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ABSTRACT OF THE THESIS

Interconnect Synthesis

by

Sriram Venkatesh

Master of Science in Computer Science (Computer Engineering)

University of California, San Diego, 2018

Professor Andrew B. Kahng, Chair

In recent times, even small improvements in performance and power are seen as huge wins

in digital integrated circuit (IC) design. In advanced technology nodes, design of energy-efficient

chips with high yields faces many challenges. Notably, aspects of interconnect design are now

among the most significant challenges to obtaining ICs with low power, high performance and

high yield. This thesis presents new techniques to (i) improve the construction of interconnects,

(ii) improve the estimation of wirelengths of interconnects given a placement, and (iii) improve

manufacturing yield by eliminating imbalance of metal layer usage in interconnects used for

clock distribution.

This thesis has three main contributions, presented in the three main chapters. First, this

x



thesis presents two tree construction algorithms for simultaneous improvement of wirelengths

and source-to-sink pathlengths of routing trees. Second, this thesis defines a new property of

placed signal nets and the corresponding pin locations, and proposes an improved lookup table to

accurately estimate wirelengths of these nets. Finally, this thesis presents a technique to improve

yield of ICs by layer-balancing the clock paths of each launch-capture register-pair in the design.
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Chapter 1

Introduction

In recent years, it has become increasingly difficult for IC designers to achieve significant

improvements in performance, power and area for multiple generations of products. Synthesis of

interconnects (signal and clock nets) in advanced VLSI technology nodes has been a particularly

challenging factor. In addition, the latest nodes and the corresponding foundry libraries have

shown multiple model-hardware miscorrelation (MHM) issues, which result in low yields. Thus,

a great deal of recent research has focused on improved interconnect construction and improved

correlation between models and silicon. This thesis describes several new techniques that tackle

the above-mentioned challenges.

Chapter 2 of this thesis describes two algorithms, PD-II and Detour-aware Steinerization,

for iterative improvement of spanning and Steiner trees. These algorithms build on the widely-used

Prim-Dijkstra construction [1] to simultaneously improve the wirelengths (WLs) and source-to-

sink pathlengths (PLs) of routing trees. This translates to lower-power interconnects with smaller

delays.

Chapter 3 of this thesis defines a new characteristic of pointsets (i.e., the collection of

placed pins of a net) called L-ness, and provides an accurate lookup table for WL estimation of

nets. The L-ness characteristic and the improved lookup-based estimation enable better, more

1



relevant evaluation of tree-construction heuristics; they also enable placers to estimate WL faster

and more accurately, leading to better routability.

Chapter 4 of this thesis aims to alleviate the model-hardware miscorrelation (MHM)

issue seen in the back-end-of-line stack. Different metal layers are affected by varying amounts

of variation, leading to hold violations and reduced yields. This work describes a method to

layer-balance the routes of clock nets to each launch-capture pair in a design, thereby making

the design more robust to variation. This work also explores alternative strategies which feed

back MHM-induced hold violation information to earlier stages of the physical design flow to

guardband against MHM issues.
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Chapter 2

Prim-Dijkstra Revisited: Achieving

Superior Timing-driven Routing Trees

This chapter presents two new algorithms which iteratively improve the widely-used

Prim-Dijkstra algorithm and obtain trees with lower wirelengths and pathlengths.

2.1 Introduction

In recent technology nodes, wire capacitance has become a key challenge to design

closure, and this problem worsens with each successive technology node [2]. Today, a digital

implementation flow cannot simply use minimum wirelength (WL) trees for routing estimates

in placement and optimization, nor can they be used for timing-driven routing of critical nets.

Routing an advanced-node design with minimum WL trees leads to untenable source-to-sink

distances, yielding high delays for many nets. One cannot afford to use a shortest path tree

also, which achieves optimal source-to-sink pathlength (PL) for each sink, due to increased WL

which worsens dynamic power and routing congestion. For these reasons, timing-driven tree

construction that trades off WL and PL becomes a critical technology for modern designs.

3



The Prim-Dijkstra (PD) [1] construction is generally regarded as the best available

spanning tree algorithm for achieving this tradeoff and has the additional advantage of simplic-

ity [4].1 This algorithm has been used for over 20 years to construct high-performance routing

trees in leading semiconductor design methodologies and electronic design automation (EDA)

tools, as can be seen by related patents assigned to IBM, Synopsys, Cadence and other entities

([25] [26] [27] [28] [29] [30] [31] [32]). Further, the authors of [9] performed an evaluation that

compared PD to other spanning tree constructions such as BRBC [10], KRY [11], etc. in 2006;

they concluded that PD obtained the best tradeoff between WL and PL. That paper [9] argues

that the PD wirelength cost is minimal enough to be practically free. However, this claim is now

suspect because today’s designs are significantly more power-sensitive than a decade ago: now,

a 1% reduction in power is viewed as a big win for today’s design teams performing physical

implementation. Consequently, even a small WL savings with similar timing can have a high

impact on value. A deeper discussion of prior art is given in Section 2.2.

The PD construction balances between WL and source-to-sink PL by blending the Prim

and Dijkstra spanning tree constructions [5][6] via a weighting factor, α. When α = 0, PD is

identical to Prim’s algorithm [5] and constructs a minimum spanning tree (MST). As α increases,

PD constructs a tree with higher WL but better PL; when α = 1, PD is identical to Dijkstra’s

algorithm [6] and constructs a shortest-path tree (SPT). PD begins with a tree consisting just the

source node, then iteratively adds the edge ei j that minimizes di j +α · li, where node vi is in the

current tree and v j is not in the current tree, di j is the distance between nodes vi and v j, and li is

the PL from the source to vi in the current tree.

One problem with the PD algorithm is that it greedily adds edges, which becomes

problematic with higher fanout trees. Once an edge is added, it is never removed from the final

solution, making it impossible for PD to recover from a potentially poor choice. This can lead
1For global routing, spanning trees are often preferred to Steiner trees since global routing commonly decomposes

multi-fanout nets into two-pin nets. A spanning tree provides the router with an obvious decomposition. However,
Steiner trees are not well-suited for this because the Steiner points become unnecessary constraints that restrict the
freedom of the router to resolve congestion.

4



Figure 2.1: An example instance showing suboptimality of PD. The red node is the source.
(a) shows the MST obtained when α = 0.2, (b) shows the SPT obtained when α = 0.8, and (c)
shows the solution when α = 0.4. The tradeoff in (c) is clearly suboptimal in both WL and PL,
as compared to (d).

to trees that are suboptimal in both WL and maximum PL. Figure 2.1 shows such an example.

When α is small (0.2), PD obtains the MST solution (a) with WL = 150 and PL = 130. When

α is large (0.8), PD obtains the SPT solution (b) with WL = 240 and PL = 80. However, when

α = 0.4, PD obtains the solution (c) with suboptimal values of both WL and PL (WL = 190 and

PL = 120). This solution (c) is inferior for both objectives than the solution (d) with WL = 160

and PL = 90. Thus, α = 0.4 generates a poor solution for both WL and PL.

This chapter makes the following contributions:

• To fix the shortcomings in PD, one needs to directly optimize PL in the tree construction,

which requires a new problem formulation. We propose incorporating total detour cost, the

amount of suboptimal PL for each node, into the tradeoff. The correct formulation of the

objective is paramount since it drives any optimization which follows. This work seeks

5



to optimize the detour cost to all sinks instead of just the worst one, as proposed in prior

works [36].

• Next, a new algorithm, which we call PD-II, is proposed. The idea is to recover the tree,

that has any edges poorly chosen by PD, using an iterative improvement method according

to the proposed objective function.

• Since Steiner trees are most commonly useful for timing prediction and physical synthesis,

an algorithm for converting balanced spanning trees into balanced Steiner trees is proposed.

The resulting Detour-Aware Steinerization (DAS) algorithm optimizes both WL and detour

cost to achieve a tree with similar properties to those obtained by the PD-II spanning tree

algorithm.

• Finally, three sets of experiments are presented. The first shows that PD-II is able to

meaningfully shift the Pareto curve obtained by the PD algorithm, obtaining up to 18%

improvement in PL for the same WL. The second experiment demonstrates the value of

the DAS algorithm versus more standard Steinerization methods. The third experiment

shows that the proposed Steiner construction outperforms those of SALT [36] for medium-

and high-fanout nets, a recent state-of-the-art academic tool, achieving up to 36.48% PL

improvement for similar WL.

The following sections of this chapter are organized as follows. Section 2.2 briefly reviews

related works in the areas of spanning and Steiner tree constructions. Section 2.3 presents the

proposed problem formulation that incorporates both WL and detour cost. Section 2.4 presents

the PD-II heuristic for spanning tree optimization, and Section 2.5 presents the DAS heuristic for

Steiner tree optimization. Section 2.6 reports our experimental results, and Section 2.7 concludes

the chapter.
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2.2 Previous Work

There is a rich history on spanning tree and Steiner tree constructions. Many focus on

minimizing WL or minimizing longest PL. (Our present work studies constructions that consider

both metrics.)

Spanning Tree Constructions. As discussed previously, the Prim and Dijkstra construc-

tions achieve optimal WL and PL, respectively. Spanning tree algorithms that optimize both are

called shallow-light constructions [10] [12]; they seek to optimize WL and PL simultaneously to

within constant factors of optimal. Shallow-light constructions have in many ways been a “holy

grail” in VLSI CAD literature for over 25 years. The PD algorithm is “shallow-light in practice”,

but no such formal property has ever been established [1]. Cong et al. [13] give the Bounded Prim

(BPRIM) extension of Prim’s MST algorithm [5], which produces trees with low average WL and

bounded PLs, but possibly unbounded WL. The BRBC algorithm of Cong et al. [10] produces a

tree that has WL no greater than 1+2/ε times that of an MST, and radius no greater than 1+ ε

times that of an SPT. Khuller et al. [12] contemporaneously develop a method similar to BRBC.

Minimum WL Heuristic Steiner Tree Constructions. Several works describe heuristic

algorithms for Steiner tree constructions with minimized WL. Kahng and Robins [15] give the

iterated 1-Steiner (I1-S) heuristic which greedily constructs a Steiner tree through iterative Steiner

point insertion, resulting in trees with close to optimal WL. Ho et al. [7] propose an algorithm

(HVW) to optimally edge-overlap separable MSTs to obtain Steiner trees, while Borah et al. [16]

present a greedy heuristic (BOI) to convert spanning trees to RSMTs with performance similar to

the I1-S heuristic. Chu and Wong [33] propose FLUTE which uses pre-computed look-up tables

for Steiner construction to find solutions more efficiently than the prior art.

Rectilinear Steiner Arborescence (RSA) Constructions. The NP-complete [17] recti-

linear Steiner arborescence (RSA) problem seeks to find a minimum-WL tree in the Manhattan

plane that achieves optimal PL for every sink. Rao et al. [3] present the first heuristic for the RSA
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problem. Cong et al. [18] address the construction of RSAs with the A-tree algorithm, while

Kahng and Robins [19] give a simple adaptation of their Iterated 1-Steiner algorithm to the RSA

problem.

Steiner Constructions that Optimize WL and PL. Recently, Scheifele [35] has pro-

posed a method to construct Steiner trees for which Elmore delays are bounded. Given an

RSMT solution (i.e., FLUTE), [35] iteratively finds the vertex that breaks its ε-based metric, and

reroutes the vertex to the source via a shortest path, which indirectly balances between RSMT

and RSA. On the other hand, Elkin and Solomon [34] propose a more direct shallow-light Steiner

tree construction method (ES). The main idea is to identify breakpoints and reconnect those

breakpoints to the root directly by a Steiner SPT so that there is no detour from the root to the

breakpoints. The authors of [34] build a Hamiltonian path and check the accumulated distance

along the Hamiltonian path to find proper breakpoints, such that the final Steiner tree meets the

given shallowness and lightness criteria. Recently, Chen et al. [36] present SALT, which further

improves the ES method [34]. The key contributions are (i) tighter criteria to identify breakpoints,

and (ii) using an MST instead of a Hamiltonian path. With some post-processing such as L-shape

flipping, the method shows superior tradeoffs between pathlength and wirelength compared to

any state-of-the-art spanning/Steiner tree construction methods. Comparisons to the method of

[36] are included in Section 2.6 below.

2.3 Problem Formulation

A signal net V = {v0,v1, ...,vn−1} is a set of n terminals, with v0 as the source and the

remaining terminals as sinks. We define the underlying routing graph to be a connected weighted

graph G = (V,E), where each edge ei j ∈ E has a cost di j. We are concerned with the case where

G is a complete graph with each ei j having cost equal to the Manhattan distance di j. A routing
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Table 2.1: Notation

Notation Meaning
V signal net, V = {v0, v1, .... vn−1} having n−1 sinks
G routing graph in the spanning tree context
T routing tree, which is a spanning subgraph of G
v0 source node of the signal net V , which is the root of T
ei j edge from node vi to v j

par(vi) parent node of vi
l j cost of the unique v0 to v j path in a tree, v0, v j ∈ T
di j cost of the edge ei j
mi j Manhattan distance from node vi to v j
WT total wirelength of a tree
Qi detour cost of node vi, Qi = li−mi0
QT detour cost of a tree, = ∑n−1 (Qi)
C weighted cost of a tree, = α ·QT +(1−α) ·WT

∆Ce,e′
the change in the weighted cost that results from
removing edge e and adding e′, used in PD-II

α weighting factor used in PD and PD-II
D flipping distance used in PD-II
PT sum of pathlengths of a tree, = ∑n−1 (l j)

tree T = (V,E ′) is a spanning subgraph of G with |E ′|= n−1.2 Given a routing tree T , the cost

of the unique v0− vi path in T is li, the radius of T is r(T ) = max1≤i≤n−1li, and the wirelength

(WL) of T is WT = ∑ei j∈T di j. All notations used in our work are listed in Table 2.1.

Initially, the tree consists only of v0. The PD algorithm iteratively adds edge ei j and sink

vi to T , where vi and v j are chosen to minimize

(α · l j)+di j s.t. v j ∈ T, vi ∈V −T (2.1)

The PD algorithm can result in trees with either large WL or PL, as shown in Figure 2.1.

To alleviate this issue, conventional shallow-light tree constructions [10] [13] [36] focus on

2Our use of G and T pertains to the spanning tree context. In the rectilinear Steiner tree context, the underlying
routing graph would be the Hanan grid [20], and a Steiner routing tree would be a spanning tree over {V ∪S}, where
S is a set of Steiner points taken from the Hanan grid. For simplicity, as long as meanings are obvious, we will use
terms from the spanning tree context in the Steiner tree context as well.
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bounding the shallowness and lightness to optimize the tree cost. Lightness η means that the WL

of a tree is at most η times of the MST WL. A tree has shallowness ζ if PL to each sink in the tree

is at most ζ times the source-to-sink Manhattan distance (MD). However, shallowness alone does

not adequately represent the quality of a routing tree. Figure 2.2 shows two examples that have

the same shallowness and lightness. It is clear that Figure 2.2(b) is preferable to Figure 2.2(a)

since the left sinks have shorter PLs, but shallowness does not capture the difference.

Figure 2.2: Two routing trees that have the same lightness and shallowness.

With the above in mind, we define a new detour cost metric as follows. Detour cost Qi of

a sink vi is the difference between PL from v0 to vi in T and the Manhattan distance from v0 to vi.

The detour cost of the tree T , denoted by QT , is the sum of the detour cost values of all the sinks

in the tree, i.e., QT = ∑1≤i≤n−1 Qi. Since PD iteratively adds edges and nodes to the growing

tree, if a sink v j close to the source incurs high detour, then all downstream sinks (descendants of

v j) will also have high detour and hence long PL. We therefore propose the following formulation

to capture the problem of simultaneously reducing WL and detour cost of a spanning tree:

Simultaneous WL and Detour Cost Reduction (SWDCR) Problem. Given a spanning tree

T = (V,E), minimize the weighted sum of WL and detour cost of the tree.

Minimize α ·∑Qi +(1−α) ·WT (2.2)
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where 0≤ α≤ 1. We present a heuristic algorithm PD-II in Section 2.4 for tackling the SWDCR

problem.

Once the spanning tree construction is converted into a Steiner tree, there is a change

in the tree topology. We propose and address the following formulation to further optimize the

detour cost of a Steiner tree:

Detour Cost Reduction in Steiner Trees (DCRST) Problem. Given a Steiner tree, minimize

the tree detour cost.

Minimize QT (2.3)

s.t. WT,new ≤ WT,init (2.4)

QT,init ≥ QT,new (2.5)

To address the DCRST problem, we present our algorithm DAS below in Section 2.5.

2.4 The PD-II Spanning Tree Construction

This section presents the PD-II algorithm that performs iterative edge-swapping which

simultaneously improves the detour cost and WL. The key idea of the PD-II algorithm is to start

with a spanning tree and swap edges to improve the tradeoff between detour cost and WL. The

algorithm can take any spanning tree as input, but it makes sense to start with the PD solution

since it should already be relatively strong for both objectives. We note that while PD can be quite

slow for higher-fanout nets, it can be sped up significantly by using a sparsified nearest-neighbor

graph instead of the complete graph.

We initially populate the neighbors of each node using the following method. We say that

vi is a neighbor of v j if the smallest bounding box containing vi and v j contains no other nodes.

The worst-case number of neighbor nodes for each node is Θ(n). For example, every red point in
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Figure 2.3 is a neighbor of every green point, and vice versa. However, Naamad et al. [23] show

that the expected number of maximal empty boxes amidst n random points in a plane is bounded

above by O(n log n), so it is reasonable to expect the average number of neighbors per node to be

O(log n).

Figure 2.3: Example showing Θ(n2) asymptotic worst-case complexity of the number of
neighbor relationships. Each green node is a neighbor to each red node.

Analysis of random placements of net sinks show this to be true. The number of neighbors

for 100K random point sets of size 16, 32, and 64 yields an average number of neighbors per node

of 6.3, 8.7 and 11.3, respectively. Real placements should generally have even fewer neighbors,

since cells tend to align horizontally or vertically. For the testcases described in Section 2.6.1, the

average number of neighbors is 2.58, 4.27, 6.15 and 8.24 for small, medium, large and huge nets,

respectively. Hence, in practice, runtime complexity of iterating through the neighbors of a node

has logarithmic complexity.

An O(n log n) runtime complexity can be obtained for PD using a binary heap imple-

mentation and an adaptation of Scheffer’s MST code [21][22]. Since PD solutions are generally

good, though sometimes suboptimal, it makes sense to post-process the PD solution to obtain a

better one. The key technique for PD-II is edge flipping, whereby one edge is removed from the

original tree and replaced with a new edge. Figure 2.4(a) shows an example tree, represented as a

DAG, representing a topological ordering starting at the source. Figure 2.4(b) shows an example

transform in which one edge is removed and replaced with a new red edge, thereby obtaining

a different tree. Note that one of the directed edges in the new (rooted) tree is reversed from

its previous orientation in order to maintain a well-formed rooted tree. This approach recalls
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the iterative improvement operation used in BOI [16], but the application of flipping is more

restricted to focus on WL vs. PL improvements.

Figure 2.4: Illustration of PD-II edge flipping.

For each edge pair, we define the flip cost as the cost associated with edge flipping, i.e.,

the cost of removing edge ei j and adding edge ei′ j′ . Flip cost ∆Ce,e′ = α · (QTi′ j′ −QTi j)+(1−α) ·

(di′ j′−di j), where α is a weighting factor;3 QTi j and QTi′ j′ are the detour costs of the trees before

and after edge flipping, respectively; and di j and di′ j′ are the lengths of edges being removed and

inserted, respectively.

Pseudocode for PD-II, Algorithm 1 is given below. Essentially, PD-II takes an input tree

and searches for edge flips that improve flip cost.4 If the flip cost improves, the swap is taken.

Considering all pairs of possible swaps could be expensive, so we define the flipping distance

D to be equal to the number of edges in the DAG that require a change in direction to preserve

topological ordering, i.e., rooted orientation. For the swap in Figure 2.4, D = 1. In practice,
3The parameter α can be determined by the timing constraints. If a net is critical, a higher value of α can be used

to achieve lower delays, but if arcs through the net have positive slacks, α can be small to save wirelength. Hence, α

allows topology optimization and can be chosen to best satisfy the design specifications on a per-net basis.
4Flipping cannot be added into the original PD tradeoff objective since the flip cost objective cannot be correctly

computed until an entire tree is constructed. Hence, we propose PD-II as a post-processing algorithm which improves
a given spanning tree.
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using D > 1 has little benefit (but more runtime) compared to D = 1, so we use D = 1 for all

experiments.

Algorithm 1 Algorithm PD-II

Input: Spanning tree Tin = (V,Ein), with Ein ⊆ E
Output: Spanning tree Tout = (V,Eout), with Eout ⊆ E

1: Initialize Tout ← Tin
2: repeat
3: Initialize largest detour cost reduction, ∆Cbest ← 0
4: for all e ∈ Eout do
5: Ee← candidateEdges(e, D)
6: for all e′ ∈ Ee do
7: ∆Ce,e′ ← f lipCost(e,e′)
8: if ∆Ce,e′ < ∆Cbest then
9: ∆Cbest ←Ce,e′

10: ebest ← e ; e′best ← e′

11: end if
12: end for
13: end for
14: if ∆Cbest < 0 then
15: Remove ebest , insert e′best and change direction of associate edges
16: end if
17: until ∆Cbest == 0

Line 3 of Algorithm 1 initializes the best flip cost to zero. Line 5 computes the set of

candidate edges Ee that can be flipped with edge e, as restricted by the flipping distance D. For

each candidate edge e′ ∈ Ee, we calculate the flip cost for the edge pair (e, e′) and find the edge

pair (ebest ,e′best) with lowest flip cost in Lines 6-12. These edges are swapped if the lowest flip

cost is less than zero (Lines 14-16). The algorithm continues until no more flip-cost improvement

is obtained (Line 17).

The number of candidates for edge flipping can be very large when D is unbounded. The

worst-case number of edges is (n/2)2, giving Algorithm PD-II a worst-case time complexity of

O(n3), where n is the number of sinks. However, with the distance restriction, the complexity

reduces to O(D ·n2), and in practice it converges rapidly. To show this, we take two large blocks

from an industrial design and run a production Steiner package on an Intel Xeon 2.7GHz machine
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(CPU E5-2680), using RHEL5. The first design has 1.9 million datapath nets, and the total

runtime for the Steiner package which uses PD for its spanning tree construction requires 59.3

seconds. Adding PD-II to the Steiner package increases the runtime to 62.7 seconds, for a net

penalty of 3.4 seconds. The second design with 4.0M datapath nets requires 124.0 seconds for

running the default Steiner package. Adding PD-II to the Steiner package increases the runtime

from 124.0 seconds to 125.8 seconds, for a net penalty of 1.8 seconds. Consequently, the runtime

cost of using PD-II is negligible, averaging less than one additional second of runtime per million

nets.

2.5 The Detour-Aware Steinerization Algorithm (DAS)

For global routing, spanning tree constructions such as PD-II are sometimes preferred

to Steiner trees since global routing commonly decomposes multi-pin nets into two-pin nets.

However, for timing estimation, congestion prediction, or general physical synthesis optimization,

a Steiner tree is required since spanning trees will have too much WL. The previous spanning tree

formulation can easily be extended to Steiner trees; the definitions of WL and PL do not change.

However, since finding the minimum wirelength Steiner is NP-complete, FLUTE WL is used as a

proxy for minimum Steiner tree cost.

To transform a spanning tree into a Steiner tree, the linear-time algorithm of [7] is invoked.

It maximizes edge-overlaps in the spanning tree by creating a Steiner node. We call the algorithm

HVW after the algorithm’s creators: Ho, Vijayan, and Wong. HVW traverses the tree from the

leafs and iteratively maximize overlaps with the currently visited edge and its immediate children

edges. However, this basic construction can be inefficient both in terms of WL and PL. Hence a

new Steinerization algorithm, called DAS for Detour-Aware Steinerization is proposed below.

DAS has two phases of optimization. The first phase seeks to reduce WL while minimizing

the detour cost penalty (Lines 1-14). This phase does a bottom-up tree traversal and makes edge
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Algorithm 2 The Detour-Aware Steinerization Algorithm (DAS)
Input: Steiner tree TSt,in
Output: Improved Steiner tree TSt,out

1: //First phase: wire recovery at the cost of small additional PL
2: pmax

T ← maximum PL of the Steiner tree
3: Do Breadth-First Search (BFS) from the leaf node
4: for all vi do
5: v j← par(vi) ; d ji← edge length to vi;
6: o ji← overlap length with other edges to vi
7: ∆d ji← d ji−o ji
8: for all vk in {all neighbors of vi} do
9: ∆dki← dki−o ji; pi← PL to node vi

10: if (∆dki < ∆d ji && (pi ≤ 0.5 · pmax
T ) then

11: Disconnect vi to v j and reconnect vi to vk
12: end if
13: end for
14: end for
15: //Second phase: detour cost reduction with bounded WL
16: WT,init ← Init. Steiner tree WL; QT,init ← Init. Steiner tree detour cost
17: Do Breadth-First Search (BFS) from the source node
18: for all vi do
19: v j← par(vi); d ji← Initial edge length to vi
20: for all vk in {all neighbors of vi} do
21: eki← Edge from vk to vi; dki← Edge length from vk to vi
22: WT,new←WT,init +dki−d ji
23: QT,new← detour cost tree with edge eki
24: if (WT,new ≤WT,init ) && (QT,new < QT,init ) then
25: Disconnect vi to v j and reconnect vi to vk
26: WT,init ←WT,new; QT,init ← QT,new
27: end if
28: end for
29: end for

swaps which reduce WL. For each edge e ji in the Steiner tree, the edge e ji is removed from the

tree and replaced with eki where vk is a nearest neighbor of vi if the WL improves and the PL is

not overly degraded. (i.e., pi ≤ 0.5 · pmax
T ).

After the first phase, since PL (or detour cost) is not targeted, there still may be room to

improve for that dimension. Hence, a second phase (Lines 15-29) seeks to optimize detour cost

QT without degrading WL. This second phase performs a top-down tree traversal to minimize QT .

This is because the detour cost Qi to a node vi affects not only the PL to the node, but also the PL

to the downstream nodes of vi. Thus, more opportunity for large QT reductions exists in the edges

near the source v0. For each edge e ji in the Steiner tree, the edge e ji is removed and replaced
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with eki, where vk is the possible parent among the nearest neighbors of vi, to reduce QT without

degrading WL. This process is repeated for all the nodes in the tree with non-zero detour cost.

Algorithm DAS has a worst-case time complexity of O(n2). However, with the sparsified

nearest neighbor graph implementation described in Section 2.4, DAS runs much faster than O(n2)

and is closer to O(n log n) in practice. For 100K nets, DAS runs in 0.86 seconds for 16-terminal

nets, 1.71 seconds for 32-terminal nets and 4.83 seconds for 64-terminal nets.

2.6 Experimental Setup and Results

2.6.1 Experimental Setup

The algorithms described above are implemented in C++. The following experiments

are performed on a 2.7 GHz Intel Xeon server with 8 threads. Testcases are generated from the

DAC-2012 contest benchmarks [37], with pin locations for each net are extracted from ePlace

placement solutions [38]. Since finding a solution with optimal WL and PL is trivial for two- and

three-pin nets, our experiments focus on nets with fanout larger than two. The 749K total nets

are divided into four groups (small, medium, large, huge) by their terminal count, as shown in

Table 2.2.

Table 2.2: Net statistics for Superblue benchmark designs.

small medium large huge
|V | 4−7 8−15 16−31 32+

#nets 533029 128463 46486 20853

While our algorithms optimize QT , QT itself does not adequately capture the quality of

the tree. Instead, results are reported based on two normalized metrics, WT norm (normalized WL)

and PT norm (normalized PL). WT norm is defined as the ratio of the tree WL to the MST WL for

spanning trees. PT norm is defined as the ratio of sum of PLs of each node in the tree to the sum of

Manhattan distances from source to each node. The optimal value any tree could have for either

metric is one, which makes the corresponding Pareto curve more intuitive.
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2.6.2 Experiment I - Spanning Tree Results

In the following results, PD and PD-II refer respectively to the spanning trees constructed

using the PD and PD-II algorithms. Figure 2.5 shows normalized WL and PL tradeoff curves

for PD and PD-II, for the 46486 large nets. Each point in the curves represents the average

(WT norm,PT norm) over all the nets for a particular value of α. We sweep α from 0.05 to 0.95, in

steps of 0.05, to obtain both the PD and PD-II curves. We observe that the blue PD-II Pareto

curve is clearly better than the red PD curve.

The Pareto curve makes the improvement trend clear, but makes it difficult to measure

the degree of improvement of PD-II. To compare the two algorithms more robustly, we analyze

the results in the following way; (1) select different percentages of permissible WL degradation

with respect to MST WL (i.e., WL thresholds = 1%, 2%, 4%, 7%, 10% and 15%), and (2) for

each net, find the minimum PT norm solution that meets the WL threshold across all solutions with

different α. The results are averaged across all the nets and summarized in Table 2.3. Each entry

in the table corresponds to the normalized PL PT norm. To find the percentage improvement, one is

subtracted from each value, since 1.0 is a lower bound. For example, a reduction from 1.15 to

1.12 results in an improvement of 20%, i.e., (1− (1.12−1.0)/(1.15−1.0)) ·100%.

We observe the following.

• PD-II gives better results than PD for all classes of nets. This makes sense since it strictly

improves upon an existing PD solution.

• Small nets obtain relatively small improvement, ranging from 0.26% to 1.63%; however,

huge nets show significant improvements, ranging from 4.91% to 18.87%. Trends for

medium and large nets lie in between. This is because the detour cost is close to optimal

for smaller nets, but is much larger for bigger nets. For example, with a 1% WL threshold,

the average normalized PL for PD-II is 1.097 for small nets but 1.376 for large nets.

• When the WL threshold is tight (such as 1% or 2%), the improvement of PD-II is much
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Figure 2.5: WL and PL tradeoff for various α.

smaller as compared to looser constraints of 10% or 15%. This makes sense because a

looser constraint gives the algorithms more freedom to reduce PL. A threshold of 1% means

the topology cannot deviate much from the minimum-length spanning tree.

2.6.3 Experiment II - Steiner Tree Results

Our next experiments compare (PD + HVW + DAS) and a baseline flow (PD + HVW) to

show the value of DAS. HVW refers to the Steiner tree obtained after performing edge-overlapping

as described by Ho et al. [7], and DAS refers to the Steiner tree after applying DAS algorithm

to the HVW tree. Figure 2.6 shows the normalized WL and PL tradeoff comparison for the two

flows for the set of large nets. Steiner tree WT norm is defined as the ratio of total WL of the tree to

the FLUTE WL5 [33] and PT norm is defined as the ratio of sum of PLs of all sinks in the tree to
5FLUTE constructs optimal RSMTs for nets with terminal sizes up to 9, and near-optimal RSMTs for nets with

higher terminal counts.
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Table 2.3: Comparisons of the best PT norm for PD and PD-II across different WL thresholds.

|V | Method
WL threshold

1% 2% 4% 7% 10% 15%

small
PD 1.0972 1.0927 1.0819 1.0680 1.0569 1.0427

PD-II 1.0970 1.0923 1.0812 1.0672 1.0561 1.0420
Imp. (%) 0.26 0.42 0.78 1.15 1.36 1.63

med.
PD 1.1888 1.1746 1.1483 1.1189 1.0974 1.0723

PD-II 1.1870 1.1706 1.1423 1.1122 1.0909 1.0668
Imp. (%) 0.93 2.33 4.07 5.66 6.62 7.68

large
PD 1.2981 1.2698 1.2216 1.1723 1.1390 1.1006

PD-II 1.2895 1.2545 1.2025 1.1533 1.1219 1.0870
Imp. (%) 2.89 5.66 8.64 11.00 12.32 13.52

huge
PD 1.3952 1.3550 1.2873 1.2210 1.1777 1.1302

PD-II 1.3758 1.3238 1.2526 1.1876 1.1488 1.1056
Imp. (%) 4.91 8.79 12.06 15.14 16.27 18.87

the sum of source-to-sink Manhattan distances. Each point in the curve represents the average

(WT norm,PT norm) over all nets, for a particular value of α. It is clear that DAS adds significant

value to the Steiner construction, pushing its Pareto curve further left and down compared to the

one from the baseline.

Similarly to Table 2.3, Table 2.4 shows normalized PL across a range of permissible WL

degradations for HVW versus HVW+DAS. We observe the following:

• DAS always obtains better results than HVW. Again, this makes sense since DAS starts

with an HVW solution and further refines it to improve both WL and PL.

• Improvements for DAS can be quite significant, ranging from 8.36% to 83.67%.

• DAS improves results more significantly for smaller fanout nets than for larger ones. This

may suggest there is still further room for improvement in Steinerization.

• Larger WL thresholds correspond to larger normalized PL improvements, which again is

likely due to more freedom for the algorithm to find a solution that reduces detour cost.
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Figure 2.6: WL and PL tradeoff for Steiner tree constructions.

2.6.4 Experiment III - Comparison with SALT [36]

Our final set of experiments compares the best combined flow (PD-II + HVW + DAS)

with the results from the state-of-the-art academic Steiner tree construction, SALT [36]. SALT

uses FLUTE [33] to generate its initial input and improves the initial construction to reduce PL.

For nets with less than 10 terminals, FLUTE produces the optimal WL and may also produce

excellent or even optimal PL, in which case running SALT is not even necessary. Hence, the cases

for which FLUTE produces excellent PL are in some sense uninteresting. If FLUTE produces

a good tradeoff curve, then SALT simply returns the FLUTE solution. Our approach can do

something similar using the following simple metaheuristic: (1) run both FLUTE and (PD-II +

HVW + DAS) in parallel; (2) if FLUTE is better than (PD-II + HVW + DAS) for both WL and

PL, return the FLUTE solution, else return the (PD-II + HVW + DAS) solution. Essentially, the

metaheuristic returns a solution identical to SALT’s when the FLUTE solution is dominant. Note

that for large and huge nets, the FLUTE solution almost never is dominant.

Figure 2.7 shows normalized WL and PL tradeoff curves for the metaheuristic flow and
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Table 2.4: Comparisons of the best PT norm for (1) PD + HVW and (2) PD + HVW + DAS across
different WL thresholds.

|V | Method
WL threshold

1% 2% 4% 7% 10% 15%

small
(1) 1.0233 1.0241 1.0250 1.0249 1.0236 1.0202
(2) 1.0126 1.0115 1.0097 1.0073 1.0054 1.0033

Imp. (%) 46.14 52.31 61.15 70.85 77.30 83.67

med.
(1) 1.0786 1.0821 1.0828 1.0757 1.0649 1.0489
(2) 1.0665 1.0629 1.0532 1.0385 1.0277 1.0168

Imp. (%) 15.43 23.30 35.78 49.07 57.24 65.58

large
(1) 1.1637 1.1644 1.1547 1.1275 1.1026 1.0728
(2) 1.1440 1.1347 1.1087 1.0760 1.0553 1.0357

Imp. (%) 12.01 18.07 29.73 40.36 46.08 50.93

huge
(1) 1.2278 1.2091 1.1606 1.1107 1.0812 1.0538
(2) 1.228 1.209 1.161 1.111 1.081 1.054

Imp. (%) 8.36 15.14 27.82 36.36 39.74 41.69

SALT for (a) small, (b) medium, (c) large and (d) huge nets. For small nets, SALT actually

achieves better solutions than the metaheuristic until the normalized WL is about 2.3% higher

than optimal.6 However, for medium, large and huge nets, the Pareto curve for the metaheuristic

outperforms the one from SALT, especially as nets increase in size. For huge nets, SALT

achieves WT norm = 1.0370, PT norm = 1.141 for ε = 1.281, which is its knee point in the tradeoff

curve. The knee point in the metaheuristic’s tradeoff curve corresponds to WT norm = 1.024

and PT norm = 1.121 at α = 0.35, which achieves 35.13% WL and 14.18% PL improvements

compared to SALT at its ε = 1.281.

Since SALT optimizes shallowness and not detour cost, Figure 2.8 presents the same

set of data but using SALT’s proposed metrics. SALT dominates our method according to the

shallowness metric. Thus, SALT is superior with respect to its proposed metric, while PD-II +

HVW + DAS is superior with respect to its metric.

Finally, Table 2.5 compares our best recipe to SALT using the same methodology as

6For {small, medium, large, huge} nets, FLUTE results for {55.6, 7.9, 0.03, 0}% of nets have smaller WL and
PL than our results. As expected, FLUTE results are dominant for small nets, but our algorithm gives better PL for
large and huge nets.
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Figure 2.7: Normalized WL and PL for our metaheuristic and SALT on nets with |V |= (a) 4 to
7, (b) 8 to 15, (c) 16 to 31 and (d) 32+.
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Figure 2.8: Average shallowness and lightness for our metaheuristic and SALT on nets with
|V |= (a) 4 to 7, (b) 8 to 15, (c) 16 to 31 and (d) 32+.
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Tables 2.3 and 2.4. Note that we use FLUTE WL as a lower bound. We observe the following:

• For small nets, and WL thresholds below 10%, SALT outperforms the proposed approach.

SALT is also better on medium nets with WL thresholds below 2%. This makes sense since

trees in this space will closely resemble FLUTE constructions. SALT starts with a FLUTE

construction and iteratively improves it, so in the space where FLUTE obtains good trees

for WL and PL, such an approach outperforms the algorithm proposed in this work. Note

that the magnitude of the improvement is still small. For example, for small nets and a

1% threshold, SALT is 0.99% away from the optimal normalized path length, while our

approach is 1.26% away.

• For large and huge nets, and for medium nets with thresholds larger than 2%, the proposed

approach performs better, reaching a peak of 36.46% improvement for huge nets with a

10% threshold. This is the domain for which the optimal tradeoff can be considerably

different from FLUTE. These arguably form the class of more interesting instances where

the tradeoff between WL and PL becomes increasingly important.

• As WL threshold increases, the improvement of our approach vs. SALT improves too,

especially around the 7% and 10% WL threshold ranges. However, for large and huge nets

the improvement is somewhat less at the 15% threshold.

Runtime. For the benchmarks studied, SALT’s total runtime is 2762 seconds. By contrast,

the PD-II + HVW + DAS algorithms, as implemented and optimized within a commercial EDA

tool’s code base, take 361 seconds in total. Thus, PD-II today runs more than 7 times faster than

SALT.

Delay. Below, we show the impact of WL and PL improvement on delay. We estimate

delays of nets produced by our algorithms and by SALT, based on the Elmore delay model

with resistance of 37.318Ω per micron of wire, capacitance of 0.228fF per micron of wire, and

0.67fF pin capacitance per sink. For the solutions produced by our approach and SALT with WL
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Table 2.5: Comparisons of the best PT norm for (1) SALT and (2) PD-II + HVW + DAS across
different WL thresholds.

|V | Method
WL threshold

1% 2% 4% 7% 10% 15%

small
(1) 1.0099 1.0093 1.0082 1.0067 1.0053 1.0036
(2) 1.0126 1.0115 1.0097 1.0073 1.0054 1.0033

Imp. (%) -27.29 -23.85 -17.98 -8.80 -0.86 7.90

med.
(1) 1.0652 1.0619 1.0547 1.0435 1.0337 1.0213
(2) 1.0665 1.0629 1.0532 1.0385 1.0277 1.0168

Imp. (%) -1.95 -1.66 2.76 11.32 17.63 21.15

large
(1) 1.1564 1.1475 1.1261 1.0961 1.0720 1.0432
(2) 1.1440 1.1347 1.1087 1.0760 1.0553 1.0357

Imp. (%) 7.91 8.66 13.77 20.92 23.09 17.31

huge
(1) 1.2744 1.2574 1.2205 1.1688 1.1277 1.0763
(2) 1.2278 1.2090 1.1606 1.1107 1.0811 1.0536

Imp. (%) 17.01 18.79 27.18 34.44 36.46 29.71

threshold 2%, we calculate the sum of all sink delays for each net, and the average of this sum

across all nets. For {small, medium, large, huge} nets, the average sum of sink delays from PD-II

is lower than the average sum of sink delays from SALT by {-0.0005, 0.24, 1.54, 5.62}%. As

seen with the WL and PL comparison, our algorithm has slightly larger delays for small nets and

smaller delays for higher-fanout nets.

In summary, while our approach does not uniformly outperform SALT, it does provide a

superior tradeoff for the most interesting class of nets that are far from optimal in terms of PL

and WL.7

2.7 Conclusion

This work shows that the classic PD spanning tree algorithm that balances between Prim’s

and Dijkstra’s algorithm can have a bad tradeoff that ends up with both WL and PL being highly

suboptimal. A new spanning tree heuristic PD-II is demonstrated to significantly improve both

7The PD-II algorithm has been released as part of a leading commercial tool, with demonstrated improvements of
timing and wirelength.
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WL and total detour cost compared to PD. Further, this work extends the construction to Steiner

tree with the DAS algorithm that directly improves trees according to both objectives. The

algorithms are shown to be fast and practical. They are also suitable for integration into existing

commercial routers, and can be applied in conjunction with any existing spanning and Steiner

tree constructions for simultaneous WL and PL improvements. Compared to the recent SALT

algorithm, our construction generates clear improvements according to the proposed metrics,

especially for medium-size and larger nets. Future research includes (i) revisiting the still-open

question of worst-case detour from a PD construction; (ii) learning-based estimation of the best α

for any given instance (i.e., set of pin locations of a signal net); and (iii) extending the detour cost

objective to encompass sink criticality, “global” radius, and other additional criteria.
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Chapter 3

Analysis of Real versus Random Placed

Nets, and Implications for Steiner Tree

Heuristics

This chapter describes a property of nets and their pin locations, and provides an improved

lookup table for wirelength estimation.

3.1 Introduction

VLSI global placement seeks to minimize routed wirelength (WL) along with timing path

delays, dynamic power and other design metrics, subject to the constraint that placeable instances

do not overlap. Because signal nets are routed as Steiner trees, their routed wirelengths are ideally

modeled as the costs of respective Rectilinear Steiner Minimum Trees (RSMTs) over pin locations.

Since the RSMT problem is NP-hard, placement tools typically minimize the sum over all nets of

the bounding box half-perimeter of pin locations – i.e., the half-perimeter wirelength (HPWL)

objective [46]. An important element of efficient placer implementation is the fast estimation of
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RSMT costs, e.g., by weighting HPWL according to a lookup table of scaling factors [40][44].

Our present work focuses on the qualitative difference between real pointsets correspond-

ing to pin locations of placed nets, and random pointsets that have often been used to characterize

the performance and relative merits of RSMT heuristics or RSMT cost estimators. As discussed

below, placement tools will tend to move the pins of a net up against two adjacent edges of the net

bounding box, as shown in Figure 3.4 below. This phenomenon is due to the HPWL objective in

conjunction with each placeable instance having multiple incident nets. By contrast, with random

pointsets, all point locations inside the pointset bounding box are equiprobable. We define the

L-ness of a placed net’s pin locations to capture how close they are to two adjacent edges of the

net bounding box:

Definition: Given a pointset P, the bounding box of P is the minimum-area rectangle that contains

all points of P; we use B(P) to denote the bounding box area. The L-ness of P is measured as

R(P)/B(P), where R(P) is the area of the largest empty (isothetic) rectangle that (i) is contained

in the bounding box of P, (ii) contains one corner of the bounding box of P, and (iii) contains no

points in P.

Figure 3.1: Illustration of largest empty (isothetic, i.e., with axis-parallel edges) rectangle. The
L-ness of this 5-pin pointset is 24/56.

High R(P)/B(P) ratio corresponds to large L-ness. If B(P) = 0, then we consider the L-ness of P

to be 1. Figure 3.1 shows a pointset with R(P)/B(P) = 24
56 .
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3.1.1 Motivation: Non-uniformity of Net Pin Placements

As a motivating study, we first confirm the non-uniform distribution of real placed

pointsets (i.e., pins of signal nets). We use the leon3mp [65] and theia [80] design blocks mapped

to a 28nm LP foundry enablement, with place-and-route performed using Cadence Innovus

Implementation System v15.2 [75]. Two types of placements are studied: pseudo-1D and 2D. To

obtain a pseudo-1D placement, we create a floorplan with width/height aspect ratio (AR) of 10:1

following the methodology described in [42]. We collect the point (pin) location distribution for

each net along the x-axis, within a normalized range of 0 (left boundary of each given net) to 1

(right boundary of each given net). We categorize nets into three types – L, R, and O, defined as

follows. A net n is of type L if, for each cell c of the net, no fanin/fanout net of c has a pin to the

right of the rightmost pin of the net n, and at least one has a pin to the left of the leftmost pin of

the net n. A net n is of Type R if for each cell c of the net, no fanin/fanout of c has a pin to the

left of the bounding box (BBox) of net n, and at least one has a pin to the rightmost pin of net n.

A net n is otherwise of type O. For example, in Figure 3.2, nets A and D are of type L; net B is of

type R; and net C is of type O.

Figure 3.3 shows results of this empirical study on the designs mentioned above. We see

that a “real” placement tool will clearly push cells (pins) of a type L net (respectively, a type R

net) toward the left (respectively, right) boundary. There are virtually no cells in the middle, and

only a few cells are pushed to the opposite boundary. From our study, we believe that there are

two explanations for cells occurring at the opposite boundary: (i) we plot cell locations according

to the center of the cell, which has error with respect to exact pin locations; and (ii) nets with short

x-span can exhibit this behavior since the placer does not see a significant wirelength penalty

for doing this. For a type O net, the cell distribution still shows preference to the bounding box

boundary, indicating non-uniform distribution.

We have also performed the above experiment for 2D placements with floorplan height =

width, i.e., aspect ratio = 1. In the y direction, “bottom” and “top” are respectively equivalenced to
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“left” and ”right” in the x direction. Then, we sum up the pointset distribution in both directions.

The results look similar to Figure 3.3. We see a very strong deviation from the uniform distribution

that is seen with random pointsets.1

Figure 3.2: Illustration of L, R, and O types of nets.

3.1.2 Related Works

Previous works have estimated RSMT cost based on characteristics of placed pin locations.

Caldwell et al. [40] demonstrate how RSMT cost depends on both the cardinality and the aspect

ratio of a pointset. This improves upon the earlier work of Cheng [44], which estimates RSMT

cost based only on the pointset cardinality. Quite notably, Cheng [44] appears to point out the

concept of L-ness in real placed pin locations when discussing the modeling of routing resource

demand. However, this observation does not seem to have been followed up in the RSMT

estimation or placement literatures.2 In the computational geometry literature, Chazelle et al. [43]

present an O(n log3 n) divide-and-conquer algorithm which calculates the area of the largest

empty (isothetic) rectangle in a set of n points. By using a semi-dynamic heap, Naamad et al. [23]

calculate the largest empty rectangle in a set of n points in O(s log n) time where s is the number

of possible empty rectangles.

1While this motivating study uses the Cadence Innovus placer, Section 3.3 below shows similar non-uniformity
across multiple academic and commercial placers’ outputs.

2Section 3 of [44] states, “The high wiring probability at the top and bottom boundaries comes from the following
two facts: (1) the probability of having two pins located at the same boundary is high because of bounding box. (2)
when finding an optimal Steiner tree, either a left-L or a right-L is used to reduce the wire length of a minimum
spanning tree.”
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(a) 1D

(b) 2D

Figure 3.3: Empirical results from pseudo-1D and 2D placements.

With regard to RSMT heuristic constructions, Chu and Wong [33] give a well-known

O(n log n) RSMT heuristic, FLUTE, which is the most accurate of the RSMT heuristics that we

study in Section 3.4.1. The Prim-Dijkstra heuristic of Alpert et al. [1] “blends” classic minimum

spanning tree and shortest-paths tree constructions using a weighting factor α to obtain a heuristic

“shallow-light” spanning tree. Below, in our experimental studies, we augment the Prim-Dijkstra

construction with the edge-overlapping method of Ho et al. [7] to obtain a heuristic RSMT from

the Prim-Dijkstra spanning construction.
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Figure 3.4: Pins of a net from an industrial placer, clustered towards the left and bottom edges
of the bounding box.

3.1.3 Contributions

The main contributions of this work are as follows.

• We propose a formal definition of L-ness of a pointset in the Manhattan plane.

• We empirically characterize a qualitatively significant difference in L-ness between real

placed net pins and random pointsets. As seen in Section 3.3.1, real placed pointsets have

significantly higher L-ness than random pointsets.

• We describe a pointset generator which can be used to generate more realistic pointsets

with prescribed L-ness distribution. This can be used to assess RSMT heuristics and cost

estimators with randomly generated pointsets that match AR and R(P)/B(P) distributions

(as well as RSMT costs - see Subsection 3.4.2) of real placed pointsets.

• We give a new lookup table-based RSMT cost estimator which improves over the method

of [40] by adding L-ness as a parameter. Our implementation of this lookup table gives a

non-dominated (speed, accuracy) option for RSMT cost estimation.

In the following, Section 3.2 presents notation and analyses of L-ness in planar pointsets.

Section 3.3 describes empirical characterizations of real placed pointsets, contrasted with random
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pointsets. Section 3.4 discusses the impact of L-ness on the relative performance of various RSMT

heuristics. Section 3.5 presents a new lookup table-based RSMT cost estimate that improves

upon [40] by adding an L-ness dimension. Section 3.6 summarizes our results and concludes.

3.2 Preliminaries

In this section, we first give notations and facts used in this work. We then analyze different

properties of pointsets, and discuss the relationship of L-ness to other pointset characteristics.

Last, we provide methods to generate realistic pointsets, and an algorithm to compute R(P) in

Θ(n log n) time.

3.2.1 Notations

Notations that we use in this chapter are summarized in Table 3.1. The layout region is

assumed to have lower-left corner (0,0) and upper-right corner (H,W ). A random p-pin pointset

consists of p points chosen randomly from a uniform distribution in the H×W layout region. As

noted above, the bounding box of pointset P is the minimal isothetic (axis-parallel) rectangle that

contains all points of P. The half-perimeter of a given bounding box is half the perimeter of the

bounding box. For example, the half-perimeter of the bounding box in Figure 3.1 is 15, and its

AR is 8/7.

Our discussion furthermore assumes that points of a random pointset are in general

position, i.e., all x-coordinates and all y-coordinates are distinct. To validate this assumption, we

extract placed pin coordinates from the placements of seven design blocks, including leon3mp

and netcard from [65]; theia, jpeg, aes and mpeg from [80]; and an ARM Cortex A53 [71].

The placements are obtained using two leading commercial place-and-route tools, Cadence

Innovus Implementation System v15.2 [75] and Synopsys IC Compiler L-2016.03-SP4 [82]

with foundry enablements at 28nm and 16nm. We also extract the placements of the DAC-2012
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Table 3.1: Notations.

Notation Meaning
p net degree (# pins of a signal net) (p≥ 2)
P a net (pointset), P = (x1,y1), ...,(xp,yp)

B(P) the area of the minimum bounding box of P
R(P) the area of the largest empty rectangle of P

RSMT (P) the rectilinear Steiner minimum tree over P
(H,W ) chip dimensions, i.e., height and width of the chip

AR aspect ratio (W/H) of the bounding box
R(P)/B(P) L-ness, the ratio of R(P) divided by B(P)

Table 3.2: Probability that any two points in a pointset share the same x- or y-coordinate.

p ICC/Innovus Capo ePlace
2 9.88% 7.48% 7.65%
3 10.98% 7.90% 7.46%
4 7.57% 6.84% 6.01%
5 8.03% 7.99% 6.32%
6 7.50% 7.69% 7.49%
7 7.45% 8.27% 5.28%
8 7.68% 4.86% 3.90%
9 8.48% 6.13% 4.37%

10 7.46% 4.35% 3.81%
11 6.78% 4.51% 3.59%
12 6.18% 4.27% 3.50%

benchmark suite [37] from two well-known academic placers, i.e., Capo [41] and ePlace [38].

These placements are collectively referred to as real pointsets in the rest of this chapter. Table 3.2

shows that the percentage of any two points in a real pointset sharing the same x-coordinate or

y-coordinate is less than 11%, supporting our assumption of distinct x- and y-coordinates.

We define L-ness of P as the ratio of R(P) to B(P), where R(P) is the area of the largest

empty (isothetic) rectangle that (i) is contained in the bounding box of P, (ii) contains one corner

of the bounding box of P, and (iii) contains no points in P. High R(P)/B(P) ratio corresponds to

large L-ness.

35



3.2.2 Probability that k Points Define the Bounding Box

A bounding box can be represented by four extreme coordinate values, i.e., xmin, xmax, ymin

and ymax. Given unique x- and y-coordinates, at most four points of a pointset can define the

pointset’s bounding box, where each of the points provides exactly one of the four extreme

coordinates. Further, at least two points define the bounding box, where each of the points

contains one extreme x-coordinate and one extreme y-coordinate. We use Pr(p,k) to denote the

probability that the bounding box of a pointset P (having cardinality p) is defined by k points

(k ∈ {2,3,4}).

For k = 2, assume that points p1 = (x1,y1) and p2 = (x2,y2) define the bounding box.

Then, x1 (resp. y1) must be xmin or xmax (resp. ymin or ymax) out of the p x-coordinates (resp.

y-coordinates), and x2 (resp. y2) can only be the other extreme x (resp. y)-coordinate out of p−1

x-coordinates (resp. y-coordinates). Thus, Equation (3.1) gives the probability Pr(p,2).

For k = 4, each of four points can define only one extreme coordinate of the bounding

box. Assume that these points are p1 = (xmin,¬(ymin∨ ymax)), p2 = (xmax,¬(ymin∨ ymax)), p3 =

(¬(xmin ∨ xmax),ymin), and p4 = (¬(xmin ∨ xmax),ymax). Then, the probability that four points

define the bounding box is as given in Equation (3.3). Supplemental equations using chain rules

to derive probabilities are given in Equations (3.4)–(3.7). For example, Pr(p1) is computed by

finding the probability that a point has the minimum x-coordinate and not an extreme y-coordinate.

These probabilities are each computed separately and are then multiplied together since they

are independent. The remaining probabilities in Equations (3.4)–(3.7) are computed in a similar

fashion.
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Table 3.3: Pr(p,k) for p ∈ [3,10] and k ∈ {2,3,4}.

p Pr(p,k = 2) Pr(p,k = 3) Pr(p,k = 4)
3 0.3333 0.6667 0.0000
4 0.1667 0.6667 0.1667
5 0.1000 0.6000 0.3000
6 0.0667 0.5333 0.4000
7 0.0476 0.4762 0.4762
8 0.0357 0.4286 0.5357
9 0.0278 0.3889 0.5833

10 0.0222 0.3556 0.6222

Pr(p,k = 2) =
(

p
2

)(2
p

)2( 1
p−1

)2
(3.1)

Pr(p,k = 3) = 1−Pr(p,k = 2)−Pr(p,k = 4) (3.2)

Pr(p,k = 4) = 4!
(

p
4

)
Pr(p1 p2 p3 p4)

= 4!
(

p
4

)
Pr(p1)Pr(p2|p1)Pr(p3|p1 p2)Pr(p4|p1 p2 p3)

=

(
p
4

)( 4!
(p2)(p−1)2

)
(3.3)

For the remaining case of k = 3, we can calculate the probability Pr(p,3) using Equa-

tion (3.2). Table 3.3 provides a lookup table for Pr(p,k) for k ∈ {2,3,4} and p ∈ [3,10].

Pr(p1) =
(1

p

)( p−2
p

)
(3.4)

Pr(p2|p1) =
( 1

p−1

)( p−3
p−1

)
(3.5)

Pr(p3|p1 · p2) =
( p−2

p−2

)( 1
p−2

)
(3.6)

Pr(p4|p1 · p2 · p3) =
( p−3

p−3

)( 1
p−3

)
(3.7)
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We use this probability in Algorithm 2 to determine the parameter k. Subsequently, we

use Algorithm 2 to create the real′ pointsets, as described in Section 3.4.

3.2.3 Independence of AR and R(P)/B(P)

To justify the experimental methodology used below, we prove the intuitive claim that

R(P)/B(P) is preserved when a 2D pointset P is “stretched” (by scaling of x-coordinates and of y-

coordinates) into a pointset P′ that has a different aspect ratio. We refer to this property of pointsets

as independence of AR and R(P)/B(P). We show this independence of AR and R(P)/B(P) by (i)

exhibiting an appropriate 1-1 correspondence between pointsets P with bounding box area B(P)

and pointsets P′ with bounding box area B(P′), then (ii) showing that the ratio R(P)/B(P) =

R(P′)/B(P′) is preserved by this correspondence. In Subsection 3.3.1, we measure R(P)/B(P)

without considering the effect of AR on L-ness of pointsets. Hence, we prove the independence

of R(P)/B(P) with AR below.

Fact 1. Scaling of x- and y-coordinates provides a (bidirectional) 1-1 mapping between pointsets

P having unit square bounding box B(P), and pointsets P′, with |P|= |P′| and bounding box B′

having an arbitrary aspect ratio.

Fact 1 is established as follows. Denote the width and height of B′ are w and h, respectively. We

obtain pointset P′ from P by scaling x- and y-coordinates of points in P by w and h, respectively.

As a result, the x- and y-coordinates of the bounding box edges of P′ are also scaled by w and h.

The inverse scaling procedure can be applied to restore any such P′ to the original P. The scaling

of coordinates thus provides a 1-1 correspondence between pointsets having the same cardinality

but different bounding box ARs.

Next, we say that the point (xi,yi) in P corresponds to a point (x′i,y
′
i) in P′ if (x′i,y

′
i) =

(w · xi,h · yi). A bounding box-edge of P analogously corresponds to a scaled bounding box-edge

of P′. For example, Figure 3.5(b) shows a pointset P′ obtained by scaling P (in Figure 3.5(a)) by

(w,h) = (w,1). From our definitions, we say that the point (xi,yi) in P corresponds to the point
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(x′i,y
′
i) in P′, and the edge x = xsp of P corresponds to the edge x = x′sp of P′.

The following Fact 2 holds for pointsets (i) P with its largest empty rectangle defined by

two edges of the bounding box, x = xsp and y = ysp, and two points, (x1,y1) and (x2,y2); and (ii)

P′, which is created by scaling the x- and y-coordinates of points in P by w and h, respectively.

Fact 2. Given P and P′, the edges and points that define R(P)/B(P) correspond to edges and

points that define R(P′)/B(P′).

Figure 3.5: The pointsets (a) P and (b) P′ with the largest empty rectangle colored green.

Fact 2 is established as follows. P contains p points, i.e.,

P = {(x1,y1),(x2,y2), · · · ,(xp,yp)}. Without loss of generality, we assume that the bounding

box of P has AR = 1, and we only scale points in pointset P in the x-direction by w (i.e.,

w > 0, h = 1) to obtain P′. P′ also contains p points, P′ = {(x′1,y1),(x′2,y2), · · · ,(x′p,yp)}, where

(x′j,y j) = (w · x j,y j) for k ∈ [1, p]. The following treats the case illustrated in Figure 3.5, namely,

the case with the empty rectangle at the lower-left corner of the bounding box, i.e., xsp < x1 < x2,

and ysp < y2 < y1. The other three cases are similarly analyzed. R(P) is defined as

R(P) = (x2− xsp) · (y1− ysp) (3.8)
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Assume toward a contradiction that the edges x = w · xsp, y = ysp, and the points (x′1,y1) and

(x′2,y2) do not form the largest empty rectangle of P′. Then, there must exist an empty rectangle

of P′ such that

R(P′) > w ·R(P) (3.9)

Suppose that the largest empty rectangle of P′ is defined by the edges w · xsp and ysp and

two points (x′m,ym) and (x′n,yn), with {n,m} 6= {1,2} and x′sp < x′m < x′n and ysp < yn < ym. Then,

R(P′) is calculated as

R(P′) = (x′n− x′sp) · (ym− ysp) (3.10)

= (w · xn−w · xsp) · (ym− ysp) (3.11)

= w · (xn− xsp) · (ym− ysp) (3.12)

According to the definition of R(P), (xn− xsp) · (ym− ysp)≤ R(P). Therefore,

R(P′)≤ w ·R(P) (3.13)

which contradicts Equation (3.9). This establishes Fact 2.

3.2.4 Efficient Calculation of R(P)

We now describe an efficient method to obtain R(P). Each of the four corners of the

bounding box may be the intersection of the two edges that form R(P). For simplicity, we only

describe our algorithm for the corner (xmin,ymin). The final result can be obtained by invoking the
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algorithm on each corner of the bounding box of P with small modifications and then returning

the largest value, at the cost of a constant-factor complexity increase.

Algorithm 3 describes the calculation of R(P). The algorithm begins with pointset P

sorted in ascending order of x-coordinates. Lines 1 and 2 perform initializations. In Lines 3

– 8, we check whether the current point has a smaller y-coordinate than the stored value of y0.

If so, the lower-left corner will form an empty rectangle, and we update the maximum known

rectangle area. The same procedure is followed to compute the largest empty rectangle at the

remaining corners. We step through the sorted list of points, check if each pair of points forms

an empty rectangle, and if so, update the maximum known rectangle area. The time complexity

of the algorithm is lower-bounded by the implied sorting step, which gives a Θ(p log p) time

complexity.

Algorithm 3 CalcRP (Assuming lower-left corner is selected)
Input: P with x-coordinates in ascending order
Output: R(P)

1: R(P) = 0
2: y0 = y1
3: for i = 2 to p do
4: if yi ≤ y0 then
5: R(P)←max(R(P),(xi− xmin) · (y0− ymin))
6: y0← yi
7: end if
8: end for
9: return R(P)

3.3 Real vs. Random Pointsets

In this section, we empirically demonstrate the significant difference in L-ness between

real and random pointsets. We then present a method for generating pointsets with prescribed

L-ness and aspect ratio.
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3.3.1 L-ness of Real vs. Random Pointsets

We experimentally compare the R(P)/B(P) distribution of 100K random pointsets with

the R(P)/B(P) distribution of real (placed net pins) pointsets. Figure 3.6 shows the distributions

of R(P)/B(P) in random and real pointsets. In each plot, the x-axis denotes the R(P)/B(P) ratio

and the y-axis denotes the fraction of nets for each R(P)/B(P) value. From the figure, we see that

the placements from commercial and academic placers result in pointsets with significantly larger

L-ness (i.e., larger R(P)/B(P) ratio) than random pointsets.3 We also observe that the qualitative

difference from random pointsets holds across academic and commercial placers.

We believe that this large L-ness arises due to the following reasons. Given a large chip

area and a relatively small bounding box (b0) area for any net n0, it is intuitive that the other nets

incident to the cells of net n0 have their bounding boxes outside b0. This causes the cells to get

pulled towards the boundary, and extend the boundaries of net n0 due to multiple inter-related

nets (i.e., intersecting hyperedges of the netlist). Further, low net degrees usually result in a

geometrically asymmetrical cell distribution, increasing the L-ness of a particular net.

To confirm the statistical difference for p∈ [3,12], we perform two tests: (i) bootstrapping

the mean with a 95% confidence interval [39], and (ii) Two-Sample Kolmogorov-Smirnov (KS)

Test [47]. The bootstrap test provides a 0.95 confidence interval on the average of R(P)/B(P)

for 10000 random pointsets. We compare the means of R(P)/B(P) values for real pointsets with

the 0.95 confidence interval. Figure 3.7 shows that the means of real pointsets do not lie within

the confidence intervals of random pointsets for any p ∈ [3,12]. Hence, real pointsets have a

statistically significant larger R(P)/B(P) compared to random pointsets.

The Two-Sample Kolmogorov-Smirnov (KS) Test [39] states that for a confidence interval

of 95%, we have a statistically significant difference if the KS statistic Dnm > 1.36. The KS

3We have separately extracted net pin locations from an advanced processor design from a leading semiconductor
company, and confirmed that the R(P)/B(P) distributions follow the same trend as in Figure 3.6.
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Figure 3.6: Distribution of R(P)/B(P) from (a) random pointsets, (b) ICC [82] and Innovus [75]
placements, (c) Capo [41] placements, and (d) ePlace [38] placements.

statistic is computed as

Dnm =
√

nm/(n+m) · sup|F(x)−G(x)| (3.14)

where n and m are sample sizes of random and real pointsets respectively, F and G are cumulative

distribution functions (CDFs) (with 100 bins of width 0.01) of R(P)/B(P) values of random

and real pointsets respectively. sup is the maximum distance between F and G for 0 ≤ x ≤ 1.

Table 3.4 shows the KS statistics. We see that Dnm > 1.36 for all random versus real pointsets,

again confirming the statistically significant difference between R(P)/B(P) distributions of

random and real pointsets.
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Figure 3.7: 95% confidence interval for R(P)/B(P) in random pointsets and mean R(P)/B(P)
for real pointsets.

3.3.2 Pointset Generation

Since random pointsets differ significantly from real placed pin locations, and since it is

challenging to obtain real placement data, there is a need to generate pointsets with prescribed L-

ness. Here, we present an algorithm (Algorithm 4) to generate a random pointset with prescribed

R(P)/B(P) (L-ness) and aspect ratio (AR). The inputs include #pins p, intended number of points

k that define the bounding box (see Section 3.2.2), intended L-ness range [RPBP−∆err,RPBP+

∆err], and aspect ratio AR. The output is a pointset P that satisfies the L-ness range constraint.

Lines 1 and 2 perform initializations. In Line 3, we generate k points on the bounding box.

Since R(P)/B(P) will monotonically decrease as we add one more point to an existing pointset,

the function getBBoxPts comprehends the desired L-ness range and always gives k points with

R(P)/B(P)≥ RPBP−∆err. These k points form a bounding box with area 1M x 1M and aspect

ratio AR. In Lines 5 – 9, we iteratively add one point with random location strictly inside the

bounding box and check L-ness. If we do not meet the L-ness lower bound, the last added point

is removed and reselected. The points are added with unique x- and y-coordinates, following
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Table 3.4: Dnm for p ∈ [3,12] using ICC/Innovus, Capo and ePlace placers.

p ICC/Innovus Capo ePlace
3 3.363 6.160 3.256
4 3.788 6.204 3.926
5 5.159 6.913 4.240
6 4.641 5.605 3.341
7 3.658 5.150 2.884
8 3.219 4.500 2.481
9 1.737 2.953 2.747

10 4.754 3.413 3.777
11 5.790 3.987 3.162
12 7.106 4.028 4.708

the assumption of points in general position in Section 3.2.1. In Lines 11 and 12, we return the

pointset satisfying the L-ness range constraint and discard the result otherwise. In our actual

implementation, we can reuse discarded pointsets when generating for a different L-ness range –

e.g., during the process of reproducing a distribution such as in Figure 3.6(b)-(d).

Algorithm 4 is qualitatively equivalent to randomly generating a pointset and checking

if the pointset is valid, i.e., having R(P)/B(P) ∈ [RPBP−∆err,RPBP+∆err]. If we assume

towards a contradiction that it does not, then at least one of the points we remove in Line 8

would contribute to a valid pointset. Since adding points within the bounding box cannot increase

the R(P)/B(P) value of a pointset, the points in this pointset cannot be part of a pointset with

R(P)/B(P) within the prescribed L-ness range. Hence, Algorithm 4 returns qualitatively the same

pointsets as repeated generation of a pointset and checking whether the pointset has R(P)/B(P)

within the prescribed L-ness range. However, Algorithm 2 is much more efficient, e.g., we can

produce 100K pointsets targeted to match the distribution of Figure 3.6(d) with p = 7 in 75.54

seconds with a 2.7 GHz Intel Xeon server.
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Algorithm 4 GenRandPointset
Input: p, k, RPBP, ∆err, AR
Output: P with R(P)/B(P) ∈ [RPBP−∆err,RPBP+∆err]

1: P←∅
2: R(P)/B(P)← 0
3: P← getBBoxPts(P,k,RPBP,∆err,AR)
4: while |P|< p do
5: P← AddPoint(P)
6: if calcRP(P)< RPBP−∆err then
7: RemovePoint(P)
8: end if
9: end while

10: if calcRP(P)≤ RPBP+∆err then
11: return P
12: else
13: return −1
14: end if

3.4 Implications for RSMT Heuristics

In this section, we perform experiments to analyze the impact of L-ness on the performance

(tree cost / wirelength estimation) of various RSMT heuristics. We first show how wirelength

changes with different L-ness. Then, we show the RSMT cost difference between random and

real pointsets.

3.4.1 Impact of L-ness on RSMT Heuristics

In this subsection, we study the change in wirelength with R(P)/B(P) (L-ness). We

generate 10K pointsets for each R(P)/B(P) from 0.2 to 0.8, with a step of 0.1 and ∆err = 0.02.

We use a fixed B(P) size of 1M×1M. We evaluate the wirelength cost of four heuristics: (i)

rectilinear MST implementation by Kahng et al. [48] using Prim’s algorithm, (ii) Prim-Dijkstra

(PD) [1] with α = 0.3 (PD 0.3) and with α = 1.0 (PD 1.0 constructs a shortest path tree, and is

equivalent to Dijkstra’s algorithm [6]), (iii) HVW [7] algorithm as a post-processing of PD 0.3

(HVW 0.3) and PD 1.0 (HVW 1.0), and (iv) FLUTE [33].

46



Figure 3.8 shows the wirelength values. The x-axis denotes the R(P)/B(P) ratio and

the y-axis represents the total wirelength for all 10K pointsets per each R(P)/B(P). Each row

of figures represents a particular value of AR = {1,2,4}; each column represents a value of

p = {4,5,7}. We see that wirelength decreases as R(P)/B(P) increases, indicating that we should

expect lower wirelength for real pointsets which tend to have larger R(P)/B(P) than random

pointsets. Also, difference in wirelength among heuristics decreases with increase in R(P)/B(P).

Although PD 0.3 and HVW 0.3 have different optimization objectives (i.e., radius and wirelength

balance) from FLUTE, wirelength follows the same trend with R(P)/B(P) for all heuristics.

These results suggest that assessments of cost or accuracy benefit versus runtime overhead when

using these heuristics may have been misguided by the use of random pointsets in experimental

studies, and that random pointsets might not give sufficient insight into the benefits of RSMT

heuristics. We also observe that crossovers between heuristics tend to decline as AR increases.

3.4.2 RSMT Cost on Real Pointsets

Previous works [1][7] use random pointsets to verify the accuracy of RSMT heuristics.

However, we reevaluate their accuracy and show their performance difference considering L-ness

in real pointsets. We first generate real’ pointsets with R(P)/B(P) and AR distributions of real

pointsets from academic and commercial placements, and show that our Algorithm 4 generates

statistically similar pointsets to real placements. We then use real’ pointsets to analyze the

accuracy of heuristic WL estimation.

To generate real’ pointsets, we extract the distributions of R(P)/B(P) and AR from real

pointsets for p ∈ [3,12] and use these distributions to create 10K real’ pointsets for each p. We

run FLUTE on all pointsets and perform the two-sample Kolmogorov-Smirnov test (KS) test

on the wirelength distributions with a 95% confidence interval, using 50 bins to generate the

CDFs. Table 3.5 shows that eight of nine values are smaller than the minimum Dnm value in

Table 3.4. This shows that real’ pointsets give a good representation of real pointsets for most
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cases. Figure 3.9 shows one case with a Kolmogorov-Smirnov failure. However, the probability

distributions of wirelengths from real’ and real pointset distributions are still similar in appearance.

Table 3.5: Dnm for wirelengths on real and real’ pointsets.

p 4 5 6 7 8 9 10 11 12
Dnm 1.189 1.063 1.402 1.788 1.690 1.621 1.026 1.086 1.601

We use the above real’ pointsets to evaluate the accuracy of each heuristics. Tables 3.6

and 3.7 report the errors of these heuristics versus FLUTE4, and compare the differences in errors

for real and random pointsets. A positive value in Table 3.6 means a larger wirelength is given

compared to FLUTE.

Table 3.7 reports the percentage difference for each heuristic between real and random

pointsets as Errorreal −Errorrandom. A negative value means a smaller error when using real

pointsets, and a positive value means a larger error, compared to using random pointsets. Hence,

Tables 3.6 and 3.7 show that the errors of heuristics HVW 0.3, RMST and PD 0.3 are overesti-

mated, whereas the errors of heuristics HVW 1.0 and PD 1.0 are underestimated. Since FLUTE is

the most accurate of these heuristics and wirelength can only be overestimated when constructing

spanning trees, all values in the tables are positive.

Table 3.7 can also be seen as a lookup table to improve the accuracy of existing RSMT cost

estimators. For a given heuristic, more accurate wirelength values can be obtained by subtracting

the errors reported in Table 3.7 from the wirelength of random pointsets.

3.5 An Improved WL Estimation Lookup Table

In this section, we present a lookup table (LUT) for improved wirelength estimation.

Previously, Caldwell et al. [40] constructed a lookup table indexed with p and AR. We build

upon this table and add R(P)/B(P) as a third parameter dimension for improved accuracy of

4Errors are calculated relative to FLUTE, since FLUTE is optimal for p≤ 9 and introduces on average 0.16%
RSMT error for p ∈ [10,17] [33].
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Table 3.6: Percent error of heuristics vs. FLUTE for random and real pointsets.

p
Percent error of heuristics vs. FLUTE on random pointsets
HVW 0.3 RMST PD 0.3 HVW 1.0 PD 1.0

4 1.93% 10.41% 12.35% 13.57% 44.05%
5 2.76% 11.15% 13.94% 16.14% 51.22%
6 3.38% 11.46% 14.96% 19.00% 56.94%
7 3.91% 11.52% 15.44% 21.08% 61.72%
8 4.47% 11.68% 16.02% 23.06% 65.29%
9 4.80% 11.77% 16.44% 24.72% 68.69%

10 5.07% 11.72% 16.71% 26.04% 71.06%
11 5.49% 11.80% 17.20% 27.34% 73.57%
12 5.57% 11.73% 17.24% 28.55% 75.81%

p
Percent error of heuristics vs. FLUTE on real pointsets

HVW 0.3 RMST PD 0.3 HVW 1.0 PD 1.0
4 1.54% 8.96% 10.43% 15.29% 50.04%
5 1.92% 9.03% 10.90% 18.09% 58.06%
6 2.35% 9.31% 11.64% 20.37% 63.56%
7 2.99% 9.86% 12.77% 22.52% 68.10%
8 3.37% 10.19% 13.42% 24.42% 72.17%
9 4.01% 10.75% 14.58% 26.05% 74.38%

10 3.93% 10.38% 14.18% 28.00% 78.88%
11 4.19% 10.46% 14.44% 29.78% 82.00%
12 4.57% 10.60% 15.05% 30.89% 83.70%

wirelength estimation, as shown in Section 3.4. We use FLUTE to obtain the RSMT wirelength

(see Footnote 4).

Table 3.8 shows a portion of our lookup table.5 In the table, we report three sets of values

for each p. The first row (W1) shows the FLUTE wirelength value by generating and averaging the

wirelength over 1000 pointsets with AR = {1,2,4}. These values are equivalent to the wirelength

values reported by Caldwell et al. [40]. The second row (W2) shows the FLUTE wirelength

with specific R(P)/B(P) = {0.2,0.4,0.6,0.8} (generated using Algorithm 4), averaged over 1000

pointsets. The third row (W3) is the percent error between W1 and W2, i.e., W2−W1
W1 ·100%. For

example, with p = 6 and AR = 1, we see that the W1 row contains the value 2.39; this is the

single value for estimated RSMT cost given by [40]. The W2 row contains four values, 2.71,

5The entire lookup table is available at http://vlsicad.ucsd.edu/˜sriram/Final_WL_estimate_LUT.htm
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Table 3.7: Difference in % error between heuristics and FLUTE for real and random pointsets.

p
Difference in % error between real and random pointsets
HVW 0.3 RMST PD 0.3 HVW 1.0 PD 1.0

4 -0.39% -1.45% -1.92% 1.72% 5.99%
5 -0.84% -2.12% -3.04% 1.95% 6.84%
6 -1.03% -2.15% -3.32% 1.37% 6.62%
7 -0.92% -1.66% -2.67% 1.44% 6.38%
8 -1.10% -1.49% -2.60% 1.36% 6.88%
9 -0.79% -1.02% -1.86% 1.33% 5.69%

10 -1.14% -1.34% -2.53% 1.96% 7.82%
11 -1.30% -1.34% -2.76% 2.44% 8.43%
12 -1.00% -1.13% -2.19% 2.34% 7.89%

2.37, 2.22 and 2.10; these are our estimated RSMT costs with R(P)/B(P) ratios of 0.2, 0.4, 0.6

and 0.8, respectively. The W3 row gives the four corresponding percentage differences between

the L-ness dependent estimates and the single estimate of [40]. We omit estimates for p ∈ [2,3]

since these RSMT costs are the half-perimeter wirelengths of the bounding boxes.

Runtime. We compare the runtime using different wirelength estimators: (i) FLUTE, (ii)

our LUT, and (iii) rectilinear MST (RMST) implementation by Kahng et al. [48] using Prim’s

algorithm.6 All algorithms are implemented using C and are executed on a 2.7 GHz Intel Xeon

server with 8 threads. We evaluate using 500K real and random pointsets. Table 3.9 shows that

our improved lookup table runs significantly faster than FLUTE for all values of p ∈ [2,12] and

faster than RMST except for p = 4. We believe that this significant speedup (∼10×), at the cost

of small loss of accuracy of WL estimation, can be beneficial in modern-day contexts that involve

very large designs, highly iterative methods, and a requirement for reduced tool turnaround times.

Accuracy. Table 3.10 reports the percent error, along with standard deviation and

maximum error in wirelength estimates compared to FLUTE, using our lookup table (LUT),

Caldwell LUT [40] and RMST implementation [48]. Percent error is calculated as Error =(WLheur−WLFLUT E
WLFLUT E

)
·100%. Our lookup table dominates that of [40] in all error metrics evaluated.

6We use an O(n2) implementation since it runs much faster than other O(n log n) algorithms for small p.
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Table 3.8: Wirelength lookup table using aspect ratio and R(P)/B(P).

AR 1 2 4
R(P)/B(P) 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

p=4
W1 2.14 2.25 2.60
W2 2.66 2.23 2.10 2.04 2.63 2.32 2.22 2.17 2.86 2.66 2.58 2.54
W3 24.37 4.24 -2.03 -4.51 16.89 3.31 -1.48 -3.77 9.93 2.20 -0.76 -2.24

p=5
W1 2.27 2.36 2.69
W2 2.66 2.30 2.16 2.08 2.63 2.39 2.27 2.20 2.86 2.71 2.63 2.58
W3 17.02 1.22 -4.80 -8.57 11.41 1.25 -3.67 -6.84 6.38 0.66 -2.12 -4.19

p=6
W1 2.39 2.48 2.78
W2 2.71 2.37 2.22 2.10 2.70 2.45 2.34 2.23 2.93 2.77 2.69 2.61
W3 13.58 -0.90 -7.21 -12.00 8.95 -1.13 -5.81 -10.28 5.39 -0.30 -3.17 -6.21

p=7
W1 2.52 2.59 2.87
W2 2.78 2.44 2.27 2.13 2.77 2.53 2.39 2.26 3.00 2.82 2.73 2.64
W3 10.13 -3.32 -9.84 -15.42 7.12 -2.38 -7.76 -12.70 4.56 -1.58 -4.73 -8.13

p=8
W1 2.63 2.69 2.96
W2 2.83 2.50 2.32 2.16 2.86 2.59 2.44 2.29 3.06 2.89 2.79 2.67
W3 7.57 -4.81 -11.62 -17.96 6.18 -3.72 -9.30 -15.01 3.50 -2.33 -5.86 -9.96

p=9
W1 2.73 2.81 3.03
W2 2.90 2.57 2.37 2.18 2.92 2.67 2.49 2.32 3.13 2.95 2.83 2.69
W3 6.35 -5.72 -13.07 -20.02 3.99 -5.14 -11.30 -17.51 3.34 -2.72 -6.49 -11.14

p=10
W1 2.84 2.91 3.13
W2 2.98 2.65 2.42 2.21 2.99 2.73 2.54 2.34 3.19 3.01 2.88 2.72
W3 4.77 -6.80 -14.68 -22.07 2.79 -6.24 -12.71 -19.53 1.99 -3.70 -8.10 -13.16

However, our improved lookup table does give a higher standard deviation and maximum absolute

error for higher values of p when compared to RMST. We note that the LUT errors reported in

Table 3.10 are the averages of absolute errors, whereas RMST error is always positive. Figure 3.10

shows error distributions for the LUT and RMST estimators for p = 9.

WL estimation for pointsets with p ∈ [2,3] using our LUT has no error. (In our studies,

68% of the nets in a 16nm implementation of ARM Cortex A53 have p = 2 or p = 3.) The

WL estimation error using our LUT for p ∈ [4,12] is 1−2% lower than the error using RMST

as an estimate. Thus, in terms of speed and accuracy, the new LUT provides a non-dominated

wirelength estimate.7

7For p ∈ [10,12] our LUT is approximately 10 times faster than FLUTE and twice as fast as RMST.
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Table 3.9: Execution time (seconds) for 0.5M pointsets with p ∈ [2,12].

p
Random pointsets Real pointsets

FLUTE Impr. LUT RMST FLUTE Impr. LUT RMST
2 0.051 0.003 0.012 0.050 0.003 0.012
3 0.185 0.004 0.023 0.254 0.006 0.040
4 0.229 0.047 0.045 0.295 0.065 0.050
5 0.262 0.060 0.061 0.240 0.061 0.063
6 0.299 0.077 0.095 0.328 0.116 0.109
7 0.352 0.093 0.135 0.318 0.089 0.130
8 0.431 0.111 0.173 0.368 0.104 0.171
9 0.576 0.127 0.216 0.492 0.119 0.223

10 1.192 0.146 0.258 1.248 0.134 0.259
11 1.761 0.164 0.303 1.241 0.152 0.314
12 1.804 0.184 0.378 1.607 0.166 0.360

3.6 Conclusion

In this chapter, we have given a formal definition of the concept of L-ness, that is, the

phenomenon that a net’s pin locations within a real placement tend to be clustered towards two

adjacent edges of the net’s bounding box. We have provided empirical data showing the extent to

which real pointsets have larger L-ness values than random pointsets. This data suggests at least

the possibility that previous usage of random pointsets may have led to inaccurate assessments of

RSMT heuristics and RSMT cost estimators. With this in mind, we describe a pointset generation

function which can produce artificial pointsets that are similar to real placed pointsets. We

furthermore present an improved lookup table for RSMT cost estimation that is sensitive to L-ness

of a pointset; its implementation gives a speed-accuracy tradeoff point between FLUTE [33] and

a fast rectilinear MST implementation [48].

Our ongoing and future works seek ways to exploit the L-ness attribute to achieve better

estimates of routed WL or FLUTE heuristic RSMT costs – e.g., after placement and without any

running of global/detailed routers. We are also exploring the direct optimization of an L-ness-

aware wirelength estimate during placement. A high-fidelity wirelength predictor, congestion-

and DRC-aware wirelength predictor, as well as hierarchical placement-based predictors are
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Table 3.10: Error for p ∈ [2,12] with real pointsets.

p
Absolute Error Std. Dev. of Abs. Error Max. Absolute Error

Impr. Cald- RMST Impr. Cald- RMST Impr. Cald- RMST
LUT well LUT well LUT well

3 0.00% 0.00% 6.13% 0.00% 0.00% 7.81% 0.00% 0.00% 33.31%
4 4.06% 5.61% 6.01% 3.62% 3.67% 6.49% 24.51% 28.19% 46.17%
5 4.47% 7.14% 6.20% 3.76% 4.48% 6.01% 24.94% 23.44% 42.73%
6 4.70% 8.07% 6.48% 3.95% 5.44% 5.66% 25.53% 25.24% 36.02%
7 4.93% 8.75% 6.82% 4.04% 6.41% 5.36% 28.20% 25.71% 34.60%
8 5.17% 9.85% 7.15% 4.21% 7.66% 5.14% 27.56% 31.46% 32.25%
9 5.28% 9.81% 7.73% 4.21% 7.88% 4.90% 30.95% 37.03% 32.13%
10 5.75% 11.38% 7.35% 4.69% 9.39% 4.76% 32.94% 42.16% 28.06%
11 6.00% 12.47% 7.14% 4.85% 10.37% 4.59% 37.01% 46.94% 27.46%
12 6.46% 12.62% 7.18% 5.32% 10.82% 4.58% 40.35% 52.94% 28.25%

also of interest. Other future directions include tree topology generation considering L-ness and

objectives such as timing or power, as well as comprehension of driver vs. sink pin locations.
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Figure 3.8: Change in wirelength with R(P)/B(P) for nets with AR = 1 (a, b, c) and AR = 4 (d,
e, f) for p ∈ {4,5,7}.
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Figure 3.9: WL distribution functions for (a) real and (b) real’ pointsets for p = 12.

Figure 3.10: Error distributions with (a) lookup table and (b) RMST estimators for p = 9.
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Chapter 4

Improving Model-Hardware Correlation

by Layer-Balancing Clock Trees

This chapter presents two methods for improving model-hardware correlation in the

back-end-of-line stack used for clock trees.

4.1 Introduction and Motivation

Manufacturing yield has been a major challenge in recent nodes, particularly for cost-

driven SoC products. Significant yield losses can result from inaccurate modeling of process

variations, and hence model-hardware correlation (MHC) is now a major focus for design and

technology enablement. A particular challenge is created by back-end-of-line (BEOL), i.e., metal

layer, variations that are not captured by modeling or signoff criteria. Such variations inevitably

exist because not all combinations of layer variations can be examined in signoff, and because

pessimism in signoff criteria harms design power, performance and area (PPA) as well as design

convergence (tapeout schedule). When such variations occur, imbalanced metal layer usage in

the clock paths of a launch-capture (LC) pair of flip-flops can result in hold violations in silicon,
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leading to decreased yields. This challenge is unlikely to ease in coming nodes, since (i) clock

paths and delay variations are dominated by wiring segments on layers that will not benefit

from new patterning (extreme ultraviolet, EUV) technologies, and (ii) metal variation worsens

due to the increased variety and tuning of layer geometries and adjacencies (e.g., in a foundry

7nm BEOL stack, a 64nm-pitch layer can be between similar layers, or on top of a 48nm- or

44nm-pitch layer, or under an 80nm-pitch layer, etc. [72]; see also [67]).

4.1.1 Benefit of Layer Balancing

In Figure 4.1(a), the flip-flops f1 and f2 have layer imbalance in their clock routes. D1,

D2 and D3 are different metal layers, and the numerical labels give respective lengths of each

metal segment. For the (ordered) LC pair ( f1, f2), the difference in the lengths of metal segments

on D1 and D2 can cause different delay variations in the clock paths, possibly leading to hold

violations. The modified tree in Figure 4.1(b) is more robust since both launch and capture paths

will experience similar insertion delay variations when manufacturing variation occurs.

Figure 4.1: Illustration of (a) metal layer imbalance for a launch-capture (LC) pair of flip-flops,
and (b) improved layer balance.

Our present work develops a new layer-balancing, engineering change order (ECO)

clock optimization to mitigate model-hardware miscorrelation-induced hold timing failure and

associated yield loss. Our optimization avoids costly increase in model guardbands, and reduces

the number of hold fixes (e.g., buffer insertions which harm PPA and design schedule, especially

for congested designs) that are needed when design robustness to model-hardware miscorrelation
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(MHM) is validated before tapeout. Improving the balance of layer usage across hold-critical

launch-capture pairs addresses the root cause of yield loss due to hold failures and – as we

demonstrate below – can be accomplished with negligible PPA or schedule impact.

4.1.2 Design Methodology Context

Today’s advanced hold signoff methodologies face severe challenges. As noted above,

standard BEOL signoff corners cannot capture all combinations of layer variations, and by their

nature do not capture model-hardware miscorrelation. P&R tools do not analyze, and therefore

cannot close, the design in light of individual layer variation impacts on clock paths (see also

Section 4.2).1 And, simply adding pessimism in the form of margin is too costly in terms of

product PPA [57].

A world-leading semiconductor/SoC company tackles this combination of challenges

today with a two-stage methodology (see Figure 4.2). In the first stage, traditional post-route

optimization achieves hold closure. Then, model-hardware miscorrelation is simulated to find the

set of LC pairs, denoted by Ph, that violate hold constraints under miscorrelation,2 by applying an

additional hold margin to the LC pairs in Ph, before performing another round of signoff STA and

ECO fixing. The additional hold margin is determined by modeling the additional layer variation

as a modified delay per unit length of wire, specific to each metal layer. The details of the hold

margin calculation can be found in Section 4.4.2.

At the semiconductor/SoC company, the additional hold margin typically exposes new,

“surprise” hold violations at approximately 2% of all flip-flops in the design. (Thus, the first-stage

conventional hold fix substantially reduces the scale of the hold closure problem: it removes from

consideration timing paths that have sufficient hold margins.) The “surprise” violations (which

1Applying resistance and capacitance derating factors is not straightforward when attempting to derate per metal
layer, as opposed to per net.

2I.e., this additional simulation captures the possibility of unrelated RC variations on the metal layers of interest.
It exposes scenarios where, e.g., one stage of register pipelining is vulnerable to an M4 wire resistance excursion,
while another stage is vulnerable to an M5 excursion.
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Figure 4.2: Two-stage methodology followed by a leading semiconductor company.

occur under model-hardware miscorrelation) must then be fixed using standard mechanisms such

as hold buffer insertion. The central goal of our work is to reduce the number of flip-flops at

which such hold violation “surprises”, and required hold fixes, occur.3

4.1.3 Contributions of This Work

Our work mitigates the above-described model-hardware miscorrelation and yield loss due

to hold failure, by balancing the metal layer usage of the clock routes to each hold-critical LC pair.

Importantly, given that leading P&R tools perform highly integrated co-optimizations of clock

routes, useful skews, datapaths and detailed routing, we must restrict our scope to “repair” of the

clock tree solution generated by a commercial EDA tool. That is, we achieve improved layer

3Particularly in highly congested, cost- and schedule-driven product designs, it is extremely desirable to avoid
addition of hold buffers. This is because even if the number of hold-violating endpoints is small, fixing them is not
easy. To our understanding, the first stage of “conventional” hold fixing (i.e., based on nominal BEOL signoff criteria),
often uses up the reserved area for hold-fixing buffers which was estimated as part of the design methodology. (This
step can take multiple weeks of schedule.) Then, the second-stage simulation of model-hardware miscorrelation
due to wire variation exposes the “surprise” hold violations. If there are not sufficient cell sites and routing area to
achieve the new hold fixes, additional weeks of schedule can be consumed.
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balance only by changing layer assignments and rerouting the affected clock tree wire segments.

Our optimization thus minimizes overhead and preserves convergence for methodologies based

on commercial EDA tools. Our main contributions are (i) we propose a linear program (LP) to

find the optimum layer usage and segment length for all LC pairs in a given skew group; (ii)

we develop a full methodology to realize the LP-generated solution as a layer-balanced clock

tree; and (iii) we show how the realized LP solution reduces variation between clock paths of

launch-capture flip-flops. Overall, our approach improves the layer balance between LC pairs by

14% while incurring only 0.2% clock wirelength and 0.08% clock power overheads.

The following sections of this chapter are organized as follows. Section 4.2 briefly

summarizes related works. Section 4.3 formally states our layer-balancing ECO clock routing

problem, and the commercial EDA tool/flow context for our optimization. Section 4.4 describes

our experimental setup and results, and we conclude in Section 4.6.

4.2 Related Work

Synthesis of low-skew, balanced clock trees has been studied by dozens of authors in

both academia and industry, as exemplified by [51][53][54][56][58]. The clock tree synthesis

(CTS) literature is broadly reviewed in Chapters 42 and 43 of [50]. CTS has been studied in the

3D IC context, e.g., [60] balances clock tree skews across different thermal profiles. Non-tree

constructions such as [66] and [68] propose techniques to create a skew-balanced clock tree and

reduce variations by link-based buffer insertion. More generally, [69] and others have studied the

use of clock meshes to reduce variations across the clock network. Mesh topologies can reduce

skew between launch-capture flip-flops, but incur higher dynamic power and reduced tunability

of launch-capture skews. Hence, tree constructions are still dominant, especially in cost- and

power-driven mobile SoCs at advanced nodes.

The problem of variation in the metal layers used for clock routing has been understood
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for decades. For example, Liu et al. [59] note the impact of metal variations on clock skew,

and [61] modify the DME algorithm [51] to achieve clock topologies that are more robust to

variation. The well-known ISPD contests [78] of 2009-2010 acknowledge metal variation in their

respective problem formulations. Such works are complemented by variation-aware interconnect

analysis approaches, e.g., [70] models clock skew as a function of device, interconnect, and

system parameter variations. However, we are aware of only limited previous literature that

directly attacks a layer-balancing formulation as we do here. Agnihotri et al. [49] propose a

method to achieve specified routing utilizations on different metal layers by assigning costs to

layers. Carothers et al. [52] propose a method for layer-balancing of nets on a printed circuit

board (PCB). They perform redundant routing on multiple layers and iteratively remove routes to

achieve a layer-balanced routing solution. The layer-balancing formulation that we study is new,

particularly in light of its ECO and hold failure-motivated context.

There is an obvious tight coupling between clock network design (which defines clock

paths to flip-flops) and datapath design (which defines minimum- and maximum-delay combina-

tional paths between each sequentially-adjacent pair of launch and capture flip-flops). Especially

as design tools must contribute more to power, performance and area (PPA) improvements in

advanced nodes, the leading P&R tools cited by [77], including those of [73][74][79][81], have

all seen tight integration of clock delivery, datapath logic, and design closure optimizations.

Rationales for this tight integration are detailed in, e.g., [55].

This tight integration of clock distribution and skew optimization with datapath optimiza-

tion presents a challenge for physical design teams: it is difficult to exit and re-enter the P&R

tool in order to improve the balance of CTS metal layer usage on hold-critical LC pairs (i.e.,

for robustness to yet-unknown model-hardware miscorrelations). Yet, as noted above, simple

guardbanding of metal parasitics (e.g., in the RC models used within the design closure loop)

would incur unacceptable PPA overheads. For these reasons, we must address the layer-balancing

requirement in an ECO context, without disrupting the P&R tool’s high-quality co-optimization
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of clock distribution and datapaths.

Last, in light of our use of linear programming in this work, we note that Oh, Pyo

and Pedram [62][63][64] have previously used linear programming to construct bounded-delay

routing trees. Our formulation, described in the next section, differs in that it aims to minimize

layer imbalance for each LC pair. Furthermore, our LP solution gives both layer information, as

well as locations of Steiner points and buffers.

4.3 Our Approach

In this section, we first describe the overall flow of our optimization. Then, we propose a

linear programming (LP)-based optimization for layer balancing of clock trees. Last, we show

our methodology to realize a well-formed clock tree routing according to our LP solution.

4.3.1 Overall Flow

Figure 4.3 shows the overall flow of our optimization. Conventional physical implementa-

tion performs placement, CTS, post-CTS optimization, routing and post-routing optimization in

sequence. We insert our layer balancing clock tree modifications between CTS and post-CTS

optimization, as follows. We first extract the clock tree topology and perform the LP optimization.

We then realize the clock tree according to the LP solution and the methodologies described in

Section 4.3.3. Given the new, layer-balanced clock tree, we go back to the conventional flow until

we get the post-routing optimized design. The evaluation method is detailed in Section 4.4.2.

4.3.2 LP Formulation

The notations we use in our work are given in Table 4.1. Figure 4.4 shows a clock tree

with two LC pairs ( f1, f2) and ( f2, f3). Specifically, flip-flop f2 is both on a launch path and
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Figure 4.3: Our flow.

a capture path, hence layer balancing needs to consider both in a proper way. We define layer

imbalance (LI), total imbalance (TI) and maximum imbalance (MI) for a LC pair as follows.

Layer Imbalance. For a critical LC pair, for a specific metal layer j, layer imbalance (LI) is the

absolute difference in routed wirelength on metal layer j between launch and capture clock paths.

Total Imbalance. For a critical LC pair, total imbalance (TI) is the sum of layer imbalance across

all metal layers for clock tree routing.

Maximum Imbalance. For a critical LC pair, maximum imbalance (MI) is the maximum of

layer imbalance across all metal layers for clock tree routing.

Layer Balancing Problem (LBP). Given a fixed routing tree topology and fixed flip-flops,

relocate Steiner points and buffers, and reroute the clock tree to minimize the weighted sum of

total and maximum imbalance for all critical LC pairs.
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Table 4.1: Notations.

Notation Meaning
V set of n+1 vertices in the clock tree, V = {v0, ...v f ,v f+1, ...,vn}
v0 the root of the clock tree
f number of flip-flops (FFs) in the design

ek edge between adjacent vertices
Pi,i′ set of clock tree edges on the unique path from vi to vi′ .

LCA(i, i′) lowest common ancestor (vertex) for (vi,vi′ ).
SLC set of critical LC pairs (vi,v′i)

m j(ek) total routed wirelength for edge ek on metal layer j,
1≤ j ≤ |M|, |M| is the total number of clock routing layers

α weighting parameter, (0≤ α≤ 1)
BL, BU lower and upper bounds on clock path length

BD upper bound on displacement of each vertex vi
plenx(i, i′) sum of arc length (x direction) from vi to vi′

xi, yi the x- and y-coordinates of vi
xi0 , yi0 the initial values of the x- and y-coordinates of vi

distx(i, i′) xi− xi′ (can be negative)
Dii′ total displacement of vertices on the unique path from vi to vi′

Ph set of LC pairs with hold violation due to model-hardware miscorrelation

Minimize ∑
∀(vi,v′i)∈SLC

T Iii′+α ·MIii′+β ·Dii′ (4.1)

where T Iii′ is the total imbalance for critical LC pair (vi,v′i), MIii′ is the maximum imbalance for

critical LC pair (vi,v′i) and Dii′ is the total displacement of vertices in the launch-capture paths of

critical LC pair (vi,v′i). α and β are weighting factors that we study in Section 4.4.3. We include

the total displacement in the objective function to minimize the disruption to the initial clock tree,

since the insertion delay, skew and congestion are all comprehended by the “black-box” tool.

The constraints used in our formulation are as follows. Constraints C5 to C10 are given

for x directions, and should be applied to y directions accordingly.
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Figure 4.4: Metal layer imbalance among multiple launch-capture pairs.

C0: LI j,ii′ = | ∑
ek∈pii†

m j(ek)− ∑
ek′∈pi′i†

m j(ek′)|, vi† = LCA(i, i′) (4.2)

C1: T Iii′ = ∑
j

LI j,ii′ (4.3)

C2: MIii′ = max
j

LI j,ii′ (4.4)

C3: ∀ j,k m j(ek)≥ 0 (4.5)

C4: BLi ≤ plenx(0, i)+ pleny(0, i)≤ BUi, ∀i ∈ (0, ..., f ] (4.6)

C5: BLii′ ≤ plenx(i, i′)≤ BUii′, ∀(i, i′) (4.7)

C6: − plenx(i, i′)≤ distx(i, i′)≤ plenx(i, i′), ∀(i, i′) (4.8)

C7: plenx(i, i′) = ∑
Mx

∑
ek∈Pii′

m j(ek), ∀(i, i′) (4.9)

C8: distx(i, i′) = xi− xi′, ∀(i, i′) (4.10)

C9: BD≤ xi− xi0 ≤ BD, ∀i ∈ [ f +1, ...,n) (4.11)

C10: Dii′ = ∑x j−∑x j0, ∀i, i
′ ∈ (0, ..., f ],∀ j ∈ [ f +1, ...,n) (4.12)
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C0 is layer imbalance for a LC pair on a particular layer. C1 is total layer imbalance for a

LC pair. C2 is maximum layer imbalance for a LC pair among all layers. C3 is routing segment

length constraint. C4 is total linear delay constraint. C5 is arc length constraint, e.g., for each

arc, we allow the new total arc length to be within 95% to 105% of original arc length. C6 is

feasibility constraint, i.e., distance between each pair of connected vertices should be smaller

than its arc length. C7 calculates the arc length. C8 calculates the distance between each pair of

vertices. C9 is the bounds for the coordinate of movable vertices, i.e., Steiner points and buffer

locations. min(i) and max(i) determine the maximum allowed coordinate range for each vertex,

e.g., no more than 5µm from its original location. C10 is the total displacement for all vertices on

path (i, i′). We note that xi where i ∈ (0, ..., f ] is a known, fixed coordinate. However, xi where

i ∈ [ f +1, ...,n) is unknown, and is a variable in LP to be solved.

By solving LP, we can obtain: (i) m j(ek), and (ii) xi and yi. Thus, unlike [62][63][64]

where we need to use deferred-merge embedding (DME) to determine Steiner points and buffer

locations, we can get these locations directly from the LP solution. Also, by specifying C5 and

C9 according to the original placement and routing solution, we can ensure the feasibility of LP

since the original CTS as input is always a feasible solution.

4.3.3 Routed Clock Tree Realization

Given the arc length and vertex locations from an LP solution, we modify the clock tree

accordingly, using the following steps:

1. We rip up the clock routes with changes in vertex locations or arc lengths.

2. For all vertices with location changes:

• We move all segments incident to the vertex to the new vertex location using internal

tool commands. We then “complete” the routes using ECO routing commands in the

commercial tool.
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• For each arc incident at the moved vertex, if the arc length (obtained from the LP

solution) is longer than the completed route, we create U-detours to achieve the

required arc length. Figure 4.5 illustrates the insertion of U-detours, with detour

lengths (increase) of ∆y in vertical direction and ∆x in horizontal direction. For

each horizontal and vertical detour in the arc, we choose a segment S, which is

perpendicular to the direction of increase, to make a “cut” and insert a detour. This

segment is chosen greedily according to the order of segments stored in the tool

internal database, as long as it has a minimum length of 0.4µm (this minimum length

requirement is added to avoid cut spacing violations between the vias added in the

U-detour). We then insert U-detours by (i) cutting the segment S at 1/3rd and 2/3rd

lengths from the lower left corner of the segment4, (ii) removing the portion of wire

between the two cuts, and (iii) then adding a “U” shape using metal segments on the

required layer. We always apply upper or right U-detours (as shown in Figure 4.5),

and we skip the arc if no legal5 U-detours can be made.

3. For all vertices without location changes:

• If there is redistribution of lengths between layers in a particular direction (horizontal

or vertical), layer swap is performed for the required metal segment length. The

segment to swap be two layers down / up the required layer, with a length equal or

larger than the required length, and is chosen greedily based on the order of segments

stored in the tool database. If segment length is longer than the required length, we

cut the segment into three subsegments. The middle segment length is equal to the

required length, with the remaining two segments being of equal length. We round

the segment lengths to ensure on-grid routing, and swap the middle segment to the

required layer with via insertions. We skip the arc if no legal swaps can be made.

4All wire edits made are snapped to the routing grid using tool internal settings to ensure on-track routing.
5We only check for and avoid shorts.

67



• If there is an increase in length of the arc for a single or multiple metal layers,

U−detours are added for each increase/layer, as described above.

4. These modified segments are set with a “fixed” attribute in all of the subsequent P&R

stages. Any DRCs created by our clock tree realization method are handled by running

ECO routing commands after all modifications are completed.

Figure 4.5: Illustration of U-detours: (a) original route without detour; and (b) route modifica-
tion with detour length of ∆y in vertical layer, and detour length of ∆x in horizontal layer.

4.4 Experimental Setup, Metric and Results

We now present our experimental setup, evaluation metric, and results.

4.4.1 Experimental Setup

Table 4.2 lists the designs used in our experiments and evaluations, and reports the

design block, #instances, #flip-flops, clock period, placement utilization and clock wirelength
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of each design.6 We create placements with low utilizations to generate clock trees with large

WL, to model large clock trees in commercial SoC designs. We implement these testcases in a

commercial foundry 14nm technology with a 9-track cell library and an 11-metal layer stack.

Logic synthesis, and P&R flow are performed with 2016 and 2017 releases of industry-leading

tools from major EDA vendors, respectively. These vendors have instructed us to not give more

specific information regarding tools/commands that we use. Our code is written in Tcl, and runs

on top of the clock-routed P&R tool database. The experiments are performed with 8 threads on

a 2.7GHz Intel Xeon server.

Table 4.2: Testcases.

Testcase #Insts #FFs Clk. Per. Util ClkWL
THEIA [80] I 154K 13K 0.7 ns 7% 75746 µm
THEIA [80] II 154K 13K 0.7 ns 52% 33522 µm

LEON3MP [65] 378K 108K 2.0 ns 32% 338900 µm

In our experiments, we guide the clock tree generated by the commercial P&R tool to be

routed in layers M5, M6 and M7, with only pin accesses going below to reach cell pin access layer.

Layers M5 and M7 are vertical routing layers, and M6 is a horizontal routing layer. This reflects

an industrial design methodology, where trunk-and-branches topologies and the use of higher

metal layers help achieve low insertion delays. To set up the LP for layer balance improvement

across multiple hold-critical paths, we extract lengths and layer information of each segment in

the clock tree. For each LC pair, we gather layer distributions of each arc ek in the clock paths

and annotate each vertex vi. We also gather initial positions of the vertices. We then construct

the LP objective function and constraints. We use CPLEX v12.63 [76] as our LP solver. The Tcl

script calls CPLEX internally and a solution file is written out. The Tcl script then parses the

solution file, compares the lengths of arc and locations of vertices with the initial clock tree, and

implements changes to the clock tree. Our code takes 8 minutes for the entire flow (i.e., clock tree

extraction, LP and realization of LP solution) on a design with 154K instances and 13K flip-flops.

6THEIA I and II represent the same design with different placement densities.
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4.4.2 Evaluation Metrics

Effectiveness of our layer-balancing ECO optimization is ultimately measured by how

well it reduces the hold violation “surprises” discussed in Section 4.1. As noted above, saving

these additional hold violations will result in better yield, a reduced number of hold buffers

needed during final design closure steps, and improved design schedule. Our metrics of interest is

evaluated as follows.

Hold Margin for MHM modeling. We calculate additional hold margins to expose the MHM-

induced hold violations. The hold margin is calculated as follows. The increment of wire delay

δ j for a given metal segment in layer j is calculated as

δ j = τ j ·λ j (4.13)

where τ j is the nominal wire delay per unit length of metal in layer j, and λ j is the metal segment

length. If layer j is impacted due to variation, then we calculate the derated wire delay τ′j per

unit length by applying a blanket derate σ j to τ j, as shown in Equation (4.14). We then obtain

the derated increment of wire delay δ′j. We obtain the difference in wire delays, ∆ j, according to

Equation (4.15).

τ
′
j = τ j ·σ j (4.14)

∆ j = δ
′
j−δ j = λ j · (τ′j− τ j) (4.15)

If ∆Lwire, ∆Cwire and ∆Dwire denote the change in wire delays in the launch, capture and

data paths respectively, the change in hold margin ∆Thold for an LC pair is calculated as

∆Thold = ∆Lwire +∆Dwire−∆Cwire (4.16)

= ∑
1≤ j≤l

∆ j,launch + ∑
1≤ j≤l

∆ j,data− ∑
1≤ j≤l

∆ j,capture (4.17)
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This additional margin is then applied to all paths which have clock routes on layers susceptible

to variation.

Evaluation. Our metrics are then evaluated as follows.

1. We finalize physical implementation using the tool-generated clock tree, and the flow on

the left side of Figure 4.2. We apply STA (left-most path in Figure 4.2) to calculate the

total number of hold violations (H1), and total negative slack (T NS1) at post-route stage.

2. We apply deratings for specific metal layers of interest (e.g., M6 or M7) using Equa-

tions (4.13) - (4.17), as indicated by the red box in Figure 4.2. We then again apply STA to

calculate the total number of hold violations (H2), and total negative slack (T NS2). The

number of hold violations due to model-hardware miscorrelation is Hi = H2−H1, and

the set of LC pairs with hold violations is Ph. The degradation in TNS due to MHM is

T NSi = T NS2−T NS1.

3. In our ECO flow, shown in the green boxes of Figure 4.2, we layer-balance the clock nets

of the LC pairs in Ph, and detail-route these modifications before continuing the physical

implementation flow with our optimized, layer-balanced clock tree.

4. We perform STA and calculate the number of hold violations (H3), and total negative slack

(T NS3) at post-route stage.

5. We apply deratings for specific metal layers of interest (e.g., M6 or M7) using Equa-

tions (4.13) - (4.17), and calculate total number of hold violations (H4), and total negative

slack (T NS4). Again, the number of hold violations due to clock MHM is H f = H4−H3.

The degradation in TNS due to MHM is T NS f = T NS4−T NS3.

6. We evaluate the benefit of our layer balancing using Hi, H f , T NSi and T NS f .
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4.4.3 Results

In this section, we analyze the improvement in layer balance with varying parameters, and

show hold violations due to our clock tree modifications with regard to our evaluation metric.

Sensitivity to Parameters. We investigate the sensitivity of layer balance to different optimiza-

tion parameters, and choose appropriate parameter values for our experiments. We sweep the

following parameters: (1) maximum imbalance weighting factor α, (2) total displacement weight-

ing factor β, (3) maximum vertex displacement bound (BD) and (4) upper bound on clock path

length increase (BU , normalized).

Table 4.3 shows the normalized layer imbalance (and maximum imbalance) improvement

per LC pair, on M5, M6 and M7 layers as we sweep α from 0 to 15%. For each LC pair, layer

imbalance (LI) is the absolute difference in routed wirelength between launch and capture clock

paths. From Table 4.3, we see that layer imbalance improves around 14/14/11% on average for

each LC pair on M5/M6/M7 layers, respectively. Maximum imbalance improves slightly as α

increases. Since α does not affect the results much, we use α = 0.02 (2%) arbitrarily for our

experiments.

Table 4.4 shows the layer balance improvements with different values of β, the weighting

factor for vertex displacement. We see that large β restricts the vertex movement and has a

negative impact on layer balance improvement. β > 1 prohibits all vertex movement and results

in around 4% less layer balance improvement. Hence, we use β = 0.01 for our experiments.

Table 4.5 shows the effect of the vertex displacement bound BD on normalized layer

imbalance improvement per LC pair, #vertices moved, and total vertex displacement. We see that

layer imbalance improves by up to 4% on M6 and M7 by enabling vertex movement. We also see

that large BD does not improve the layer balance significantly. In lieu of minimum perturbation

to the original clock tree solution, we use BD = 5µm for our experiments. In our studies, we also

find that buffer movement does not change the layer balance in any significant way (e.g., allowing

buffer movement results in only 4 clock tree buffers being moved and 0.04 µm improvement in
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average layer imbalance per LC pair), and is disruptive to the detailed route of the initial CTS

solution. Therefore, we allow only the movement of Steiner points, while keeping the buffer

location fixed in our experiments.

Table 4.6 shows the sensitivity of layer balance to different values of BU . A larger

BU = 1.20 results in more than 6× layer balance improvement than BU = 1.03, but also increases

the average wirelength per clock path by up to 4.45%. Since increased clock WLs lead to higher

capacitances and higher clock power, we use BU = 1.10 for our experiments.

Table 4.3: Sensitivity to α.

α
Norm. LI per layer Norm. MI per layer

M5 M6 M7 M5 M6 M7
0.00 -14.27% -14.04% -11.51% -5.16% -11.39% -7.02%
0.01 -14.36% -14.02% -11.51% -5.16% -11.42% -7.02%
0.02 -14.36% -14.02% -11.51% -5.16% -11.42% -7.02%
0.05 -14.36% -13.94% -11.49% -5.16% -11.85% -7.02%
0.10 -14.36% -13.77% -11.49% -5.16% -11.95% -7.02%
0.15 -14.36% -13.77% -11.46% -5.16% -11.92% -7.02%

Table 4.4: Sensitivity to β.

β
Norm. LI per layer Vertex Disp.

M5 M6 M7 # Dist (µm)
0.01 -14.36% -14.02% -11.51% 236 258
0.1 -14.52% -11.47% -8.76% 74 71
1 -13.63% -9.77% -6.82% 0 0
10 -13.63% -9.77% -6.82% 0 0

100 -13.63% -9.77% -6.82% 0 0

Table 4.5: Sensitivity to BD.

BD
Norm. LI per layer Vertex Disp.

M5 M6 M7 # Dist (µm)
0 -13.63% -9.77% -6.82% 0 0
3 -14.36% -13.94% -11.31% 234 237
5 -14.36% -14.02% -11.51% 236 258

10 -14.36% -14.02% -11.56% 236 265
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Table 4.6: Sensitivity to BU .

BU
Norm. LI per layer Avg. WL incr.

M5 M6 M7 per LC pair (µm, %)
1.03 -4.38% -4.56% -3.85% 2.72 (+0.52%)
1.05 -7.30% -7.30% -6.10% 5.06 (+0.96%)
1.10 -14.36% -14.02% -11.51% 11.86 (+2.25%)
1.20 -27.58% -25.95% -20.84% 23.42 (+4.45%)

Table 4.7: Experimental results on evaluation metrics.

Testcase σ j
M5 derated M6 derated M7 derated

Hi H f (∆%) T NSi T NS f (∆%) Hi H f (∆%) T NSi T NS f (∆%) Hi H f (∆%) T NSi T NS f (∆%)

THEIA I

0.05 0 0 0 0 30 29 (-3.33%) -0.651 -0.624 (-4.17%) 85 92 (+8.24%) -1.806 -1.739 (-3.73%)
0.10 1 1 ( 0%) -0.002 -0.006 ( +248%) 202 190 (-5.94%) -6.746 -6.798 (+0.78%) 199 214 (+7.54%) -10.32 -11.27 (+9.19%)
0.20 14 15 (+7.14%) -0.156 -0.173 (+10.4%) 502 493 (-1.79%) -35.45 -32.90 (-7.22%) 522 515 (-1.34%) -47.81 -48.63 (+1.72%)
0.30 62 63 (+1.61%) -0.932 -0.915 (+1.91%) 783 793 (-1.28%) -78.69 -72.80 (-7.38%) 737 785 (+6.51%) -100.0 -101.7 (+1.74%)

THEIA II

0.05 0 0 0 0 0 4 0 -0.024 2 1 (-50.0%) -0.037 -0.006 (-84.3%)
0.10 0 0 0 0 29 17 (-41.4%) -0.250 -0.444 (+77.7%) 32 7 (-78.1%) -0.671 -0.147 (-78.1%)
0.20 0 1 0 -0.045 142 84 (-40.8%) -4.892 -3.548 (-27.5%) 81 103 (-27.2%) -4.243 -2.691 (-36.6%)
0.30 0 7 0 -0.112 312 175 (-43.9%) -14.97 -9.946 (-33.6%) 170 200 (-17.7%) -10.19 -8.372 (-17.8%)

LEON3MP

0.05 0 0 0 0 935 911 (-2.57%) -34.41 -30.26 (-12.1%) 1083 1072 (-1.02%) -35.24 -32.36 (-8.18%)
0.10 0 0 0 0 2141 1994 (-6.87%) -134.7 -123.6 (-8.28%) 2623 2575 (-1.83%) -156.1 -147.3 (-5.65%)
0.20 2 3 (+50.0%) -0.002 -0.018 ( +862%) 4221 4160 (-1.45%) -414.3 -388.5 (-6.23%) 4526 4417 (-2.41%) -493.5 -469.4 (-4.89%)
0.30 21 42 ( +100%) -0.122 -0.300 ( +145%) 6690 6639 (-0.76%) -749.7 -711.7 (-5.08%) 6527 6426 (-1.55%) -883.8 -842.2 (-4.70%)

Evaluation results. Table 4.8 shows the layer balance improvement for our testcases with the

parameters chosen above. We achieve up to 14% improvement in layer balance (averaged over all

LC pairs), with less than 0.5% increase in overall clock tree WL.

Then we perform timing analysis (with and without derates) to study the improvement in

hold violations. Table 4.7 reports the hold violations at different stages of our analysis flow, as

described in Section 4.4.2. We evaluate the change in number of hold violations and hold TNS

(Hi, H f and T NSi, T NS f ) as we derate all metal segments of a particular metal layer j by σ j. We

see that the number of hold violations saved differs with different derating and that there is no

particular trend with layer balance improvement. Unfortunately, Table 4.7 shows that our present

realization of the clock tree modifications in the P&R tool do not yet preserve the benefits of a

better layer-balanced clock tree. Even though our LP gives us a better, globally layer-balanced

clock tree, the various internal optimization steps performed by the P&R tool mask the benefits.

Thus, when the LP solution is realized in DRC-clean final routing, we are unable to consistently

save hold violations for all our experiments.
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Table 4.8: Normalized layer balance improvement for all testcases.

Testcase
Norm. LI per layer Avg. clock tree WL incr.

M5 M6 M7 per path (µm)
THIEA I -14.36% -14% -11.5% 0.16%
THIEA II -14.6% -15.9% -18.3% 0.50%

LEON3MP -13.52% -13.1% -10.8% 0.43%

4.5 Feedback-based Methods for Better Yield

As seen above, layer balancing has little impact when restricted, but is disruptive when

not restricted. We make the following observations.

• Layer balancing is performed after CTS, but the subsequent optimization and signal routing

stages are not layer-balance-aware. The rest of the P&R steps disrupt the impact of layer

balancing and hence, the LP solution is unable to consistently save all the MHM hold

violations.

• Small tolerance factors (e.g., BU) limit the extent of layer balance, and have little impact

on the MHM violations. Significant improvement in balance between LC paths requires

high tolerance on wirelength increase, which leads to significant increase in clock WL and

power.

Hence, we evaluate two feedback-based methodologies to reduce the number of MHM-

induced hold violations. After executing the “Conventional Flow” shown in Figure 4.3, we obtain

the number of MHM violations and their negative slacks. These slacks are fed back to earlier

stages in the design flow as hold margins, and the subsequent stages of optimization target these

hold violations.

4.5.1 Hold Margin Calculation

To analyze the MHM hold violations, we follow the same steps as described in Sec-

tion 4.4.2. However, instead of applying derates for an individual metal layer, we apply derates
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for all metal layers of interest (M4 to M8). For each LC pair, we choose the metal layer derate

with the most negative slack and set this slack as the hold margin for that register as the end point.

Figure 4.6: The big loop.

4.5.2 Experiments and Results

We feed the hold margins back at two different stages of the SP&R flow: (i) at the

post-synthesis stage and (ii) at the post-route stage. We call these the big loop and the small loop,

respectively. Figure 4.6 shows the steps in the two methodologies. After the hold margins are fed

back, the remaining stages of the SP&R flow are executed once more and the derating analysis

described in Section 4.4.2 is performed.

Table 4.9 shows the results obtained with the big and the small loops. The first row for

each design, “Base”, reports the values obtained at the end of hold-fixing from a single SP&R

run. The second row, “Big Loop”, reports the values after following the big loop methodology

and the third row, “Small Loop”, reports the values from the small loop methodology. All values
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Table 4.9: Results from big loop experiments.

Testcase Technique
Hold
WNS

Hold
TNS #Violations

Total
Power

Std. Cell
Area

Buffer &
Inverter Area

(ns) (ns) (mW) (um2) (um2)

THEIA I
Base -0.208 -3.403 35 59.89 47594 3793

Big Loop 0 0 0 59.91 47645 3733
Small Loop 0 0 0 60.32 47729 3877

THEIA II
Base -0.343 -5.97 99 68.59 49406 4235

Big Loop 0 0 0 68.54 49423 4237
Small Loop -0.003 -0.004 2 69.53 49742 4478

LEON3MP
Base -0.143 -19.983 1031 456.0 186374 16436

Big Loop 0 0 0 458.21 186616 16610
Small Loop -0.024 -0.973 47 476.42 205128 34616

reported are after applying the MHM derating.

We see that the big loop methodology solves all MHM hold violations with minimal

increase in power and area, but with the added runtime penalty of running the entire P&R flow

again. The small loop methodology, however, is unable to resolve all the violations for some

designs, with significant increase in buffer area (and consequently, power). Also, the small loop

will result in worse timing, power and area when the design is congested and has high utilization.

Hence, the big loop methodology is a better strategy for improved PPA, providing significant

guardbanding against MHM violations with minimal power and area overheads.

4.6 Conclusion

This work shows that improving the layer balance of clock routes can reduce inter-layer

variation significantly, leading to improved yields. Our linear program-based approach improves

the layer balance by up to 18% on average, with minimal clock tree WL and clock power

overheads. However, our attempts to realize the layer balancing improvements in a commercial

tool do not yet show the full benefits of our LP. Guardbanding each endpoint with hold margins

throughout the SP&R flow provided a simpler and more effective solution, with minimal impact
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on area and power. Future research includes developing (i) a better evaluation metric to quantify

the benefits of layer balancing and its effect on MHC, (ii) a CTS algorithm which understands

layer imbalance implicitly and minimizes it in concert with skew optimizations, and (iii) an

improved routing realization strategy which is DRC-clean by construction.

4.7 Acknowledgments

Chapter 4 is in part a reprint of the submitted draft: S. Hong, A. B. Kahng, S. Venkatesh

and L. Wang, ‘Layer-Balancing ECO Clock Optimization for Improved Model-Hardware Corre-

lation and Design Closure”, Proc. Design Automation Conf., 2018, submitted draft.

I would like to thank my co-authors Mr. Soowan Hong, Professor Andrew B. Kahng and

Lutong Wang. I would also like to thank Mr. Jongpil Lee and Dr. Bong-Il Park of Samsung for

their guidance and feedback on this work.

78



Bibliography

[1] C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng and D. Karger, “Prim-Dijkstra Tradeoffs
for Improved Performance-driven Routing Tree Design”, IEEE Trans. on CAD of ICAS 14(7)
(1995), pp. 890-896.

[2] ITRS 2013 Edition Report - Interconnect, https://www.semiconductors.org/clie\
\ntuploads/Research\_Technology/ITRS/2013/2013Interconnect.pdf, 2013.

[3] S. K. Rao, P. Sadayappan, F. K. Hwang and P. W. Shor, “The Rectilinear Steiner Arborescence
Problem”, Algorithmica 7(2) (1992), pp. 277-88.

[4] C. J. Alpert, Personal Communication, Nov. 2016.

[5] R. C. Prim, “Shortest Connecting Networks and Some Generalizations”, Bell System Tech. J.
36 (1957), pp. 1389-1401.

[6] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs”, Numerische Mathe-
matik 1 (1959), pp. 269-271.

[7] J. M. Ho, G. Vijayan and C. K. Wong, “New Algorithms for the Rectilinear Steiner Tree
Problem”, IEEE Trans. on CAD of ICAS 9(2) (1990), pp. 185-193.

[8] J. B. Kruskal Jr., “On the Shortest Spanning Subtree of a Graph and the Traveling Salesman
Problem”, American Mathematical Society 7(1) (1956), pp. 48-50.

[9] C. J. Alpert, A. B. Kahng, C. N. Sze and Q. Wang, “Timing-driven Steiner Trees are
(Practically) Free”, Proc. IEEE/ACM/EDAC Design Automation Conf., 2006, pp. 389-392.

[10] J. Cong, A. B. Kahng, G. Robins and M. Sarrafzadeh, “Provably Good Performance-driven
Global Routing”, IEEE Trans. on CAD of ICAS 11(6) (1992), pp. 739-752.

[11] G. Kortsarz and D. Peleg, “Approximating Shallow-light Trees”, Proc. ACM-SIAM Sympo-
sium on Discrete Algorithms, 1997, pp. 103-110.

[12] S. Khuller, B. Raghavachari and N. Young, “Balancing Minimum Spanning Trees and
Shortest-path Trees”, Proc. ACM-SIAM Symposium on Discrete Algorithms, 1993, pp. 243-
250.

79



[13] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh and C.K. Wong, “Performance-driven
Global Routing for Cell Based ICs”, Proc. IEEE International Conference on Computer
Design, 1991, pp. 170-173.

[14] A. Lim, S.-W. Cheng and C.-T. Wu, “Performance Oriented Rectilinear Steiner Trees”, Proc.
IEEE/ACM/EDAC Design Automation Conf., 1993, pp. 171-175.

[15] A. B. Kahng and G. Robins, “A New Class of Iterative Steiner Tree Heuristics with Good
Performance”, IEEE Trans. on CAD of ICAS 11(7) (1992), pp. 893-902.

[16] M. Borah, R. M. Owens and M. J. Irwin, “An Edge-based Heuristic for Steiner Routing”,
IEEE Trans. on CAD of ICAS 13(12) (1994), pp. 1563-1568.

[17] W. Shi and C. Su, “The Rectilinear Steiner Arborescence Problem is NP-complete”, SIAM J.
Computing 35(3) (2006), pp. 729-740.

[18] J. Cong, K. S. Leung and D. Zhou, “Performance-driven Interconnect Design Based on
Distributed RC Delay Model”, Proc. IEEE/ACM/EDAC Design Automation Conf., 1993, pp.
606-611.

[19] A. B. Kahng and G. Robins, On Optimal Interconnections for VLSI, Kluwer Academic
Publishers, 1995.

[20] M. Hanan, “On Steiner’s Problem with Rectilinear Distance”, SIAM J. Applied Mathematics
14(2) (1966), pp. 255-265.

[21] L. Scheffer, Bookshelf RMST code, http://vlsicad.ucsd.edu/GSRC/bookshelf/
Slots/RSMT/RMST/.

[22] L. J. Guibas and J. Stolfi, “On Computing All Northeast Nearest Neighbors in the L1
Metric”, Information Processing Letters 17(1983), pp. 219-223.

[23] A. Naamad, D. T. Lee and W.-L. Hsu, “On the Maximum Empty Rectangle Problem”,
Discrete Applied Mathematics 8(1984), pp. 267-277.

[24] J. Griffith, G. Robins, J. S. Salowe and T. Zhang, “Closing the Gap: Near-optimal Steiner
Trees in Polynomial Time”, IEEE Trans. on CAD of ICAS 13(11) (1994), pp. 1351-1365.

[25] L. He, S. Yao, W. Deng, J. Chen and L. Chao, “Interconnect Routing Methods of Integrated
Circuit Designs”, U.S. Patent 8386984, Feb. 2013.

[26] S. Bose, “Methods and Systems for Placement and Routing”, U.S. Patent 8332793, Dec.
2012.

[27] R. F. Hentschke, M. de Oliveira Johann, J. Narasimhan and R. A. de Luz Reis, “Methods
and Apparatus for Providing Flexible Timing-driven Routing Trees”, U.S. Patent 8095904, Jan.
2012.

80



[28] G. M. Furnish, M. J. LeBrun and S. Bose, “Tunneling as a Boundary Congestion Relief
Mechanism”, U.S. Patent 7921393, Apr. 2011.

[29] G. M. Furnish, M. J. LeBrun and S. Bose, “Node Spreading Via Artificial Density Enhance-
ment to Reduce Routing Congestion”, U.S. Patent 7921392, Apr. 2011.

[30] P. Saxena, V. Khandelwal, C. Qiao, P-H. Ho, J. C. Lin and M. A. Iyer, “Interconnect-driven
Physical Synthesis using Persistent Virtual Routing”, U.S. Patent 7853915, Dec. 2010.

[31] C. J. Alpert, J. Hu and P. H. Villarrubia, “Practical Methodology for Early Buffer and Wire
Resource Allocation”, U.S. Patent 6996512, Feb. 2006.

[32] C. J. Alpert, R. G. Gandham, J. Hu, S. T. Quay and A. J. Sullivan, “Apparatus and Method
for Determining Buffered Steiner Trees for Complex Circuits”, U.S. Patent 6591411, Jul. 2003.

[33] C. Chu and Y.C. Wong, “FLUTE: Fast Lookup Table Based Rectilinear Steiner Minimal
Tree Algorithm for VLSI Design”, IEEE Trans. on CAD of ICAS 27(1) (2008), pp.70-83.

[34] M. Elkin and S. Solomon, “Steiner Shallow-light Trees are Exponentially Lighter than
Spanning Ones”, SIAM J. Computing 44(4) (2015), pp. 996-1025.

[35] R. Scheifele, “Steiner Trees with Bounded RC-delay”, Algorithmica 78(1) (2017), pp.
86-109.

[36] G. Chen, P. Tu and E. F. Y. Young, “SALT: Provably Good Routing Topology by a
Novel Steiner Shallow-Light Tree Algorithm”, Proc. IEEE/ACM International Conference on
Computer-Aided Design, 2017.

[37] N. Viswanathan, C. J. Alpert, C. C. N. Sze, Z. Li and Y. Wei, “The DAC 2012 Routability-
driven Placement Contest and Benchmark Suite”, Proc. IEEE/ACM/EDAC Design Automation
Conf., 2012, pp. 774-782.

[38] J. Lu, H. Zhuang, P. Chen, H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha, D. Huang, Y. Luo,
C.-C. Teng and C.-K. Cheng, “ePlace-MS: Electrostatics based Placement for Mixed-Size
Circuits”, IEEE Trans. on CAD of ICAS 34(5) (2015), pp. 685-698.

[39] J. Bloom and J. Orloff, 18.05 Introduction to Probability and Statistics, Cambridge, Mas-
sachusetts Institute of Technology: MIT OpenCourseWare, 2014. https://ocw.mit.edu

[40] A. E. Caldwell, A. B. Kahng, S. Mantik, I. L. Markov and A. Zelikovsky, “On Wirelength
Estimations for Row-Based Placement”, IEEE Trans. on CAD of ICAS 18(9) (1999), pp.
1265-1278.

[41] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can Recursive Bisection Alone Produce
Routable Placements”, Proc. IEEE/ACM/EDAC Design Automation Conf., 2000, pp. 477-482.

[42] W.-T. J. Chan, A. B. Kahng and J. Li, “Revisiting 3DIC Benefit with Multiple Tiers”, Proc.
ACM International Workshop on System-Level Interconnect Prediction, 2016, pp. 6:1-6:8.

81



[43] B. Chazelle, R. L. Drysdale and D. T. Lee, “Computing the Largest Empty Rectangle”,
SIAM J. Computing 15(1) (1986), pp. 300-315.

[44] C. L. Cheng, “RISA: Accurate and Efficient Placement Routability Modeling”, Proc.
IEEE/ACM International Conference on Computer-Aided Design, 1994, pp. 690-695.

[45] A. E. Dunlop and B. W. Kernighan, “A Procedure for Placement of Standard-Cell VLSI
Circuits”, IEEE Trans. on CAD of ICAS 4(1) (1985), pp. 92-98.

[46] I. L. Markov, J. Hu and M.-C. Kim, “Progress and Challenges in VLSI Placement Research”,
Proc. IEEE/ACM International Conference on Computer-Aided Design, 2015, pp. 1985-2003.

[47] D. Panchenko, 18.650 Statistics for Applications, Cambridge, Massachusetts Institute of
Technology: MIT OpenCourseWare, 2004. https://ocw.mit.edu

[48] RMST-Pack: Rectilinear Minimum Spanning Tree Algorithms [Source code]. http://
vlsicad.ucsd.edu/GSRC/bookshelf/Slots/RSMT/RMST

[49] A. R. Agnihotri and P. H. Madden, “Congestion Reduction in Traditional and New Routing
Architectures”, Proc. Great Lakes Symposium on Very Large Scale Integration, 2003, pp.
211-214.

[50] C. J. Alpert, D. P. Mehta and S. S. Sapatnekar, eds., Handbook of Algorithms for Physical
Design Automation, CRC Press, 2008.

[51] K. D. Boese and A. B. Kahng, “Zero-Skew Clock Routing Trees With Minimum Wirelength”,
Proc. IEEE International Conference on ASIC, 1992, pp. 17-21.

[52] J. D. Carothers, T. Liu and D. Li, “MCM Multilayer Routing with Layer Balancing”, Proc.
IEEE International Conference on ASIC, 1996, pp. 179-182.

[53] J. Cong, A. B. Kahng, C.-K. Koh and C.-W. A. Tsao, “Bounded-Skew Clock and Steiner
Routing Under Elmore Delay”, Proc. IEEE/ACM International Conference on Computer-Aided
Design, 1995, pp. 66-71.

[54] J. J. Donato, “Routing Balanced Clock Signals”, U.S. Patent 6513149 B1, 2003.

[55] R. Goering, “Why Cadence Bought Azuro - A Closer Look”,
https://community.cadence.com/cadence_blogs_8/b/ii/posts/
why-cadence-bought-azuro-a-closer-look, July 24, 2011.

[56] P. A. Habitz, D. J. Hathaway, J. D. Hayes and A. D. Polson, “Method of Generating Wiring
Routes with Matching Delay in the Presence of Process Variation”, U.S. Patent 7865861 B2,
2011.

[57] K. Jeong, A. B. Kahng and K. Samadi, “Impacts of Guardband Reduction on Design Process
Outcomes: A Quantitative Approach”, IEEE Trans. on Semiconductor Manufacturing 22(4)
(2009), pp. 552-565.

82



[58] S. Lin and C. K. Wong, “Process-Variation-Tolerant Clock Skew Minimization”, Proc.
IEEE/ACM International Conference on Computer-Aided Design, 1994, pp. 284-288.

[59] Y. Liu, S. Nassif, L. Pileggi and A. Strojwas, “Impact of Interconnect Variations on the
Clock Skew of a Gigahertz Microprocessor”, Proc. IEEE/ACM/EDAC Design Automation
Conf., 2000, pp. 168-171.

[60] J. Minz, X. Zha, and S. K. Lim, “Buffered Clock Tree Synthesis for 3D ICs Under Thermal
Variations”, Proc. Asia and South Pacific Design Automation Conference, 2008, pp. 504-509.

[61] U. Padmanabhan, J. M. Wang and J. Hu, “Robust Clock Tree Routing in the Presence of
Process Variations”, IEEE Trans. on CAD of ICAS 27(8) (2008), pp. 1385-1397.

[62] J. Oh, I. Pyo and M. Pedram, “Constructing Lower and Upper Bounded Delay Routing
Trees Using Linear Programming”, Proc. IEEE/ACM/EDAC Design Automation Conf., 1996,
pp. 401-404.

[63] J. Oh, I. Pyo and M. Pedram, “Constructing Minimal Spanning/Steiner Trees with Bounded
Path Length”, CENG Technical Report 94-35, University of Southern California, 1994.

[64] J. Oh, I. Pyo and M. Pedram, “Constructing Minimal Spanning/Steiner Trees with Bounded
Path Length”, Integration, the VLSI Journal 22(1-2) (1997), pp. 137-163.

[65] M. M. Ozdal, C. Amin, A. Ayupov, S. M. Burns, G. R. Wilke and C. Zhuo, “ISPD-2012
Discrete Cell Sizing Contest and Benchmark Suite”, Proc. ACM International Symposium
on Physical Design, 2012, pp. 161-164. http://archive.sigda.org/ispd/contests/12/
ispd2012_contest.html.

[66] A. Rajaram and D. Z. Pan, “Variation Tolerant Buffered Clock Network Synthesis with
Cross Links”, Proc. ACM International Symposium on Physical Design, 2006, pp. 157-164.

[67] E. Sperling, “Variation Spreads at 10/7nm”, Semiconductor Engineering, November 2017.
https://semiengineering.com/variation-spreads-at-107nm/

[68] G. Venkataraman, N. Jayakumar, J. Hu, P. Li, S. Khatri, A. Rajaram, P. McGuinness and C.
Alpert, “Practical Techniques to Reduce Skew and Its Variations in Buffered Clock Networks”,
Proc. IEEE/ACM International Conference on Computer-Aided Design, 2005, pp. 592-596.

[69] L. Xiao, Z. Xiao, Z. Qian, Y. Jiang, T. Huang, H. Tian and E. F. Y. Young, “Local Clock Skew
Minimization Using Blockage-aware Mixed Tree-Mesh Clock Network”, Proc. IEEE/ACM
International Conference on Computer-Aided Design, 2010, pp. 458-462.

[70] P. Zarkesh-Ha, T. Mule and J. D. Meindl, “Characterization and Modeling of Clock Skew
with Process Variations”, Proc. IEEE Custom Integrated Circuits Conference, 1999, pp. 441-
444.

[71] ARM Cortex A53 Processor. https://developer.arm.com/products/processors/
cortex-a/cortex-a53

83



[72] ASAP: Arizona State Predictive PDK. http://asap.asu.edu/asap/

[73] Avatar Integrated Systems. http://www.avatar-da.com/

[74] Cadence Design Systems, Inc. https://www.cadence.com

[75] Cadence Innovus User Guide.

[76] IBM ILOG CPLEX, www.ilog.com/products/cplex/

[77] Gary Smith EDA. https://www.garysmitheda.com/

[78] International Symposium on Physical Design Contests. http://ispd.cc/contests/

[79] Mentor, A Siemens Business. https://www.mentor.com

[80] OpenCores: Open Source IP-Cores. http://www.opencores.org

[81] Synopsys, Inc. https://www.synopsys.com

[82] Synopsys IC Compiler User Guide.

84




