . . . , RN−1, RN ) and ne
electrons located at (r1, r2, . . . , rn−1, rne). The energy of such a system follows from the
Schrödinger equation in Eq. 2.1, in which H is the Hamiltonian, Ψ the wave function and
E the total energy of the system [29].

HΨ = EΨ (2.1)

The Hamiltonian is comprised of the sum of the kinetic energy and the potential energy:

H =

Te︷ ︸︸ ︷
− ~2

2me

∑

i

∇2
i

Tn︷ ︸︸ ︷
− ~2

2Mα

∑

α

∇2
α

︸ ︷︷ ︸
T

+

Vee︷ ︸︸ ︷
1

2

∑

i 6=j

e2

|ri − rj |

Ven︷ ︸︸ ︷
−
∑

α,i

e2Zα
|ri −Rα|

+

Vnn︷ ︸︸ ︷
1

2

∑

α 6=β

e2ZαZβ
|Rα −Rβ|

︸ ︷︷ ︸
V

(2.2)
In Eq. 2.2, the term T represents the kinetic energy, broken up in electron (Te) and nu-
cleus parts (Tn). The term V represents the potential energy, including electron-electron
interactions (Vee), electron-nuclei interactions (Ven) and nuclei-nuclei interactions (Vnn).
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Finally, me denotes the electron mass, Mα denotes the nucleus mass and e and Zαe repre-
sent (minus) the electron charge and nuclear charge, respectively, where Zα is the atomic
number for nucleus α.

The Born-Oppenheimer approximation [30] is based on the fact that the protons
and neutrons that make up the nucleus have a mass that is approximately 3 orders of
magnitude larger than the electron mass. Hence, the electrons are much more agile than
the nuclei and will almost instantaneously adapt to the motion of nuclei. This leads to the
Born-Oppenheimer approximation and simplifies the Hamiltonian to Eq. 2.3.

H = Te + Vee + Ven (2.3)

In the Born-Oppenheimer approximation, one can compute the energy of the electron
subsystem using a Hamiltonian that is defined by a set of fixed nuclei, which provide an
external electrostatic potential that the electrons feel. The total energy thus determined
is only for the electron-electron and electron-nuclear interactions, and the total energy for
a crystal must add to this the energy associated with the nucleus-nucleus interactions.

Even with the simplifications associated with the Born-Oppenheimer approxima-
tion, solving Eq. 2.1 is still an intractable problem for most systems of practical interest
due to the electron-electron interaction. In the 1960’s, several important theorems and
simplifications were introduced that made solving 2.1 eventually possible, given certain
approximations. This will be discussed next.

2.1.2 The Hohenberg-Kohn theorems

The roots for DFT were laid out in the 60’s by Hohenberg and Kohn by the
introduction of 2 important theorems. The first states that for a system consisting of
n interacting electrons and an external potential Vext(~r), the total energy is a unique
functional of the electron density n(~r), see Eq. 2.4, in which F [n(~r)] is some unknown
functional of n(~r) [9].

E [n(~r)] = F [n(~r)] +

∫
n(~r)Vext(~r) (2.4)

Note that Vext(~r) is the potential felt by the electrons due to the nuclei, assumed to have
fixed positions in accordance with the Born-Oppenheimer approximation introduced in the
previous section. Eq. 2.4 is essentially an existence theorem of the functional, but does
not say anything about how to calculate F [n(~r)].

The second theorem by Hohenberg and Kohn is expressed in Eq. 2.5. It states
that for a given Vext(~r), the ground state electron density n0(~r) and ground state energy
E0 correspond to the minimum value of the functional E [9]:
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E0 = E [n0(~r)] = min {E [n(~r)]} (2.5)

2.1.3 The Kohn-Sham Equations

The theorems by Hohenberg and Kohn have introduced a major simplification:
they allow one to go from a wave-function based solution of the Schrodinger Equation to
a variational problem written in terms of a single spatially varying function. However,
these theorems have not resolved the fundamental difficulty of dealing with a many-body
system consisting of N interacting nuclei and n interacting electrons. Kohn and Sham [10]
proposed a formally exact reformulation in 1965 and replaced the full many-body problem
with an approximation of non-interacting electrons, embedded in an effective external
potential Veff . Kohn and Sham broke up the functional F [n(~r)] in Eq. 2.4, which is a
function of the electron density n(~r), into 3 parts. The energy functional can then be
expressed according to their formulation as in Eq. 2.6 [10].

E [n(~r)] = Ts [n(~r)] + EH [n(~r)] + Exc [n(~r)] +

∫
n(~r)Vext(~r) (2.6)

In Eq. 2.6, the term Ts [n(~r)] denotes the kinetic energy of the non-interacting electrons,
which can be calculated from the Kohn-Sham orbitals φ(~r) according to Eq. 2.7, where
the asterisk denotes a complex conjugate. Note that in Eq. 2.7, (Hartree) atomic units are
employed, which is different from those in Eq. 2.2.

Ts [n(~r)] = −1

2

ne∑

i=1

φ∗i (~r)∇2φi(~r)d~r (2.7)

Note that the energy E in Eq. 2.6 is not the total energy: to obtain the total energy,
the contribution from ion-ion interactions has to be added. The electron density n(~r) is
calculated from the Kohn-Sham orbitals according to Eq. 2.8.

n(~r) = −e
ne∑

i=1

|φi(~r)|2 (2.8)

In Eq. 2.6, the term EH [n(~r)] represents the Coulomb-energy term, calculated from the
Hartree-approximation as in Eq. 2.9.

EH [n(~r)] =
1

2

∫
n(~r)n(~r′)∣∣∣~r − ~r′

∣∣∣
(2.9)

Finally, the last term is the exchange-correlation energy defined in Eq. 2.10.

Exc [n(~r)] = (〈T 〉 − Ts [n(~r)]) + (〈EH〉 − EH [n(~r)]) (2.10)
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The quantities 〈T 〉 and 〈EH〉 denote the energies associated with the true, interacting elec-
trons and Ts [n(~r)]) and EH [n(~r)]) relate to the approximated energies of non-interacting
electrons. Hence, the exchange-correlation energy is a measure of the error in the energy
that is introduced when making the approximation of non-interacting electrons. An ef-
fective potential is now introduced, Veff (~r) = VH(~r) + Vxc(~r) + Vext(~r). The Kohn-Sham
equations follow and are given in Eq. 2.11, where the terms εi represent the Kohn-Sham
energy eigenvalues, where again atomic units are employed.

[
−1

2
∇2 + Veff (~r)

]
φi(~r) = εiφi(~r) (2.11)

The Kohn-Sham equations are exact and have not introduced new physical approximations.
The practical implementation of these equations however, requires a known functional form
of the exchange-correlation functional. In general, this is not known and approximations
have to be made. The accuracy of DFT-calculations is often limited primarily by how accu-
rate the approximation of the exchange-correlation functional is. The exchange-correlation
energy functional is often split up in an exchange (EX [n(~r)]) and correlation (EC [n(~r)])
part such that EXC [n(~r)] = EX [n(~r)]+EC [n(~r)]. To calculate the effective potential Veff ,
the electron density n(~r) is required, but to calculate n(~r), the Kohn-Sham orbitals are
required, which is what we are trying to solve for to compute n(~r). This type of problem
is solved self-consistently as shown in Fig. 2.1.

2.1.4 Spin-Polarization

In the above treatment of the Kohn-Sham equations, the electron spin has not
been explicitly taken into account. For spin-polarized systems, an extension of the Kohn-
Sham equations is required to calculate the ground-state electron density. The extension
of the Kohn-Sham equations for spin-polarized systems entails [31] i) a decomposition of
n(~r) into spin up (n(~r, ↑)) and spin down (n(~r, ↓)) parts: n(~r) = n(~r, ↑) + n(~r, ↓) and ii) a
decomposition of the spin density s(~r) such that: s(~r) = n(~r, ↑)−n(~r, ↓). The Kohn-Sham
equations for a spin-polarized system can be recast as in Eq. 2.12.

[
−1

2
∇2 + V δ

eff (~r)

]
φi(~r)

δ = εδiφ
δ
i (~r) (2.12)

In this equation, δ represents either spin up (↑) or spin down (↓). These spin densities
are coupled, and their effects are lumped into the effective potential Veff . In this work,
DFT calculations are performed on some systems containing magnetic elements and in
those cases, the spin-polarized ground state may have a lower energy than the non spin-
polarized ground state.
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Guess n(~r)

Construct effective potentials
Veff (~r) = VH(~r) + Vxc(~r) + Vext(~r)

Solve Kohn-Sham equations[
−1

2∇2 + Veff (~r)
]
φi(~r) = εiφi(~r)

Update n(~r)

Construct new charge density
n(~r) = −e∑N

i |φi(~r)|2

Converged?

Stop

no

yes

Figure 2.1: An illustration of the self-consistency loop used in DFT to calculate the ground
state electron density.

2.1.5 Exchange-Correlation Functional

With the Kohn-Sham equations, the exchange-correlation energy Exc = Exc [n(~r)]
was introduced. This quantity is a functional of the electron density and is generally
unknown. Several approximations to Exc exist, each with different degrees of sophistication.
In essence, the various approximations differ primarily by the number of terms included
in the electron density. The simplest approach is the local density approximation (LDA),
in which Exc depends only on the electronic density at each point in space [31]. In this
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approach, Exc is obtained as in Eq. 2.13.

ELDAxc [n(~r)] =

∫
n(~r)εxc [n(~r)] d~r (2.13)

In Eq. 2.13, εxc [n(~r)] represents the exchange-correlation energy potential, which is ap-
proximated to be equal to that of a locally homogeneous electron gas, with an electron
density of n(~r).

Within LDA, the exchange-energy potential, εx [n(~r)], can be expressed analyti-
cally using the Hartree-Fock approach as a function of n(~r), see Eq. 2.14 [32], where atomic
units are employed as before.

εx [n(~r)] = −3

4

(
3

π
n(~r)

)1/3

(2.14)

Whereas for the exchange-energy potential, an analytic expression can be derived, this
has presently not yet been achieved for the correlation-energy potential in the general
case. Only for systems in the limit of infinitely weak or strong correlations, asymptotic
analytical expressions exist. Correlation-energies have been obtained for the homogeneous
electron gas by Ceperley and Alder, who employed quantum Monte Carlo-simulations at
several intermediate values of the electron density [33]. By interpolation, correlation en-
ergies can then be obtained at any electron density [34]. The LDA tends to work well
for systems in which the charge density behaves rather smoothly in space. In the case
of large gradients in the charge density, the assumption of a locally homogeneous electron
gas breaks down and other models may have to be used for the exchange-correlation energy.

One such approximation is the generalized gradient approximation (GGA), which
takes into account not only the electron density but also the gradient of the electron density
on the exchange-correlation energy. This can be expressed mathematically as in Eq. 2.15 .

EGGAxc [n(~r)] =

∫
n(~r)εxc [n(~r)]FXC [n(~r),∇n(~r)] d~r (2.15)

The functional FXC [n(~r),∇n(~r)] serves as a correction factor to the LDA exchange-correlation
energy potential. In the literature, it is often expressed as a function of the Wigner-Seitz
radius rs and the reduced density gradient s(~r), defined in Eq. 2.16, where kF denotes the
Fermi momentum at position ~r.

s(~r) =
|∇n(~r)|

2kF (~r)n(~r)
(2.16)

Different expressions for FXC have been proposed in the literature giving rise to different
functionals, such as by Perdew-Wang (PW91) [35, 36] and Perdew, Burke and Ernzerhof
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(PBE) [37]. There exist other functionals than just LDA and GGA and these are some-
times ranked in terms of relative accuracy in a Jacob’s ladder as shown in Fig. 2.2 [38]. As
one moves up the ladder, the accuracy of the functionals generally improves, at the cost of
involving more analytical terms in the expressions and hence, greater computational cost.
The term τ in Fig. 2.2 involves both ∇2n and the Kohn-Sham orbital kinetic energy den-
sities. The functional by Tao, Perdew, Staroverov and Scuseria (TPSS) [39] is an example
of a meta-GGA functional in which τ is used instead of ∇2n. Details can be found in the
work by Perdew and others [38]. Hybrid methods such as by Becke, Lee, Yang and Parr
(BLYP) [40, 41] approximate the exchange-correlation functional by a combination of on
one hand the exact-exchange that is obtained from the Hartee-Fock approximation and a
standard LDA or GGA-functional on the other hand [41]. Other commonly used hybrid
functionals in the literature are PBE0 [42] and HSE06 [43, 44].

As a general rule of thumb, LDA functionals are known to overbind whereas GGA
functionals tend to underbind. This often leads to an underestimation of lattice constants
in LDA and an overestimation of cohesive energy, elastic constants and defect energies
[45, 46].

2.1.6 Pseudopotentials

In most solids at ambient temperatures and pressures, it is the valence electrons
that most participate in the bonding of a solid and establish its properties. The core elec-
trons are effectively screened by the valence electrons and do not strongly interact with the
valence electrons or the chemical environment in which a given atom is embedded. In terms
of the electronic structure of a material, one can think of two types of occupied Kohn-Sham
states. The first are core states that lie very deep in energy and are spherically localized
around the nuclear core. The second are valence states that are closer to the Fermi-level
and form bands, showing considerably more dispersion than the core states. When the core
states of an atom in a solid are compared to those of the isolated atom, often no significant
differences in their spectrum and distribution are found. This implies that the chemical
environment plays only a limited role in establishing the core states. Including states close
to the core explicitly in DFT-calculations may prove problematic, since the requirement of
orthogonality leads to rapid oscillations of wavefunctions near the nucleus.

Although there exist methods that treat all electrons (both core and valence) ex-
plicitly, another approach is to only consider the valence electrons explicitly and lump the
effect of the core electrons into an effective potential. In this formalism the wave functions
of the core electrons, ψci (~r), and those of the valence electrons, ψvi (~r), are considered sep-
arately. Both these are solutions to the Kohn-Sham equations with respective eigenvalues
εci and εvi . The wave functions of the valence electrons can be expressed as in Eq. 2.17 [47].
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Figure 2.2: Jacob’s ladder showing different functionals as used in DFT, and their relative
rankings in terms of (perceived) accuracy.

ψvi (~r) = ψ̃vi (~r)−
∑

j

〈ψcj |ψ̃vi (~r)〉ψcj(~r) (2.17)

Further, a pseudo external wave function for the valence electrons can be defined as in
Eq. 2.18. In Eq. 2.18, an effective pseudopotential is defined which applies to the valence
electrons outside the core region.
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V ps
extψ̃

v
i (~r) = Vextψ̃vi (~r) +

∑

j

(
εvi − εcj

)
〈ψcj(~r)|ψ̃vi (~r)〉ψcj(~r)ψ̃vi (~r) (2.18)

The valence electrons are governed by their own pseudo wavefunctions, ψ̃vi , which are
solutions to the Kohn-Sham equations, see Eq. 2.19.

[
−1

2
∇2 + V ps

ext

]
ψ̃vi (~r) = εiψ̃vi (~r) (2.19)

Within the general class of pseudopotentials, different formalisms have been developed such
as norm-conserving pseudopotentials (NCPP’s) and Kleinman-Bylander pseudopotentials
[48]. In part of the work presented in this dissertation, NCPP’s are employed [49].

NCPP’s aim at approximating the all-electron wave functions, ψae by imposing a
number of constraints on the pseudo wave functions, ψpp [50, 51]. The requirements are i)
the valence pseudo wave functions should contain no nodes, ii) beyond a cut-off radius rc,
ψae and ψpp are identical, iii) the charge enclosed within rc should be equal for both ψae
and ψpp, which is referred to as the norm-conserving conditions, see Eq. 2.20 and iv) the
eigenvalues of ψae and ψpp must be equal.

∫ r=rc

0
ψ∗aeψaedr =

∫ r=rc

0
ψ∗ppψppdr (2.20)

If a pseudopotential meets these 4 requirements, it is referred to as an NCPP. Another ap-
proach that is used in this work is the projector-augmented-wave (PAW) [52, 53] method.
This is an all-electron method, which maps the true all-electron wave functions onto smooth
pseudo waves via a linear transformation that acts in a region close to the nucleus (the
augmentation sphere). Outside the sphere (in the interstitial regions), the smooth pseudo
waves reduce to the true all-electron waves. The core wave functions are usually repre-
sented on a spherical grid and the valence wave functions on a Cartesian grid, which are
matched smoothly at the augmentation-sphere boundary. The pseudo waves are char-
acterized by slow spatial variations, which leads to good convergence properties of their
Fourier-coefficients to zero for short wavelengths.

Within the PAW-formalism, a common approximations is the frozen-core approx-
imation [52, 53] . This approximation relies on the observation that core states are rather
inert to the chemical environment of the atom. Hence in the frozen-core approximation,
the core states are pre-computed only once in an all-electron calculation and their den-
sities are stored. This approximation is very computationally efficient, as the core states
are considered frozen and do not have to be recomputed. The core electrons are computed
fully relativistically using the Dirac equation whereas the valence electrons are treated in
a scalar relativistic approximation, including mass and Darwin relativistic corrections, but
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not spin-orbit-coupling terms. These relativistic corrections are important for many of the
systems under investigation in this work, such as 5d transition-metals and alloys.

2.1.7 Structural relaxations

Structural relaxations in DFT aim to minimize the energy of a given configu-
ration of atoms with respect to their position. Different types of structural relaxations
can be performed such as internal coordinates only, constant volume, constant shape and
full relaxations. The ionic forces and stress tensor are typically used by the structural
relaxation-algorithm to find the minimum-energy configuration.

The ionic force can be calculated from DFT by applying the Hellmann-Feynman
theorem [54, 55]. It states that for any perturbation λ, the energy change is given by a
rather simple expression, see Eq. 2.21, where φ denotes the ground-state wave function.

∂E

∂λ
= 〈φ|∂H

∂λ
|φ〉 (2.21)

Here, we have introduced bra-ket notation, where in general 〈φ|v|φ〉 represents the expec-
tation value of a physical quantity v in an arbitrary state φ. Eq. 2.21 can be employed
to calculate the ionic forces and stress tensor from DFT. In particular, given an ion at
position R, the ionic forces follow from Eq. 2.22.

F = −∂E
∂R

= −〈φ|∂H
∂R
|φ〉 (2.22)

The force on ion α at position Rα, surrounded by ions at positions {R} can be expressed
in more detail as in Eq. 2.23, where the terms Ven and Vnn were defined in Eq. 2.2.

F =

∫

r
n(r)

Ven(r−Rα)

∂Rα
dr− ∂Vnn({R})

∂Rα
(2.23)

The stress tensor σαβ, can be described in terms of strain-derivatives (εαβ) of the energy,
see Eq. 2.24, where Ω denotes the cell volume.

σαβ =
1

Ω

∂

∂εαβ
(Ts + EH + Exc + Vext + Vnn) (2.24)

Using the Hellmann-Feynman theorem, more explicit equations for the stress tensor can
be derived [56, 57, 58].

Structural relaxations can be performed with the forces and stresses defined above
informing the optimization algorithm of the shape of the energy landscape. Different
optimization algorithms can be used for structural relaxations, such as Newton’s method,
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conjugate gradient, Broyden’s method [59, 60] and more recent methods such as the Fast
Inertial Relaxation Engine (FIRE)-method [61]. Lagrange-multipliers can be included to
incorporate geometric constraints into the optimization process, such as relaxations of ions
along a single Cartesian direction.

2.1.8 Density Functional Perturbation Theory

Many physical properties are related to the derivatives of the total energy with
respect to some perturbation. Examples include mechanical, dielectric and vibrational
(phonon) properties, with corresponding perturbations being strain, electric field and
atomic displacements. The Hellmann-Feynman theorem discussed above furnishes first-
order derivatives such as atomic forces arising from atomic displacements, and stresses
arising from imposed strains. Additionally, the Berry-phase approach reviewed in the next
section allows the calculation of the electric polarization, which is the linear response of
the crystal to an applied electric field.

Second order derivatives of the total energy provide generalized susceptibilities,
with examples being the force constant matrix (second order derivative of the energy with
respect to atomic displacements), and the dielectric constant (related to the linear relation
between polarization and applied electric field). In this way, for example phonon-spectra
and elastic constants can be calculated, which is sometimes referred to as the frozen-phonon
approach [62, 63, 64]. An example of the use of such an approach in the calculation of elastic
constant tensors will be given in Chapters 3, 6 and 7, where the details of the implemen-
tation of the approach will also be discussed. In some applications of such finite-difference
approaches an issue arises, namely that the calculations can be difficult to converge nu-
merically and thus require significant computational time in some cases.

An alternative way to calculate higher-order derivatives of the total energy is to
solve the Sternheimer equation, which is obtained by expanding the Kohn-Sham equations
to first order [65]. Yet another approach, employed in this work to compute piezoelectric
coefficients, is to employ perturbation theory. This is commonly referred to as Density
Functional Perturbation Theory (DFPT) [66] within a DFT-context. Efficient and numer-
ically accurate schemes have been proposed to calculate the derivatives based on DFPT in
the literature [67, 68, 69, 70, 71].

Consider again a perturbation λ and expand the total energy E in terms of λ
around the unperturbed state as in Eq. 2.25. In Eq. 2.25 the parameter λ can be thought
of as a vector with entries λ = (R, η, E).

E (λ) = E (0) +
∑

i

∂E

∂λi

∣∣∣∣
0

λi +
1

2

∑

i,j

∂2E

∂λiλj

∣∣∣∣
0

λiλj + . . . (2.25)
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Table 2.1: Physical quantities that can be calculated from DFPT by taking first and second
order derivatives with respect to atomic positions R, homogeneous strains η and electric
fields E .

λ 1st order 2nd order
R η E

R F C γ Z∗

η σ γ c0 e0

E P Z∗ e0 ε∞

Now consider Eq. 2.25 up to second order and 3 types of perturbations, i) atomic displace-
ments R, ii) a homogeneous strain η and iii) a homogeneous electric field E . Table 2.1
reports the physical quantities that can be extracted from DFPT when such perturbations
are imposed on a material. The derivatives of first order with respect to (w.r.t.) the atomic
displacements R allow for the calculation of the forces F, the first order derivatives w.r.t.
strain η yield the stress σ and finally the the first order derivatives w.r.t. E result in the
induced polarization P. The second order derivatives result in a total of 6 independent
quantities. Referring to Table 2.1, these are the interatomic force constants C, the clamped-
ion elastic constants c0, the internal strain coupling constants γ, the Born effective charges
Z∗, the clamped-ion piezoelectric constants e0 and finally the optical dielectric tensor ε∞.
These quantities can be used to calculate other properties such as phonon spectra, the
elastic tensor, the piezoelectric tensor and the static dielectric tensor.

2.1.9 Polarization and Berry Phases

In periodic systems, absolute polarization is ill-defined and only changes in po-
larization between states can be defined precisely [72]. Experimentally, the polarization is
determined by extracting differences in polarization. By applying an electric field, P can
be reversed to the opposite direction −P and by systematically varying the electric field E ,
the hysteresis loop of P versus E can be mapped out. In practice this is done by measuring
the macroscopic current j = j(t), as a function of time, t during a period of ∆t. The change
is polarization can then be obtained from Eq. 2.26.

∆P =

∫ ∆t

0
j(t)dt = P(∆t)−P(0) (2.26)

For periodic solids, the total change in polarization ∆P is decomposed into an electronic
and an ionic contribution as in Eq. 2.27. The justification for doing so relies on the
Born-Oppenheimer approximation.

∆P = ∆Pion + ∆Pel (2.27)
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Further, if the initial state is chosen to have P = 0, Eq. 2.27 reduces to Eq. 2.28, in which
P represents the total polarization of the unit cell in the final state.

∆P = P = Pion + Pel (2.28)

Eq. 2.29 gives the expression for the ionic contribution to the total polarization,
where e denotes the elementary charge, Ω denotes the cell volume, Z∗n is the charge of ion
n and Rn is the position of ion n.

Pion =
e

Ω

∑

n

Z∗nRn (2.29)

Eq. 2.30 is the Berry phase-expression for the electronic contribution to the total polar-
ization [72].

Pel = − 2ie

(2π)3

m∑

n=1

∫

BZ
〈unk|∇k|unk〉 dk (2.30)

The starting point for its derivation is to express the electronic contribution to the change
in polarization as a function of a finite adiabatic change in the Kohn-Sham Hamiltonian
of the crystalline solid [73]. The change is parameterized by a variable λ that varies along
the path from 0 to 1. It can be shown that the change of polarization can be calculated
without considering conduction-band states explicitly and that it is path-independent and
thus depends only on the end points [72]. It can be shown that Eq. 2.30 has a clear physi-
cal interpretation: the change in polarization of a solid, induced by an adiabatic change in
the Hamiltonian, is proportional to the displacement of the charge centers of the Wannier
functions corresponding to the valence bands [72, 74].

In Eq. 2.30, the summation is performed over the m occupied electronic bands
and the integral is carried out over the full Brillouin Zone (BZ). The function unk has the
same periodicity as the underlying crystal lattice and is related to the Bloch wave function
ψnk (r), i.e. ψnk (r) = eik·runk (r). Eq. 2.30 holds only for systems that are insulating
everywhere along the integration path and therefore would break down for e.g. metals.

From the quantities shown in Table 2.1, the piezoelectric constants are of primary
interest to the work presented in this dissertation. The clamped-ion piezoelectric tensor
e0 (evaluated at fixed ionic positions R), can be formally defined as in Eq. 2.31 , where α
and j denote Cartesian directions [72].

e0
αj = −

(
∂2E

∂Eα∂ηj

)

R

(2.31)

In this work, the relaxed-ion piezoelectric tensors are calculated, as defined in Eq. 2.32.
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eαj =

(
∂Pα
∂ηj

)

E
= −

(
∂σj
∂Eα

)

η

(2.32)

The precise definition of P and E in Eq. 2.32 is subtle, since these are the reduced po-
larization and electric field, which are slightly different from what has been used earlier
in this section. These reduces quantities can be related to the original electric field and
polarization by the strain matrix. Details can be found in Refs. [72, 75].

2.2 Disorder in solids

Crystalline solids with a perfectly regular arrangement of atoms do not exist in
nature, and disorder is introduced in various ways, such as by point, line, planar and vol-
umetric defects. In this section another type of disorder is considered in relation to the
occupation of different atomic species over the sites of the crystal lattice. This composi-
tional disorder can be on the sites of a give crystal structure, leading to what is referred to
as substitutional solid solutions, or over the interstitial sites of a crystalline structure, lead-
ing to interstitial alloys, or both. The alloys considered in this work tend to be composed of
atoms with similar sizes and electronegativity, hence according to the Hume-Rothery rules
[6], substitutional solid solutions are more likely to occur than interstitial solid solutions.
Disordered substitutional alloys tend to show higher stability ranges at high temperatures
where entropic terms favor compositional disorder, but can sometimes be frozen into a
metastable state at lower temperatures by for example quenching. In nature, many solids
are disordered rather than ordered and this can have profound influences on their me-
chanical behavior. Therefore, it is of great interest to be able to model substitutionally
disordered alloys with modern electronic structures calculations based on DFT.

Modeling perfectly ordered, periodic structures is relatively straightforward in
DFT because of translational symmetry and Bloch’s theorem. However, complications
arise when considering random solid solutions. The principal problem is that composi-
tional disorder is characterized by a distribution of local atomic configurations that can
only be exactly sampled in the limit reached of infinitely large system sizes. Modern DFT
calculations are limited to system sizes of only about 1,000 atoms and therefore, approxi-
mations are required to model random alloys in relatively small, periodic unit cells. Some
of the common approaches are as follows.

1. One class of approaches uses a single-site approximation, in which the random alloy
is modeled as an ordered structure of identical, effective atoms. Within this class
of approaches, commonly used methods are the coherent potential approximation
(CPA) [76] and the virtual crystal approximation (VCA) [77, 78]. The principle of
the CPA is to construct effective atoms such that the average electron scattering
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off the alloy constituents should equal zero [79]. In the VCA, instead an effective
medium is created by averaging the potentials of the individual species present in the
alloy by their concentration (see below for more detail). Effective-medium theories
such as these have a number of serious drawbacks. First, local relaxations due to
atomic size mismatches are not accounted for [80]. This can be a problem especially
for atoms with very different sizes. Second, approximations have to be made in
the CPA formalism to incorporate charge transfer between atoms due to differences
in electronegativity since all atoms are identical in the effective medium. These
approximations [81, 82, 83] might or might not be appropriate depending on the
details of the system under consideration. Within the VCA, we are unaware of
methods of incorporating charge transfer at all [84].

2. A second approach is a cluster expansion (CE) [85, 86]. In a CE, interatomic interac-
tion parameters are obtained from fitting the energy of a number of different atomic
(usually ordered) configurations on a parent lattice to an Ising model. In theory, a
well-converged CE is able to predict the energy of any configuration of atoms on a
given parent lattice. Hence, it can be used to approximate energetics of random and
short-range-ordered solid solutions and an advantage is that much larger system sizes
can be considered than in DFT.

3. The most direct approach to modeling random alloys is through the use of a supercell
method, where (for a binary alloy) each lattice site is decorated with either an A or
B atom. The problem with this approach is that either large supercells are required
to reproduce the statistics of the local distributions of atoms in a random alloy or
averaging over many distinct configurations has to be performed, making it compu-
tationally prohibitive. However, by distributing the atoms on the parent lattice in a
particular fashion, it is possible to create a proper representation of the random alloy
in a small supercell. The method of special quasirandom structures (SQS) is based
on this premise and is reviewed below.

2.2.1 Special Quasirandom Structures

The idea of the SQS approach [87, 88] is to mimic random alloys as closely as
possible in small periodic unit cells by distributing the atoms on the lattice sites in such a
way that locally around each atom (within a chosen cutoff) the average occupation of the
neighbors, as measured by compositional correlation functions, are as close as possible to
that of a random alloy at the same overall composition. In particular for systems in which
electronic and elastic interactions are relatively short-ranged, this approach is justified,
however it can be problematic when dealing with systems where long-range contributions
to the interatomic interactions are important.
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Mathematically, a given atomic configuration can be described in terms of its
correlation functions [89]. In lattice algebra, a spin-value σ = ±1 is assigned to each lattice
site, depending on whether the lattice site is decorated with an A or B-atom. Each lattice
site is also characterized by several geometric figures, such as point, pair, triplet clusters
etc. Let each geometric figure have k vertices (k = 1 for points, k = 2 for pairs etc.) and let
those figures have a maximum length m, where m = 1, 2, 3, . . . denotes the first, second and
third-nearest neighbor shells. The geometric figures are then indicated by f(k,m). The
correlation functions are denoted by Πk,m and can be calculated by taking the products of
the spin variables for the geometric figure k within a distance m, and averaging over the
sites in the lattice. For a binary random alloy at atomic fraction x of σ = 1 species, the
correlation functions are given in Eq. 2.33.

Πk,m = Π
R
k,m = (2x− 1)k (2.33)

The optimum SQS satisfies the relation in Eq. 2.34 as closely as possible.

Π
SQS
k,m ≈ Π

R
k,m (2.34)

Eq. 2.34 gives rise to an optimization problem of how to distribute NA A-atoms and
NB B-atoms over N = NA + NB lattice sites in such a way that Eq. 2.34 is satisfied as
closely as possible. In the optimization process, choices are required where to truncate the
number of geometric figures to include (e.g. include up to triplets) and at what length to
truncate the figures (e.g. include up to second nearest-neighbors only). In principle, these
parameters are system dependent and no general rules exist what are appropriate choices.
Ideally, convergence testing of the physical quantity of interest is performed with respect
to these parameters so that a well-informed choice can be made. Various algorithms are
available to find the optimum SQS such as exhaustive enumeration [90, 91, 92], simulated
annealing and genetic algorithms (GA’s) [93]. Traditionally, SQS have been applied for the
calculation of bulk properties such as formation energies [94, 95], lattice constants, elastic
constants [96, 97] and electronic structure [98, 99]. In this work, SQS are applied also
to planar defects, for which several adaptations are required as described in subsequent
chapters.

2.2.2 Virtual Crystal Approximation

VCA averages different non-local ionic pseudopotentials according to their con-
centration to yield a single effective ion potential. This method allows for performing
DFT calculations on substitutionally disordered systems at the same computational cost
as for ordered systems. Any possible short range order is ignored in VCA calculations and
each lattice site is decorated with a virtual atom with interpolated properties of the actual
species in the alloy. Fine details related to local distortions and relaxations in atomic envi-
ronments cannot be captured with VCA in general, as atomic size mismatch effects are not
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included. A practical advantage of VCA is that several efficient schemes exist to generate
pseudopotentials for a given desired alloy concentration. One such scheme that is employed
in this work is the Troullier-Martins method for generating norm-conserving pseudopoten-
tials (NCPP’s) [51, 100, 101]. NCPP’s for alloys are generated using the fhi98PP code [101],
by including (non-integer) numbers of s, p and d-electrons in a way that is representative
of the alloy concentration and the species present. In the generation of the pseudopoten-
tials, the number of core and valence states has to be specified, together with the type of
exchange-correlation, core cutoff radius and a number of other parameters. Details on the
formalism can be found in Ref. [101].
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Part II

Results and Discussion
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Chapter 3

Rhenium and its Alloys:
Structure, Elasticity and Ductility

3.1 Foreword

In this chapter, the structural properties, elastic properties and intrinsic ductility
of Re and its alloys are studied. This study is part of a combined computational and
experimental rhenium replacement-effort, in which the goal is to identify new alloys with
similar properties as elemental Re, but at a lower material cost. Rhenium’s combination
of high ductility, high strength and good high-temperature properties is rather unique.
The room-temperature ductility in particular is of interest in this work, since it governs
how easily the material can be plastically deformed and made into components without
fracturing.

Re is among the most expensive refractory metals with prices recently varying
from $ 4 to over $ 10 per gram as shown in Fig. 3.1 [102]. Further, the worldwide reserve
of Re is limited and it is mined in only 20 different places [103], making it a strategically
important metal. Due to the limited supply of Re to the markets, its prices also tend to
be susceptible to large increases, which is what happened around 2008, according to Fig.
3.1. For these reasons, cost-effective rhenium replacement strategies are of clear interest.

There are several metrics to describe the intrinsic ductility of metals and solid
solution-alloys, which are reviewed in the following section. In the literature, several stud-
ies have been presented employing intrinsic ductility parameters to investigate the effect
of alloying on intrinsic ductility. A wide range of materials has been studied such as
magnesium-alloys [104, 105, 106], NiAl-Fe and NiAl-Mn-alloys [107], Mo-alloys [108], W-Re
alloys [109] and a range of other transition metal-alloys [110, 111]. Although the ’Re-effect’,
which refers to creating alloys with small amounts of Re, has been studied quite extensively
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Figure 3.1: The cost of elemental Re in US $ per gram, with time.

in the literature, little or no attention has been paid to Re-rich alloys, which are the focus
of this chapter.

In this chapter, a systematic investigation of the effect of alloying Re with various
solutes is performed. Re-based solid solutions are considered and defects are not taken
into account initially. It is assumed that all solid solutions are HCP-based, and are formed
for example as schematically indicated in Fig. 3.2, with solutionizing at high temperature
in the single HCP phase region, followed by quenching upon which a (metastable) HCP
solid solution is obtained. We focus in this chapter on alloying Re with transition metal
(TM) solutes, as it is expected that combinations of these elements chosen to maintain a
d-band filling close to that characteristic of Re could be effective in retaining high melting
temperatures, due to the well-known maximum in the cohesive energy that occurs at ap-
proximately half d-band filling [112, 113, 114]. We thus consider HCP Re-X alloys, with all
possible 3d, 4d and 5d solute elements X, and calculate by DFT three classes of properties:
dilute heats of mixing, single-crystal elastic constants, and structural properties including
atomic volume and axial c/a ratio. Since one of the main attractive features of Re is its
low-temperature ductility, we use these DFT results also to study trends in the effects of
TM solutes on properties that are expected to correlate with this property. To this end,
intrinsic ductility parameters are employed, which are discussed in subsequent sections.

The outline of the rest of this chapter is as follows. First, several intrinsic duc-
tility parameters are reviewed that will be used extensively in the remainder of this work.
The computational methodology is discussed next, with particular attention being paid
to DFT-settings and the calculations of elastic constants and solute effects on Re-based
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Figure 3.2: Schematic of the alloying strategy for Re replacement in this chapter.

alloys. Results pertaining to structural, elastic and energetic properties of Re-based alloys
are presented next, followed by a discussion and interpretation of the results.

Part of the results presented in this chapter, including the figures and tables,
were published by Maarten de Jong, David Olmsted, Axel van de Walle and Mark Asta
in Physical Review B, 86(22):224101, 2012 [115]. The material is reproduced here with
permission of the co-authors and publishers.

3.2 Review of Intrinsic Ductility

3.2.1 Pugh’s criterion

Several methods to model ductility from first principles density-functional-theory
(DFT) calculations have been proposed in the literature [116, 117, 118, 17, 119]. In this
chapter, we will confine ourselves to a simple ductility parameter D to perform the screen-
ing which is based solely on linear-elasticity, namely the ratio of the single crystal bulk
modulus K to the Voigt-average of the single crystal shear modulus, G. Hence, we define
the ductility parameter as the ratio D = K/G [116], also known as Pugh’s parameter.
In HCP metals, this ratio is known to correlate well with relative ductility [17]. A higher
K/G-ratio generally indicates enhanced ductility. This can be understood by realizing that
microcrack inititiation and propagation requires bond breaking, which becomes more diffi-
cult for high values of the bulk modulus, K. On the other hand, deformation mechanisms
that give rise to a ductile response, such as twinning and dislocation movement, are more
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prevalent in materials with comparatively low shear moduli G.

A second property based on elastic constants that can be expected to affect duc-
tility in polycrystalline samples is the elastic anisotropy. Specifically, for systems with
highly anisotropic elastic constants, applied loads can lead to stress concentrations at grain
boundaries and triple junctions that can contribute to brittle failure [120, 121]. From this
standpoint, it is expected that a lower degree of elastic anisotropy should contribute to an
enhancement in the ductility of polycrystalline materials. We thus consider the effect of
solute additions on elastic anisotropy in Re-based TM alloys, using as a measure of the
crystalline two anisotropy parameters introduced recently [122], measuring the anisotropy
in the Young’s and shear modulus, respectively.

3.2.2 Yoo’s criterion

Ductility parameters exist that are not based on linear elasticity, but rather take
into account dislocation slip on basal and prismatic planes and twinning, which are known
to constitute important deformation mechanisms in Re and HCP metals in general [123,
124, 125, 126]. In these models, the energetic competition between the creation of fresh
surface (brittle behavior) versus the formation of twins or stacking faults (ductile behavior)
is considered [117, 118, 17, 119]. Relative ductility is considered by examining the energetic
trade-off between cracking and twinning or the emission of dislocations. Depending on
which plastic deformation mechanism is active in a given material (e.g. dislocation glide or
twinning), different ductility parameters are proposed. Using a Peierls-analysis, Rice and
co-workers [127, 128, 129] proposed a ductility parameter D = γus/γs, where γus represents
the unstable stacking fault energy and γs represents the surface energy. This ductility
parameter aims to capture the ease of dislocation glide versus cracking and is applicable
primarily in materials where dislocations are the primary carrier of plasticity. On the other
hand, for materials in which twinning is the primary deformation mechanism, Yoo proposed
a ductility parameter D = γt/γs, where γt denotes the twin boundary energy [17]. The
ductility parameter by Yoo is used in this work since twinning is a prevalent deformation
mode in Re and in HCP-materials in general. This class of ductility parameters will be
considered in Chapter 4.

3.2.3 Ideal Strength-Based

The third intrinsic ductility parameter is based on the ideal of ideal strength and
elastic instabilities of the perfect crystal. At an atomistic level, the nucleation of a dis-
location requires the resolved shear stress on the slip plane to be close to the ideal shear
strength of the material. On the other hand the nucleation of a crack requires the local
tensile strength perpendicular to the cleavage plane to be close in magnitude to the ideal
tensile strength [108]. When an ideal material is loaded in tension perpendicular to the
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cleavage plane, it does not necessarily fail in tension in that direction. Instead, the ma-
terial can become unstable to shear before tensile failure. In that case, the nucleation of
dislocations might be expected to occur before the nucleation of cracks and the materials
is considered to be intrinsically ductile [130, 131].

In the literature, DFT calculations have been reported that show that W and Mo
fail in tension whereas V and Nb fail in shear when pulled along the 〈001〉 directions of
the bcc structures for these materials [108, 132]. These results correlate with experimental
observations showing that W and Mo are brittle metals whereas V and Nb are relatively
ductile. These observations lend support to the ideal strength-view on intrinsic ductility.
Ideal-strength calculations have been used extensively in the literature to study cubic
materials [133, 134, 135], however not much work has been performed for HCP metals
and alloys, in particular in the context of intrinsic ductility. In Chapter 6, ideal-strength
calculations are used to study trends in intrinsic ductility of HCP metals as well as the
effect of alloying on the ideal deformation behavior.

3.3 Methodology

3.3.1 DFT Calculations

All of the DFT results presented in this work were performed using the projector
augmented wave (PAW) method [52, 53], as implemented in the Vienna Ab initio Simula-
tion Package (VASP) [136, 137]. In these calculations use was made of the Perdew-Zunger
parametrization of the Ceperly-Alder [138, 34] exchange-correlation energy within the local
density approximation (LDA-CA).

An energy cutoff for the plane wave basis set of 450 eV was used. Brillouin zone
integrations were performed using Monkhorst-Pack k-point sampling [139]; in all the total
energy calculations, the density of k-points is chosen such that the number of k-points in
the first Brillouin zone times the number of atoms in the cell was approximately 15,000.
Occupation of the electronic states was performed using the Methfessel-Paxton scheme
[140], with a smearing width of 0.1 eV. For the structural optimizations, internal coordi-
nates were relaxed until the atomic forces converged to within 0.001 eV/Å. The equilibrium
lattice parameters were computed using a conjugate-gradient minimization algorithm, em-
ploying the calculated stress tensors. In all calculations, the residual stresses, after the full
relaxation, did not exceed 0.05 kBar (5 MPa).

The PAW potential used for Re corresponds to the electron configuration 5d56s2,
with seven electrons treated explicitly as valence. For all solutes, PAW-potentials corre-
sponding to the nominal valence electrons were employed. For Re and the alloy supercells
(see below) the results presented, were obtained using non-magnetic calculations. For so-
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lute species Fe, Co, Ni, Cr and Mn spin-polarization was considered although non-magnetic
states were obtained upon structural relaxation. In calculations of the dilute heats of so-
lution, the reference energies for elemental Cr, Mn, Fe, Co or Ni were also performed
employing spin-polarized calculations; for Fe, Co and Ni a ferromagnetic ground state was
obtained, while for Cr and Mn, the relaxed structured converged to non-magnetic solutions.

3.3.2 Elastic Constant Calculations

The calculation of the elastic constants was performed using as a starting point
the relaxed structures obtained from the calculations described in the previous sub-section.
For each such structure 24 unique deformation mappings are constructed, corresponding
to six independent deformation modes. In the first set, ε11, ε22 and ε33 corresponds to
the uniaxial deformations whereas the second, ε12, ε23, ε13 corresponds to the simple shear
deformations. For calculating the elastic constants, four values for the strain (-ε0, -1

2ε0,
+1

2ε0, +ε0) were applied for each of the six deformation modes. For uniaxial deformation,
we used ε0 = 0.01 and for simple shear ε0 = 0.004. Each of the deformations is characterized
by a deformation gradient tensor F. The Green-Lagrange strain tensor E (which reduces
to the linear strain tensor for small strains) is calculated according to Eq. 3.1.

E =
1

2

(
FTF− I

)
(3.1)

The components of the Cartesian stress tensor are calculated from first principles, while
allowing for ionic relaxations. Subsequently, all components of the elastic tensor can be
determined by a least squares-fit of the calculated stresses to the applied Green-Lagrange
strain. This means every elastic constant is fit to a total of five points, including the fully
relaxed (zero stress, zero strain) configuration.

Several tests were performed to estimate the numerical precision of the calculated
elastic constants. In the first set of tests we considered the convergence with respect to
k-points and plane wave energy-cutoff, giving an estimated precision of about 9.5 GPa
for all elastic moduli presented below. Further, the fitting procedure for the elastic con-
stants was examined to test the assumption of linear stress-strain relations. Specifically,
we compared the results obtained for the range of deformations given above to values
obtained by fitting to a more limited range of strains: (-ε0, 0, +ε0). It was found that
the consideration of this more limited range of strains led to very similar results for the
elastic constants, differing by less than 1.5 GPa, compared to the values obtained from the
expanded range of strains given above. A final check of the accuracy of the elastic con-
stants was performed by comparing the symmetry of the calculated elastic tensor to the
theoretical symmetry, as dictated by the hcp structure. To this end, the calculated elastic
tensor is projected onto the closest fourth-order elastic tensor exhibiting hcp symmetry.
This method [141, 142, 143] effectively minimizes the Euclidean distance between the cal-
culated elastic tensor and the tensor on which the calculated elastic tensor is projected.
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For the first principles-parameters used in this study, we found that all components of the
calculated elastic tensor were converged to within 2.6 GPa of the closest tensor exhibiting
the underlying hcp symmetry.

For the calculation of the ductility parameter K/G the bulk modulus K is deter-
mined from the calculated single-crystal elastic constants through the relation [144]:

K =
2 (C11 + C12) + 4C13 + C33

9
. (3.2)

The Voigt average of the shear modulus G is calculated from the single-crystal elastic
constants using the following expression [144]:

G =
(C11 + C33 − 2C13 − C66) /3 + 2C44 + 2C66

5
(3.3)

From the convergence tests described above, the numerical precision of the calculated val-
ues of K/G is estimated to be within about 2% of the values given below.

To investigate the degree of elastic anisotropy we make use of two parameters, fE
and fG, introduced in Ref. [145]. These parameters measure respectively the anisotropy of
the Young’s modulus and shear modulus, and are defined in terms of the elastic compliances
(Sij), as follows:

fE = S11/S33 (3.4)

fG = (S44 + 2S11 − 2S12)/2S44 (3.5)

Values of fE and fG equal to one correspond to elastically isotropic solids, while deviations
from unity provide a measure of elastic anisotropy.

3.3.3 Supercell Models for Alloys

To study the effects of alloying Re with 3d, 4d and 5d TM solutes, we employ a
2×2×2 HCP supercell containing 16 total atoms. A single Re atom is substituted by a
TM atom X, yielding composition Re15X1. For each such supercell, structural relaxations
were performed, and the results used to compute three quantities: the solute expansion
coefficients ηa and ηc, and the heat of solution ∆Hsol. These latter quantity is computed
as follows:

∆Hsol = E(Re15X)− 15E(Re)− E(X) (3.6)

where E(Re15X) is the energy of the Re15X supercell, while E(Re) and E(X) denote
the energies per atom of pure Re and X in their relaxed equilibrium crystal structures,
respectively. The solute expansion coefficients are computed as:

ηa ≡ ∂ ln (a)/∂x ≈ 16 [a(Re15X)− a(Re)] /a(Re) (3.7)

ηc ≡ ∂ ln (c)/∂x ≈ 16 [c(Re15X)− c(Re)] /c(Re) (3.8)
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where x denotes the mole fraction of the solute, a(Re15X) and c(Re15X) denote the lattice
parameters derived from the relaxed 16-atom supercell, and a(Re) and c(Re) correspond to
the lattice parameters for pure Re. The relaxed supercells are also used as the starting point
for calculations of the single-crystal elastic constants, following the procedure described in
the previous sub-section.

3.4 Results

In this section we present the results of calculated structural, energetic and elas-
tic properties for pure Re and Re-X transition-metal alloys and compare to previously
published computational and experimental results. Each of the calculated properties for
the alloys considered in this work is shown to display clear trends with the number of d
electrons in the TM solutes. These trends are discussed in the context of canonical d-band
theory in the next section.

3.4.1 Structural and Elastic Properties of Pure Rhenium

In Table 3.1 the values of the structural parameters and elastic moduli computed
in the present work for elemental Re are compared to results from previous computational
studies and experimental measurements. Considering first the comparison between our
results and experiments, we see that the calculated a and c lattice constants are underesti-
mated by approximately 0.7%, while the elastic moduli are overestimated by approximately
8%, except for C13 which shows a larger disagreement with experiments of about 20%. This
level of agreement is viewed to be reasonable given that the present calculations made use
of the LDA, which generally shows a tendency to overbind. We note, however, that the only
other previous calculation that made use of the LDA-CA exchange-correlation potential
[146] shows slightly better agreement with experiment for a and c lattice parameters, while
the values of C11, C33 andC44 are considerably larger that those obtained in the current
work and all other previous calculations listed in Table 3.1.

By contrast, the two other sets of LDA results [147, 148] listed in Table 3.1 feature
elastic moduli which are on average 6 and 16% smaller than the values calculated in the
present work, and closer to experimental measurements. The differences with the present
results may be due to the different parameterizations of the LDA used in the previous
LDA calculations: the work in Ref. [147] and [148] made use of the Vosko, Wilk and Nu-
sair (VWN) [31] and Hedin-Lundqvist (HL) [149] parametrizations of LDA, respectively.
The calculated results listed in Table 3.1 [147, 148] obtained with the generalized-gradient
approximation of Perdew et al. [150] (GGA-PBE) show the expected trend featuring larger
lattice parameters and smaller elastic moduli, relative to the present LDA-CA results.
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Overall, the best level of agreement between experiment and theory appears to
be obtained from the GGA-PBE results of Ref. [148]. In what follows we will focus on the
changes in structural and elastic properties associated with the addition of TM solutes to
hcp Re, and the trends which these changes display as a function of bandfilling. For this
purpose, the slightly lower accuracy of the LDA-CA exchange-correlation is not expected
to affect the main conclusions of the work. Moreover, since much of this work involves
investigating dimensionless alloy parameters such as the ductility parameter K/G, it is
expected that systematic biases between GGA and LDA will not affect the overall results
strongly.
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Table 3.1: Structural and elastic properties of hcp Re, based on the computational and experimental (Exp.) methods
listed in the first column. The units for the reported values of lattice constants (a and c), atomic volume (Ω), and

elastic moduli (Cij) are Å, Å
3
, and GPa, respectively. For the lattice parameters and atomic volume, experimental

values extrapolated to zero temperature, using reported thermal expansion coefficients, are given in parentheses.

Method a c c/a Ω C11 C33 C12 C13 C44 K/G fE fG
NCPP, GGA-PBE [147, 49] 2.762 4.442 1.608 14.67 607 705 307 209 164 2.14 1.40 1.05
NCPP, LDA-VWN [147] 2.756 4.437 1.61 14.58 623 731 327 218 170 2.18 1.45 1.07
FLMTO, LDA-CA [146, 151] 2.748 4.474 1.628 14.62 837 895 293 217 223 1.68 1.14 0.91
FLAPW, LDA-HL [148, 152] 2.750 4.442 1.615 14.54 605 650 235 195 175 1.83 1.14 0.97
FLAPW, GGA-PBE [148] 2.794 4.513 1.615 15.25 640 695 280 220 170 2.02 1.20 0.97
PAW, LDA-CA (This work) 2.741 4.422 1.613 14.39 672 740 309 252 176 2.16 1.18 0.98

Exp. (X-ray) [153] 2.762 4.455 1.613 14.71 × × × × × × × ×
(2.756) (4.448) 1.613 (14.63) × × × × × × × ×

Exp. (X-ray) [154] 2.761 4.456 1.614 14.70 × × × × × × × ×
(2.755) (4.449) 1.614 (14.63) × × × × × × × ×

Exp. (X-ray) [155] × × × × 619 687 278 204 162 2.02 1.25 0.98
Exp. (Ultrasound) [156] × × × × 616 683 273 206 161 2.02 1.24 0.97
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3.4.2 Structural properties of Re-based transition metal alloys

Table 3.2 lists the calculated values of the solute expansion coefficients (ηa =
∂ln(a)/∂x and ηc = ∂ln(c)/∂x) for each of the 3d, 4d and 5d solutes X considered. Trends
in associated structural properties are plotted as a function of the number of d electrons
for the solute species in Figs. 3.3 and 3.4.

Figure 3.3 plots the volume expansion coefficient ηV = ∂ ln (V )/∂x = 2ηa + ηc
as a function solute d-band filling. A nearly parabolic trend is observed for each of the
3d, 4d and 5d series, with minima corresponding to the Co/Rh/Ir column. All of the 3d
solutes except Sc and Ti lead to a decrease in molar volume, with the most negative values
corresponding to Co. The values for the 4d and 5d elements are comparable; most of these
solutes show positive values of ηV , with Tc, Ru/Os, Rh/Ir, Pd/Pt giving weakly negative
values.

Figure 3.4 plots the axial c/a ratio of the 16-atom Re15X cells as a function of the
solute d-band filling. In this case a general trend is observed for a decreasing value of c/a
going from the left to the right in the d-band series. The trend is nearly monotonic, with
some exceptions at the ends of the series on either side (La, Cd and Hg). It is noteworthy
that pure Re has a value of c/a ≈ 1.61 which is roughly one percent lower the ideal value
of
√

8/3 ≈ 1.63 corresponding to optimal close packing. Solutes to the left of Re in the
periodic table are seen to increase c/a, making it closer to ideal, while those to the right
of Re lower c/a.

Experimental data on the structural parameters of Re-based alloys is scarce and
the effects of alloying with different solutes is not well-established. However, for the binary
systems Re-W, Re-Ir and Re-Pt, our results regarding the trends in the structural parame-
ters are consistent with the those identified in some early experimental efforts [157]. In Ref.
[157], the lattice parameters, c/a-ratio and atomic volume of Re-based alloys were experi-
mentally determined. Solute elements W, Ir and Pt were added in concentrations between
5 and 40 at.% while maintaining the hcp phase. Consistent with the current work, Ir and
Pt were found to decrease the c/a-ratio whereas W leads to an increase. The trends in the
variation of volume with bandfilling, as found in Ref. [157] are confirmed in the present
work as well. Alloying with W is found to lead to a positive lattice expansion coefficient
in elemental Re, whereas both Ir and Pt show negative lattice expansion coefficients. Pt is
known experimentally [157] to exhibit positive volume expansion coefficients when added to
Re in concentrations exceeding about 40 at.%. These observations cannot be compared to
results from the present work in which much lower solute concentrations have been studied.



38

Table 3.2: Calculated solute lattice expansion coefficients ηa and ηc and heat of solution ∆Hsol (kJ / mol solute) of
solutes in rhenium in the dilute limit for full structural relaxations.

3d Sc Ti V Cr Mn Fe Co Ni Cu Zn
ηa 0.047 -0.013 -0.050 -0.071 -0.081 -0.084 -0.086 -0.071 -0.038 -0.001
ηc 0.186 0.098 0.011 -0.047 -0.089 -0.114 -0.118 -0.123 -0.119 -0.089

∆Hsol 100.7 17.6 37.4 64.9 28.6 3.9 -5.2 2.57 87.6 93.1

4 d Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
ηa 0.117 0.073 0.024 0.004 -0.010 -0.011 -0.012 0.005 0.044 0.078
ηc 0.373 0.277 0.164 0.062 -0.018 -0.063 -0.068 -0.058 -0.036 0.0236

∆Hsol 268.2 99.7 53.1 46.3 -1.8 -25.4 -58.3 -3.0 167.2 206.5

5 d La Hf Ta W Re Os Ir Pt Au Hg
ηa 0.184 0.052 0.020 0.001 0 0.001 0.005 0.020 0.055 0.092
ηc 0.348 0.249 0.170 0.078 0 -0.048 -0.067 -0.057 -0.036 0.032

∆Hsol 403.9 54.2 35.2 47.2 0 -27.3 -85.5 -72.2 82.7 212.6
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Figure 3.3: Volume solute expansion coefficient as a function of 3d, 4d or 5d solute element
for alloy composition Re15X1.

3.4.3 Energetics of Re-based transition metal alloys

The energetics of alloying is examined through consideration of the dilute heat
of solution ∆Hsol defined in Eq. 3.6. Results for this property are listed in Table 3.2 and
plotted in Fig. 3.5. The heats of solution for the 3d, 4d and 5d elements with 3 or 4 d
electrons (V, Nb, Ta, Cr, W, Mo) are weakly positive, while elements further to the left
in the periodic table feature increasingly positive values. The 4d and 5d elements having
5,6 or 7 d electrons (Ru, Os, Rh, Ir, Pd, Pt), all yield negative heats of solution, whereas
the corresponding 3d elements (Fe, Co, Ni) show weakly positive values. Moving further
to the right in the periodic table, to elements with 8, 9 or 10 d electrons, we observe again
strongly positive heats of solution for all of the 3d, 4d and 5d solutes.

Experimental data on the thermodynamics of Re-rich alloys is relatively scarce.
However, the present results can be compared to recent related computational studies
[158, 159], as well as free-energy models derived from phase-diagram assessments performed
within the framework of the Calculation of Phase Diagrams (CALPHAD) formalism [24].



40

Figure 3.4: Variation in c/a as a function of 3d, 4d or 5d solute element for alloy composition
Re15X1.

To enable these comparisons, it is useful to consider the dilute heat of mixing ∆Hmix which
is defined analogously to Eq. 3.6 but with the E(X) defined as the energy of element X
in the hcp structure (rather than its l owest-energy structure if different than hcp). A
negative value of ∆Hmix is indicative of an ordering tendency, such that the lowest-energy
atomic configurations on the hcp parent structure would be expected to be ordered com-
pounds. In the computational work reported in Refs. [158, 159], Re-rich D019-prototype
groundstate structures were identified with compositions Re3Pd, Re3Pt, Re3Rh, Re3Ir,
Re3Co. This is consistent with the results found in this work, in which these systems were
found to have large negative heats of mixing. Another hcp-based superstructure, B19, is
identified as a ground in the Re-Os system, for which we also find a negative heat of mixing.

Published CALPHAD models for the Re-W and Re-Ta system [24] feature nega-
tive excess Gibbs energies for both the Re-Ta and Re-W HCP phases. The mixing energy
computed in the present work for Re-W with composition Re15W1 is -2.86 kJ/mol, which
compares reasonably well to the value of -7.986 kJ/mol from the assessment in Ref. [24].
For Re-Ta, however, the published free energy model predicts a mixing energy of -31.286
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kJ/mol for Re15Ta1 composition, which is in sharp contrast to the present calculated value
of +4.85 kJ/mol.

Figure 3.5: Heat of solution as a function of 3d, 4d or 5d solute element for alloy composition
Re15X1.

3.4.4 Elastic properties of Re-based transition-metal alloys

Figure 3.6 plots the calculated values of K, G and the intrinsic ductility parame-
ter D = K/G for Re-X TM alloys as a function of the number of d electrons for the solutes
(X). Both K and G are shown to display concave and roughly parabolic trends, with max-
imum values occurring in the Fe/Ru/Os column for K and in the Co/Rh/Ir column for G.
The K/G-ratio displays a convex and roughly parabolic dependence on solute d electron
count, with a minimum in the Co/Rh/Ir column. Since higher values of K/G correlate
with higher intrinsic ductility, the results in Fig. 3.6(c) suggest that the addition of solutes
to the left or right of Re in the periodic table should increase and decrease the intrinsic
ductility, respectively. It is interesting to note that this trend is qualitatively similar to
that displayed by the axial c/a ratio in Fig. 3.4. All independent symmetrized elastic con-
stants of the Re-X TM alloys studied in this work are also included numerically in Table 3.3.



42

Table 3.3: Independent elastic constants of hcp Re15X1 alloys. The unit of the reported
values is GPa.

X C11 C33 C12 C13 C44

Sc 514.9 513.6 329.0 249.6 100.8
Ti 588.6 601.3 311.4 254.8 120.5
V 627.9 650.0 305.5 261.8 138.6
Cr 644.2 692.9 304.4 258.8 155.3

3d Mn 656.2 717.4 307.2 248.0 168.0
Fe 648.6 703.2 300.9 257.2 178.8
Co 653.8 716.6 305.4 247.6 183.0
Ni 643.9 724.7 310.2 241.8 181.9
Cu 614.5 700.6 312.0 252.2 169.3

Y 506.8 425.1 304.1 232.5 97.4
Zr 554.9 524.7 311.2 243.1 116.2
Nb 611.7 620.3 306.1 252.9 138.3
Mo 650.4 688.0 303.5 253.3 159.6

4d Tc 667.9 731.9 306.1 249.6 176.7
Ru 665.9 723.5 300.5 257.3 187.4
Rh 662.7 719.4 293.7 259.5 193.8
Pd 649.4 732.6 299.9 246.1 188.2
Ag 612.1 692.2 298.8 249.1 174.1

La 502.6 323.1 269.9 228.5 106.7
Hf 560.4 544.0 315.4 247.5 116.4
Ta 614.3 616.6 308.4 254.8 137.5
W 655.1 697.9 309.1 253.4 159.6

5d Re 671.8 739.6 309.4 253.5 176.0
Os 683.0 739.3 305.3 256.1 191.7
Ir 680.0 730.2 288.2 266.8 204.3
Pt 670.2 750.9 300.6 247.8 198.6
Au 631.3 713.1 303.1 251.0 186.7
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(a) (b) (c)

Figure 3.6: Variation of (a) K, (b) G and (c) K/G as a function of 3d, 4d or 5d solute
element for alloy composition Re15X1.

Trends in the elastic anisotropy are shown in Fig. 3.7, which plots one minus the
anisotropy parameters fE and fG for the Young’s modulus and shear modulus, respectively,
as defined in Eq. 3.4 and 3.5. An isotropic material corresponds to fE and fG values of one,
so that deviations of 1−fG and 1−fE in Fig. 3.7 measure the degree of elastic anisotropy.
Alloying of Re with neighboring elements to the left and right of the periodic table are
seen to decrease slightly the degree of anisotropy in the Young’s modulus. Alloying with
elements at the end of the TM series increase the anisotropy in fE , while the elements Sc,
Y and La, on the left of the TM series, show a considerable scatter in fE . The effects of
alloying on fG are seen to be weaker overall, relative to fE . The anisotropy in the shear
modulus is seen to be lowest for pure Re, and alloys with its isoelectronic solute elements;
alloying with elements to the right or left are seen to weakly increase the magnitude of the
deviation of fG from unity.

3.5 Discussion

The DFT-calculated properties for Re15X alloys presented in the previous section
are shown to display pronounced trends with the number of d electrons in the TM solute
atoms X . In this section we examine these trends further within the framework of canon-
ical d-band theory.

We consider first the variation in atomic volume, which is shown to display a
parabolic-like variation with band filling in Fig. 3.3 for each of the 3d, 4d and 5d periods.
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(a) (b)

Figure 3.7: Variation of the elastic anisotropy parameters fE (a) and fG (b) as a function
of 3d, 4d or 5d solute element for alloy composition Re15X1.

This can be explained readily from the well-known trends in the atomic volumes in the
elemental transition metals in their respective equilibrium structures, which vary approxi-
mately parabolically with band filling [160, 161, 162]. Given that the alloys considered in
the present work are substitutional and dilute in nature, Vegards’s law (i.e., atomic volume
of an alloy varying linearly with concentration) is expected to be a reasonable assumption,
such that alloying with solutes with sizes increasingly larger (smaller) then Re should lead
to increasingly larger increases (decreases) in atomic volume of the alloy.

We consider next the calculated trend in the axial c/a-ratio, which is shown in
Fig. 3.4 to decrease almost monotonically with the number of d electrons for the solute
atoms. In tight-binding, canonical d-band models of the electronic structure of hcp tran-
sition metals [163, 164, 165, 166] the bond order between neighbors within and out of the
basal plane is decomposed into ddσ, ddπ and ddδ two-center hopping-integral contributions.
Bonding contributions between neighbors in the basal plane and out of the basal plane are
denoted by σ1, π1, δ1 and σ2, π2, δ2, respectively. Starting at half band filling, the σ1 and
σ2 bonding weakens with a decrease in the number of d electrons, whereas the in-plane
bonding π1 is enhanced while the π2 bonding levels off (the δ bonding is relatively insignif-
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icant) [163]. This implies that the bonding in the basal plane gets reinforced with respect
to the bonding out of the basal plane with decreasing band filling, which is qualitatively
consistent with our finding that the c/a ratio of Re increases when alloyed with TM solutes
to the left in the periodic table. Additionally, the π1 and π2 bond orders cross at almost
exactly the band filling of Re. Consequently, as the band filling is increased, starting from
this crossover point, the π2 bonding starts dominating over π1, which is expected to lead
to the contraction of the c-direction relative to the in-plane lattice spacing (a). This is
consistent with the present results which show a decrease in c/a ratio when Re is alloyed
with solutes to the right in the periodic table.

Trends in the elastic constants of the pure transition metals in their equilibrium
structures with band filling have been fairly well established [167]. Bulk moduli K of the
3d, 4d and 5d transition metals have been predicted using canonical d-band theory by
Pettifor and these trends have been confirmed by other authors, e.g. Rose and Shore [168].
In transition metals, the general trend is for the bulk modulus to reach a maximum at
approximately the Re or Os column of the periodic table. More specifically, for the 5d ele-
ments, the maximum bulk modulus seems to occur at band filling slightly higher than Re.
Near the maximum, the behavior of the bulk modulus with band filling is approximately
parabolic. On the other hand, both the Voigt-average G and the Reuss-average of the shear
modulus of the elemental transition metals are known to exhibit different behavior with
band filling [169]. Specifically, for the elemental 5d transition metals, it is known that G
increases almost linearly, varying by about 40 % with increasing band filling from W to Re
to Os and finally to Ir. Since K levels out in the W-Re-Os band filling regime, whereas G
monotonically increases, these observations are consistent with the present work showing
that K/G decreases (increases) when alloying Re with solute atoms to the right (left) in
the periodic table.

The variation of the bulk modulus and the Voigt average of the shear modulus
of Re15X1 alloys with band filling is shown in Figs. 3.6(a) and 3.6(b), respectively. These
quantities approximately follow the same trend as those of the pure transition metals with
band filling: approximately parabolic behavior with a maximum at higher band filling then
Re. Interestingly, the higher ductility parameter from Re-based alloys with lower band fill-
ing than Re is not caused by an increase of K and a decrease of G, as one might expect but
merely by a relatively lower decrease in G compared to K for lower band filling than Re.
For example, the Re-based Re-La alloy has a value for K which is about 25 % lower than
for Re, whereas G decreases by nearly 50 %, yielding an increase of the ductility parameter.

Canonical d-band theory can be used to outline the trends in the energetics of
Re-based alloys as follows. Within this framework, the enthalpy of formation of a transition
metal alloy from the pure elements can be decomposed in 4 physically distinct parts [112]:
i) a contribution from the transfer of electrons to equalize the Fermi-level which is always
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negative, ii) a contribution that stems from the difference in DOS-bandwidth of the pure
elements, which can be either positive or negative, iii) a contribution that comes from
the change of shape of the DOS when alloying, and iv) a contribution that comes from
Coulomb energy due to charge transfer. In the simplest model, only the first 2 contributions
are taken into account. Continuing along these lines, the heat of formation for a binary
transition metal alloy AxB1−x can be expressed [170] as in Eq. 3.9.

Eform = −Zd (1− Zd/10)

2
Wd +

x
ZdA (1− ZdA/10)

2
WdA +

(1− x)
ZdB (1− ZdB/10)

2
WdB (3.9)

The DOS-bandwidth of the alloy AxB1−x is denoted by Wd, whereas the DOS-bandwidths
for the pure elements A and B are given by WdA and WdB, respectively. The number of
electrons in the d-band for the alloy and elements A and B is given by Zd, ZdA and ZdB,
respectively.

The parameters appearing in Eq. 3.9 can be computed from DFT calculations.
However, for the purposes of the present qualitative analysis we use the published muffin-
tin-orbital values for transition metals [170] to compare with the trends shown in Fig.
3.5. Using the theory outlined above based on canonical d-band theory, we have obtained
the heat of solution for various Re-based 5d transition metal alloys shown in Fig. 3.8.
Comparing the DFT-calculated heat of solution from Fig. 3.5 to the quantities computed
from canonical d-band theory in Fig. 3.8, it is seen that the trends in the heat of solution are
predicted correctly. The sign is not predicted consistently with DFT in all cases, although
the trends with the deep minimum to the right of Re and the higher values to the left are
present. The actual values of the heat of solution are off by factors of between 2 and 5
which is not unreasonable considering the approximations inherent in the model.

3.6 Summary and Conclusions

In summary, the present work has involved a computational study of the struc-
tural, energetic and elastic properties of hcp rhenium-based transition-metal alloys. Trends
in the atomic volume, axial c/a ratio, elastic constants and formation energies of Re15X
alloys are investigated for all 3d, 4d and 5d solute species X. Each of the calculated prop-
erties show clear trends with band filling that are well described by the d band theory of
transition-metal bonding.

The practical interest in Re-based materials is associated with the combination
of their high melting points and good low-temperature ductility. Thus, in the context of
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Figure 3.8: Canonical d-band heat of solution as a function of various 5d solute elements
for alloy composition Re15X1.

the design of lower-cost Re-based alloys the key findings of this work relate to the effects of
solute additions on the elastic anisotropy and the intrinsic ductility parameter K/G. It is
found that alloying Re with elements to the left in the periodic table increases K/G, and
is thus expected to enhance the intrinsic ductility. The trend in K/G correlates with an
increase in the axial c/a ratio, towards values closer to ideal close packing, when alloying
with solutes that decrease the average band filling. The effect of alloying on the elastic
anisotropy is examined by considering two parameters that measure the anisotropy of the
Young’s modulus and shear modulus. As described in the first section of the chapter, it
is expected generally that an increase in the elastic anisotropy could contribute to brittle
behavior in polycrystalline samples. In the present calculations alloying with solute addi-
tions near Re in the periodic table is found to weakly decrease (increase) the anisotropy in
Young’s modulus (shear modulus).



48

Chapter 4

Twinning Energetics in HCP
Transition Metals and Alloys

In this chapter, the twinning energetics of elemental HCP metals and alloys are
discussed in detail. Particular attention is focused on a twin energy anomaly for Re and
Tc discovered in this work, and the interesting connection between twin boundary energy,
twin boundary structure, electronic structure and d-band filling. Based on the insights
obtained in this work, some avenues towards replacement of rhenium are discussed as well
in this chapter.

4.1 Foreword

Twinning is a common deformation mechanism in materials where the number of
active dislocation slip systems is limited [171, 172, 17, 173, 119]. In such materials, under-
standing of the mechanisms underlying twin boundary (TB) formation can thus be essential
for optimizing mechanical properties [174, 175, 176, 177]. Theories of the crystallography
of twinning and its relation to bulk deformation are well developed, and the mechanisms
of twin nucleation and growth have been investigated in many technologically important
systems [172]. However, the degree to which deformation twinning can be significantly
influenced through variations in composition for materials design has been investigated in
only a limited number of systems (e.g. [178, 179, 180, 181]).

In this chapter we report results of a study of the properties of commonly ob-
served deformation twins in hexagonal close packed-structured transition metals, a class
of materials that finds use in diverse applications including aerospace alloys, cladding for
nuclear fuel, and magnetic recording. Through the use of density-functional-theory cal-
culations, we demonstrate anomalously low TB energies (γt) for the group VII transition
metals, Re and Tc. This finding correlates with the unique mechanical properties of HCP-
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structured Re, which displays pronounced deformation twinning [125, 123, 182, 183], and a
unique combination of high temperature strength and low-temperature ductility [25] that
have made it of interest for structural applications in extreme environments [184, 25]. To
investigate the electronic origins of this anomalous twinning behavior, we introduce a new
method for computing the composition dependence of γt in alloys. Results derived with
this approach demonstrate that TB energies in Re can be decreased even further through
alloying with elements that lower the average number of d electrons per atom relative
to pure Re. These predictions are consistent with experimental characterization studies
undertaken in this work, demonstrating pronounced differences in deformation microstruc-
tures in Re versus Re-10 at. % W alloys. The anomalous TB energetics in the group
VII metals are correlated with the presence of structural units near the TB plane that
are similar to the Frank-Kasper polyhedra characterizing the tetrahedrally-close-packed
(TCP) transition-metal intermetallic compounds that are stable near half d-band filling
[185, 186, 187, 188, 189]. Through an analysis of the electronic structure, a link between
the theory of bulk structural stability and TB energies is established, which may be useful
in controlling the energetics underlying twin formation in the design of transition metal
alloys with targeted mechanical properties.

The rest of this chapter is organized as follows. First, the general nomencla-
ture regarding the crystallography of deformation twinning in HCP-metals and alloys is
discussed. Also, the crystallography of the deformation twins considered in this work is
discussed in detail. Subsequently, the energetics of twinning in elemental HCP-metals is
discussed, including both computational and experimental methodologies. Particular at-
tention is paid to the twin energy-anomaly that was discovered in this work. The effect of
alloying and d-band filling on the twin energies is discussed next, followed by a theoretical
justification of the twin energy anomaly and the trends with d-band filling. Finally, some
possible avenues towards rhenium-replacement are discussed, followed by the conclusions
and summary.

Part of the results presented in this chapter, including the figures and tables, were
published by Maarten de Jong, Josh Kacher, Marcel Sluiter, Liang Qi, David Olmsted,
Axel van de Walle, John Morris Jr., Andrew Minor and Mark Asta in Physical Review
Letters, 115(6):065501, 2015 [190]. The material is reproduced here with permission of
the co-authors and publishers. All of the computational results were led by Maarten
de Jong under the supervision of Mark Asta and Marcel Sluiter. Josh Kacher led the
experimental studies under the supervision of Andrew Minor, and is responsible for all of
the experimental results and methods presented in this chapter.
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4.2 Crystallography of Twinning

The parent and product phases of any mechanically twinned crystal remain in
contact during the process of twinning along the twin plane. The process can therefore be
described in terms of a invariant plane strain. Further, volume conservation dictates that
in fact, twinning is a simple-shear deformation. The geometry of a mechanically formed
twin is commonly described in terms of the strain parameters associated with the simple-
shear process. This is shown schematically in Fig. 4.1.

Figure 4.1: An illustration of twinning elements.

In Fig. 4.1, consider the unit cell spanned by the vectors ~S, ~η1 and ~η2. A simple
shear is now applied that transforms it into the twinned cell defined by ~S, ~η1 and ~η2. In
Fig. 4.1, K1 denotes the twin plane, also called the composition plane. It is undistorted
and unrotated during the process of twinning. The plane K2 is the second undistorted
plane. It is rotated during mechanical twinning as indicated. The direction of the twin-
ning shear is parallel to ~η1. The magnitude of the twinning shear is commonly denoted by
e and can be expressed as a function of the axial ratio γ of the HCP-material, γ = c/a.
The planes K1 and K2, together with the directions ~η1 and ~η2 are collectively referred to
as the twinning elements. Based on this description of the crystallography of twinning,
2 different types of twins are commonly distinguished. For type-I twins, both K1 and η2

have rational Miller-Bravais indices [172]. For this type of twin, the deformation process
during twinning can be considered as simply a reflection of the structure in the K1 plane
or alternatively, a rotation around the normal vector to K1. For type-II twins on the other
hand, K2 and η1 have rational indices. In that case, the twinning process can be thought of
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as a rotation around η1 or a reflection in the plane normal to η1. For crystal systems with
high symmetry, the rotation and reflection operations are often equivalent. In that case,
all indices for K1, K2, η1 and η2 are rational and this leads to degenerate or compound
twins.

In HCP-metals, twinning is generally more complicated than in e.g. cubic metals,
due to the fact that there is an additional atom in the basis. As a result, not all lat-
tice points are necessarily sheared into their correct positions to restore the parent lattice.
This induces a shuffling of a subset of atoms in the shear part of the material, restoring
the original lattice and thereby lowering the energy of the crystal. This phenomenon is not
observed in cubic metals and makes twinning in HCP-metals an inherently more compli-
cated process. All twins considered in this work have rational indices for K1, K2, η1 and
η2 and are therefore compound twins.

In the computational work, 5 commonly observed [172, 191, 192] TBs in hcp
metals and alloys have been studied. Their twinning elements K1, K2, η1 and η2 are listed
in Table 4.1. See Fig. 4.2 for a visualization of these 5 TBs.

Table 4.1: Twinning elements of the 5 twin boundaries studied in this work.

K1 K2 η1 η2

{101̄1} {101̄3̄} 〈101̄2̄〉 〈303̄2̄〉
{101̄2} {101̄2̄} ± 〈101̄1̄〉 ± 〈101̄1〉
{112̄1} {0001} 1

3 〈1̄1̄26〉 1
3 〈1120〉

{112̄2} {112̄4̄} 1
3 〈112̄3̄〉 1

3 〈224̄3〉
{101̄3} {1̄011} 〈3̄032〉 〈101̄2〉

4.3 Twinning and Twinning Energetics in Elemental HCP
Transition Metals

In this section, a systematic study of twinning energetics in elemental HCP metals
is presented.

4.3.1 Computational Methodology

With the exception of the Virtual Crystal Approximation (VCA) and Coherent
Potential Approximation (CPA) results, all calculations were performed using the Vienna
Ab Initio Simulation Package (VASP) [136, 137]. The VASP calculations made use of
the Local Density Approximation (LDA), employing the Ceperley-Alder (CA) exchange-
correlation functional [138], based on the Perdew-Zunger parametrization [34]. All of these
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Figure 4.2: Projection-view of 5 twin boundaries considered in this work: (a) K1 = {101̄1}
(projection along [12̄10]), (b) K1 = {101̄2} (projection along [12̄10]), (c) K1 = {101̄3}
(projection along [12̄10]), (d) K1 = {112̄1} (projection along [11̄00]), (e) K1 = {112̄2}
(projection along [11̄00]).

calculations made use of the projector augmented wave (PAW) method [52, 53]. An energy
cutoff for the plane waves of 600 eV was used, and smearing of the electronic occupancies
was performed using the Methfessel-Paxton scheme [140], with a broadening of 0.1 eV.
Integrations in the Brillouin zone were carried out using Monkhorst-Pack k-point sampling
[139] with a density chosen such that the number of k-points in the first Brillouin zone
times the number of atoms in the cell equals approximately 20,000. The PAW potentials
for Re included 7 valence electrons, corresponding to a configuration 5d56s2. For the el-
ements Ta, W, Os, Ir, the related valence electron configurations are of the form 5dx6s2

where x = 3, 4, 6, 7, respectively.

For the purpose of investigating the origins of alloying effects on calculated TB
energies, we also employed calculations based on the VCA and CPA methods. The VCA
calculations were performed using the Quantum Espresso software [193], employing norm-
conserving Troullier-Martin pseudopotentials [51, 109]. Use was made of the local density
approximation, based on the Perdew-Wang 91 exchange-correlation functional [36]. The
pseudopotentials were generated using the fhi98PP code with intermediate nuclear charges
[101]. The VCA pseudopotentials were generated for Re-Ta, Re-W, Re-Os and Re-Ir aloys,
with electron per atom ratios corresponding to solute concentrations of 4.9 and 9.8 at.%
solute. KKR-CPA calculations were performed with the Munich SPR-KKR package, ver-
sion 6.3 [194], kindly provided by Prof. H. Ebert. The most important settings were: LDA
exchange correlation functional of Vosko et al. [31], Atomic Sphere Approximation (ASA)
with identical sphere sizes for all elements, valence electrons described up to l = 3, and
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484 special k-points in the irreducible Brillouin zone, structurally relaxed atomic positions
and cell parameters were taken from VASP calculations on pure Re.

For the pure elements, the twin boundary (TB) energies were calculated by em-
ploying supercells ranging from 32 to 64 atoms, depending on the type of TB. Tests with
varying supercell size established that these cells lead to calculated values for the TB en-
ergy converged to within approximately 5 mJ/ m2. A comparable level of convergence
was established relative to the choices of plane-wave cutoff and k-point sampling. The
Special Quasirandom Structure (SQS) [87, 88] approach was applied to the calculation of
the {112̄1} TB energy, and in this case, a 128-atom supercell was used, as described be-
low. The TB energy was computed by averaging over ten 128-atom SQS cells, in order to
derive an estimate of the TB energy for a randomly substitutionally disordered alloy with
a statistical uncertainty within 10 mJ/ m2.

4.3.2 Experimental Methodology and Results

99.99 % pure Re and Re-10 at. % W samples were obtained from Rhenium Al-
loys Inc. in the form of 3 mm diameter rods. Prior to delivery, the samples, originally in
powder form, were pressed, pre-sintered, swaged, heat treated at 1600 oC for 10 minutes,
and finally ground to the finish size. As-received samples were prepared from this mate-
rial. Samples used for mechanical testing were cut from the original rods using electrical
discharge machining (EDM) and annealed for 20 hr in a 50 % H - 50 % Ar atmosphere at
1100 oC.

Electron back-scattered diffraction (EBSD) scans were collected from four differ-
ent samples: two pure Re samples strained in compression to values of 0.043 and 0.068 and
two Re-10 at. % W samples strained at room temperature to values of 0.025 and 0.055.
EDAX-TSL Orientation Imaging Microscopy (OIM) software [195] was used for data col-
lection and analysis. Scans were collected from each sample from 70 × 70 µm regions using
an accelerating voltage of 20 keV and at a step size of 100 nm. The polycrystals were
found to be weakly textured with most grains oriented with the c-axis perpendicular to
the compression axis, though c-axis-oriented grains were also present in the scan, see Fig.
4.3 for the inverse pole figure map and pole figure. Twin boundaries were automatically
detected in the software using the criteria for {112̄1}-type twins of a 34.8o rotation about
the [11̄00] axis. Criteria for {101̄2}-, {112̄2}-, and {101̄1}-type twins were also included
but none were detected in the scan. The twin width was measured manually in each grain
to calculate the average twin width for the two different materials.

As-received samples were prepared for Transmission Electron Microscopy (TEM)
characterization by first sectioning them from a rod into 3 mm diameter disks with a
thickness of approximately 100 µm using electron discharge machining. These samples
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were expected to have heavy levels of deformation as material synthesis involved powder
consolidation and swaging. Thinning to electron transparency was achieved by jet-polishing
using an ethanol-butoxyethanol-perchloric electrolyte. TEM characterization was done us-
ing a JEOL 3010 operated at 300 keV. Figure 4.4 shows TEM images for pure hcp Re and
a Re-10 at.% W alloy.

Figure 4.3: a) Inverse pole figure map of the deformed Re showing extensive twinning
behavior. All twins present in the scan are {112̄1} - type. b) (0001) - Pole figure constructed
from the data shown in (a) showing that the microstructure is weakly textured orthogonal
to the (0001)-orientation. The legend is in terms of times random.

4.3.3 Results

In Fig. 4.5, results of DFT calculations of γt are plotted for two commonly ob-
served twins in HCP transition metals, which we will refer to by the twinning plane:
{112̄1} and {101̄1}. The calculations have been performed within the framework of the lo-
cal density approximation to DFT [138, 34], using the Vienna ab-initio simulation package
[196, 197, 198]. The γt results in Fig. 4.5 are plotted as a function GΩ1/3, where G is the
Voigt-Reuss-Hill averaged isotropic shear modulus [199]) and Ω is the atomic volume. With
the notable exception of the group VII metals (Tc and Re), the results in Fig. 4.5 show
(i) an overall trend towards increasing values of γt with the magnitude of GΩ1/3, and (ii)
lower energetics for {101̄1} relative to {112̄1} TBs. The first observation is consistent with
similar correlations reported previously for grain and twin boundaries in metals [200, 201],
and is found to hold for TBs in other HCP metals based on the calculated values given in
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Figure 4.4: Bright-field TEM images showing twin deformation in a) pure Re and b) Re-10
at. % W.

Table 4.2.
The results in Fig. 4.5 and Table 4.2 for the group VII elements Tc and Re stand

out in two ways. First, the magnitudes of γt are lower than expected based on the dashed
trend lines fit to all the other transition metals. This is particularly true for the {112̄1}
TB, for which γt for Tc and Re is more than a factor of five lower than that for Ru or Os,
the neighboring elements in the periodic table. Second, Tc and Re are the only elements
in the transition-metal series for which the {112̄1} TB has a lower calculated energy than
the {101̄1} TB. Interestingly, the second of these two results is qualitatively consistent
with experimental observations in deformed Re samples, which show a predominance of
{112̄1} twins [183, 123, 125]. An example is given in Fig. 4.6, which shows electron back
scattered diffraction images for Re and Re-10 at. % W alloys deformed in compression at
room temperature to strains of 6.8 % and 7.8 %, respectively. A detailed investigation of
the dominant twin type was undertaken for these deformed polycrystalline samples. Out of
1,040 twins investigated in pure Re all but 5 were found to be {112̄1} type (the other five
were of {101̄2} type), and similarly 68 twins were analyzed in the Re-10 at. % W sample,
all of which were of {112̄1} type.
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Figure 4.5: Calculated {101̄1} and {112̄1} twin boundary energies versus calculated values
of the GΩ1/3, where G and Ω are shear modulus and atomic volume, respectively. Dashed
lines are least-squares fits excluding the data for Re and Tc.

4.4 Twinning Energetics: Effect of Alloying and d-band Fill-
ing

To further investigate the anomalous twinning behavior in the group VII tran-
sition metals, we focus on Re and examine the effect on γt resulting from alloying with
neighboring elements in the periodic table. For this purpose we have developed a method-
ology for computing the energies of planar defects in substitutional alloys based on the
special quasirandom structure (SQS) formalism. In the SQS approach a structure with a
number of atoms small enough to be considered in DFT calculations is constructed with
an atomic configuration for which the correlation functions for the near-neighbor shells
mimics as closely as possible those for a random substitutional alloy [87, 88, 202]. In the
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Table 4.2: Calculated twin boundary energies for selected HCP metals (mJ/m2), twin
boundary with the lowest energy and GΩ1/3

(
J/m2

)
in mJ/m2, where G is the Voigt-

Reuss-Hill averaged shear modulus, and Ω is the atomic volume. For each metal, an
asterisk denotes the twin boundary with the lowest energy.

Twin Boundary

{101̄1} {101̄2} {101̄3} {112̄1} {112̄2} GΩ1/3
(
J/m2

)

Y 41∗ 117 171 117 231 8.3
Zr 53∗ 221 302 209 373 9.0
Sc 85∗ 166 274 122 296 10.6
Ti 103∗ 320 409 253 446 11.3
Hf 147∗ 395 399 339 473 15.7
Co 433∗ 666 555 507 710 39.5
Tc 297 497 506 191∗ 506 43.9
Re 395 707 613 248∗ 643 47.1
Ru 637∗ 1055 869 1064 872 50.3
Os 824∗ 1359 1040 1348 1002 68.6

10 µm

a b

Figure 4.6: Electron back-scattered diffraction scans of a) pure Re deformed 6.8 % and b)
a Re-10 at. % W alloy deformed 7.8 %. The colors represent crystallographic orientation
as described by the legend top right. Black areas represent regions that were unable to be
indexed due to surface pitting.

present generalization of the approach we generate SQS which, in addition, give correla-
tion functions close to random values within the local vicinity of a plane where cleavage



58

or shearing/shuffling operations are imposed to create a surface or TB, respectively. The
accuracy of the scheme developed in this work has been assessed for model alloys described
by classical potential models, as will be discussed in the next chapter.

In the top panel of Fig. 4.7 we plot the variation of the DFT-calculated {112̄1} γt
for Re0.912X0.098 alloys, as a function of the solute species X. In the middle panel we also
plot, for comparison, calculated basal-plane ({0001}) surface energies (γs) for the same
alloys. The lower panel plots the value of an intrinsic ductility parameter D = γs/γt,
which has been proposed for HCP metals where cleavage occurs on the basal plane, and
where deformation twinning is the primary mechanism for plasticity under tensile loading
parallel to the c axis [173, 17]. It can be seen that γt calculated for {112̄1} TBs display a
pronounced dependence on solute species: alloying with elements to the left (right) of Re
is seen to give rise to a significant decrease (increase) in γt. Calculated γt values decrease
by approximately 50 % when Re is alloyed with 9.8 at. % W or Ta, and increases by
approximately the same magnitude with a comparable amount of alloying with Os or Ir.
The {101̄1} TB energy on the other hand shows an order of magnitude smaller variation
for the same compositions, see Fig. 4.8. The dependence of γt on band filling was further
analyzed by computing TB energies for both {112̄1} and {101̄1} twin orientations, for all
5d transition metals, including those not stable in the HCP structure. The results are
plotted in Fig. 4.9 and show that both twins display maximum values of γt for Os. The
values of γt decrease with decreasing band filling, reaching minimum (negative) values for
W (Ta) for the {112̄1} ({101̄1} ) twin before increasing again (to positive values) as the
band filling reaches Hf. As was found in the consideration of alloying effects, the results
in Fig. 4.9 show that the {112̄1} twin displays a much larger (approximately four times)
variation in TB energy relative to {101̄1} across the 5d transition metal series. Similarly,
the surface energy is seen to show relatively small variations with solute addition, and, as
a consequence, alloying with elements to the left (right) is predicted to lead to a sharp
increase (decrease) in the intrinsic ductility parameter D.

The computational prediction that alloying with W leads to a pronounced decrease
in γt for the {112̄1} TB is supported by a comparison of the deformation microstructures
for Re and Re-10 at.% W alloys shown in Fig. 4.6. Specifically, the spacing (λ) between
TBs in the twin variants for the Re-W alloy is considerably smaller than for pure Re.
Generally, it is expected that a decrease in γt leads to a decreased value of λ [203] when
all other conditions are roughly equal. This was verified by measuring twin thickness in
approximately 50 grains from each material. Twins in the deformed Re and alloys samples
were found to have an average thickness of 720 nm and 440 nm, respectively.

To probe the origin of the effect of alloying on γt for the {112̄1} TB in Re, addi-
tional DFT calculations were performed based on the virtual crystal (VCA) and coherent
potential (CPA) approximations. In these calculations the individual Re and solute atoms



59

Figure 4.7: For Re-9.8 at. % X alloys, variations as a function of solute X, for (a) the
{112̄1} TB energy as calculated from SQS, VCA and KKR-CPA, (b) {0001} surface energy
calculated from SQS and (c) ductility parameter, D = γs/γt.

are replaced by single effective atoms with a concentration-weighted number of valence
electrons or scattering properties, but without accounting for displacement effects associ-
ated with atomic size mismatch. The calculations thus allow investigation of the relative
importance of electronic versus size effects underlying the concentration dependence of γt.
In Fig. 4.7 (a) the slope of the {112̄1} TB energy is well reproduced (to within approxi-
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Figure 4.8: The energy of the {112̄1} and {101̄1} twin boundary in pure Re and Re-X
alloys as a function of band filling, as calculated from the VCA. The composition of the
alloys is Re- 10 at. % W and Re- 10 at. % Os.

mately 5 %) by both VCA and KKR-CPA calculations, suggesting a direct link with the
band energy.

This finding is consistent with a comparison of the calculated electronic density of
states (DOS) for bulk HCP Re, and supercells of Re containing {112̄1} and {101̄1} twins.
Plotted in Fig. 4.10 is a comparison of the calculated electronic density of states (DOS)
for bulk HCP Re, and supercells of Re containing {112̄1} and {101̄1} twins. The DOS
show a shallower slope at the Fermi level for the supercell with the {112̄1} twin than it
does for the bulk structure. As a consequence, the band energy for this twin decreases
(increases) with a shift in the Fermi energy to lower (higher) band fillings. Further, a
comparison of the DOS of the {112̄1} and {101̄1} shows that the former attains more
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Figure 4.9: Calculated energies for {112̄1} and {101̄1} TBs for all 5d transition metals,
including those stable in bcc and hcp crystal structures.

states at lower energies, whereas the latter has a higher DOS at higher energies just below
the Fermi level, as indicated by the arrows in the inset of Fig. 4.10. This contributes to
the lower energy of the {112̄1} TB relative to the {101̄1} TB. To the right of the Fermi
level, the DOS of the {112̄1} TB attains higher values than that of the {101̄1} TB, with
the HCP DOS lying approximately in between. This is consistent with our findings that as
band filling is increased, the {112̄1} TB gradually loses stability with respect to the {101̄1}
TB. Although the calculated TB energy is clearly influenced by contributions to the total
energy beyond just the band energy, the results in Fig. 4.10 are consistent with the trends
for the concentration dependence of the calculated values of γt. In summary, the calculated
DOS show that within a rigid-band model a reduction in band filling leads to (i) a lowering
of the band energy contribution to γt for the {112̄1} twin, and (ii) a lowering of the band
energy for this twin relative to that for {101̄1}; both findings are qualitatively consistent
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with the results for alloying effects on γt in Re presented above.

Figure 4.10: Electronic DOS for the {112̄1} and {101̄1} TB and HCP Re. The inset
shows that the DOS of the {112̄1} TB is lower than the {101̄1} TB DOS just left of the
Fermi-level, with the opposite behavior to the right of the Fermi-level.

4.5 Origin of the Twin Energy Anomaly

Additional insights into the origin of the effect of band filling on γt for the {112̄1}
twin can be obtained by examining the local atomic structure in the TB plane. As indi-
cated in Fig. 4.11 the nearest-neighbor coordination polyhedron for atoms in the {112̄1}
TB plane takes the shape of a distorted icosahedron (pentagonal bipyramidal prism). This
polyhedron increases the number of triangular faces by 2 and reduces the number of square
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faces by one as compared to the anti-cubooctahedron polyhedron characteristic of the bulk
HCP structure. In contrast, atoms in the {101̄1} TB plane have two distinctly coordinated
sites: a 13 coordinated site with 2 additional triangular faces, and an 11 coordinated site
with 2 less triangular faces than the anti-cubooctahedron shell of HCP. Therefore, for the
{101̄1} TB the total number of triangular and square faces averaged over the coordination
polyhedra of the two interface sites are the same as in bulk HCP. An increase in the fraction
triangular faces in the coordination polyhedra of the {112̄1} TB makes the interface atomic
structure similar to tetrahedrally close packed (TCP) structures, such as the well-known
σ, χ and A15 Frank-Kasper structures, where coordination polyhedra have exclusively tri-
angular faces. The TCP phases occur in transition metals and their alloys at characteristic
valence electron/atom (e/a) ratios intermediate between Re and W [185].

A connection between these geometrical considerations, and the effects of band
filling on γt for {112̄1} twins in Re can be made through consideration of a moments anal-
ysis of the DOS [204, 205]. Previous work has demonstrated that for transition metals
near half d-band filling, the relative stability of structures with similar second moments
(i.e., with similar bond lengths and coordination numbers) can be understood based on the
fourth moment of the DOS. It has been shown that near half d-band fillings, the nearest
neighbor square clusters found in the HCP structure are penalized energetically relative to
tetrahedral configurations (as found in TCP phases, and reflected by triangular faces on the
coordination polyhedron), due to their contribution to the fourth moment [206, 207, 208].
This is consistent with our finding that the {112̄1} twin shows an anomalous energetic
stabilization with band fillings near to and slightly lower than Re: the atoms on and near
the twin plane exhibit environments built from tetrahedra and distorted squares, instead
of the planar nearest-neighbor square clusters found in the bulk HCP structure.

This model is supported by calculations of the moments of the local DOS (LDOS)
for atoms as a function of distance from the TB. The n-th moment of the LDOS (di) for

atom i is defined as µ
(n)
i =

∫∞
−∞ (E − εi)n di (E) dE, where εi is the center of gravity [209].

A “bimodality” parameter can be defined as s = {µ(4)µ(2)−
(
µ(2)

)3−
(
µ(3)

)2}/
(
µ(2)

)3
[209],

such that a completely bimodal LDOS corresponds to s = 0, while for s < 1 (s > 1) the
LDOS is said to exhibit bimodal (unimodal) behavior. As shown in Fig. 4.11 (d), for the
atoms near the {112̄1} twin plane, s < 1 whereas far away from the twin s > 1. Hence,
atoms on the twin plane exhibit a more bimodal LDOS that those in the HCP environment.
Thus the low values of γt for the {112̄1} TB can be understood by analogy with earlier
work [188] showing that large stabilizing contributions to the atomic geometries of TCP
structures, which are similar to those found in the twin plane, arise from hopping paths
that produce a more bimodal DOS, with an associated enhanced energetic stabilization,
near half d-band filling.
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Figure 4.11: (a) The {112̄1} TB, viewed in projection along an [11̄00] direction, highlighting
a distorted icosahedron on the TB plane, (b) detailed view of the distorted icosahedron
as found in the {112̄1} TB, (c) an undistorted Z12 icosahedron, and (d) the calculated
bimodality parameter s as a function of distance relative to the TB plane.

4.6 Rhenium Replacement Scenarios

The work in previous sections has identified an anomalously low {112̄1} twin en-
ergy for d-band fillings near that of Re. It is believed that the high ductility and the
propensity of Re to deform by virtue of {112̄1} twins, is closely related to the anomalously
low energy of this particular twin. Furthermore, it has been shown that the {112̄1} twin
energy of Re can be lowered even further by reducing the d-band filling, thereby stabiliz-
ing the characteristic icosahedral atomic features that are found in the {112̄1} twin. This
observation can be exploited to suggest new alloys, free of Re and at lower overall cost,
that exhibit similar twin boundary energetics, and presumably also a high level of intrinsic
ductility. The idea pursued in this section is to consider transition metals at lower d-band
filling (left of Re in the periodic table) and at higher d-band filling (right of Re in the
periodic table) and create alloys such that the d-band filling coincides approximately with
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that of pure Re or slightly lower values, near where the twin energy anomaly occurs.

Figure 4.12: A depiction of rhenium replacement strategies pursued in this section: create
alloys

This premise is shown schematically in Fig. 4.12. Some possible combinations of
elements that would yield alloys with d-band fillings near Re are for example equi-atomic
concentrations of Os and W or Ru and Mo. However, not all alloy-compositions are feasible
candidates for a replacement of rhenium. Recall that the goal of rhenium replacement is
cost saving. The elements osmium (Os) and iridium (Ir) therefore do not seem good start-
ing point for replacement candidates since both are not only significantly more expensive
than Re but also very brittle. The same is true for rhodium (Rh). The element ruthenium
(Ru) seems like a better starting point: even though it is costly, it is less expensive than
Re. Second, Ru has the same crystal structure as Re, so that potentially the same twinning
mechanisms can be activated.

Elemental Ru however is very brittle and hence, alloying is required to create
ductile Ru-based alloys with d-band fillings near those of the twin energy anomaly. To
this end, alloying Ru with transition metals to the left of Re in the periodic table is re-
quired. Elements such as vanadium (V) and chromium (Cr) satisfy this requirement, but
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Table 4.3: {112̄1} twin boundary energies, calculated for several Ru-bases substitutionally
disordered alloys.

System d-band filling γt ({112̄1} TB, mJ/m2)

Pure Re 5.00 248
Ru-Mo (37.5 at.% Mo) 5.25 470
Ru-Ta (37.5 at.% Ta) 4.875 261
Ru-W-Re (25 at.% W, 25 at.% Re) 5.25 478
Ru-Ta-Re (37.5 at.% Ta, 15.6 at.% Re) 4.72 165

are not considered further as alloying elements to Ru due to their relatively low melting
temperatures relative to Re, rendering them less useful for high-temperature applications.
In this section, W, Ta, Mo and Re are considered as alloying elements to Ru since i) these
lower the overall d-band filling towards regions where high intrinsic ductility is expected
and ii) their high melting temperatures make them suitable replacement candidates for Re.

Table 4.3 shows the compositions of the Ru-based alloys considered in this work,
the calculated {112̄1} twin boundary energy and their average d-band filling. These al-
loy compositions were chosen based on d-band fillings that are near those of pure Re,
while stabilizing the HCP-phase. The reference values for elemental Re are also indicated.
These calculations were performed on SQS-cells, accounting for the full effect of atomic
size mismatch, elastic relaxations and charge transfer. Table 4.3 clearly shows the strong
connection between d-band filling and twin energy: the Ru-Ta and Ru-Ta-Re alloys at the
same d-band filling exhibit twin energies within 2 %, even though the compositions are
very different. Further, alloys with d-band fillings higher than Re (Ru-Mo and Ru-W-Re)
exhibit twin energies that are approximately 90 % larger than for elemental Re. The Ru-Ta
alloy, which has a d-band filling very similar to Re, is within 5 % of the twin boundary
energy of Re. Interestingly, as d-band fillings are lowered significantly below Re, as in the
Ru-Ta-Re alloy in Table 4.3, the twin energy drops rapidly, which is consistent with the
calculations based on the VCA, as presented in Fig. 4.8. Due to the low twin energy of
alloys such as Ru-Ta-Re, the intrinsic ductility is expected to be higher than for pure Re,
although surface energy-calculations would have to be carried out to confirm the expected
increase in Yoo’s ductility parameter.

The results presented in Table 4.3 indicate that Re-substitute alloys with a high
intrinsic ductility can be created by tuning the d-band filling to coincide with or below
Re, near the twin energy anomaly. The most promising alloy in Table 4.3 in terms of twin
energy is Ru-Ta-Re, although lowering band filling further may lead to even higher intrinsic
ductility.
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4.7 Conclusions and Summary

In summary, we have undertaken DFT calculations demonstrating anomalously
low energies for {112̄1} TBs in the group VII transition metals. Additionally, we have
shown for Re that the energy of this TB can be significantly lowered further by alloying
with elements that decrease the filling of the d band relative to pure Re. The theoretical
results are consistent with experimental observations of pronounced twinning in the defor-
mation microstructures of Re and Re-W alloys, as γt is an important factor affecting twin
nucleation (e.g. [210, 211]). Based on an analysis of the electronic and atomic structures
of Re {112̄1} and {101̄1} TBs it is argued that the anomalously low energies of {112̄1}
twins originate from the presence of structural units at the interface which are stabilized
for d band fillings intermediate between those characteristic of group VI and VII transition
metals. The results thus suggest a strategy for the selection of alloying species that may
be utilized to control twin activity in the design of transition metals with optimized me-
chanical properties. In particular, the results suggest strategies for designing alloys that
mimic the unique properties of Re by choosing combinations of alloying elements that lead
to similar overall band fillings.

More generally, the results demonstrate a link between electronic structure and
interfacial stability that may be effective in controlling interface-related properties of
transition-metal alloys more generally. Specifically, the tuning of d band filling to sta-
bilize specific atomic configurations may represent an effective strategy in stabilizing grain
and twin boundaries that feature a high fraction of such structural units. Thus, classical
theories of bulk phase stability in transition metals can provide guidelines for “interfacial
engineering” of transition-metal alloys with properties controlled by their interfaces.
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Chapter 5

Calculations of Planar Defect
Energies in Substitutional Alloys
Using
Special-Quasirandom-Structures

5.1 Foreword

Dislocation slip and deformation twinning are the most commonly observed mech-
anisms for plastic deformation in metals and alloys. Which of these mechanisms dominates
for a given material and loading condition is generally governed by the ease of nucleation of
the relevant defects, and their growth and propagation. These processes are in turn strongly
influenced by the energetics of planar defects, such as generalized stacking faults and twin
boundaries. The competition between plastic deformation and fracture, underlying the
intrinsic ductility of a material, is thus commonly investigated through the consideration
of the relative values of the energies for relevant planar faults and the free surfaces formed
by crack propagation [212, 213, 214, 215].

For example, in the theory of Thomson and Rice [213, 216], larger values of the
ratio of the surface energy (γs) to the unstable stacking fault energy (γUSF) are an indicator
of increasingly ductile behavior, as γUSF corresponds to the barrier for dislocation slip at
the crack tip, while γs measures the increase in surface energy due to crack growth. This
theory has been used in the literature to study the ductility in metals from first principles
(e.g. [127, 217]). Similarly, for hcp metals larger values of the ratio γs/γt between surface
and twin-boundary (γt) energies have been shown to correlate with higher ductility under
conditions where twinning at the crack tip is the relevant mechanism for plastic deforma-
tion [17]. For body centered cubic (bcc) and face centered cubic (fcc) materials, similar



69

measures of twinnability have been developed and employed, which are based on (unstable)
stacking fault energies and unstable twin energies [118, 217, 218, 219, 220].

In applications of computational modeling to guide alloy design, methods for cal-
culating the effect of composition on the planar fault energies defined above are useful
to understand whether the introduction of specific solute species will tend to increase or
decrease the ductility and strength of a given material. However, the calculation of planar
defect energies in alloys is considerably more difficult than for elemental metals or ordered
intermetallic compounds, due to the presence of configurational substitutional disorder,
leading to a lack of translational periodicity. At present, two main approaches have been
introduced for computing the composition dependence of planar defect energies in alloy
solid solutions from first-principles.

In the first, stacking fault energies in alloys have been computed within the ax-
ial next-nearest-neighbor Ising (ANNNI) lattice-model formalism [221, 105, 222, 223, 224,
225, 226, 227, 228, 229, 230, 106, 231, 232]. In this approach, the energies of fcc, hcp
and double-hcp structures are computed to derive pairwise interactions that parametrize
the change in energy associated with different stacking sequences of close-packed planes.
Once derived from bulk energy calculations, these interactions are used to predict the
excess energy of an isolated stacking fault. This method has been used for alloys, in
which case the special-quasirandom-structure (SQS) approach [87, 88, 93] has been used
to model the energetics of compositionally disordered fcc, hcp and double hcp structures
[87, 88, 93, 233, 234]. While this approach provides a powerful framework for computing
the composition dependence of stable stacking fault energies, it is not possible to apply the
method to calculations of unstable stacking fault energies, defined as the energy maximum
in the generalized-stacking-fault (GSF) surface. Further, it is not apparent how to gener-
alize the approach in the consideration of the energies of surfaces, or the large variety of
twin boundaries observed in the deformation of hcp metals.

Another approach that has been employed to compute stacking-fault and sur-
face energies in alloys is based on the use of the coherent potential approximation (CPA)
[194, 235, 236]. In applications of the CPA to the calculation of energies of bulk alloys, a
disordered substitutional arrangement of atoms over the sites of a parent lattice is mod-
eled using a single effective atomic species defined to have the average electron-scattering
properties of the alloy. This procedure restores the translational symmetry of the underly-
ing parent lattice, facilitating direct DFT calculations of bulk alloy energetics. The CPA
approach has been generalized to consider layered structures, to enable calculations of sta-
ble stacking fault and surface energies [237, 238, 239, 240, 194, 241, 242, 243, 244, 245].
At present, however, the implementations of the approach do not allow for the accurate
treatment of atomic displacements and the generalization of the method to the study of
unstable stacking faults and general low-symmetry twin boundaries, for which significant
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atomic shuffles may arise, has not been demonstrated to the best of our knowledge.

In the present chapter we describe a general approach for calculating the energies
of planar defects in substitutional alloys, based on a generalization of the SQS method
[87, 88] developed to compute the electronic structure and energetics of bulk substitu-
tional alloys. The approach was demonstrated recently in applications to the calculation
of twin-boundary and surface energies in hcp Re-based alloys [246]. In this chapter we
describe a refinement of the approach, employing planar averaging, and provide details of
the SQS structures used in the method. Further, we demonstrate the application of this
approach also in the study of unstable stacking fault and surface energies. We present a
test of the accuracy of the approach, through comparisons with large-supercell benchmark
results derived employing a classical embedded-atom-method (EAM) interatomic potential
model for Ti-Al alloys [247]. Finally, an application of the SQS-based method in DFT
calculations of the dependence of twin boundary energies on Al content in Ti-Al hcp alloys
is demonstrated.

Part of the results presented in this chapter, including the figures and tables,
have been submitted as a regular article to Physical Review B, titled “Calculations of
Planar Defect Energies in Substitutional Alloys Using Special-Quasirandom-Structures”,
with authors Maarten de Jong, Liang Qi, David Olmstes, Axel van de Walle and Mark
Asta.

5.2 Methodology

In this section we describe details associated with the calculation of planar defect
energies in alloys, employing supercell models in conjunction with the SQS approach for
configurational averaging. The focus is on hcp alloys, considering three types of planar
defects that are relevant to their mechanical properties: twin boundaries, unstable stacking
faults and free surfaces. Specifically, we consider the {112̄1} twin boundary, which is
observed in the deformation microstructures of many hcp metals and alloys such as Ti, Re,
Mg and Be [17, 126, 248, 119]. Further we consider calculations of the generalized stacking
fault (GSF) surface corresponding the common {11̄00} 〈112̄0〉 slip system in hcp metals.
Finally, the energies of {11̄00} free surfaces are considered. We begin by describing the
supercells and planar averaging employed for the modeling of these planar defects and the
calculation of their energies. A discussion of the generation of the SQS models is then
presented, followed by the computational details for the present studies.
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5.2.1 Supercell Geometries

Twin Boundaries

The {112̄1} twin boundary in the hcp structure can be described by 4 twinning
elements K1 = (112̄1), K2 = (0001), η1 = [1̄1̄26] and η2 = [112̄0]. [249, 250] These twin-
ning elements denote the twinning plane, conjugate twinning plane, twinning direction and
conjugate twinning direction, respectively. The amount of twinning shear for this twin is
S = γ−1, where γ = c/a, i.e. the axial ratio of the c and a lattice parameters. Since hcp
metals have 2 atoms in the motif corresponding to a hexagonal Bravais lattice-point, in
general twins cannot be formed by the application of a homogeneous twinning shear alone,
and additional atomic shuffles are required [249, 172]. For the {112̄1} twin boundary, the
required atomic shuffles on both sides of the twin boundary plane are given by the vector
τ = ±0.5 [11̄00] [172].

In this work, the {112̄1} twin boundary is constructed directly from an appro-
priate bulk cell as follows. First, as illustrated in Fig. 5.1 (a) the bulk cell is constructed
with lattice vectors parallel to a = [101̄2], b = [101̄0] and c = [1̄100]. The dimension
along b is 8 times the conventional bulk hcp lattice constant a. This dimension is chosen
such that the bulk cell can be employed to build twin boundary geometries, with sufficient
spacing between the twin and its periodic images to minimize spurious interactions. The
required bulk cell size is established by convergence studies, which show for the systems
considered in this work that beyond 6 planes from the twin boundary, the solute formation
energies are essentially converged to the bulk value. This leads to a bulk cell consisting
of 64 atoms. The distance separating the two twins in the periodic cell that is required
to achieve converged interfacial energies is expected to be system dependent, such that
the dimensions of the cells employed in this work may not transfer directly to other alloy
compositions. For each system, convergence testing should be undertaken.

In the second step, the twin boundary cell is formed by i) applying a twinning
shear S to all atoms located on one side of the twin plane in the middle of the supercell
(i.e., half way along the periodic length along the b direction), followed by ii) an atomic
shuffle on one side of the twin plane, as described above. This results in a twinned cell
with a twin plane in the middle and another on the edge of the cell, as illustrated in Fig.
5.1 (b). Note that there exists a direct mapping between atoms in the bulk and twinned
cell, which is important for the application of the SQS approach. Further note that several
possible indepdent locations exist in the bulk cell where the twin plane can be inserted.
In Fig. 5.1, the twin is placed in the center of the cell, but this location is arbitrary and
for studying planar defects in alloys, we have found improved accuracy when results are
averaged over all possible locations of the planar interface, as described below.

For calculations of the twin boundary energy, the initial and final geometries
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shown schematically in Figs. 5.1 (a) and (b), respectively, are calculated and γt is ex-
tracted from the energy difference divided by the twin boundary surface area, taking into
account the presence of two twin boundaries per periodic supercell. In the energy cal-
culations for the twinned supercells ionic relaxations are performed, and the dimension
perpendicular to the twin plane is relaxed, while holding the periodic distances in the twin
plane (i.e., along a and c) fixed at the values dictated by the bulk hcp supercell.

(a) (b)

Figure 5.1: Example supercell geometry for (a) a bulk alloy with an appropriate orientation
for defect calculations and (b) a {112̄1} twin boundary cell, formed from the bulk after
an appropriate combination of shear and shuffle. This figure shows a projection along
the [1̄100]-direction. The twin-plane is inserted in the center of the bulk cell and is also
indicated.
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Unstable Stacking Faults and Surfaces

Supercells for the calculation of the {11̄00} 〈112̄0〉 GSF energy, and the {11̄00}
surface energy are constructed by choosing lattice vectors in the directions a = [112̄0],
b = [0001] and c = [11̄00], as illustrated in Fig. 5.2 (a). As above, the cells contain atomic
configurations derived from the SQS algorithm described in the next section. When per-
forming calculations of the GSF and surface energies, two planes are picked which will be
(i) rigidly shifted along the a = [112̄0] direction in order to create a stacking fault, or (ii)
separated by a vacuum layer in order to create two free surfaces. All possible choices for
these neighboring planes are considered and the planar energies are derived by averaging
results over these different sets of planes.

Considering first the calculation of the GSF energy, the bulk supercell is set up
initially to be periodic along all three directions. The size of the original bulk supercell
is three times the bulk hcp lattice constant (a) along a, two times the bulk hcp lattice
parameter (c) along b, and there are 6 layers of prismatic planes (for each plane there are
two sub-layers) along c, resulting in a total number of 72 atoms. To calculate the GSF
energy and γUSF in particular, all atoms in the half supercell below a given (11̄00) plane
in the middle of the supercell are rigidly shifted along the [112̄0] direction with the slip
distances set as 0, 0.35, 0.45, 0.5 and 0.6 a, respectively. These shifts are accommodated
by distorting the unit cell to have an angle different from 90 degrees between the a and c
directions, so there is only one stack fault interface in this periodic supercell, as illustrated
in Fig. 5.2 (b). For each slip vector, all the atoms in the supercells are relaxed along the
c direction but fixed along the a and b directions. The supercell size along the c = [11̄00]
direction is also relaxed to remove the normal stress perpendicular to the (11̄00) plane.
The GSF energy surface is plotted based on the energy increase at these slip distances
relative to the undeformed structure, and γUSF is derived by interpolating the maximum
point on the GSF curve.

To compute the {11̄00} surface energy γs, we start by calculating the energy
of the bulk supercell illustrated in Fig. 5.2 (a). This reference energy is computed with
periodic boundaries in all three directions, the same as the reference supercells for GSF
calculations. The energy of this periodic bulk supercell reference energy is then compared
to the energy obtained for the supercell illustrated in Fig. 5.2 (c), where a vacuum layer
of 15 Å is introduced in the middle of the relaxed supercell, giving rise to two {11̄00}
surface planes. From the energy difference of these two supercells, divided by twice the
cross-sectional area parallel to the surface planes, the value of γs is derived. In the calcula-
tions of the energies of the bulk and surface supercells the positions of all atoms are relaxed.
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(a) (b) (c)

Figure 5.2: Supercell geometry for (a) a bulk cell with an appropriate orientation for defect
calculations (b) calculation of the generalized stacking-fault energy and (c) calculation of
free-surface energies. These figures show a projection along the [0001]-direction.

5.2.2 SQS Generation

The SQS structures were developed for each of the bulk supercells defined in the
previous subsection at different compositions starting at approximately 3 at.% solute, up
to a maximum concentration of 25 at.% solute, with increments of approximately 3 at.%.
A genetic algorithm (GA) was used for optimizing the SQS configuration, as described be-
low. GA’s have been employed in the materials-science community in the study of different
topics such as crystal-structure prediction [251, 252, 253] and in the construction of cluster
expansions [254, 255].

We consider one of the bulk hcp supercells above, containing a total of N atomic
sites. A binary alloy configuration for a given cell shape can be represented by a chro-
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mosome of length N of the form [01101001 . . .], where each location i in the chromosome
uniquely corresponds to an atomic position in the bulk cell, and each can take a value
of either 0 or 1, indicating that the position i is occupied by either an A-type or B-type
atom, respectively. The objective function to be minimized is the euclidian difference norm
between the vector describing the atomic correlation functions of a random solid solution,
xrandom and the vector describing the correlation functions of the finite-sized supercell
xscell. The fitness of any given configuration is inversely proportional to this euclidian
difference norm

∥∥xrandom − xscell
∥∥. In this work, 6 atomic correlation functions are con-

sidered for pairs, and 3 for triplets. The atomic correlation functions for both the random
alloys and the trial configurations are calculated using the alloy theoretic automated toolkit
(ATAT) [256, 257] and fed to the GA during the iterative optimization process. In defining
the fitness function, we explored different weighing factors for the different pair and triplet
clusters, e.g., giving higher weight in the difference norm to shorter pairs and/or to clusters
with higher multiplicities. Several different sets of weights were explored and even though
different SQS were obtained for each, we found minimal influence on the resulting planar
defect energies.

The optimization procedure is initiated by generating an initial population of 800
randomly generated configurations at a given composition. The selection method used
is roulette wheel selection, in which selection probability for mating is proportional to
the fitness score. Crossover cannot be performed using standard schemes such as 1 or
2-point crossover, since these will change alloy composition during the optimization. In-
stead, crossover is performed using the edge crossover algorithm [258], which ensures the
composition of the configurations remains constant, i.e., the number of 0’s and 1’s remains
unchanged during the optimization process. Further, a 0.5 % probability of mutation is
allowed and the algorithm is run for 1000 generations. In practice, we found that after
only about 100 generations the resulting SQS had converged to the optimum near-random
atomic correlation functions.

For an optimized bulk SQS such as shown in Fig. 5.3, there are several choices
where the twin planes can be inserted into the cell. Fig. 5.3 shows 8 possible locations of
the TB plane within the 64-atom SQS. A single SQS cell contains (after the deformation
process shown in Fig. 5.1 (a) and (b)) both a twin boundary at the center (location 5 in
Fig. 5.3) as well as another at the periodic boundary at location 1. Hence, all possible twin
planes can be considered with a single bulk SQS configuration, that is deformed according
to 4 independent shear modes. The local atomic environment and solute-concentration
vary along the b-direction and hence, the TB energy will vary depending on the location of
the twin plane in the supercell. As discussed above, planar defect energies are calculated
by inserting the TB into different locations in a single SQS and taking a configurational
average over those individual configurations. Similarly, for the GSF and surfaces, there
are six independent choices for the location of the surfaces and planar defect energies are
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computed by averaging over each.

Figure 5.3: Illustration of an SQS and configurational averaging-procedure used to com-
pute the {112̄1} TB energy. For the TB-calculations, a configurational average over 8
configurations within a single SQS-cell is employed. This figure shows a projection along
the [11̄00]-direction.

5.2.3 Computational Methods

Embedded-Atom-Method Calculations

The purpose of the computations based on classical embedded-atom-method (EAM)
potentials performed in this work is to enable a comparison of planar defect energies ob-
tained from the relatively small SQS supercells, with benchmark results obtained by direct
configurational averaging over much larger supercells having a size that ensures minimal
effects of periodic boundary conditions and accurate configurational averaging. These large
cells are beyond the size that can be modeled directly by DFT, but their energies can be
readily calculated using EAM potentials. Specifically, due to the small computational cost
of performing EAM energy calculations, we consider as our benchmark results obtained
from supercell models containing up to a million (1M) atoms in total, with the configu-
ration of A and B atoms generated randomly for a given fixed overall alloy composition.
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These very large 1M cells are assumed to provide adequate configurational averaging to
yield converged planar-defect energies for random solid solutions. As in the small SQS
models, the planar defect energy is computed by subtracting the energy of the bulk cell
from the energy of the corresponding cell containing the desired twin, surface or unstable
stacking-fault defect. A reliable estimate of the planar defect energy in the random alloy
can be obtained by averaging over a few of these large supercells. This procedure can be
repeated for different solute compositions such that the concentration dependence of the
defect energies for a random substitutional alloy can be computed. The results computed
as such form a benchmark for the defect energies in disordered substitutional alloys, and
the aim is to assess the accuracy of the SQS models in reproducing these values. In all of
the EAM calculations we consider the defect energies for hcp-based Ti-Al alloys, modeled
with the potential of Zope and Mishin [247].

Density Functional Theory Calculations

In addition to the EAM modeling described in the previous section, we also
demonstrate the application of the SQS methodology in DFT-based computations of the
concentration dependence of {112̄1} twin boundaries in hcp-based Ti-Al alloys. These
DFT calculations were performed using the Vienna Ab Initio Simulation Package (VASP)
[136, 137]. The VASP calculations made use of the generalized-gradient-approximation
exchange-correlation energy due to Perdew-Burke-Ernzerhof generalized gradient func-
tional (PBE-GGA) [150]. All calculations made use of the projector augmented wave
(PAW) formalism [52, 53], in which the potentials for Ti (Al) treat 4s and 3d-states (3s
and 3p states) as valence. An energy cutoff for the plane waves of 600 eV was used, and
smearing of the electronic occupancies was performed using the Methfessel-Paxton scheme
[140], with a broadening of 0.05 eV. Integrations in the Brillouin zone were carried out
using Monkhorst-Pack k-point sampling [139] with a density chosen such that the num-
ber of k-points in the first Brillouin zone times the number of atoms in the cell equals
approximately 25,000.

5.3 Results and Discussion

5.3.1 Embedded Atom Method Results

Twin Boundary Energies

In Fig. 5.4, the variation of the {112̄1} twin boundary energy is plotted as a func-
tion of the atomic concentration of Al. The (red) open circle symbols are the benchmark
results, labeled “Random-1M,” obtained from a supercell containing approximately a mil-
lion atoms, with randomly generated atomic configurations. The results labeled “SQS-64”
were obtained by averaging over the different possible positions of the twin planes in SQS
64-atom supercells, generated as described in the previous section, and are plotted with
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(blue) filled squares. The error bars for the SQS results denote one standard deviation
in the values obtained for the different choices of the TB plane position, and provide a
measure of the width of the distribution in the individual planar defect energies.

Figure 5.4: {112̄1} twin boundary energies (γt) in Ti1−xAlx alloys calculated using EAM
potentials with two different supercell models: the benchmark Random-1M supercell, and
the SQS-64 supercell. For the 64-atom SQS supercell, the results are an average over
8 planes in one SQS, and the error bars are standard deviations. The line through the
benchmark Random-1M results is a guide to the eye.

It can be seen from Fig. 5.4 that the SQS and benchmark results at each com-
position agree to within approximately 10 %. To further quantify the degree of agree-
ment between the SQS and benchmark results, we consider the composition dependence
of the twin-boundary energies, as characterized by a dimensionless parameter, defined as
ηγ = (∂γ/∂x)/γ0, where γ represents the planar defect energy corresponding to the atomic
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Table 5.1: Concentration dependence of planar defect energies in hcp Ti1−xAlx solid solu-
tions, ηγ = (∂γ/∂x)/γ0, as calculated with EAM interatomic potentials, using benchmark
Random-1M and SQS-72/64 supercell models. For the twin boundary, 64-atom SQS super-
cells are employed, and for the surface and stacking fault energies, 72-atom SQS supercells
are employed. The Al atomic fraction is denoted by x for the {11̄00} surface.

Planar defect EAM (Random-1M) EAM (SQS)

{112̄1} Twin -1.56 -1.43
{11̄00} 〈112̄0〉 USF 0.57 0.55
{11̄00} Surface x ≈ 0.08 -0.12 -0.10
{11̄00} Surface x ≈ 0.195 -0.19 -0.22

fraction of Al in the Ti1−xAlx binary alloy, and γ0 is the defect energy for the pure-Ti
reference state. The results obtained for ηγ , from a linear least squares fit (forced through
the pure-Ti value) to the data sets in Fig. 5.4 are listed in Table 5.1. The SQS-64 super-
cells yield a value for ηγ that is about 10 % larger in magnitude than the corresponding
value for the random-1M cells. Overall, the results in this section suggest that for atomic
fractions of solute up to approximately x = 0.25, estimates of the twin boundary energy at
each composition converged to within about 10 % (10 mJ/m2) can be derived by averaging
results for 8 planes of a single 64-atom SQS-supercell configuration.

Unstable Stacking-Fault Energies

In Fig. 5.5 the unstable stacking-fault energy γUSF results are plotted as a func-
tion of solute concentration, based on calculations employing the 72-atom SQS supercells
illustrated in Fig. 5.2 (a)-(b), and benchmark Random-1M supercells. As in the previous
section, the error bars on the SQS results were obtained from the standard deviation in
the six values corresponding to different choices for the prismatic plane defects.

A roughly linear variation of γUSF with Al concentration is obtained for the bench-
mark Random-1M supercells, up to the concentration of x = 0.25 considered in the cal-
culations. Compared to these benchmark values, those obtained with the smaller 72-atom
SQS supercell show significantly more scatter. However, for all compositions the SQS-72
supercells produce values for γUSF that agree to within approximately 10 mJ/m2 (≈ 2.5
%) with the benchmark values. The concentration dependence of γUSF is slightly underes-
timated relative to the benchmark results, by 5.3 %, with the SQS-72 supercells, as shown
in Table 5.1.

Surface Energies

In Fig. 5.6 results for the calculated {11̄00} surface energy (γs) are plotted as
a function of Al concentration. As in Fig. 5.5 results are plotted for the benchmark su-
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Figure 5.5: Unstable stacking fault energies in Ti1−xAlx alloys calculated using EAM
potentials with two different supercell models: the benchmark Random-1M supercell, and
the SQS-72 supercell. For the 72-atom SQS supercell, the results are an average over
6 planes in one SQS, and the error bars are standard deviations. The line through the
benchmark Random-1M results is a guide to the eye.

percells, and for the 72-atom SQS supercells. The average values and error bars for the
SQS cells have again been obtained from an average over 6 planes. The averaged values
obtained from the SQS-72 supercells show agreement with the benchmark results to within
10 mJ/m2, or less than 1 % of the magnitude of γs.

To compare the predictions of the 72-atom supercells for the concentration depen-
dence of γs, we fit each data set in Fig. 5.6 with a parabola, to account for the non-linear
behavior that can clearly be observed in the figure. The composition dependence, as char-
acterized by the ηγ parameter, is evaluated for two compositions and the Random-1M and
SQS-72 values are compared in Table 5.1. The agreement is seen to be at the level of 15-17
% at the two different compositions listed.
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Figure 5.6: {11̄00} surface energies in Ti1−xAlx alloys calculated using EAM potentials
with two different supercell models: the benchmark Random-1M supercell, and the SQS-
72 supercell. For the 72-atom SQS supercell, the results are an average over 6 planes in
one SQS, and the error bars are standard deviations. The line through the benchmark
Random-1M results is a guide to the eye.

SQS Versus Random Supercells

It is interesting to consider whether the SQS configurations used in the compar-
isons above lead to improved agreement with benchmark results, relative to values derived
from supercells with the same size, but with the atomic configurations generated randomly
rather than by the SQS algorithm. In other words, it is of interest to consider whether the
extra work that is required to generate the SQS configurations for a given defect supercell
leads to a significant increase in accuracy. To test this, we have undertaken a statistical
analysis comparing the performance of random and SQS supercell configurations against
the benchmark values. Results of such tests are reported in this section for the specific
case of the twin-boundary planar defects, but similar conclusions were reached for the GSF
and surface defects.
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We begin by generating a large number of randomly occupied structures and rank
these according to a performance metric that measures how close the pair and triplet cor-
relation functions are to the values for a random alloy with the same composition. For the
dilute compositions, an exhaustive enumeration [90, 91, 92] is performed of all symmetri-
cally inequivalent atomic configurations at a fixed composition. For the more concentrated
alloys, exhaustive enumeration is beyond reach and we instead generate a million symme-
try inequivalent structures. These configurations are then ranked from #1, indicating the
best agreement with random correlation functions, in ascending order towards the worst.
For all the configurations generated, the {112̄1} twin boundary energy is calculated by
planar averaging and it is examined how well the resulting defect energies approximate
the benchmark Random-1M results. In this section, Ti-Al alloys with a solute concentra-
tion of 12.5 at. % Al are considered, but similar conclusions hold for different compositions.

In total, a million symmetry-inequivalent alloys are generated at a composition of
Ti56Al8 and for each, the atomic correlation functions (6 pairs, 3 triplets) are calculated.
These are referred to as corrSQS. The million structures are then ranked according to
the metric ‖corrSQS − corrRandom‖. Smaller values for ‖corrSQS − corrRandom‖ indicate a
configuration that is a better approximation of the true random alloy. Figure 5.7 shows the
distribution of this metric over the million structures, together with a β-distribution that
is fit through the data. The mean of the distribution is approximately 0.26, the best SQS
structures exhibit qualities ‖corrSQS−corrRandom‖ ≈ 0.10 and for the worst configurations
‖corrSQS − corrRandom‖ ≈ 0.65.

It is now addressed how well the structures used to generate Fig. 5.7 perform
in their prediction of {112̄1} twin boundary energies, compared with the Random-1M
benchmark results. To this end, the million structures are split-up in 1,000 bins of 1,000
structures, where the first bin represents the 1,000 best configurations (corresponding to
‖corrSQS − corrRandom‖ ≈ 0.10), the second bin represents the second best group of con-
figurations, and so forth. The last bin corresponds to ‖corrSQS − corrRandom‖ ≈ 0.65 and
represents the bin containing the worst performing configurations. It is next examined
for each of the bins how large the probability is that a structure picked at random from
the bin yields a {112̄1} twin boundary energy that is within 10 % of the Random-1M
benchmark value. The results are shown in Fig. 5.8, in which a second order polynomial
is fit through the calculated probability data. The horizontal axis again represents the
value of ‖corrSQS − corrRandom‖, as in Fig. 5.7. The vertical axis in Fig. 5.8 represents

P
(
‖
(
γSQS
t − γRandom

t

)
/γSQS

t ‖ < 0.1
)

, i.e., the probability that a configuration in the bin

and the random-1M benchmark twin-boundary energies are within 10 %.

Figure 5.8 shows clearly that among the best SQS structures (i.e., amongst the
configurations with the lowest values of ‖corrSQS − corrRandom‖), there is a significantly
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Figure 5.7: The distribution of ‖corrSQS − corrRandom‖ over a million substitutional con-
figurations for an hcp Ti56Al8 bulk alloy. A β-distribution is fit to the data and plotted by
the solid (red) line in the histogram.

higher probability of reproducing the Random-1M results for the {112̄1} twin boundary en-
ergy than among the poorly performing configurations. For example, in the bin containing
the best configurations, approximately 80 % of the structures reproduce the Random-1M
twin energies to within 10 %. On the other hand, in the bin containing the configurations
with the highest values of ‖corrSQS − corrRandom‖, only 25 % of the structures reproduce
the Random-1M twin energies to within 10 %. Structures that are located near the mean of
the distribution reproduce the Random-1M energies to within 10 % in approximately 50 %
of the cases. Hence, we conclude that a high-quality SQS structure is expected statistically
to perform significantly better than structures generated by random occupations.

5.3.2 Density Functional Theory Results

As an illustration of the use of the SQS approach in combination with DFT-based
total-energy calculations, we plot in Fig. 5.9 calculated results for the {112̄1} twin bound-
ary as a function of Al concentration in Ti1−xAlx hcp-based solid solutions. The DFT
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Figure 5.8: Probability of reproducing the Random-1M twin energies to within 10 % as
a function of the metric ‖corrSQS − corrRandom‖. The curve indicates a second order
polynomial, fit to the calculated data.

results were obtained with a 64-atom SQS supercell, averaging over the different choices
for the TB plane position, as above. The average values and standard deviations obtained
by DFT are plotted with filled circles, and the results are compared to those obtained from
the EAM employing the same SQS approach, which are reproduced in the lower panel.

It is seen in Fig. 5.9 that the EAM underestimates the {112̄1} twin boundary
energy significantly with respect to the DFT value for pure Ti. We further note that EAM
and DFT predict different trends of twin energy versus Al concentration. Whereas EAM
predicts a monotonic and almost linear decrease of the {112̄1} twin boundary energy with
increasing Al content, the DFT calculations predict a much weaker concentration depen-
dence.

It should be emphasized that the differences between EAM and DFT observed
here are not a result of the SQS planar averaging, but a reflection of inaccuracies in the
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Figure 5.9: {112̄1} twin boundary energy γt in Ti1−xAlx alloys calculated with 64-atom
SQS supercells by DFT and EAM. The results plotted are averaged over 8 planes per
supercell, with error bars denoting standard deviations. The lines are guides to the eye.

classical potential model for twin boundary energies in Ti-Al alloys. This is apparent based
on the discrepancies for the results for pure Ti. Additionally, we have used the 64-atom
supercell models with one Al solute atom present to compute segregration energies to the
{112̄1} twin boundary. It is found that the EAM potential predicts an energetic preference
of an individual Al-atom to segregate to the twin plane and nearby planes, whereas DFT
shows the opposite: the Al-atom prefers to reside in positions away from the twin. Since
DFT and EAM yield contradictory results even in this dilute limit, the discrepancies in the
results obtained for more concentrated alloys are not surprising. We note that discrepan-
cies between EAM and DFT are not uncommon in cases such as these where the property
of interest (namely twin boundary energetics) were not included in the fitting of the EAM
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potential (e.g., [259]).

5.4 Summary and Conclusions

In the present work we have presented a method for computing the energetics of
planar defects in random substitutional alloys employing an approach based on the use
of the SQS formalism. It is shown using an EAM model for hcp-based Ti-Al alloys that
averaging over results obtained for different planes in an SQS cell gives values for twin
boundary, unstable stacking fault and surface energies that agree to within approximately
10 % with benchmark values obtained from direct configurational averaging using large
supercells. The SQS-based supercells considered in this work are small enough such that
their energies can be computed by DFT. This is demonstrated in DFT-based studies of
the concentration dependence of {112̄1} twin-boundary energies in hcp-based Ti-Al alloys.
We anticipate that the method presented in this work will be useful in future DFT-based
efforts aimed at alloy design. By combining results obtained with this approach within
continuum theories of mechanical behavior, the SQS-approach described here provides a
framework for investigating the effects of specific solute additions on the slip and twinning
properties of alloys for targeted applications.
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Chapter 6

Ideal-Strength Calculations on
Hexagonal Close Packed Metals
and Alloys

6.1 Foreword

Under tensile loading the ideal strength of a solid is governed by mechanical
instabilities corresponding to failure in tension or shear, indicative of intrinsic brittle or
ductile behavior, respectively. First principles-calculations for hexagonal close packed (hcp)
metals under tensile loading along the c axis reveal that Be, Mg, Ru, Os and Zn fail in
tension, while Sc, Y, Ti, Zr, Hf, Tc and Re fail in shear. An analytical model is developed
that predicts this behavior in terms of the second and third order elastic constants. For the
transition metals, filling of the d-bands is shown to correlate with the type of instability
realized, thus providing unique insights into the effect of alloying on the intrinsic mechanical
behavior of hcp metals.

6.2 Introduction

For a given loading condition, the ideal strength of a crystalline solid forms an
upper bound on the mechanical stress that the material can sustain prior to reaching a
mechanical instability. The nature of the instability reached at this stress level can provide
insights into the intrinsic failure mechanisms for a material. For example, under tensile
loading crack initiation requires that the local normal stress perpendicular to the cleavage
plane is equal to or larger than the ideal tensile strength [130, 131, 260, 261]. However,
when a material yields under tensile loading, it is possible for it to fail through a shear
instability [262, 263, 264, 132, 265]. The tensile versus shear nature of the mechanical in-
stability realized under tensile loading is of considerable interest as an indicator of whether
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a material will behave in an intrinsically brittle or ductile manner. For cubic metals,
first-principles calculations of ideal strength under tensile loading have revealed shear in-
stabilities for the ductile metals V and Nb, whereas more brittle materials such as W and
Mo have been shown to fail in tension [263]. Similar studies in alloys [266, 267, 268, 269]
have been undertaken recently, yielding insights into compositional effects. For example,
it has been shown that BCC-based Mo-alloys can be made intrinsically more ductile by
tuning the d band filling through alloying [263].

In this work we consider the deformation behavior of the HCP metals, a class of
materials that find use in diverse technological applications, spanning biomedical to au-
tomotive and aerospace. These materials can possess attractive properties such as high
strength-to-weight ratios, high stiffness and/or high melting temperatures. However ap-
plications of these materials is often limited by low ductility, associated with the limited
number of active slip systems in the HCP structure. Substantial efforts have been devoted
to optimizing the ductility of HCP metals and alloys, for example by alloying and through
the control of microstructure. Despite this significant body of work, the fundamental ideal
strengths of HCP-metals have been reported for only a few systems [270], and no attempts
at using the results of such studies to derive insights into the intrinsic ductility of these
materials, and how they may be altered through alloying, have been made to the best of
our knowledge.

For the HCP metals Be, Mg, Sc, Y, Ti, Zr, Hf, Tc, Re, Ru, Os and Zn, we com-
pute the ideal strength and associated mechanical instabilities under tensile loading along
the crystallographic c axis, i.e., perpendicular to the basal plane. This is a particularly im-
portant loading condition for the consideration of the intrinsic ductility of HCP metals, as
the basal plane is a typical cleavage plane in these materials [17], and slip of the dominant
a-type dislocations does not provide a mechanism for plastic elongation along the c direc-
tion. Based on the ideal deformation behavior, each of the HCP metals is characterized as
intrinsically brittle or ductile, i.e., as possessing elastic instabilities that are either tensile or
shear in nature, respectively. We further study map out domains of d-band filling for HCP
transition metals where ductile vs brittle behavior can be expected. Finally, we provide
an analytical formalism which enables the ideal strength and the nature of the intrinsic
instability under tensile loading along the c axis to be derived solely from a knowledge
of the second and third-order elastic elastic constants. The analytical model is shown to
yield predictions in reasonable agreement with explicit density-functional-theory (DFT)
calculations across all of HCP metals considered in this work, with reduced computational
cost.
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6.3 Methodology

6.3.1 Wallace formalism and elastic instabilities in HCP materials

The elastic stability of a solid under zero stress is governed by the eigenvalues
of its elastic-constant tensor; specifically, all 6 eigenvalues of this tensor must be larger
than zero for the solid to be elastically stable. For a solid under an applied stress, elastic
stability is governed instead by the Wallace tensor, defined as follows:

Bijkl = C ′ijkl +
1

2
(σilδjk + σjlδik + σikδjl + σjkδil − 2σijδkl) (6.1)

where C ′ijkl represents the elastic constants in the deformed configuration [271, 272, 273],
σij denotes the applied stress acting on the solid, and δij is the Kronecker-delta. The
eigenvalues of the symmetrized Wallace tensor govern the elastic stability of a solid under
stress [274]. In the present context, the symmetrized Wallace tensor, Bsym is defined as
Bsym = 1/2 (B + BT ) (with B given in Eq. 6.1), where the use of Voigt notation is implied
so that both B and Bsym reduce to 6×6 matrices. In the remainder of this chapter, the
Wallace-tensor Bijkl refers to the symmetrized Wallace tensor.

For the special case of an HCP structured material loaded in tension along the c
axis, i.e., with only the stress component σ33 being non-zero, the Wallace tensor takes the
following form:

Bijkl =




C ′11 C ′12 C ′13 + σ33
2 0 0 0

C ′12 C ′11 C ′13 + σ33
2 0 0 0

C ′13 + σ33
2 C ′13 + σ33

2 C ′33 − σ33 0 0 0

0 0 0 C ′44 − σ33
2 0 0

0 0 0 0 C ′44 − σ33
2 0

0 0 0 0 0
C′

11−C′
12

2




(6.2)

where the terms C ′ij are the elastic constants in the deformed configuration. The eigenvalues
of Eq. 6.2 determine the elastic stability of an HCP material under uniaxial tension along
the c-axis. In this case there are 5 distinct eigenvalues, 3 of which involve the stress σ33

explicitly. From the 5 distinct eigenvalues, 2 are associated with a shear mode: λ(1) =
C ′44 − σ33

2 and λ(2) = 1
2 (C ′11 − C ′12). The other 3 eigenvalues (λ(3), λ(4) and λ(5)) relate

to non-shear modes. In particular, λ(3) represents a tensile failure in the basal plane and
is given as: λ(3) = (C ′11 − C ′12). Finally, λ(4) and λ(5) occur as a pair of solutions to
a quadratic equation, with λ(4) < λ(5). From these 5 eigenvalues, only the eigenvectors
corresponding to λ(4) and λ(5) have a non-zero component along the c axis an hence,
correspond to tensile failure along the loading direction. Since λ(4) < λ(5), λ(4) is the
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relevant eigenvalue governing tensile failure. The 2 eigenvalues considered in the remainder
of this work are λ1 = λ(1) and λ2 = λ(4), see Eqs. 6.3 and 6.4. In principle, λ(2) and λ(3)

have to be considered as well for the study of elastic instabilities. However these eigenvalues
in fact increase along the deformation path for the materials and loading case studied in
this chapter and do not attain a value of zero. Hence, these do not contribute to elastic
instabilities in the present case and will not be considered further. This can be rationalized
by considering the strain state of the materials and elastic constants of second and higher
order (see below).

λ1 = C ′44 −
σ33

2
(6.3)

λ2 =
C ′11 + C ′12 + C ′33 − σ33

2
−
√
N

2
, where :

N = C ′211 + 2C ′11C
′
12 − 2C ′11C

′
33 + 2C ′11σ33 + ...

C ′212 − 2C ′12C
′
33 + 2C ′12σ33 + 8C ′213 + 8C ′13σ33 + C ′233 − 2C ′33σ33 + 3σ2

33 (6.4)

With increasing tensile stress, if λ1 becomes negative before λ2, the crystal fails
in shear, with the opposite case corresponding to failure in tension.

The eigenvalues given in Eq. 6.3 and 6.4 contain the elastic constants of the crys-
tal in its deformed state. These can be obtained in principle by calculating the elastic
tensor from DFT as a function of applied stress. However, this is a computationally ex-
pensive procedure that does not lead to a clear physical understanding of the underlying
physics underlying the elastic instabilities. Alternatively, the elastic constants in the de-
formed configuration, C ′ij , can also be approximated from the third order elastic constants
(TOEC’s) and the standard second order elastic constants at zero stress (SOEC’s). The
TOEC’s dictate how the elastic constants C ′ij evolve as a function of the imposed strain.
Let ξ = η33 represent the (imposed) tensile strain along the c-axis of an HCP-materials
and let η = η11 = η22 be the resulting strain in the basal plane (usually contraction in
accordance with a positive Poisson’s ratio) corresponding to zero normal stress in these
directions. For this strain state, the expressions for C ′11, C ′12, C ′13, C ′33 and C ′44 are given
as follows in Eqs. 6.5 [275, 276]:
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C ′11 = C11 + η (4C11 + 2C12 + C111 + C112) + ξ (−C11 + 2C13 + C113) , (6.5a)

C ′12 = C12 + η (C111 + 2C112 − C222 + 2C12) + ξ (−C12 + C123) , (6.5b)

C ′13 = C13 + η (C113 + C123) + ξ (C13 + C133) , (6.5c)

C ′33 = C33 + η (4C13 − 2C33 + 2C133) + ξ (5C33 + C333) , (6.5d)

C ′44 = C44 + η

(
1

2
C11 +

1

2
C12 + C13 + C144 + C155

)
+ ξ

(
1

2
C13 +

1

2
C33 + C44 + C344

)

(6.5e)

where the terms Cijk denote the 10 independent TOEC’s for the HCP-materials studied
in this work [277, 278, 279, 280]. We now proceed by eliminating η from Eqs. 6.5 by
expressing it in terms of ξ. As shown in Appendix A, from a third-order expansion of the
energy versus strain, it can be derived that this value of η = η̄ for a given ξ can be obtained
from the solution to the following equation:

η̄2 (2C111 + 3C112 − C222)+ η̄ (C11 + 2C12 + 2C113ξ + 2C123ξ)+ξ2C133 +2ξC13 = 0. (6.6)

This resulting expression for η̄(ξ) is lengthy and is not presented here. When this expres-
sion is substituted into Eqs. 6.5, ξ becomes the only remaining (control) variable. The
resulting expressions for C ′ij can be substituted into Eqs. 6.3 and 6.4 to determine which
eigenvalue becomes negative first under applied strain, and the associated stress which
defines the ideal strength.

To obtain the final closed-form expressions, we express the stress σ33 in terms
of the strain state, SOEC’s and TOEC’s, using the relations given in Appendix B. An
equation can then be set up to determine the value of the strain ξ, at which a shear
instability first occurs; starting from Eq. 6.3, we substitute the expression for C ′44 from
Eq. 6.5, with ξ is the control variable and η = η1 = η2 = η̄ the resulting contraction in
the basal plane of the material, as given in Eq. 6.6, and σ33 specified from the expressions
in Appendix II. Similarly, the strain ξ at which a tensile elastic instability occurs can be
derived by considering the eigenvalue in Eq. 6.4 and substituting the expressions for C ′ij
and σ33. The smallest strain ξ at which an elastic instability (either shear or tensile) first
occurs is indicated by ξ̄ hereafter.

6.3.2 Calculation of second and third-order elastic constants

The previous section has laid out a methodology to study elastic instabilities in
HCP materials loaded in tension along the c axis, in terms of SOEC’s and TOEC’s. In
this section, it is shown how these quantities can be calculated in a robust manner. By
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applying a set of carefully constructed deformations to a cell, all 10 independent TOEC’s
can be extracted by fitting the stress components, as calculated from DFT, to the applied
strains. The pertinent expressions used in this work are given as follows:

t1 (η1) = ρ0
∂E

∂η1

∣∣∣
η2=η3=η4=η5=η6=0

=
C111η

2
1

2
+ C11η1 (6.7)

t2 (η2) = ρ0
∂E

∂η2

∣∣∣
η1=η3=η4=η5=η6=0

=
C222η

2
2

2
+ C11η2 (6.8)

t3 (η3) = ρ0
∂E

∂η3

∣∣∣
η1=η2=η4=η5=η6=0

=
C333η

2
3

2
+ C33η3 (6.9)

t3 (η1) = ρ0
∂E

∂η3

∣∣∣
η2=η3=η4=η5=η6=0

=
C113η

2
1

2
+ C13η1 (6.10)

t1 (η3) = ρ0
∂E

∂η1

∣∣∣
η1=η2=η4=η5=η6=0

=
C133η

2
3

2
+ C13η3 (6.11)

t2 (η1) = ρ0
∂E

∂η2

∣∣∣
η2=η3=η4=η5=η6=0

=
C112η

2
1

2
+ C12η1 (6.12)

t4 (η4) = ρ0
∂E

∂η4

∣∣∣
η1=η2=η3=η5=η6=0

= C44η4 (6.13)

t3 (η3, η5) = ρ0
∂E

∂η3

∣∣∣
η1=η2=η4=η6=0

=
C333η

2
3

2
+ C33η3 +

C344η
2
5

2
(6.14)

t5 (η3, η5) = ρ0
∂E

∂η5

∣∣∣
η1=η2=η4=η6=0

= C44η5 + C344η3η5 (6.15)

t3 (η1, η2) = ρ0
∂E

∂η3

∣∣∣
η3=η4=η5=η6=0

=
C113η

2
1

2
+ C123η1η2 + C13η1 +

C113η
2
2

2
+ C13η2 (6.16)

t4 (η1, η4) = ρ0
∂E

∂η4

∣∣∣
η2=η3=η5=η6=0

= C44η4 + C144η1η4 (6.17)

t5 (η1, η5) = ρ0
∂E

∂η5

∣∣∣
η2=η3=η4=η6=0

= C44η5 + C155η1η5 (6.18)

where the following Voigt-notation is employed: 11 7→ 1, 22 7→ 2, 33 7→ 3, 23 7→ 4,
13 7→ 5, 12 7→ 6. In Eqs. 6.7-6.18, ti denotes components of the Lagragian stress tensor,
defined in terms of the true stress tensor components σi as given in Appendix B, ρ0 is the
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mass density in the undeformed state, and E denotes the strain energy per unit mass [281].

In the applications of Eqs. 6.7-6.18 to determine the SOEC’s and TOEC’s, strains
are applied varying from -6 % to + 20%, in steps of 0.5 %, and the resulting true stresses
and Lagrangian stresses are computed from the true stress tensor obtained by DFT [281].
Note that this strain range is considerably larger than what is commonly used for the
calculation of the SOEC’s. The TOEC’s give rise to a nonlinear stress-strain behavior and
this effect only becomes apparent at relatively large strains (larger than approximately 10
% for the materials studied in this work), hence the extended strain range.

The set of Eqs. 6.7-6.18 give rise to an overdetermined system that is solved for
the 5 independent SOEC’s and 10 independent TOEC’s. A pseudo-inverse is employed,
calculated from a singular value decomposition. The values of the calculated TOEC’s are
found in this work to be rather sensitive to the precise strain range that is employed in
the fitting, which has been observed also in the literature [282, 281, 283]. For the HCP
systems studied in this work, the TOEC’s converge to a plateau when approximately 11-16
% maximum strain is used in the fit. Using smaller or larger maximum strains than those
corresponding to the plateau can lead to TOEC’s differing by up to a factor 5 for the
systems studied in this work. For maximum strains within the plateau-region, TOEC’s
are generally converged to within 25 % in this work. Consistent with other work in the
literature, the location of this plateau dictates which precise strain range is used in the
fitting [282, 283].

6.3.3 DFT-calculations

For the elemental metals all calculations were performed using the Vienna Ab
Initio Simulation Package (VASP) [136, 137]. In these calculations use was made of the
Perdew-Burke-Ernzerhof generalized gradient functional (PBE-GGA) [150], and the pro-
jector augmented wave (PAW) method [52, 53]. An energy cutoff for the plane waves
of 700 eV was used, and smearing of the electronic occupancies was performed using the
Methfessel-Paxton scheme [140], with a broadening of 0.05 eV. Integrations in the Brillouin
zone were carried out using Monkhorst-Pack k-point sampling [139] with a density chosen
such that the number of k-points in the first Brillouin zone times the number of atoms
in the cell equals approximately 25,000. The employed PAW potentials for Sc, Ti, Y, Zr
and Hf include s and p semi-core states as valence electrons. For the other elements, only
the outermost s and d-states are used as valence. The maximum calculated tensile stress
σ33 that occurs along the deformation path (similar to the ultimate tensile strength) is
converged to within approximately 2% with these DFT settings.

For the purpose of investigating d-band filling effects on ideal deformation behav-
ior, we also employed calculations based on the virtual crystal approximation (VCA). The
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VCA calculations were performed using the Quantum Espresso software [193], employing
norm-conserving Troullier-Martin pseudopotentials [51, 109]. Use was made of the gener-
alized gradient approximation, based on the Perdew-Burke-Ernzerhof exchange-correlation
functional [150]. The pseudopotentials were generated using the fhi98PP code with inter-
mediate nuclear charges [101] to approximate a given alloy composition. The plane-wave
cutoff, k-point sampling and broadening employed for these DFT calculations based on
VCA are the same as those described earlier, employing PAW pseudopotentials. The max-
imum calculated tensile stress for these calculations is converged to within approximately
3%.

6.4 Results and Discussion

In this section, results for HCP Be, Mg, Sc, Y, Ti, Zr, Hf, Tc, Re, Ru, Os and
Zn are presented. Lattice stabilities are calculated as a function of the strain η33 along
the c axis, and the failure modes are determined. This results in a categorization of the
HCP metals considered into two classes: those that fail in shear (intrinsically ductile) or in
tension (intrinsically brittle) for this loading condition. Further, the effect of d-band filling
is studied on the failure modes for the HCP transition metals, leading to guidelines for the
compositions where their solid solutions are expected to be intrinsically brittle or ductile
for tensile loading along c.

6.4.1 Elastic instabilities in HCP materials: A comparison of direct DFT
and analytical model results

The Wallace-tensor (see Eq. 6.2) can be approximated from the above formalism
by means of the SOEC’s and TOEC’s. However, it also can be calculated explicitly from
DFT for each strain along the c-deformation path. This direct DFT approach is expensive
since for every strain along the c-axis, a structural relaxation of the lattice vectors in the
basal plane, and the atomic coordinates, must be performed to give zero shear stresses, zero
normal stresses within the basal plane, and zero forces. Further, a calculation of the elastic
constants in the deformed configuration, C ′ijkl, is required for each such relaxed strained
configuration, which further increases the computational cost. Such a direct approach to
calculating the Wallace tensor and lattice instabilties is in principle more accurate than
the analytical formalism based on the SOEC’s and TOEC’s, since it does not require the
evaluation of the TOEC’s and hence mitigates some of its associated inaccuracies. In this
section, we present results based on both methods to compare the accuracy of the ap-
proaches.

Results are shown in Table 6.1. The analytical model predicts the ideal failure
mode (either shear or tensile failure) correctly for the 10 transition metals considered, as
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well as Zn, Cd, Be and Mg. Further, the critical c-axis strain (ξ̄) at which an elastic insta-
bility first occurs is predicted to within an accuracy of approximately 4 %. The differences
in ξ̄ calculated directly from DFT and from the analytical model can be attributed to two
main factors. First, the calculation of TOEC’s from DFT is prone to numerical errors,
which will propagate through in the evaluation of ξ̄. Second, in this work the strain energy
is only expanded up to the third order in the strains. As strains increase, fourth-order
terms would have to be included to increase numerical accuracy. Given the computational
cost required to achieve numerically stable values of these higher-order elastic constants,
the inclusion of these terms in the analytical models were not pursued in this work. We
note that the discrepancies between the ideal strength predicted according to DFT and the
analytical model are in reasonable agreement, with maximum errors comprising 50 %, in
particular for the transition metals near half d-band filling. The possible explanation for
this is again that for relatively large strains, higher-order elastic constants would have to
be included in the model.
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Table 6.1: Calculated SOEC’s, TOEC’s and ideal-failure characteristics for 12 HCP metals. Failure modes are
characterized as either shear (S) or tension (T).

Sc Y Ti Hf Zr Tc Re Ru Os Zn Mg Be

SOEC’s (GPa)
C11 100 77 174 182 145 489 618 554 733 166 59 306
C12 37 25 81 72 64 225 275 181 227 36 29 32
C13 29 27 75 69 66 192 224 176 225 35 20 15
C44 29 25 43 52 25 171 159 175 248 30 17 165
C33 71 61 183 20 161 534 677 613 801 71 67 406

TOEC’s (GPa)
C133 -117 -143 -273 -214 -146 -1014 -1557 -1220 -1408 -21 -1808 -318
C333 -230 -303 -1078 -1463 -1173 -4004 -5715 -5980 -7955 -797 -4625 -4347
C111 -734 -529 -1584 -1567 -1301 -4771 -6786 -5758 -7764 -2179 -5247 -2407
C112 -83 -24 10 -120 103 -526 -1020 -656 -828 -57 -1531 -81
C113 -50 -58 169 -22 169 6 107 -621 -604 31 432 59
C222 -691 -475 -1173 -1354 -961 -4175 -6103 -5263 -7146 -2862 -5043 -1887
C123 -219 -185 -661 -237 -494 -1768 -712 -275 -332 -498 -1886 -7
C144 -15 8 170 -260 218 -1100 -451 -417 -562 -227 -964 -332
C155 37 58 -34 -154 49 -126 -519 -566 -801 -351 8 -88
C344 -135 -128 -246 -460 -162 -1061 -1281 -930 -1297 -234 -727 -726

Failure characteristics
ξ̄ (direct DFT) 0.22 0.20 0.19 0.14 0.19 0.18 0.19 0.15 0.15 0.12 0.22 0.17
ξ̄ (analytical) 0.30 0.26 0.24 0.20 0.15 0.19 0.24 0.18 0.19 0.13 0.24 0.16
σid (GPa) (direct DFT) 13 9 15 12 11 44 54 48 62 5 6 24
σid (GPa) (analytical) 11 8 13 10 8 36 44 33 42 3 5 20
Failure mode S S S S S S S T T T T T
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In this work it is found that out of the 12 HCP metals studied, 5 fail in tension:
Ru, Os, Zn, Mg and Be and are categorized as intrisically brittle, whereas the other 7 HCP
metals are intrinsically ductile. The results in Table 6.1 are qualitatively in agreement
with experiments, in which the ductility of Be, Os, Zn and Ru was characterized as poor,
meaning less than 15 % elongation in a tensile test. Further, the ductility of Zr, Ti and
Hf was characterized as good (elongation greater than 40 %) and finally the ductility of
Y, Mg and Re was characterized as fair, indicating maximum elongations in between 15
% and 40 % [17]. It should be noted however that ductility is ultimately dictated by
strength and work hardening. The calculations in this work provide only a way of gauging
intrinsic ductility, thereby not taking into consideration extrinsic effects that largely govern
the ductility of real materials. Therefore, care has to be taken to make comparisons with
experimental data.

6.4.2 Elastic instabilities and d-band filling

The results in the previous section indicate that group III (Sc, Y), IV (Ti, Zr)
and VII (Tc, Re) HCP transition metals fail in shear whereas group VIII (Ru, Os) HCP
transition metals fail in tension when loaded in tension along the c axis. The formalism
developed in this chapter shows that second and third order elastic constants dictate the
failure mode under this loading condition. Further, it is known that the d-band filling
plays an important role in determining properties such as lattice constants, cohesive ener-
gies and elastic constants. Hence, it may be expected that the ideal strength behavior of
the HCP transition metals may show systematic trends versus d-band filling. We explore
this issue further in the present section, employing results obtained from VCA calculations.

The VCA is employed here to study the ideal strength behavior of alloys with d-
band filling between groups i) III and IV, ii) VI and VII and iii) VII and VIII. By employing
VCA-calculations, approximate ranges of d-band filling are mapped out in which shear
versus tensile failure occurs. This leads to the map given in Fig. 6.1, of the periodic table
showing band filling domains in which either intrinsically ductile (shear) or intrinsically
brittle (tensile) failure are found to occur. We note that the group III and IV HCP
transition metal alloys fail in shear, and the same holds true for all HCP alloys with d-band
fillings in between. Further, group IV HCP metals can be alloyed with elements having d
band fillings larger than those in group IV (e.g. Nb, Ta) and maintain intrinsically ductile
behavior. However, there is a limit on how much d-band filling can be increased since i)
the HCP-phase becomes energetically destabilized with respect to the BCC structure as
the d-band filling moves towards group V, and ii) the HCP phase becomes mechanically
unstable under zero stress as the d-band filling goes beyond a critical value. Fig. 6.1
suggests guidelines for the design of HCP transition metal alloys, by indicating approximate
alloy compositional ranges that result in intrinsically ductile behavior, while maintaining
mechanical stability at zero stress.
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Figure 6.1: Ideal failure mode-diagram vs. d-band filling in HCP metals and alloys

Moving to the right of the periodic table, we note that the group VII HCP-metals
Re and Tc fail in shear and are hence intrinsically ductile. The metal Re is of particular
interesting, as it exhibits the highest shear modulus among all HCP metals that fail in
shear, suggesting the interesting combination of high strength and ductility. Moving fur-
ther to the right, we note the metals Ru and Os in group VIII, exhibiting the highest shear
moduli among all HCP-metals and almost all other elements in the periodic table. These
fail in tension when loaded along c, largely due to their very high shear moduli. Small
perturbations in d-band filling towards lower values do not change the ideal deformation
behavior and the intrinsically brittle failure mode is maintained all the way up to d-band
fillings close to group VII.

The formalism based on SOEC’s and TOEC’s developed in this work can be used
to understand the features of the elastic response underlying shear versus tensile failure.
Consider first HCP materials with high shear moduli, C44, such as Ru and Os. These
materials are not likely to fail in shear, since the eigenvalue associated with shear failure
(Eq. 6.3) is rather large and may not reach zero before the eigenvalue in Eq. 6.4. Hence,
this observation explains from an ideal strength point of view why the HCP metals that
are most stiff in shear, and thus expected to have high strangth, tend to be brittle under
c-axis loading. Strong materials with a high shear modulus C44 will only fail in shear and
be accordingly intrinsically ductile according to Eq. 6.3 if σ33 is relatively large in magni-
tude, requiring that C33 is large. Further, the modulus C333 is negative for most materials,
implying softening of C33 as the materials is strained along c by ξ. A small magnitude of
C333 is also favorable for shear failure as it causes the magnitude of the stress σ33 decrease
less rapidly as a function of ξ.

Metals and alloys near half d-band filling, such as Re and Tc, are intrinsically
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ductile and fail in shear but are on the border of d-band filling regions where tensile failure
occurs. Their shear failure is caused by an interplay of the SOEC’s and TOEC’s. First, the
shear moduli C44 of Re and Tc are large but smaller than those for Os and Ru. The same is
true for the moduli C33, but the ratio C33/C44 for group VII metals is larger than for group
VIII: for Os C33/C44 ≈ 3.2 whereas for Re C33/C44 ≈ 4.5. Second, for group VII metals,
the magnitude of C333 is smaller than for group VIII, which also promotes shear failure
over tensile failure. Third, the TOEC C344, which is a negative quantity for most materials,
is relatively large in magnitude for group VII metals, relative to those in group VIII. Ac-
cording to Eq. 6.5 (e), this implies that the shear modulus C44 decreases relatively rapidly
with strain ξ, which according to Eq. 6.3, favors a shear instability over a tensile instability.

Finally, the high ductility HCP metals in group IV exhibit values of C33/C44

between approximately 4 and 6 which is higher than for groups VII and VIII. The relatively
low values for C44 causes the eigenvalue in Eq. 6.3 to attain negative values before the
eigenvalue in Eq. 6.4, and consequently to fail in shear.

6.5 Summary and Conclusions

In this work, the ideal deformation behavior and elastic stabilities of 12 HCP
metals under uniaxial stress along the c-axis are studied: Be, Mg, Sc, Y, Ti, Zr, Hf, Tc,
Re, Ru, Os and Zn. It is found that out of these, 5 fail in tension along c (Be, Mg, Ru,
Os and Zn) whereas the 7 others (Sc, Y, Ti, Zr, Hf, Tc and Re) fail in shear. This leads
to a natural division of the HCP metals into 2 classes: those that are intrinsically ductile
(i.e., fail in shear) or intrinsically brittle (i.e., fail in tension) under tensile loads along c.
Using a formalism based on the expansion of the elastic energy to third order in strain, it
is further shown that the critical strain and the deformation mode can be predicted from
the relative magnitudes of these of the second and third order elastic constants. It is found
that HCP metals exhibiting high moduli C44 tend to fail in tension rather than shear and
hence, are intrinsically brittle. This occurs for transition metals and alloys in group VIII
(Os, Ru). The HCP metals in groups III and IV are found to be intrinsically ductile under
c-axis loading, primarily due to their low shear moduli C44, which promotes shear failure.
The group VII HCP metals (Re, Tc) are an interesting case that combine a high shear
modulus with intrinsically ductile behavior. The physical reason for this behavior is the
specific combination of SOEC’s and TOEC’s that this class of materials exhibits: a high
C33, but a relatively small magnitude of C333 and a large magnitude of C344. Finally,
the trends of the ideal deformation behavior with d-band filling are revealed, resulting in
approximate d-electron counts per atom for which an alloy is expected to fail in a ductile
or brittle mode.
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6.6 Appendix A

The imposed strain along c (ξ) and the resulting strain in the basal plane (η)
required to ensure zero normal stress within the basal plane are related by the Poisson’s
ratio for small strains. For large values of ξ, however, the TOEC’s have to be invoked to
calculate η.

Consider the mapping between the reference and current configuration of a con-
tinuum solid. In the reference configuration, a particle occupies a point p with spatial
coordinates X = X1e1 + X2e2 + X3e3, where e1, e2, e3 is a Cartesian reference triad and
X1, X2, X3 are the reference coordinates. Upon deformation of the body, the point origi-
nally at X is translated by the displacement vector u (X1, X2, X3) to its final coordinates
x (X1, X2, X3), see Eq. 6.19 .

x (X1, X2, X3) = u (X1, X2, X3) +X (X1, X2, X3) (6.19)

Based on this description, a deformation gradient is formulated as in Eq. 6.20.
The Green-Lagrange strain tensor η then follows from F as shown in Eq. 6.21, where I
denotes the identity matrix.

F =
∂xi
∂Xj

(6.20)

η =
1

2

(
F TF − I

)
(6.21)

With the notation now established, the strain energy density can be expanded
in terms of the SOEC’s, TOEC’s and the Green-Lagrange strain as in Eq. 6.22, where
ρ0 represents the mass density in the undeformed state and the terms ηi represent the
components of the tensor defined in Eq. 6.21. The symmetry of the SOEC’s and TOEC’s
will be applied in the expansions, which simplifies the resulting expressions considerably.

ρ0E (η) =
1

2!

6∑

i,j=1

Cijηiηj +
1

3!

6∑

i,j,k=1

Cijkηiηjηk + . . . (6.22)

Consider an imposed strain ξ along the c-axis of an HCP-metal, initially keeping
all other dimensions fixed to the zero strain-state. Consider first the expansion of Eq.
6.22, retaining only terms up to and including the SOEC’s (hence, ignoring the TOEC’s
for now). This gives the energy-expression in Eq. 6.23, in which the symmetry of the
SOEC’s has been applied. To obtain the equilibrium strain in the basal plane due to the
application of ξ, we perform strain energy-minimization and set η̄ = η = η1 = η2, η3 = ξ
and η4 = η5 = η6 = 0 in Eq. 6.23 and solve ∂(ρ0E)

∂η |ξ = 0. We find the equilibrium strain
η = η̄, given in Eq. 6.24, where the minus-sign signifies the Poisson-contraction in the
basal plane.
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ρ0E (η) = C11
η2

1

2
+ C11

η2
2

2
+ C33

ξ2

2
+ C44

η2
4

2
+ C44

η2
5

2
+

1

2
(C11 − C12)

η2
6

2
+ C12η1η2 + C13η1ξ + C13η2ξ (6.23)

η = η̄ = − ξC13

C11 + C12
(6.24)

For large strains, the expansion in Eq. 6.23 is not sufficient and instead, TOEC’s
have to be included as well. The expansion of the strain energy up to the third order in
strain is given in Eq. 6.25, in which the terms P are given in Eq. 6.26. Note that in
Eq. 6.25, the symmetry of the SOEC’s and TOEC’s has been incorporated to simplify the
resulting expression.

ρ0E (η) = C11P1 + C12P2 + C13P3 + C33P4+

C44P5 + C111P6 + C222P7 + C333P8+

C133P9 + C113P10 + C112P11 + C123P12+

C144P13 + C155P14 + C344P15 (6.25)
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P1 =
η2

1

2
+
η2

2

2
+
η2

6

4
, (6.26a)

P2 = −η
2
6

4
+ η1η2, (6.26b)

P3 = η1η3 + η2η3, (6.26c)

P4 =
η2

3

4
, (6.26d)

P5 =
η2

4

2
+
η2

5

2
, (6.26e)

P6 =
η3
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+
η1η

2
2

2
− η1η

2
6
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+
η2η
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6

4
, (6.26f)

P7 =
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2
2

2
− η2η

2
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η1η
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6

8
, (6.26g)

P8 =
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, (6.26h)

P9 =
η1η
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η2η
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2
, (6.26i)
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η3η
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+
η3η
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+
η3η
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4
, (6.26j)

P11 =
η2

1η2

2
+
η1η

2
2

2
− η2

6η1

8
− η2

6η2

8
, (6.26k)

P12 = η1η2η3 −
η3η

2
6

4
, (6.26l)

P13 =
η1η
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+
η2η
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− η4η5η6
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, (6.26m)

P14 =
η2η
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+
η1η
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2
+
η4η5η6
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, (6.26n)

P15 =
η3η

2
4

2
+
η3η

2
5

2
(6.26o)

Given an applied ξ, we can again find an analytical expression for the Poisson
contraction η = η̄ in terms of ξ and the SOEC’s and TOEC’s. The resulting equation that
has to be solved is shown in Eq. 6.6. Solving Eq. 6.6 in terms of η = η̄ = η1 = η2 gives
the equilibrium strain in the basal plane.

6.7 Appendix B

A simple expression for the relations between strains and stresses can be derived
for an HCP-structured material that is loaded in tension along the c-axis, while allowing
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for contraction in the basal plane. For this situation, with an applied (Lagrangian) strain
η3 along c, we have η1 = η2 = η̄ and η3 = ξ . Eq. 6.27 expresses the Lagrangian stress
tensor in terms of the strain energy and Lagrangian strain tensor [281]. From Eq. 6.27,
the Lagrangrian stress t33 can be found under the combined strain state currently under
investigation, see Eq. 6.28. Further, from Eq. 6.29, we have that σ = 1

det(F )FtF
T which

governs the relation between Lagrangian and true stress. This expression can be expanded,
with the result given in Eq. 6.30, where t33 is given in Eq. 6.28.

tij = ρ0
∂E

ηij
(6.27)

t33

∣∣∣
η4=η5=η6=0

= η2
1 (C113 + C123) + η1 (2C13 + 2C133η3) +

1

2
C333η

2
3 + C33η3 (6.28)

tij = det (F )F−1σ
(
F T
)−1

(6.29)

σ33 =

√
2ξ + 1√
2η̄ + 1

t33 (6.30)
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Materials Science



105

Chapter 7

High-Throughput Elastic
Properties

7.1 Foreword

The elastic constant tensor of an inorganic compound provides a complete de-
scription of the response of the material to external stresses in the elastic limit. It thus
provides fundamental insight into the nature of the bonding in the material, and it is
known to correlate with many mechanical properties. Despite the importance of the elas-
tic constant tensor, it has been measured for a very small fraction of all known inorganic
compounds, a situation that limits the ability of materials scientists to develop new ma-
terials with targeted mechanical responses. To address this deficiency, we present here
the largest database of calculated elastic properties for inorganic compounds to date. The
database currently contains full elastic information for 1,181 inorganic compounds, and
this number is growing steadily. The methods used to develop the database are described,
as are results of tests that establish the accuracy of the data. In addition, we document
the database format and describe the different ways it can be accessed and analyzed in
efforts related to materials discovery and design.

Part of the results presented in this chapter, including the figures and tables, were
published by Maarten de Jong, Wei Chen, Tom Angsten, Anubhav Jain, Randy Notestine,
Anthony Gamst, Marcel Sluiter, Chaitanya Krishna Ande, Sybrand van der Zwaag, Jose
Plata, Cormac Toher, Stefano Curtarolo, Gerbrand Ceder, Kristin Persson and Mark Asta
in Scientific Data, 2, 2015 [284]. The material is reproduced here with permission of the
co-authors and publishers.
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7.2 Background & Summary

The elastic tensor of a crystalline solid provides a complete description of its re-
sponse to external forces within the elastic limit. This property is thus one of the most
fundamental probes of the nature of the interatomic bonding in a given material system
(e.g., [285]). Further, it is known that the elastic tensor correlates with many mechanical
and thermal properties, and it is thus a critically important quantity for use in screening
in the process of materials discovery and design. For example, since the work of Pugh in
the 1950’s the ratio of the bulk to shear modulus has been used as a basis to understand
and predict trends in the ductility of materials [116, 110, 286, 287, 115, 288, 289, 290].
More recently, extensions of the Pugh analysis have been used to derive descriptors for
hardness, in the attempt to discover new materials for hard coating applications, and to
guide the search for the elusive inorganic compound with a hardness greater than diamond
[110]. Elastic tensors can also be used to screen for materials with targeted thermal prop-
erties, as it provides a basis for rapid estimation of trends in heat capacities and thermal
conductivities [291, 292, 293, 294]. Knowledge of the full anisotropic elastic tensor can
be used in conjunction with mathematical homogenization theories to predict the elastic
response of composite materials, and thus guide the design of such materials with targeted
stiffnesses [295, 296]. Additionally, an area in which elastic properties find widespread use
is geophysics, where acoustic velocities are used for interpretation of seismic data [297, 298].

Despite the importance of the elastic tensor, experimental data for this quantity
is available for only a very small subset of all known inorganic compounds. This presents
a fundamental bottleneck for the discovery and design of materials with targeted thermal
and mechanical properties, or for performing continuum simulations of mechanical response
that require elastic moduli as input. Considering only materials for which the full tensor
of elastic coefficients is available, the classical works have references that sum up to a total
number of around 150 independent systems for which experimental measurements have
been compiled [299, 300, 144, 301, 302, 303, 304, 305, 306]. Considering papers that have
investigated elastic constants of particular systems, this number might be twice as large,
which is a very small fraction of the approximately 30,000 to 50,000 entries for ordered
compounds in the inorganic crystal structure database [307, 308, 309]. Among the systems
for which experimental data is available are approximately 70 pure elements, with the re-
mainder consisting of binary systems and - to a much smaller extent - ternary systems
and a variety of complex minerals. Among the binary materials are solid solutions and
compounds, the latter often being ordered intermetallic compounds.

One challenge associated with using published experimental data for elastic mod-
uli is that the spread in the reported values for a given system can be quite large, depending
on the details of the experimental conditions and techniques employed. For example, elastic
moduli derived from inelastic neutron scattering can be 10 % greater than those derived
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from pulse-echo measurements [310]. Differences of over 20 % in reported experimental
values for the bulk and shear moduli for the same system have been observed in some
cases, such as NiO [311, 312]. Other experimental factors, such as different measurement
temperatures [313] and/or the presence of impurity phases, can also lead to variability in
reported elastic constants.

Efforts aimed at developing databases of elastic moduli from first-principles com-
putational methods have been undertaken in previous work (e.g. [314, 315]). Such a
computational approach provides an advantage that all of the data can be derived in a con-
sistent manner, facilitating comparisons across materials chemistries. In the present work
we expand on this approach. Specifically, we present here the to-date largest database
of calculated elastic properties of crystalline inorganic compounds, ranging from metals
and metallic compounds to semiconductors and insulators. These calculations are part
of a high-throughput (HT) effort [15], undertaken within the framework of the Materials
Project (MP) [316]. The database of elastic tensors currently consists of over 1,181 materi-
als and is being updated regularly. The elastic properties are obtained using first-principles
quantum-mechanical calculations based on Density Functional Theory (DFT). As shown
below, the calculated elastic constants are typically within 15 % of experimental values,
which represents a smaller scatter than that observed in experimental values in some cases.
Pearson (r) and Spearman (ρ) coefficients indicate that the calculations performed in this
work yield elastic properties that show an excellent correlation with experimental values,
making the database presented here useful for screening materials with properties based
on elastic tensors.

The remainder of the chapter is organized as follows. We first describe our method
for calculating elastic constants from DFT in a HT-environment. We then describe ver-
ification and validation tests to assess the precision and accuracy of the chosen density
functional and the HT algorithms employed in the calculations. Finally, an overview of the
structure of the data and a brief description of the results is presented.

7.3 Methods

7.3.1 Generation of elasticity data

In this launch of the elastic constant database we tabulate results for a subset of
1,181 compounds chosen from those present in the current MP database. This subset in-
cludes 2 broad categories: i) metallic and small-band-gap compounds and ii) binary oxides
and semiconductor compounds. The first category is taken from the MP-database, under
the constraint that 1) the calculated bandgap < 0.3 eV and 2) the energy above the convex
hull (decomposition energy [317]) < 0.5 eV / atom. These properties have been calculated
previously by DFT using the standard HT-procedure and chosen MP parameters suitable
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for ground-state energy, lattice structure, and band structure [316, 318]. The constraints
are chosen to represent a set of materials that are metallic or near-metallic and energet-
ically stable or near-stable, and yields the majority of the data set (approximately 1,100
systems). For the binary oxides, different selection criteria were used: 1) the bandgap >
0.3 eV and 2) the energy above the convex hull = 0 eV / atom, which yields approximately
100 systems. Furthermore, approximately 20 technologically relevant semiconductors were
added to create a representative set of materials.

For these systems we compute the elastic constants using a stress-strain method-
ology. Specifically, starting from a relaxed structure for each compound, we generate a
set of distorted structures, as follows. The Green-Lagrange strain tensor has 6 indepen-
dent components, each of which is applied independently to every structure, with differing
magnitudes, as described in the Workflow section below. For each deformed structure,
the 3 × 3 stress tensor is calculated by DFT. If the components of the stress tensor are
denoted by Sij and the components of the Green-Lagrange strain tensor are denoted by
Eij , the constitutive relation within linear elasticity can be written as in Eq. 7.1, which re-
lates stresses to strains via the symmetric elastic matrix, with components Cij . In Eq. 7.1,
the following Voigt-notation is employed: 11 7→ 1, 22 7→ 2, 33 7→ 3, 23 7→ 4, 13 7→ 5, 12 7→ 6.
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(7.1)

For each of the applied strains Eij , the full stress tensor is obtained from a DFT
calculation in which ionic positions are relaxed. Consequently one row (or equivalently,
column) of the elastic matrix is obtained from a linear fit of the calculated stresses over the
range of imposed strains. Repeating this procedure for each of the 6 independent strain
components, all elements of the elastic modulus tensor can be calculated. The result is
a calculated set of Cij values that can be used to calculate properties such as the bulk
modulus K and the shear modulus G, as described in Table 7.1. The components of Cij
depend on the choice of coordinate system and lattice vectors, and in this work we have
adopted the IEEE standard [319] for all reported tensors.
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Table 7.1: Properties derived from the elastic constant matrix in this work, and their corresponding JSON keys and
datatypes.

Property Key Datatype Unit Description Equation

Elastic tensor, Cij elastic tensor array GPa Elastic tensor (IEEE-
format)

see main text

Elastic tensor, Cij elastic tensor original array GPa Elastic tensor (poscar
orientation)

see main text

Compliance ten-
sor, sij

compliance tensor array GPa−1 Tensor, describing elas-
tic behavior

sij = C−1
ij

Bulk modulus,
KV

K Voigt number GPa Upper bound on K for
polycrystalline material

9KV = (C11 + C22 + C33) +
2 (C12 + C23 + C31)

Bulk modulus,
KR

K Reuss number GPa Lower bound on K for
polycrystalline material

1/KR = (s11 + s22 + s33) +
2 (s12 + s23 + s31)

Shear modulus,
GV

G Voigt number GPa Upper bound on G for
polycrystalline material

15GV = (C11 + C22 + C33) −
(C12 + C23 + C31) +
3 (C44 + C55 + C66)

Shear modulus,
GR

G Reuss number GPa Lower bound on G for
polycrystalline material

15/GR = 4 (s11 + s22 + s33)−
4 (s12 + s23 + s31) +
3 (s44 + s55 + s66)

Bulk modulus
VRH, KV RH

K VRH number GPa Average of KR and KV 2KV RH = (KV +KR)

Shear modulus
VRH, GV RH

G VRH number GPa Average of GR and GV 2GV RH = (GV +GR)

Universal elastic
anisotropy, AU

elastic anisotropy number - Description of elastic
anisotropy

AU = 5 (GV /GR) +
(KV /KR)− 6 ≥ 0

Isotropic Poisson
ratio, µ

poisson ratio number - Number, describing lat-
eral response to loading

µ = (3KV RH − 2GV RH) /
(6KV RH + 2GV RH)
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The first-principles results presented in this work are performed using the projec-
tor augmented wave (PAW) method [52, 53] as implemented in the Vienna Ab Initio Sim-
ulation Package (VASP) [137, 136]. In all calculations, we employ the Perdew, Becke and
Ernzerhof (PBE) Generalized Gradient Approximation (GGA) for the exchange-correlation
functional [37]. Other parameters employed in our HT-DFT calculations of elastic con-
stants are system-dependent. For the metals and metallic compounds, we employ a cut-off
for the plane waves of 700 eV. Further a uniform k-point density of approximately 7,000
per reciprocal atom (pra) is used, which means that the number of atoms per cell mul-
tiplied by the number of k-points equals approximately 7,000. For the compounds that
contain magnetic elements, a ferromagnetic state is initialized in the calculation. We ex-
pect to correctly converge to ferromagnetic and non-magnetic states in this way, but not
to anti-ferromagnetic states. This set of parameters results in elastic tensors that are con-
verged to within 5% for 95% of the considered systems. Given the chemical breadth of
the compound set - spanning metals, semiconductors and oxides - it is unlikely that one
set of parameters performs equally well for all classes of materials. Therefore, to detect
anomalies and outliers, tests were designed and corresponding first-principles calculations
with higher convergence setting were performed (for more details see the next section).
The set of approximately 20 semiconductors is calculated with the same convergence pa-
rameters as the metals and metallic compounds with similar resulting convergence. For
the binary oxides, a plane wave cut-off of 700 eV is also used, with a k-point density of
1,000 pra. This leads to elastic constants converged to within 5 % for all binary oxides
considered in this work. Due to the presence of strongly correlated electrons in some of
the oxides, the GGA+U method is employed, with U representing the Hubbard-parameter
[320, 321]. The values of U are chosen consistent with those employed in the MP [316, 318].

7.3.2 Workflow

In this subsection we describe the workflow for the HT implementation of the
stress-strain approach to computing elastic constants described above. We note that the
workflow developed for this purpose shares many features in common with that developed
for elastic constant-calculations in the Vlab distributed cyberinfrastructure for materials
computation [314]. The main difference between the current approach and that described
in Ref. [314], is that the focus here is on elastic constants at zero pressure and tempera-
ture, whereas the Vlab workflow is developed more generally to consider elastic constants
under finite pressures and temperatures, which are particularly important in the context
of geophysical applications. The workflow in Ref. [314] thus contains tasks related to the
calculations of equations of state and finite-temperature phonon contributions, which are
not considered in the present work. The emphasis here is on developing comprehensive
databases of elastic moduli across a broad class of inorganic compounds, for materials
design applications, and on interfacing the data with the Materials Project (MP) infras-
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tructure.

Figure 7.1 summarizes the workflow for data generation implemented within the
MP HT calculation infrastructure used in the present work. We start from the optimized
structures in MP, and perform a tighter structural relaxation, with more stringent conver-
gence parameters in the DFT-calculation. This initial step is necessary since the calculation
of elastic constants by the stress-strain method requires a well-converged stress tensor, and
the standard HT-settings in the MP, which are optimized for the total energy, are not
always sufficient for this purpose. This procedure leads to a structure exhibiting close to
zero residual stresses and forces on the atoms.
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Figure 7.1: High-Throughput calculation scheme. Workflow for calculating and filtering
the elastic constants.

The next step is to construct a set of deformed structures, for calculations of the
resulting stresses. Each structure in this set is deformed homogeneously by one of the
6 independent components of the strain tensor defined above, with a magnitude chosen
over a prescribed range. Similar to previous work (e.g. [322, 313]) in which a stress-strain
method for computing elastic tensors has been employed, a maximum strain of 1 % is
applied initially to distort the structures. In our experience this value is typically large
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enough for most compounds to minimize the numerical noise in the calculation of the stress
tensor, but small enough to remain well within the linear-elastic regime. In this initial step
we choose four values for the strain magnitude, varying between -1 to 1 %, leading to a
set of set of 24 initial deformed structures. First-principles calculations of the stress tensor
for each of these structures are performed, including ionic relaxations. The calculation is
considered to be unsuccessful if one or more of the single deformation runs fails to converge.
In such cases, the calculations are rerun with tighter numerical convergence parameters.
In the case of several unsuccessful iterations, a tag to this material is generated indicating
that the calculation of the elastic tensor has failed.

Once the 24 stress tensor calculations have been successfully computed, a check is
performed to determine whether the range of strains considered is appropriate for deriving
the elastic constant tensor using a linear stress-strain relationship. This is done by fitting
the elastic constants over different ranges of strain, and examining the sensitivity of the
results. We employ the following nomenclature for the chosen ranges of strains investi-
gated: ε1 = (-1 %, -0.5 %, +0.5 %, +1 %), ε2 = (-0.5 %, +0.5 %), ε3 = (-0.75 %, -0.5 %,
+0.5 %, +0.75 %), and finally ε4 = (-1.25 %, -0.75 %, +0.75 %, +1.25 %). We first fit the
elastic constants to the default strain range, ε1, and compare the resulting bulk and shear
modulus to those as obtained from a fit to ε2. If the results are within 15 %, we move
on to the next step in the workflow using the elastic constants as obtained from the fit to
the strain range ε1. If the discrepancies are larger than 15 %, additional stress tensors are
calculated for strain values of (±0.75%). We then compare the bulk and shear modulus,
as fit from strain ranges ε2 and ε3. If the results agree to within 15 %, we progress in
the workflow using the elastic constants as fit to the strain range ε2. If again the results
disagree, we compare the bulk and shear modulus, fit to ε1 and ε4. If these agree to within
15 %, we progress in the workflow using the elastic constants fit to the default strain range
ε1. If all of these steps fail, a warning message is generated for the compound, warranting
further investigation.

From our initial set of 1,181 materials, we find that in 34 cases, either the bulk
modulus and/or the shear modulus are different by over 15 %, depending on whether ε1

or ε2 is used for fitting the elastic tensor. A refitting of the elastic constants of those
systems is performed over the range of strains corresponding to ε3, and the bulk and shear
moduli are compared to those as obtained from fitting to ε2. We find that only 20 systems
exhibit discrepancies of over 15 %. For the latter systems, we finally compare the bulk
and shear moduli as obtained from fitting to ε1 and ε4, respectively, finding that only 10
still show discrepancies of over 15 %. Thus, for the vast majority of the cases considered,
the default range of strains ε1 is found to suffice for calculations of the elastic constants
by a stress-strain methodology, and for more than two-thirds of the remaining compounds
the additional checks implemented in the workflow lead to identification of an appropriate
range of strains to yield reasonable results.
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As illustrated in Fig. 7.1, for the systems where the calculation ends successfully
and an appropriate range of strains is successfully identified, the elastic tensor results are
further checked using various filters, designed to detect possible errors related to the as-
sumption of linear elastic behavior, or other numerical inaccuracies that might occur due
to the need for tighter convergence. The filters are designed to reveal physically impossible
behavior, which can be indicative of such errors. The filters include: i) KR > 2 GPa,
ii) GR > 2 GPa, iii) all 6 eigenvalues of the elastic tensor are larger than zero, and iv)
Born-Huang stability criteria [323] are obeyed to within a 10 % margin (see below). Note
that KR and GR represent the Reuss-averages of the bulk and shear moduli, respectively
[199] (see Table 7.1 for definitions).

Conditions i) and ii) are selected based on an empirical observation that the most
compliant known metals have shear and bulk moduli larger than approximately 2 GPa.
Hence if our calculations yield results below 2 GPa for either the Reuss averages [199] (a
lower bound estimate) of K or G, these results might be correct but deserve additional
attention. Condition iii) expresses the conditions for mechanical stability of solids under
zero stress. If one (or more) of the eigenvalues of the elastic tensor is (are) negative, the
compound is mechanically unstable at zero temperature. The effects of finite tempera-
tures may lift the mechanical instability in some systems, such as B2 NiTi [324]. However,
negative eigenvalues may also indicate the calculation is erroneous, and hence these cases
are flagged for a more detailed investigation. The final set of filters iv) is used to identify
elastic tensors that correspond to materials that are mechanically stable but are near an
elastic instability. This is done by applying the Born-Huang elastic stability criteria for
the appropriate crystal system. As an example for the cubic crystal system, we require
that C11 − C12 > 0, C11 + 2C12 > 0, C44 > 0. If one or more of these criteria is violated,
one or more of the elastic tensor eigenvalues is negative. To identify compounds that are
close to a mechanical instability, we apply a small tolerance to the Born-Huang criteria.
As an example, for the case of cubic crystal systems, we check if C11 > εC12 holds true,
where ε = 1.1. We find empirically that when C11 < εC12, frequently the first-principles
calculation was not properly converged or a more accurate PAW potential is required (e.g.,
including semi-core states). For other crystal systems, similar tests are performed.

For the materials that do not obey one or more of the conditions i)-iv), we in-
vestigate the effect of the various convergence parameters in the DFT calculations, and
if the results still do not pass the filters, a warning tag is generated warranting further
investigation. From the initial set of 1,181 materials, it is found that 97 systems fail to
meet criteria i)-iv). In particular, 57 systems are found to be mechanically unstable, 16
systems have Reuss averaged shear or bulk moduli lower than 2 GPa and 19 systems are
within a margin ε = 1.1 of being mechanically unstable. For these 97 systems, a new set
of calculations is performed using a substantially higher k-point density of approximately
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25,000 pra in both structural relaxations and stress-calculations. This set of calculations
results in a reduction in the number of systems that do not obey conditions i) - iv) from
97 to 76 systems. Of these, 50 systems are found to be mechanically unstable, 14 systems
have Reuss averaged shear or bulk moduli lower than 2 GPa and 12 systems are mechani-
cally stable but within a margin ε = 1.1 of being mechanically unstable. In particular, the
pure metals Al and Cu are flagged by the filters in the initial DFT-runs employing lower
k-points, since these metals are close to mechanical instability. However, upon increasing
the k-points, results improve (this finding was not unexpected since Cu and Al which are
known to exhibit complex Fermi surfaces [325]). The filters described above are designed
to identify anomalies, and they will likely be refined as our approach evolves and additional
validation is performed.

All elastic tensors that have achieved sufficient numerical convergence are inserted
into the MP database and reported on the web site. We also store and report on the web-
site results for mechanically unstable compounds, but include a warning message to the
user. A JSON (JavaScript Object Notation) data document is generated for each reported
elastic tensor. This JSON data document is publicly available at the Dryad-repository. We
perform the structure generation and data analysis for elastic constant calculations using
our open-source materials analysis code pymatgen [326]. The workflow software FireWorks
[327] is used to automate the HT calculations and data management.

7.3.3 Code availability

The code for calculating elastic constants and related properties is part of the
open-source code pymatgen [326]. Pymatgen is released under the MIT (Massachusetts
Institute of Technology) License and is freely accessible. The workflow as shown in Fig.
7.1 is powered by the open-source code FireWorks and is released under a modified GPL
(GNU General Public License). Also FireWorks can be accessed and used freely.

7.4 Data Records

The calculated elastic property data and related metadata of 1,181 materials are
publicly available at the Materials Project. The complete data set can be downloaded in
a JSON file or via the Materials Project REST API. The Materials Project also provides
a convenient web interface that allows searching for materials with particular properties
by querying the elastic constant database. In addition, the materials detail pages on the
website now include calculated elasticity data when available.
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Table 7.2: JSON keys for metadata and their descriptions.

Key Datatype Description

material id string IDs for entries in the Materials Project

formula string Chemical formula

structure string Relaxed crystal structure represented in Crystallographic In-
formation File (cif)

poscar string relaxed crystal structure represented in poscar-format for
VASP calculations

space group number Space group number defined by The International Union of
Crystallography

volume number Volume of the relaxed structure in Å
3

nsites number Number of atomic sites for the conventional cell

kpoint density number density of k-points in the first Brillouin zone per reciprocal
atom

7.4.1 File format

The data set for each material is stored as an individual JSON document. Based
on a series of key/value pairs, the JSON format offers a readily parsable yet human readable
solution for data exchange. The metadata record for each material includes descriptions
of the material (e.g. structure, structure symmetry) and calculation parameters (e.g. k-
points density). The JSON keys for the metadata and their descriptions are listed in Table
7.2. Note that the structure is presented both in Crystallographic Information File (cif)
and poscar-format. The poscar-format is the standard structure description used by the
VASP-code.

7.4.2 Properties

The elastic constants appearing in Eq. 7.1 are calculated by DFT and represent
the elastic constants of a single crystal. While single-crystal elastic properties are important
as input into higher length-scale modeling of mechanical behavior, we also derive and report
several polycrystalline averaged properties. In this work, we calculate for all considered
systems the Voigt and Reuss averages of the bulk and shear modulus. The Voigt average
provides an upper bound on the elastic moduli of an untextured polycrystalline material
whereas the Reuss average provides a lower bound [199]. The experimental quantities
will lie between the bounds, with the precise value determined by the detailed orientation
of the various grains in the material. Also we provide the empirical VRH-average for
the bulk and shear modulus. This empirical average is known to represent the bulk and
shear modulus of polycrystalline materials with comparable accuracy as more advanced
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polycrystalline homogenization schemes such as those by Hashin and Strickman [328, 295].
Other properties computed in this work are the index of elastic anisotropy [329] and the
Poisson ratio in the isotropic approximation. The various derived properties are listed
in Table 7.1, including expressions relating these properties to the elements of the single-
crystal elastic tensor. The corresponding JSON keys and the datatypes are also listed in
Table 7.1. The elastic tensor Cij is presented in two ways in Table 7.1: i) in the standardized
IEEE-format and ii) in the format corresponding to the orientation of the crystal structure
as defined in the poscar-key in Table 7.2.

7.4.3 Graphical representation of results

A graphical representation of our dataset is presented in Fig. 7.2, which shows a
log-log plot of the VRH averaged bulk modulus versus the VRH averaged shear modulus
for all materials considered in this work. The orientation of each arrow corresponds to
the volume per atom (VPA) of that specific material. The material with the minimum
VPA in our dataset is assigned an arrow pointing at 12 o’clock (diamond) and the arrows
rotate anti-clockwise towards the materials with the maximum VPA in our dataset at 6
o’clock (barium). The angle of rotation from 12 o’clock to 6 o’clock is proportional to the
normalized VPA. The VPA is considered since it is known to correlate well with elastic
properties such as bulk modulus [330, 331, 332]. Indeed, Fig. 7.2 illustrates this apparent
correlation. Specifically, diamond exhibits the highest bulk and shear moduli of all mate-
rials in our database and it also has the smallest VPA among those materials. The more
elastically compliant materials in Fig. 7.2 show relatively higher values for the VPA. The
color coding in Fig. 7.2 represents the Poisson ratio in the isotropic approximation. Also,
two lines of constants KV RH/GV RH ratio are drawn. As described in the Introduction,
this quantity, known as Pugh’s ratio [116], has been shown to correlate with ductility in
crystalline compounds [116, 110] and is further related to the Poisson ratio [287]. The bar
plots show the distribution of materials relative to their respective values for the bulk and
shear modulus. The distribution shows that most materials considered, lie in the region
around 80 and 190 GPa for the shear modulus and bulk moduli, respectively. Thus, this
diagram distills several well-known results in the field of elasticity and illustrates them
through a large amount of data.

7.5 Technical Validation

7.5.1 Verification of computational methodology

To verify proper implementation of HT version of the stress-strain method de-
scribed above, detailed comparisons have been undertaken between the data derived from
this approach and independent computational results obtained in the present work using
alternative methods, or published previously by other authors using the same DFT ap-
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Figure 7.2: Distribution of calculated volume per atom, Poisson ratio, bulk modulus and
shear modulus. Vector field-plot showing the distribution of the bulk and shear modulus,
Poisson ratio and atomic volume for 1,181 metals, compounds and non-metals. Arrows
pointing at 12 o’clock correspond to minimum volume-per-atom and move anti-clockwise
in the direction of maximum volume-per-atom, which is located at 6 o’clock. Bar plots
indicate the distribution of materials in terms of their shear and bulk moduli.
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proximations. Such comparisons have been undertaken for a subset of systems that are
representative of the material types in the database. Overall, the comparisons yield agree-
ment at the level of approximately 5%, with a few exceptions, as described below.

Considering first insulator compounds, the Cij values obtained here for α-Al2O3

are all within 2% of the results reported in Ref. [313] using the same DFT approximations,
combined with a similar stress-strain method. The present α-Al2O3 results are also within
3% of the values for all Cij components obtained from a numerical differentiation of the
energy versus strain using Wien2K [333, 334], and within 5% of the results for all compo-
nents obtained by energy differentiation methods derived from Quantum Espresso [193] and
reported in Ref. [335]. It should be noted that for α-Al2O3 the C14 component obtained in
this work has a sign opposite to that reported in [335]. In fact, the sign of C14 in α-Al2O3

has been a source of controversy in other previous theoretical and experimental studies
[335, 313, 336]. However, as discussed in [335], the ambiguity in choosing the Cartesian
reference coordinate system for trigonal materials with R centering type is the likely cause
of these discrepancies. For cubic Y2O3 the present results for each of the Cij components
are within 10% of those reported from the stress-strain calculations performed within in
GGA in [336] (the largest discrepancy is found for the C12 component). For β-Si3N4 the
present results agree to within 5 % of those reported in the same publication [336]. For the
polar wurtzite ZnO compound, the results obtained in the present work agree to within
8% for C44, and within 2 % for all other moduli, with the values obtained by Wu et al.
[75] using the same DFT approximations, and an approach that employs density-functional
perturbation theory to compute internal displacement contributions.

We have also conducted a number of comparisons between the present results and
other theoretical calculations for metallic and small-band-gap systems. We have compared
results obtained using our HT methodology with those derived from a method that fits
the calculated total energy as a function of volume-conserving strains, as developed by
Mehl et al. [322, 337]. The present HT stress-strain methodology yields results within 4%
of those obtained from this energy versus strain method for BCC Lithium and FCC Alu-
minum. Further, the elastic constant tensor components for orthorhombic TiB, reported
from full-potential-linear-augmented-plane-wave GGA calculations, along with total en-
ergy differentiation methods [338], are within 5% for of the values obtained here for all Cij
components, with the exception of C44 (reported as C66 in [338]), which is within 15%.

As described in the previous section, consistency checks are built into the HT-
workflow employed in the present work to ensure that the range of strains employed in the
fit of the stress-strain relations are appropriate. The dependence of calculated elastic con-
stants on the range of strains considered has been examined in detail in previous work, e.g.
[335]. The authors of Ref. [335] employ an energy versus strain method, using sixth-order
polynomial fits of the energy to a strain range of up to 8 %. The authors conclude that for
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small deformations, the best results are obtained by low-order polynomial fits, and that
the stress-strain approach is more accurate in the sense that only first-order derivatives
are required, in which case smaller distortions are required. This is consistent with the
findings in this work, where a maximum strain of 1 % is found to provide reliable results
for over 97 % of the compounds considered, using a linear stress-strain fit. To investigate
this issue further we have performed detailed tests similar to those in Ref. [335] for a select
number of systems. Strains in the range of 1 % to 8 % were applied and the stresses and
strains fit using n-th order polynomials, where n ranges from 1 to 4. In particular for KBr,
which is one of the most elastically compliant materials in the database, we found changes
of less than 2 % in the bulk and shear moduli, as the strain was varied from 1 % to 8
%, regardless of the order of the polynomial. For diamond, the stiffest materials in our
database, one might expect relatively strong non-linear behavior of the stress with strain,
even for small strains. However, also for diamond we find that the bulk and shear moduli
vary by less than 2 % as the strain is varied and the polynomial order ranges from 1 to 4.
Overall, the tests described in this and the previous section suggest that the stress-strain
approach and the range of strains considered in its application, yield reliable results for
the vast majority of the compounds considered in the development of the current database.

7.5.2 Validation through comparison to experimental measurements

A comprehensive literature review was performed to compile measured elastic
constant tensors, for comparison with the present calculations, in order to establish the
expected accuracy of the calculated results. In this comparison we consider only exper-
imental sources that report the full elastic tensor, rather than only the bulk or shear
modulus, so that a systematic comparison with the calculated elastic tensors can be made.
In total, 104 systems are used in the comparison, including oxides and semiconductors
[310, 312, 339, 340, 341, 342, 343, 344, 299, 144, 345, 346] and metals and metallic com-
pounds [347, 348, 349, 350, 351, 352, 299, 144, 353, 302]. In the comparison, we make
use of the Voigt-Reuss-Hill average for K and G (denoted by KV RH and GV RH , respec-
tively), which is the arithmetic mean of the Voigt and Reuss bounds [199]. See also Table
7.1 for their definitions. The shear (GV RH) and bulk (KV RH) moduli of these 104 sys-
tems are compared by calculating the VRH-average from the experimentally measured
and calculated tensors. In addition a Euclidean difference norm [354], normalized by the
magnitude of the calculated elastic tensor, is used to probe errors relative to the mean
elastic constants: ‖Cexpij − Ccalcij ‖ · ‖Ccalcij ‖−1, where the definition of the norm is given as

‖Cij‖E =
(

tr
[
CTijCij

])0.5
. In this expression, Cij represents the elastic tensor (in matrix

form) as defined in Eq. 7.1.

The comparison of calculated and experimental values for KV RH and GV RH are
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shown in Fig. 7.3 and 7.4, respectively. In each plot, lines are shown indicating relative
differences between computation and experiment of ±15%. As can be seen, the agreement
between experiment and calculation is generally within this threshold, although there are
some outliers. Specifically, in the case of the bulk modulus a discrepancy between ex-
periment and calculations larger than 15 % is found for 16 systems (in order of absolute
deviation, from low to high): Na, Tl, Pb, Ca, CsI, Nd, Yb, YZn, Cd, Mg2Sn, Ge, Pt,
CaAl2, Au, Co, CdAu. The first 11 in the list disagree with experiment by less than 10
GPa. For the shear modulus, a discrepancy between experiment and calculations larger
than 15 % is found for 15 systems (in order of absolute deviation, from low to high): KI,
Ca, CsI, KBr, CdSe, Tl, Cd, GaSb, GaAs, Ge, CdAu, Y2O3, Au, Cr3Si, MnSi. The first 6
in the list disagree with experiment by less than 10 GPa. These larger discrepancies may
be due to errors in the calculations, the experimental measurements or a combination of
both. Note that most of the systems displaying greater than 15 % discrepancy between
calculations and measurements are those with relatively low bulk and shear moduli, see
the insets in Figs. 7.3 and 7.4. Similarly, we find for the quantity ‖Cexpij −Ccalcij ‖ ·‖Ccalcij ‖−1

most of the systems show discrepancies below 20 %, with the largest discrepancies found
for the systems with the smallest values of ‖Ccalcij ‖. For these systems with relatively small
elastic moduli, the discrepancies may be due to the larger effect of the numerical errors in
the calculations on the relative precision of the calculated elastic tensors.

Other factors that might contribute to discrepancies are temperature variations:
DFT provides a zero-temperature description of the state of the material, whereas many
experiments are done at room temperature. While such temperature variations are typi-
cally relatively small below room temperature, in some systems this effect can be large. For
example, in previous experimental studies of single-crystal Nb3Sn, the value of (C11-C12)
starts at 140 GPa and decreases to zero as temperature decreases from 300 to 32 K [348].
Our calculated results for Nb3Sn at 0 K show a mechanical instability with C11 slightly
less than C12. Thus, these mechanical instabilities can contain useful information indicat-
ing potentially anomalous mechanical properties or shear instabilities at low temperature.
Methods have been implemented in the literature to predict the temperature dependence of
the elastic constants from first-principles [355, 356], and implementation of such approaches
represents a future extension of the database. The elastic constants reported in this work
represent the zero-temperature limit of the isothermal moduli, whereas experimentally it is
often the adiabatic elastic tensor that is measured; however, the differences between these
two types of elastic constants are typically small [357]. From the computational perspec-
tive, we have found that for some elements, PAW potentials exhibiting a different number
of electrons as valence states can significantly affect the calculated elastic properties. This
is the case for the elements V, Ti and Nb. Also, some of the systems listed above exhibit
antiferromagnetic states. These states are both temperature and strain dependent, and
resolving these details in HT DFT-calculations of elastic constants is challenging and the
topic of current work that is expected to impact future releases of the database.
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Figure 7.3: Plot of experimental vs. calculated bulk moduli. Comparison of experimental
and calculated bulk moduli for a selected set of systems, with calculated Pearson correlation
coefficient r and Spearman correlation coefficient ρ reported.

For the purpose of using the elastic constant database in the context of materials
discovery, it is useful to characterize the correlation between the calculated and measured
elastic quantities. For this purpose we again consider the values for KV RH and GV RH ,
and calculate the Pearson and Spearman correlation coefficients (r and ρ, respectively).
Also computed are 95% bootstrap-based confidence intervals for the correlations. The
lower (LB) and upper (UB) bounds of these confidence intervals are presented as ([LB,
UB]). For the bulk modulus, the Pearson and Spearman correlation coefficients are 0.988
([0.978, 0.994]) and 0.988 ([0.973, 0.993]), respectively. For the shear modulus, we find
values of 0.994 ([0.985, 0.998]) and 0.982 ([0.955, 0.993]) for the Pearson and Spearman
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Figure 7.4: Plot of experimental vs. calculated shear moduli. Comparison of experimental
and calculated shear moduli for a selected set of systems, with calculated Pearson correla-
tion coefficient r and Spearman correlation coefficient ρ reported.

correlation coefficients, respectively. These values suggest that the measured and calculated
values for bulk and shear moduli are strongly linearly associated and also, a high monotone
association exists.

7.6 Usage Notes

The database presented here represents the to-date largest collection of consis-
tently calculated or measured elastic tensors for crystalline inorganic materials. We an-
ticipate that this dataset, and the methods provided for querying it, will provide a useful
tool in fundamental and application-related studies of inorganic compounds. We expect,
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in particular, that the database will be useful for efforts aimed at materials discovery and
design, in the search for and optimization of materials with targeted mechanical and ther-
mal properties. For the first time, researchers will be able to query existing compounds
from the database by specifying desired elastic properties, for example a maximum value
of the shear modulus with minimum elastic anisotropy. For compounds that are currently
not in the database, future extensions of this work will be a web interface where MP-users
will be able to calculate elastic properties on demand, by uploading a file describing the
crystallography of the material of interest. Techniques such as data mining and machine
learning can be used to reveal fundamental trends in the elastic properties of compounds,
and guide the screening of potentially interesting materials for target properties.
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Chapter 8

High-Throughput Discovery of
New Piezoelectrics

8.1 Foreword

Piezoelectric materials are used in numerous applications requiring a coupling be-
tween electrical fields and mechanical strain. Despite the technological importance of this
class of materials, for only a small fraction of all inorganic compounds which display com-
patible crystallographic symmetry, has piezoelectricity been characterized experimentally
or computationally. In this chapter we employ first-principles calculations based on density
functional perturbation theory to compute the piezoelectric tensors for nearly a thousand
compounds, thereby increasing the available data for this property by more than an order
of magnitude. The results are compared to select experimental data to establish the accu-
racy of the calculated properties. The details of the calculations are also presented, along
with a description of the format of the database developed to make these computational
results publicly available. In addition, the ways in which the database can be accessed and
applied in materials development efforts are described.

Part of the results presented in this chapter, including the figures and tables,
were published by Maarten de Jong, Wei Chen, Henry Geerlings, Mark Asta and Kristin
Persson in Scientific Data, 2, 2015 [358]. The material is reproduced here with permission
of the co-authors and publishers.

8.2 Background & Summary

Piezoelectricity is a reversible physical process that occurs in some materials
whereby an electric moment is generated upon the application of a stress. This is of-
ten referred to as the direct piezoelectric effect. Conversely, the indirect piezoelectric effect
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refers to the case when a strain is generated in a material upon the application of an
electric field [359]. Today, piezoelectric materials are integral to numerous applications
and devices that exploit this effect, and form the basis for a multi-billion dollar worldwide
market [360, 361]. Examples are found in high voltage and power applications, actuators,
sensors, motors, atomic force microscopes, energy harvesting devices and medical applica-
tions. These technologies all rely on the conversion of voltage to mechanical deformation
or vice versa.

The mathematical description of piezoelectricity relates the strain (or stress) to
the electric field via a third order tensor. This tensor describes the response of any piezo-
electric bulk material, when subjected to an electric field or a mechanical load. The Heck-
mann diagram (Fig. 8.1) [359] conveniently describes how mechanical and electrical prop-
erties of solids are related. The piezoelectric response of a material can be described using
different piezoelectric constants, reflecting various derivatives of thermodynamic functions.
Of particular interest to this work are the isothermal piezoelectric stress constants (abbre-
viated in the rest of this chapter as simply piezoelectric constants), defined in full tensor

notation as eTijk =
(
∂Di
∂εjk

)
E,T

= −
(
∂σjk
∂Ei

)
ε,T

, where D, E, ε, σ and T represent the electric

displacement field, the electric field, the strain tensor, the stress tensor and the tempera-
ture, respectively. In this work, Voigt-notation is employed for brevity so that the relations

for the piezoelectric constants read eTij =
(
∂Di
∂εj

)
E,T

= −
(
∂σj
∂Ei

)
ε,T

. The Voigt-notation will

be explained below in more detail. We note that the most commonly used piezoelectric
constants appearing in the (experimental) literature are the piezoelectric strain constants,
usually denoted by dijk. These can be readily related to the constants eijk if the elastic
compliances sETlmjk (at constant electric field and temperature) of the materials are known

[362]: dTijk = eilms
ET
lmjk. In particular, the piezoelectric strain constants can be expressed

thermodynamically as [359] dTkij =
(
∂εij
∂Ek

)
σ,T

=
(
∂Dk
∂σij

)
E,T

.

The complete piezoelectric tensor has been measured or calculated for only a small
subset of potential piezoelectric materials. In the main references of compiled materials
properties, a total of less than 50 systems can be found for which experimental and/or
calculated values for full piezoelectric tensors are available [363, 364, 365, 366, 367, 368,
369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 370, 379, 380]. This represents a small
subset of candidate materials, since in principle all materials with a finite bandgap that
lack inversion symmetry can exhibit piezoelectric behavior. Hence there are thousands
of hitherto unknown potential piezoelectric compounds in the inorganic crystal structure
database [307, 308, 309]. Recently, significant effort has been devoted to the development
of lead-free piezoelectric materials [381, 382, 383, 384, 385, 386, 387]. However, efficient
screening over a wide range of materials chemistries is hindered by the lack of comprehen-
sive experimental data.
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Figure 8.1: Part of a Heckmann diagram, showing the relation between mechanical and
electrical properties of solids.

Another challenge associated with the available data for piezoelectric constants is
the large variability in the reported values, depending on the details of the experimental
or computational techniques employed and/or the conditions under which the experiments
are performed. As an example, α-quartz (SiO2) is the second most abundant mineral and
a commonly employed material in piezoelectric devices. However, its reported piezoelectric
constants differ by up to a factor of 3 in magnitude, presumably depending on the exper-
imental conditions [363] and temperature [372, 388]. The same is true for the common
mineral AlPO4 and elemental Te [363].

In this chapter, we introduce the to-date largest database of consistently calcu-
lated piezoelectric tensor properties of dielectric crystalline inorganic compounds. This
database supplements our earlier work on elastic constants [284, 115, 288, 290, 190] and
contributes to a more complete description of the deformation behavior of solids. Whereas
our previous work was limited to describing the relationship between stress and strain in
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the absence of electric fields, we now introduce the piezoelectric constants to incorporate
this effect. Based on the Heckmann diagram in Fig. 8.1, this addition of piezoelectric
constants will significantly increase the applicability of our previous dataset comprising
zero-electric field elastic constants [284].

The work presented in this chapter is part of the Materials Project (MP) [316],
and aims at employing high-throughput (HT) methods [15, 389] to develop open databases
of calculated materials properties for discovery and design. The database of piezoelectric
tensors currently consists of 941 materials and efforts are underway to compute more com-
pounds in the near future. The piezoelectric properties are obtained using first-principles
quantum-mechanical calculations based on Density Functional Theory (DFT), in particu-
lar Density Functional Perturbation Theory (DFPT) [390, 66, 71]. As described below, the
calculated piezoelectric constants show a level of agreement with experimental data that
is often comparable to the scatter in the measured data itself. It is important to note that
in this chapter, intrinsic piezoelectric constants are presented, associated with the bulk,
defect-free and strain-free material, at a temperature of 0 K.

The remainder of this chapter is organized as follows. In the next section the
methods for materials selection and calculation of piezoelectric constants within an HT
approach are described. Subsequently, the results of verification and validation analyses
are presented, which establishes the accuracy of our DFT-calculations as well as the HT-
algorithms. Finally, the last part of the chapter describes the structure of the data and
gives an overview of the results obtained in this study.

8.3 Methods

8.3.1 Definitions & computational settings

In this work we report calculated values for the proper piezoelectric constants,
eij , defined as follows:

eTij = −
(
∂σj
∂Ei

)

ε,T

, j 7→ {11, 22, 33, 12, 23, 31}, i 7→ {1, 2, 3} (8.1)

where σ denotes the stress tensor and E denotes the electric field. Also, in the Voigt no-
tation used in this work, pairs of Cartesian directions are contracted as follows: 11 7→ 1,
22 7→ 2, 33 7→ 3, 23, 32 7→ 4, 13, 21 7→ 5, 12, 21 7→ 6. The piezoelectric stress is the sum of
the ionic and electronic contributions and the piezoelectric tensor-components as defined
in Eq. 8.1 have units C/m2.

Note that different matrix-tensor notations exist in the literature. In particular,
when mapping the full third order piezoelectric tensor onto a 3 × 6-matrix, factors of 2
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pre-multiplying certain constants are sometimes introduced. Specifically, some authors
use the convention that eijk = ein, when n = 1, 2, 3 and 2eijk = ein, when n = 4, 5, 6
[359, 391, 370, 392, 393]. In the present work, factors of 2 and 1

2 are not introduced in the
piezoelectric tensor itself, but rather in the vectors operating on the piezoelectric tensor.
Figures 8.2 and 8.3 (discussed in detail below) indicate for different crystal systems and
point groups, the form the piezoelectric tensors take, according to the notation employed
in this work. It is straightforward to convert to other conventions found in the literature.

The first-principles results presented in this work are performed using the projec-
tor augmented wave (PAW) method [52, 53] as implemented in the Vienna Ab Initio Sim-
ulation Package (VASP) [137, 136]. In all calculations, we employ the Perdew, Becke and
Ernzerhof (PBE) Generalized Gradient Approximation (GGA) for the exchange-correlation
functional [37]. A cut-off for the plane waves of 1000 eV is used and a uniform k-point den-
sity of approximately 2,000 per reciprocal atom (pra) is employed, which means that the
number of atoms per cell multiplied by the number of k-points equals approximately 2,000.
For the compounds that contain magnetic elements, a ferromagnetic state is initialized in
the calculation. Similarly to our previous work [284], we expect to correctly converge to
ferromagnetic and non-magnetic states in this way, but not to anti-ferromagnetic states.
Due to the presence of strongly correlated electrons in some of the oxides, the GGA+U
method is employed, with U representing the Hubbard-parameter [320, 321]. The values
of U are chosen consistent with those employed in MP [316, 318].

We estimate that the choice for plane wave cutoff and kpoints leads to piezoelec-
tric tensors with components that are converged to within approximately 10 % for over 90
% of the considered systems. This is based on careful convergence testing of DFT-results
on a representative subset of approximately 25 compounds [363, 364, 365, 366, 367, 368,
369, 370, 371, 372, 373, 374, 375, 376, 377, 378]. Given the large variety of compounds
and elements considered in this work, our DFT-parameters cannot be expected to per-
form equally well for all systems under investigation. Therefore, consistency checks are
devised in our HT-infrastructure to detect possible anomalous behavior and errors in the
first-principles calculations, similar to those devised for the HT-calculations of the recently
published elastic constants [284]. The systems detected as problematic by these checks
are recalculated from DFT with improved convergence settings in an attempt to solve the
problem (see next next section for more details).
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Crystal system Point groups Piezoelectric tensor Surface representation

Cubic 23
4̄3m




0 0 0 e14 0 0
0 0 0 0 e14 0
0 0 0 0 0 e14




Tetragonal 4̄2m




0 0 0 e14 0 0
0 0 0 0 e14 0
0 0 0 0 0 e36




Tetragonal 4̄




0 0 0 e14 e15 0
0 0 0 −e15 e14 0
e31 −e31 0 0 0 e36




Hexagonal 6̄m2




0 0 0 0 0 −e22
−e22 e22 0 0 0 0

0 0 0 0 0 0




Hexagonal 6̄



e11 −e11 0 0 0 −e22
−e22 e22 0 0 0 −e11

0 0 0 0 0 0




Hexagonal,
Tetragonal

6mm
4mm




0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0




Hexagonal,
Tetragonal

6
4




0 0 0 e14 e15 0
0 0 0 e15 −e14 0
e31 e31 e33 0 0 0




Table 1: Piezoelectric tensors and symmetry classes considered in this work,
part I.

1

Figure 8.2: Piezoelectric tensors and symmetry classes considered in this work, part I.
Typical representations of the longitudinal piezoelectric modulus in 3D are also shown for
each crystal point group.
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Crystal system Point groups Piezoelectric tensor Surface representation
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0 0 0 0 e15 −e22
−e22 e22 0 e15 0 0
e31 e31 e33 0 0 0
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e11 −e11 0 e14 0 0
0 0 0 0 −e14 −e11
0 0 0 0 0 0




Trigonal 3



e11 −e11 0 e14 e15 −e22
−e22 e22 0 e15 −e14 −e11
e31 e31 e33 0 0 0
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0 0 0 0 e15 0
0 0 0 e24 0 0
e31 e32 e33 0 0 0




Orthorhombic 222




0 0 0 e14 0 0
0 0 0 0 e25 0
0 0 0 0 0 e36




Monoclinic m



e11 e12 e13 0 e15 0
0 0 0 e24 0 e26
e31 e32 e33 0 e35 0




Monoclinic 2




0 0 0 e14 0 e16
e21 e22 e23 0 e25 0
0 0 0 e34 0 e36




Triclinic 1



e11 e12 e13 e14 e15 e16
e21 e22 e23 e24 e25 e26
e31 e32 e33 e34 e35 e36




Table 1: Piezoelectric tensors and symmetry classes considered in this work,
part II.

1

Figure 8.3: Piezoelectric tensors and symmetry classes considered in this work, part II.
Typical representations of the longitudinal piezoelectric modulus in 3D are also shown for
each crystal point group.
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8.3.2 Compound selection and generation of piezoelectricity data

In this work, we present the piezoelectric tensor for a total of 941 compounds.
The compounds were selected from the MP database, with certain constraints applied.
These constraints are chosen to specifically target compounds that have the possibility
of exhibiting piezoelectric behavior, as follows: 1) only structures with space groups 1,
3-9, 16-46, 75-82, 89-122, 143-146, 149-161, 168-174, 177-190, 195-199, 207-220 are allowed
(since these space groups lack inversion symmetry), 2) the calculated DFT bandgap > 0.1
eV, 3) the energy above the convex hull (decomposition energy [317]) < 0.10 eV / atom,
and 4) the number of atoms in the unit cell ≤ 20. These constraints are chosen to identify
a set of materials that has the possibility of exhibiting piezoelectric behavior, while being
energetically stable or near-stable and having relatively small unit cells. In particular, ma-
terials can only exhibit piezoelectric behavior if they lack inversion symmetry and have an
electronic bandgap (constraints 1 and 2, respectively). The space group was determined
based on the relaxed structures from the MP database.

For these select compounds, the relaxed structures are extracted from the MP-
database and used as input for the DFPT-calculation of the piezoelectric constants. How-
ever, DFT convergence parameters chosen for structure relaxations, such as the kpoint-
density and the plane wave energy cutoff that are optimized for the total energy, are not in
general sufficient for the purpose of calculating properties from DFPT, such as phonons and
piezoelectric constants. Hence, the DFPT-calculations are performed using more stringent
convergence parameters, as required by the Berry-phase approach [72, 394].

8.3.3 Workflow

Figure 8.4 illustrates the scheme used for the HT-calculation of the piezoelec-
tric constants from DFT. For each selected structure from the MP database, a DFPT-
calculation is first carried out, which directly results in the piezoelectric tensor. To ensure
reliable calculated constants, we have devised several consistency checks and filters as part
of our workflow. The aim is to detect possible errors in the DFT-calculations and other
problems such as unconverged results. These filters largely rely on symmetry considera-
tions. Certain classes of point groups impose constraints on the piezoelectric tensor, such
as components being identically equal to zero, or components being equal to each other.
For example, within the cubic crystal system, either all piezoelectric constants are equal
to zero (for non-piezoelectric cubic compounds) or there is only one independent nonzero
piezoelectric constant. An overview of the symmetry constraints for the point groups con-
sidered in this work is given in Figs. 8.2 and 8.3.

Our filters take the symmetry considerations above into account and are chosen as
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Figure 8.4: Flowchart showing a schematic of the HT-infrastructure for calculating piezo-
electric constants, including error-checking steps and database insertions.

follows: (i) |eij | < 0.01 C/m2 for components that should be identically zero by symmetry
(ii) if the point group symmetry imposes that eij and ekj are identical, these should be
within 5% in the DFT-calculation and (iii) ‖eij‖max < 5 C/m2. Conditions (i) and (ii) are
simply employed to check if the symmetry of the crystal structure is approximately repre-
sented in the calculated piezoelectric tensor. The notation ‖eij‖max in filter (iii) denotes
the maximum attainable absolute value of the longitudinal piezoelectric modulus, experi-
enced by the crystal in any direction. For example, as the orientation of the E-field with
respect to the crystal is varied, the response of the crystal in the direction of the E-field
can be measured and this can be repeated for all possible directions. ‖eij‖max corresponds
to the maximum longitudinal piezoelectric response that is measured among all directions.

Figures 8.2 and 8.3 provide surfaces with the longitudinal magnitude of the piezo-
electric modulus for various crystal symmetries. As an example, for cubic crystals the
maximum longitudinal piezoelectric modulus ‖eij‖max occurs in the 〈111〉 family of di-
rections, as indicated in Figures 8.2 and 8.3 and also shown in Fig. 8.5 for the specific
case of cubic LaOF. These directions where ‖eij‖max occurs are indicated in this work by
vmax. The reason for including filter (iii) involving ‖eij‖max is that the most potent class
of currently known piezoelectric materials, lead zirconate titanate (PZT’s), exhibit maxi-
mum absolute piezoelectric tensor components in the range of approximately 6-12 C/m2

[371, 395, 396, 397], the precise values depending on the details such as grain size, tem-
perature etc. Calculations that yield values in that range are not necessarily wrong, but
deserve additional attention due to the relatively large magnitudes.

For materials that do not pass filters (i)-(iii) an additional DFPT-calculation is
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Figure 8.5: Visualization of the piezoelectric tensor: directional dependence of the lon-
gitudinal piezoelectric constant in cubic LaOF. Note that the maximum and minimum
piezoelectric constants, ‖eij‖max, occur for the 〈111〉 family of crystallographic directions.

performed with more stringent convergence parameters. This is similar to our approach
taken for validating the DFT-calculations of elastic constants [284]. If the filters are still
not passed after this calculation, a warning tag is attached to that specific compound. In
some cases, when the initial DFPT-calculation fails, it is also rerun with more stringent
parameters in an attempt to converge the calculation. If it fails a second time, a tag in-
dicating a failed calculation is attached. From the initial set of 941 materials, it is found
that 134 materials are flagged by one or more of the filters (i)-(iii). In particular, for 123
compounds we find that filters (i) and/or (ii) are violated, indicating problems with the
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symmetry of the piezoelectric tensor. In addition, of the 941 compounds considered, 11
systems exhibit a piezoelectric modulus ‖eij‖max > 5 C/m2 and therefore are flagged by
filter (iii). For these systems, we repeat the DFPT-calculation of the piezoelectric tensor
with an increased k-point density. It is found that this reduces the number of systems that
do not pass the filters from 123 down to 81. For the remaining compounds, a warning
message is generated on the MP website.

Each piezoelectric tensor that passes the filters is symmetrized according to the
point group-symmetry and subsequently inserted into the MP database, see Fig. 8.4. It
is also reported on the MP website. Furthermore, all currently available data can be
downloaded from the Dryad-repository (Data Citation 1). There, it is available as a JSON
(JavaScript Object Notation) data document. The data analysis is performed using our
open-source materials analysis code pymatgen [326]. The HT calculations are automated
using the FireWorks workflow software [327, 398].

8.3.4 Code availability

The proprietary VASP-code is used in this work for the calculation of piezoelectric
constants. The filters and symmetrization and analysis code for the piezoelectric constants
are implemented in pymatgen [326]. Pymatgen is released under the MIT (Massachusetts
Institute of Technology) License and is freely accessible. Further, the open-source code
MTEX [399, 400, 401, 402] is used to generate the 3D-representation of the piezoelectric
tensors. This code operates on most versions of the widely used MATLAB-software pack-
age. The workflow depicted in Fig. 8.4 is implemented in FireWorks, which is released free
of charge under a modified GPL (GNU General Public License).

8.4 Data records

The calculated piezoelectricity data and the associated metadata of all 941 ma-
terials are freely available at the website of the Materials Project, and the Materials API
[403] can be used to download the data. The complete set of data is also available as a
JSON file and can be found in the Dryad-repository. It is possible to query materials with
certain piezoelectric properties on the MP website via a dedicated web interface. The MP
website also includes dedicated details pages for each compound, giving an overview of its
calculated properties to date as well as the calculation parameters.

8.4.1 File format

Metadata is associated with each material and contains information regarding
some of the properties of the material, such as crystal structure (space groups, point



135

Table 8.1: JSON keys for metadata and their descriptions.

Key Datatype Description

material id string IDs for entries in the Materials Project

formula string Chemical formula

structure string Relaxed crystal structure represented in Crystallographic In-
formation File (cif)

poscar string relaxed crystal structure represented in poscar-format for
VASP calculations

space group number Space group number defined by The International Union of
Crystallography

point group string Point group in Hermann-Mauguin notation

volume number Volume of the relaxed structure in Å
3

nsites number Number of atomic sites for the conventional cell

kpoint density number density of k-points in the first Brillouin zone per reciprocal
atom

groups), a unique MP-ID for structure identification and several DFT calculation param-
eters such as k-point density. The data for each of the calculated materials is stored as
a JSON document. The JSON format is comprised of hierarchical key-value pairs. Table
8.1 lists for each of these properties the JSON key, datatype and a short description. To
retain consistency with the database of elastic constants, we present the structure of each
piezoelectric compound in two ways: (i) Crystallographic Information File (cif) and (ii)
poscar-format. The poscar-format is the structure-description as used in the VASP-code
and this can be converted into other formats using pymatgen.

8.4.2 Properties

The piezoelectric tensor reported in this work corresponds to a single crystal. For
the elastic constants, polycrystalline isotropic averages of the bulk and shear constants can
be derived from the single crystal 4th-order elastic tensor [199, 295, 115]. For the 3rd-
order piezoelectric tensor, however, an isotropic averaging scheme is not convenient, as it
will yield isotropic averages equal to zero [365]. Hence in this work, we report the piezo-
electric tensor in matrix form, together with several properties that are expected to be of
use to the community, see Table 8.2. The piezoelectric tensor eij as presented in this work
(see Table 8.2) is expressed in the standardized IEEE-format [319], corresponding to the
notation as shown in Figures 8.2 and 8.3. Note that the symmetrized piezoelectric tensors
are presented in this work, obeying the point group symmetry of each of the compounds.
We further report ‖eij‖max, which was defined earlier as the maximum longitudinal piezo-



136

electric modulus of the compound in any crystallographic direction (see Fig. 8.5). The
associated crystallographic direction is also reported, which corresponds to the direction of
the E-field that leads to the maximum normal stress in that same direction. Finally, the
symmetry information of each compound is included (space and point groups) since these
are closely related to piezoelectric properties.
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Table 8.2: Properties related to the piezoelectric tensor in this work, and their corresponding JSON keys and
datatypes.

Property Key Datatype Unit Description

Piezoelectric tensor, eij piezoelectric tensor array C/m2 Tensor, describing piezoelec-
tric behavior (IEEE-format)

Piezoelectric modulus,
‖eij‖max

eij max number C/m2 Maximum longitudinal piezo-
electric modulus

Crystallographic direction,
vmax

v max array - Crystallographic direction,
corresponding to maximum
piezoelectric modulus
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8.4.3 Graphical representation of results

Our dataset is presented graphically in Fig. 8.6, where the maximum piezoelectric
modulus ‖eij‖max for 941 compounds is plotted in a pie-chart, which also shows the point
group symmetry-classes considered in this work (see also Figures 8.2 and 8.3). The results
in Fig. 8.6 are broken up by the 7 crystal systems, which are further subdivided into the
point groups that can exhibit piezoelectric behavior.

From Fig. 8.6 it follows that a large fraction of the compounds are located near
the center of the chart, which indicates relatively weak piezoelectric behavior (/ 1 C/m2)
of ‖eij‖max. On the other hand, we find that 17 % of the compounds in the dataset
satisfy ‖eij‖max ≥ 1 C/m2 and 5 % satisfies ‖eij‖max ≥ 3, indicating relatively large
piezoelectric behavior. Our HT-calculations confirm high (intrinsic) piezoelectric constants
for compounds such as PbTiO3, BaNiO3, RbTaO3 and SrHfO3, some of which are indicated
in Fig. 8.6. We further identify a set of potent piezoelectric compounds that (to the best
of our knowledge) have not yet been confirmed experimentally or computationally in the
literature. Examples are VFeSb, Li4WO5, LiMnO2, NaBiS2 and a few dozen others that are
present in Fig. 8.6, but not explicitly indicated. The identification of these compounds,
exhibiting interesting piezoelectric behavior, can hopefully contribute to the search for
novel new piezoelectric materials. Of particular interest is also how different synthesis
techniques can affect the intrinsic piezoelectric response, as shown in Fig. 8.6, by changing
for example the grain size, the impurity concentration, and by introducing defects. In fact,
the most widely-used piezoelectric compounds today are based on lead zirconate titanate
(PZT’s). Their high piezoelectric response stems from a careful tuning of the checmical
composition to a region that is near a morphotropic phase boundary [404, 405, 406, 407].
In this work, the effect on the piezoelectric properties of alloying to create solid solutions is
not considered, however, the intrinsic piezoelectric moduli such as shown in Fig. 8.6 may
provide a convenient starting point in the process of searching for new piezoelectrics.

8.5 Technical validation and verification

8.5.1 Verification of computational methodology

Verification of the current HT implementation for calculating piezoelectric con-
stants by the DFPT Berry phase-approach is undertaken through comparison of the present
results to those obtained in the literature. Comparisons are made with work in the lit-
erature using similar DFT-methods but alternative implementations of DFPT or a finite
strain-based method rather than DFPT. As an example, for the wurtzite-compound AlN,
we calculate e33 = 1.46 C/m2 and e31 = −0.58 C/m2 which is within 10 % of the val-
ues reported elsewhere, obtained using GGA as well, but with a different implementation
of DFPT and slightly different convergence parameters [408]. Similar or better levels of
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Figure 8.6: A graphical representation of the piezoelectric dataset, currently comprising
of 941 materials. A series of concentric circles indicate constant values of the maximum
longitudinal piezoelectric modulus, ‖eij‖max. Concentric circles corresponding to moduli
‖eij‖max of 1, 2.5, 5, 10 and 20 C/m2 are indicated explicitly in the figure. The compounds
are broken up according to the crystal system and the different point group symmetry-
classes considered in this work.
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agreement are obtained for the compounds GaN and InN [408] and several (wurtzite) oxides
with piezoelectric behavior such as BeO and ZnO [366]. For the ternary oxide PbTiO3, we
compare our calculated piezoelectric constants to those calculated from DFPT and a finite
strain method [371]. For all 3 components of the piezoelectric tensor, we find agreement
to within 15% for both the DFPT and finite strain-calculations. We further compare our
calculated piezoelectric constants to those reported in the literature [409] for BiAlO3. We
find that for the constants e31, e33 and e15, the agreement is within 15-20 %. For the
smallest modulus of the tensor, e21, the agreement is worse, as it differs by approximately
a factor 2.5, however the absolute difference is similar to that found for the other com-
ponents. Even though the method employed in [409] is also based on DFPT and uses
GGA-PBE, it employs a Troullier-Martins norm-conserving pseudopotential methodology
[51] to describe electron-ion interaction, which differs from the PAW method used in the
current approach. We expect that the discrepancy in e21 may be caused by this difference.

Based on the comparisons performed as part of this work, we find that the level
of agreement between the piezoelectric constants calculated from our HT-methodology and
those obtained in the literature using alternative methods, generally show agreement to
within approximately 15-20 %. This level of agreement is consistent with that found in the
literature, comparing piezoelectric constants calculated from DFT, e.g. [366, 410].

8.5.2 Validation through comparison to experimental measurements

In order to gauge the expected accuracy of the calculated results, an extensive
comparison with reported experimental piezoelectric constants was performed. To achieve
consistency with the calculations, we consider comparisons only with measurements that
report the complete piezoelectric tensor, rather than just a subset of components. This
leads to a comparison for 36 systems, and over 75 independent piezoelectric tensor com-
ponents. The systems for which data from the literature is taken range from well-known
semiconductors such as GaAs and InAs to binary compounds such as ZnO, ZnTe and ox-
ides of the form XYO3 or XYO2 such as SnTiO3, LiNbO3 and LiGaO2.

The comparison of calculated and experimental values for the piezoelectric con-
stants are shown in Fig. 8.7. The points represent the quantity ‖eij‖max, which represent
the maximum attainable piezoelectric response (over all crystallographic directions) and
is derived directly from the calculated and experimentally determined piezoelectric ten-
sors. In the plot, lines are shown indicating relative differences between computation and
experiment of ±25%. A threshold of 25 % is chosen since this represents a typical dis-
crepancy between experiment and calculation for the case of piezoelectric constants. Note
that this is true in particular for compounds with relatively large piezoelectric constants.
The inset of Fig. 8.7 shows that for values below roughly 0.4 C/m2, percentage errors are
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much larger. The same trend was observed in our recent work on elastic constants [284],
although for piezoelectric constants, the discrepancies between our DFT-calculations and
experiments tend to be larger. Discrepancies between experiment and calculation of over
25 % are identified for 16 systems, which are (in order from high to low discrepancies): ZnS,
GaP, InP, BeO, BP, CdTe, InAs, SiBiO, InSb, GaSb, AlSb, GaAs, CdS, BN, AlN and CuCl.
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There are several other factors that can contribute to discrepancies between cal-
culations and the experiments. First of all, our DFT-calculations provide a description
of the materials that is strictly only valid at a temperature of 0K. However, most exper-
iments are done at room temperature or elevated temperatures. Temperature can have a
significant effect on the measured piezoelectric response of materials. For example, for lead
zirconate, the absolute values of the piezoelectric constants were reported to increase by
as much as 46 % as temperature increases from -55 C◦ to 85C◦ [411]. Similar temperature
dependence was found in other work for lead titanate [412]. In addition to temperature
effects, it should be noted that our calculations probe only the intrinsic contribution to the
piezoelectric behavior of materials, assuming a perfectly ordered bulk crystal. Hence, ex-
trinsic effects associated with defects and grain size are not considered; grain size is known
to influence piezoelectric properties in some compounds such as BaTiO3 [413].

We further note that piezoelectric coefficients can be strongly affected by vari-
ations in lattice constants. This has been established in the literature based on detailed
investigations for a number of systems [414, 415, 416]. For example, in some piezoelectric
compounds such as PbTiO3 and BaTiO3, hydrostatic pressures of less than 1 GPa can
lead to variations in the piezoelectric tensor components of up to 50 % [417, 418]. We
observed a similar effect where the choice of either the LDA or GGA approximation to
the exchange-correlation energy led to differences in the predicted lattice constants by 1-2
%, with an associated change in the piezoelectric constants of as much as 40 %. In this
work, GGA-PBE is used for the piezoelectric calculations to obtain consistency with other
data tabulated in the Materials Project. We further found that for compounds containing
specific elements, different piezoelectric constants were obtained, depending on how many
electrons were used as valence states. This is especially true for the early transition metals
such as Sc, Ti, V and Nb, for which piezoelectric components can differ by up to several
percent, depending on the details of the PAW-potential. Consistent with the framework of
MP, for elements such as these, semi-core states are included in the calculations.

In order to obtain a statistical measure of how well the measured and calculated
piezoelectric constants, ‖eij‖max, agree, we compute the Pearson (r) and Spearman (ρ)
correlation coefficients. These quantities provide insight into how strongly the measured
and calculated piezoelectric constants are linearly associated and monotonely associated,
respectively. We find that ρ = 0.925 and r = 0.970. This implies that the measured and cal-
culated values for the maximum longitudinal piezoelectric constants exhibit a strong linear
association and also, a high monotone association exists. This makes the database par-
ticularly useful for screening and datamining of structure-chemistry correlations in piezo-
electrics.
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8.6 Usage Notes

In this work, we present a database of calculated intrinsic piezoelectric constants
for 941 inorganic crystalline compounds, for use in the design and development of piezo-
electric materials and devices. Specifically, we expect this database to enable searches for
new, previously unknown, piezoelectric materials or as an aid in screening for replacement
candidates for currently known interesting piezoelectric materials such as PbTiO3. Our
database allows researchers to search through a large pool of compounds and select those
with certain target piezoelectric responses, for example a tensile strain larger than some
threshold value upon the application of a given electric field. In addition, researchers can
query the database and screen for materials obeying ’composite constraints’, for example
a combination of desired piezoelectric response, elastic properties and mass density. These
features are expected to be of interest to researchers working in a variety of fields, such
as piezoelectricity, elasticity and thermodynamic properties. Similar to the previous work
on elastic constants, as part of the future work on piezoelectric constants, a web interface
will be implemented in which MP-users can request calculated piezoelectric constants for
compounds that have not been considered yet up to now. Other possible future work in-
cludes the use of statistical methods such as machine learning on the current database to
better understand the structure-chemistry descriptors that give rise to interesting behavior
(e.g. high piezoelectric constants). Eventually, techniques such as those may assist the
accelerated search for new materials with unprecedented piezoelectric properties.
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Part IV

Concluding Remarks
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Chapter 9

Summary, Conclusions and Future
Work

This chapter starts by summarizing the results that are presented in the disser-
tation, along with the conclusions. Subsequently, suggestions for future work are made,
related to rhenium replacement, data mining and machine learning, and the discovery of
new piezoelectric materials and high-ductility alloys.

9.1 Summary and Conclusions

Part I of this dissertation describes the introduction and background of the work
presented here, along with some of the fundamentals of DFT, which is the workhorse of
most of the research described in this dissertation. The SQS method and various other
ways of modeling disorder in solids are also described in Part I. Part II of this disserta-
tion concerns a study of intrinsic ductility in elemental Re, Re-alloys and HCP transition
metals in general. Particular attention is paid to elastic properties, twinning energetics,
ideal strength, their relation to intrinsic ductility and their dependence on d-band filling.
Finally, part III of the dissertation explores high-throughput calculations. The largest
databases to-date of piezoelectric and elastic tensor properties are introduced, along with
the computational methods used for data generation, validation and verification.

The work presented in this dissertation establishes a the dependence of the struc-
tural, elastic and energetic properties of Re-based alloys on the d-band filling. The struc-
tural and elastic properties calculated by DFT are shown to be in excellent agreement
with experiments for pure Re. It is found that decreasing the d-band filling of Re by
alloying leads to an increase in the c/a ratio, whereas increasing the d-band filling tends
to decrease the c/a ratio. The bulk (K) and shear (G) moduli of Re-based alloys show
roughly parabolic behavior with d-band filling, attaining maximum values slightly to the
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right of Re. The simple intrinsic ductility parameter proposed by Pugh [116] involves the
ratio of K and G, D = K/G. It is shown in this dissertation that when Re is alloyed with
transition-metal elements to its left, the intrinsic ductility D increases, whereas elements
to the right decrease D, leading to intrinsically more brittle alloys. Further, it is shown
that for pure Re, the shear modulus is particularly isotropic and alloying with elements
either to the left or right in the periodic table leads to a more anisotropic shear modulus.
Results on the energetics of Re-based alloys are presented as well in this dissertation. It is
shown that Re-based alloys with transition-metal solutes to the right of Re in the periodic
table tend to have negative heats of solution (with the exception of the noble metals). On
the other hand, solutes to the left of Re yield alloys with positive heats of solution. The
trends in structural, elastic and energetic properties of Re-rich alloys with d-band filling
can be rationalized based on well-established tight-binding models. The dependence on
d-band filling of the bulk and shear moduli of Re-alloys and the pure transition metals
is very similar. Further, the trends in the structural parameters can be rationalized by
invoking canonical d-band theory and considering the change of the hopping integrals in
and out of the basal plane with d-band filling. Similarly, the energetics of Re-based alloys
can be rationalized by canonical d-band theory.

It is further shown in this dissertation that Re and Tc exhibit a very low {112̄1}
TB energy, compared to what may be expected based on their shear moduli and the shear
moduli of other HCP transition metals. DFT calculations indicate that among all HCP
transition metals, only Re and Tc energetically favor the {112̄1} TB, whereas all others
favor the {101̄1} orientation. The {112̄1} TB takes anomalously low values only for Re and
Tc and this is referred to as the “twin-energy anomaly”. Calculations based on SQS, VCA
and CPA all show that decreasing the d-band filling further lowers the {112̄1} TB energy,
whereas increasing the d-band filling increases the {112̄1} TB energy. This is in stark con-
trast to for example the {101̄1} TB energy which shows the opposite behavior with d-band
filling and is overall much more inert to alloying. DFT calculations also show that the
basal-surface energy of Re-based alloys varies very little with alloying. Based on the TB
energies γt and the surface energies γs, a second intrinsic ductility parameter formulated by
Yoo [17] can be evaluated, namely D = γs/γt. This intrinsic ductility parameter indicates
that alloying Re with transition-metal solutes to its left in the periodic table increases
ductility, whereas solutes to the right lead to more brittle alloys. This behavior is mainly
governed by the {112̄1} TB and the large change of its energy with variations in d-band
filling. Interestingly, the ductility parameters by Pugh and Yoo yield qualitatively similar
results, despite their different physical underpinnings. Experimental studies on deformed
Re indirectly confirm the computational findings presented in this work. First, EBSD stud-
ies show that elemental Re deforms almost exclusively by twinning of the type {112̄1} and
a high density of these deformation twins is observed, leading to a high ductility. Second,
deformed Re-W alloys show an even higher density of {112̄1} twins. Both these experi-
mental observations are consistent with the DFT calculations. It is further shown that the
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origins of the twin-energy anomaly occurring for the {112̄1} TB are rooted in the detailed
atomic structure of the TB plane. The {112̄1} TB is unique in the sense that it exhibits
icosahedral nearest-neighbor structural units on its twin plane, which are absent in the
other twins studied in this dissertation. These same icosahedral units are the fundamental
building blocks of TCP compounds, which are stabilized at d-band fillings slightly below
Re. These icosahedral units form the basis of rationalizing the twin-energy anomaly and
the d-band filling behavior. For elemental Re, HCP is the stable phase, however various
TCP’s, partly made up from icosahedral units are metastable and close in energy at that
d-band filling. This leads to the low energy of the structurally similar {112̄1} TB at the
d-band filling of Re. In addition, TCP’s are stabilized as the d-band filling is lowered
w.r.t. Re, e.g. by alloying with W. This is consistent with the findings presented in this
dissertation that the {112̄1} TB shows a pronounced stabilization as the d-band filling is
lowered from Re. Finally, the discovery of the twin-energy anomaly and the new insights
in the role of d-band filling are employed to suggest replacement candidates for Re. Several
Ru-based alloys are proposed that contain no Re or small concentrations of Re, but yield
{112̄1} TB energies close to Re, with presumably comparable intrinsic ductility.

Part of the work in this dissertation involves the calculation of planar defect ener-
gies in substitutionally disordered alloys. The fundamental challenge of such calculations is
that the disordered nature of the alloy has to be represented in a relatively small supercell
that is amenable to first-principles DFT calculations, employing periodic boundary condi-
tions. In order for a small supercell to be a proper representation for a large disordered
system, atoms have to be distributed on the atomic sites in such a way to minimize spurious
correlations. The SQS approach addresses this problem and distributes atoms on sites in
such a way to approximate the random atomic correlation functions as closely as possible.
Bulk properties have been studied extensively with the SQS approach, however this is not
true for planar defects. In this dissertation, a new method based on SQS is presented that
is used to calculate planar-defect energies in substitutionally disordered alloys. It is based
on averaging the planar defect energy over all possible locations within a given supercell.
Classical potentials based on the EAM method are used to validate the proposed method
for the Ti-Al system. It is shown that by performing an average over less than 10 planes of
a medium-sized SQS (between approximately 50 and 80 atoms), the random planar defect
energies can be approximated to within several %. Hence, the proposed SQS method to
calculate planar-defect energies using an averaging procedure is computationally feasible
in DFT, while resulting in accuracy to within a few %. This method is used extensively in
the work presented in this dissertation to calculate twin and surface energies in Re-based
alloys. For example, the results related to the energetics of {112̄1} twin energies in Re-Ta,
Re-W, Re-Os and Re-Ir alloys are calculated using this method.

Ideal-strength calculations are employed in this dissertation to shed more light
on the intrinsic ductility and ideal failure mechanisms of HCP transition metals and Re in
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particular. Intrinsic ductility is characterized by the occurrence of an elastic shear insta-
bility before a tensile instability as the material is loaded up to failure. This is analogous
to a situation in which dislocation glide occurs before crack nucleation, resulting in ductile
behavior in a real material. In this dissertation, ideal-strength calculations are performed
on all HCP transition metals and these are categorized as either intrinsically brittle or
ductile. In particular, Re is the HCP transition metal with the highest shear modulus that
fails in shear rather than tension when pulled along the c-axis. The ideal deformation be-
havior of alloys is studied by using the virtual crystal approximation. Approximate ranges
of d-band filling are mapped out in which intrinsically ductile behavior occurs, which yields
rough guidelines for the design of ductile transition-metal alloys. It is further shown that
Re, although being intrinsically ductile, is close to the region in which intrinsically brittle
behavior occurs, at slightly higher d-band fillings in the direction of Os.

The ideal deformation behavior and intrinsic ductility of HCP transition metals
and alloys is put on a physical foundation in this dissertation by employing a simple inter-
pretation in terms of second and third-order elastic constants. The elastic instability of a
solid under stress is a function of its elastic constants in the deformed configuration as well
as the applied stress. The eigenvalues of the Wallace tensor govern elastic stabilities and
the corresponding eigenvectors indicate the type of (in)stability, e.g. a shear or a tensile
instability. An HCP material loaded uniaxially in tension along the c-axis will normally
contract in the basal plane as a consequence, but retains its crystal symmetry (only the
axial ratio changes). Therefore, the Wallace tensor exhibits a high degree of symmetry and
its eigenvalues can be calculated analytically. By expressing the eigenvalues in terms of
the applied strain, the second and third-order elastic constants, stability criteria are for-
mulated as a function of the applied strain along the c-axis. In addition, new insights into
intrinsically ductile vs. brittle behavior are obtained. HCP metals with high shear moduli
C44 tend to have high ideal strengths and fail in a brittle mode. On the other hand, ductile
metals tend to have low shear moduli, while also exhibiting lower ideal strengths. These
observations can be directly rationalized by invoking the eigenvalues of the Wallace tensor.
Some HCP metals and alloys such as Re exhibit high shear moduli C44 but nevertheless fail
in shear. The Wallace eigenvalues show this is due to a delicate trade-off between second
and third-order elastic constants, in particular a high C33 and a largely negative C344.

The remaining part of this dissertation concerns high-throughput calculations,
which is a relatively new, upcoming field in materials science and engineering. This branch
of research is motivated by the observation that for only a fraction (typically less than 1 %)
of all 50,000-70,000 known inorganic crystalline compounds in nature, basic properties such
as elasticity, band gaps, thermal conductivity, electrical conductivity, heat of formation,
piezoelectricity etc. are known. This lack of data impedes the optimization of existing
materials and the discovery of new materials with certain target properties. Two chapters
in this dissertation are dedicated to combating this bottleneck in materials science by em-
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ploying high-throughput calculations based on DFT. Chapter 7 describes high-throughput
calculations of elastic properties, and Chapter 8 deals with piezoelectric properties.

It is estimated that the experimental full elastic tensor is known for only approxi-
mately 150 inorganic crystalline compounds, which is only 0.25 % of all known compounds
in nature. In this work, a database of calculated elastic tensor properties is presented
that (at the time of writing) consists of over 2,200 compounds. The database consists of
various different types of compounds: unaries, binaries, ternaries and quaternaries, met-
als and non-metals, crystal systems ranging from triclinic to cubic and conventional unit
cell sizes ranging from 2 to approximately 50 atoms. All compounds considered for the
calculations are within a few meV/atom of the convex hull. This ensures that only ener-
getically feasible structures are considered. Each compound is run through an automated
workflow that first performs a structural relaxation and subsequently imposes different
distortions to the lattice vectors, followed by DFT calculations of the stress tensors. The
elastic constants are then determined from a linear least-squares fit. The workflow also
ensures that unconverged DFT calculations are filtered out and it subjects the elastic ten-
sor to a number of tests to ensure the quality of the elastic-constant data. In particular,
tests are carried out regarding mechanical stability and to check if the tensor symmetry
obeys the symmetry of the underlying crystal. Further, comparisons of the calculated bulk
and shear moduli to experiments are done for over 100 compounds and the results of the
DFT calculations are compared to those obtained by slightly different techniques. Our
calculations and experiments typically agree to within 15 % and also the comparisons with
other techniques yield excellent agreement. All the elastic-constant data is made available
online https://materialsproject.org/ and can be conveniently queried and used for
applications such as data mining. The full elastic tensor is reported in Voigt notation as
a 6 × 6 matrix, together with Voigt and Reuss limits on the bulk and shear moduli and
various other properties that are derived from the elastic tensor.

The high-throughput calculations on piezoelectric materials are motivated in part
by the very limited experimental data that is available, but primarily by recent efforts in the
community to discover novel lead-free alternatives to currently used piezoelectrics such as
PZT’s. DFPT is used to calculate the piezoelectric tensor of a selected set of compounds.
The compound selection for the high-throughput calculations is designed to specifically
target materials that have the potential to exhibit piezoelectric behavior. Two funda-
mental requirements for piezoelectric behavior in materials exist: i) the compound has to
lack inversion symmetry and ii) the compound has to exhibit a nonzero electronic band
gap. These constraints lead to several thousands of compounds that have the possibil-
ity to exhibit piezoelectric behavior. Compounds are selected for the DFPT calculations
based on these criteria, together with a maximum distance to the convex hull. Similar
to the elastic-constant calculations, a workflow is used to automate the process of the
calculations. The calculated piezoelectric tensor is subjected to similar symmetry tests
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as for the elastic constants. Comparisons of the calculated piezoelectric moduli to ex-
periments are performed for nearly 40 compounds and a reasonable agreement to within
typically 25-30 % is found. All the piezoelectric-constant data is made available online
https://materialsproject.org/ for over 900 compounds. The full tensor is presented
as a 3 × 6 matrix in Voigt notation and the maximum longitudinal piezoelectric modulus
is reported as a convenient way to screen for potentially interesting candidates for PZT
replacement. In the work presented in this dissertation, several promising novel piezoelec-
tric materials are unveiled that may serve as a starting point for further optimization by
tuning their composition and microstructure.

9.2 Directions of Future Work

This section discusses some suggestions for future work based on the results and
methodology presented in this dissertation.

9.2.1 High-Entropy alloys for Rhenium replacement

The relationship between various twin energies and d-band filling is emphasized
in this dissertation and a link to intrinsic ductility is established. In terms of Re replace-
ment, Ru based alloys with similar d-band filling as Re are proposed as viable alternatives,
however it remains a challenge to synthesize such alloys as HCP solid solutions, without
introducing second phases. Also, even though Ru alloys are more cost effective than Re,
the price is still high and also for Ru the worldwide supply is limited. Therefore, an inter-
esting future direction is to look at the possibility of high-entropy alloys [419, 420, 421] for
Re replacement. These alloys can be designed to contain 5 or 6 elements at approximately
equiatomic concentrations in such a way that the overall d-band filling coincides with that
of the twin-energy anomaly, while stabilizing the HCP phase. Preferably, widely available
metals such as Ta, W, Mo, Ti, Nb, Mn, Co, Ni and Cu would be used in these high-entropy
alloys to accomplish significant cost savings. A potential problem in this approach is the
lowering of the melting temperature of such high-entropy alloys compared to Re. More
work is required to look for a proper balance between stability of the HCP phase, twin
energy and cost.

9.2.2 Data Mining and Machine Learning

The databases of elastic and piezoelectric properties introduced as part of this dis-
sertation lead to previously inaccessible opportunities for understanding, optimizing and
discovering materials. By mining the data and applying machine-learning techniques, mod-
els can be developed that estimate e.g. elastic properties based on a small set of descriptors,
which combined capture most of the underlying physics describing a given property. On
one hand, this leads to a practical advantage of being able to estimate elastic constants
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for materials in a split second, rather than having to perform a series of DFT calculations.
On the other hand, the machine-learning models may provide new physical insights into
elastic and piezoelectric properties and can be used for the optimization of materials for
certain target properties.

In particular, the database of elastic constants may be used in conjunction with
machine learning to screen for classes of novel ductile compounds by employing simple
intrinsic ductility parameters. One avenue is to use Pugh’s intrinsic ductility parameter,
however this works primarily for comparing systems belonging to the same crystal system
and it may prove difficult to interpret results across different crystal systems. Another
interesting future approach is to use the elastic tensors and Stroh’s sextic formalism to
calculate anisotropic dislocation-energy prefactors, from which dislocation core radii may
be estimated [422, 423, 424, 425]. Compounds with anomalously large dislocation cores
and those exhibiting anomalously low shear moduli can be singled out efficiently using
data mining and machine learning for a more detailed investigation. Such materials are of
high interest, given their potential for high ductility. The database of elastic constants is
expected to keep growing significantly in the future and other potential areas of applica-
tion include thermoelectrics, materials with low thermal conductivity and high-hardness
materials.

The database of piezoelectric properties is expected to provide support in the fu-
ture to ongoing efforts to discover new lead-free piezoelectrics. In fact, in this dissertation
several high-potential piezoelectrics are proposed that were previously unknown. Although
these new piezoelectrics are unlikely to be competitive with PZT’s in their current form,
they may provide an excellent starting point for future research. From a computational
side, the effect of alloying on the intrinsic piezoelectric response can be studied straight-
forwardly with DFPT calculations with the aim of finding optimum composition scenarios.
Experimentally, the proposed piezoelectrics can be synthesized and extrinsic effects such
as defects, solutes, grain size and temperature on the piezoelectric response can be studied.
In this way, a concerted effort of high-throughput calculations on one hand and experimen-
tal efforts on the other hand may lead to the discovery and synthesis of new piezoelectric
materials that are free of lead. Given the subtle nature of piezoelectricity, it may prove
difficult to build accurate machine-learning models for this property, however there is a
potential for success, particularly as the current database expands in the future.
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D Ko lacz. Properties of rhenium-based master alloys prepared by powder metal-
lurgy techniques. Archives of Materials Science and Engineering, 45(2):95–101, 2010.

[28] Paul J Fink, Joshua L Miller, and Douglas G Konitzer. Rhenium reduction—alloy
design using an economically strategic element. JOM, 62(1):55–57, 2010.

[29] Erwin Schrödinger. An undulatory theory of the mechanics of atoms and molecules.
Physical Review, 28(6):1049, 1926.

[30] Max Born and Robert Oppenheimer. Zur quantentheorie der molekeln. Annalen der
Physik, 389(20):457–484, 1927.

[31] SH Vosko, Ll Wilk, and M Nusair. Accurate spin-dependent electron liquid correla-
tion energies for local spin density calculations: a critical analysis. Canadian Journal
of physics, 58(8):1200–1211, 1980.

[32] Paul AM Dirac. Note on exchange phenomena in the thomas atom. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 26, pages 376–385. Cam-
bridge Univ Press, 1930.

[33] David M Ceperley and BJ Alder. Ground state of the electron gas by a stochastic
method. Physical Review Letters, 45(7):566, 1980.

[34] J. P. Perdew and Alex Zunger. Self-interaction correction to density-functional ap-
proximations for many-electron systems. Phys. Rev. B, 23:5048–5079, May 1981.

[35] John P Perdew and Yue Wang. Accurate and simple analytic representation of the
electron-gas correlation energy. Physical Review B, 45(23):13244, 1992.

[36] John P Perdew and Wang Yue. Accurate and simple density functional for the
electronic exchange energy: Generalized gradient approximation. Physical review B,
33(12):8800, 1986.

[37] John P Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient ap-
proximation made simple. Physical review letters, 77(18):3865, 1996.

[38] John P Perdew, Adrienn Ruzsinszky, Jianmin Tao, Viktor N Staroverov, Gustavo E
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