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In recent years, gesture recognition has become an important tool for enabling interaction

with augmented and mixed reality devices. This thesis explores the deployment of a gesture

recognition application on the Microsoft Hololens 2 using a Convolutional Neural Network

(CNN) with multiple early exits to improve efficiency in real-time scenarios. The use of

early exit mechanisms at different layers of the network helps reduce energy consumption

and processing time while maintaining reasonable accuracy. However, the average frames

per second (FPS) could be further improved for smoother interaction. The project also

examines sensor integration, studying how multiple Hololens 2 sensors work together. Lastly,

a multi-user application is developed to enable real-time interaction among users in a shared

augmented reality environment. These efforts aim to improve the usability and practicality

of mixed reality systems for various applications.

viii



Chapter 1

Introduction

The rapid growth of augmented and mixed reality (AR/MR) technologies is transforming

the way users interact with digital world, seamlessly blending both the physical and virtual

worlds. Devices such as Microsoft Hololens 2 offers platform for immersive experiences

across various industries, from gaming to healthcare to remote collaboration[14]. However,

developing efficient, scalable and interactive solution for AR/MR poses unique challenges,

particularly on resource-constrained devices.

This thesis explores the development and deployment of a gesture recognition application

on Hololens 2, employing a Convolutional Neural Network (CNN) with multiple early exits.

Early exits are designed to optimize inference by allowing predictions at intermediate lay-

ers. Experimental results validate the effectiveness of early exits in reducing inference time.

However, the findings indicate that the average frames per second (FPS) requires further

improvement to meet the desired standards for smooth real-time interaction.

To enhance the user experience, we further investigate the integration of additional sensors to

achieve seamless and smooth interactions[15]. Furthermore, a collaborative mixed reality ap-

1



plication was developed to demonstrate the system’s potential in multi-user environments[8].

This collaborative aspect highlights the importance of synchronizing sensor data and opti-

mizing system performance for effective interaction within shared mixed reality spaces.

The work is structured into three interconnected phases, each building upon the other to

achieve a comprehensive system for immersive and efficient mixed reality experience

1. Gesture Recognition with Early Exits: A CNNmodel trained on the LeapGestRecog

dataset is deployed on Hololens 2[9]. The model incorporates sequential early exits,

enabling real-time gesture recognition while balancing accuracy and computational ef-

ficiency. Results demonstrate an increase in accuracy and time per inference though

FPS remains a challenge.

2. Multi-Sensor Integration Study: Beyond gesture recognition, a study was con-

ducted to evaluate the integration of multiple sensors available on the HoloLens 2,

such as depth cameras, microphone, and many more modules. The study aimed to

understand how these sensors could be synchronized to achieve a reasonable sampling

rate and FPS for mixed reality applications. Using HL2SS (HoloLens 2 Streaming

Server)[7], sensor data was accessed and analyzed to determine their potential for en-

hancing real-time performance and accuracy in complex scenarios.

3. Development of a Multi-User Application: A collaborative mixed reality applica-

tion is developed, allowing multiple users to interact in a shared virtual environment[8].

This demonstrates the potential of Hololens 2 in enabling interactive and immersive

experiences.

The findings of this research contribute to the field of mixed reality by optimizing resource

utilization and enhancing user interaction capabilities. By combining gesture recognition,

2



sensor integration study, and multi-user collaboration, this work lays the foundation for

future innovations in the domain of immersive technologies.
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Chapter 2

Related Work & Background

The rapid advancements in mixed reality (MR) technologies have enabled novel and immer-

sive ways for users to interact with virtual and physical environments. Gesture recognition

has become a cornerstone for enhancing MR experiences, leveraging deep learning models

such as convolutional neural networks (CNNs) to enable intuitive user interfaces. The intro-

duction of BranchyNet by Teerapittayanon et al. (2016) marked a significant step toward

optimizing neural network inference through early exits [21]. By allowing predictions at inter-

mediate layers, BranchyNet demonstrated reduced computational costs and latency, which

is especially critical for resource-constrained devices like the HoloLens 2. This approach has

inspired further research on implementing such strategies for real-time applications where

efficiency is paramount.

Multi-sensor integration has also become a vital area of exploration in MR applications.

Ungureanu et al. (2020) provided insights into utilizing the HoloLens 2 Research Mode,

which grants developers access to raw sensor streams, including depth cameras, infrared

sensors, and IMUs[22]. Their work laid the groundwork for understanding how sensor data
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can enhance MR experiences through improved interaction capabilities and environmental

awareness. Complementing this, Dibene and Dunn (2022) introduced the HL2SS (HoloLens

2 Streaming Server), which enables synchronized data acquisition from multiple sensors[5].

Their research emphasizes the importance of achieving real-time performance through effec-

tive multi-sensor synchronization, a challenge in many MR applications due to the high data

throughput required for seamless user experiences.

Gesture recognition datasets, such as LeapGestRecog, have played a crucial role in evaluating

and benchmarking gesture-based MR systems. Chowdhury et al. (2020) created this dataset

to capture a wide range of hand gestures using Leap Motion Controller, providing a robust

platform for testing gesture recognition algorithms[4]. Their work demonstrates the potential

of such datasets in training and evaluating CNN models for accurate and efficient gesture

recognition.

Collaborative MR applications have also garnered significant attention in recent years. Azuma

et al. (2021) explored the potential of MR in enabling multi-user interactions, with applica-

tions spanning healthcare, education, and remote collaboration[2]. Their work highlighted

the technical challenges of synchronizing user inputs and maintaining system performance

in shared virtual spaces. This research underscores the importance of developing scalable

MR systems that can adapt to complex multi-user environments.

To address challenges related to real-time inference, optimization frameworks like TensorRT

and ONNX Runtime have been extensively studied. Bai et al. (2020) discussed the use of

TensorRT to accelerate neural network inference on edge devices, demonstrating significant

improvements in inference speed without compromising accuracy[3]. Similarly, Paszke et

al. (2019) explored ONNX Runtime for optimizing real-time neural network performance,

particularly for deployment on hardware-constrained devices like HoloLens 2.
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The integration of audio and visual modalities in MR has further enhanced interaction

accuracy and contextual understanding. Sodhi et al. (2019) introduced LightGuide, a system

that uses projected visualizations to guide hand movements in MR applications[20]. This

approach showcased the potential of combining visual cues with sensor data to create more

intuitive user experiences. Liu et al. (2021) expanded on this by studying multi-modal

fusion techniques to improve the accuracy and responsiveness of MR systems, focusing on

integrating audio, visual, and depth data streams[11].

Collaborative MR environments have also been optimized for performance and usability. Hu

et al. (2022) investigated real-time optimization strategies for collaborative MR systems,

addressing challenges such as latency and resource management in multi-user scenarios[6].

Their findings contribute to the development of MR applications that support seamless and

efficient interactions in shared virtual environments.

This thesis builds upon these foundational works by addressing the unique challenges of ges-

ture recognition, multi-sensor integration, and collaborative functionalities for MR systems.

By combining CNN-based gesture recognition with early exits, multi-sensor synchronization,

and multi-user applications, this research aims to optimize resource utilization and pave the

way for scalable and immersive MR experiences.
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Chapter 3

Methodology

This chapter outlines the methodologies employed to design and develop a comprehensive

mixed reality system incorporating gesture recognition, multi-sensor integration, and collab-

orative capabilities. By employing a structured approach, the aim was to optimize resource

utilization while ensuring seamless and interactive user experiences. The following sections

describe the system architecture, data preparation, model development, experimental setup,

and evaluation strategies.

3.1 Gesture Recognition and Early Exits

3.1.1 Machine Learning Model and Early Exits

For gesture recognition, a convolutional neural network (CNN)-based model was developed,

incorporating a sequential learning approach with multiple early exits. Sequential learning

with early exits allows a model to produce intermediate outputs at different stages of the
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network, enabling faster predictions when higher computational efficiency is needed. This

approach is particularly beneficial in resource-constrained environments like wearable de-

vices, as it reduces latency and optimizes energy consumption by bypassing deeper layers

when intermediate outputs are sufficient [21]

The gesture recognition model is a convolutional neural network (CNN) designed with mul-

tiple convolutional blocks and integrated early exits for efficient and adaptive inference. The

model processes grayscale images of size 150× 150 as input, using four convolutional blocks

to extract increasingly complex features. Each block consists of a convolutional layer, ReLU

activation, and max-pooling for spatial dimensionality reduction. The first convolutional

block employs a 5 × 5 kernel with 32 filters to capture low-level spatial features, such as

edges and textures. Subsequent blocks use 3× 3 kernels with increasing filter sizes (64, 96,

and 96) to focus on finer and more localized patterns, enhancing feature representation as the

network deepens. Early exits are integrated after the first three convolutional blocks, each

consisting of fully connected layers (256 → 128 → 10) for intermediate predictions, enabling

faster and more resource-efficient inference for simpler inputs. The final block refines the

high-level features and outputs the most accurate predictions through fully connected layers

in the final classifier. The early exits allow the model to adapt to varying computational re-

sources and latency requirements, making it ideal for resource-constrained environments like

wearable devices. The choice of kernel sizes, increasing filter depths, and strategic placement

of early exits ensures a balance between computational efficiency and classification accuracy,

enabling real-time gesture recognition for mixed reality applications.y by processing the in-

put through the entire network. The detailed architecture of the model is shown in Fig 3.1.

The full gesture recognition model architecture, including the initialization and forward pass

logic, is provided in Listing A.1 and Listing A.2
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Figure 3.1: Gesture Recognition Model Architecture & Early Exits
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3.1.2 Dataset & Preprocessing

The LeapGestRecog dataset [9], available on Kaggle, was chosen for training and evaluating

the gesture recognition model due to its suitability for hand gesture recognition tasks. The

dataset comprises grayscale images of hand gestures, classified into ten distinct categories.

These categories represent various gestures, each captured under different lighting condi-

tions and hand orientations, making the dataset diverse and robust for training a gesture

recognition system.

The images in the dataset were preprocessed to ensure consistency and compatibility with the

model’s requirements. Each image was resized to a standard dimension of 150×150 pixels,

simplifying computations and standardizing the input for the convolutional neural network

(CNN). Additionally, pixel values were normalized to the range [0,1], ensuring numerical

stability during training by preventing excessively large values from causing instability in

the optimization process. Data augmentation techniques, such as rotations, flips, or color

adjustments, were intentionally avoided to maintain consistency in the results across different

training stages.

The LeapGestRecog dataset was divided into training and testing sets in a 75:25 ratio,

ensuring a sufficient amount of data for training while retaining a substantial test set for

evaluating model performance. The preprocessing pipeline involved converting the image

data into tensors, making it suitable for use with PyTorch. The gesture labels, represented

as class indices, were one-hot encoded to align with the requirements of the cross-entropy loss

function used during training. This encoding ensures that the model predicts probabilities for

each gesture class, which are then compared against the one-hot-encoded labels to compute

the loss.
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3.1.3 Model Training with Sequential Learning

The training process employed a sequential learning strategy with four distinct stages, each

designed to optimize specific components of the network. This strategy aimed to improve

convergence and efficiency by training only a subset of layers at a time while freezing the

rest of the network to retain their previously learned parameters.

• Stage 1: The first convolutional layer and its corresponding early exit fully connected

layers were trained. This stage focused on learning low-level spatial features from the

input images, such as edges and textures. To ensure concentrated learning on this

stage, all subsequent layers were frozen, preventing updates to their parameters.

• Stage 2: The second convolutional layer and the second early exit were trained. The

previously trained first convolutional layer and early exit were frozen to retain their

learned representations. This stage enabled the network to build on the foundational

features extracted in Stage 1 and learn more complex patterns.

• Stage 3: The third convolutional layer and its corresponding early exit were trained.

As with the earlier stages, the previously trained layers were frozen, ensuring the

learning process for this stage focused solely on the targeted layer and its early exit.

• Stage 4: In the final stage, the entire network was fine-tuned, including the fourth

convolutional layer and the output layers. This step ensured that all components of the

network were optimized together, achieving maximum accuracy for complex gestures.

In the training process, a layer-freezing technique was employed to preserve the learned

parameters of previously trained layers while optimizing the newly added ones. This strategy

was critical in the staged training approach, where the model was trained sequentially, layer
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by layer. After each stage, the trained layers were frozen using a custom function that set

the requires grad attribute of the layer parameters to False, preventing their weights from

being updated during subsequent training stages. For instance, after the first stage, the first

convolutional layer (conv1) and the first early exit fully connected layers (exit0 fc) were

frozen. Similarly, after training the second stage, the second convolutional layer (conv2) and

the second early exit (exit1 fc) were frozen, and so on. This ensured that the knowledge

acquired by earlier layers was preserved, while the model focused on learning new patterns

in the later layers[1]. The final stage fine-tuned the entire network by training the deeper

layers and the final classifier, leveraging the frozen parameters of earlier layers to achieve

optimal performance. This approach enhanced computational efficiency, reduced overfitting,

and preserved the feature representations learned in earlier stages, making it ideal for gesture

recognition tasks on resource-constrained devices.

Listing 3.1: Function to Freeze Layers

# Function to freeze layers

def freeze_layers(layers):

for layer in layers:

for param in layer.parameters ():

param.requires_grad = False

Separate optimizers were employed for each stage, tailored to the specific layers being trained.

Cross-entropy loss was used as the objective function, as it is well-suited for multi-class

classification tasks[23]. This stage-wise training strategy minimized overfitting by freezing

previously trained layers and allowed the network to converge effectively at each stage

3.1.4 Evaluaution & Deployment

After completing the training process, the model was rigorously evaluated using the test

dataset. Performance metrics were analyzed for the outputs from all three early exits and
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the final classifier, providing insights into the model’s accuracy and efficiency at different

levels of the network. The inclusion of early exits enabled a detailed evaluation of the trade-

offs between computational cost and prediction accuracy, ensuring the model could adapt

dynamically to varying resource constraints.

The trained model was converted to the ONNX format to facilitate deployment on HoloLens

2. This format ensures compatibility with diverse runtime environments, such as mobile

and augmented reality devices, by supporting optimized inference across various hardware

configurations [17]. ONNX inference was conducted to validate the consistency of predictions

between the PyTorch implementation and the ONNX runtime, confirming the reliability,

robustness, and readiness of the model for real-world applications on resource-constrained

devices like the Hololens 2.

3.1.5 ONNX Integration

The trained gesture recognition model was exported from PyTorch to the ONNX (Open

Neural Network Exchange) format, which ensures compatibility across various platforms,

including Unity and HoloLens 2. The ONNX format facilitates efficient deployment by

enabling optimized inference in runtime environments such as Unity’s Barracuda framework.

This conversion ensured that the model could leverage the computational capabilities of the

HoloLens 2 for real-time gesture recognition tasks.

In Unity, the ONNX model was integrated using the Barracuda library. The model was

loaded as an NNModel asset and executed using Barracuda’s IWorker interface, which han-

dles the inference process. During runtime, frames captured from the HoloLens 2 camera

were preprocessed to match the model’s input requirements (grayscale, 150×150 resolution).

These frames were then passed as tensors to the ONNX model for inference. The softmax
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function was applied to the output logic to generate probabilities, and the class with the

highest probability was selected as the predicted gesture.

The real-time inference results were logged, including predictions, timestamps, and FPS,

to evaluate the model’s accuracy and efficiency under deployment conditions. This setup

ensured the seamless integration of gesture recognition capabilities into a mixed reality en-

vironment.

3.1.6 Experimental Setup

The experiments were designed to evaluate the performance and energy efficiency of the ges-

ture recognition model in real-world conditions using HoloLens 2. The following components

were integral to the experimental setup:

Hardware and Environment

• Device: HoloLens 2, equipped with a built-in camera for real-time gesture capture

and sensors for monitoring battery consumption.

• Input: Hand gesture images were captured from a grayscale gesture video specifically

created for the experiment. The video consisted of a gesture repeated cyclically for 20

minutes, ensuring sufficient data collection for each gesture. The model was evaluated

on a dataset comprising 10 distinct gesture classes, ensuring comprehensive testing

across a diverse range of hand movements. The frames were resized to 150 × 150 to

match the input requirements of the model.
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Software Framework

• Unity Engine: Used as the primary development platform to deploy and run the

application on HoloLens 2.

• Barracuda Framework: Unity’s inference engine for executing ONNX models, en-

abling efficient real-time predictions and integration with the HoloLens 2 ecosystem.

Data Flow and Collection

• Frame Capture: The HoloLens 2 camera continuously captured grayscale frames

from the video during the 20-minute experimental window. This ensured consistent

and high-quality data for gesture recognition inference.

• Preprocessing: Each captured frame was resized to 150 × 150 and converted into

tensors compatible with the ONNX model. This preprocessing step ensured uniformity

across the dataset for accurate inference.

• Inference and Logging: The preprocessed frames were passed through the ONNX

model at various exit points. Metrics such as accuracy, latency (time per inference),

and FPS (frames per second) were logged for each exit. These metrics provided insights

into the model’s computational efficiency and prediction quality.

• Battery Level Monitoring: The battery level of the HoloLens 2 was tracked through-

out the 20-minute experiment for each of the three gestures. Separate trials were

conducted for each exit:

– First, predictions were made only at Exit 1.

– Then, the process was repeated for Exit 2, Exit 3, and the Final Layer.
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This sequential testing allowed for a detailed comparison of the rate of battery drain

across different exit points, providing valuable data on the energy efficiency of the

model.

Performance Metrics

To evaluate the model’s effectiveness and efficiency, the following metrics were measured:

• Accuracy: The percentage of correctly identified gestures compared to the total pre-

dictions for each exit.

• Latency: The average time taken to process a single frame, including preprocessing

and inference.

• FPS: The number of frames processed per second, indicating the model’s ability to

perform real-time predictions.

• Battery Levels: The rate of battery drain was analyzed for each exit point and

gesture, allowing for a comprehensive understanding of energy efficiency under different

operational conditions.

Training and Evaluation

The gesture recognition model was trained on the LeapGestRecog dataset using a staged

training approach, optimizing different parts of the network sequentially. During evaluation,

predictions were made using each exit in isolation to study its impact:

• Exit 1: Early exit after the first convolutional layer.
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• Exit 2: Early exit after the second convolutional layer.

• Exit 3: Early exit after the third convolutional layer.

• Final Layer: Output after processing through the entire network.

This approach provided insights into the trade-offs between computational cost, prediction

accuracy, and energy efficiency at different depths of the network.

3.2 Sensory Profiling

Figure 3.2: Hololens 2 Sensors

The HL2SS (HoloLens 2 Streaming Server) enables access to raw data from key sensors on

the HoloLens 2, providing valuable inputs for research and development in multi-user mixed

reality applications[5]. The supported sensors include:

• Visible Light Camera: Captures real-world images at 30 frames per second (FPS),

providing essential inputs for scene understanding, visual feeds, and contextual analysis
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• Depth Camera & Long-Throw Depth Camera: These cameras enable high-

resolution spatial mapping with sampling rates ranging from 5–45 FPS and 1–5 FPS,

respectively, depending on the configuration. They are essential for applications requir-

ing accurate depth perception, such as object placement and environmental scanning.

• Microphones: Record high-quality audio at a 48 kHz sampling rate, supporting tasks

like voice recognition, sound localization, and acoustic analysis.

• Inertial Measurement Unit (IMU): Comprising an accelerometer, gyroscope, and

magnetometer, the IMU captures motion and orientation data at 12 Hz, enabling

robust tracking for navigation and interaction.

• Eye Tracking (EET) : Monitors gaze direction and focal attention with sampling

rates of 30 Hz, 60 Hz, or 90 Hz, facilitating precise interaction, intent detection, and

user experience personalization.

Table 3.1 provides a detailed summary of the sensors available on the HoloLens 2, along with

their documented frame rates (FPS) and sampling rates.

Table 3.1: Documented FPS and Sampling Rates for HoloLens 2 Sensors

Sensor Frame Rate (FPS) Sampling Rate (Hz)
Visible Light Camera 30 FPS -
Depth Camera 5–45 FPS -
Long-Throw Depth Camera 1–5 FPS -
Microphones - 48,000 Hz
Inertial Measurement Unit (IMU) - 12 Hz
Eye Tracking (EET) 30, 60, or 90 FPS -

These sensors collectively form the foundation for advanced spatial mapping, real-time user

interaction, and environmental analysis in HL2SS-enabled multi-user MR applications.
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3.2.1 Challenges in Sensor Integration

Integrating multiple sensors in the HoloLens 2 for mixed reality applications poses several

challenges, particularly when three or more sensors are used simultaneously. High data

transmission rates and computational demands can result in:

• System Bottlenecks: The concurrent use of multiple high-frequency sensors, such

as the visible light camera, eye-tracking sensor, and depth cameras, can strain the

device’s processing capabilities. This often leads to reduced sampling rates, degraded

performance, and increased latency.

• Synchronization Issues:In multi-user collaborative scenarios, ensuring consistency

and synchronization across devices is critical. However, the processing delays intro-

duced by simultaneous data streams can affect the alignment of sensor outputs, dis-

rupting the collaborative experience.

• Increased Latency: Higher computational demands can lead to delays in render-

ing or interaction, directly impacting the responsiveness and immersion of the MR

environment.

By systematically analyzing these challenges, we identified areas where optimization is re-

quired, particularly in scenarios that demand real-time performance. The insights gained

from this study were instrumental in designing strategies to mitigate these challenges and

enhance multi-sensor integration in HL2SS-enabled MR applications.
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3.2.2 Experimental Study

Single Sensor Testing

To evaluate the baseline performance of different sensors supported by the HL2SS server, a

simple application was developed in Unity. Each sensor was tested independently to measure

its frame rate or sampling rate under standard conditions. The application was designed

to capture and log data from the visible light camera, depth cameras (AHAT and long-

throw), microphones, IMU, and eye-tracking system. Observations were made regarding the

system’s behavior, such as how immediate data saving impacted performance and challenges

like audio noise removal. These tests were conducted to establish a baseline for single-sensor

performance before integrating multiple sensors. The performance of individual sensors was

evaluated to establish a baseline before integrating multiple sensors. The results, including

measured performance and key observations, are summarized in Table 4.8.

Dual Sensors Testing

After evaluating single sensors, the next step was to combine two sensors to analyze their

combined performance and compatibility. This involved streaming data simultaneously from

two sensors using the HL2SS server and observing the system’s behavior. The application

was modified to support dual-sensor configurations, and performance metrics such as frame

rates, sampling rates, and system responsiveness were measured.

Each possible combination of two sensors was tested systematically, such as the camera

and IMU, microphone and AHAT, and visible light camera with long-throw depth camera.

Observations were recorded regarding successful data capture, frame rates, and any limita-

tions encountered. For instance, while simpler combinations like the camera and microphone
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worked seamlessly, others, such as the AHAT depth camera and IMU, showed reduced frame

rates or synchronization issues.

This stage provided valuable insights into how sensor pairing affects system performance

and laid the groundwork for further studies involving multiple sensor integration. Detailed

results from these experiments, along with key observations, are presented in the Results

and Discussion section (refer to Table 4.9).

Three Sensor Testing

After evaluating single and dual-sensor configurations, the next step was to test the perfor-

mance of three-sensor combinations to understand the system’s capabilities and limitations.

During the tests, performance metrics such as frame rates, sampling rates, and responsiveness

were recorded. Observations were also made regarding issues such as noise, synchronization,

and computational bottlenecks. The goal was to assess how well the system managed the in-

creased data throughput and identify combinations that maintained acceptable performance

levels. Detailed results from these experiments, along with key observations, are presented

in the Results and Discussion section (refer to Table 4.10).

To explore the practical use of these sensors in a real-world scenario, we developed a mixed

reality multi-user application that collects and utilizes data from the camera and microphone.

This application serves as a testbed to evaluate the effectiveness of these sensors in facilitating

immersive and interactive experiences, emphasizing their role in capturing visual and audio

inputs for collaborative environments.
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3.3 Multi-user application

Multi-user capabilities serve as the foundation for collaborative (MR) applications, enabling

participants to interact and engage within a shared virtual environment seamlessly. This

section details the approach used to develop and optimize a collaborative MR system for

HoloLens 2, with a focus on achieving synchronization, real-time interaction, and resource

efficiency—all while ensuring an immersive user experience.

Figure 3.3: Multiuser Shared Experience

The project centered around the creation of an Image Sorting Game, a collaborative MR ap-

plication, leveraging the capabilities of the latest Mixed Reality Toolkit 3 (MRTK3)—Microsoft’s

framework for building immersive MR experiences in Unity. The development methodology

adhered to best practices outlined in the Mixed Reality Sharing tutorial for Unity [6], en-

suring a streamlined and scalable implementation.

The subsequent subsections provide a detailed breakdown of the development process, offer-

ing clarity on the various stages and techniques employed in creating the game. These include

the design of multi-user interactions, synchronization mechanisms, optimization strategies,

and user experience enhancements that make the collaborative MR application robust and

engaging.
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3.3.1 System Design

This section outlines the hardware and software components integrated into the collaborative

mixed reality (MR) environment, focusing on the HoloLens 2 sensors and their application

within the MR Image Sorting Game.

Collaborative Setup

To facilitate seamless multi-user collaboration, the system employs Photon Unity Networking

(PUN) and Azure Spatial Anchors for sharing object movements and interactions across users

in the MR environment:

• Photon Unity Networking (PUN): PUN, a networking framework tailored for

multi-user collaboration, ensures consistency by synchronizing all game components

across participants [18]. It supports real-time interactions, maintaining a uniform

experience for all users.

• Azure Spatial Anchors: Azure Spatial Anchors, a cloud-based service from Mi-

crosoft Azure, enable the creation and sharing of spatial anchors that accurately posi-

tion virtual objects in a shared space [13]. These anchors are essential for maintaining

alignment and consistency in the virtual environment.

In this application, both PUN and Azure Spatial Anchors are integrated to create, update,

and synchronize game objects across users, providing a robust collaborative setup [6].
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HoloLens 2 Configuration

To develop the collaborative application and harness the capabilities of the HoloLens 2, the

following configurations are essential:

• Developer Mode: HoloLens devices are set to Developer Mode, enabling the deployment

of the application from a Windows machine to the device.

• Research Mode: Research Mode, designed for academic and experimental purposes, is

enabled on the HoloLens 2 to access raw sensor data [12]. This mode provides data

from various sensors, including:

– Visible Light Camera

– RM Depth Camera

– Long-Throw Depth Camera

– Microphone

– Inertial Measurement Unit (IMU)

– Eye Tracking

The combination of Developer Mode and Research Mode ensures the app can both operate

effectively on HoloLens devices and leverage their advanced sensory capabilities.
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Data Collection Setup

To facilitate the collection of sensory data from the HoloLens 2, the system utilizes HL2SS—a

server application specifically designed for the HoloLens 2 that streams sensory data in real-

time via TCP[5].

By integrating the HL2SS plugin into the collaborative Image Sorting Game, the application

can seamlessly stream sensory data from the HoloLens 2. This setup allows for efficient data

collection, enabling analysis of how the integration of various sensors impacts the system’s

sampling rate. This not only supports real-time data streaming but also provides valuable

insights into optimizing sensor usage in collaborative MR applications.

3.3.2 Implementation

In this section, we will discuss the hardware and software tools used to implement the col-

laborative image sorting game and collect data. The software tools and hardware employed

for game development and data collection include Unity, MRTK3, OpenXR, Visual Studio,

HL2SS, HoloLens 2, and a Windows 10 PC. This section will further discuss the details of

the app implementation and data collection processes.

Collaborative Application

The collaborative app was inspired by the work of Yang et al [25]. The MR application in-

volves multiple users collaborating in the same physical space to sort 15 holographic images

based on emotion labels. To develop this application, the development machine must run

either Windows 10 or 11 and be capable of supporting Unity and the Universal Windows
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Platform (UWP). It should also have Visual Studio installed with the complete .NET frame-

work and C++ desktop development tools[16]. For our development, we used the Mixed

Reality Feature Tool by Microsoft to import essential packages such as Azure Spatial An-

chors, OpenXR, MRTK3, and PUN2 into Unity. The specific Unity version used for the

app development was 2022.3.10f1. The game features 7 emotion labels: Gloomy, Frustrated,

Figure 3.4: Collaborative Mixed Reality Setup

Delighted, Excited, Relaxed, Tense, and Tired, derived from Russell’s model [19]. The 15

holographic images used in the game were randomly selected from the Open Affective Stan-

dardized Image Set (OASIS) dataset[10]. The collaborative mixed reality setup, illustrated

in Figure 3.5, includes seven labeled categories representing emotions alongside a selection

of random images for sorting.

Data Collection

To facilitate data collection, HL2SS was seamlessly integrated into the collaborative Image

Sorting Game. During application runtime on the HoloLens 2, sensor data, including camera

and audio streams, was captured in real-time without compromising the app’s performance.

The camera sensor of Hololens 2 operates at 30 FPS and microphone at 48kHZ.
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Figure 3.5: Collaborative Setup with 4 Users

3.3.3 Experiment

To assess the effectiveness of the mixed reality multi-user image sorting game, a user study

was conducted involving four participants. Two participants utilized the HoloLens 2 de-

vice, while the remaining two engaged with the application using the Unity Mixed Reality

Emulator.

Figure 3.6: Shared Hologram
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This setup allowed for a diverse evaluation, testing the compatibility and usability of the

game across different platforms. As illustrated in Figure 3.5, the users interacted collab-

oratively in a shared virtual environment, demonstrating the potential for multi-platform

integration. The core feature of the game was the shared hologram, which served as the

central focus of interaction and was visible to all participants, regardless of the platform

they used. This shared hologram facilitated seamless collaboration among users, as depicted

in Figure 3.6. The study provided valuable insights into the application’s performance, user

experience, and the effectiveness of shared holographic content in enabling immersive and

collaborative gameplay.
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Chapter 4

Results & Discussion

4.1 Gesture Recognition and Early Exits

The gesture recognition model was evaluated on a dataset consisting of 10 distinct gestures,

capturing performance across multiple metrics:

• Accuracy: Indicates the model’s classification capability for each gesture.

• Battery Drain: Highlights the energy consumption for processing each gesture.

• Average FPS (Frames Per Second): Measures the real-time performance of the

model.

• Time Per Inference: Reflects the computational latency for each prediction.

These metrics were analyzed individually for each gesture, providing a detailed understanding

of the model’s behavior and trade-offs between performance and resource efficiency.
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Gesture 1 Gesture 2

Gesture 3 Gesture 4

Gesture 5 Gesture 6

Gesture 7 Gesture 8

Gesture 9 Gesture 10

Table 4.1: Different Gesture Images
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Figure 4.1: Accuracy of Prediction for Gesture 1- 10

Figure 4.2: Time/ Inference for Gesture 1- 10
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Figure 4.3: FPS for Gesture 1- 10

Gesture Battery Drain Across Different Exits

Gesture 1

Table 4.2: Battery Drain Across Different Exits for Gesture 1.
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Gesture Battery Drain Across Different Exits

Gesture 5

Gesture 6

Gesture 7

Table 4.3: Battery Drain Across Different Exits for Gestures 5-7.
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Gesture Battery Drain Across Different Exits

Gesture 8

Gesture 9

Gesture 10

Table 4.4: Battery Drain Across Different Exits for Gestures 8-10.
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Gesture Battery Drain Across Different Exits

Gesture 2

Gesture 3

Gesture 4

Table 4.5: Battery Drain Across Different Exits for Gestures 2-4.
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Table 4.6: Performance Metrics Across Exits for Gestures 1 to 6

Gesture Metric Exit 1 Exit 2 Exit 3 Final Exit

Gesture 1

Average Accuracy (%) 0.03 50.06 96.83 99.56

FPS 4.391 4.363 4.332 4.324

Time/Inference (ms) 226.45 227.63 230.66 231.32

Battery Drain (%) 12 12 12.25 13.37

Gesture 2

Average Accuracy (%) 0 43.20 97.05 99.60

FPS 4.517 4.417 4.372 4.341

Time/Inference (ms) 221.55 226.95 230.66 230.67

Battery Drain (%) 8.97 9.09 10.40 10.42

Gesture 3

Average Accuracy (%) 0.02 27.01 80.06 99.94

FPS 4.404 4.392 4.370 4.363

Time/Inference (ms) 227.18 227.80 229.08 229.31

Battery Drain (%) 7.60 7.60 7.61 8.59

Gesture 4

Average Accuracy (%) 0 27.10571 81.2575 96.129

FPS 4.412 4.335 4.325 4.302

Time/Inference (ms) 227.25 228.95 231.30 232.95

Battery Drain (%) 7.97 7.97 9.21 10.21

Gesture 5

Average Accuracy (%) 0 52.75 91.43 99.88

FPS 4.345 4.340 4.237 4.216

Time/Inference (ms) 230.51 230.83 236.19 237.12

Battery Drain (%) 12.32 12.71 14.48 14.52

Gesture 6

Average Accuracy (%) 0 37.34 94.78 99.85

FPS 4.423 4.386 4.363 4.343

Time/Inference (ms) 226.24 228.12 229.30 230.47

Battery Drain (%) 8.59 8.61 8.68 8.69
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Table 4.7: Performance Metrics Across Exits for Gestures 7 to 10

Gesture Metric Exit 1 Exit 2 Exit 3 Final Exit

Gesture 7

Average Accuracy (%) 0 27.22 79.02 99.70

FPS 4.507 4.462 4.451 4.426

Time/Inference (ms) 222.03 224.69 224.74 226.14

Battery Drain (%) 8.14 8.14 8.15 8.21

Gesture 8

Average Accuracy (%) 0.159 34.59 88.50 99.71

FPS 4.448 4.424 4.404 4.394

Time/Inference (ms) 224.95 226.20 227.64 227.76

Battery Drain (%) 9.19 9.33 10.40 10.52

Gesture 9

Average Accuracy (%) 0.159 29.06 93.42 98.78

FPS 4.471 4.427 4.420 4.376

Time/Inference (ms) 224.25 226.06 226.45 228.62

Battery Drain (%) 9.10 10.13 10.25 10.26

Gesture 10

Average Accuracy (%) 0.326 50.76 83.60 99.51

FPS 4.450 4.439 4.428 4.424

Time/Inference (ms) 224.97 225.76 225.98 226.13

Battery Drain (%) 11.66 13.33 13.34 13.35

After analyzing the data collected over 18–20 minutes, a clear trend emerged regarding the

performance of the final exit. It was observed that the final exit significantly increases battery

consumption, with a notably higher average processing time compared to earlier exits. This

pattern was consistent across most predictions.

The accuracy of predictions improved steadily from Exit 1 to the final exit, demonstrating

the benefits of deeper layers in achieving more precise results. However, this improvement
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comes at a cost, as the camera FPS gradually decreased when transitioning from Exit 1

to the final exit. Additionally, the average processing time exhibited a consistent increase,

further emphasizing the trade-off between computational efficiency and prediction accuracy

as the model progresses through its layers.

4.2 Sensory Profiling

4.2.1 Single Sensor Performance

The single-sensor performance results showed that most sensors performed near or at their

documented specifications when used independently. The observations and results for each

sensor are summarized in Table 4.8. For instance, the visible light camera achieved a mea-

sured frame rate of 29.16 FPS, close to the documented 30 FPS, while the AHAT depth

camera had a measured frame rate of 39.06 FPS compared to the expected 45 FPS due

to high-resolution processing demands. Key challenges included noise removal for the mi-

crophone data and latency when saving frames in real time for the visible light camera:

Table 4.8: Performance Evaluation of Individual Sensors

Sensor Measured Performance Documented Performance Observations
Camera (Visible Light) 29.16 FPS 30 FPS Immediate frame saving reduced FPS to 10, but

deferred saving restored it to 29.16 FPS.
Microphone 48,000 Hz 48,000 Hz Sampling rate matched the documentation; how-

ever, noise removal from saved audio remains a
challenge.

Depth AHAT Camera 39.06 FPS 45 FPS Measured FPS was slightly lower than documented
due to high-resolution processing demands.

Depth Long-Throw (LT) Camera 4.81 FPS 1–5 FPS Measured FPS aligned with the documented
range, as this is a low-frequency sensor by design.

Visible Light Camera (VLC) 29.08 FPS 30 FPS Measured performance was consistent with the
documented specification.

IMU (Accelerometer) 12 Hz 12 Hz Sampling rate matched the documented specifica-
tion without noticeable deviations.

Eye Tracking (EET) 30 FPS 30, 60, or 90 FPS Configured and tested at 30 FPS, one of the sup-
ported options as per the documentation.
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These findings provided a strong foundation for understanding single-sensor behavior and

informed the design of subsequent experiments involving multi-sensor integration.

4.2.2 Dual Sensor Performance

To evaluate dual-sensor combinations, each pair of sensors was tested systematically, and

the results are summarized in Table 4.9.

Table 4.9: Performance Evaluation of Two-Sensor Combinations

Camera Microphone AHAT Long-Throw VLC IMU Eye Tracking Comments
✓ ✓ Camera FPS = 25, Microphone Sampling

Rate = 48,000 Hz.
✓ ✓ ✓ IMU FPS = 11.72 Hz, Eye FPS = 30.

✓ ✓ ✓ Microphone Sampling Rate = 48,000 Hz,
IMU Sampling Rate = 11.8 Hz.

✓ ✓ Microphone Sampling Rate = 48,000 Hz, Eye
FPS = 30.

✓ ✓ Camera FPS = 29.5, IMU Sampling Rate =
48,000 Hz.

✓ No noticeable issues.
✓ Not Compatible with AHAT ✓ AHAT FPS = 4.2 FPS and IMU Sampling

Rate = 48,000 Hz.
✓ Not Compatible with AHAT ✓ IMU FPS = 11.7 Hz, AHAT FPS = 4.1 FPS.

✓ ✓ Not Compatible with AHAT Microphone Sampling Rate = 48,000 Hz,
AHAT FPS = 4.2 FPS.

✓ ✓ Not Compatible with AHAT ✓ Camera FPS = 20, AHAT FPS = 3.8 FPS.
Not Compatible with LT ✓ ✓ Long-Throw Depth FPS = 4 FPS, IMU Sam-

pling Rate = 11.8 Hz.
Not Compatible with LT ✓ Eye FPS = 30, Long-Throw Depth FPS =

4.1 FPS.
✓ Not Compatible with LT ✓ Long-Throw Depth and Microphone data in-

tegration is challenging.
✓ Not Compatible with LT ✓ Long-Throw Depth and Visible Light Cam-

era data integration is challenging.

The evaluation of dual-sensor combinations revealed several key findings. Most configu-

rations, such as the combination of the visible light camera and microphone, performed

seamlessly, maintaining stable performance metrics, such as a camera frame rate of 25 FPS

and a microphone sampling rate of 48,000 Hz. Similarly, combinations like the IMU with

the microphone or eye tracking demonstrated minimal performance impact. However, cer-

tain combinations, such as the AHAT depth camera with the IMU or microphone, showed

reduced performance, with the AHAT frame rate dropping to around 4.2 FPS due to com-

putational demands. While the AHAT and Long-Throw Depth cameras could not function
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together due to their similar roles as depth sensors, this limitation is expected and not a

significant concern for typical applications[24]. The long-throw depth camera, when com-

bined with other high-frequency sensors such as the visible light camera, exhibited reduced

responsiveness and synchronization issues, likely due to high-resolution data output. Ob-

servations indicated that simpler sensors like the IMU and eye tracking integrated more

effectively, whereas combinations involving high-resolution or high-frequency sensors often

faced bottlenecks. These findings highlight the importance of selecting compatible sensors

and optimizing system resources in mixed reality applications. They also emphasize the need

for advanced strategies, such as adaptive sampling or prioritized data handling, to support

seamless multi-sensor integration. These insights provide a foundational understanding of

the system’s limitations, paving the way for future studies involving more complex multi-

sensor setups.

4.2.3 Three Sensor Performance

To evaluate three-sensor combinations, each pair of sensors was tested systematically, and

the results are summarized in Table 4.10. The evaluation revealed several important find-

Table 4.10: Performance Evaluation of Three-Sensor Combinations

Camera Microphone AHAT Long-Throw VLC IMU Eye Tracking Comment
✓ ✓ ✓ Won’t work with AHAT Camera: 20 FPS, Microphone: 45 kHz,

AHAT: 2 FPS, noise removal is hard.
✓ ✓ ✓ Camera: 25 FPS, Microphone: 45 kHz, Eye

Tracking: 30 FPS, noise removal is hard.
✓ ✓ ✓ Camera: 20 FPS, Microphone: 45 kHz, IMU:

9 Hz, reduced responsiveness.
✓ ✓ Won’t work with AHAT ✓ Camera: 18 FPS, Microphone: 45 kHz, IMU:

10.2 Hz, synchronization is slow.
✓ ✓ Won’t work with AHAT ✓ Camera: 20 FPS, AHAT: 2.5 FPS, noise re-

moval is challenging.
✓ Won’t work with Long ✓ ✓ Microphone: 48 kHz, IMU: 11.5 Hz, Eye

Tracking: 30 FPS, no major issues.

ings regarding performance and system limitations. Combinations involving lower-demand

sensors, such as the microphone, IMU, and eye tracking, performed reliably, with minimal
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performance degradation. For instance, the combination of the microphone, IMU, and eye

tracking achieved stable metrics, with the microphone sampling at 48 kHz, the IMU at

11.5 Hz, and the eye tracking at 30 FPS, with no significant issues. However, combinations

involving high-resolution sensors like AHAT or the long-throw depth camera encountered

challenges. For example, the combination of the camera, microphone, and AHAT resulted

in a reduced AHAT frame rate of 2 FPS and noise removal challenges in the microphone

data. Similarly, the long-throw depth camera faced incompatibility issues when paired with

AHAT due to overlapping computational demands. Configurations involving multiple high-

resolution sensors were observed to be slower and less responsive, emphasizing the system’s

bandwidth and processing constraints. These results highlight the importance of selecting

compatible sensors and optimizing system resources, particularly in real-time mixed reality

applications, where performance bottlenecks can impact user experience and responsiveness.

4.3 Multi-user application

The collaborative Image Sorting Game was successfully developed and tested with a group

of four participants. Two participants used HoloLens 2 devices, while the other two used

the HoloLens 2 emulator within Unity. The gameplay experience was seamless across both

setups, with all users able to interact with the shared virtual environment effectively. Real-

time synchronization and multi-user collaboration were achieved without any noticeable

delays or performance issues.

Table 4.11: Data Collection Specifications During Testing Phase

User Device Camera Frame Rate (FPS) Audio Sampling Rate (kHz)
HoloLens 2 25 FPS 48 kHz

Unity Emulator 30 FPS 44.1 kHz (via mobile phone)
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Data collection during the testing phase further validated the system’s functionality. For

users operating the HoloLens 2, the HL2SS plugin streamed and recorded camera data at

25 FPS and audio data at 48 kHz, providing high-quality inputs for analysis. In contrast,

users using the emulator relied on mobile phones for audio and video data collection, with

camera information recorded at 30 FPS. This dual setup ensured that comprehensive data

was gathered across different operational environments, enabling a thorough evaluation of

the game’s performance and usability.

As discussed in the previous sections, the application has the potential to integrate additional

sensors, such as the eye tracker, to further enhance the multi-user collaborative experience.

For instance, incorporating the depth camera could enable more accurate spatial mapping

and object positioning, improving alignment and interaction consistency across multiple

users. However, integrating sensors like the depth camera, especially in combination with

others such as the camera and microphone, may introduce performance challenges as seen in

Table 4.10. The increased data processing requirements could impact system responsiveness

and sampling rates, as highlighted earlier. Optimizing these sensor combinations to maintain

seamless performance in multi-user environments is a promising area for future research and

development, paving the way for more advanced collaborative mixed reality applications.
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Chapter 5

Conclusion & Future work

This study explored three key aspects of leveraging the HoloLens 2 platform: gesture recogni-

tion, sensor integration, and multi-user applications. The gesture recognition model demon-

strated robust performance, with accuracy steadily increasing from early exits to the final

layer, achieving a peak accuracy of 99.56%. However, this came at the cost of higher battery

drain, increased inference time, and reduced FPS. The use of early exits proved effective for

balancing computational efficiency and accuracy, making the model suitable for real-time

applications in resource-constrained environments.

The sensor integration analysis provided valuable insights into the capabilities and limi-

tations of single and multi-sensor configurations. While individual sensors generally met

their documented specifications, dual and three-sensor combinations revealed performance

bottlenecks, particularly when high-frequency or high-resolution sensors like the AHAT and

Long-Throw Depth cameras were involved. These findings emphasize the need for care-

ful sensor selection and system optimization to maintain real-time responsiveness and data

quality in mixed reality applications.
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The multi-user application demonstrated the potential for collaborative mixed reality expe-

riences. The image sorting game allowed seamless interaction and synchronization between

users on HoloLens 2 and Unity Emulator, validating the system’s functionality in a multi-

device environment. Despite the success, integrating additional sensors in collaborative

setups highlighted challenges related to bandwidth and latency, underscoring the complexity

of real-time multi-sensor, multi-user systems.

The integration of gesture recognition, sensor capabilities, and multi-user collaboration on

the HoloLens 2 forms a cohesive framework for advancing interactive mixed reality applica-

tions. Gesture recognition provides an intuitive and natural interface for user interaction,

while the use of early exits in the model ensures adaptability to varying computational and

energy constraints. Sensor integration enhances the system’s capability to perceive and re-

spond to environmental cues, such as spatial mapping and gaze tracking, enabling more

immersive experiences. When extended to multi-user applications, these capabilities facili-

tate seamless collaboration in shared virtual environments, allowing synchronized interaction

and consistent user experiences. Together, these components address key challenges in mixed

reality, such as real-time responsiveness, energy efficiency, and synchronization, paving the

way for scalable and versatile systems that merge individual user needs with collaborative

functionality. This synergy between gesture-based interaction, multi-sensor integration, and

multi-user collaboration underscores the potential for HoloLens 2 to serve as a robust plat-

form for diverse real-world applications.

Building on the findings of this study, future work will focus on enhancing the system’s

efficiency, scalability, and versatility. For gesture recognition, dynamic exit strategies will be

explored to optimize computational efficiency by adaptively selecting exits based on gesture

complexity and system constraints, such as battery life and latency. In terms of sensor

integration, future efforts will investigate adaptive sensor management techniques, such as
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prioritized sampling and data compression, to address performance bottlenecks in multi-

sensor setups. For multi-user applications, scaling the system to support larger groups and

improving synchronization across devices will be a priority. The integration of advanced

sensors, such as the AHAT depth camera, for precise spatial mapping and object alignment

will further enhance collaboration.
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Appendix A

Gesture Recognition Model

Architecture

The gesture recognition model developed for this study incorporates a convolutional neural

network (CNN) with sequential learning and early exit mechanisms. The following sections

detail the implementation of the model’s initialization and forward pass logic. This architec-

ture is designed for efficient gesture recognition, balancing computational complexity with

high accuracy.

A.1 Model Initialization

Listing A.1 provides the initialization of the gesture recognition model. This includes:

• Four convolutional layers for feature extraction, each followed by ReLU activations and

max-pooling layers to reduce spatial dimensions.
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• Three fully connected layers for early exits, enabling intermediate predictions to opti-

mize computational efficiency.

Listing A.1: Model Initialization

class GestureRecognitionModel(nn.Module):

def __init__(self):

super(GestureRecognitionModel , self).__init__ ()

# Convolutional layers

self.conv1 = nn.Sequential(

nn.Conv2d(1, 32, kernel_size =5, padding =2),

nn.ReLU(),

nn.MaxPool2d(kernel_size =2)

)

self.exit0_fc = nn.Sequential(

nn.Flatten (),

nn.Linear (32 * (IMG_SIZE // 2) * (IMG_SIZE // 2), 256),

nn.ReLU(),

nn.Linear (256, 128),

nn.ReLU(),

nn.Linear (128, 10)

)

self.conv2 = nn.Sequential(

nn.Conv2d (32, 64, kernel_size =3, padding =1),

nn.ReLU(),

nn.MaxPool2d(kernel_size =2)

)

self.exit1_fc = nn.Sequential(

nn.Flatten (),

nn.Linear (64 * (IMG_SIZE // 4) * (IMG_SIZE // 4), 256),

nn.ReLU(),

nn.Linear (256, 128),

nn.ReLU(),

nn.Linear (128, 10)

)

self.conv3 = nn.Sequential(

nn.Conv2d (64, 96, kernel_size =3, padding =1),

nn.ReLU(),

nn.MaxPool2d(kernel_size =2)

)

self.exit2_fc = nn.Sequential(

nn.Flatten (),

nn.Linear (96 * (IMG_SIZE // 8) * (IMG_SIZE // 8), 256),

nn.ReLU(),

nn.Linear (256, 128),

nn.ReLU(),
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nn.Linear (128, 10)

)

self.conv4 = nn.Sequential(

nn.Conv2d (96, 96, kernel_size =3, padding =1),

nn.ReLU(),

nn.MaxPool2d(kernel_size =2)

)

# Final classifier

self.fc1 = nn.Linear (96 * (IMG_SIZE // 16) * (IMG_SIZE // 16), 256)

self.fc2 = nn.Linear (256, 128)

self.fc3 = nn.Linear (128, 10)

• A final classifier for the most accurate predictions, processing the data through the

entire network.

A.2 Model Forward Pass

The forward pass logic of the model is shown in Listing A.2. This section describes how

input data flows through:

Listing A.2: Model Forward Pass

def forward(self , x):

outputs = [] # Outputs from all exits

# Pass through conv1

x = self.conv1(x)

outputs.append(self.exit0_fc(x)) # Early Exit 0

# Pass through conv2

x = self.conv2(x)

outputs.append(self.exit1_fc(x)) # Early Exit 1

# Pass through conv3

x = self.conv3(x)

outputs.append(self.exit2_fc(x)) # Early Exit 2

# Pass through conv4 and final classifier

x = self.conv4(x)

x = x.view(x.size (0), -1) # Flatten

x = torch.relu(self.fc1(x))
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x = torch.relu(self.fc2(x))

outputs.append(self.fc3(x)) # Final Output

return outputs

• Convolutional layers, extracting hierarchical features from the input image.

• Early exits, which produce intermediate outputs for simpler gestures.

• The final classifier, which consolidates high-level features to provide the most accurate

predictions for complex gestures.
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