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LASER ACCELERATION WITH OPEN WAVEGUIDES

MING XIE, Lawrence Berkeley National Laboratory, Berkeley, USA

Abstract are three types of modes, corresponding to

A unified framework based on solid-state open waveguides 1 . TEom (1=0)

is developed to overcome all three major limitations on ”2{ ! .

acceleration distance and hence on the feasibility of two A = Nz TMom (1=0) 3)
classes of laser acceleration. The three limitations are due 2\”/% : EHp, (1#0) .

to laser diffraction, acceleration phase slippage, and dam-
age of waveguide structure by high power laser. The twbor laser acceleration, we are interested primarily in two
classes of laser acceleration are direct-field acceleratié@w-order modes7 My, mode for direct-field acceleration
and ponderomotive-driven acceleration. Thus the solutiof@ vacuum and gases with its on-axis component, and
provided here encompass all mainstream approaches f6f711 mode for ponderomotive-driven acceleration in plas-
laser acceleration, either in vacuum, gases or plasmas. mas. Accordingly, we consider three casésg; = 0 when
the core is in vacuumjr; > 0 anddr; < 0 when the
1 MODE PROPERTIES core is filled with uniform gases and plasmas, respectively,
wheredr; = vy — 1 and|dv;| < 1.
The open waveguides of interest to laser acceleration haveThe electric fields within the core < R are given by
the following characteristics in common. First of all, they

are over-sized in all dimensions compared to the lasef,, L { E. = E,Jo(k17) ()

wavelength. As such, field amplitude of a waveguide mode E, = —i(T/kp1)EgJ1(kear)

can be much smaller on waveguide surface than in the core. E, = EoJo(kpr)

Secondly, th | icall I S - ®)
econdly, they are electromagnetically or even structural E. = —i(kp1/T)EgJy (kyyr)sin é

open. As a result, only low order modes are effectively

guided. In other words, these waveguides are over-sizadhere E, is the peak acceleration field f@rM,; mode,
but not over-moded for being electromagnetically openfy is the peak transverse field fdtH;; mode, I’ =
Laser acceleration with two particular types of open waveg3, + i, and k. = (U, — iA/7v4)/R. To leading
uides was studied separately in our previous works, one forder,I'/k,1 = ~,. Given electric field, magnetic field
capillary waveguide (CW) [1] and another for open iris-0of a mode can be determined B, = z x (I'E, +
loaded waveguide (OILW) [2]. In this paper we present aV.E.)/kZ,, H, = (i/T')V, - H,, where subscript
unified framework for laser acceleration in vacuum, gasedgnotes transverse componegtjs a unit vector in z-
and plasmas with both open waveguides. In particular, wadirection, andZ, is the vacuum impedance. To evaluate
propose to use a hybrid of the two to overcome the limitasurface fieldEs atr = R, we expand Bessel functions in
tion due to acceleration phase slippage. The notations usiéié transverse fields of Egs.(4,5) using the expression for
here follow that of [1, 2] unless otherwise stated. k.1 and keeping the larger one of the two components

Capillary Waveguide The capillary waveguide con- £s/Ea = max{1, |[A[}|Jo(Uo1)| : TMo, ©6)
sidered here is made of a hollow core with an index of £s/Eo = max{1,[A[}J1(U1)|/vg : EHu .
refractiony; and radiusRk, embedded in a medium of di-
electric or metal with a complex index of refraction The

Here we come upon one of the most important advan-

eigenmodes of the waveguide can be solved following t t| ?gs o:]tge Ciqplllllarryt\r/]var:/eguﬁe: %Ty?lt:nﬁdﬁe,lzurfaceri ;
same procedure by Marcatili et al.[3] under the condition eld can be smaller than peak acceleration nield, superio

= ?o other acceleration structures including even microwave
A /R < 1and|vVi?2 —1| > A /R, where\; = vy, . .
© = s /11, and) is the wavelength in vacuum. For eigen_Imac, and for both modes, surface fields are much smaller

than peak transverse fields. Power in each mode can be ex-
modes of the form pressed a®(z) = Pye */Latin whereLasn, = 1/201m
{5(7«, b, 2, 1) } _ {Ezm(r, ®) } (iBimz—wt)—atnz (1) is power attenuation length and to leading order
H(T, ®, 2, t) Hlm(Ta ¢) ’

. . E 7
the eigenvalues are given by TR2*E2J,(U11)? /220 . EHy . (7)

{ 7TR2’)/2E2J0(U01)2/220 : TMOl
Py = g
Bim =k1(1=1/27]),  am=Re(A)/7,R, (2) The on-axis intensity for a free-spa@eEM,, mode
‘ } falls asI(z)/1(0) = 1/[1 + (z/Zg)? away from the
wherek; = ik, k =27/, v, = 20R/UinyA\1 > 1, and  waist due to diffraction, and the on-axis longitudinal
Uy, is themth root of the equatiod;_; (U;,,) = 0. There field for a TEM,, mode also falls a¥w.(z)/E.(0) =



1/[1 + (2/Zr)?], whereZr = ww3/)\; is the Rayleigh ply taking A = n.\/mL/2)\; (1 — ) in all previous re-
length. Assuming & E Mo (T E My:) mode is coupled to sults given for CW, where, = 0.824. Note here we have

a EHy1(T'My:) mode at the optimal conditiomy/R = changed the mode designation, to be consistent with that
0.64(0.56), the effectiveness of guiding can be measuretbr CW. In comparison, CW has lower loss and surface field
by taking the ratio of the relevant e-folding lengths ofsince generallyA,ii.,| > |Acw|, whereas OILW is desir-
the waveguide mode to the free-space mode, yieldiraple for allowing side access with its open structure. Thus
Len11/Lrevoo = Lrvoi/Lremor = 2R/Re(A)A;.  a hybrid waveguide can be conceived in which sections of
Despite the fact that the waveguide modes are leaky, optic@lLW are inserted in an otherwise uniform CW, wherever
guiding can be made quite effective to overcome diffractionecessary. Power coupling coefficient between modes in
for low order modes with sufficiently larg8/\;. In ad- CW and OILW is given byy, = 1—Cm|Aouw—Acw|2/7§,
dition, for waveguide material with anomalous dispersionvhereC,,, = 0.33(0.39) for T My, (E H11) mode. The sec-

at certain wavelength, it is possible to hawe(A) <« 1. ond term on the right, bein@(1/N), can be made quite
For example, we havBe(A) = 0.1 for sapphire atn =  small, thus allowing significant reduction in mode coupling
10.6pum with v = 0.67 + 40.04. loss due to waveguide interruption.

Open Iris-Loaded Waveguide The open iris-loaded 2 DIRECT-FIELD ACCELERATION
waveguide considered here is made of a series of th
screens separated by distardcand each having a circular
aperture of radiugt. The eigenmodes of such a waveg- A
uide are identical to that of a Fabry-Perot resonator. Two Lo = W ) 8)
distinctively different methods have been used to calculate g
the transverse field; of the modes: the numerical methodover which a relativistic electron with energy, = ymc?,
of Fox and Li [4] and the analytical method of Vainshteinwhile being accelerated, slips phase with respect to the
[5]. Itis known that the two methods agree well in eigenfast acceleration wave iiM; mode. Energy gain of the
value [6], but differ in detail in mode profile [5, 7]. The electron on the axis iAW, = eF, L,T,, whereT, = 2/7
fine ripples in Fox-Li's profile are absent from Vainshtein'sis a transit factor. In parallel, a deceleration phase slip-
solution. Based on numerical results, Pantell proposed the&ge length can be defined over which the electron slips
advantage may be taken of these ripples of high spacial frenotherr phase while losing energy amountedAdV,; =
quency for direct-field acceleration in vacuum [8], since the £, .,7,. Average acceleration gradient during a period
longitudinal field £, is proportional to the transverse gra-of 2 phase slippage is then
dient of E;. However, Pantell failed in providing solution
to the phase slippage problem. His claim that net energy . _ AWa = AWy _ eEoTu[l — LaTa/LaTa] ©)

,I&]cceleration phase slippage length in vacuum is defined by

gain can be achieved by terminating the structure without Lo+Ls 1+ La/L,

terminating the interaction is a direct violation of the well- :

known theorem for laser acceleration in vacuum [9]. To have n_et acceleration, t_he rafig/L, should be_mad_e
. mall. This can be done with two methods. The idea is to
On the other hand, we calculated the acceleration mode : . .
: . . enhance phase slippage during the half period of deceler-
[2] taking the analytical approach. We argue that the fing,. . . .
) . . . ___ation, thus taking a shorter distantg. The first method,
ripples, although neglected from Vainshtein approxima:-

tion, are of less importance for laser acceleration. FirSPresented previously [1], works on reducing the longitudi-

it has been shown [7] that the ripple magnitude is a derjal veloplty ofan ellectron bylntrpducmg a static transverse

: : . -fnagnetic field during deceleration. Instead of tempering
creasing function and the frequency of occurrence is an "Rectron orbit which could cause significant radiative loss at
creasing funtion of Fresnel numbar = R?/\;L. At the 9

large value of required for low loss mode propagation,hlgh energy, the second method works on enhancing phase

. ) ... 'slippage by increasing phase velocity of the wave during
the high frequency ripples can become very sensmve_t eceleration. This can be done by introducing a plasma

slight variation and fluctuation in system parameters, Mig-ver of thickness

alignment, and spread in wavelength. Even the mathemaff‘-y

ical assumption of infinitely sharp aperture may need to be A

modified. All these factors tend to smooth out the high fre- Lq = 12+ 1/72+1/42°

guency ripples and what an electron see on average is the g b

smooth profile predicted by the analytical solution. Lastwherey, = w/w, > 1, w, = cy/4rr.ny is the electron

the validity condition for the numerical method is more replasma frequency and, is the plasma density. In this case,

strictive than for the analytical one. In addition to the com7}; = T,. The dominant energy loss for an ultrarelativistic

mon conditionsR/A; > 1 andL/\; > 1, the Fox-Li electron traversing a plasma is due to bremsstrahlung [10].

method further requires thdt/R > 1 and(L/R)? > N  The rate of energy loss is given bV /dz = —W/Lg,

[4]. In the parameter regime of interest for laser acceleravhere Ly is the radiation length defined by/Lr =

tion, these extra conditions are often violated. dar?n; Z(Z 4+ 1) 1n(233/2'/3), n, is density of ions with
Analytical solution for OILW can be obtained by sim- atomic numbelZ, and« is the fine structure constant. For

(10)




Hydrogen plasma with density; = ny = 10!"/cm®, over multiple slippage lengths. When two modes are in-
Ly is as long ast x 10°m. Reflectance of laser power cluded, Eq.(24) of [1] is modified to
off a sharp interface between vacuum and an underdense a2 o
plasma at normal incidence is also negligible, according to a®(p, ¢, 2) = 2 fu(p, 2)|2e ¢ /2=, (13)
the Fresnel formuld, = (1 —11)?/(1+v1)? = 1/16~,. . 2 . o

The assumption of a sharp vacuum-plasma interface {{ere the profile, normalized t6,(0,0) = 1, is given by
not necessary. More rigorous treatment can be obtained 1, () ») = Fln [E11(p, z) +nE12(p, 2)]
with WKB method [11]. For underdense plasma, the only E11(p, 2) = Jo(Uyyp)eibriz—onz (14)
modification required is to replace the factotp(ifp:1z) Bia(p, 2) = Jo(Urap)eifrzs—enzz |
by expli[Bo1(z)dz]. Assuming a density profile, =
nofy(z), wheref,(z) = 1/[1 4+ e~ G+Ea/2/5] — 1/[1 +  Assuming (vg11/75)* > 1, (yg12/%)* > 1 and
¢~(:=La/2)/%]  the phase advance for the mode can be cal2/7»)* > 1, where~y,i1 and .12 are v, factors for

culated by making use of the integrl™_f,(z)d= = FEHu and EHy, modes, respectively, the group velocity
25In[(1 + elal28) /(1 + e~La/25)] It is seen here and slippage length then become same for both modes, i.e.,

that Eq.(10) is accurate enough as long ag/26 > Y9 ,:_0(1_1/2713) andL, = y;,. There are three charac-

1. In addition, the validity of WKB method requires t€ristic length scaled ~ {1/ai1, 1/a1»} is due to mode

|dv /dz| < 2mv7 /X [11], which givesd > \/16m; for attenuationj, ~ 1/(6%1 —B12) isdue to_beatlng of the two

df,/dz|mas = 1/43, also easily satisfied. modes; ands ~ 1/k, is the plasma period. As they satisfy
Iy > Iy > I3, we deduce from Eq.(23) of [1] that

3 PONDEROMOTIVE ACCELERATION Ewz = Ea| fo(p, 2)|? cos (kpz — wypt) (15)
Two methods are presented here to overcome the limit @d, in particular, for acceleration field on the axis
acceleration distance set by the phase slippage length o L+n%+ 2ncos[(Bu — Bi2)?]

| f6(0,2)|" = > . (16)
Ap (1+m)

(11

La = 1/73 + 1/7127 —1/42 By requiring 511 — f12 = w/L,, we have the match-
ing condition~2,,/vs = Uf,/U} — 1. Energy gain

for laser wakefield acceleration in an open waveguide [1pver 27, distance is thed\W,, = eFE,2L,Ts., Where

The first method requires inserting plasma layers of higher, . = /(1 + 1)2. As expected7%, vanishes when there

density, each of length,, as drift sections in between ac-is only one mode with) = 0, and it reaches a maximum

celeration sections, each of length. Two conditions need when the two modes have equal amplitude on the axis with

to be satisfied. First, the length of a drift section is given by, = 1. The relative mode amplitude can be adjusted easily

by changindl" E My, mode waist according to

= y 1 2
2 +1/72, =1/ T Un) Jy Jo(Urap) expl— i bpyz]pdp

n= 1 2
wherev,q = A\,a/\ and ), is the plasma period corre- Tt (Ur2) Jo Jo(Un1p) expl— g 7my=lpdp
sponding to the plasma density in the drift section. Thig\n extended version of this paper will be published else-
condition guarantees continuous energy gain in each accelhere. This work was supported by the U.S. Department
eration section, sincé is the distance for the particle to of Energy under contract No.DE-AC03-76SF00098.
slip = phase with respect to the acceleration wave of pe-
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