
UC Irvine
ICS Technical Reports

Title
RGA users manual

Permalink
https://escholarship.org/uc/item/56w3v2xm

Author
Morgan, E. Timothy

Publication Date
1984-12-04

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/56w3v2xm
https://escholarship.org
http://www.cdlib.org/

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

RGA Users Manual

by

E. Timothy Morgan

Abstract

RGA is an interpreter for a special language designed for the analysis of reachability graphs, or control flow
graphs, generated from Petri nets. Although in some cases the reachability graph can become too large to be
tractable, or can even be infinite, many interesting problems exist whose reachability graphs of reasonable
size. In RGA, the user has access to the names of the places in the net, and to the states of the reachability
graph. The structure of the graph is also available through functions which return the sets of successor or
predecessor states of a state, and the transition-firings connecting the states. The RGA language allows
dynamic typing of identifiers, recursion, and function and operator overloading. Rather than providing a
number of predefined analysis functions, RGA provides primitive functions which allow the user to conduct
complex analyses with little programming efi'ort. RGA is part of a suite of took intended to make the
analysis of concurrent systems described by Petri nets easier.

Technical Report #243

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

December 4, 1984

© Copyright - 1984

I

I

I

j| Contents

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Page

Introduction 1

1. Execution Environment 2

2. Lexical Issues 3

H 3. Expression Types and Execution Semantics 4
3.1. Arithmetic Expressions 6

3.2. Boolean Expressions 7

3.3. State, Place, and Transition Expressions 9

3.4. Set and Sequence Expressions 9

4. User-Defined Functions 12

5. Some Examples 13

6. Running RGA 16

7. Implementation and Performance 17

8. Conclusions and Future Work 18

Appendix A: BNF Grammer for RGA Language 19

Appendix B: Some Performance Measurements 22

References . 23

I

I

I

I

I

I

i

I

I

I

I

I

I

I

I

RGA Users Manual

Introduction

RGA is an interpreter for a special language designed for the analysis of

reachability graphs, or control flow graphs, generated from Petri nets [PETE77].

IP Although in some cases the reachability graph can become too large to be tractable,
or can even be infinite, many interesting problems exist whose reachability graphs

of reasonable size. In RGA, the user has access to the names of the places in the

net, and to the states of the reachability graph. The structure of the graph is also

available through functions which return the sets of successor or predecessor states

of a state, and the transition-firings connecting the states. The RGA language allows

dynamic typing of identifiers, recursion, and function and operator overloading,

p Rather than providing anumber of predefined analysis functions, RGA provides
primitive functions which allow the user to conduct complex analyses with little

P programming effort. RGA is part of asuite of tools intended to make the analysis
iofconcurrent systems described by Petri nets easier.

In RGA, the user merely types an expression, and the interpreter evaluates it

and prints the resulting value. For example, using the function nsucc which returns

the number of successor states of a state, and the set of all states S, the user can

write

forall 8 in S [nsucc(s) > 0]

This expression will return true if for each state in the set S, the number of

successors is greater than zero. Thus this expression is a test for deadlock-freeness

of the Petri net [AGER79].

Another test might be to determine if the net is conservative, that is, that

tokens are never gained or lost [AGER79]. The function tokens (a) returns the sum

I ,
of the tokens on all places in a state s. The first state in the graph is written #0,

so the expression for net conservation might be

I

I

I

I

I

I

I

I

I

I

I

forall B in S [tokens(#0) « tokens(s)]

The following sections describe the properties of the interpreter for the lan

guage, the data types and expressions which exist in the language, and how the

user may define functions using the primitive functions provided by the interpreter.

Then some examples are given to show how the system may be used to answer more

complex questions than those shown above. Finally, some implementation issues

are discussed, and some conclusions are drawn.

1. Execution Environment

RGA is an interpreter, and thus its operation is similar to that of most LISP

m interpreters. Any expression which the user types is immediately evaluated, and
that value is printed on the standard output. The expression is then thrown away,

IP and the user is prompted again for another command. In addition to typing
expressions, the user may define expressions to be evaluated later as functions.

Expressions and function definitions may be read from a file as well as from the

standard input.

Unlike LISP, RGA has a number of distinct data types which it uses. But there

PI is no explicit way to declare variables. In fact, all variables in the RGA language
are dynamically typed when they are assigned values: an identifier or expression

PI always represents a<value, type> pair. The user never explicitly deals with the type
component, however. During execution, an identifier may have more than one value

(and therefore, type) associated with it simultaneously. These values are stored on

m an execution stack, and only the most recently bound value may be accessed at any

• time.

I

I

1

I

I

I

t

3

Because identifiers need not be declared before their use, it is very easy to

define functions. However, it also means that much of the type checking which

needs tO be performed must be delayed until execution time, since the types and

values of identifiers used in a function definition will not be known at the time the

function is defined.

Three types of errors are possible using RGA. The first error type is a syntax

^ error in an expression or command. This type of error results in the message

• "Command ignored." The second type of error is a run-time error, such as a type

conflict or a division by zero. A run-time error usually results in an appropriate

message's being printed, followed by a prompt. The execution stack is not "cleaned

up" so that variables will have the values they had at the time of the error; this

facilitates debugging of defined functions. If user-defined functions were being

executed at the time of the error, a stack-back trace of function calls is printed.

_ The final type of error is an internal error in the RGA interpreter, which should not

® happen under normal circumstances.

2. Lexical Issues

li RGA is case sensitive. All command keywords and predefined function names
/m are written in lower case. All identifiers which the user defines may be written

* in lower, upper, or mixed case. The user may not redefine a reserved language

keyword, but predefined identifiers may be redefined, although that is not recom

mended. In addition to the three predefined identifiers S, P, and T (defined later),

the reachability graph which is loaded during initialization will typically define a

number of identifiers to be places; these identifiers must follow the requirements for

H identifiers described below.

I

I

I

I

An identifier is represented as an upper or lower case alphabetic letter, followed

by zero or more letters, digits, single-quote characters, periods, and underscores.

I ,
H Anumber is represented as an optional minus sign followed by one or more digits;

only integer values may be represented.

i
A command to RGA normally terminates with a newline character. Receiving

this character will cause RGA to perform the appropriate function. For very long

expressions or function definitions, a line may be terminated with a backslash (\)

followed by a newline. This combination of two characters is treated as a single

ijH space character, so its only affect is to delimit other tokens. Multiple space and tab
characters and comments are treated as a single space. Comments may be inserted

using the conventions of the C and PL/I languages: /* comment text */.

I

I

I

I 3. Expression Types and Execution Semantics

I This section describes the syntax and semantics of the expressions available
in RGA, and it describes the built-in primitive functions which are available. It is

divided into subsections which describe each of the different data types which the

language supports. Section 4 describes the commands which may be used to define

new functions. Although the syntax.of the language is described in section 3, a

I formal BNF description is given in Appendix A. All expressions in the RGA language
evaluate to a value whose type is either a state, an integer, a boolean, a transition,

1^ atransition-firing (TF), aset, or asequence. Identifiers can be assigned values
of any of these types, and they will automatically take on the appropriate type,

m Normally, evaluating aplace is interpreted to mean the integer number of tokens
on that place within the context of a particular state. Only in enumerating the

11^ elements of aset of places may aplace value be assigned directly to an identifier,
^ and that value is popped from the execution stack when the enumeration finishes

•• unless there is a runtime error.

i

I

1

I

I

I

I

t

I

I

Calls to functions, both those which are predefined, and to those defined by

the user, have the same syntax:

idUist-of-expressions)

where a list-of-expresaions is a single expression, or multiple expressions separated

with commas. If the function takes no arguments then the parentheses are omitted.

When invoking a function, the expressions are evaluated from right to left in the

current context, and then all the values are bound to the formal parameters, from

left to right. Thus all parameters are passed by value, so they cannot be changed

in any way by the called function unless it accesses them globally. Variable access

is dynamically scoped.

When evaluating a place identifier, as mentioned above, its value is the integer

number of tokens on that place in a certain state of the control flow graph. The

state may be specified explicitly by the user, or it will default to the "current state."

To specify the state to use explicitly, the place identifier should be followed by a

state-valued expression in parentheses. The current state is a global value implicitly

set by the forall and exists boolean expressions, and in the subset construction,

which are described below.

There are four special expression operators whose type depends on their

arguments, and which operate on expressions of all types. (1) The print function

takes an arbitrary expression in parentheses, and it returns the value of that

H argument. It has aside-effect of printing the value returned on the standard output.
(2) The infix assignment function assigns the identifier on its left the <value,

type> pair which results from evaluating the expression on its right. Like print,

^ the assignment operation also returns the value which has been evaluated. (3) The

W semicolon infix operator ";" takes two expressions of arbitrary type. It evaluates

^ the left expression and discards itsvalue, ifany, and then it returns the value of the

right hand expression. The semicolon operator is left-recursive in its evaluation.

(4) Finally, tlie if expression allows for conditional execution of expressions. There

are two forms of the if command:

if boolean-expression then expression fi

if boolean-expression then expression else expression fi

The type and value returned by the if expression depends on what expression, if

any, is executed. It is unique, however, in that it may not return a value at all if the

boolean-expression in the first form evaluates to false. The only time that this form

of the if expression can be used is as the left argument to a semicolon operator,

which would discard any value returned. The else-less form is not allowed in any

other situation, when a value is required.

3.1. Arithmetic Expressions

Arithmetic expressions follow the conventions of most modern programming

languages. An arithmetic value may be an integer constant, an identifier whose

value is an integer, a place (which is evaluated as the number of tokens on that

place, as explained above), or an integer-valued function. A number of arithmetic

functions are written in conventional infix notation: addition (+), subtraction (-),

multiplication (*), division (/), modulo (%), and exponentiation ("). Unary negation

is recognized. Parentheses can be used to control the evaluation of an expression;

conventional precedence and left-to-right evaluation order otherwise hold.

The following are the predefined integer-valued primitive functions. The

argument types (states and sets) are described in later sections.

tokens (state) The total number of tokens on all places in a specified state. The
state is given as an argument to the function, as tokens (#0). An
alternate way of writing this function is to put the state within
vertical bars, as an absolute value. For example, |#1|.

marked (5<a<e) Returns the number of places in the argument state which have
at least one token on them. If marked (s)=tokens(s) then the
state s is a safe state [AGER79].

nsuccCsfafe) Returns the number of successor states of the argument state. If
there are two or more transition-firings which lead to the same
state, then nsucc will actually return the cardinality of the tfout
set rather than that of the succ set.

npred(s/ate) Returns the cardinality of the tfin set, as nsucc returns the
cardinality of the tfcut set.

card (a) Returns the number of elements of a set or sequence s, which is
the single argument.

3.2. Boolean Expressions

As with other expressions, boolean expressions are built up from constants,

infix operators, and predefined and user-defined function calls. The boolean con

stants are the reserved words true and false.

The infix boolean operators are the conventional arithmetic comparison tests;

<, <=, >, >=, =, and !=; not equal may also be written as <>. The equal and

not equal tests may be applied to any data types (places, states, sets, sequences,

and booleans, as well as integer-valued expressions), while the other operators are

restricted to integer expressions. Of course, the = operation applied to boolean

expressions is a logical equivalence test. Other infix boolean operators which apply

to boolean expressions are implies, iff. and, and or. For convenience, the and

and or operators may also be written as ft and |. Both the and and or operators

are "short-circuit" operators which evaluate the lefthand operand, and then only

evaluate the righthand operand if necessary. Their precedence, from lowest to

highest, is the logical relational operators implies and iff, which have neither

left nor right associativity, or, and, which are left associative, and the arithmetic

relational operators, which also have no associativity. The prefix unary operator

not may be used to negate a logical expression. It has the precedence of arithmetic

relational operators, so it is higher than the other logical operators.

As a special case, places may be used as boolean values if they contain at most

one token. This is for convenience when working with safe nets. When a boolean

8

expression is expected, and a place name is found instead, then the number of

tokens on that place is evaluated, and false is returned if it is zero, and true if it

is one.

Two of the language's most important operators are forall and exists, the

universal and existential quantifiers. Their syntax is the same, so only that of

forall will be given:

forall id in set-expression iboolean-expression']

This expression is evaluated as follows. First, the current value of id is pushed

on the execution stack, to be popped off when the forall expression is finished

being evaluating. The global current state is also pushed and popped at the saihe

time if the set is a set of states. Next, the set-expression is evaluated once and only

once. The id is then looped through the elements of the set one at a time. If the id

is a state, then the current state is set to be that state also. For each value of the

id, the boolean-expression is evaluated. If for all values, the expression evaluates

to true, then the whole expression returns that value. But if the expression ever

evaluates to false, then execution of the loop is halted immediately and the forall

expression returns false.

The exists expression is similar to forall, but with the logical tests reversed.

It continues to evaluate the boolean expression until it exhausts all the elements

of the set or until the expression evaluates to true. If the set is exhausted, then

exists returns false, and otherwise, true.

There is only one primitive function which returns a boolean value:

in (item, s) The in function takes two arguments, an item of any type, and
a set or sequence of items s. It returns true if the item is an
element of the indicated set or sequence, and false otherwise.

3.3. State. Place, and Transition Expressions

State constants may be written as a pound sign (#) followed by an integer.

The first state in the reachability graph is #0. Places can only be referred to through

the identifiers defined in the original Petri net from which the reachability graph is

derived, and through loop control identifiers in the f orall and exists expressions,

and the subset construct described in the following subsection.

Transition constants are written as a dollar sign ($) followed by an integer,

with the first transition written as $0. Transition-firing constants (TPs) are written

as a triple of the source and destination states of the firing, and the transition which

is fired. The components of the triple are written separated by commas, between

square brackets. For example, [#0, #10, $10] is a firing of transition $10 taking

the net from state #0 to state #10. It is a syntax error to write a transition constant

which does not exist in the reachability graph.

Three primitive functions exist which return state or transition values. All

three take a transition-firing as their single argument, and return the separate

components of the TF. A fourth function is used to display the marked places in a

state. As a side effect, it returns the state which is its argument:

BTcUf) Returns the source state of </.

destCf/) Returns the destination state of if.

trans (f/) Returns the transition involved in the firing if.

8howstate(«/afe) Returns the state argument, and prints its marked places as a
side effect. If more than one token is on a place, the token count
is shown in parentheses.

3.4. Set and Sequence Expressions

The set operations are probably the single most powerful feature of the lan

guage. Sets and sequences are composed of elements which must be of the same

type. Any legal type is acceptable, including other sets and sequences; all the el

ements of a set or sequence must be of the same type. Although sets should be

10

considered to be unordered, they are always maintained in ascending numerical

order for convenience in reading and comparing. Sets do not contain duplicate

elements, while sequences are ordered and may contain duplicates. A single set is

either a set variable, a set constant, or a set function. Three predefined set variables

exist: S, P, and T. The Sset is the set of all states in the reachability graph, and P is

similarly the set of all places in the original Petri net. T is the set of all transitions

in the Petri net potentially-firable from the initial state.

A set constant is written as a list ofexpressionswithin curly braces {}. The list

is written with the elements separated with commas. For convenience, a constant

range of states may also be entered by giving the first state, and the final

state of the range. For example, the set consisting of states 1, 5 through 10, and

12 could be written

{#1. #5..#10. #12}

The list of elements may be empty, resulting in the empty set. As a special case, an

empty set may be used in the context of a set of any type without a type-conflict

error.

Another powerful way of specifying a set constant is the subset construct.

It allows elements to be selected from a set using any boolean expression as the

selection criterion. This construct is similar to a forall command, but it always

loops through the entire set evaluating the boolean-expression for each element.

Like the forall and exists statements, the frf's value is pushed at the beginning

of the loop and restored when the subset has beenconstructed. If the set-expression

is a set of states, then the "current state" will also be pushed and popped, and set

to each value along with the id. The set-expression is evaluated only once. The

subset construct is written

{id in set-expression \ boolean-expression}

11

Sequence constants are written just like set constants, except that their el

ements are ordered, and two slashes (//) are used to indicate the beginning and

ending of the sequence, instead of open and close braces.

It is recommended that set and sequence constants be used only in contexts

where they will not be repeatedly evaluated, as within a loop or a recursive function,

because they are relatively expensive to compute. If a constant is to be used in these

situations, it should be evaluated once and the value assigned to some identifier.

Then that identifier may be used in place of the constant.

There are several predefined functions which return sets as their values:

tiinistate)

tfout (s<fl<e)

Buccistate)

pTedistate)

b11bucc(. state)

allpredCsta^e)

unionCsi, s2)

Returns the set of transition-firings whose destination state
is the indicated state.

Returns the set of TFs whose source state is the indicated

state.

The succ function takes a state expression as its argument.
It returns the (possibly empty) set of immediate successor
states in the reachability graph of the specified state.

The pred function is similar to the succ function, but it
returns the set of immediate predecessor states instead of
the successor set.

Returns the set of all the successors of the indicated state,
and recursively, all their successors.

Returns the set of all the predecessors of the indicated
state, and recursively, all their predecessors.

The union function takes two sets or sequences si and
s2 as its arguments. Both set/sequences must consist of
elements of the same type, or at least one must have zero
cardinality. This function returns the set union of the two
sets, or the concatenation of the two sequences in the order
given. The infix plus operator (+) may be written in place
of the union function.

intersection (si, s2) This function is similar to the union function, but it re
turns the set intersection of its two arguments which must
both be sets. The two arguments must both be sets of the
same type, or at least one must be the empty set.

setdiffCsi, s8)

Betop(/unc, set)

12

The setdiff command takes two arguments with the same
restrictions as the intersection function. It returns a

copy of si minus any elements it has in common with s2.
Elements of s2 which do no appear in si are ignored. The
setdiff function may be written using the infix minus (-)
operator.

The setop operator applies the function func, which must
be a function of one argument, to each element of the set.
The results of the function executions are unioned into the

resulting set, which is returned as the value of the setop
function. The function func may return values which are
either individual elements or sets of elements; it may be
either a user-defined function or one of the predefined func
tions SUCC, PRED, TFIN, TFOUT, CARD. MARKED. NSUCC.

NPRED. SRC. DEST. TRANS. ALLPRED. SHOWSTATE. and

ALLSUCC.

4. User-Defined Functions

Defining a function is similar to assigning a value to a variable. The primary

difference is that the expression is not immediately evaluated. Instead, the parse

tree which represents the expression is stored as the value of the identifier, with a

special type indicating that the "value" of the identifier is an unevaluated expression

tree. Whenever that identifier is subsequently evaluated, the expression tree is

retrieved and evaluated, with its value being returned as the value of the identifier.

Functions defined in this way may be written recursively; as in pure LISP, recursion

is the primary mechanism of looping and flow control.

To define a function, the operator is used, functions may be

defined only at the top command level. If RGA is being used interactively,

then defining a function will cause the message "ok" to be printed on the terminal.

The list of formal parameters for the function, if any, is enclosed in parentheses after

the identifier and before the :: •» operator. As with function calls, the parentheses

are omitted if there are no parameters. Local variables, if any, of the function are

listed within square brackets following the formal parameters. If there are no local

13

variables, the brackets are omitted. The expression which defines the function is

given to the right of the operator. At the top command level, the special command

show id will print the definition of the id if it is a function. The full syntax of a

function definition is given in Appendix A,

Like other identifiers in the language, the arguments are given their types at

the time they are bound to values, when the function is invoked. For example,

assume the following definition:

Betx(v) ::= x:=v

Then one may type setx(l) and the identifier x will be defined as having the value

of the integer constant 1. The setx function will also return the integer value 1,

since it expands to an assignment expression which has that value. Subsequently

typing the command

setx({s in S [nsucc(s)=0})

causes x to be assigned to the set of all deadlocked states. The previous value of

X is thrown away. Note that the formal parameter v takes on values of different

types dynamically. The existing value of v, if any, will still be valid when setx

has returned. Incidently, it is the dynamically scoped "global" value of i which is

assigned in the above examples.

5. Some Examples

In the introduction, some expressions for net deadlock-freeness and net con

servation are given. In this section, some more complex examples are given to

illustrate the full power of the system.

If the Petri net is safe, then each place will have at most one token on it (ie,

each place is 1-bounded) [PETE77]. One might test for this condition with the

14

/»
* Findmax returns the maximum value attained by marked() over all states.

*f
findmax[max] ::=\

max:=0: \
forall s in S [if marked(s) > max then max :• marked(s) fi; true]; \
max

Figure 1

Function to find the maximum value of narked

expression

forall s in S [forall p in P [p <= 1]]

Note that the value of p in p <= 1 is p(s). There is a faster way to test for net

safety, however:

forall s in S [marked(s) = tokens(a)]

This function works because the marked function returns the number of places

which have at least one token on them for the state s. If any of these places has

more than one token on it, then tokens(s) will be greater than marked(s). It is

faster because it avoids the doubly-nested loop of the first approach.

Suppose one wishes to know the maximum value of the marked function over

all the states in the graph. This could be obtained with the function shown in

Figure 1. Notice the use of the semicolon operator to make the expression in the

forall statement return a true value, thus guaranteeing that each state in S will

be tested. The entire expression returns the maximum value found, max, which is

a local variable of the function.

Now suppose that we wish to define a boolean function which returns true ifa

particular state can be reached from another state in the graph (see Figure 2). The

definition given here is breadth first: it always hasa set ofstates that it knows have

already been checked, and one whose successors have not yet been checked. The

15

h
» Breadth-first search version of reachable

»/
reachable(s, final)[morestates, tried] \

8 • final I \
(tried :• emptyset :• {}; \
try({s}))

/*
* For each s in nextset, test if final is in sncc(s).
* If not, Iterate on all those snccessors.

*/
try(nextset) \

morestates :• emptyset; \
exists s in nextset [in(final, sncc(s)) I \

card(morestates nnion(morestates,sacc(s))) < 0] I \
card(morestates:"setdiff(morestates, tried:-union(tried, nextset))) > 0 t \

try(morestates)

Figure 2

Recursive Breadth-First Reachability f\mction •

function is actually divided into two parts, reachableCs, finaV) and trjinextaeO.

The reachable function is the top-level definition. It checks if the starting state, a,

is the same as the desired state, final. If not, it initializes the set constant emptyset,

which is used in the try function only for speed and clarity, and calls try.

This pair of functions takes advantage of the the dynamic binding of RGA.

The reachable function has two local variables morestates and tried. They are

both actually locals of the pair of functions, since they are shared by both. If they

were not locals of reachable, then any global value with the same name would

be lost by executing the reachable function. Morestates contains the next set of

states to be tested by the try function; tried is the set of states whose successors

have already been tested.

The try function takes one argument: the set of states which have recently

been tested against final (nextset) whose successors now need to be checked. For

each element of nextset, try compares its successors to final. This test can be

made quickly since it uses only the built-in functions exists, in, and succ. If a

16

match is found, try returns true. If all the matches fail, morestates will have been

assigned the set of all the successors just tested. Any states in morestates which are

in the set tried are removed, and the cardinality of the resulting set is compared to

zero. If it is zero, then try will return false since there are no more states whose

successors have yet to be compared to final. Otherwise, try is invoked recursively

to try the elements in morestates, with fried augmented with the set of states just

tried.

The allsucc function could have been used to determine the same function.

If the matching successor is near the end of those tested by the above function, or

if there is no match, it would be significantly faster than the reachable function

given. But if the match occurs early in the search, then the above code could be

significantly faster, since it would not bother to generate further successors.

As a final example, suppose that all the states in the reachability graph have

been partitioned in to two sets, good and bad. One might then wish to know the

transition(s) which lead from the good to the bad states. The set of transition-

firings between the two sets is expressed as

tfs := intersectionCsetopCtfout. good), setopCtfin, bad))

The set of "critical" transitions (those which take the net from the "good" states

to the "bad" ones, [RAZO80]) is then given by the expression

setop(trans, tfs)

6. Running RGA

Typically, the user will enter a Petri net representation of the system to be

analyzed in a symbolic notation. This symbolic representation is translated into

the reachability graph via other programs which are described elsewhere. Their

output may then be analyzed by RGA. RGA is executed like an editor, taking the

17

graph from a file rather than from the standard input. If no file is specified on the

command line, the file main.input will be read. RGA then prompts the user for

commands with a ">" character reading the commands from stdin. RGA exits when

it receives an end of file from its primary input.

It is possible to have RGA read its input from a disk file instead of from stdin.

When the end of the file is reached, it resumes reading commands from the previous

input source. The command to read from a file is the character, followed by

the name of the file to read. If the name of the file does not follow the lexical

rules for an identifier in RGA, then it must be quoted in double quotation marks.

One command file may recursively read another file by using the Q command. If

a command file defines global values, it is convenient to end such commands with

the ; operator so that the values will not be printed as the file is interpreted.

As mentioned previously, the user may have the definition of a function printed

by issuing the show command followed by the name of the function. The formal

parameters and local variables, if any, will be displayed in addition to the function's

definition. The other command which may be used only at the prompting level is

defining a function with the : ;= command.

7. Implementation and Performance

The RGA program is written in the C programming language running on the

4.2BSD Unix^ operating system. The current implementation was written on a

VAX-11 /750 computer."!

The RGA system implements a minimum number of primitive operations to

allow all the different operations which were desired in the initial design of the

system. It has been designed also to be extensible, since the user may define new

functions in terms of the primitives. In particular, the ability to pass values to

^ Unix is a trademark of AT<kT Bell Labs
f VAX is a trademark of Digital Equipment Corporation

18

parameters of functions, and the existance of the semicolon operator and the if

expression, were included expressly for extensibility purposes.

But RGA was also written to be fairly efficient. Efficiency is necessary if large

reachability graphs are to be handled, and the system will only really be useful

if realistically-large graphs can be analyzed in a reasonable period of time. In the

interests of efficiency, some non-primitive operations which could be implemented as

user-defined functions have been coded as primitive routines instead. For example,

as a test, the primitivefunction nsucc was defined as nsCs) : card(tfout (s)).

By executing the primitive and then the defined function in a loop 75,705 times,

the nsucc function was measured to be 4.17 times faster than the user-defined

equivalent. More performance measurements are given in Appendix B.

8. Conclusions and Future Work

A powerful extension to the language would be the inclusion of temporal logic

expressions. The current system allows for the definition of some limited temporal

logic expressions, but they could be made more general as well as more efficient if

included directly in the language. There is no way currently to pass a function as

an argument, or to pass identifiers by-reference.

Perhaps future versions of RGA will overcome these problems if they prove

to be serious. Other commonly-used functions may become primitives as they

are identified. New primitives to make sequences more powerful also need to be

identified and implemented.

Appendix A

BNF Grammer for RGA Language

<forinalB> : (<li8t_of_exprs>)

<local8> : [<list_of_expr8>]

<definition> : <ident> <formal8> <local8> ::= <expr>

<li8t_of_expr8> :: <expr>
I <list_of_expr8> , <expr>

<transition> :: $ <number>

8eq8tart :

addop :

mulop :

I

I

Irelop :

I

relop :

I

<8eqcon8t>

<expr> :

//

*

/

%

iff

implleB

>

>=

<

<=

<>

Is

<8eq8tart> <li8t_of_elem8> <8eq8tart>

<8eqcon8t>

19

<state>

<identilier> := <expr>

true

false

[<Btate> , <state> , <transition>]
<traiisition>

if <expr> then <expr> else <expr> fi
if <expr> then <expr> fi
<subset>

print (<expr>)
<expr> and <expr>
<expr> or <expr>

not <expr>

forall <identifier> in <set> [<expr>]
exists <identifier> in <set> [<expr>]
(<expr>)
in (<expr> , <Bet>)
in (<expr> , <Beqconst>)
<expr> <relop> <expr>
<expr> ; <expr>

<expr> <lrelop> <expr>
<expr> <addop> <expr>
<expr> <mulop> <expr>
<addop> <expr>
<identifier> (<list_of_exprs>)
tokens (<state>)

I <state> I

card (<set>)

card (<seqconst>)
marked (<state>)

<expr> " <expr>
nsucc (<state>)

npred (<8tate>)
src (<expr>)
dest (<expr>)
trans (<expr>)
<number>

<identifier>

<number>

<identifier>

<identifier> (<list_of_exprB>)
Print (<state>)

<number>

20

I

I

<identifier> Becomes <state>

<state_range> : : # <number> .. # <iiumber>

<list_of_elems> :: <expr>

I <state_range>
I <li8t_cf_elems>

I <list_of_elems>

<expr>
<state_range>

<setopfunc>

I

<subset>

<set> :

Sugg

Pred

Tfin

Tfout

Tokens

Marked

Nsugg

Npred
Src

Dest

Trans

Sugg (<state>)

Pred (<state>)

Allpred (<state>)
AllsuGG (<state>)

Tfin (<state>)

Tfout (<state>)

Setop (<identifier> , <set>)
Setop (<setopfunG> . <set>)
Union (<set> , <set>)

Union (<seqGonst> , <seqGonst>)
Setdiff (<set> . <Bet>)
Intersection (<set> , <8et>)

{ <list_of_elem8> >

{ }
{ <identifier> In <8et> Or <expr> >

<identifier>

<identifier> (<li8t_of_exprs>)
<identifier> Becomes <set>

Print (<set>)

<subset>

21

I
Appendix B

Some Performance Measurements

The table below contains some time and space measurements of the current

implementation of RGA. The problem measured was the dining philosophers prob

lem for a varying number of philosophers, between two and eight. For each number

ofphilosophers, the number ofstates in the reachability graph and the time to load

the reachability graph were measured. The time is divided into user and system

CPU time, in seconds. In addition, the size of the interpreter in kilobytes was

measured after loading the graph but before executing any tests. Finally, two typ

ical problems were executed, testing for the safety of the net, and determining the

set of states which can reach state zero (#0) after zero or more transition firings.

The canreach function is a user-coded version of the allpred primitive. On the

average, it is about 37% as fast as the primitive function. For each of these tests,

the execution time minus the load time is given, in CPU seconds.

Some Performance Measurements

Dining n States Load Time RGA Size (Kb) Safe Canreach(#0)
2 21 0.1 -t- 0.4 59 0.1 0.6

3 26 0.1 + 0.4 59 0.1 0.8

4 80 0.5-1- 0.5 73 0.3 1.3

5 242 1.8-1- 0.7 121 0.7 3.5

6 728 6.1 + 1.5 269 2.2 15.4

7 2186 21.3 + 5.3 967 7.2 95.2

8 6560 76.7 + 17.2 2913 23.7 750.6

Figure 3

Some Performance Measurements of RGA

22

