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Reservoir water quality simulation with data mining
models

Ali Arefinia & Omid Bozorg-Haddad &

Arman Oliazadeh & Hugo A. Loáiciga

Abstract Water pollution is a concern in the manage-
ment of water resources. This paper presents a statistical
approach for data mining of patterns of water pollution
in reservoirs. Genetic programming (GP), artificial neu-
ral network (ANN), and support vector machine (SVM)
are applied to reservoir quality modeling. Input data for
GP, ANN, and SVM were derived with the CE-QUAL-
W2 numerical water quality simulation model. A case
study was carried out using measured reservoir inflow
and outflow, temperature, and nitrate concentration to
the Amirkabir reservoir, Iran. Data mining models were
evaluated with theMAE, NSE, RMSE, and R2 goodness-
of-fit criteria. The results indicated that using the SVM
model for determining nitrate pollution is time saving
and more accurate in comparison with GP, ANN, and
particularly CE-QUAL-W2. The SVM model reduces
the runtime of nitrate concentration simulation by 581,

276, and 146 s compared with CE-QUAL-W2, GP, and
ANN, respectively. The goodness-of-fit results showed
that the highest values (R2 = 0.97, NSE = 0.92) and the
lowest values (MAE = 0.034 and RMSE = 0.007)
corresponded to SVM predictions, indicating higher
model accuracy. This study demonstrates the potential
for application of data mining tools to solute concentra-
tion simulation in reservoirs.

Keywords Reservoir operation . Support vector
machine . Genetic programming . Artificial neural
network . CE-Qual-W2 . Amirkabir reservoir

Introduction

Multiple sources of point and non-spatial, urban, indus-
trial, agricultural, sudden, and non-sudden water pollu-
tion events have degraded the quality of many water
bodies (Duda 1993; Jahandideh-Tehrani et al. 2015).
Water quality simulation models have been developed
to assess the spatial and temporal variations of the phys-
ical, chemical, and biological characteristics of water
bodies. The first version of the well-known CE-QUAL-
W2 water quality simulation model appeared in 1990.
More than 100 other water quality models have been
introduced (Wang et al. 2013). The CE-QUAL-W2mod-
el was applied to simulate water temperature in the USA
(Gelda et al. 1998, and Adams et al. 1993). CE-QUAL-
W2 was applied to model the temperature in a river-
reservoir system to explore management solutions to
meet quantitative and qualitative fisheries requirements
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(Annear and Wells 2002). A comparative study to eval-
uating the performance of three water quality models in
the USA was reported by Bowen and Heironymuas
(2003). There are numerous publications reporting appli-
cations of CE-QUAL-W2 to simulate water quality in
reservoirs (Noori et al. 2015; Shourian et al. 2016;
Aalami et al. 2018; Lindenschmidt et al. 2019;
YoosefDoost et al. 2020; Kovač et al. 2020). However,
the CE-QUAL-W2 model is computationally burden-
some and requires multiple calibration data, which ren-
ders water quality simulation time consuming. It is in the
context of expediting water quality simulations that data
mining methods are gaining acceptance.

Data mining has found application in many fields of
water resources management. Genetic programming
(GP), artificial neural network (ANN), and support vec-
tor machine (SVM) are the most used methods among
the comprehensive suite of data mining methods in
water management. The assessment of water quality
has been one of the fields of application of the latter
methods.

Previous works have reported assessments of reservoir
pollution with GP (Amirkhani et al. 2016, Nikoo et al.
2017, Ling et al. 2018, Soleimani et al. 2019, Saadatpour
2020). Awater quality model was built combining awater
quality physical model and ANN (Chaves et al. 2004;
Kuo et al. 2006; Saadatpour et al. 2017; Shaw et al. 2017;
Afshar et al. 2018; Hasanzadeh et al. 2020). The SVM
model has been applied to simulate water quality indexes
in reservoirs (Soleimani et al. 2016).

This work applies and evaluates the performance of
common data mining algorithms and the CE-QUAL-
W2 model in water quality simulations. Methods

The methodology includes three sub-sections: (1)
simulate daily nitrate concentration in reservoir outflow
with the CE-QUAL-W2, (2) implement data mining
algorithms (i.e., GP, ANN, SVM) to extract a function
to explains any hidden functional association between
input and output variables, and (3) compare the accuracy
and run-time of the developed data mining models and
the CE-QUAL-W2model. A flowchart of the employed
methodology is displayed in Fig. 1.

The CE-QUAL-W2 model

The initial version of the CE-QUAL-W2 model was
called the LARM model, developed by Edinger and
Buchak (1975). Version 1.0 of this model was presented
by the Water Quality Modeling Team of US Army

Corps of Engineers at the Waterways Experimental
Station (WES) in 1986. User-friendliness and the simu-
lation capabilities of the CE-QUAL-W2 model have
advanced over time leading to the current version 4.1
used in this work.

Model capabilities:
• Hydrodynamics: The ability to predict the surface

water level, water velocity, and water temperature.
Modeling of water density is based on water tempera-
ture and the chemical characteristics of water.

• Water quality: The CE-QUAL-W2 model is capa-
ble of simulating a wide range of water quality compo-
nents and parameters. It simulates the water temperature
and any combination of constituents such as (1) non-
reactive compounds, (2) suspended solids, (3) phyto-
plankton, (4) epiphyton, (5) carbonaceous biochemical
oxygen demand (CBOD), (6) ammonium, (7) nitrite and
nitrate, (8) available biologically acceptable phospho-
rus, (9) soluble and degradable organic matter, (10) non-
degradable organic solvents, (11) total carbon monox-
ide, (12) alkalinity, (13) total iron, and (14) dissolved
oxygen.

• In addition to the above, the CE-QUAL-W2 model
simulates several secondary parameters such as pH, total
organic carbon, soluble organic carbon, nitrogen, and
organic soluble and insoluble phosphorus. Moreover,
the CE-QUAL-W2 model has the potential for long-
term simulation of a water system with multiple
branches, aquifers with irregular dimensions, ice cover
effects, water diversions, and dynamic boundary
conditions.

Model limitations:
The CE-QUAL-W2 model has limitations. The key

ones are:
• Hydrodynamic flow: Assuming complete trans-

verse (lateral) mixing. This assumption is not met in
broad rivers. Also, the hydrostatic pressure assumption
is not met in all fluid motion cases.

• Water quality: Water quality reactions in the water
system descriptions are simplified in the specification of
flow parameters such as water velocity, decay coeffi-
cient, and dispersion coefficient.

• The CE-QUAL-W2 model solves five laterally
averaged hydrodynamic equations expressed in terms
of five field variables plus laterally averaged equations
of advection/diffusion for chemical constituents. The
hydrodynamic equations are the longitudinal momen-
tum equation (along the x coordinate), the vertical mo-
mentum equation (along the z coordinate), the
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continuity equation, the state equation, and hydrostatic
pressure or free surface equation. The values of the
longitudinal velocity, vertical velocity, density, depth,
and pressure are solved for at each simulation location.
The concentrations of water constituents are calculated
by adding the corresponding transport equations and
solving them jointly with the hydrodynamic equations.

The laterally averaged equations used in the CE-
QUAL-W2 model are given by Eqs. (1)–(6) (Cole and
Wells 2018):

Horizontal momentum equation:

∂Ux:B
∂t

þ ∂Ux:Ux:B
∂x

þ ∂Ux:Uz:B
∂z

¼ g sinα:Bþ g cosα:B
∂η
∂x

−
gcosα:B

ρ
∫
z

η

∂ρ
∂x

dzþ 1

ρ

∂Bτ xx
∂x

þ 1

ρ

∂Bτ xz
∂z

þ qBUx

ð1Þ

Vertical momentum equation:

0 ¼ gcosα−
1

ρ
∂P
∂Z

ð2Þ

Continuity equation:

∂Ux:B
∂x

þ ∂Uz:B
∂z

¼ qB ð3Þ

Equation of state for water density:

ρ ¼ f Tw;CTDS ;Cssð Þ ð4Þ

Hydrostatic or free-surface equation:

B
∂η
∂t

¼ ∂
∂x

∫
h

η
Ux:Bdz− ∫

h

η
qBdz ð5Þ

Constituent transport equation:

∂B:C x; tð Þ
∂t

þ ∂B:C x; tð Þ
∂x

þ ∂Ux:B:C x; tð Þ
∂z

−
∂ B:Dx

∂C x; tð Þ
∂x

� �
∂x

−
∂ B:Dz

∂C x; tð Þ
∂z

� �
∂z

¼ qΦBþ SΦB

ð6Þ

in which η = free water level (m); Uz = mean vertical
velocity (m/s); B = width of the water control volume
(m); g = gravitational acceleration (m/s2); C = laterally
averaged constituent concentration (g/m3); τxx = turbu-
lent shear stress on the control volume in the direction x
(kg/m/s2);τxz = the turbulent shear stress applied to the
control volume in the direction z(kg/m/s2); α = the slope
of the river; q = lateral inflow per unit volume of cell or
control volume (time−1); Tw = the water temperature
(°C); CTDS = the concentration of the soluble solids
(g/m3); Css = the concentration of suspended solids
(g/m3); Dx = longitudinal dispersion coefficient; Dz =
vertical dispersion coefficient (m2/s); qΦ = input or
output pollutant flux through boundary (g/(m3/s)); Ux

= longitudinal water velocity (m/s); Uz = vertical water
velocity (m/s); ρ = water density (kg/m3); and SΦ =
laterally averaged source/sink term (g/(m3/s)). The CE-
QUAL-W2 model solves Eqs. (1)–(6) in conjunction
with initial and boundary conditions with the finite-
difference method (Cole and Wells 2018).

Data mining models

Data mining is a powerful tool whose use is rising in
water resources management and organization of high
volume information. In fact, data mining is a collection
of techniques that move beyond ordinary data and detect
hidden, extractable, information. The work implements
the data mining methods GP, ANN, and SVM, which
are gaining acceptance in the hydrology and water

Fig. 1 The methodology’s flowchart
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resources fields (Soleimani et al. 2016; Sarzaeim et al.
2017). These methods are described in the following
sections.

Genetic programming

Evolutionary programming is a relatively new method
(Koza 1992, 1994; Banzhaf et al. 1998; Khu et al.
2001). GP is inspired by Darwin’s theory of evolution
and is one of the GA derivative algorithms. An initial
population of programs is generated at random. Each
program is translated, compiled, and executed and
assessed as to how well it performs with respect to task
solving. This enables the calculation of a fitness value
for each of the programs, and the best one is chosen for
reproduction. Programs are combined or mutated into
offspring, which are added to the next generation of
programs. This process repeats until a termination con-
dition is met. GP employs sets of numbers, operators,
and functions as decision variables (Fallah-Mehdipour
et al. 2014). The sets are known as terminal sets (Tset)
and the functions (Fset). For example:

Tset ¼ x; 1; 2;−1;−2;…f g ð7Þ

Fset ¼ �;�;þ;−; exp; sin; cos; log;…f g ð8Þ
GP creates possible solutions (chromosomes) by

selecting a random primitive set of connection sets and
functions. Figure 2 shows a sample of two chromosomes
in GP. The objective function corresponding to each
chromosome is calculated. Genetic operators are then
applied, as exemplified in Fig. 3. Figure 4 depicts the
creation of a new population of solutions by creating a
cut and performing coupling and mutation on the parent
chromosomes, and thus a new generation of chromo-
somes (improved possible solutions) is generated. The

mutation operator is applied to the Tset and Fset sets.
After a number of user-specified iterations, the objective
function can no longer be improved, at which time an
optimal or near-optimal solution has been obtained for
the optimization problem at hand. This GP model was
programmed with the MATLAB software.

Artificial neural network

ANN is a database model that detects relationships
between outputs and inputs relying on a learning pro-
cess. These relationships can be complex and non-line-
ar. ANN introduces new inputs with which to predict the
corresponding output according to a mathematical mod-
el after educating and understanding the relationships
between inputs and outputs by ANN. Neural networks
are generally non-linear learning mathematical systems.

Problem inputs are entered into the ANN model and
outputs are calculated with the aim of minimizing an
error criterion. The inputs are passed through a non-
linear transfer function and the outputs of the ANN
model are calculated. There are several algorithms for
network training (i.e., calibration), followed by model
testing calculations. The most widely used is the
Lewenberg-Markow (LM) (Marquardt 1963) algorithm,
an optimization algorithm that minimizes the sum of
square errors. Figure 5 shows a three-layer neural net-
work in which W is the weight of neurons, b shows the
bias, and f represents the activation function.

A neural network does not require exact mathemati-
cal models, and, akin to human beings, it can learn
through a number of specific examples, as opposed to
digital computers, which require strictly explicit com-
mands. Each neural network goes through the stages of
training, testing, and validation. In fact, neural networks
can be used to solve problems that do not have exact
mathematical relations between inputs and outputs.

Fig. 2 Tree representation of
mathematical relations in GP
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ANN training is actually nothing more than adjusting
the communication weights of the neurons so that the
output of the network converges to the desired output.
This paper predicts nitrate concentration by means of an
ANN model that has three layers, whose numbers of
neurons are calculated by trial and error based on best
results. The numbers of neurons in the first, second, and
third layer are 10, 5, and 1, respectively. The ANN’s
structure was achieved by sensitivity analysis and pro-
grammed in MATLAB software.

Support vector machine

SVM is a data mining method introduced by
Vapnik (1995). SVM is widely used for categori-
zation and regression. The regression form of SVM
is called SVR. SVM, similar to ANN, is a data
mining technique but its significant difference with
ANN is that it is not trapped in local suboptimal
solutions. SVR is defined by two functions. The
first function calculates the error of the values

Fig. 3 The coupling genetic
operator

Fig. 4 The mutation genetic
operator
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calculated with SVR (Eq. (9)); the second function
calculates the values of outputs (Eq. (10)),

y− f xð Þj j ¼ 0 if y− f xð Þ≤εj j
y− f xð Þj j−ε ¼ ξ otherwise

(
ð9Þ

f xð Þ ¼ wT :xþ b ð10Þ
where y is the value of the output, f(x) is the output

value calculated by SVR, ε = the sensitivity of the
function, ξ = the magnitude of the penalty, w = the
weight of the variable x, b = the magnitude of the
deviation x from its actual values, and T is the transpose
sign.

Figure 6 shows the first function does not consider
any penalty for values in which the difference between
the real value and the value calculated by the model is in
the range (− ɛ, + ε). The amount of the penalty is ξ for

predictions whose deviation with the actual value is
outside this range.

The SVR model is an optimization problem that
reduces prediction errors. It takes the form of Eq. (11):

min
1

2
wk k2 þ c ∑

m

i¼1
ξ−i þ ξþi
� � ð11Þ

Subject to:
wT :þ bð Þ−yi≺εþ ξþi i = 1, 2, 3, …, m (12)
yi− wT :xþ bð Þ≤εþ ξ−i i = 1, 2, 3, …, m (13)
where C = the coefficient of penalties, m = the

number of training data, ξþi dξ
−
i the magnitude of penal-

ties for the points above and below the range (− ɛ, + ɛ)
respectively, yithe actual data values. The values of w
and b are found by solving problem (10)–(12), and these
are used in prediction with Eq. (9).

SVM can simulate non-linear input-output relations.
In such cases, transfer functions (or kernel functions) are
used to convert the non-linear relations of the data to
linear ones. Among the applications of SVM in the field
of water resources prediction of the long-term water
level in lakes (Khan and Coulibaly 2006), static micro-
accounting using SVM is used in tropical regions of
India (Tripathi et al. 2006). Nitrate concentration in
reservoir outflow with the SVM data mining model
was performed with the Tanagra software, which in-
cludes statistical training techniques. The kernel func-
tion used in this study is the radial basis function (RBF).
The SVM parameters are achieved by trial and error to
find the optimal training.

Nitrate concentration simulation

The simulation model CE-QUAL-W2 was applied to
generate nitrate concentration at the outlet of the
Amirkabir reservoir. There are numerous parameters

Fig. 5 A three-layer neural network

Fig. 6 The representation of the error value function of the SVR
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such as bathymetry data, meteorological data, discharge
rate, indices of water quality, inflow, wind protection,
and shadow area in the reservoir which are crucial for
CE-QUAL-W2 to create a water quality simulation for
estimating the nitrate concentration in the reservoir out-
flow. Daily data in the year of 2015 were applied for
calibration and validation of the CE-QUAL-W2 model.
The model calibration step estimated optimal parame-
ters for the CE-QUAL-W2 model, as discussed below.

Model performance was measured with four criteria,
namely, the mean absolute error (MAE) and the Nash-
Sutcliffe efficiency (NSE) indices, the correlation

coefficient (R2) and mean square error (RMSE) given
by Eqs. (14) to (17).

MAE ¼
∑
n

i¼1
Nobs−Nsimð Þj j

n
ð14Þ

NSE ¼ 1−
∑
n

t¼1
Nobs−Nsimð Þ2

∑
n

t¼1
Nobs−Navg
� �2 ð15Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
Nobs−Nsimð Þ2

n

vuut
ð16Þ

R2 ¼
∑
n

i¼1
Nsim−Nsim

� �2
* Nobs−Nobs

� �2

∑
n

i¼1
Nsim−Nsim

� �2
* ∑

n

i¼1
Nobs−Nobs

� �2 ð17Þ

where n = number of observational data, Nobs =
observation nitrate concentration in reservoir outflow,
Nsim = calculated nitrate concentration in reservoir out-

flow, Nsim = mean value of nitrate concentration by

model simulation and, Nobs = average of nitrate concen-
tration in observed flow.

The root mean square error (RMSE) and the correla-
tion coefficient (R2) were employed as performance
indicators for each model. The closer the R2 value is to
1 and the RMSE value to zero, the better the prediction
skill of a prediction model.

Fig. 7 Trend of correlation charts
between the input and output
parameters of data mining models
at different lag times

Fig. 8 Flowchart of this paper’s method for nitrate concentration
simulation
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To shorten the simulation time and increase the ac-
curacy of results, data mining models are applied to
simulate outflow nitrate concentration. Selecting the
appropriate inputs to create the model structure is essen-
tial (Kashif Gill et al. 2007; Sarzaeim et al. 2017). The
correlation criterion was adopted as a statistical criterion
in selecting the input parameters of the data mining
models. Accordingly, the correlation between the nitrate
concentrations in the outflow and in the inflow at time t,
and the discharge flow and the temperature in the

reservoir at various lag times were investigated, and
several variables were identified. Figure 7 displays the
trend of correlation charts between the input and output
parameters of the data mining models at different lag
times. It is seen in Fig. 7 that the correlation between
input and output parameters of the data mining models
deteriorates after the 40th lag time which results in
longer runtimes with negligible gain in accuracy.

Equation (18) represents a generic function relating
the output parameter (i.e., the nitrate concentration in

Fig. 9 Amirkabir dam and tributary area in the Karaj basin, Iran

Table 1 Performance indices for the CE-QUAL-W2 model

Calibration Validation

MAE NSE RMSE R2 MAE NSE RMSE R2

Water level 0.13 0.87 0.16 0.93 0.20 0.75 0.30 0.86

Temperature 0.12 0.85 0.23 0.94 0.15 0.84 0.27 0.92

Nitrate 0.32 0.71 0.42 0.83 0.38 0.69 0.51 0.82
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reservoir outflow) at time t and the input parameters at
times t through t − 40.

Noutð Þt ¼ f N in; T in;Qin;Qoutð Þt;…; N in;T in;Qin;Qoutð Þt−40
	 


ð18Þ
where (Nout)t = the nitrate concentration in reservoir

outflow at time t, (Qin)t =the reservoir inflow at time t,
(Qout)t = the discharge outlet at time t, (Tin)t = the water
temperature of reservoir inflow t, (Nout)t− 40 = the nitrate
concentration in reservoir outflow at time t − 40, (Qin)t− 40
= the reservoir inflow at time t − 40, (Qout)t− 40 reservoir
outflow at time t − 40, (Tin)t− 40 = water temperature of
reservoir inflow at time t − 40, f = function that converts
inputs to output, and t = index of day.

All the input and output variables were normalized
according to Eq. (19):

xnorm ¼ x−xmin
xmax−xmin

ð19Þ

where xnorm = normalized parameter, x = real value of
the parameter before normalization, xmin and xmax denote
the minimum and maximum values of the parameter be-
fore normalization, respectively. Upon normalization of
the database the GP, ANN, and SVM were trained using
input data and the amount of output nitrate calculated with
the CE-QUAL-W2 model. Seventy percent of the input
data were randomly selected for training purposes, and the
rest of the data were used to test the GP, ANN, and SVM.

Furthermore, MAE, NSE, R2, and RMSE were
employed as performance indicators for all structure
data mining models to choose the best one based on
Eqs. (14) to (17). Figure 8 displays the flowchart for
implementing the GP, ANN, and SVM models.

Case study

The Amirkabir dam and reservoir were inaugurated in
1961. The reservoir’s functions are flood control, water
supply to the city of Tehran, and water supply for Karaj
agriculture and hydroelectric power generation. Nitrate
pollution control in this reservoir is crucial to protect the
health of the population of about 9 million people and to
produce safe agricultural products. The Amirkabir dam is
a two-arched concrete structure with amaximum height of
180m from the foundation, width of 30m at bottom and 9
m at crest. The Amirkabir dam is located 63 km northwest
of Tehran. The reservoir has an average area equal to 764

km2 and an average runoff of 472 million cubic meters.
The reservoir is on theKaraj River, which originates in the
Alborz Mountains and discharges to a salt lake, near the
city of Qom. Figure 9 shows the location of the Amirkabir
dam and its tributary basin.

Fig. 10 Nitrate prediction diagrams obtained with (a) GP, (b)
ANN, and (c) SVM
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Results and discussion

The calculated values of the efficiency indices for the
CE-QUAL-W2 model for calibration and validation
intervals are listed in Table 1.

Based on the results listed in Table 1, it is evident that
the data obtained from CE-QUAL-W2 and the observed
data are in proper agreement.

It is seen in Fig. 10 that the calculated R2 values for
nitrate concentration simulation stage equal 0.77, 0.89,

Fig. 11 Observed and simulated nitrate concentration with (a) GP, (b) ANN, and (c) SVM
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and 0.94 with respect to GP, ANN, and SVM respec-
tively. R2 values close to 1 mean higher accuracy in
predictions.

The results of the simulations of nitrate concentration in
reservoir outflow calculated with GP, ANN, and SVM are
presented in Fig. 11. It can be seen the plot depicted using
GP predictions reveals results that were not as accurate as
those obtained with ANN or SVM. It is also evident that
the values predicted using SVM had higher accuracy than
those of ANN. ANN-predicted nitrate values presented in
Fig. 11 (c) display a relatively good correlation between
observed nitrate concentrations.

Table 2 lists a summary of GP, ANN, and SVM
performance results in terms of the MAE, NSE, RMSE,
R2 and average run time obtained in 10 runs of each
model. It is clear the data mining tool of the SVMmodel
exhibits better performance than the ANN and GP
models. When comparing ANN to GP, the former per-
formed better than the latter, though not as well as SVM.
As shown in Table 2, the average run time of SVM is
lower than those of ANN and GP models by 75% and
85%, respectively. When compared with CE-QUAL-
W2, GP, and ANN, the SVM model reduced the
runtime of nitrate concentration simulation by 305,
435, and 581 s, respectively. The SVM model achieved
a more accurate and efficient performance in terms of
error reduction and runtime than GP and ANN.

Concluding remarks

This work applied GP, ANN, and SVM data mining
tools to predict nitrate concentrations in reservoir out-
flow using as input (predictors) the reservoir inflow,
inflow water temperature, and the nitrate concentration
in reservoir inflow.

The goodness-of-fit results listed in Table 2 indicate
the highest values (R2 = 0.97, NSE = 0.92) and the
lowest values of (MAE = 0.034 and RMSE = 0.007),

both corresponding to SVM predictions. Similarly, in
the testing phase, the SVM model yield the highest
values (R2 = 0.94, NSE = 0.87) and the lowest (MAE =
0.056, RMSE = 0.01).

It is concluded that the SVM data mining tool out-
performs GPs and ANNs with the particular data sets
and water constituent (nitrate) selected in this study in
terms of the goodness-of-fit or performance criteria (i.e.,
MAE, NSE, RMSE, and R2). The superior performance
of SVM was realized in the training phase and in the
testing phase.

The complexity of the water quality prediction prob-
lem and a large number of time lags in the training phase
poses a substantial computational burden. The run times
of the implemented models associated with 10 model
runs established the superiority of SVM, whose run
times were 75% and 85% of those associated with GP
and ANN, respectively. The selected data mining
models were superior to CE-QUAL-W2.
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