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Abstract

Essays on Centralized School Choice and Assignment Systems

by

Thomas Krussig Vocke

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Benjamin Handel, Chair

This dissertation studies how to improve the outcomes of Centralized Choice and As-
signment Systems (CCAS) for schools, with a focus on both social objectives such as so-
cioeconomic, cultural, or racial integration, as well as family welfare. CCAS systems are
increasingly used worldwide for both student and teacher assignments, and their popularity
is expected to rise further as digitalization continues to expand globally. Therefore, iden-
tifying cost-effective policies that can improve the functioning of CCAS systems can have
significant implications, as they are likely to be applicable in many different contexts.

In the first chapter, co-authored with Isabel Jacas, we investigate an assignment rule
policy: socioeconomic reserves (SR) for low-socioeconomic status (low-SES) families in the
Chilean CCAS for PreK schools. Although the implementation of the CCAS system was
expected to reduce school segregation by eliminating family background-based selection, sim-
ilar levels of segregation persist. However, we find that optimizing the size of SR to local
conditions can significantly improve outcomes. By setting SR at the schools’ municipality
low-SES applicants’ share, educational segregation can be reduced by five times compared
to the current flat 15% level when compared to a minimum segregation benchmark obtained
by estimating family preferences and generating counterfactual applications that eliminate
the drivers of differences in choice between socioeconomic groups. Additionally, leveraging
demand-side policies as a complement to SR can further reduce segregation considerably, as
SR effectively assigns additional low-SES applicants to congested schools where their share is
underrepresented. In the second chapter, co-authored with Gregory Elacqua, Leidy Gómez,
Luana Marotta, Carolina Méndez, and Christopher A. Neilson, we investigate an informa-
tion demand-side policy that leverages the “smart” personalized feedback potential of digital
application processes in CCAS. Specifically, we examine the causal impact of a personalized
non-assignment risk warning, combined with a list of “achievable” teaching position rec-
ommendations, on teacher applications in the Ecuadorian “I Want to Become a Teacher”
selection process. Our analysis reveals that treated teachers are significantly more likely to
modify their application and secure an assignment, and we also provide evidence suggest-
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ing that the intervention resulted in an increase in selection scores used by the Ecuadorian
Ministry of Education to evaluate teacher performance.

The third chapter of this dissertation, co-authored with Gregory Elacqua, Isabel Jacas,
Carolina Méndez, and Christopher A. Neilson, takes a step back from improving the out-
comes of CCAS to examine the broader comparison between these systems and alternatives.
Specifically, we compare the welfare effects on families of a CCAS implementation in the
city of Manta, Ecuador in 2021, incorporating household preferences for the first time as an
assignment criterion (using the deferred acceptance algorithm) and compare it to the alterna-
tive assignment mechanism previously used, which was also centrally coordinated but based
on minimizing residence-to-school distances. Our findings reveal that considering applicant
preferences leads to significant welfare gains, suggesting that CCAS can have a substantial
impact on welfare in developing country contexts, even without complete optimization using
policies such as those studied in the first two chapters.
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coauthors Chapter 2, Isabel Jacas coauthors Chapter 3, and Christopher A. Neilson, also
Professor of Economics at Yale University, is a coauthor in both chapters.

I am deeply grateful to all of the coauthors from the IADB and CB teams for their
dedicated and hard work, especially during the challenging implementation phases of the
Covid-19 pandemic. Our collaborations have provided invaluable lessons that have enriched
my academic and professional experience.

Acknowledgements: I am deeply grateful to Benjamin Handel for his unwavering support
and guidance throughout my PhD journey. His kindness and encouragement were essential
in helping me complete this dissertation. I am also extremely grateful to my Committee
members, Matthew Backus, Kei Kawai, and Jonathan Kolstad, for their valuable time, ex-
ceptional advice, and feedback, as well as for their overall encouragement. I also want to
thank Chris Walters for participating in my Qualifying Examination and offering extremely
insightful comments and feedback. I would also like to express my heartfelt thanks to Janene
Carol for her exceptional professionalism and support, which made the administrative pro-
cess smoother, especially during my re-joining the program.

I am also grateful to Christopher A. Neilson for introducing me to the field of informa-
tion interventions in education, particularly in relation to Centralized Choice and Assignment
Systems, which are core issues studied in my dissertation. His encouragement and support
were invaluable in these projects, and I deeply appreciate his generosity in sharing knowledge,
ideas, and feedback. I would also like to acknowledge the contributions of all the collabo-
rators at ConsiliumBots, including my coauthors and many other outstanding professionals,
who made these projects possible. In particular, I want to thank Benjamin Madariaga for his
collaboration in implementing assignment algorithms and simulations, which were critical to
the success of this work.

I cherish many wonderful memories from my time at Berkeley, largely due to the excep-
tional individuals who enriched my experience. I am grateful to Juan Pablo Atal, Pierre
Bachas, César Dı́az, Ezequiel Garcia-Lembergman, Felipe González, Danae Varándano,
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Chapter 1

The Effects of Adjusting
Socioeconomic Reserves to Local
Conditions in Chile’s Centralized
PreK Choice

1.1 Introduction

Affirmative action is a controversial issue, particularly in the context of admission to selective
high school and college programs. Part of the controversy stems from the displacement of
non-targeted candidates who scored higher on the selection metric in use, necessitating a
balance between social objectives and potential inefficiencies that may arise from enrolling
potentially less qualified students (Arcidiacono and Lovenheim, 2016). In extreme cases,
targeted students may be worse off by being placed in programs for which they are ill-
prepared.1 In the case of PreK admissions, the debate differs. Although disparities in
children’s readiness for school may exist, selecting students based on these disparities is
much less sensible. Affirmative action policies can aim to counter schools that do select on
them or that select on family background, as well as aim to counter systematic differences in
family choice resulting from residential sorting or heterogeneous preferences between families
in targeted and non-targeted groups. By prioritizing targeted applicants, the objective is to

1On the other end to this “mismatch theory” risk (see Sander (2004)), affirmative action policies can not
only benefit targeted students but also be efficient, which is likelier when the outside option of non-targeted
students is comparatively better (e.g. more expensive private institutions). For example, Otero, Barahona,
and Dobbin (2021) study an affirmative action policy in the context of Brazilian college enrollment and
estimate that, in terms of their predicted average salaries, average gains by targeted individuals are slightly
higher than the average losses of non-targeted ones, which is notable considering the size of reserves being
50% of seats (target marginalized students represent 82% of the overall student population).
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reduce segregation and assignment gaps to higher-quality programs to the extent possible.2

The main challenge at the PreK level lies in effectively achieving this objective as attainable
results are constrained by context factors such as residential sorting.3

In Chile, the implementation of a new centralized school choice and assignment system
(CCAS) aimed to regulate admissions to public and private voucher (subsidized) schools
was expected to reduce segregation by eliminating one of its drivers: the possibility of
schools discriminating against low-socioeconomic status (low-SeS) applicants. However, the
segregation reduction effect of the new system has been limited, even with the incorporation
of socioeconomic reserves (SR) as an affirmative action rule that prioritizes 15% of the seats
at all schools. The SR give priority to low-SeS applicants who choose popular schools that
would otherwise not meet the reserve’s seat target while filling all their available seats.

For CCAS like the Chilean, targeted reserves are identified in the literature as the rec-
ommended instrument,4 but evidence on two key elements is lacking. First, the extent to
which the effects of SR may be constrained by residential sorting and heterogeneity in family
preferences between targeted and un-targeted groups. Second, to maximize their effective-
ness, the size of SR at each school, as well as any complementary policies, need to respond
to these constraints and to variations in the share of the targeted population across different
geographic units, even if residential sorting within each unit is small. Implementing a flat
reserve size, as is done in Chile, is sub-optimal.

In this chapter, we estimate family preferences over PreK programs in the Chilean CCAS,
focusing on applications in the city of Santiago between 2019 and 2021, and contribute to
filling the lack of evidence in three dimensions.

First, we decompose the contribution of each segregation driver and assess its interaction
with SR. We find that residential sorting accounts for 40% of the segregation in the ab-
sence of SR, while differences in preferences between socioeconomic groups account for the
remaining portion. Implementing SR can only close a fraction of the segregation produced
by both factors. However, we further show that targeted reserves complement reductions
in residential segregation more effectively. When comparing the gap in segregation between
implementing only SR and implementing SR along with the elimination of both drivers of dif-

2Moreover, school segregation may cause a widening in achievement gaps between groups (Card and Rothstein,
2007; Billings, Deming, and Rockoff, 2013).

3From a normative standpoint, the main contention is treating students differently based on their socioeco-
nomic, race, or ethnic status. We disregard this debate and assume less segregation and a smaller achievement
gap are strictly preferred.

4This instrument is ideal because it acts as a “soft-bound” (as opposed to quotas), in the sense that reserved
seats are allocated to other applicants when there are not enough in the target group to fill them. On the
contrary, when the target quota in a school is not satisfied, congestion in other schools increases, pushing
unassignment levels upwards and reducing welfare (Hafalir, Yenmez, and Yildirim, 2013; Ehlers, Hafalir, Yen-
mez, and Yildirim, 2014; Echeñique and Yenmez, 2015). More specifically, Ehlers et al. (2014) demonstrate
that the “student-proposing deferred acceptance algorithm produces an assignment that Pareto dominates
all other fair assignments while eliciting true preferences” (here, fair assignment is the same as the absence
of justified envy, which using the priorities determined by the intended affirmative action policies implies
that the matching is strictly better for minority students). As Chile uses the student-proposing deferred
acceptance mechanism, reserves are the optimal policy.
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ferences in choice across socioeconomic groups (residential sorting and preferences), we find
that SR and only eliminating residential sorting reduces segregation by around 60% of that
gap, compared to around 30% when paired with the elimination of preference heterogeneity
between groups.

Our second contribution is to examine the importance of tailoring SR to local conditions.
We define the achievable segregation gap as the difference between a no-reserve benchmark
and a minimum segregation scenario that accounts for the elimination of both drivers of dif-
ferences in family choice between socioeconomic groups, and find that, relative to this gap,
current SR reduce average segregation at the Municipality level by 3% to 9.2%. However,
the impact of SR varies significantly depending on the level of reserves in each school. We
estimate that the effect of SR is multiplied by around five if their size equals the share of
low-SES applicants in each school’s Municipality. Setting SR at such a level is not necessarily
optimal, as computing the optimal level would require precisely defining the target segrega-
tion minimization objective, which, as discussed in Section 1.4, is not straightforward. The
key message nevertheless is that adapting the reserve size to local conditions is important for
their effectiveness. To further strengthen this point, we estimate the impact of setting SR
at 40% in each school, equivalent to the share of low-SES applicants in the whole city, and
find that the average impact is significantly smaller compared to SR set at the Municipality
level. Furthermore, in Municipalities with a smaller share of low-SES applicants, segregation
can worsen considerably.

Our third contribution is to highlight the strong complementarities between SR and
demand-side policies, as SR make the most of each additional low-SES applicant to a con-
gested program under-representing their share. We simulate arbitrarily demand-side policies
that, when implemented with reserves, reduce the segregation gap by an additional 20-30%
on top of the effect of SR alone. In contrast, implementing them in isolation only achieves
a reduction of 4-10%, emphasizing the potential of considering both policies jointly.

Understanding the effects of affirmative action in CCAS is relevant because insights
gained from one setting can be applied to others more directly, and the implementation
of CCAS is on the rise, as documented by Neilson (2019). While relatively fewer of these
systems encompass PreK admissions, the trend towards digitalization will likely increase
their prevalence in the coming years. Moreover, promoting integration at the PreK level
can have positive externalities for integration in later grades. Additionally, these systems
provide an ideal environment to design, implement, and monitor affirmative action policies.

Most of the literature on CCAS has focused on alternative assignment mechanisms and
their impact on the welfare of individual families (Pathak and Sönmez, 2008; Abdulka-
diroğlu, Che, and Yasuda, 2011; Pathak, 2017; Abdulkadiroğlu et al., 2017; Kapor, Neilson,
and Zimmerman, 2020; Elacqua, Jacas, Krussig, Marotta, Méndez, and Neilson, 2022b).
More recently, a growing body of research has attempted to disentangle the underlying de-
terminants of segregation and the achievement gap, such as the role of family preferences
and residential sorting (Kessel and Olme, 2018; Oosterbeek, Sóvágó, and van der Klaauw,
2021; Laverde, 2021; Son, 2020; Idoux, 2022). Some studies have also examined changes to
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assignment rules, but to the best of our knowledge, none have focused on targeted reserves.5

This is partly due to some jurisdictions not allowing such direct affirmative action (e.g.,
the US in the case of race (Ellison and Pathak, 2021)). However, countries such as Brazil,
Chile, Colombia, Ecuador, Peru, The Netherlands, and Sweden have used or continue to use
targeted reserves as part of their affirmative action policies.

Similar to other studies, we employ a measurement strategy based on constructing coun-
terfactual assignments (Kessel and Olme, 2018; Son, 2020; Laverde, 2021; Oosterbeek et al.,
2021; Idoux, 2022), estimating family preferences to create counterfactual applications un-
der three alternative demand estimation models drawn from the related literature that we
adapt to our context and integrate into one unique framework. The reason for using dif-
ferent models is that each has its own advantages and limitations in addressing the “short
list challenge”, that is, the fact common to other school choice contexts of observing short
application lists despite applicants having many different alternatives that they can include
in their submitted preference list free of cost. In our context, rank-order lists (ROLs) have
an average length of 3.11 programs, despite families having an average of 21 alternatives
within a distance equal to or smaller than the farthest school ranked. Moreover, from the
on average, 8.13% of applicants that resulted unassigned during the three years studied,
61.6% of them ended up enrolling in a public or voucher alternative available at the time of
portfolio choice, highlighting that other options are also acceptable to them (30.2% did not
enroll in any school, as PreK is voluntary, and only 8.2% enrolled in a private non-subsidized
alternative).6

The models implemented differ only in how families form their ROLs. The first assumes
that applicants consider all available alternatives and rank all those preferred to the outside
option (similar to (Abdulkadiroğlu et al., 2017)). The second assumes that applicants con-
sider all alternatives but face a ranking cost of including them in their ROL (as in Idoux
(2022)). The third assumes that applicants face a cost of considering alternatives and thus
optimally decide to consider a subset of available options, based on the information they
have available, ranking at the end of the process only those considered and preferred to the
outside option (similar to Son (2020)).

We show that results obtained with the different models are broadly consistent, and we
mainly focus the more detailed comparisons on the last alternative for two reasons. First,
in our view it is more realistic in assuming a portfolio formation process where information
acquisition and processing is difficult and thus limited. Second, the model also allows us to

5Escobar and Huerta (2021) are an exception studying socioeconomic reserves also in Chile, but uniquely
changing their size and computing segregation results, without considering geographic heterogeneity nor the
interaction of reserves with residential sorting and family preference heterogeneity. Their analysis revolves
mainly around comparing theoretically derived predictions of the effect of reserves on the properties of the
assignment mechanism with actual results, assuming that preferences would remain unchanged.

6The percentages for each year are as follows: 11.59%, 6.37%, and 5.91% applicants were unassigned in 2019,
2020, and 2021 respectively. 61.34%, 61.74%, and 61.74% of those applicants enroll in a public or voucher
alternative. 32.24%, 29.78%, and 28.65% did not enroll, and 6.42%, 8.48%, and 9.61% enrolled in a non-
subsidized private alternative. Note that non-enrollment levels, as well as school desertion levels, rose in
Chile during the COVID-19 pandemic.
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simulate policies that reduce information acquisition costs, for example, through information
interventions (Hastings and Weinstein, 2008; Andrabi, Das, and Khwaja, 2017; Allende,
Gallego, and Neilson, 2019; Arteaga, Elacqua, Krussig, Méndez, and Neilson, 2022). It is
worth noting that the results with the alternative models would nevertheless be very similar
given their consistency observed in the main counterfactuals. As a result, key takeaways of
the additional counterfactuals would be the same and focusing on the costly consideration
alternative is not significant for the analysis.

One limitation of our study to consider is that we focus only on the Main assignment
round and do not examine the aftermarket dynamics that may shape some of our conclusions.
The reason is due to data restrictions and assumptions required to predict counterfactual
behavior beyond the main round. To address the potential bias resulting from this limita-
tion, we report an alternative segregation measure that includes unassigned applicants in
each Municipality.7 Future research should investigate the effects of these dynamics on our
findings in more detail.8

As for the rest of this chapter, Section 1.2 discusses the Chilean educational context, fo-
cusing on the Inclusion Law that regulates the CCAS. Here we also introduce the segregation
measures used in this chapter. Section 1.3 details our available data, while, given the rele-
vance of challenges posed by the geographic context, Section 1.4 is dedicated to explaining
the methodology used to determine the geographic units used for preference estimation and
the criteria used to select applicants included in counterfactuals, as well as the rationale for
using Municipalities as our geographic unit to measure segregation. Section 1.5 lays out the
models and estimation results, Section 1.6 covers the different counterfactuals implemented
and presents our main results, and Section 1.7 concludes.

For readers unfamiliar with SR or interested in better understanding how they operate,
Appendix A.9 describes the deferred acceptance algorithm used in Chile (see Correa, Epstein,
Escobar, Rios, Bahamondes, Bonet, Epstein, Aramayo, Castillo, Cristi, and Epstein (2019)
for further detail).

1.2 The Chilean Educational Context

In 1981, a significant reform introduced competition between education providers, estab-
lishing the structure of the current educational system. The reform decentralized the ad-
ministration of public schools, transferring responsibility from the state to Municipalities,
which are the smallest administrative units of the country. The reform also introduced a

7Thus, for example, if setting socioeconomic reserves closer to the share of low-SeS applicants in the Munici-
pality increases the unevenness of unassignment between socioeconomic groups, the segregation measure is
reduced by less. Moreover, including unassigned applicants, we keep the pool of applicants in the segrega-
tion computation of the different counterfactuals roughly constant (some variation is due to changes in the
Municipality of the school to which an applicant is assigned). That increases the comparability of results.

8The impact of this limitation on other outcomes considered in this chapter, related to the efficiency of the
assignment, is relatively small because levels of unassignment are not substantial, especially for the 2020 and
2021 years affected by the COVID-19 pandemic, having fewer overall applicants.
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voucher-based system linked to schools’ enrollment, providing funds for public and a fraction
of private schools. There are thus three types of schools in this system: public, subsidized,
and private (non-subsidized). Private subsidized or private voucher schools were allowed to
charge unrestricted top-off fees over the government subsidies.9

After 1990, the Chilean education system underwent two significant reforms. The first
was the enactment of the Preferential School Voucher (SEP) in 2008. Prior to this policy,
the voucher linked to enrollment was the same for all students. The SEP reform introduced
a targeted voucher for more vulnerable students, which was added to the flat subsidy (see
Neilson (2021)).10 This change increased schools’ incentives to enroll low-SES students,
whose categorization is determined by measures linked to social protection programs (in the
CCAS, low-SES status determines priority for SR).11

The Inclusion Law Reform

In 2015, the Inclusion Law was enacted with three primary goals: to eliminate for-profit
institutions from subsidized education, gradually eliminate top-off fees, and regulate the ap-
plication and enrollment processes of public and subsidized schools through a centralized
system. To achieve the first objective, for-profit private voucher schools were required to
switch to non-profit entities to access public resources. The second objective was accom-
plished by freezing top-off fees and implementing a schedule for their gradual reduction,
which was supported by public funding. The third objective involved the implementation of
the School Admission System (SAE, for its initials in Spanish), the CCAS studied in this
chapter, which was gradually rolled out starting with entry grades in the Magallanes region

9The Chilean educational system comprises three levels: preschool, primary, and secondary education, with
schools able to offer any combination of grades. Preschool education includes nurseries, pre-kindergarten
(PreK), and kindergarten, none of which are mandatory. There was a law project aiming to make kinder-
garten compulsory since 2013, but it was rejected on September 2021 by the Congress’ Chamber of Deputies.
However, according to 2017 data from the population census and the enrollment data, only 7% of children
do not attend PreK, and only 1% do not attend kindergarten. These numbers rose, however, during the
COVID-19 pandemic. It is important to note that families must make strategic enrollment decisions, as find-
ing a desirable school during the PreK application process is easier due to the greater number of available
seats relative to kindergarten admissions the following year. Primary education spans from first to eighth
grade, with secondary education consisting of four grades covering the academic material in the college entry
exam (PAES). While students can change schools at any grade, the main entry points to schools in the
system are PreK and the first grade of secondary education.

10The SEP Law defines low-SeS or “priority” students as “students with a family’s socioeconomic situation
that hampers the possibilities of facing the educational process.” Concretely, this represents around 40% of
students in the city of Santiago.

11The SEP reform also enhanced accountability and control over the use of public resources. To receive
additional funds for their low-SeS students, schools must sign an agreement with the Ministry of Education.
The agreement requires schools to eliminate top-off payments for these students and use the extra resources
to implement educational improvement plans specifically targeting them. This agreement is renewable and
lasts for four years, subject to specific academic goals.
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in 2016 and all the region’s grades in 2017.12

By regulating the school admission process and eradicating the possibility of schools se-
lecting students based on their family background, the system was expected to contribute
significantly to reducing segregation.13 However, evidence suggests that the new system’s
success in reducing school segregation has been, at best, moderate. Kutscher, Nath, and
Urzua (2020) use a difference in differences strategy to measure the SAE’s impact on segre-
gation, leveraging the progressive policy roll-out in different regions of the country and find
that there is “(no) overall improvement in the evenness of the student background distribu-
tion”. Their findings also suggest that Municipalities with higher residential segregation or
a larger share of private non-subsidized schools experienced an uptick in school segregation.

However, caution should be exercised when interpreting Kutscher et al. (2020) findings.
They only study segregation in 9th-grade enrollment and schools offering 9th grade are fewer
and enroll more students than those offering PreK. Moreover, families are more likely to
enroll in schools further from home when students are older. Furthermore, recent difference-
in-differences literature highlights some challenges in using that methodology to study the
effect of the Inclusion law reform in Chile that may not be adequately incorporated in
Kutscher et al. (2020) empirical approach (see Roth, Sant’Anna, Bilinski, and Poe (2022)
for a summary of that literature).14 In any case, substantial levels of segregation in Chilean
school enrollment remain.

The SAE uses the Deferred Acceptance (DA) algorithm by Gale and Shapley (1962),
starting the assignment with applicants to the highest grade (4th year of secondary ed-
ucation) and finishing assigning PreK applicants. Total available seats in a program are
distributed in reserve groups, with the priority orderings shown in Table 1.1.15

The Ministry of Education’s Decree Law 196 from 2006 required private voucher institu-
tions to have a student body with at least 15% low-SeS (or “priority”) students to receive

12The entry levels of four more regions (Tarapacá, Coquimbo, O’Higgins, and Los Lagos) were added in 2017
(and all their grades in 2018), ten more regions in 2018 and all their grades in 2019 (Antofagasta, Atacama,
Valparáıso, El Maule, B́ıo B́ıo, La Araucańıa, Aysén, Los Ŕıos, Arica and Parinacota and in 2020 the Region
of El Ñuble was created, whose Comunas are in this group as part of the B́ıo B́ıo region). The Metropolitan
Region entry levels were added in 2019, covering all grades in public and private voucher schools, for the
first time in 2020.

13A quote from Adriana del Piano, the Minister of Education that was in office during the Congress’ discussion
of the Inclusion Law project is illustrative (own translation): “the project aims to improve the quality of
education children receive, independently from the school they attend, and to eliminate structural segregation
factors, like the ones that existed before this law. Some families have paid to segregate their children (...).
The country has a system that generates segregation. Our aim with this law is to implement an integrated
system, like the ones implemented in most countries around the world, that guarantees peer effects, which
are very important for learning, knowledge, and coexistence within schools. The idea is to give students
from different socioeconomic backgrounds the possibility of attending the same school, (...).”

14Specifically, the year of treatment differs by region, and it is reasonable to expect geographic and time
heterogeneity in treatment effects. Moreover, it is unlikely that the “parallel trends” assumption holds, and
therefore, its validity needs to be thoroughly examined.

15In the 2022 application process reserves for applicants with a disability were eliminated.

https://www.bcn.cl/historiadelaley/historia-de-la-ley/vista-expandida/6116/
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public funding.16 Compliance with the Decree was loosely monitored, but when implement-
ing the SAE, this percentage was adopted as the reserve group size to comply with the
spirit of existing legislation. Since the low-SeS population share is significantly higher in
many cities of the country, and given that reserves operate as a soft bound that is only ac-
tive when low-SeS applicants are interested in a given program, revising their size to better
achieve greater equity in school admissions is a clear opportunity.

In regards to the other reserve groups, the Academic Achievement group has no direct
relevance for PreK applicants and has a minor impact due to its limited implementation in
select schools. Meanwhile, the disability group is comprised of only two seats per academic
program class and is applicable to a relatively small population. As a result, our focus will
solely be on groups three and four of Table 1.1.

Enrollment priorities are determined in the following order: secured enrollment priority
is given to students currently enrolled in a school that offers their next corresponding grade
(not applicable for PreK, except for students repeating the grade).17 Sibling priority comes
next and is only applicable to students who have the same mother or father. This priority
is distinguished by whether the sibling is already enrolled in the school (static priority) or
is assigned to a higher grade during the assignment process (dynamic priority). In reserve
group three, priority is then given to all low-SeS applicants. The last two priorities in all
reserve groups are for applicants with at least one parent working at the school, followed by
the priority for those who were previously enrolled in the school during their education (not
relevant for PreK). Lotteries are used to break ties in priority groups, as is standard in such
systems.18

To understand how the reserve groups function, it is helpful to consider each program
and reserve group combination as a distinct “new program”. The algorithm processes appli-
cants in sequence for these program-group combinations using the applicant’s rank-order list
(ROL), and group three followed by group four as the default processing order. However,
if an applicant has sibling priority (static or dynamic) but not low-SeS priority, they will
first be considered for the Regular group and then for group three, in order to avoid using
low-SeS reserves for non-low-SeS applicants with higher priority.19

16The Decree is accessible at this url: https://bcn.cl/3cfy9.
17That ensures that if the student does not get a seat in a more preferred school, she does not lose her automatic
enrollment for next year.

18The system employs a sibling multiple tie-breaking rule at the school level. This means that a different
lottery number is given to each group (of one or more) of siblings that share a school in their application
(the lottery number is the same for all the school’s programs). In the case of siblings applying to the same
grade, a different lottery is used to determine which sibling has a better lottery number.

19Students with secured enrollment are assigned to the group where they generate the seat first, depending on
their characteristics such as having a disability, being high academic achievers, or being low-SeS. Additionally,
families with two or more siblings applying to different grades may choose a “family application”. In this
case, the ROLs of students applying to lower grades are reordered to prioritize schools where a sibling has
already been assigned by the algorithm above others while preserving the original order if it applies to more
than one program. For a more comprehensive explanation of the deferred acceptance algorithm utilized in
Chile, please refer to Correa et al. (2019), as well as the algorithm description provided in Appendix A.9.

https://bcn.cl/3cfy9
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The SAE has two application rounds: the Main and the Complementary. Students
who did not participate in the Main round or were not assigned to any program during
this round can apply for the remaining seats during the Complementary process. During
both rounds, students can apply to as many programs as they wish, with a minimum of
two at entry levels. If an applicant is not assigned to any program in their ROL during
the Complementary round, a distance-to-school minimization algorithm is used to offer an
alternative program. If students want to enroll in a different program, or are not assigned
to any program after the Complementary round, they can register at a public registrar at
each school. They will then be processed manually based on their order of registration when
seats become available in their desired program.

Segregation Measures

Depending on the data and objectives, there are several ways to measure segregation. For
socioeconomic segregation, the most commonly used is the dissimilarity index proposed by
Duncan and Duncan (1955). In our context, it measures the unevenness of low-SeS students
across schools in a given geographic unit, which, in our case, will be Municipalities.

Duncan & Duncan Dissimilarity Index (DD index)

For schools s within a specific Municipality m, the index is computed as:

SEGDD
m,t =

1

2

S

∑
s=1
∣
Low-SeSs,t

Low-SeSm,t

−
No-SeSs,t

No-SeSm,t

∣

We define Low-SeSg,t as the number of assigned students with low-SeS status in a given school
or Municipality unit g during period t, and No-SeSg,t as the number of assigned students
without low-SeS status priority in the same unit during the same period.

The dissimilarity index measures the percentage of the minority population that needs to
be reallocated to achieve an even distribution across schools. However, one drawback of this
measure is that it does not account for the scale of the necessary redistribution in relation
to the overall population. As noted by Meister and Niebuhr (2021), in certain cases, the
index’s value may decrease mechanically as the proportion of the minority group increases,
i.e., as both groups approach 50%. To illustrate this point, consider the following example:
School A has two low-SeS and 100 no-SeS assigned students, while School B has 100 assigned
students, none of whom have low-SeS. The value of the dissimilarity index in this example is
1/2. By moving one of the two low-SeS students from School A to School B, we can achieve an
equal fraction of 1/100 in each school, which requires reallocating around 0.5% of the overall
student population. In contrast, suppose there are 20 low-SeS students, with 19 assigned to
School A and an equal number of 100 no-SeS assigned in each school. In this scenario, the
value of the index drops to 0.45, a 10% reduction. To achieve an even distribution, we need to
reallocate 9 of the 20 low-SeS students from School A to School B. However, the magnitude



CHAPTER 1. EFFECTS OF SOCIOECONOMIC RESERVES 10

of the segregation problem is much higher, requiring the reallocation of approximately 5%
of the student population to achieve an even distribution.

The example above also illustrates that the DD index does not consider school capacity
constraints (whether School B has the physical capacity to accommodate nine additional
students).

Minority-size Adjusted Dissimilarity Index (MA-DD index)

To address these shortcomings of the DD index, van Mourik, Poot, and Siegers (1989)
proposes the minority-adjusted dissimilarity index. The index calculates the minimum pro-
portion of students in both socioeconomic groups that would have to relocate to achieve
an even distribution across schools, subject to the constraint that the number of students
in each school remains unchanged (Nijkamp and Poot, 2015). As van Mourik et al. (1989)
demonstrate, the index is a function of the dissimilarity index:

SEGMA−DD
m,t =2fSeS

m,t (1 − fSeS
m,t )SEGDD

m,t

fSeS
g,t ≡

Low-SeSg,t

Low-SeSg,t +No-SeSg,t

We can intuitively see that the correction factor fSeS
m,t (1 − fSeS

m,t ) is largest when both
groups have an equal number of individuals, which is when a given value of the dissimilarity
index -expressing the share of the minority population to be reallocated- is applied to the
largest share of individuals. Following our example above, the index increases from 0.0098
to 0.0744 to reflect the magnitude of the reshuffling multiplying by almost eight.

We prefer using the MA-DD index to interpret our results as it provides a more precise
measurement of the segregation issue across Municipalities in terms of the proportion of the
population that would need to relocate to achieve an even distribution of students. However,
the dissimilarity index also offers valuable insights as it captures the concentration of low-SeS
students, and therefore we present both indices in our results.

MAPPD and MA-DD equivalence

The Mean absolute percentage point difference (MAPPD) is another alternative used in the
literature to measure school segregation. For instance, Margolis and Hashim (2020) used
this index, and it was slightly adapted by Idoux (2022) to account for the difference between
assigned and enrolled students. The index measures the absolute difference between the
share of applicants from a particular socioeconomic group at a school and the share of the
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group in the geographic unit of interest.20 However, when there are only two socioeconomic
groups, this index is just a reformulation of the MA-DD index, which can be demonstrated
by rearranging the terms in each formulation.

Finally, note that in this chapter we examine school-level segregation instead of program-
level segregation. When students and their families are in the same school and grade, they are
highly likely to interact and form strong connections during PreK or in later grades. While
this likelihood is slightly lower than if they were in the same program within a school, it is
still significant and much higher than if they were assigned to different schools. Educational
segregation dynamics in Chile are briefly discussed in Appendix A.11.

1.3 Data

Administrative Data

Schools and Programs
Each year, the Ministry of Education publishes a directory of certified schools containing

each school’s name and identification code and some general characteristics like geolocation,
grades offered, rurality, enrollment, and payment ranges for tuition and monthly fees. In the
geographic area used in our analysis, there were 3,713 schools in 2019, 1,517 of which offered
PreK. In 2020, there were 3,781 schools and 1,496 that had PreK, and in 2021 there were
3,827 schools and 1,487 offering PreK.

The Ministry of Education publishes the SAE’s list of available programs to choose from
during the application process. The unique combination of school, location (campus), grade,
specialty, gender, and school day (full-day, morning, or evening) defines a program. For our
analysis, we keep only public and voucher schools that offer PreK on regular educational
programs (omitting programs for students with special needs). In 2019, the system had
1,010 public and private voucher schools offering 1,237 PreK programs. In 2020, there were
1,012 schools with 1,247 PreK programs, and in 2021, 1,015 schools with 1,249 programs.

For each school -and all its programs- we gather information about their SEP policy
agreement, average fees charged21 and school performance -the achievement category-, which
we use as a proxy for school quality. The SEP agreement and average fees are public

20Mathematically, it is expressed as:

SEGMAPPD
m,t =

S

∑

s=1
πs,t ∣f

Low-SeS
s,t − fLow-SeS

m,t ∣

πs,t ≡
Low-SeSs,t +No-SeSs,t

Low-SeSm,t +No-SeSm,t

21Fees contained missing values, so we imputed them using i) rates of increase or decrease within the years
available if the school has 2 out of 3 years of information, and ii) rates of increase or decrease at the
Municipality level using the information of other schools that charge fees, for schools that have only one year
of data.
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information published annually by the Ministry of Education, as is the achievement category
issued by the Quality Agency of Education. The latter, however, hasn’t been updated
since 2019, so we use 2019 values for all years. Table 1.2 summarizes the main programs’
characteristics used in the demand estimation.

The achievement categories are high, medium, medium-low, and low. We group the
latter two in our analysis. Most programs are during the morning, a similar share during
the afternoon, with a remainder of around 18% of full-day programs. Only a decreasing
fraction of schools charge top-off fees over public subsidies (20% in 2019, 19% in 2020, and
16% in 2021). The percentage of these schools inscribed in the SEP policy -in which low-SeS
applicants are free of tuition- was 44% in 2019, 42% in 2020, and 45% in 2021.

Applicants
The centralized assignment system data includes information for all applicants and their

applications. We observe low-SeS status as determined by the SEP policy, geolocation with
its quality (accuracy),22 gender, special needs, and priorities. The Municipalities in our
sample include 29,524 applicants for PreK in 2019, 25,235 in 2020, and 24,057 in 2021. Of
these applicants, we use a fraction in preference estimation and counterfactuals. The criteria
to determine these two groups of applicants and their characteristics will be discussed in
Section 1.4, after characterizing the geographical context.

Expected Assignment Probabilities

As described in Section 1.5, the expected assignment probabilities of applicants for differ-
ent programs are important in preference estimation and counterfactual analysis for both
the costly consideration and costly ranking models. These probabilities are calculated from
observed applications and available seats in each program. However, accurately estimat-
ing these probabilities is challenging, as discussed in detail in Appendix A.10. Specifically,
the interaction between the heterogeneity in priorities and the fact that lotteries of appli-
cants unassigned to a quota are, on average, worse when considered for another makes it
difficult to identify probabilities without using lottery cutoff values. Unfortunately, lottery
cutoff values tend to underestimate assignment probabilities, and correcting this bias is not
straightforward.

Without considering the challenges anticipated in the previous paragraph, estimating
assignment probabilities consists of re-drawing the applicant pool and applicant lotteries one
thousand times,23 obtaining empirical assignment probabilities in each of these simulations
and then averaging them out.

22Geolocation public data is not perfectly accurate, as each coordinate has a random noise to avoid the
identification of applicant addresses. Nevertheless, the noise is relatively small, and we interpret it as part
of the measurement error in the relevant distance to schools that we approximate using the linear distance
between family and school coordinates.

23And one-hundred times in each counterfactual loop to obtain equilibrium probabilities and applications in
the simulated counterfactuals of the costly consideration and costly ranking models
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1.4 Geographical Context

Santiago is a large city with diverse neighborhoods that present different local realities.
Although the CCAS does not include any consideration for applicant residences, choices and
segregation dynamics are strongly influenced by city characteristics. This poses a challenge
for determining the appropriate geographic levels for our study.

When studying the supply-side dynamics of education in Santiago, optimal decisions of
schools regarding the quality of education offered or prices charged are an equilibrium result
that is influenced by the interactions of all schools in the city. Thus, studies such as Neilson
(2021), focusing on understanding supply responses, in his case to the SEP policy, must
consider all contiguous urban areas when defining geographic units of interest. However, our
study has different objectives. We aim to model individual choice counterfactuals under fixed
supply conditions and understand segregation in schools (and other outcomes) that are not
meaningfully comparable across schools in distant areas of the city. To achieve this objective,
we propose constraining the set of alternatives that applicants consider when forming their
portfolio choices to those within a “reasonable distance” from their residence.

There are different ways to restrict the geographic space of school choice and to partition
a large city into different geographic units to study segregation. The appropriate approach
depends on the context and normative considerations. In Santiago, we suggest leveraging
the administrative units that the city is divided into (Municipalities), for two reasons (Ab-
dulkadiroğlu, Pathak, Schellenberg, and Walters (2020) use a similar approach in estimating
preferences at the Borough level for New York City). First, local governments are elected
at this level, meaning that neighborhoods located on either side of a Municipality border
are impacted. Additionally, Municipalities are responsible for administrating public schools
within their territory.24 Second, families are aware of these administrative units and their
borders because elections are held at this level, and they are often used to describe various
social outcomes across the city, such as crime, average income, and public goods provision.
Moreover, choosing the Municipality of interest is one of the search criteria in the application
interface. However, using Municipalities is not a perfect solution, and we need to consider
its impact on our results. To discuss this, Figure 1.1 shows Santiago’s map divided into
different Municipalities. Panel A’s points indicate the locations of schools that offer PreK
programs, and Panel B shows the share of low-SeS applicants in each Municipality.

The Municipalities in Santiago vary in size and in their share of low-SES applicants. This
means that, especially in smaller Municipalities that are adjacent to others with different
low-SES population shares, interactions with schools and applicants in neighboring areas can
strongly influence segregation measures and other outcomes. Conversely, larger Municipali-
ties that are closer to the city limits tend to be more insulated from the impact of the rest
of the city.

24There is an ongoing project to change the administration of public schools within geographic units not
always identical to their Municipality to a specialized public entity. It has no significant impact on the
schools during our period.
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To gain a better understanding of how these dynamics affect our results, throughout
the chapter we will exemplify using two Municipalities: Maipú and La Cisterna (indicated
in Figure 1.1). Although these two Municipalities have a similar proportion of low-SES
applicants (32.22% in Maipú and 35.37% in La Cisterna), they differ in size and exposure to
neighboring Municipalities. Specifically, we will observe that results in Maipú are consistent
with average results for the different Municipalities (and with what we expect from our
counterfactuals), while results in La Cisterna differ as they are heavily influenced by the
interactions with other geographic units.

Definition of Municipality + Buffer

In the Metropolitan region, 92% of PreK urban applicants list a school in their Municipality
as their first choice. However, this percentage varies across different Municipalities. To
determine the choice sets, we assume that all applicants in a given Municipality have the
same set of schools, including all PreKs offered in that Municipality and some others likely to
be relevant in neighboring ones.25 We define a buffer radius around the Municipality set such
that 90% of schools in the first preference lie within the Municipality plus buffer geographical
unit. A more detailed description of this process is outlined in Appendix A.3. In the case of
the Municipality of Maipú, no buffer is required to reach the target, while the buffer for the
case of La Cisterna in presented in Figure 1.2. The area of urban Maipú is approximately
58km2, while in La Cisterna, the area within the Municipality limits is approximately 10km2,
and that encompassed by its buffer is approximately 69km2. The figure also shows schools
considered in the different exercises. In the case of La Cisterna, only 16.5% of schools (33
schools) are located within the administrative limits of the Municipality, while 83.5% (167
schools) are located in 7 adjacent Municipalities.26

Applicant Sample for Demand Estimation and Counterfactuals

To estimate preferences and counterfactuals, we restrict the set of applicants within each
Municipality to those who i) have a high-accuracy georeference,27 and ii) apply only to
schools within the Municipality plus buffer. The reason is that it is unfeasible to accurately
study the choices of applicants not meeting either one of the criteria (at least without ad-
ditional information). Table A.2.4 in Appendix A.2 shows the share of applicants included
in each Municipality and the share of low-SES applicants in the whole population of each
Municipality and in the restricted sample (for all years, 2019-2021). Additionally, Table 1.3
compares the sample population with those not included in the estimation and counterfac-
tuals for the whole city. The share of applicants in the estimation and counterfactual sample

25This assumption simplifies estimation without dramatically affecting our results as the added programs are
still not too far from applicant residences.

26The buffer zone even contains schools from the Municipalities of San Bernardo and La Pintana, which are
not adjacent, but are very close.

27A more detailed description of the different georeference quality levels is explained in Appendix A.3.
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varies across Municipalities, as does the share of low-SeS applicants and the characteristics
of applications.28

1.5 Preference Estimation

We first describe the specification of the three models implemented in this chapter and then
move to presenting the estimation results.

Model Specifications

Let vijt to denote the utility that applicant i would derive from being assigned to program
j in application year t. We separate this utility in three additive parts. First, the utility
that applicants with the same characteristics as i derive, on average, from an assignment to
j, denoted with δijt. Second, the individual idiosyncratic preferences that the applicant has
for the program ϵijt. And third, a dis-utility portion proportional to the distance between
the applicant’s residence and the school offering the program denoted by dijt. Utilities can
be thus expressed as:

vijt = δijt + ϵijt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

uijt

−τitdijt

vi0t =0

We impose a location normalization over indirect utilities by assuming that applicants
have an outside option with zero utility (vi0t = 0). As a result, only programs with vijt ≥ 0
are acceptable to be included in i’s reported portfolio.

Under this utility structure, additively separable in uijt and τitdijt, using gi to denote a
group of applicants with the same observable characteristics as applicant i, if τit = τgit and gi
is sufficiently large, variation in distances to different programs and relative rankings across
applicants allows the non-parametric identification of utilities under the assumption that
idiosyncratic tastes and distance to schools are independent, conditional on the rest of the
variables affecting utility (Agarwal and Somaini, 2018):

ϵijt ⊥ dijt∣δijt
28The applicants used in demand estimation have shorter distances to their preferred and assigned schools,
more often receive assignments to the Municipality in which they reside, and have higher exposure to both
general and high achievement schools. They also have a higher proportion of low-SeS applicants and submit
slightly shorter applications. In contrast, those not included in the demand estimation are less likely to be
low-SeS, apply to more schools, and are less likely to be assigned within their Municipality. These differences
may be due to income-related factors (those willing to travel to more distant schools are likely wealthier),
such as car ownership and transportation costs.
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This assumption, that we upheld across all three models specifications described below, is
violated if family residences are influenced by idiosyncratic tastes for programs conditional
on δijt. Essentially, distance serves as a “special regressor” (as defined by Agarwal and
Somaini (2018)) since small variations in its value for different programs, along with the
relative ranking of these alternatives, allow the mapping of the share of utilities taking
specific values.

For our empirical application we divide applicants into two groups denoted by gi (low-SeS
or not), and specify utilities as presented in equation 1.1:

vijt =Familyijtλ + xjtβ
gi + ξgij

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δijt

+ϵijt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
uijt

−(1 +∆d,C191t>2019)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

τt

dijt (1.1)

Familyijt represents the family-related priorities of applicant i in program j at time t,
which includes sibling and parent-worker priorities. ξgj is a program-specific vertical coeffi-
cient, unobservable to the econometrician. Observable attributes of a program in year t are
represented by xjt.

As explained below, we assume that ϵijt follows a normal distribution, estimating its
variance along with other parameters. Thus, unlike logit models, we do not impose a scale
normalization over the distribution of ϵijt and instead impose a scale normalization over the
distance to school parameter,29 which is measured in kilometers of linear distance between
the applicant’s residence and the program’s school. As can be observed in equation 1.1,
we assume that, in 2019, each additional kilometer reduced utility by a factor of −1, while,
for 2020 and 2021, we introduce the parameter ∆d,C19 to account for the possible impact of
the COVID-19 pandemic on distance dis-utility. Note that, there is no relevant impact of
assuming a common distance dis-utility parameters for both socioeconomic groups (τgit = τt),
as it only normalizes the values of parameters in δijt that do depend on the applicant’s group.

Portfolio formation

The three models considered in this chapter differ in the portfolio formation process. The
“full consideration” model, based on Abdulkadiroğlu et al. (2017), assumes that families have
complete information about the vijt values for all programs and form their ROLs without
any frictions. Unlike their model, we do not impose an exogenously fixed length of ROLs and
instead assume that all alternatives preferred to the outside option are ranked. As a result,
unranked programs have negative utilities rather than utilities below that of the program
ranked last.

29This normalization is standard in the school choice literature implementing the same Markov-Chain Monte-
Carlo estimation technique we use in this chapter (e.g. Abdulkadiroğlu et al. (2017); Idoux (2022)).
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In the costly ranking case,30 families are assumed to perfectly know their utility if assigned
to any program, but face a cognitive or information processing cost when adding programs
to their ranking. We specifically assume that the total ranking cost increases linearly at a
rate of ci with the number of programs ranked. This cost implies that some programs with
positive utility might not be included in the ROL if they do not sufficiently increase the
portfolio’s expected utility, taking assignment probabilities into account.

Regarding the model of costly consideration, rather than assuming that consideration is
determined by a latent variable as in Son (2020), we assume that applicants need to incur
the ci cost to learn the value of ϵijt + ξjt ≡ θijt.31 If, after learning θijt, the utility is above
the outside option, the program is included in the applicant’s ranking free of cost. The
rationale for this specific assumption is that the information observed by the econometrician
perfectly coincides with the information displayed on the Government applications website
and that this information is easy to process for applicants. Learning θijt requires effort
to better understand the program’s unique characteristics and the quality of the family-
program match. Only after learning θijt, families can decide whether to include the program
in their ROL based on whether it provides higher utility than their outside option (we assume
that the cost of ranking programs without bearing the cost is infinite). We also assume that
ϵijt ⊥ ξjt and that, for simplicity, the distribution used by applicants to compute expectations
is the same that we estimate for these two parameters under the normality assumption used
in estimation (σ2

θ = σ2
ϵ + σ2

ξg) detailed below.
In both the costly ranking and costly consideration alternatives, we model ci using the

same structure, following Idoux (2022), presented in Equation 1.2:32

ci =cgi + ζi
ζi ∼TN(0, σ2

ζ ,−cgi , UBζi)
(1.2)

To complete the costly ranking and costly consideration models, we need to determine
how applicants evaluate and decide which alternative to rank or consider next.

In the costly consideration case, since evaluating each alternative incurs an incremen-
tal cost and provides additional information, the optimal evaluation process is sequential.
Applicants learn about the unknown program characteristics one by one and decide which
program (if any) to consider next. We will assume that applicants are risk neutral and that
they are endowed with the information of programs in which they have a family-related pri-

30This model has been introduced in other papers such as Fack, Grenet, and He (2019); Idoux (2022), following
the rationale in Chade and Smith (2006). We implement a specification very close to that of Idoux (2022).

31Re-arranging the utility equation for expositional clarity of this assumption:

vijt = Familyijtλ + xjtβ
gi
− (1 +∆d,C191t>2019)dijt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡vijt−θijt, known before consideration

+ ξgij + ϵijt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡θijt

32The function TN(µ,σ2, LB,UB) represents a truncated normal distribution with mean µ, variance σ2, and
truncated between a lower bound LB and an upper bound UB.
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ority, and as a result use the decision-making rule in Definition 1 to evaluate which program
to consider next. The applicant’s partial ranking corresponds to a subset of the submitted
ROL, formed by the programs in it already considered at a given point during the portfolio
formation process.

Definition 1. Optimal decision-making rule in costly consideration model
Given a (possibly empty) partial ranking of the alternatives considered so far with utility

above that of the outside option, the next program to be considered is the one that increases
the expected utility of the applicant’s partial portfolio the most, provided that the increase is
above the consideration cost.

In the case of the costly ranking model, applicants have complete information regarding
their utilities for all alternatives. The process is thus not sequential as they need to find the
subset of programs that maximizes their expected utility. However, the computation burden
of comparing all possible subsets is extremely large as the set of ROL permutations grows
exponentially with the size of the choice set, making it an NP-hard problem. To address
this issue, Idoux (2022) proposes a sub-optimal sequential decision-making heuristic, which
we adopt in this chapter.33

Definition 2. Decision-making heuristic in costly ranking model

1. Starting with an empty partial ranking, applicants choose for the first position the
alternative with the highest utility among those that have an expected utility (assignment
probability times utility if assigned) above the ranking cost.

2. To determine the next ranking positions, programs not included in the partial ranking
where the multiplication of the probability of non-assignment to any program in the
partial ranking and the expected utility is greater than the ranking cost are candidates,
and the program with the highest utility among this set is selected. If the set is empty,
the process ends.

As a result of this heuristic, applicants will potentially neglect programs with a relatively
lower utility but a higher assignment probability than others included in the ranking, even
though those programs would be part of the optimal portfolio.

Discussion

The strengths of the costly ranking and costly consideration models are that they introduce
frictions in the portfolio formation process that help rationalize short ROLs without having
to either assume that ranking length is exogenously fixed or that all programs not ranked
are less preferred than the outside option. And in the case of the costly consideration model,

33Alternatively, other studies using similar models, such as Larroucau and Rios (2020), use context-specific
criteria to limit the space of ROLs considered.
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the partial information structure it assumes is, in our view, the more realistic. However,
a weakness that our implementation shares for both models is that we assume that fami-
lies accurately know their assignment probabilities to different programs. However, recent
evidence suggests that families are, on average, optimistic about their assignment chances.34

Additionally, in the case of the costly consideration model, the introduction of incomplete
information in the portfolio formation process generates a cost. As explained in Appendix
A.5, the model is not identified non-parametrically, resulting in estimated parameters de-
pending on functional forms and on included covariates that are assumed to be observed when
deciding whether to pay the consideration cost. Further differences between the models are
discussed in Appendix A.6.

Model to data mappings

We can use the models and portfolio formation processes described earlier to determine how
observed applications impose constraints on utilities, as well as on ranking and consideration
costs. For the full consideration model, the relationship between observed ROLs and utilities
is straightforward. Programs not included in a submitted portfolio have negative utility,
while programs included have a positive utility that increases with the rank position. To
express this restriction, we denote the program ranked in position r as kr:35

j ∉ ROLi⇔vijt < 0
∞ > vik1t > ... > vik∣ROLi ∣t

≥ 0

To account for portfolio formation frictions in the other models, two additional elements
must be incorporated into the mapping implied by observed applications. First, some or
all programs not ranked may have positive utility. Second, the mapping must also consider
the value of ci, along with restrictions on utilities. We first introduce these elements in the
costly ranking case and then explain the differences in the costly consideration alternative,
focusing on that model’s mapping and its intuition. A more detailed and formal derivation
is presented in Appendix A.4.36

However, before moving to the other models, it is necessary to introduce qijt to repre-
sent applicant i’s subjective probability of being assigned to program j if processed by the
assignment algorithm to that program, i.e., if not assigned to something more preferred, or

34For instance, Arteaga, Kapor, Neilson, and Zimmerman (2021) show this for the case of Chile, and Corcoran,
Jennings, Cohodes, and Sattin-Bajaj (2018) and Kapor et al. (2020) for the US cities of New York and New
Haven, respectively. Other studies use survey evidence, as in Kapor et al. (2020), or additional identification
assumptions and data variation, as in Son (2020), to simultaneously estimate preferences and biases in
subjective assignment probabilities. We lack data for such an approach and thus leave the incorporation of
subjective preference estimation for future research, using data similar to that of Arteaga et al. (2021) in
the case of Chile, for example.

35
∣ROLi∣ represents the ranking’s length and thus k∣ROLi∣ the program ranked last.

36And in the case of the costly ranking model, further details can be found in Idoux (2022).



CHAPTER 1. EFFECTS OF SOCIOECONOMIC RESERVES 20

the probability of assignment if j is ranked in the first position. We assume that applicants
have the best possible rational guess of qijt, which is computed as described in Appendix
A.10. This implies that all applicants with the same priorities in the different reserve seat
groups of a program have the same qijt.

Costly ranking

In the costly ranking model, three restrictions are added to the utility inequalities for ranked
programs:

Result 1. Costly ranking model to data mapping

1. Utilities of ranked programs are above that of the outside option and ordered increasing
in ranking position:

∞ > vik1t > ... > vik∣ROLi ∣t
≥ 0

2. The program ranked in position k increased the expected utility of the portfolio more
than the ranking cost:37

r−1
∏
n=1
{(1 − qiknt)} qikrtvikrt ≥ ci

3. If any program j not included in the portfolio submitted by applicant i had an expected
utility above the ranking cost at one or more steps during portfolio formation before the
last program was added to ROLi, then its utility has to be below the program added in
that step:

∀N ≤ ∣ROLi∣, j ∉ ROLi ∶
N−1
∏
n=1
{(1 − qiknt)} qijtvijt ≥ ci⇒ vijt < vikN t

4. For all programs j not included in the portfolio submitted by applicant i, their utility is
consistent with an expected utility below the ranking cost, given a partial ranking that
is equal to the submitted ROLi:

∣ROLi∣
∏
n=1
{(1 − qiknt)} qijtvijt < ci

These restrictions are intuitive. The second restriction simply reiterates the model’s basic
assumption that a program must offer enough additional expected utility to be included in
the portfolio. In the case of the third restriction: if multiple programs offer more extra
expected utility than the ranking cost, the program included in the portfolio must have the

37Here and throughout the chapter we use the convention ∏
0
n=1 xn ≡ 1
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highest utility, and we can identify it based on the applicant’s ROL. As for the fourth, if
it were not true, then the applicant would have included at least one more program in the
ROL.

Costly consideration

The additional restrictions in the case of the costly consideration model are similar to the
ones of the costly ranking model, but the main difference is that applicants are assumed
to have incomplete information about their utilities. As a result, we need to compute the
expected increase in the expected portfolio utility if a program were to be considered and
compare that value with the consideration cost. To do that, we start by defining, in any
given step of the portfolio formation process and for any program j not yet considered,
the consideration value (CV) given the partial ranking Ri at that step of the consideration
process, as the expected increase in expected portfolio utility if i learns θijt. Dispensing of
the time subscript to simplify notation, we denote the CV of program j, given the applicant’s
partial ranking Ri as:

CVj∣Ri
= CV (vij − θij, qij ∣vik, qik∀k ∈ Ri;σ

2
θ)

The full expression for CVj∣Ri
and its derivation can be found in Appendix A.4. Using this

notation, we can express the restrictions that ROLi imposes on utilities and consideration
cost in Result 2.

Result 2. Mapping between observed ROLs, utilities, and consideration costs

1. j was considered by i if and only if

a) i has a family-priority in j; or

b) j ∈ ROLi; or

c) j ∉ ROLi, and there exists at least one partial ranking Ri ⊆ ROLi (generated
during the portfolio formation) that satisfies:38

∀m ∈ ROLi ∖Ri ∶ CVj∣Ri
≥ CVm∣Ri

2. If j is in the set of considered alternatives:

a) j ranked in position r of ROLi ⇒ vij ∈ (vikr−1 , vikr+1), where vikr=0 = ∞ and
vikr=∣ROLi ∣+1

= 0
b) j ∉ ROLi⇒ vij < 0

38Partial rankings depend on the step during portfolio formation when each program had the highest consid-
eration value (excluding those considered due to family priorities). The details of how these rankings are
computed for the empirical application can be found in Appendix A.6.
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3. If j is not in the set of considered alternatives its utility is unbounded:

vij ∈ R

4. Defining kcr=∣ROLi∣ as the program in ROLi that was considered last, the consideration
cost can be bounded by:

CVkcr=∣ROLi ∣∣ROLi∖{kcr=∣ROLi ∣} ≥ ci ≥ 0

These restrictions are similar in intuition to those in the costly ranking case, but there
are two key differences. Firstly, even if an applicant bears the cost to consider a program,
it may not be included in their ROL if the unobserved portion θijt is too low. Secondly,
when analyzing only the programs in ROLi, the order in which they are considered may not
correspond to their ranking order, as the former depends on the program’s observed portion
vijt − θijt and its assignment probability qijt, while the latter only on the value of the utility
vijt.

Parts (a) and (b) of the first restriction reiterate the model’s assumptions that applicants
with family priority in j have their θij observed without cost and that all ranked programs
have been considered. Part (c) states that for a program not included in the applicant’s
portfolio to have been considered, it must have had the highest consideration value at some
point during the formation process. As in the costly ranking case, that includes the last
step, where the partial ranking corresponds to the ROL. The second constraint has two
parts. Part (a) is the same as in the full consideration and costly ranking cases, requiring
that ranked alternatives have ordered utilities above zero according to their ranking order.
Part (b) specifies that a program not included in ROLi must provide less utility than the
outside option if it were considered. The third is not a restriction and states that utilities of
programs not considered are unbounded. Similar to the costly ranking case, that implies some
programs with positive utility are not included in ROLs. Finally, restriction four requires
that the consideration cost must be lower than or equal to the smallest consideration value
among the programs included in the applicant’s portfolio. This means that it must be lower
than the consideration value of the last program included in the ROL, as this program has
the smallest consideration value among all the programs in the portfolio. We can identify
that program by mapping the list of partial rankings, starting with the initial one that
includes only programs ranked with family priorities, which may be an empty set. In the
estimation, we draw the value of the consideration cost constrained to this bound to identify
alternatives that were likely considered but not ranked.39

39Note also that we do not consider the requirement that applicants must submit ROLs with at least two
programs to avoid further complicating our model. This implies that for some applicants, their second-ranked
program may not conform with the consideration process detailed so far. This is particularly relevant given
that 48% of applicants in our estimation sample rank two programs. However, our results are relative to the
different counterfactuals computed, and therefore, we can confidently make valid comparisons between them
as long as all of our estimations and counterfactuals are internally consistent.
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The comparison between the costly ranking and costly consideration mappings reveals an
important difference regarding the rationalization of a scenario where an applicant includes
a program with a 100% assignment probability above the last program in the observed ROL.
In the costly ranking case, the ranking cost is necessarily equal to zero, implying that all
programs not ranked must have a utility below zero, as in the full consideration model.
On the other hand, in the costly consideration case, the consideration cost is potentially
above zero in this situation because there is always some probability that an alternative not
considered has a utility above all (or some) of those in a partial ranking, after learning the
value θijt.40

Estimation Methodology

We estimate model parameters using the Gibbs sampling technique, adapted from McCulloch
and Rossi (1994), which asymptotically approximates maximum likelihood estimates (Vaart,
1998). This technique is computationally efficient and simpler to specify when demand-
side data includes ranked order lists of preferences and applicant-specific covariates such as
the distance between residences and schools. Additionally, it avoids biases that can affect
simulated maximum likelihood estimates in datasets with a large number of choices, as noted
by Abdulkadiroğlu et al. (2017) (see Train (2009)).41

The Gibbs sampling technique is a Bayesian estimation method from the Markov Chain
Monte Carlo family that iteratively estimates the different parameters in the model over
many iterations. A detailed explanation of how we implement the Gibbs sampler is provided
in Appendix A.6. We now present the central elements.

Prior distributions

For Bayesian estimation, we need to start defining prior values for the distribution of the
different parameters in the models. These distributions are outlined below. The specific
prior values used are described in the Appendix, but a key point to highlight is that they
need to strike a balance between having diffused distributions, so that they have a relatively
small effect on posterior parameters values, but also being “proper” in the sense of being
centered at a value reasonable for were posteriors can be expected to lie, and not having a
too diffuse variance, so that initial draws are not too slow to converge to the Markov Chain
of posteriors that we are interested in finding.

The distribution of fixed parameters is assumed to be:

40To have a zero consideration cost, one of the ranked programs needs to have qijt = 0. If that is the case, the
ranking cost is also zero in the costly ranking specification.

41Other methods used in similar studies include maximum likelihood, such as generalized method of moments
(Son, 2020), direct likelihood maximization (Laverde, 2021), and rank-ordered mixed logit models (Kessel
and Olme, 2018; Oosterbeek et al., 2021).
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λ ∼N(µλ,Σλ)
βg ∼N(µβg ,Σβg)

∆d,C19 ∼N(µ∆d,C19
, σ2

∆d,C19
)

cg ∼TN(µcg , σ
2
cg ,0,∞)

In the case of random coefficients, these are assumed to be centered at zero and the object
of interest is their variance, which requires additionally assuming a prior distribution to draw
their values. Both distributions complement each other and are labeled as a conjugate-prior
structure in the literatue. Their values are given by:42

ξgj ∼N(0, σ2
ξg); σ2

ξg ∼IW (τξg , dfξg)
ϵij ∼N(0, σ2

ϵ ); σ2
ϵ ∼IW (τϵ, dfϵ)

ζi ∼TN(0, σ2
ζ ,−cgi ,∞); σ2

ζ ∼IW (τζ , dfζ)

Gibbs Sampling Iteration

To initiate the process, parameters from the prior distributions mentioned above are drawn,
and initial utility and ranking or consideration costs consistent with observed choices are
determined. Subsequently, each Gibbs Sampling iteration comprises the following steps:

1. Sample λ1 given σ2
ϵ,0, vijt,0, β

gi
0 , ∆d,C19,0 and ξj,0.

2. Sample βg
1 given σ2

ϵ,0, vijt,0, λ1, ∆d,C19,0 and ξj,0.

3. Sample ξgj,1 given σ2
ξg ,0, σ

2
ϵ,0, vijt,0, λ1, β

g
1 , ∆d,C19,0.

4. Sample ∆d,C19,1 given σ2
ϵ,0, vijt,0, λ1, β

g
1 and ξj,1.

5. Sample covariances for σ2
ξg ,1 and σ2

ϵ,1

6. Then proceed with utilities and ranking or consideration costs following the data to
model mapping results described in Section 1.5 (see Appendix A.6 for details).

The process involves repeating these iterations many times to obtain parameter values
that fluctuate within a bound of possible values -the Markov Chain-. Using the values of
the different iterations, we can compute the mean and variances of interest. To remove the
influence of initial draws and chosen starting utilities and ranking or consideration costs,

42The inverse-wishart distribution (IW ) is used in our model as a conjugate prior for the normal distribution.
This is a common choice in similar applications.
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a number of initial iterations are discarded as a burn period necessary for the sampler to
converge.

Identification and Estimation Results

Identification

One important point to note before discussing parameter identification is that our data only
includes changes in program prices over time, and only if they were above zero in 2019. Other
program attributes are unchanged during the period. Thus, considering that we include a
school fixed-effect ξgij for each socioeconomic group in our estimation, βgi parameters for
attributes that are constant across time cannot be separately identified, and including them
in the estimation could therefore be regarded as unnecessary. However, these attributes
are included in the model for three reasons. First, in the costly consideration model, we
assume that applicants use program attributes to predict their group’s mean utility and
their idiosyncratic taste values. Second, including these attributes (and a constant) in xjt

adds structure to the model that allows us to interpret ξgij values as deviations from the linear
prediction of their value based on observable information, which in turn makes the structure
imposed over their distribution more reasonable. Third, including these parameters in the
full consideration and costly ranking models allows us to compare the results for the three
alternative specifications.

Regarding the identification argument, let’s first consider the simpler case of the full
consideration model. As previously explained, under the additively separable utility struc-
ture and the assumption ϵijt ⊥ dijt∣δijt, we can map the density of the utilities for different
programs in different years, denoted as ujt. Using this mapping, variation in the utilities of
applicants with and without family priorities allows us to identify the parameter λ. Next,
xjtβgi + ξgij corresponds to the average program utility in year t, after subtracting for the
effect of family priorities on ujt. The parameters βgi

Price (or more generally the parameters
over attributes that vary across years), are identified by variation in average program util-
ities and prices over the different years in our sample. Finally, variation in ROLs over the
different years under the assumption that the outside option’s value is fixed at zero allows
for the identification of ∆d,C19.

In the case of the costly ranking model, the argument follows a similar logic but includ-
ing the restrictions outlined in Result 1. Importantly, we can identify ranking costs with
the variation in assignment probabilities, which is largely driven by differences in program
congestion across different years. This assumes that applicants use rationally expected as-
signment probabilities when forming their portfolios, and that they do so as described in the
portfolio formation process.

In the costly consideration model, applicants are assumed to make decisions with partial
information on which alternatives to consider. However, it is not possible to separate θijt
from the rest of the utility using assignment probabilities, since consideration depends on
both the observed variables for programs not yet considered and θijt for those included in
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a partial ranking. And moreover, including a program in the ranking depends on both
values. To separate these parts, data variation correlating only with the consideration part
of the process is needed. For instance, Son (2020) argues that the order in which schools
are presented in New York’s school brochure correlates only with consideration but not with
utilities. Unfortunately, such data variation is, at least to our knowledge, not available in our
context. Moreover, the model is currently not designed to accommodate it. As a result, the
model parameters are not identified, and the parameters obtained come from the functional
structure assumed. We provide an intuitive explanation of how the model’s structure affects
the parameters in Appendix A.5 and, as we show in the next section, estimated parameters
are not significantly different from those obtained with the other models.

Estimation Results

Due to the large size of some Municipalities, for computational efficiency we include a sample
share of applicants in our estimation, whose size is presented in Table 1.4.

We implement two Gibbs sampler chains consisting of 25,000 iterations each for every
Municipality. The first 10,000 iterations are discarded as the burn period. To assess con-
vergence and mixing, we examine potential scale reduction factor (PSRF) values (Gelman,
Rubin, et al., 1992) and the trace plot of ϵijt’s variance. All PSRF values are close to one
for all parameters and Municipalities, and the trace plots indicate that σ2

ϵ is bounded (see
Appendix A.7).

Table 1.5 summarizes the key focus of our analysis: the average mean utilities across
programs for different achievement categories and socioeconomic groups. Our aim is to
measure differences in preferences between these groups, which, combined with differences
in residential locations, can help explain differences in program choices.

The mean utility estimates reveal three main findings. Firstly, the estimates are consis-
tent across all models. Secondly, non low-SeS applicants are estimated to have higher utilities
for all program types on average. Thirdly, the differences are mainly concentrated in higher
mean utilities for programs with higher achievement categories, especially for those in the
highest category. Specifically, low-SeS applicants are willing to travel approximately 750m
further to attend a program in the highest category than to one in the lowest, whereas non
low-SeS applicants are willing to travel around 1 km further. For programs in the high and
medium achievement categories, low-SeS applicants are willing to travel approximately 325m
more to attend a high-category program than a medium-category one, while non low-SeS
applicants are willing to travel around 475m further.

To provide a better understanding of the economic significance of the estimated differ-
ences in mean utilities, we compare them with two reference values. First, we note that the
average distance to the first preference for applicants in our sample is 1.17km (see Table 1.3).
This means that, compared to the average distance to the first preference, no-SeS applicants
are willing to travel an additional 21% to attend a program in the highest achievement cate-
gory relative to one in the lowest, and an additional 13% to attend a high category program
relative to a medium category one. Second, we compare the differences in mean utilities with
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the standard deviation of idiosyncratic utility shock estimates presented in Table 1.6. Using
this measure as a reference, no-SeS applicants are willing to travel an additional 0.28 and
0.17 standard deviations to attend a high category program relative to low and medium cat-
egory programs, respectively. Considering that these are differences in differences in relative
utilities for programs of different achievement categories, these values are significant, con-
sistent with the estimate in Section 1.6 that approximately 60% of educational segregation
absent SR is explained by differences in preferences over programs between socioeconomic
groups.

Furthermore, Table 1.5 reveals that in the costly consideration model, the linear predic-
tion for the unobserved portion of mean program utilities using observed program attributes
(represented by δgi − ξgi) almost perfectly matches the mean utility of the group. This sug-
gests that the linear model, which separately adds the effect of differences in each program
attribute, is very similar to a strategy of implementing cells for each attribute combina-
tion, or at least cells based solely on program achievement. Additionally, the table presents
statistics on the estimation sample, showing that, on average, there are 10 choices for each
program in the Municipality plus Buffer geographic unit.43

With respect to differences in mean utility estimates for different Municipalities, Figure
1.3 presents the values obtained in the case of the costly consideration model. We can
note three things from the figure. First, there is a significant variance in mean utility
differences between achievement categories across different Municipalities. Second, in the
high vs. medium and high vs. low achievement category comparisons, the mean utility for
high achievement is higher in the majority of cases. Third, the difference in mean utilities
between no-SeS and low-SeS applicants is in favor of the high achievement category in more
cases and to a larger extent when compared to the low achievement category programs than
to medium category ones.

The results for our two example Municipalities in the costly consideration case are as
follows. For Maipú, the average mean utility of high achievement programs is almost the same
for both groups, with a value of 0.819 for low-SeS applicants and 0.801 for the rest. In terms
of the difference with respect to low achievement category programs, the values for the low-
SeS and no-SeS groups are 0.630 and 1.408, respectively, while for the medium achievement
case, the values are 0.203 and 0.758, respectively. As for La Cisterna, the mean utility of
the high achievement categories are 0.909 and 1.373, respectively. Differences between mean
utilities of high and low achievement categories are 0.970 and 0.716, respectively, while
differences between mean utilities of high and medium achievement categories are 0.387 and
0.385, respectively. Therefore, we can expect a larger share of low-SeS applicants to rank
high-achievement programs in La Cisterna in the absence of residential sorting (and to rank
them higher in their ROL).

Table 1.6 presents the results of the main model parameters of interest, while the values
of the parameters related to program attributes can be found in Appendix A.7.44 As seen

43Although the sample share is restricted, larger Municipalities have a larger ratio of choices over programs
due to their buffers including fewer programs from other Municipalities.

44Additionally, figures that display the values of these parameters in each municipality are included. These
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in the table, the parameters for the COVID-19 pandemic distance dis-utility are estimated
to be very small. Surprisingly, the consideration and ranking costs are slightly larger for
no-SeS applicants. This could be partly compensating for the higher mean utility values
observed in this group, particularly in the costly consideration model where cost parameters
are not identified. However, this is likely also the case in the costly ranking model, as
identifying ranking costs with assignment probabilities requires strong assumptions. Finally,
the parameters related to family priorities and variances are reasonable and consistent across
different specifications.

Using these estimates and the steps of the portfolio formation process, we now move to
presenting our counterfactual results.

1.6 Results

The goal of this section is to investigate the impact of SR on educational segregation and
other outcome variables, as well as to assess the role of residential sorting in existing seg-
regation and the interaction of SR and demand-side policies. However, the results can be
sensitive to methodological choices, such as the geographic level used to measure segrega-
tion and whether unassigned applicants are included in the analysis. To clarify the latter
point, we focus initially on measuring educational segregation while keeping all applications
constant, and vary only SR.

Preliminary analysis: The effect of changes in global SR
conditional on submitted ROLs

Figure 1.4 illustrates the difference in measuring segregation at the Municipality versus city
level, and the impact of including unassigned applicants. The figure shows the relation-
ship between the share of reserves and educational segregation, using the minority-adjusted
dissimilarity index while keeping applications constant. Without unassigned applicants, seg-
regation at the city level is minimized at around 40% of reserves (the share of low-SeS
applicants in Santiago), which replicates results in Escobar and Huerta (2021) albeit at a
different scale due to the minority adjustment.

When unassigned applicants are included in the city-level computation, grouped together
as if they were assigned to one alternative school in the city, the effect of reserves on seg-
regation is significantly reduced. Then, segregation diminishes only slightly up to a point
before the 40% level where it begins to increase. This effect is particularly salient in 2019
due to the higher level of unassignment.45

figures reveal significant variation in parameter estimates across Municipalities, with larger Municipalities
tending to have more consistent estimates.

45The minimization of segregation at lower SR levels in this case, when unassigned applicants are included, is
partly mechanical and driven by the increasing size of the group of unassigned applicants. The relevant point
is that the inclusion of unassigned applicants in the measurement leads to a smaller reduction in segregation
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If we measure segregation at the Municipality level, using a weighted average by the
total number of applicants in each Municipality to compare results with those obtained at
the city level, we observe that segregation is smaller, as segregation within Municipalities
is typically lower than for the whole city combined. Additionally, segregation is minimized
at a smaller SR value, as seen in the figure, because, as reserves are further pushed to the
40% city value, increasingly more Municipalities have a level of SR above their share of low-
SeS applicants, which increases their local segregation level. Furthermore, when including
unassigned applicants grouped at their Municipality of residence, we observe that reserves
have a negligible effect, and segregation starts increasing at a lower value (as in the case of
the city measure).46

To minimize segregation when measured at the Municipality level, reserves at each school
should be adjusted based on the proportion of low-SeS applicants in its Municipality and
neighboring areas. We approximate the optimal level of reserves by setting them at the
share of low-SeS applicants in the Municipality where the school is located and observe that
it leads to a reduction in segregation. To see that comparison, we include obtained values
in Figure 1.4, with and without including unassigned applicants in the measurement, as a
proxy benchmark for the achievable reduction adapting SR to local conditions (the horizontal
dashed and solid lines respectively). The magnitudes of these reductions are discussed below
with the introduction of application counterfactuals.

We believe that measuring segregation at the Municipality level is superior to doing so at
the city level because it provides a better approximation of the level of integration of schools
in the same neighborhoods. However, partitioning the city into different geographic units
generates interactions between them, which can be particularly relevant for measurements in
contiguous units with different levels of low-SES populations. Schools near the border may
appear segregated even if all applicants in each Municipality are randomly distributed and
have the same choice patterns. But it is desirable for these schools to have a share of low-
SES applicants between the two geographic units to reflect their local reality. Additionally,
implementing differentiated SR in each Municipality changes the share of applicants assigned
to their Municipality in different socioeconomic groups, as reserve shares affect the likelihood
of applicants on either side of the border being placed, which can affect measurements.
As a result, while our average results at the Municipality level indicate the importance
of adapting SR to local conditions, specific Municipalities may exhibit counter-intuitive
segregation measurements, as exemplified by La Cisterna (see discussion below).

The inclusion of unassigned applicants is intended to capture the aftermarket dynamics
that affect segregation in enrollment across different programs, but including them can lead
to an excessive reduction in measured segregation in some counterfactual scenarios. This is
because when an additional no-SES applicant is unassigned, the unassigned group, which
over-represents their share, becomes less evenly distributed. Nevertheless, some of these

as some no-SeS applicants are re-shuffled from programs where they are over-represented to the unassigned
group where they are over-represented as well.

46This is due to the same mechanical effect discussed in that case.
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unassigned applicants may eventually enroll in schools where low-SES students are over-
represented, resulting in a reduction in segregation instead of an increase.47

While precisely estimating counterfactual aftermarket dynamics would be ideal, it exceeds
the scope of this chapter and is left for future research. Nonetheless, it is important to note
that interpreting the results as bounds is a reasonable approach given these limitations. In
particular, we can interpret results including unassigned applicants as a lower bound due
to the effect of unevenness in the unassigned group produced by SR, while results without
including them are an upper bound as the unevenness is disregarded. We present the results
obtained with various measurements but additionally, and more importantly, we emphasize
the policy implications and relative magnitudes of our findings, which remain remarkably
consistent across different measurement alternatives, rather than their specific values.

Analysis including ROL counterfactuals

Leveraging estimated preferences, we can enrich the analysis on three main dimensions. First,
we can provide benchmarks of achievable reductions in segregation by simulating applications
that eliminate differences in choice behavior across socioeconomic groups. Second, we can
account for potential changes in application behavior that may result from variations in
assignment probabilities, which can arise due to changes in SR or the application behavior
of other applicants. And third, we can conduct simulated demand-side policy exercises to
study their interaction with SR. Next, we describe how we construct counterfactual scenarios
based on the estimated preferences and then present the results obtained.

Methodology

The process of obtaining each counterfactual application in the different models is detailed
in Appendix A.8. Two key points to highlight are: (i) In some counterfactual exercises,
we randomize applicant locations, using the same randomization across these exercises and
across the different models to ensure comparability of results. (ii) Prior to any counterfactual
simulations in each model, we obtain random coefficients that rationalize the observed ROLs
with current SR, and then use these coefficients throughout the counterfactuals. The only
exception is the minimum segregation benchmark counterfactual, where we generate new
random coefficients that are independent of reported ROLs. The reason is that, in that
case, we want equal choice behavior between socioeconomic groups and thus removing any
influence from observed ROLs or model selection.48

47Furthermore, including unassigned applicants in measuring segregation does not address the biases in our
measurements of justice and efficiency, which only consider assigned or ideally enrolled students.

48A relatively minor additional point to consider is that the assignments in the baseline scenario (where no
assignment rule or choice behavior is changed) are very similar but not equivalent to the official assign-
ments. This is because to increase consistency across counterfactuals and model comparisons, we use the
same lotteries throughout all exercises, and official lotteries are published only for programs included in an
applicant’s ROL and only relative to other applicants to the program.
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The first step in our counterfactual analysis is to identify benchmark levels of educa-
tional segregation. We establish our maximum benchmark by considering the scenario of
only eliminating SR. Our minimum benchmark is determined by eliminating the contribu-
tions of residential sorting and differences in average preferences over programs between
socioeconomic groups while also eliminating SR. To eliminate the effect of residential sort-
ing, we randomize residence locations.49 To eliminate systematic differences in preferences
between socioeconomic groups, we average the estimated model parameters that differ be-
tween the groups and equalize top-off fees for both groups at half their value in the case
of schools subscribed to the SEP policy. The relative contribution of residential sorting is
obtained by implementing a counterfactual in between where only applicant residences are
randomized.

A final methodological consideration when estimating segregation measures using the
costly ranking and costly consideration models is that it is important to note that counter-
factual applications and assignment probabilities are interdependent. Therefore, to obtain
the final segregation measures reported in the following section, we iteratively estimate one
and then the other for each counterfactual. We start the process with assignment probabil-
ities obtained using observed applications with the corresponding SR level. As presented in
Figures A.1.1 and A.1.2 in Appendix A.1, changes in segregation are relatively minor.

Counterfactual Results

To begin our discussion of the counterfactual results, we present the main estimates for
the three alternative models in Table 1.7. We then conduct further analysis for additional
counterfactuals, focusing solely on the costly consideration case. We average the results over
the three years in our data and focus only on applicants included in the estimation sample,
as the applications of the other third of applicants remain unchanged. In Appendix A.2, we
provide additional findings obtained for each year separately and considering all applicants
in the costly consideration model’s case.50 The main takeaways of our analysis remain
consistent whether focusing on all applicants and/or a specific year separately, although
specific values vary.

Panel A presents the main outcome of interest, which is the reduction achieved in the
segregation gap under different scenarios for our two segregation measures, as well as for the

49This follows the approach taken by Laverde (2021). However, in that paper, new locations and assignments
are computed one at a time, which is the ideal ceteris paribus exercise to avoid changing school composition
or assignment probabilities. This approach is too computationally demanding in our case. Nonetheless, our
model incorporates optimal responses to changes in assignment probabilities. Moreover, we do not include
school composition in our covariates, as this information is not presented to families, as opposed to racial
statistics in the context studied by Laverde (2021).

50Including all applicants overstates the impact of SR, as it implies eliminating choice differences between
socioeconomic groups only for two-thirds of the applicants leading to a higher minimum segregation bench-
mark. Furthermore, the low-SeS share used to calculate SR is based on the overall population, which differs
from the sample population in some Municipalities, potentially affecting results (the latter effect is likely to
be much less relevant than the former).
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minority-adjusted Duncan index measure that includes unassigned applicants. It also reports
the level of unassignment of applicants in both socioeconomic groups. Three counterfactuals
are considered in addition to the current case with observed applications and the current SR
level, presented in the first row of each model. First, the baseline or maximum segregation
level that would exist if SR were completely eliminated (second row of each model). Second,
the reduction in the segregation gap obtained by eliminating residential sorting (third row
of each model). And third, the reduction in the segregation gap obtained by implementing
SR at the program’s Municipality low-SeS share level (fourth row of each model). Panel B
presents the segregation values obtained in the different models under the MA-DD segrega-
tion measurement, including and excluding unassigned applicants, for the two benchmark
counterfactuals used to estimate the segregation gap.

A key result from the table is the consistency in results across different specifications.
The main common findings are highlighted first, followed by a brief discussion of the dif-
ferences. The main takeaway is that SR’s effect in closing the segregation gap, when set
at their current 15% level, ranges from 3% (using the MA-DD index including unassigned
applicants in the full consideration model case) to 9.2% (when unassigned applicants are
not included under the costly consideration model). In all models and measurements, the
effect of SR is approximately multiplied by five when their level is set at the low-SeS share
in the Municipality. Another important takeaway is that residential sorting contributes to
educational segregation by around 40%. Lastly, Panel B indicates that estimated values of
segregation are very similar, particularly when focusing on weighted averages.

Turning to differences, each panel has one difference worth noting. In Panel A, the
unassignment weighted average flattens for both socioeconomic groups in all three models
when residential sorting is eliminated. However, in the costly consideration model, the
overall level of unassignment increases slightly, while in the other two models, it decreases
by about 1.5%. This difference is driven by the fact that in the costly consideration model,
applicants choose which schools to consider based only on observed program attributes (and
priorities and distances), which generates more congestion in counterfactual scenarios, not
only between groups but also within applicants in the same group. In this model, dispersion
in program unobservables (among those with the same attributes) and in idiosyncratic tastes
impact only which considered alternatives are ranked and in what order.

Moving to Panel B, we can observe that the segregation gap is larger in the full consid-
eration model, and this is due to a smaller level of segregation in the minimum benchmark.
This difference highlights that while the results are robust to the different specifications,
they are affected by the different assumptions made regarding portfolio formation. Further
research to better understand the process and obtain more precise estimates is therefore also
valuable for papers studying similar settings and questions.

Figure 1.5 provides a graphical representation of these results, highlighting their consis-
tency overall, and that the main difference is the estimated minimum segregation benchmark.

The horizontal lines in the figure represent the educational segregation gap, standardized
to zero with the minimum segregation benchmark (MSB) of the costly consideration model
and to one hundred with the maximum segregation level using that model. The current level
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of segregation is marked by a vertical dotted line (naturally, the same for all models). The
level of segregation achieved by setting SR at the low-SeS share of the Municipality is also
shown, with its range across different years in parentheses. The estimate of the segregation
value with SR is similar for the two models with portfolio formation frictions but larger
for the full consideration model, which partly explains its lower contribution to closing the
segregation gap in that model.51 The contribution of residential sorting is represented by a
shaded region with its variability at the bottom of the figure. Notably, the level of segregation
is nearly identical across all three models, with the difference in the gap reduction estimate
resulting from the denominator, the different segregation gap sizes.

Table 1.8 reports two additional outcomes of interest. The first is the percentage of ap-
plicants from the low- and no-SES groups who are assigned to high-achievement or medium-
achievement programs. This measure only includes assigned applicants and is a weighted
average of the different Municipalities to control for differences in the applicant’s low-SES
share and the availability of higher-achievement programs across Municipalities. The second
measure, labeled as the percentage use of ideal occupancy, shows the share of seats used rela-
tive to a benchmark where high-achieving schools fill first, followed by medium-achievement
schools.52

The two measures presented exhibit little variation across different counterfactuals, with
one notable exception. Setting SR at the Municipality level reduces the achievement gap by
about one-third. In contrast, setting SR at the current level has little effect. However, SR
at the Municipality level also results in a slight decrease in the share of ideal occupancy of
high-achievement programs.

As the takeaways from the different models are essentially the same, we will focus on the
costly consideration model in the last section of our counterfactual analysis. This section will
examine the interaction between demand-side policies and SR, as well as the complementar-
ity between SR and the two drivers of differences in choice between the socioeconomic groups.
Additionally, using the costly consideration model will allow us to study the impact of reduc-
ing consideration costs, simulating a policy that reduces information acquisition frictions.
But before presenting those results, it is insightful to compare the values of segregation gaps,
benchmarks, and the different counterfactuals in our two example Municipalities to high-
light some of the nuances in our geographic methodological approach. These are presented
in Table 1.9.

Both segregation measures align in terms of the relative comparison of the different coun-
terfactuals and their magnitudes. Maipú shows relatively little variation in the segregation
value across counterfactuals, while La Cisterna exhibits more significant variation due to its
sensitivity to interaction with other Municipalities. In Maipú, results are consistent with
expectations and city-wide averages, but in La Cisterna, segregation is smaller under the
maximum rather than the minimum benchmark in 2019 and 2020. Moreover, in that Mu-

51Note that the estimated effect of SR in reducing the segregation gap when set at the Municipality level and at
the current level move up or down together across different years, roughly maintaining their proportionality.

52To calculate this measure, we need to include all applicants, not only those with counterfactual applications.
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nicipality, eliminating residential sorting slightly reduces segregation in 2019 relative to both
benchmarks, but increases it above them in 2020. A final point to highlight from the table is
that SR set at the Municipality level consistently reduces segregation for both Municipalities
relative to the maximum benchmark.53

These results demonstrate that the interaction between geographic units can strongly
affect segregation measures. While our methodology of presenting measures averaged for
the different Municipalities to discuss counterfactuals provides a comprehensive picture in
our view, as interactions can drive measures both upwards and downwards, future research
should explore the best geographic methodology strategy depending on policy objectives.

Table 1.10 summarizes the results obtained with the costly consideration model, averaged
over the three-year period, for the next set of counterfactuals. The results for each year
separately and including measures with all applicants, inorporating also previously discussed
counterfactuals, are presented in Tables A.2.1, A.2.2, and A.2.3 in Appendix A.2. Panel A
of Table 1.10 shows the primary outcomes of segregation and unassignment, while Panel B
presents the other outcomes of interest introduced above.

The first additional counterfactual involves implementing SR at the city low-SeS share.
The next four counterfactuals correspond to implementing demand-side policies together
with SR at the Municipality level, either individually or all together. In the first simulated
policy, high-achievement programs’ indirect utilities are increased by 583 meters for all ap-
plicants, which is half of the average distance to the first preference of applicants included
in the estimations. This intervention aims to simulate a successful policy that promotes the
highest quality schools. In the second counterfactual scenario, individual consideration costs
are reduced by 90%, nearly eliminating them. This intervention simulates a policy such as a
digital platform where each school presents all its information in detail and interacts with ap-
plicants, enabling families to acquire relevant information with significantly less effort. The
third scenario cuts the dis-utility of distance-to-school by 20% for all applicants, intending
to simulate a considerable transportation cost reduction.

Importantly, note that none of these policies are targeted or have heterogeneous effects
in different socioeconomic groups. However, they do have large distributional effects due to
the simultaneous implementation of targeted reserves. To see this, the table includes a final
scenario that combines the effects of all three demand-side policies without SR.

Implementing SR at the city level is found to be inferior to implementing it at the
Municipality level across all dimensions. Moreover, the primary differentiation is observed in
terms of segregation, which even worsens in the measure that includes unassigned applicants.
This is because the reserves primarily operate over congested programs, leading to no-SeS
applicants being unassigned from schools where their share is underrepresented relative to
their Municipality and being moved to the unassigned group, where they are the majority.
Moreover, even when comparing results with the measure without unassigned applicants, SR
at the city level only achieves around half of the reduction in segregation achieved by SR at

53In Appendix A.3, we visually illustrate the level of exposure of La Cisterna to the diverse socioeconomic
composition of neighboring areas.
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the Municipality level.
With regard to demand-side policy interventions, we find that both increasing prefer-

ence for high-achievement programs and reducing transportation costs significantly reduced
segregation by 10-20% in addition to SR alone. However, they differ in other aspects. As ex-
pected, increasing preference for high-achievement programs produces a significant increase
in the overall assignment level to these programs and a greater reduction in the gap in
assignment between socioeconomic groups. However, it also results in a slight increase in
unassignment by about 0.5%. On the other hand, reducing transportation costs generates
a significant 3% reduction in overall unassignment (a decrease of almost 40%), particularly
benefiting the population of no-SeS applicants, but has limited impact on assignment to
higher-quality programs as results in this case are driven by an increase in the average ROL
length. The near-elimination of consideration costs has a minor impact on all dimensions,
with only a slight decrease in overall unassignment from 7.89% to 7.76% and an additional
2% reduction in segregation on top of SR alone. These findings suggest that information
acquisition frictions have a relatively small role in observed ROLs. However, this could also
be due to limitations in the model’s identification of such frictions, as discussed in Section
1.5.

If all demand-side interventions are implemented together with SR, educational segre-
gation can be reduced by 20-30%, while also achieving the gains on the other dimensions
obtained by implementing the policies individually. However, if these policies are imple-
mented alone without reserves, while their effect on unassignment and ideal occupancy is
almost identical, their impact on segregation is considerably smaller, resulting in values sim-
ilar to what is obtained with SR at their current level. Moreover, only implementing the
demand-side policies, the achievement gap is increased, albeit with more applicants in each
group assigned to high-achievement category programs. These results highlight the comple-
mentarity between SR and demand-side policies in reducing segregation and the achieve-
ment gap. We interpret this as SR playing the role of targeting the effects of un-targeted
demand-side policies, potentially facilitating their design and implementation significantly.
A well-designed policy mix can attain significant improvements in all outcomes of interest
cost-effectively.

Figure 1.6 provides a graphical representation of the results under the MA-DD index
with and without unassigned applicants. There are two additions to note relative to Figure
1.5. First, we include a MSB that implements SR at the program’s Municipality low-SeS
share on top of eliminating differences in choice between the socioeconomic groups. Intu-
itively, implementing SR should lead to an additional reduction in segregation because of
the randomness in residences and preferences. Second, we compare the complementarity be-
tween SR implemented at the Municipality level together with the elimination of residential
sorting or together with the elimination of systematic differences in preferences between the
socioeconomic groups.

Regarding the addition of the MSB including SR, Figure 1.6a shows that segregation
is further reduced by 6% in terms of the segregation gap when unassigned applicants are
included. This reduction results from SR eliminating some of the segregation produced by
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the randomness in choice discussed earlier. However, if unassigned applicants are excluded
from the measure, the MSB with reserves is measured at around 30% less. The reason is
simple: in many cases, SR make the schools’ socioeconomic composition more even while
making the unassigned group more uneven. Both forces roughly balance out in Figure 1.6a,
but the latter is not incorporated in Figure 1.6b.

With regard to the complementarity between SR and either eliminating residential sorting
or differences in preferences between socioeconomic groups, our findings indicate consistent
results for both segregation measures. The impact of SR on reducing segregation is greater
when combined with eliminating residential sorting, resulting in a reduction of 53.1% to
61.8% compared to using only SR at the Municipality level and the MSB with SR. The
impact of SR and eliminating differences in preferences between socioeconomic groups on
reducing segregation is only about half. This is due to the greater operational range of SR
in less residentially segregated neighborhoods. When residential sorting is maintained and
differences in preferences are eliminated, SR only operate over a small fraction of applicants
in neighborhoods where there are few low-SES applicants. In contrast, in less segregated
neighborhoods or where low-SES applicants are the majority, additional low-SES applicants
to a program with enough to achieve an even assignment can only make the end result more
uneven by over-representing their share, depending on lotteries.

1.7 Discussion

The use of Centralized Choice and Assignment Systems is rapidly increasing as digitalization
becomes more widespread, and policymakers recognize their benefits in terms of efficiency
and transparency. To further reduce segregation in schools based on socioeconomic, racial,
or ethnic backgrounds, targeted reserves should be integrated into these systems. This can
also help close gaps in assignment to higher-quality programs, which is a common goal for
policymakers in the context of school choice, especially at the entry levels of the educational
system. This chapter highlights that for targeted reserves to be effective, they need to take
local conditions into account and be implemented alongside demand-side policies, such as
those that reduce transportation costs or increase demand for higher quality schools.54

In the case of PreK assignment in Chile’s CCAS, our analysis reveals that the current
flat level of SR at 15% leads to only a modest reduction of 3-9.2% in the average educational
segregation gap in Santiago’s Municipalities. Simply increasing SR uniformly across all
schools may provide some improvement, but it can also have unintended consequences such
as intensively exacerbating segregation in Municipalities with fewer low-SES families. Setting
SR at the level of low-SES applicants in each Municipality can be a more effective and amplify
the impact of SR by five times relative to the current level. Moreover, setting this level is at
least twice as effective as setting reserves homogeneously at the city level.

54Moreover, reducing information frictions leveraging digital systems for cost-effective personalized feedback
and information delivery is a promising approach (Arteaga et al., 2021, 2022; Elacqua, Gómez, Krussig,
Marotta, Méndez, and Neilson, 2022a; Elacqua et al., 2022b).
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Additionally, implementing targeted reserves together with demand-side policies can sig-
nificantly reduce segregation further. Our simulations show that with SR they can reduce
educational segregation in an additional 20-30% of the segregation gap, compared to only
4-10% without SR, highlighting the complementarity of these policies.

Analyzing targeted reserves poses challenges due to two main factors: the geographic
component and aftermarket dynamics affecting final enrollment. Deciding on the appro-
priate level to measure segregation requires normative decisions regarding geographic units
of interest. However, even with a clear definition of geographic units, families may choose
schooling alternatives outside of their residential unit, making it difficult to accurately mea-
sure changes in segregation. In addition, accounting for aftermarket dynamics, such as
administrative processes that allow families to change their assigned program or obtain an
assignment if initially unassigned, and private schools with separate admission processes, is
important for a complete analysis.

Further research is necessary to better understand the optimal way to set reserves at each
school and to design complementary policies appropriately. However, our findings underscore
the importance of prompt policy action in Chile and other similar contexts. First, our results
call for targeted reserves to be set at each educational program based on local conditions.
In Chile, for instance, being conservative one could set SR at a fixed percentage below the
Municipality’s low-SeS applicants share across the country to achieve better results than
the current flat 15% level. Additionally, if SR are implemented, policies promoting higher
quality options or more broadly options were low-SeS applicants are under-represented, and
policies increasing the number of alternatives considered and acceptable (and thus ranked)
by families should be deployed, even if targeting their effects is unfeasible and segregation is
a relevant policy concern, as SR can target their effects.
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Figures

Figure 1.1: Santiago’s Municipalities

(a) Schools with PreK programs in Santiago City
(b) Share of low-SeS applicants in each Munici-
pality

Note: This figure shows the urban limits of Santiago’s Municipalities. We do not consider the Municipality of
Pirque because it only has 14 applicants accurately geolocated applying to schools in or close to it. Panel A shows
schools considered in our exercises, and they can be outside urban limits because of the buffers drawn around each
Municipality. This procedure is explained with more detail in Subsection 1.4. Panel B shows the share of low-SeS
Pre-K applicants in each Municipality, with a minimum value of 13.5% in the Municipality of Providencia and a
maximum value of 66.21% in the Municipality of La Pintana.
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Figure 1.2: Municipality + Buffer Area in Maipú and La Cisterna

(a) Maipú (b) La Cisterna

Note: This figure shows the Muncipilities of Maipú and La Cisterna, differentiating the urban limit with the buffer
drawn around it. In the case of Maipú, there is no buffer around, so the limits match.
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Figure 1.3: Differences in Mean Utilities for Different Municipalities in Costly Consideration
Model (kms)

(a) High vs. Low Achievement

(b) High vs. Med. Achievement
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Figure 1.4: The effect of reserves on segregation using observed applications

(a) 2019 (b) 2020

(c) 2021
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Figure 1.5: Educational Segregation Decomposition in All Models: Only Counterfactual
Applicant’s Sample Using MA-DDWUN Index
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Figure 1.6: Educational Segregation Decomposition in Costly Consideration Model: Three-
Year Average Including Only Counterfactual Applicant’s Sample

(a) Assigned and unassigned applicants

(b) Only assigned applicants



CHAPTER 1. EFFECTS OF SOCIOECONOMIC RESERVES 44

Tables

Table 1.1: Priority orderings in each reserve group

(1) (2) (3) (4)
Priority Disability Academic Ach. low-SeS Regular

6 (highest) Secured Enrollment -
5 Disability Academic Achiev. Sibling (S) Secured E.
4 Sibling (S) Sibling (S) Sibling (D) Sibling (S)
3 Sibling (D) Sibling (D) low-SeS Sibling (D)
2 One parent of the applicant works at the school
1 The applicant is a former student of the school
0 No priority

Note: Sibling (S) applies when the sibling of the applicant is enrolled in a program at the same school of
the program to which the applicant is applying. Sibling (D), where the “D” stands for dynamic as opposed
to a static priority, applies when the sibling is assigned to a program at the same school by the algorithm.
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Table 1.2: Program Characteristics

2019 (1,237 Programs) N obs Mean Min Max
Subsidized School (=1) 1237 0.65 0 1
High Achievement Category (=1) 1217 0.11 0 1
Medium Achievement Category (=1) 1217 0.48 0 1
Full School Day (=1) 1237 0.17 0 1
Morning School Day (=1) 1237 0.43 0 1
Positive Price (=1) 1237 0.23 0 1
Price (UF 1) 290 1.169 0.023 5.095

2020 (1,247 Programs) N obs Mean Min Max
Subsidized School (=1) 1247 0.65 0 1
High Achievement Category (=1) 1224 0.11 0 1
Medium Achievement Category (=1) 1224 0.48 0 1
Full School Day (=1) 1247 0.18 0 1
Morning School Day (=1) 1247 0.42 0 1
Positive Price (=1) 1247 0.22 0 1
Price (UF 1) 273 0.096 0.002 3.258

2021 (1,249 Programs) N obs Mean Min Max
Subsidized School (=1) 1249 0.65 0 1
High Achievement Category (=1) 1225 0.11 0 1
Medium Achievement Category (=1) 1225 0.48 0 1
Full School Day (=1) 1249 0.18 0 1
Morning School Day (=1) 1249 0.42 0 1
Positive Price (=1) 1249 0.19 0 1
Price (UF 1) 233 1.211 0.021 3.147

Note: UF means Unidad de Fomento, which is a unit of account used in Chile to adjust the Chilean peso
for inflation (it is a non-circulating currency). On December 31, 2019, the exchange rate was 0.03 UF/USD.
Same date in 2020, it was 0.0258; and in 2021, 0.0309.
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Table 1.3: Applicants’ characteristics: Considered and Not Considered in Demand Estima-
tion

Sample Population Not included in sample
Mean Min Max Mean Min Max

High-Accuracy Georef. 1 1 1 0.75 0 1

Low-SeS 0.42 0 1 0.34 0 1

Application Lenght1 3.11 1 44 3.78 1 119

Distance2 First
Preference (km) 1.17 0.003 13.74 3.45 0.002 88.69

Assigned 0.92 0 1 0.90 0 1

Distance2 Assigned (km) 1.19 0.003 13.74 3.51 0.007 88.69

Assigned in their
Municipality 0.93 0 1 0.55 0 1

N Schools
in a 2km radius 21.40 0 48 20.13 0 48

High Achiev. Schools
in a 2km radius 1.91 0 7 1.84 0 7

N Applicants 78,816 34,121

Note: Even when there is a minimum length of application at entry levels (2 programs), we can observe
some cases of 1 program applications due to rurality (for applicants not in demand estimation), being
located in urban areas with no enough PreK programs nearby (usually in peripheral Municipalities near
the limits of urbanity), or having applied to more than one program but then face schools or programs
closures. The percentage of applicants with one program in their application in the Municipalities of
Santiago city was 0.15% in 2019, 0.22% in 2020, and only 0.02% in 2021.
2 Distances to the first preference and the school assigned only consider schools in the Metropolitan region,
to not account for students moving to other regions, which leads to maximum distances of more than 2,000
kilometers.
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Table 1.4: Share of applicants used to estimate preferences

Apps. in
counterfactual Share

> 5,000 15%
[5,000,4,000) 20%
[4,000,3,000) 25%
[3,000,2,500) 30%
[2,500,2,000) 35%
[2,000,1,500) 42.5%
[1,500,1,000) 50%
< 1,000 100%
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Table 1.5: Estimated Mean Utilities

Panel A: Mean utilities (kms)

Costly consideration Costly ranking Full consideration

wav range wav range wav range

δ
Low−SeS
HA Cat .664 -.227 - 2.491 .772 -.302 - 2.602 .591 -.362 - 2.399

HA vs MA Cat .320 -.603 - 1.588 .350 -.610 - 2.351 .311 -.483 - 1.639

HA vs LA Cat .735 -.183 - 2.457 .793 -.329 - 3.819 .719 -.240 - 2.621

δ
No−SeS
HA Cat .902 -.238 - 2.670 1.054 -.094 - 3.011 .827 -.343 - 2.597

HA vs MA Cat .470 -.238 - 2.001 .504 -.290 - 2.214 .459 -.302 - 2.023

HA vs LA Cat .952 -.038 - 2.473 1.024 -.143 - 2.740 .936 -.071 - 2.465

δ
LS

HA − ξLSHA .702 -.294 - 3.089

HA vs MA Cat .358 -.904 - 2.564

HA vs LA Cat .758 -.407 - 3.606

δ
NS

HA − ξNS
HA .933 -.320 - 3.809

HA vs MA Cat .511 -.665 - 2.990

HA vs LA Cat .938 -.318 - 3.080

Panel B: Estimation sample

All Models

wav range

NApplicants 841 140 - 1,293

NPrograms 85 4 - 200

Applicants/Programs 12.4 3.3 - 76.4

Choices/Programs 39.1 10.2 - 202.6

Note: Low−SeS refers to applicants with low socioeconomic status, and this term is abbreviated as LS in the third
group of rows in the table. Likewise, No − SeS refers to applicants who do not have low socioeconomic status (non
Low-SeS or no-SeS), and it is abbreviated as NS in the fourth group of rows.
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Table 1.6: Main Estimated Parameters

Costly consideration Costly ranking Full consideration

wav range wav range wav range

λSIB
2.772 1.187 - 8.034 2.869 1.233 - 8.489 2.804 1.209 - 7.483

(29.7) (7.85 - 42.47) (29.9) (8.73 - 42.36) (30.5) (8.84 - 44.38)

λPW
4.094 -.038 - 12.278 4.494 .023 - 16.124 4.329 .026 - 14.89

(6.5) (-.01 - 13.7) (6.5) (.01 - 13.81) (6.5) (.01 - 13.76)

∆d,C19
.3% 0% - 3.3% .2% -.4% - 2.7% .3% 0% - 2.8%

(.3) (.04 - .81) (.2) (-.09 - .75) (.3) (.02 - .79)

σ2
ξNSeS

.527 .134 - 4.262 .526 .137 - 5.249 .449 .126 - 3.568

(4.9) (.78 - 6.99) (4.9) (.51 - 6.81) (5) (.77 - 6.7)

σ2
ξSeS

.491 .134 - 4.429 .496 .118 - 4.255 .433 .115 - 3.99

(4.8) (.71 - 6.7) (4.7) (.68 - 6.53) (4.8) (.66 - 6.36)

σ2
ϵ

.781 .047 - 7.433 .829 .046 - 7.8 .761 .048 - 6.148

(45.1) (8.85 - 77.75) (45) (9.51 - 80.29) (46.9) (9.76 - 77.8)

cNSeS .043 .001 - .381 .023 .004 - .068

(6.2) (1.3 - 8.31) (7.3) (.99 - 12.87)

cSeS
.037 .003 - .391 .021 0 - .096

(5.3) (1.44 - 6.99) (5.3) (.03 - 8.13)

σ2
zeta

.564 .01 - 4.922 .307 .026 - 1.73

(4.8) (1.87 - 6.52) (6.4) (1.39 - 9.64)

Note: weighted av. t-stats in parenthesis (if opposite sign from parameter set to zero)
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Table 1.7: Segregation Reduction Outcomes in All Models: Three-Year Average Including
Only Counterfactual Applicant’s Sample

Countefactual Scenario Main Outcomes
Panel A: Segregation gap Integration: Reduction in Unassignment

SR Randomized educational seg. gap (∆−%) (% of group)

Model share (%) residences MA-DDWUN MA-DD DD L-SeS N-SeS All
15 No 4.9 9.2 10.6 5.98 8.8 7.9

Costly 0 No - - - 6.54 8.62 7.9
cons. 0 Yes 41.4 42.5 40.9 8.16 8.02 8.01

Muni. No 19.7 47.5 51.3 4.26 9.9 7.89
15 No 3 7.1 9 5.98 8.8 7.9

Full 0 No - - - 6.66 8.6 7.92
cons. 0 Yes 37.3 40.1 38.7 6.76 6.69 6.67

Muni. No 15.3 38.9 41.6 4.23 9.91 7.88
15 No 3.9 8.4 10.1 5.98 8.8 7.9

Costly 0 No - - - 6.67 8.72 8
rank. 0 Yes 40.4 43.7 41.6 6.52 6.29 6.34

Muni. No 17.4 43.2 46.1 4.33 9.95 7.94

Panel B: Segregation values Segregation Measure

MA-DDWUN MA-DD
Model Benchmark min/max wav gap min/max wav gap
Costly Achievable min. .036/.136 .079

.035
.027/.135 .083

.034
cons. Baseline (max) .04/.189 .114 .037/.19 .117
Full Achievable min. .041/.117 .076

.038
.044/.115 .077

.039
cons. Baseline (max) .039/.189 .114 .037/.192 .117
Costly Achievable min. .036/.126 .079

.035
.045/.124 .081

.036
rank. Baseline (max) .039/.191 .114 .037/.192 .117
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Table 1.8: Other Outcomes in All Models: Three-Year Average Including Only Counterfac-
tual Applicant’s Sample

Countefactual Scenario Other Outcomes
Achievement Gap (% of) % of ideal occup.

SR Randomized HA category MA category All Applicants
Model share (%) Residences L-SeS N-SeS L-SeS N-SeS HA cat. MA cat.

15 No 16.4 20.4 52.3 53.9 84.5 82.9
Costly 0 No 16.2 20.4 52.1 53.9 84.4 82.9
cons. 0 Yes 16.6 20 52.1 53.4 84.9 82.5

Muni. No 17.3 19.7 52.1 54 84.5 82.9
15 No 16.4 20.4 52.3 53.9 84.5 82.9

Full 0 No 16.2 20.4 52.1 53.9 84.4 82.9
cons. 0 Yes 16.3 19.8 52.2 53.2 85.2 83.2

Muni. No 17.2 19.8 52.2 54 84.5 82.9
15 No 16.4 20.4 52.3 53.9 84.5 82.9

Costly 0 No 16.3 20.4 52.1 54 84.4 82.9
rank. 0 Yes 16.5 19.8 52.2 53.5 85.3 83.5

Muni. No 17.3 19.7 52.1 54.1 84.5 82.8

Table 1.9: Counterfactual Segregation Values in Example Municipalities: Costly Considera-
tion Model and Counterfactual Applicant’s Sample Results

Maipú 2019 2020 2021

Counterfactual MA-DDWUN MA-DD MA-DDWUN MA-DD MA-DDWUN MA-DD
Max. Benchmark .144 .153 .151 .152 .150 .148
Min. Benchmark .074 .083 .069 .069 .080 .082
No Res. Sorting .124 .134 .132 .134 .132 .135
SR Municipality .135 .130 .147 .143 .134 .128

La Cisterna 2019 2020 2021

Counterfactual MA-DDWUN MA-DD MA-DDWUN MA-DD MA-DDWUN MA-DD
Max. Benchmark .106 .116 .088 .088 .156 .154
Min. Benchmark .114 .116 .106 .106 .115 .114
No Res. Sorting .104 .109 .114 .111 .130 .130
SR Municipality .100 .094 .082 .076 .127 .121
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Table 1.10: Additional Counterfactuals in Costly Consideration Model: Three-Year Average
Including Only Counterfactual Applicant’s Sample

Panel A: Main Outcomes
Integration: Reduction in Unassignment

Demand-side SR educational seg. gap (∆−%) (% of group)

simulation share (%) MA-DDWUN MA-DD DD L-SeS N-SeS All
None Muni. 19.7 47.5 51.3 4.26 9.9 7.89
None City -17.1 25 32.8 2.28 10.4 7.95
∆+δHA Muni. 33 58.8 62.4 4.41 9.66 7.8
∆−ci Muni. 21.6 49.7 53.5 4.15 9.76 7.76
∆−τt Muni. 38.8 57.9 60.3 2.9 6 4.95
All Muni. 50.1 69.5 71.8 2.72 5.55 4.61
All 0 3.9 10.3 9.1 4.46 4.66 4.57

Panel B: Other Outcomes
Achievement Gap (% of group) % of ideal occup.

Demand-side SR HA category MA category All Applicants
simulations share (%) L-SeS N-SeS L-SeS N-SeS HA cat. MA cat.

None Muni. 17.3 19.7 52.1 54 84.5 82.9
None City 17.6 19.8 52.3 53.9 84.4 82.8
∆+δHA Muni. 21.6 23 49.4 52 90.9 81.1
∆−ci Muni. 17.3 19.6 52.1 53.8 84.4 82.7
∆−τt Muni. 17.4 19.4 52.2 53.8 85.2 84
All Muni. 21.3 22.2 49.6 51.8 90.9 82.2
All 0 19.1 23.7 50.1 51.4 90.8 82.3
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Chapter 2

The Potential of Smart Matching
Platforms in Teacher Assignment:
The Case of Ecuador

2.1 Introduction

Making a “good” or optimal choice is a difficult task, particularly when faced with infor-
mation frictions. Providing agents with personalized information can facilitate the decision-
making process. Such informational interventions are potentially beneficial not only at the
individual level (by bettering people’s outcomes) but also at the system level (by improving
efficiency). The effects of informational interventions have been studied in the context of
school selection (Arteaga et al., 2021; Cohodes, Corcoran, Jennings, and Sattin-Bajaj, 2022;
Weixler, Valant, Bassok, Doromal, and Gerry, 2020; Andrabi et al., 2017), financial choices
(Saez, 2009; Duflo and Saez, 2003), health care (Kling, Mullainathan, Shafir, Vermeulen,
and Wrobel, 2012), and consumer behavior (Allcott and Rogers, 2014; Jin and Leslie, 2003),
with researchers widely concluding that they can have a low-cost, positive impact on the
decision-making process.

In Chapter 1, we discussed how information frictions play a crucial role in the formation
of an application portfolio and simulated a policy to reduce the cost of acquiring infor-
mation. However, we did not delve into specific policies to implement this. This chapter
explores the role of reducing information frictions by providing timely, personalized feedback
in teacher job markets. Given that applicants for teaching positions have already undergone
the necessary examinations and requirements to apply, they can be expected to invest con-
siderable effort into the portfolio formation process. However, the scope of choice is vast,
as teachers can potentially move to different cities in the country to begin or continue their
teaching career. Moreover, information about demand for different teaching positions might
be unavailable or unrepresentative of the current environment. On average, teachers tend to
prefer working close to where they grew up or live, in urban areas, or in schools with specific
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features such as higher enrollment, better infrastructure, or a higher percentage of socioe-
conomically advantaged students (Bertoni, Elacqua, Hincapié, Méndez, and Paredes, 2019;
Boyd, Lankford, Loeb, and Wyckoff, 2005; Reininger, 2012). These preferences can result in
inefficiencies in the job market, where many candidates are unable to get a vacancy in more
desirable schools that are in high demand, while positions in other schools, often vulnerable
and remote, go unfilled. In fact, such positions may remain vacant despite the existence of
willing candidates who might have applied if they had known that doing so would increase
their chances of securing a job.

We tested a low-cost intervention that provides teachers with information aimed at in-
creasing their chances of securing a position and improving system outcomes (i.e., increasing
the score of assigned teachers and the number of filled positions). The intervention was
implemented in Ecuador as part of the “I Want to Be a Teacher” (Quiero Ser Maestro)
program, which assigns teachers to schools through a centralized choice and assignment sys-
tem that uses a deferred acceptance algorithm (Gale and Shapley, 1962).1 Specifically, to
better inform teacher candidates who participated in the Ecuador’s 2021 selection process,
the latter received a personalized report via WhatsApp and email containing a summary of
their application.2 For candidates whose estimated risk of not being assigned was “high”
(above a defined cutoff level), the report also included a non-assignment risk warning and
a list of recommended schools where they had higher chances of securing a position.3 We
evaluate the impact of the intervention on teachers’ submitted ranked ordered lists (ROLs)
and assess the equilibrium effect on their probability of assignment.

To this end, we use a regression discontinuity design that allows us to estimate the causal
effect of providing teachers with information about their non-assignment risk and possible
schools to which they could apply. Similar to Arteaga et al. (2021), the running variable
is defined as estimated non-assignment risk and the cutoff is set to 30%. Additionally,
after the end of the application period but before results were distributed, we conducted a
survey aimed at measuring applicants’ opinions on different dimensions of the process, as

1Centralized choice and application systems (CCAS) refers to algorithmic assignment processes that take
applicants’ preferences and priorities into account when allocating available vacancies (see www.ccas-
project.org). Elacqua, Olsen, and Velez-Ferro (2020) identify several advantages of this kind of system
for teacher assignment: (i) a potentially sharp reduction in search costs, (ii) increased transparency in as-
signment criteria, thanks to the use of scoring systems that facilitate the prioritization of teachers with higher
potential, and (iii) efficiency gains in relation to teacher preferences, due to assignment algorithms suitable
for improving school-teacher matching, potentially impacting teacher satisfaction and retention rates. The
authors report that CCAS have been successfully implemented in recent years in a number of countries
including France, Germany, Turkey, Peru, Portugal and Ecuador. For additional evidence on the benefits of
CCAS for teacher assignment see, for example, Pereyra (2013); Terrier (2014); Cechlárová, Fleiner, Manlove,
McBride, and Potpinková (2015); Dur and Kesten (2019); Combe, Tercieux, and Terrier (2022).

2The personalized report was prepared using a personalized url and a responsive front-end design that was
adapted to mobile devices.

3In other studies, such as Arteaga et al. (2021), the non-assignment risk intervention focuses on helping
applicants to find and add more alternatives (and potentially re-order their portfolio). In this system,
teacher candidates can only apply to a maximum of 5 schools. As a result, some needed to change their
original application to improve their chances of obtaining a position.

www.ccas-project.org
www.ccas-project.org
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well as assignment beliefs and their knowledge of available alternatives within their area of
specialization.

We find that receiving the warning and school vacancy recommendations increased the
probability of changing their ROL by 52%.4 The effect on the equilibrium chances of being
assigned to a school is an increase of 37% at the discontinuity. As explained in Section 2.6,
this result is an equilibrium effect in the sense that it is affected by changes in the applica-
tions of all the participants, both close to and far from the discontinuity. Additionally, the
descriptive results presented in Section 2.6 suggest that the overall program results improved
after the intervention because additional positions were filled, or because the relatively high-
performing candidates who received the personalized report and changed their application
displaced lower-score applicants.5

Our study adds to the literature on informational frictions by showing the positive im-
pact of a low-cost informational intervention on teacher preference and assignment. The
intervention also seems to have generated system-level efficiency gains. This is of particular
importance, given that teachers are the most expensive schooling input and the greatest
influential educational factor for student outcomes. Several papers have shown the effects
of providing agents with information. For instance, in a similarly configured intervention,
Arteaga et al. (2021) use “real-time” feedback on applicants’ admissions probabilities in the
context of student school choice in the Chilean CCAS to study the effect of non-assignment
risk warning pop-ups and SMS/WhatsApp messages on submitted ROLs and assignment
probability. The authors find that this real-time feedback led families to add more schools
and increased their likelihood of assignment to a more preferred school,6 both on the order
of a 20-25% increase relative to applicants with a similar non-assignment risk that did not
receive the warning.

In a similar vein, other studies have shown that information about the characteristics of
available choices can guide individuals to make better decisions. For example, Hastings and
Weinstein (2008) and Allende et al. (2019) demonstrate that when lower-income families have
access to information about school quality, they are more likely to choose high-performing
schools.

Finally, our findings have important policy implications when it comes to reducing in-
efficiencies in teacher assignment and improving educational effectiveness. Indeed, teacher
recruitment and assignment processes can be lengthy and costly (Allen, 2005). Yet, given
that teachers have a strong and long-lasting impact on student outcomes (Rivkin, Hanushek,
and Kain, 2005; Kane and Staiger, 2008; Chetty, Friedman, and Rockoff, 2014a,b), school
vacancies should ideally be filled on time and with the best possible candidates. Otherwise,
there is a risk of assigning vacancies to less-qualified teachers through temporary contracts

4More precisely, these are the estimated effects of the RDD described in Section 2.5 and presented in Section
2.6; namely, the local average treatment effect at the 30% non-assignment risk threshold.

5Because the algorithm is based on candidates’ selection assessment score and preferences, these high-
performing treated candidates were ranked higher by schools.

6The paper also shows that treated applicants ended up assigned to better-quality schools at the end of the
assignment process.
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(Bertoni, Elacqua, Marotta, Mart́ınez, Méndez, Montalva, Olsen, Santos, and Soares, 2020),
which can have a negative impact on student achievement (Marotta, 2019). Reducing inef-
ficiencies in teacher assignment can ultimately improve education quality if high-performing
candidates who are unable to obtain a position due to congestion at their preferred schools
are encouraged to apply to less demanded schools with unfilled vacancies or with slots that
are instead filled by candidates with lower scores.

To improve equity and efficiency in teacher assignment, some policies use monetary in-
centives to influence teacher preferences, though this has been found to have a small or
non-significant effect (Clotfelter, Glennie, Ladd, and Vigdor, 2008; Falch, 2011; Glazerman,
Protik, Teh, Bruch, and Seftor, 2012; Springer, Swain, and Rodriguez, 2016; Rosa, 2017;
Bueno and Sass, 2018; Feng and Sass, 2018; Elacqua, Hincapie, Hincapié, and Montalva,
2022c). More recently, studies have examined the impact of low-cost non-monetary inter-
ventions on teacher preferences. For instance, Ajzenman, Bertoni, Elacqua, Marotta, and
Vargas (2020) evaluate an intervention aimed at attracting teacher candidates to rural and
more vulnerable schools in Peru using behavioral nudges that cultivated their extrinsic and
intrinsic motives for pursuing these alternatives. The nudges led to a 3.4% increase in
the probability that a candidate included a vulnerable school in their choice set, and a 6%
increase in the probability that the applicant would be assigned to one of these schools. Sim-
ilarly, Ajzenman, Elacqua, Marotta, and Olsen (2021) assess an intervention in Ecuador that
highlighted teaching vacancies in vulnerable schools and displayed them in first place within
an application platform. The intervention increased the share of applicants that included
these schools in their portfolio by almost 9% and raised their probability of assignment by
4%. We build on this literature by testing the effectiveness of a low-cost intervention that
provides non-assignment risk information and direct recommendations to teacher candidates.
Our results suggest that information that reduces search frictions can have a significant ef-
fect on teachers’ preferences and, thus, may complement other policies aimed at providing
extrinsic or intrinsic incentives.

The chapter is organized as follows. Section 2.2 describes the institutional context of the
Ecuadorian teacher assignment system. Section 2.3 presents the design and implementation
of the intervention. Section 2.4 provides descriptive statistics and Section 2.5 introduces the
empirical strategy employed in the analysis. Section 2.6 discusses our results and Section
2.7 concludes.

2.2 The Ecuadorian Teacher Assignment System

Since 2013, the Ecuadorian Ministry of Education has implemented a centralized teacher
selection and assignment program known as Quiero Ser Maestro (QSM). Here, we focus on
the seventh annual intake to the QSM program (QSM7), which took place in 2021.

The QSM includes three phases: i) the eligibility phase, ii) the “merits and public exam-
ination” (méritos y oposición) phase, and iii) the application phase. In the eligibility phase,
teacher candidates must pass a psychometric test comprised of personality and reasoning
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questions, and a knowledge test that is specific to the specialty area for which candidates
are applying (e.g., general primary education, secondary school math, etc.). To proceed to
the next phase, candidates must have passed the psychometric test and obtained a minimum
score of 70 percent in the knowledge exam.

In the “merits and public examination” phase, candidates are evaluated according to
their academic and professional credentials (the merits portion). Candidates who pass the
merits portion move on to the “public examination” portion. In the latter, candidates are
scored based on their performance in the specific knowledge test taken in the first phase7

and a mock class.8 Candidates must obtain a minimum score of 70 percent in this mock
class in order to apply for job offers.

The total score for the “merits and public examination” phase is weighted 35% for the
merits portion and 65% for the public examination portion, as described in Table B.2.1 in
Appendix B.2. Additionally, candidates can receive up to ten “bonus” points for meeting
certain criteria, such as living in an indigenous community, having a disability, or residing
in the same educational circuit where their preferred school is located.9

In the last phase, eligible candidates have 10 days to apply for up to 5 open positions in
schools located in any region of the country by submitting a ranked ordered list (ROL) on
an online platform. Once candidates submit their application, they cannot change it during
the initial 10-day period. However, after this application period is closed, candidates are
allowed to go back to the platform and modify their preferences during a two-day validation
period. In this validation phase, they have a single opportunity to add, delete, and change
the order of their submitted choices.

ROLs and school rankings based on the candidates’ final score are then processed using
a deferred acceptance algorithm (Gale and Shapley, 1962). The candidates’ final scores take
into account the results obtained in each of the components listed in Table B.2.1 in Appendix
B.2 and the bonus points computed according to their choices.10 A more in-depth description
of the QSM selection process is provided by Drouet and Westh (2020).

7Scores on the disciplinary knowledge test are also admissible.
8Its consists of a 40-minute teaching assessment in which the teacher demonstrates his/her teaching ability
on a topic in his/her specialty.

9Appendix B.3 provides details on the bonus score.
10It is important to note that the rationale behind the bonus scores is not made clear to applicants when they
are applying, since they are assigned after the application period. Applicants also have little insight of the
points awarded to other candidates. This has two implications. First, since applicants do not know their
exact final score, it is more difficult for them to assess their assignment probabilities for each vacancy and,
therefore, to act upon these probabilities and change their choices. Moreover, not knowing their bonus scores
makes it harder to obtain personalized feedback on assignment probabilities, which this intervention aims to
address. The fact that candidates can only apply to a maximum of 5 schools (as opposed to an unlimited
number of positions) makes the preference selection exercise even more challenging. This restriction clearly
influences teacher behavior, as shown by the share of applicants applying to 5 schools (Figure B.1.1 in
Appendix B.1), and by the survey result presented in Figure B.5.2 of Appendix B.5, which shows that 92%
of the teachers that responded the survey would have liked to apply to more schools. However, we leave the
analysis of the effect of the 5-school restriction to future studies.
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Ecuador’s teacher selection and assignment process has significantly improved over time.
In 2019, for example, the country’s Ministry of Education changed the QSM to allow candi-
dates to apply directly to schools rather than school districts, which reduced the margin of
discretion (Drouet and Westh, 2020). However, there remain inefficiencies in the selection
process. For example, some vacancies are congested, while others (vulnerable and remote)
have few applicants (Bertoni et al., 2020). In fact, Elacqua, Westh Olsen, and Velez-Ferro
(2021) show that 27% of vacancies went unfilled in the 2019 QSM program, mainly in schools
of low socioeconomic status. Our intervention aims to further diminish these inefficiencies
and improve market outcomes by reducing informational frictions.

2.3 Intervention

As discussed in the previous section, the QSM7 application period consisted of two stages:
the application stage, in which candidates could submit a single ranked list of their choices
in a 10-day period, and a two-day validation stage during which they were able to modify
their application. We implemented our intervention between these two stages. Specifically,
a day before the application stage ended, we processed the applications of teachers that had
participated up to that point (or the “pre-validation applicants”), and used this information
to provide them with a personalized report. Before the end of the validation period, 20.3%
of contacted teachers opened the report.

A template of the personalized report can be found in Figure B.4.1 in Appendix B.4.
Applicants with no risk of not being assigned received an introductory message, an invitation
to visit the application interface (panels B.4.1a and B.4.1e respectively), and a summary of
their application, including the following information about each of the selected schools:
location, distance from the candidate’s home, type of financing, number of enrolled students
and number of vacancies (panel B.4.1b). Applicants with a high risk of non-assignment
received the same information and, additionally, a warning of non-assignment, along with a
list of recommended schools (panels B.4.1c and B.4.1d). Thus, the two main groups of the
intervention are formed by the candidates who received the sections with the warning and
recommendations (treatment group) and those who only got a summary of their application
(control group).

The personalized reports were sent via WhatsApp to applicants that provided a valid
phone number during the process.11 Additionally, some applicants received their personalized
report via email. For the emailing, priority was given to applicants without a telephone
number, while a sample of the remaining applicants was randomly selected.12

We will now discuss how we defined the risk of non-assignment, how we constructed the
lists of recommendations and how treatment and control groups were formed.

11Some of these numbers were validated through complementary communications inviting registered teachers
to apply.

12The government had a restriction on the number of emails that could be sent each day and emails had to
be sent from the official government account.
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Non-Assignment Risk

To determine which applicants were at risk of non-assignment, we estimated this risk by
simulating the partial assignment using the following procedure:

• Applicants and simulations: One day prior to the closing date of the application
stage (before the validation stage started), we generated 200 assignment simulations13

with 19,190 pre-validation applicants.14 We also sampled 40%15 of the 2,527 potential
applicants who had not participated in the process at the time of the calculation. Of
the latter, the information used was mainly their score and location.16

• ROLs: For pre-validation applicants, we considered their reported preferences in each
simulation. Since we did not have information on the preferences of sampled appli-
cants, we followed Arteaga et al. (2021) to match each sampled applicant with an
existing applicant (pre-validation applicant) to impute their preferences. To do this,
we searched for the “closest” pre-validation applicant for each sampled applicant as
follows:

1. All applicants within the same geographic unit and specialty were considered.
The geographical scales, in increasing order of size, were the circuit (circuito),
canton, and province.17

2. Among the applicants drawn from the same geographic unit, we selected those of
the same specialization and tercile score. If there were no applicants within the
same tercile, we used the closest one(s).

3. Where there was more than one applicant in the same geographic unit and tercile
(or the closest tercile when applicable), we selected the match randomly.

13Given the number of pre-validation applicants and the fact that, in nearly all iterations, a considerable
fraction would either be assigned or remain unassigned based on their application score, the goal was to
generate enough dispersion in the estimated risk to be able to implement a regression discontinuity design.
To that end, as shown in Figure B.1.2 in Appendix B.1, we ended up with around 5 applicants in each 0.5%
risk bin around the discontinuity (200 simulations implies that we estimated risks in 0.5% intervals).

14A total of 22,015 eligible teachers participated in the program. However, 2,527 candidates had not yet
submitted their applications by August 4, when we processed the partial pre-validation data. Candidates
whose applications were submitted after our deadline were not considered as pre-validation applicants. Ad-
ditionally, we considered only candidates from specialties with at least 20 applicants prior to validation and
80 after the validation period, leaving us with a total of 19,190 pre-validation applicants.

15This percentage was defined based on the guidance of policy-makers who, at the time, estimated that
approximately 93% of all applicants would participate based on previous QSM programs. The participation
rate ended up being significantly higher, implying that our risk estimation was somewhat conservative.

16Location has been extensively documented in the literature as a key determinant of teachers’ preferences for
schools (Bertoni et al., 2019; Boyd et al., 2005; Reininger, 2012; Rosa, 2017).

17The Ecuadorian educational system is split into two regimes, one for the interior (Sierra) and another for
the coast (Costa). In addition to these regimes, the territory is divided into nine administrative zones, which
are further divided into educational districts and educational circuits.
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• Scores: After generating the preferences in each simulation, we calculated the fi-
nal score of each applicant, which corresponds to the sum of the “merits and public
examination” score and the bonus. Although we had data for the first component, un-
fortunately neither we nor the applicants knew the bonus score that applicants would
receive at each school. However, it was possible to anticipate part of the bonus score
using the bonus criteria described in Appendix B.3. In cases where bonus criteria could
be identified in the registration data (e.g., when the applicant resides in the province
where the school is located), we assigned bonus points. We also generated a random
uniform bonus between 0 and 10 points to represent bonuses that we could not identify
in the available data, truncating final bonus scores at 10, in line with the rules of the
process.18

• Algorithm: Following Gale and Shapley (1962), we ran a deferred acceptance assign-
ment algorithm for each simulation.

In summary, what varies from one simulation to another are the sampled applicants,
the random bonus and the imputation of preferences for sampled applicants when more
than one applicant met the matching criteria.

For each pre-validation applicant, we used the 200 simulated assignments to compute the
proportion of simulations in which they were not assigned to a position, generating a running
variable for the risk of non-assignment. This allowed us to implement a regression discon-
tinuity approach to study the impact of the informational intervention, following Arteaga
et al. (2021). We defined risky pre-validation applicants as those who were unassigned in
30% or more of the simulations, using the same cutoff value as in Arteaga et al. (2021). In
this sense, we have a sharp discontinuity scenario given that treatment compliance is divided
precisely at the 30% cutoff. Figure B.1.2 in Appendix B.1 shows the density of estimated
risk for applicants who opened the personalized report, excluding sizable groups of applicants
whose risk was evaluated as 0 and 100%.19 The figure shows that the density of the running
variable is similar on both sides of the cutoff.

Recommendations

The objective of the recommendations was to assist applicants with a low estimated prob-
ability of assignment in their applications by showing them alternatives where they would
have a better chance of obtaining a position. Specifically, risky applicants were pointed to

18We implemented this approximation because we did not have data from previous QSM programs to simulate
more precisely the potential bonuses. This implies that our risk calculations were less accurate than we
would have liked. That said, we could still compare applicants with this imperfect measure and identify
participants who were more likely to be at risk of non-assignment.

19The inclusion of these groups would make it difficult to visualize the distribution for the 30% cutoff of
interest.
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vacancies where the scores of other applicants likely to be assigned (if any) were lower than
theirs.20

When generating the list of recommended schools for treated applicants, we did not
consider the general equilibrium effect that some schools might end up very congested if too
many applicants were recommended. However, to reduce the concern of generating excessive
congestion, and to learn about applicant preferences -particularly, whether they would be
willing to apply to schools in other provinces- we did create recommendation lists that varied
in the number of recommended schools in provinces other than that where the applicant
resided. Additionally, we randomly selected some of the recommendations in all list and
implemented a fully randomized recommendation list for some applicants, thus providing
additional random variation to the intervention.

The process was as follows:

1. We selected all vacancies in the applicant’s area of specialization for which the cutoff
score was lower than the applicant’s score. The cutoff score was derived from a partial
assignment that included only pre-validation applicants and their bonus scores only
included identifiable points.21

2. If there were more than 10 options, we selected 10 using the following criteria22:

a) For a quarter of the applicants (randomly selected), we included up to 4 rec-
ommendations within their province and the remainder were randomly selected
among the applicant’s feasible options (from the rest of the provinces).

b) For the rest of the applicants, we included stratified recommendations using the
following criteria:

i. Geographic criteria

• Schools in the same province

• Schools in provinces included in the application

• Schools in other provinces

ii. Rural

• Rural schools

20The rationale for not including recommendations for applicants below the 30% risk cutoff was that, given
the maximum of 5 choices imposed by the system, recommendations could mistakenly lead to a higher non-
assignment risk if they eliminated a lower-risk option from their portfolio. To include recommendations
for the latter group, it would be necessary to implement a strategy that accurately communicates the non-
assignment risk of each choice. As explained above, this risk could not be precisely estimated, so it was
preferred not to recommend low-risk applicants.

21The cutoff score of each program was calculated as the score of the last applicant admitted to the program
in an assignment in which only applications from teachers who had applied before we implemented this
procedure were considered.

221,000 applicants (10.7% of treated applicants) were mistakenly processed twice in the recommendation al-
gorithm, and some of them received more than 10 recommendations (but no duplicates). Specifically, 832
applicants (8.9% of treated applicants) received more than 10 recommendations.
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• Urban schools

These alternatives were sampled using the following procedure:

i. Two rural and urban alternatives in the applicant’s province of residence
(maximum of 4).

ii. Two rural and urban alternatives in other provinces included in the applica-
tion (maximum of 8 in total).

iii. One rural and one urban alternative in provinces other than those included
in the application or the applicant’s province of residence.

If fewer than 10 alternatives met the criteria, the remaining alternatives were
randomly sampled from the applicant’s viable options. Some applicants had fewer
than 10 feasible alternatives.23

Treatment and Control groups

The treatment and control groups were selected from the 19,428 teachers who had passed
the “merits and public examination” phase and submitted an application by August 4 (i.e.,
pre-validation applicants). From this group, we omitted teachers of specialties with fewer
than 80 registered or 20 pre-validation applicants, which left us with 19,190 teachers.
For our treatment, teachers must meet two conditions: (i) have a high non-assignment risk
(above 30%) and (ii) have a high enough score to obtain at least one vacancy in their specialty
(i.e., those who have at least one alternative to be recommended, as detailed in Section 2.3).
Treatment and control groups were formed using the following procedure:

1. From the group of 19,190 teachers described above, we ruled out applicants who did
not meet the second condition. This left us with 14,810 teachers, who we refer to as
the analysis group.

2. Of the analysis group, 9,334 were at high risk of not being assigned, so they were placed
in the treatment group, while the remaining 5,476 were placed in the control group.

A total of 3,653 (24.7%) teachers in the analysis group opened their personalized report, who
we refer to as the “compliers”. To estimate the effect of our treatment, we focus exclusively
on compliers because we want to study the impact of the informational intervention among
comparable teachers who did or did not receive the treatment. Of the compliers, 65.5%
belonged to the treated group and 35.5% to the control group (who we call ”treatment
compliers” and “control compliers”, respectively). This means that 25.6% of teachers in the
treatment group and 23.7% of those in the control group opened the personalized report.

Finally, by the end of the validation period, which coincides with the end of the QSM, 3
pre-validation applicants dropped their application and 2,388 new eligible teachers submitted
an application. Hence, we define post-validation applicants as the group consisting of pre-
validation applicants who continued until the end of the process, plus new applicants.

23Specifically, 33% of the treated applicants were recommended less than 10 schools.
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2.4 Data

We use administrative data from the registration and application process of the 2021 QSM7
program collected by the Ecuadorian Ministry of Education. The data includes individ-
ual records of teachers’ registrations and choices as well as school-level data with vacancy
information.

Individual-Level Data

The dataset contains information on candidates’ socio-demographic characteristics (gender,
marital status, date and place of birth, ethnicity), residential address, area of specializa-
tion, score on the “merits and public examination” phase by category, and ranked school
preferences.

Table 2.1 presents descriptive statistics of the registered applicants. Column (1) shows
the statistics for all eligible applicants (i.e., all the teachers who passed the examination
phase): 72% of applicants are female, 9% belong to an ethnic minority (non-mestizo), 55%
are married, 7% hold a master’s degree, and 43% have more than 5 years of work experience.
The most common specialization for which candidates applied was basic general education
from second to seventh grade; this accounts for 22% of all eligible applicants. The province
of Guayas, where the large city of Guayaquil is located, is the most common region and
comprises 14% of total applicants. On average, teachers are 39 years old and scored about
65 points in the “merits and public examination” phase. We see in column (2) that the
statistics are similar for pre-validation applicants.

Columns (3) to (5) present the same statistics for compliers (see Section 2.3). For total
compliers (Column (3)), all their indicators are slightly higher compared to those in columns
(1) and (2). The largest differences are observed in the percentage of teachers with more than
5 years of experience, the percentage who applied to the most common specialization and the
average score. Finally, columns (4) and (5) show the statistics of compliers in the treatment
and control groups, respectively. Control compliers are, on average, more educated and more
experienced, and have higher scores (which correlates with lower risk) than treated compliers.
Additionally, the share of females is higher in the treated group. The differences between
both groups are not surprising, and, as explained below, these differences are minor around
the discontinuity threshold (30% probability of non-assignment), which is the relevant test
for our identification strategy.

School-Level Data

School data provides information on the location, specialties offered and available vacancies
for each school. The dataset contains a total of 3,345 schools, 33 specialties and 8,057
vacancies. To generate recommendations, we only consider specializations with at least
80 registered and 20 pre-validation applicants, leaving us with 24 specializations and 8,009
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vacancies in our main sample. Table B.2.2 in Appendix B.2 shows the shares of pre-validation
applicants by specialty.

Outcomes

We are mainly interested in estimating the effect of the informational intervention described
in Section 2.3 on candidates’ choices during the validation period (probability of changing
the application and/or adding new schools). Additionally, we assess how the intervention
affected the equilibrium assignment at the end of the QSM.

Table 2.2 shows that treated compliers change their application twice as often as those
in the control group. Specifically, 65% of treated compliers added schools and 35% added
positions from the list of recommendations. In contrast, 29% of control compliers added
a school to their application and only 6% would have added a position from the list of
recommendations if they had received it.24 The proportion of treated compliers who were
assigned increased from 14% before the validation period to 20% after the validation period,
while these proportions for control compliers were 99.6% and 91%, respectively. Note that
these shifts are due to both changes in the compliers’ applications as well as the entry of
new applicants who sent their application after August 4.25 Interestingly, among the treated
compliers who were assigned at the end of the process, 61% were assigned to one of the
recommended alternatives. This may indicate the importance of such recommendations, a
topic we return to in Section 2.6.

2.5 Empirical Strategy

To explore the causal effect of providing information to teachers at risk of non-assignment,
we rely on a regression discontinuity strategy. The underlying assumption of this strategy
is that observations near either side of the threshold are, on average, similar in all their
characteristics except for treatment status.

Formally, treatment is assigned as shown in equation 2.1, where zi represents the risk of
non-assignment of applicant i, and c represents the non-assignment risk threshold of 30%.

Ti = 1{zi ≥ c} (2.1)

24Using the procedure described in Section 2.3, we can also identify the list of recommendations that would
have been included if candidates with non-risky applications had received them. It is important to note that
this is possible because we did not include general equilibrium effects into the recommendation-generating
procedure, meaning that including these applicants would not have affected recommendations for treated
applicants (and vice versa).

25As explained above, candidates initially had 10 days to apply for vacancies. We generated the simulations
and produced personalized reports for candidates who sent their applications no later than one day before the
end of the 10-day period (so-called pre-validation applicants). The new applicants are those who completed
their applications at the very end of the application period and, therefore, did not receive a personalized
report.
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Figure B.1.3 in Appendix B.1 confirms that the probability of treatment rises sharply
at the discontinuity. Consequently, as shown by Imbens and Lemieux (2008), for a given
outcome of interest Y , the estimated impact of the treatment at the discontinuity point is
given by:

τ = limz↓cE[Y ∣z = c] − limz↑cE[Y ∣z = c] (2.2)

In this setting, an appropriate econometric model to estimate the impact of the interven-
tion is the following:

Yi = β0 + β1Ti + h(zi) + εi (2.3)

Where Yi represents an outcome of interest, β1 is the estimator of the treatment effect of
the informational intervention, and h is a continuous function of zi. We specify h as linear
or quadratic following Gelman and Imbens (2019).

The main drawback of the regression discontinuity design is that we can only identify the
treatment effect at the discontinuity, known as the local average treatment effect (LATE),
which implies that we cannot simply extrapolate estimates to the entire population of inter-
est.

2.6 Results

Baseline Results

We are primarily interested in assessing the extent to which the treatment induces changes
in reported preferences during the validation period. Although we also explore the effects on
assignment, these depend on the equilibrium (see Section 2.3). The latter, in turn, depends
on applicants both close to and far from the threshold, new applicants and even on those
who did not open their personalized reports but did alter their ROL. Figure 2.1a shows the
probability of changing the application as a function of the risk level of the compliers. We
observe a clear discontinuity at the 30% non-assignment risk, with a large increase at the
threshold in the probability of changing the application. Figure 2.1b confirms the statistical
significance of the jump at the threshold by showing the same plot but now with confidence
intervals and using the optimal non-assignment risk bandwidth (using the one common MSE-
optimal bandwidth selector following Imbens and Kalyanaraman (2012), which minimizes
the mean squared error).

Figures B.1.4a and B.1.4b in Appendix B.1 replicates the plots for the probability of
obtaining an assignment. We observe that compliers close to the threshold had a large and
statistically significant increase in their probability of obtaining an assignment. Figure B.1.5
in Appendix B.1 compares applications before and after the validation period (which we call
“partially assigned” and “finally assigned”, respectively), graphically demonstrating that
this difference is an equilibrium result. Specifically, we see that the difference in assignment
probability at the discontinuity is a result of a drop in assignment probability for applicants
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on the left of the threshold (both close and far), and an increase among applicants on the
right of the threshold, specially among those with a higher estimated risk of non-assignment.
This suggests that the treatment, on average, induced changes in candidates’ applications
that helped them obtain an assignment at equilibrium.

Next, we confirm the graphical evidence by formally estimating the effects of the in-
tervention using alternative RDD specifications. Table 2.3 shows the main results for the
outcomes of interest. We report 5 models with different specifications and optimal band-
widths. Model (1) is estimated using a parametric approach with a linear interaction and
the bandwidth is calculated using the one common MSE-optimal method following Imbens
and Kalyanaraman (2012), which minimizes the mean squared error. Model (2) is the same
as model (1), except that it calculates two different bandwidths (one for above and one for
below the cutoff) instead of one common bandwidth. Model (3) also relies on a parametric
regression with linear interaction, but the bandwidth is calculated using the one common
CE-optimal method following Calonico, Cattaneo, and Farrell (2020), which minimizes the
coverage error of the interval estimator. Model (4) is the same as model (3), but estimates
two different bandwidths for either side of the threshold. Finally, model (5) is estimated us-
ing a parametric approach with a quadratic interaction and the one common MSE-optimal
bandwidth selector. All models use robust standard errors and the total number of obser-
vations in the optimal bandwidth are reported. Though the results are relatively consistent
among the different models, we will focus on the estimates of model (1) as it is the most
standard in the literature.

We observe that choice behavior changed due to the warning and recommendations. Con-
ditional on opening the personalized report, receiving the treatment increased the likelihood
that applicants would change their application by 52%. Specifically, the probability of adding
a preference to the application increased by about 59%. Treated compliers added, on aver-
age, 0.4 schools after the validation period, while control compliers added an average of 0.1
schools. Moreover, conditional on having added a preference, the probability of adding any
of the schools recommended in the personalized report increased by 43% (compared to the
recommendations that would have been given to control applicants using the same process
to generate recommendations). This is consistent with the fact that most teachers were not
entirely sure about all the schools to which they wanted to apply, as shown in Figure B.5.1
in Appendix B.5 on the survey results.26 That is, recommendations seemed to help treated
teachers learn about new schools they had not considered before.

The final assignment at the discontinuity shows that treatment was helpful even after
non-compliers edited their application during the validation period. Treated compliers were
37% more likely to obtain an assignment than control compliers. Additionally, those who
obtained a position were 35% more likely to be assigned to one of the recommended schools.
The survey results are consistent with the fact that people evaluated the information received
in the personalized reports and acted accordingly. Specifically, 82% of respondents said they

26As mentioned in the introduction, the survey was implemented after the application period, but before the
results of the QSM were published. See Appendix B.5 for more information about the survey.
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wanted more information about their assignment chances. In addition, teachers rated the
information received in the personalized report at 8.22 on average, on a scale of 1 to 10 (see
Table B.5.3 of Appendix B.5).

In general, the estimates are robust to the different specifications used in Table 2.3. As
an additional robustness check, we test the sensitivity of our main specification (model 1)
to different arbitrary bandwidths. Table B.2.3 in Appendix B.2 shows that if we vary the
bandwidth between 0.1 and 0.3 our estimates lead to the same conclusions. In all cases, the
probability of modifying preferences (and ultimately obtaining an assignment) is significantly
larger for treated applicants close to the threshold.

To assess the validity of the regression discontinuity design, we test the balance on co-
variates on either side of the threshold. Table B.2.4 in Appendix B.2 replicates the estimates
of Table 2.3 using other outcomes. They are consistently not significant with the exception
of the marital status variable in model (5). This implies that observable characteristics
are, in general, similar in the neighborhood of the threshold, suggesting that the identifying
assumptions are met. Graphic evidence is reported in Figure B.1.6 in Appendix B.1.

Additionally, we further assess the validity of the estimates by introducing a placebo
test. To check whether there is any significant effect when we know that there should not
be, we use arbitrary fake cutoffs at the 0.5 and 0.2 non-assignment risk levels. Figure B.1.7
in Appendix B.1 shows that there are no unexpected discontinuities at these cutoffs. These
results, combined with the covariates test, suggest that the positive effects we find are caused
by the informational intervention.

We do not study the content of the recommendations in this chapter, leaving such analysis
for future research. Our main goal in introducing variation in the recommended alternatives
was to study teachers’ preferences and, more specifically, to be able to identify variation in
consideration sets (i.e., schools known and of interest to a particular applicant). Though
we do not extensively analyze these results here, Table B.2.5 in Appendix B.2 presents
evidence suggesting that, as expected, recommendations were more likely to be included
when the institution was either in the province where the candidate resided, or in the same
province as one of the preferences given in the pre-validation ranking. Additionally, rural
institutions are marginally less preferred and male teachers are marginally more likely to
add a recommendation (both coefficients show a 1% change in the probability of adding a
recommendation).

Heterogeneous Effects

In this section, we explore whether certain factors related to applicant characteristics can
explain or amplify our results. To this end, we estimate our RDD model allowing for het-
erogeneous effects of teachers’ gender, marital status, skill level, and experience. We then
estimate a specification based on equation (3) in which treatment is interacted with these
characteristics. Panel A of Table 2.4 shows the results of the same 5 models described in
Section 2.6 for the probability of changing the application. Similarly, Panel B of Table 2.4
presents the findings for the probability of equilibrium assignment.
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Our results suggest that males were more affected by the treatment in terms of their
likelihood of modifying their application, but the difference in equilibrium assignment is
smaller (with a non-statistically significant coefficient). As expected, married people seem
to be less affected by the intervention, likely because they are more restricted by location
(e.g., they prefer places where their spouse can find better work opportunities) and may
therefore be less willing to change their original choices.27 However, the coefficients of the
interaction between treatment and marital status are not significant.

To explore the potential role of skills, we interact the treatment variable with a dummy
variable that identifies whether a teacher has a score above the median on the public ex-
amination portion (which evaluates specific skills). The results suggest that skilled teachers
are no more likely than others to change their original application after treatment. How-
ever, the treatment effect on assignment probability is statistically larger for highly skilled
teachers (model (1)), an unsurprising result given that these teachers had more potential
recommendations thanks to their higher scores. Nevertheless, it is important to note that
the non-interacted effect remains economically large (around 20% or more), and that it is
also statistically significant in specifications (2) and (4), implying that treated “unskilled”
teachers also had better assignment chances than unskilled teachers in the control group.

Similarly, we look at the role of experience by interacting the treatment variable with a
dummy variable that indicates whether an applicant has worked for more than 5 years as a
teacher. As shown in Table B.2.4 and Panel D of Figure B.1.6, experience shows no change
at the threshold and, as we can see in Panel A of Table 2.4, its interaction with treatment has
no significant effect on the probability of changing the application. However, we do find that
the treatment effect on assignment probability is statistically smaller for experienced teachers
(models (1), (2) and (5)), as shown in Panel B of Table 2.4, that could be explained by the
large negative correlation between experience and the public examination score (-0.29).

We do not have enough statistical power to analyze heterogeneous effects on the proba-
bility of adding a recommended school or on the probability of being assigned to one.28

System-Level Outcomes

We now descriptively explore the effects of the intervention on system-level outcomes such as
the number of filled vacancies and the general quality of assigned teachers. It should be noted
that, due to the large number of applicants relative to offered vacancies, most positions were
filled even when only pre-validation applications were considered. Thus, with regard to the
overall effect of the intervention, we should expect a relatively small impact in equilibrium.

27The direction of the interactions change across bandwidth specifications, so we focus again on our preferred
model from column (1).

28As shown in Table 2.3, the number of observations in the regressions of Panel C and E are less than the others
because the first is conditional on having added something to the application and the second is conditional
on having been assigned. This reduces the statistical power of both regressions and increases the standard
deviation.
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As mentioned in Section 2.3, when generating recommendations we did not consider
the general equilibrium effect that some schools might end up very congested if they were
recommended to many applicants. That said, we design the intervention to recommend
many diverse alternatives, in order to reduce the risk of generating excessive congestion for
highly demanded vacancies. Our aim was also, as explained above, to better understand
consideration sets and preferences. The negative spillover effects of the recommendations
could, in theory, have increased the number of unassigned applicants, as well as potentially
reduced the scores of assigned teachers.29 However, descriptive evidence suggests that, al-
though there was some congestion and a few teachers remained unassigned despite having
added recommended schools to their applications, a much larger percentage of teachers who
followed the recommendations were assigned. We interpret this as a positive result despite
the fact that the intervention was not designed with the general equilibrium in mind. As
shown in Table B.2.6 of Appendix B.2, the total number of vacancies filled increased slightly
after the intervention.30 Column (1) considers only the initial applications submitted by
pre-validation applicants before changes during the validation period plus the actual final
application of teachers who applied only after the validation period. This column therefore
represents how the assignment would have ended up if no one had made any changes in the
validation period. Column (2) shows the actual scenario in which pre-validation applicants
changed their preferences and some teachers only applied during the validation period.31

To explore the overall quality of the assigned teachers, we first analyze the scores of those
who changed their application. Figure B.1.8 of Appendix B.1 presents the score distribution
for teachers moving from partially non-assigned to assigned, as well as those moving from
partially assigned to non-assigned. The mean scores of teachers that were assigned to a
vacancy is 68.02, which is 1.77 points above those who did not receive an assignment. This
provides preliminary evidence that the intervention may have increase overall assignment
scores and, thus, the general quality of assigned teachers.32

Focusing on the assigned vacancies before and after the validation period, we observe in
Figure B.1.9 in Appendix B.1 that the distribution shifts to the right. This shift becomes
more pronounced when looking solely at the vacancies that were assigned to different appli-

29Because if high scoring teachers compete for the same vacancies, we may end up with a bi-modal distribution
of assigned scores for vacancies with high and low demand.

30It is important to note that this does not necessarily mean that the intervention’s potential to affect the
total number of assignments is small. Rather, the magnitude of the effect depends on the overall congestion
of the available alternatives. Congestion in the context of the QSM is considerable, with an average of over
three applicants for each available vacancy and over 86% of positions filled. Moreover, some vacancies in
specific specialties and schools may be structurally unappealing, making reaching a goal of 100% unrealistic.
The effect of the intervention on the aggregate also depends on the uptake of the intervention, which in this
case was around 20%. This rate could be improved by introducing similar interventions directly within the
application interface.

31We would ideally want to have a counterfactual scenario without treatment to ascertain the causal effect
on the general equilibrium. However, we do not have an identification strategy to estimate who would have
changed their application in the counterfactual scenario and how.

32Note that 1.77 points is a significant difference, representing an increase of 0.23 standard deviations in the
evaluation scores of assigned teachers, and this from an extremely low-cost informational intervention.
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cants before and after the validation period (Panel B). Together with the overall increase in
assigned vacancies, we interpret these results as positive, although not causal, evidence that
the intervention had a positive impact on QSM7 equilibrium outcomes.

2.7 Discussion

This chapter evaluates a low-cost informational intervention in the context of Ecuador’s
centralized teacher assignment system. We show that teachers in the treatment group, who
received and opened a non-assignment risk warning and a list of recommended schools,
were much more likely to change their choices and add new schools to their applications.
Ultimately, this translated into a significant difference in the equilibrium assignment of
teachers close to the treatment threshold. Our results are robust to different specifications,
suggesting that these changes were caused by the intervention.

Moreover, the findings point to a positive general equilibrium effect by improving both
the average scores of teachers who obtained an assignment and the number of assigned
vacancies, even though we did not design the intervention to maximize spillover effects.
Similar interventions that incorporate general equilibrium effects in their design might be
the subject of future work.

It is important to note that our strategy identifies a local average treatment effect on
compliers (teachers who opened the personalized feedback report). This implies that our esti-
mates do not extend directly to the whole population, or to compliers with a non-assignment
risk level far from the 30% non-assignment risk cutoff. More research is needed to understand
how these results would have changed if we had increased the compliance rate (e.g., with
a more salient intervention), or if we had implemented a different threshold (the impact of
which could be explored, for example, with an RCT design).

The low-cost intervention studied in this chapter has important policy implications, in the
sense that teachers are the most expensive and valuable educational input, and significantly
impact student outcomes in the short and long term (Chetty et al., 2014a,b). Improving
teacher assignment is likely to have a positive effect on resource allocation and learner suc-
cess. Moreover, centralized choice and assignment systems have been gaining popularity
around the world as a tool for organizing student and teacher application and assignment
processes. Informational interventions will potentially play an important role in optimizing
the results obtained through these systems. In this chapter, we demonstrate the capacity of
such interventions to affect teacher behavior, while other works show their impact on student
behavior in the context of school choice (see, for example, Arteaga et al. (2021)).

Future studies should consider changes to assignment rule, since these can lead to signif-
icant outcome improvements, as for example discussed for the case of targeted reserves in
Chapter 1. In the case of the QSM program, a relevant rule to study would be the effect
of expanding or eliminating the restriction on portfolio sizes. While such restrictions are
often implemented to force applicants to limit their applications to a small number of rele-
vant alternatives (i.e., schools where they would actually be willing to work), it introduces
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strategic considerations into the submitted preferences, particularly in contexts with high-
congestion, such as the QSM program. Moreover, Figure B.1.1 in Appendix B.1, illustrates
that approximately 90% of applicants end up ranking the maximum number of alternatives
allowed. In other settings, it has been shown that applicants face significant difficulties in
formulating optimal application strategies (see, for example, Kapor et al. (2020)), which
can also make informational interventions more challenging. When the assignment system
is strategy-proof, communication efforts (and informational interventions) can focus on ex-
panding searches and recommending that candidates apply to all the schools where they
would be willing to work, in the true order of their preferences.
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Figures

Figure 2.1: RDD results on application changes during the validation period

(a) Probability of changing application

(b) Probability of changing application with CI

Note: Figure (a) plots the probability of an applicant changing their application using linear polynomials.
Figure (b) plots the same but within the optimal bandwidth and with confidence intervals. Total observa-
tions: 3,653. The size of the bins is 0.01. The bin that contains 0 consists of 727 observations. The bin
that contains 1 consists of 1,078 observations. The remaining bins consist, on average, of 18.7 observations.
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Tables

Table 2.1: Summary statistics

(1) (2) (3) (4) (5)
All eligible applicants Pre-validation applicants Compliers Treated compliers Control compliers

Total 22,015 19,190 3,653 2,392 1,261
Share female (%) 72 73 74 77 0.69
Share non-mestizo (%) 9 9 10 9 11
Share married (%) 55 55 57 58 55
Share with master degree (%) 7 7 9 7 12
Share with more than 5 years of experience (%) 43 44 52 48 60
Share in the most common specialty (%) 22 22 29 29 29
Share in the most common province (%) 14 15 16 14 19
Mean age 38.57 38.69 38.70 38.69 38.70
Mean score 64.62 64.69 67.15 64.64 71.91

Note: Eligible applicants are the teachers who passed the “merits and public examination” phase. Pre-
validation applicants are the teachers who had a personalized report available, that is the ones who applied
before the validation period and applied to specialties with at least 80 registered and 20 partial applicants.
Compliers are the ones who opened the personalized report. The most common specialty is basic general
education from second to seventh grade. The most common province is Guayas.

Table 2.2: Summary statistics of outcomes within the analysis group

(1) (2) (3)
Treated compliers Control compliers Mean difference

Total 2,392 1,261
Any modification (%) 68.02 35.37 32.65

(0.02)
Add any (%) 65.34 28.71 36.64

(0.02)
Add any from recommendations (%) 35.58 6.03 29.55

(0.01)
Partially assigned (%) 13.92 99.68 -85.76

(0.01)
Finally assigned (%) 20.32 90.96 -70.64

(0.01)
Assigned in recommendation (%) 12.46 0.79 11.67

(0.01)

Note: Standard errors in parentheses. Compliers are the ones who opened the personalized report. Treated
refers to teachers that received the warning and the list of recommended schools. Control refers to teachers
that received only the summary of the applications. Column (3) shows a mean difference test.
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Table 2.3: RDD Results

(1) (2) (3) (4) (5)
Panel A. Any modification
RDD estimate 0.519 0.521 0.751 0.648 0.860

(0.130) (0.124) (0.168) (0.136) (0.180)
Left BW 0.069 0.065 0.046 0.043 0.069
Right BW 0.069 0.236 0.046 0.157 0.069
Total observations in BW 170 357 111 229 170
Panel B. Add any
RDD estimate 0.591 0.515 0.796 0.602 0.780

(0.114) (0.106) (0.140) (0.113) (0.159)
Left BW 0.090 0.084 0.060 0.056 0.090
Right BW 0.090 0.285 0.060 0.189 0.090
Total observations in BW 216 440 137 283 216
Panel C. Add any from recommendations
RDD estimate 0.427 0.562 0.697 -0.017 0.754

(0.248) (0.315) (0.261) (0.459) (0.581)
Left BW 0.064 0.051 0.044 0.035 0.064
Right BW 0.064 0.234 0.044 0.160 0.064
Total observations in BW 75 216 36 149 75
Panel D. Assigned
RDD estimate 0.371 0.352 0.365 0.470 0.324

(0.124) (0.119) (0.157) (0.153) (0.188)
Left BW 0.101 0.089 0.067 0.059 0.101
Right BW 0.101 0.263 0.067 0.174 0.101
Total observations in BW 248 416 170 264 248
Panel E. Assigned in recommendation
RDD estimate 0.347 0.343 0.356 0.331 0.310

(0.084) (0.109) (0.119) (0.146) (0.127)
Left BW 0.148 0.091 0.102 0.063 0.148
Right BW 0.148 0.144 0.102 0.099 0.148
Total observations in BW 241 173 162 125 241

Note: Robust standard errors in parentheses. This table reports parametric estimates using different
strategies to calculate the optimal bandwidth (BW) and different types of polynomials. (1) is estimated
using a linear polynomial and the BW is calculated using the “one common MSE-optimal”. (2) is estimated
using a linear polynomial and the BW is calculated using the “two different MSE-optimal” that calculates
two different BW below and above the cutoff. (3) is estimated using a linear polynomial and the BW
is calculated using the ”one common CER-optimal” bandwidth selector. (4) is estimated using a linear
polynomial and the BW is calculated using the “two different CER-optimal” that calculates two different
BW below and above the cutoff. (5) is estimated using a quadratic polynomial and the BW is calculated
using the “one common MSE-optimal” method. All estimates control for specialty, sex, marital status, and
region. Panel C is conditional on having added something to the application. Panel E is conditional on
having been assigned.
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Note: Robust standard errors in parentheses. This table reports parametric estimates using different

strategies to calculate the optimal bandwidth and different types of polynomials. (1) is estimated using a

linear polynomial and the BW is calculated using the “one common MSE-optimal”. (2) is estimated using

a linear polynomial and the BW is calculated using the “two different MSE-optimal” that calculates two

different BW below and above the cutoff. (3) is estimated using a linear polynomial and the BW is calculated

using the ”one common CER-optimal” bandwidth selector. (4) is estimated using a linear polynomial and

the BW is calculated using the “two different CER-optimal” that calculates two different BW below and

above the cutoff. (5) is estimated using a quadratic polynomial and the BW is calculated using the “one

common MSE-optimal” method. All estimates control for specialty, sex, marital status, and region.

Table 2.4: Heterogeneous effects

Panel A. Any modification
(1) (2) (3) (4) (5)

Male
Treated 0.496 0.456 1.014 0.650 0.824

(0.144) (0.137) (0.191) (0.148) (0.193)
Male -0.149 -0.149 -0.037 -0.142 -0.116

(0.142) (0.120) (0.155) (0.148) (0.146)
Treated × Male 0.032 0.046 -0.151 -0.054 0.019

(0.175) (0.137) (0.180) (0.167) (0.173)
Left BW 0.068 0.065 0.045 0.043 0.068
Right BW 0.068 0.241 0.045 0.160 0.068
Total observations in BW 170 353 94 232 170
Married
Treated 0.534 0.453 0.898 0.543 0.828

(0.181) (0.159) (0.241) (0.180) (0.217)
Married 0.032 -0.038 0.056 -0.137 0.030

(0.141) (0.129) (0.158) (0.159) (0.140)
Treated × Married -0.043 -0.013 0.094 0.139 0.006

(0.175) (0.137) (0.197) (0.171) (0.176)
Left BW 0.067 0.065 0.044 0.043 0.067
Right BW 0.067 0.254 0.044 0.169 0.067
Total observations in BW 170 371 94 239 170
High skilled
Treated 0.566 0.459 0.923 0.577 0.903

(0.170) (0.156) (0.212) (0.170) (0.224)
High skilled 0.038 0.018 0.157 -0.056 0.054

(0.151) (0.128) (0.186) (0.162) (0.158)
Treated × High skilled -0.095 0.002 -0.245 0.088 -0.101

(0.163) (0.130) (0.193) (0.157) (0.166)
Left BW 0.068 0.064 0.045 0.043 0.068
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Table 2.4 (continued)
Right BW 0.068 0.247 0.045 0.164 0.068
Total observations in BW 170 358 111 232 170
More than 5 years of experience
Treated 0.371 0.441 0.567 0.645 0.707

(0.167) (0.145) (0.207) (0.154) (0.202)
Experienced 0.014 -0.143 0.087 -0.062 -0.005

(0.133) (0.126) (0.149) (0.153) (0.132)
Treated × Experienced 0.214 0.080 0.236 0.009 0.236

(0.179) (0.134) (0.201) (0.165) (0.178)
Left BW 0.068 0.064 0.045 0.043 0.068
Right BW 0.068 0.247 0.045 0.164 0.068
Total observations in BW 170 358 111 232 170

Panel B. Assignment
(1) (2) (3) (4) (5)

Male
Treated 0.412 0.418 0.413 0.508 0.383

(0.130) (0.116) (0.163) (0.149) (0.191)
Male 0.016 -0.007 0.094 0.095 0.017

(0.120) (0.119) (0.158) (0.167) (0.123)
Treated × Male -0.114 -0.037 -0.107 -0.139 -0.115

(0.147) (0.130) (0.187) (0.188) (0.148)
Left BW 0.102 0.090 0.068 0.060 0.102
Right BW 0.102 0.263 0.068 0.175 0.102
Total observations in BW 248 422 170 264 248
Married
Treated 0.421 0.387 0.408 0.473 0.391

(0.154) (0.146) (0.211) (0.182) (0.212)
Married 0.066 0.072 0.055 0.054 0.066

(0.099) (0.106) (0.141) (0.158) (0.100)
Treated × Married -0.054 -0.039 -0.033 0.004 -0.056

(0.134) (0.119) (0.184) (0.175) (0.134)
Left BW 0.101 0.089 0.067 0.059 0.101
Right BW 0.101 0.263 0.067 0.174 0.101
Total observations in BW 248 416 170 264 248
High skilled
Treated 0.196 0.254 0.254 0.390 0.179

(0.157) (0.138) (0.204) (0.184) (0.211)
High skilled -0.065 -0.022 -0.111 0.026 -0.069

(0.115) (0.113) (0.149) (0.147) (0.116)
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Table 2.4 (continued)
Treated × High skilled 0.281 0.179 0.203 0.153 0.283

(0.133) (0.117) (0.172) (0.151) (0.133)
Left BW 0.101 0.089 0.067 0.059 0.101
Right BW 0.101 0.263 0.067 0.174 0.101
Total observations in BW 248 416 170 264 248
More than 5 years of experience
Treated 0.563 0.506 0.398 0.588 0.479

(0.157) (0.129) (0.181) (0.162) (0.201)
Experienced 0.182 0.248 0.070 0.151 0.194

(0.098) (0.101) (0.131) (0.140) (0.104)
Treated × Experienced -0.281 -0.294 -0.044 -0.262 -0.295

(0.130) (0.115) (0.165) (0.156) (0.135)
Left BW 0.101 0.089 0.067 0.059 0.101
Right BW 0.101 0.263 0.067 0.174 0.101
Total observations in BW 248 416 170 264 248
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Chapter 3

The Welfare Effects of including
Household Preferences in School
Assignment Systems: Evidence from
Ecuador

3.1 Introduction

In this chapter, we study the welfare effects of a significant policy change to the coordinated
school assignment system in Manta, Ecuador. The assignment system in place before the
policy change aimed to minimize the (linear) travel distance between homes and schools
and its implementation proved challenging due to the considerable effort required to geo-
reference all students and ensure that the assignment process results were consistent with
actual transportation options as well as the existence of hills, rivers, etc. Given the costs and
difficulties of reviewing linear distance-based assignments to correct for geographic features,
the Ecuadorian Ministry of Education piloted an alternative assignment system in partner-
ship with the Inter-American Development Bank (IADB) and the NGO ConsiliumBots in
which applicants’ preferences were the main driver. This was motivated by findings in the
school choice literature on the benefits of coordinated assignment systems that take family
preferences into account (Abdulkadiroğlu et al. (2017)). The new system followed standard
best practices, including the use of the deferred acceptance algorithm (Gale and Shapley,
1962), unlimited ranked ordered lists, and information provision systems (Abdulkadiroğlu
and Sönmez, 2003; Pathak, 2011, 2017; Arteaga et al., 2021). If an applicant could not be
assigned to one of their reported preferences due to excess demand, the system maintained
the linear distance-based assignment criteria, but only considered seats left by applicants
who were assigned to a submitted preference.

Families in Ecuador were not accustomed to a system that allowed them to express their
preferences over schooling alternatives. Added to the limited information available about
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schools likely resulted in the new system’s welfare potential not being fully realized. An
indication of it is the significant number of applicants including only one alternative in their
portfolios. While optimizing assignment rules and implementing complementary policies, as
for example discussed in chapters 1 and 2, and increased familiarity of applicants with the
new system in subsequent implementations may lead to improved outcomes, the contribution
of this chapter is to show that even a sub-optimal but reasonably well-designed initial CCAS
system can produce superior results compared to alternative systems. This highlights the
value of CCAS adoption in other contexts, particularly in developing countries like Ecuador.

To compare the assignment alternatives, we take advantage of the fact that the system
implemented in Manta elicited the true preferences and locations of all participating appli-
cants. This allows us to compare the assignments made by the new centralized choice and
assignment system (CCAS) with the simulated assignments of the prior alternative, whose
rules we can replicate, as well as with assignments resulting from alternative algorithms un-
der a CCAS option. We use a counterfactual strategy to simulate assignments, replicating
the rules of the previous process.

Our main finding is that implementing a coordinated mechanism that incorporates the
preferences of applicants has large welfare benefits. When compared to the previous system,
using the deferred acceptance (DA) algorithm increases the portion of applicants assigned
to any of their chosen schools from 49.96% to 78.44%, while the percentage of applicants
assigned to their first choice increases from 42.42% to 69.76%. The main trade-off of im-
plementing the DA alternative is that average linear distance to the school increases by
0.29km. To measure the importance of preferences and distance-to-school, we estimate ap-
plicant utilities over the different alternatives and find that the use of the DA algorithm
results in significant utility increases.

We measure utilities in kms of linear distance between the applicant’s residence and the
assigned school and find that comparing the DA algorithm to the prior mechanism, average
utility for Pre-School 1 applicants is 0.655 km higher, while that for Pre-School 2 applicants
is 0.315 km greater, and for Primary 1, it is 0.021 km smaller. In the first year of primary
school, the difference in utility is much smaller, and in favor of the previous system, due to
greater congestion, as many seats are already taken by applicants enrolled during pre-school.
As a result, many primary school applicants are not assigned to any of their preferred schools
under either alternative and are instead assigned to another school using the distance-based
criteria.

When we restrict the sample to applicants who receive a different assignment under the
distance and DA mechanisms (i.e., applicants who improve or worsen their utility when the
mechanism is changed), the differences for each level increase to 1.411km for Pre-School 1,
0.487km for Pre-School 2, and -0.027km for Primary 1.

We focus our analysis on estimated welfare and on the share of applicants being assigned
to more or less preferred alternatives based on their reported preferences, without considera-
tion to school quality for two reasons: i) we do not aim to study whether families in Ecuador
prefer higher-quality schools, but rather to assess the welfare consequences of the assignment
system as it relates to applicants’ valuation of different schools, and ii) we cannot (at least
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directly) observe school quality.1

These results contribute to a better understanding of the advantages of coordinated school
choice and assignment systems. While several studies demonstrate the welfare benefits of
using one mechanism compared to others, few have directly estimated the welfare benefits of
a coordinated assignment system that takes household preferences into account. The most
closely related paper is Abdulkadiroğlu et al. (2017), which examines the welfare effects of
switching the previously uncoordinated New York City assignment system to a coordinated
alternative that incorporates family preferences. The authors find that most of the welfare
gains are obtained from the coordination using the standard deferred acceptance algorithm,
with only marginal gains when implementing alternatives. We find similar results in the
context of Ecuador, though here we are comparing the DA algorithm to a coordinated one
that centers on the distance of the household to the school.

This chapter is structured as follows. In Section 3.2, we provide an overview of the
Ecuadorian school system, including the previous and DA assignment mechanisms. Section
3.3 describes the available data. In Section 3.4, we present our model for estimating prefer-
ences and the methodology used to compare the different assignment mechanism alternatives.
Section 3.5 presents our main results comparing the different assignment alternatives, fol-
lowed by a brief discussion of the aftermarket dynamics. Finally, in Section 3.6, we conclude.

3.2 Context and Algorithm Descriptions

We study school assignment in the coastal region of Manta, Ecuador. Specifically, we con-
centrate on the urban areas within and around the city of Manta,2 including the geographic
units (“cantones”) of Manta, Montecristi, and Jaramijó.

Manta was selected through a process aimed at identifying a small yet representative
city in the coastal region of Ecuador. The objective was to test and evaluate the school
assignment policy in this context before scaling it up to other cities, and particularly to the
largest city in the country, Guayaquil.3 The selection process took into account students in
the urban area, school coverage, distribution of school types (mainly public and private), as
well as city size. Ultimately, Manta was chosen for its relative similarity to the alternatives.
Table C.2.1 of Appendix C.2 compares the main characteristics of Manta and Guayaquil,

1The Ecuadorian government does not currently apply census-based student learning assessments in primary
grades. We also do not study the impact of the system on other measures of interest, such as educational
segregation, as we lack socioeconomic data for participating applicants.

2The educational system in Ecuador is split into two educational regimes nationally, one for the coastal region
and another for the country’s interior. The academic year in the coastal regime (where Manta is located)
begins in May and ends in January, while it begins in September and ends in June in the interior.

3There was a change in government in Ecuador in 2021, and the new administration recently decided to scale
up the system in coastal districts beginning in 2023. Because of the COVID pandemic and the fact that
the distance-centric alternative required several in-person interactions during the process, the Ministry is
currently using a First-Come, First-Serve digital system.



CHAPTER 3. PREFERENCE VS. DISTANCE-BASED ASSIGNMENT 81

another coastal city and the country’s largest, using data from the 2010 Census and school
transfer requests in the 2019-2020 school year.

The Ecuadorian educational system is organized into three levels: Pre-school (Educación
Inicial), Primary School (Educación General Básica) and Secondary School (Bachillerato).
In this chapter, we focus on school assignments at the “entry level”, a designation that
encompasses enrollment in Pre-school 1, Pre-school 2, and Primary 1.45

There are three types of schools in Ecuador: public (“fiscal” and municipal), “fiscomi-
sional,” and private. Public institutions are funded by the government, “fiscomisionales”
receive mixed funding from the state and families, and private schools are fully funded by
families. Nationwide, free public schools account for 73.8% of enrollment, split between the
“fiscales” and municipal schools (the latter of which represent only 0.8% of total enrollment).
Fiscomisional schools receive 6% of all enrollments, while private schools take the remaining
20%. In Manta, free public schools account for 66% of enrollment at the entry-level grades,
while fiscomisional and private alternatives account for 4% and 30% respectively.

This pilot only included free public schools, meaning that private schools represent an
outside option for families that is not explicitly incorporated into our model. This is impor-
tant for our welfare comparisons, which might be overestimated considering that families can
switch from a less desirable free public school to a private alternative. As such, our welfare
comparisons should be interpreted as the difference between the utility offered to families
by the free public system. It is nonetheless also relevant to note that, at least for the ap-
plicants that participated in the pilot, there seems to be only limited overlap between free
public schools and private alternatives. This is illustrated by a survey conducted after the
application period but before results were distributed.6 Only 1% of respondents stated that
their reason for not including more alternatives was because of the alternative of enrolling
their child in a school outside the public system. This is a critical observation because, as
we explain in Section 3.3, many applicants submitted only one or two preferences.7 While
the short lists may have been due to applicants’ preferences for outside options, the survey
results suggest that this was not a frequent consideration for participating families.

4Pre-school is divided into two grades, called “Inicial” one and two. Primary school is divided into four levels.
The first, which we call Primary 1, is for five-year-old children, while the other three levels cover children
from six to eight years old, nine to eleven years old, and twelve to fourteen years old.

5The education system also offers different tracks: the regular track accounts for 98% of enrollment, with the
remaining 2% distributed between schooling for students with special educational needs, artistic education,
and adult schooling.

6The objectives of this survey were to gather information about parents’ overall satisfaction level with the
system, information sources they used to apply for schools, awareness of the school supply, among other
aspects. The survey was completed by 1,484 parents.

7All applicants were ultimately assigned, though some to a school outside their reported list of preferences.
In such cases, the assigned school was the closest possible alternative, as explained in Subsection 3.2.
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Distance-Centric Algorithm

Prior to the COVID-19 pandemic, the school assignment system in Ecuador was primarily
based on the applicant’s location, which was reported through their electricity account code
(CUEN). The assignment system was part of a broader enrollment process comprising six
phases, as described in Appendix C.4. The Assignment Phase was the third of these phases,
and also operated in stages. In the first stage of the Assignment Phase, different types of
enrollment in the system were identified, depending on whether students preferred to attend
a regular program or a rural, bilingual, or special education program. Also, where possible,
applicants with siblings already in the system were assigned to the same school. Students
registering for non-regular programs (e.g., bilingual or special education) and those with
already-schooled siblings were processed before the other applicants.

Once these groups were assigned via a process that was carried out directly at the dis-
trict headquarters, the rest of the students were assigned using what we will label as the
distance-centric (DC) algorithm, which the Ministry called the “mathematical model”. Le-
gal guardians could complete an individual registration (of a single applicant) or one for a
“group of siblings”. While this latter option suggests that the system prioritized assigning
groups of siblings to the same school over distance-based considerations, this was not con-
firmed by the Ministry experts with whom we interacted, and it was not formally included
in the DC algorithm. Therefore, we did not take it into account in the DC assignment.

However, the process gave priority to applicants with siblings already enrolled in a public
school, processing them first to be assigned to the same school as their sibling. Otherwise,
these applicants were assigned using the distance criterion. In summary, the processing of
regular assignments under the DC algorithm was as follows:

• Each applicant was assigned a random number at the beginning of the assignment
process. The random numbers were used to determine the order in which applicants
were processed.

• Applicants with siblings already enrolled in a public school were given priority and
processed first, using their assigned random numbers to determine the order. The
system attempted to assign them to the same school as their sibling. If this was not
possible, these applicants were considered along with the rest of the students.

• All remaining applicants were processed next, with the order determined by their
random numbers. These applicants were assigned to the closest school with vacancies
based on the linear distance criterion.

When applicants’ stated preferences are used to determine assignment, the mechanism
of sequential processing is commonly known as a “random serial dictatorship” in the school
assignment literature (Abdulkadiroğlu and Sönmez, 1998). In this case, the assignment
process can be regarded as a random serial dictatorship with inputted preferences that are
based on the linear distance criterion.
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As explained above, an applicant’s home address was based on the legal guardians’ elec-
tricity bill. Using the latter to identify family location has proven highly effective, but may
also incentivize families to procure (and even buy) electricity bills closer to their schools of
interest. Moreover, there are still areas where households do not have electricity meters.
These facts were reported in a series of interviews carried out by the IADB in Quito and
Guayaquil, where families and officials recounted different factors affecting the registration
processes.8 Given that we do not have precise estimates of location misreporting rates, we
conduct a sensitivity analysis in Section 3.4 and simulate assignments under different levels
of misreporting.

The Ecuadorian government’s concern with minimizing the distance to school arises from
public policy considerations, and not because this aspect affects other dimensions such as,
for example, public expenditure on free busing to schools. The latter consideration is never-
theless relevant in other contexts (e.g., many US cities), meaning that analyses comparing
assignment mechanisms in similar cases should consider inclusion of these budget factors.

Deferred Acceptance (DA) Mechanism

The pilot used the deferred acceptance mechanism (Gale and Shapley, 1962), following the
best practices in school choice mechanism design (Pathak, 2011; Correa et al., 2019). The
specification of the assignment algorithm included static and dynamic sibling priorities,
family linking, and a multiple tie-breaking rule.9

The static and dynamic sibling priorities indicate that an applicant will be prioritized
for assignment to a school/program if their sibling is already assigned to the school (static).
If the applicant is applying at the same time with another sibling, and one of them is
assigned to a school,10 the applicant that has not been assigned yet will receive priority for

8For example, district officials commented: (1) “In District 24, Durán, Guayaquil, families lend their electric-
ity bills to each other so they can all have access to the education system. We estimate that more than 60%
of families in this district do not use their own electricity bill, so they do not register their real geolocation.”
(2) “In District 8, Monte Sináı, Guayaquil, families maintain that there are “illegal invasions” of other
families in areas where popular schools are located, using electricity bills from that area to get a seat in these
schools.”

9The deferred acceptance algorithm was selected because it is both non-strategic and stable, and because it
allows policy makers to implement desirable features such as dynamic sibling priority, family linked appli-
cations, and different priority-quota combinations. The only relevant drawback of the algorithm is that it is
not Pareto efficient (i.e., it might be possible to assign an applicant to a higher priority without negatively
affecting another one). The Stable Improvement Cycle (SIC) algorithm and the Top Trading Cycles (TTC)
algorithms are more efficient, but at the cost of losing the strategy-proofness property in the case of the SIC
mechanism, and the stability property in the case of the TTC mechanism.
Moreover, as shown in Section 3.4 of this chapter, and in Abdulkadiroğlu et al. (2017) for the case of New

York, the efficiency gains obtained from using these alternatives are marginal when compared to the gains
due to a transition from an uncoordinated system or a centralized one that cannot be classified as a CCAS,
which is the case in this analysis.

10This can happen if one sibling is older than the other and will depend on the order in which the algorithm is
run. If it is descending, the older sibling will give dynamic priority to the younger sibling. If it is ascending,
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being assigned to that same school (dynamic). The dynamic sibling priority is lower than
the static sibling priority because the latter is already defined (the sibling is attending the
school), while the former will depend on the answer from the applicant after the assignment.

The family linking feature consists of trying to assign all siblings applying together to
the same schools. Following a descending order, where older applicants are assigned first,
if an older sibling is assigned to school A, the applications of the younger siblings will
be modified to put school A as the first-ranked school to improve the probability of being
assigned together. Finally, a multiple tie-breaking rule gives each applicant a different lottery
number for each school to which they apply. Lottery numbers are used to break ties within
priority groups (siblings and non-siblings) when a school receives more applications than
spaces available.

3.3 Data

The data used in this chapter mainly comes from the centralized choice and assignment
system (CCAS) pilot web page created in 2021 in the region of Manta, Ecuador.11 The
first data set comprises the supply of vacancies for all schools and programs offered in the
pilot, where an educational program consists of a combination of grade and school. The
pilot was implemented for all students entering Pre-School 1, Pre-School 2, and the first
year of primary school (i.e., ages 3 to 5) for the first time. Vacancies are presented in Panel
A of Table 3.1. Pre-School 1 has the most vacancies and is the least congested grade while
Primary 1 is the most congested.12

The second data set consists of student and legal guardian information, including geo-
location, applicants’ sibling relationships, special educational needs, and nationality.13 For
each applicant, we have their ranked ordered list (ROL) of reported preferences, which had no
length limit, and the lotteries drawn up for each program. To assign applicants to a program
close to their residence, if they were not assigned to one of their reported preferences, the
applicants’ initial ranked order lists (containing their preferred programs) were appended
with all other alternatives sorted by distance. The assigned lottery numbers were different
for each of the programs listed by the student, but the same lottery number was drawn for
all of the programs appended to the list.

it will be the other way around.
11All PII data was eliminated for that purpose.
12This is most likely explained by a combination of factors: i) students prefer schools closer to their homes
(ceteris paribus) and establishments in more crowded areas have been filled by the previously implemented
distance-based algorithm; ii) students that are not satisfied with their assigned school can ask for a transfer;
iii) applicants strategically reported addresses close to the more preferred schools under the previous location-
based assignment system.

13The preferences of applicants who have a sibling already enrolled at their school of interest are specified
in Panel A of Table C.3.5 in Appendix C.2. We do not have information on cases in which an applicant’s
siblings are enrolled in schools not included in their reported preferences.
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The distribution of applicants by geographic unit and grade is presented in Panel B of
Table 3.1. Notably, at least in the case of the geographic unit of Manta (Cantón), the number
of applicants in Pre-School 1 and Pre-School 2 is roughly equivalent. Although this poses a
challenge from a public policy standpoint in that it is desirable to enroll students earlier, it
is also an interesting dynamic for the application system since families’ decision to postpone
the enrollment of their child(ren) puts them at a strategic disadvantage. This is because
there are fewer available seats in Pre-School 2, given that currently enrolled Pre-School 1
students move automatically to the next level.

Figure C.1.1 of Appendix C.1 provides an overview of applicant priorities and the lengths
of ranked ordered lists. Note that most applicants declared only a single preference despite
there being no limits placed on the length of the preference list. This may be a legacy of
the previous system in which applicants did not choose a portfolio of schools and in which
it was implied that applicants were largely assigned to a school based on distance (walking
or driving, as obtained from Google Maps) rather than their preferences.

A complementary explanation for the large number of short application lists is that, as
observed in Figure C.1.2 of Appendix C.1, applicants who replied to the survey distributed
after the application period had ended indicated high expectations that they would be as-
signed to their top choice. These responses were obtained before the results were published
to avoid bias. In the same survey, when asked why they did not add more programs to their
portfolio, 56% of respondents replied that they had no information on alternatives close to
their home, 33% said that they were sure that they would be assigned to their reported pref-
erence, 6% said that it was difficult to find more schools, 4% declared that they preferred
receiving no assignment to adding more alternatives, and 1% declared that their preferred
option was a non-public school (i.e., an outside option).

In any case, the fact that the CCAS was new to families in Manta likely also resulted in
them not fully adapting their behavior to the new system and rules, meaning that they may
not have taken full advantage of the introduction of parental choice and preference reporting.
If this is the case, our findings on the welfare gains obtained with the introduction of the
CCAS system are probably downward biased when compared with the longer-term results
that will eventually be obtained once families are fully accustomed to the new system.

To analyze aftermarket dynamics, we also requested official data on school change re-
quests and actual enrollment. This additional data is discussed in Section 3.5, where we
show that applicants assigned to a school based on distance criteria rather than one of their
preferred schools are over twice as likely to request a school change or be enrolled in a
different school.
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3.4 Welfare Estimation and Mechanism Comparison

Methodology

Utility Estimation

To estimate welfare, we first need to estimate the parameters determining the utility that
families would receive from an assignment to a particular school. Our estimation is based
on applicants’ reported preference orderings being an accurate representation of true family
preferences on two dimensions. First, that the schools included in the ROL are preferred
to those not included. Second, that alternatives ranked higher in the ROL are preferred to
those ranked lower.

Regarding the first dimension, the assumption is that families have complete knowledge
or full consideration of the schools in their choice set. To make this assumption more
plausible, we limit the schools included in choice sets geographically. Specifically, we focus
on a relatively small set of alternatives in the urban area of Manta that are less geographically
spread than other similar studies, while still encompassing most of the schools and applicants
involved in the pilot. This is depicted in Figure C.1.5 of Appendix C.1. We do not consider
portfolio formation dynamics in our analysis since our main interest is to estimate welfare,
rather than producing alternative counterfactual applications, as was the case in Chapter 1.
Additionally, we lack sufficient data to address this issue. The second dimension is supported
by the non-strategic nature of the DA mechanism, which was furthermore emphasized in the
pilot program’s communication strategy.

Our utility model is presented in Equation 3.1. As explained in Chapter 1, under the
model’s additively separable structure in uij and τidij, variation in residence-to-schools dis-
tances and relative rankings of schools allows for non-parametric identification of utilities,
given the assumption that utility shocks and distances are independent of observable and
unobservable school and applicant characteristics, and assuming that τi is the same for a
sufficiently large set of individuals (Agarwal and Somaini, 2018).

vij =Sijλ + δj + ϵij
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

uij

−τidij

δj =δ + ξj
τi =τ + γi

(3.1)

In this equation, Sij is a binary variable that takes the value of 1 if applicant i has
a sibling in school j. dij denotes the distance between the residence of applicant i and
school j. Finally, ξj represents a common school-specific preference or mean-utility, that is
unobserved by the econometrician, but taken into account by families when making decisions
about which schools to apply to and how to rank them.14

14We have a limited set of observable school characteristics and thus, to keep the model simple, we choose not to
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To account for differences in how applicants trade-off distance and average school utility,
we introduce a random coefficient over the utility parameter for distance-to-school in our
model. This allows for applicants who only consider schools close to their residence to place
more weight on distance than those who apply to schools further away. To identify utilities,
we additionally assume that distances are independent of the random coefficient over its
value, given school unobservables and sibling priorities. The identification assumption is
thus given by:

(γi, ϵij) ⊥ dij ∣ξj, Sij

In essence, this assumption implies that applicants do not systematically choose their resi-
dence based on the distance to a specific school they prefer or to be in proximity to different
schooling alternatives. The previous system, in which families could borrow or buy an elec-
tricity bill near their preferred school instead of actually changing their residence, aligns
with this conditional independence assumption. Nevertheless, to test the robustness of our
results, In Appendix C.3 we estimate a model without the random coefficient over distances,
which yields similar outcomes.

λ is identified by the variation in choices between applicants with and without sibling
priority in schools. This, however, does not take into account that the reason for the sibling
being enrolled in that school may be because the family liked the school when the sibling
enrolled (or transferred) in the first place. This implies that ϵij is likely to be positive for
such cases, introducing bias in its parameter estimation. In Appendix C.3 we therefore
present our preference parameter estimates and welfare calculations with no sibling-related
considerations.15 Findings and conclusions remain the same.

Finally, we also introduce a scale normalization for the utility by setting τ ≡ 1, and a
mean-utility location normalization by setting δ ≡ 0, following Abdulkadiroğlu et al. (2017).
Random components are assumed to have the following distributions:

γi ∼N (0, σγ)
ξj ∼N (0, σξ)
ϵi,j ∼N (0, σϵ)

To estimate parameters, we implement the Gibbs sampler technique, which, as explained
in Chapter 1, is a Markov Chain Monte Carlo estimation procedure that approximates
parameters estimated by maximum likelihood but is better suited for school choice contexts
(see Rossi, McCulloch, and Allenby (1996) for a more detailed description and Kapor et al.

include a conditional mean component based on these attributes into δj . Specifically, we may have included
school infrastructure dummies as covariates, as families had access to a list of the school infrastructure in
the application interface.

15In Chapter 1, the objective is to create counterfactual applications, and therefore the estimation of λ with
bias is not crucial. The focus is on identifying whether the alternative is more valuable to the applicant and
should be included in counterfactual rankings. However, for measuring welfare, it is more important to have
accurate measurements.
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(2020); Idoux (2022) for other recent implementations of this method in a school choice
context).16 The model’s full specification to implement this technique, including conjugate
priors over to obtain the standard deviations of random coefficients and the prior values
used, is presented in Appendix C.5. The Gibbs sampling process starts with draws from
the prior distributions and starting utility values consistent with observed choices and then
iterates over the following steps:

1. Utilities are drawn using the estimated parameters of the previous iteration and using
reported preference rankings to restrict possible values. Note that here, as in Abdulka-
diroğlu et al. (2017), we do not explicitly include an outside option, and instead assume
that rankings have exogenously fixed size. Alternatives not ranked thus have a utility
below that of the last school ranked instead of the outside option.

Specifically, assuming that i’s ranking is of size R (1 being the most preferred alterna-
tive and R the least preferred), utilities are drawn iteratively using a truncated normal
distribution so that:

ui,j(r=1) > ui,j(r=2) > ... > ui,j(r=R) > ui,j(r=r̂), ∀r̂ > R

To do this iterative sampling, ui,j(r=1) is drawn from (ui,j(r=2),∞) if R > 1 (using ui,j(r=2)
from the previous iteration), and from (−∞,∞) when R = 1. Alternatives not included
in i’s ROL are sampled from (−∞, ui,j(r=R)).

2. Using the updated utilities, estimates for λ, ξj and γi are obtained sequentially.

3. The parameters of the distribution of random coefficients are updated, and a new
iteration is started. More details on the Gibbs sampling process can be found in
Appendix A.6 of Chapter 1.

Utility Parameters Estimation Results

We implemented two 150,000 iteration chains of the Gibbs sampler, discarding the initial
50,000 iterations as a burn-in period to eliminate the effect of starting values. We then used
the following 100,000 iterations of both chains to compute the mean parameters and stan-
dard deviations. Appendix C.2 presents the estimates from Equation 3.1 and the potential
scale reduction factors (Gelman et al., 1992) to assess mixing and convergence of the Gibbs
sampling procedure (values close to one imply convergence). In addition, we provide trace
plots of the estimated σϵ in one chain of the Gibbs sampling in Figure C.1.6 of Appendix
C.1.

The potential scale reduction factors are close to one, indicating convergence, and the
trace plots demonstrate that the values of σϵ are bounded. We also provide estimates for the

16In the case of Kapor et al. (2020), to compare the Immediate Acceptance and the DA algorithms, and in
the case of Idoux (2022), to weight the effect of policy changes, family preferences, and residential sorting.
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model without random coefficients (Table C.3.1 in Appendix C.3) and without siblings (Table
C.3.2 in the same appendix section). Across all specifications, the estimated parameters and
welfare estimates are similar.

To estimate welfare, we compute the expected utility of each individual i for each school j
based on the estimated parameters and reported preference rankings, following the approach
of Abdulkadiroğlu et al. (2017):

E [ui,j ∣ROLi, ξ, λ, σϵ, σξ,Σγ, di]

Specifically, that implies that we obtain welfare estimates by averaging the expected utilities
over the iterations of the Gibbs sampler, thus directly conditioning on reported preference
rankings.

Counterfactual Assignment Strategy

We compare the distance-centric (DC) algorithm described in Subsection 3.2 with the DA
algorithm using the Stable Improvements Cycles (SIC) (Erdil and Ergin, 2008) and the Top
Trading Cycles (TTC) algorithms (see Abdulkadiroğlu and Sönmez (2003)) as benchmarks.
The TTC algorithm is our welfare benchmark since it delivers a student-optimal assignment,
and thus (weakly) higher welfare than the SIC algorithm, given that the latter delivers a
stable student-optimal assignment (and the stability restriction reduces attainable welfare).
The TTC algorithm also results in a higher welfare than the DA algorithm, which delivers
a stable but not necessarily student-optimal assignment. Given the potential multiplicity of
the DA, SIC and TTC assignments, we follow the procedure described in Abdulkadiroğlu
et al. (2017) to ensure a monotonic welfare comparison across all simulations. This implies
that we first run the SIC algorithm over each DA assignment (as described in Erdil and
Ergin (2008)), and then the TTC algorithm over the obtained DA-SIC result.17 Following
Abdulkadiroğlu et al. (2017), we run 100 lottery simulations of the DA and DC algorithms
to get our welfare calculations.

With regard to the DC algorithm, one relevant point is that parents could strategically
report a different address, using someone else’s electricity bill (CUEN) in order to be placed
at a preferred school. To include this possibility in the analysis, we run counterfactual
assignments in which a random proportion of the applicants strategically choose an address
close to their most preferred program. We use different random proportions as we do not
have a good estimate of CUEN misreporting under the previous system.

To compare mechanisms, we first re-run the DA algorithm used in the pilot. We use the
same inputs, except that we do not include students with special needs in order to make
the assignment comparable to that of the DC algorithm.18 In the implemented DA, the re-

17In this case, the the SIC and TTC algorithms obtain the same assignment. In other words, the are no
attainable Pareto efficiency improvements from relaxing stability constraints in this particular context.

18We eliminate both students and vacancies related to special needs, which account for only 0.23% of applicants.
This decision was made because students with special needs had a special assignment round before the regular
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ported preference rankings were appended to all non-ranked programs using a linear distance
sorting criterion. Applicants received a lower priority in the distance-imputed preferences
to maximize assignment to the reported preferences.19 We define assignments to imputed
preference as non-preference assignments to distinguish them from the overall assignment
obtained with the DC algorithm.

To replicate Ecuador’s previous system (described in Subsection 3.2), we consider all
available programs and rank them using linear distance sorting. Students with siblings in
the system were assigned (if possible) to their sibling’s school before the main process was
initiated. To this end, we create a priority group for these students that only applies at the
schools in which their siblings are enrolled. Finally, given that applicants were processed
sequentially, we run a single tie-breaking lottery to break ties.

3.5 Results

In this section, we begin by describing the differences between systems in terms of assignment
to preferences and linear distance to home. We then present our welfare comparison using
the utility model introduced above, and finish with an analysis of aftermarket dynamics
observed after the CCAS system’s operation.

Assignment Comparison

Notably, the reported preferences of 55.5% of the applicants (2,206 applicants) match the
ranking used to simulate the distance assignment mechanism, reflecting the importance
of distance between home and school to families. Specifically, this means that the first
preference of over half of the applicants was the closest school to their homes (or the closest
one where a sibling is enrolled). Table 3.2 compares the results of a single simulation of the
DA and DC algorithms. In the distance-centric alternative, a significantly lower percentage
of applicants are assigned to their preferred school. However, the percentages are quite
similar for applicants with a strong preference for distance, as can be observed in rows 1 and
2 of Panel B. This outcome highlights that using a coordinated alternative that considers
preferences does not harm (at least on average) applicants worried mainly about distance
to school. In terms of the average linear distance of the assignment, we see that the DA
algorithm assigned students to schools an average of 0.29 km farther away than the DC
algorithm.

Figure C.1.3 in Appendix C.1 shows the assignment to different declared preference rank-
ings for both systems. As we can see, the DA algorithm assigns more students to their first
preference than the DC algorithm (70% to 42%) and much fewer students to an alternative
outside of their reported preference list (22% vs 50%). Tables C.2.3 to C.2.5 in Appendix

one.
19When referring to applicant preferences, we intend reported preferences without the distance-imputed pref-
erences.
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C.2 and Figure C.1.4 in Appendix C.1 display these results for the different grades. Greater
congestion leads to smaller differences between the two mechanisms in terms of applicants
being assigned to their preferred options. However, there are two forces at play. On the one
hand, more congestion implies that fewer applicants are assigned to a reported preference
when using the DA alternative. On the other hand, under the distance-based alternative,
more congestion increases the probability that one applicant who is placed in a closer school
displaces another who would have ranked that school at the top of their list (particularly in
the cases where the latter applicant’s first preference and closest school coincide).

To evaluate the effect of location misreporting, Table 3.3 shows the results of computing
counterfactual assignments in which a random sample of applicants report the location of
their most preferred school as their address instead of their true residence. The exercise
simulates cases in which families submit another household’s electricity bill to maximize the
likelihood of being assigned to their most preferred school. We compute assignments with
misreporting levels of 10%, 30%, 50%, 70%, and 90%.

The results of this exercise show that, as the percentage of applicants who change their
location increases, the percentage of applicants assigned to one of their preferences rises as
well (from 50% to 59%). Nevertheless, the rates of assignment to a preferred option does
not reach the level of the DA algorithm, since applicants who misreport their location can
only signal a preference for a single alternative. If, however, they are not assigned to that
alternative, they may end up in a school farther from home and less preferred to other options
(some of which may be closer to their true location). When misreporting is greater, the true
average distance to school (i.e., using the real and not the reported location) increases as well.
At 90% misreporting, the distance to home reaches the same level as in the DA alternative.
This implies that misreporting can close the gap to the DA mechanism only partially and at
the cost of rapidly increasing the (true) distance between applicants’ home and school.

Welfare Comparison

Table 3.4 presents the estimated differences in mean utilities (both in km), with respect to the
benchmark student-optimal (TTC) assignment. Additionally, we include a standardization
of utility differences in units of the utility standard deviation using a TTC assignment.20

In Panel A, we can see that differences between the DA and TTC algorithms are small
in terms of welfare (less than 70 meters) at the pre-school levels, and significantly smaller
than the welfare loss under the DC (distance) alternative (0.655km and 0.315km on average,
respectively). The difference is naturally larger when we consider only applicants assigned
to different schools under the different algorithms, as shown in Panel B.

In Primary 1, the difference between the DA and DC algorithms is smaller due to in-
creased congestion, which leads to more applicants being assigned to a non-preferred alter-
native, as shown in Figure C.1.4 of Appendix C.1. Furthermore, Table C.2.6 in Appendix
C.2 shows that the share of applicants assigned to the same non-preferred school in both

20SIC and TTC actually have the exact same assignment in all 100 simulations, as explained in Appendix C.6.
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algorithms increases significantly in Primary 1 (56.7% of applicants assigned to the same
school, compared to 2.69% and 21.35% in Pre-School 1 and 2, respectively). Conditional on
having a different assignment in the DC and DA algorithms, the share of applicants who
move from a non-preferred to a preferred assignment under the DA algorithm is 40.85% in
Primary 1, compared to 77% in Pre-School 1 and 53% in Pre-School 2, indicating a smaller
share of applicants with improved outcomes in later years. As the DC algorithm finds schools
that are on average closer to home, which is a result of not prioritizing reported preferences,
and given that utility is, all else equal greater for applicants with a lower home-to-school
distance, there is actually a reversal in the average utility difference between mechanisms in
Primary 1.

The distribution of estimated welfare overall and in each grade is presented in Figure C.1.7
of Appendix C.1. Here, we observe that the phenomenon described in the above paragraph
occurs in all grades, with two peaks in utility in each figure: one among applicants assigned
to a preferred option and another for those assigned to a non-preferred option that is close
to home. The DA and TTC (and SIC) algorithms have very similar distributions. However,
the TTC algorithm does improve the assignment relative to the DA algorithm in Primary 1,
which is explained by the fact that, with higher congestion, stability constraints imposed by
tie-breaking lotteries are more restrictive. By eliminating them, TTC (and SIC) achieve a
significant improvement (0.302 km overall over the DA assignment and 0.396 km if restricted
to applicants with different assignments), as shown in Table 3.4.

Finally, Figure 3.1 compares welfare gains under different mechanisms, similar to Figure
5 in Abdulkadiroğlu et al. (2017) (included in Appendix C.1). The main takeaway is that,
while the differences in magnitudes between results in this chapter and in Abdulkadiroğlu
et al. (2017) are large, the proportions are actually very similar. Thus, the coordinated
mechanisms that include applicant preferences and the alternatives considered in each case
are roughly the same. Meanwhile, the differences in magnitudes are explained by the different
settings of New York and Manta. In addition, Abdulkadiroğlu et al. (2017) study assignment
to secondary school (where applicants are willing to travel more), while we assess assignment
to pre-school and early primary school (where families place a greater value on distance from
home).

With regard to improvements over the DA algorithm, the potential is context-dependent,
as shown by the differences observed in the various grades. The margin, therefore, is not
irrelevant, but likely to be more important in more congested grades (i.e., post-entry-level
grades). It would arguably be best to focus on implementing a CCAS first, then use the
reported preferences to study the potential of the SIC and TTC algorithms (and possibly oth-
ers), before weighing the trade-offs between improving Pareto efficiency and losing stability
or the strategy-proof properties.

Aftermarket Dynamics

In closing this section, we consider what happens after the assignment process using data on
family requests to transfer to a different school, and data on the actual enrollment of students
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in different schools, which we can compare to the assignment.21 This analysis is beyond the
chapter’s scope of comparing the assignment mechanisms but offers valuable insights into
their possible effects on aftermarket dynamics. Moreover, transfer requests impose costs
on the Ministry of Education that Ecuadorian officials explained were a concern. We will
show that while the number of overall transfers and changes in assignment is significant, it is
much more likely for applicants assigned by the distance to school criterion, highlighting that
the coordinated approach is likely to reduce aftermarket movements. The main challenge is
providing information and incentives for families to learn about more schools and report more
preferences to have a larger share assigned to one alternative that is known and acceptable.

Table C.2.7 in Appendix C.2 presents descriptive data of aftermarket dynamics. The
table shows that around 15% of applicants enroll in a different school than their assigned
school, and only about two-thirds of these differences are explained by families formally
requesting transfers (most transfer requests are accepted, as shown in the table), while the
rest are a result of different administrative processes. A large fraction of both differences in
enrollment and transfer requests come from applicants to Primary 1, already indicating that
these dynamics are driven by non-assignment to a preferred school. Specifically, around 40%
of applicants end up enrolling in a school different from their assigned school in Primary 1,
compared to around 5% in Pre-School 1 and around 8% in Pre-School 2.

To assess the relationship between assignment to a reported preference and aftermarket
movements, we leverage the use of lotteries to determine assignment at congested schools
and compare applicants that are and are not assigned in such cases. We consider two groups
of applicants: those applying to a congested first preference who are either assigned to it
or to a different option due to their lottery number value, and those who are processed for
their least preferred school (i.e. not assigned to one more preferred) and are either assigned
to it or to a school using the distance criterion due to their lottery number value. Note
that, as many applicants rank only one school, there is significant overlap between the two
groups. For each group of applicants, we implement the following linear probability model
regression:

Yi = β0 + β1NAi,s +∆β0∣s(i),g + ϵi (3.2)

Yi represents the aftermarket movement considered, which could be a request for transfer,
a different assignment, or either of them. The coefficient β0 represents the average probability
of an applicant who is assigned to a congested school (either as a first or last preference)
having the aftermarket movement considered. The coefficient β1 represents the additional
probability of an applicant who is not assigned to a congested school having the aftermarket
movement considered. Additionally, ∆β0∣s(i),g is a fixed effect for congested schools and
grades, which controls for any differences across different school-grade combinations.

21Note that all applicants participating in the CCAS pilot are included and not only those in the urban area
of Manta included in the welfare comparison.
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The results from regressions 3.2 are presented in Table C.2.8 of Appendix C.2. The table
shows that the probability of requesting a transfer or having a different assignment is much
higher for applicants not assigned to their congested first or last preference. For instance,
for applicants processed at a congested last preference, the probability of either requesting
a transfer or having a different enrollment than the assigned school is 9.61% if assigned to
the least preferred option, compared to 22.38% if assigned by the distance criterion.

Overall, a significant portion of applicants are interested in changing their assignment
even if it is their reported preference. This could be due, in part, to the impact of Covid-19
on family preferences during the period. Nonetheless, the share of applicants interested in
changing their assignment is much greater for those assigned by the distance criterion.

3.6 Discussion

In this chapter, we document and study the effects of the Centralized Choice and Assignment
System (CCAS) pilot implemented in early 2021 in the Ecuadorian city of Manta, where the
previously existing system assigned students exclusively by the linear distance between their
home and school. We contrast these systems using a sudden change in policy and the data
generated by the new non-strategic deferred acceptance (DA) algorithm (Gale and Shapley,
1962). We estimate preferences closely following Abdulkadiroğlu et al. (2017) and use these
to quantitatively study the welfare effects of the policy change.

Our main result is that implementing a coordinated mechanism that incorporates ap-
plicants’ preferences has relatively large welfare benefits. This finding echoes that observed
for New York City in Abdulkadiroğlu et al. (2017), though here, our setting is a developing
country. The extent of the differences depends on different factors such as the congestion of
schools, the grades considered, the characteristics of the city (e.g., residential segregation),
and family preferences.

Specifically, we document that when compared to the previous distance mechanism used
by the government, the DA algorithm increases the percentage of applicants assigned to a
preferred school from 49.96% to 78.44%, while the percentage of applicants assigned to their
first preference rises from 42.42% to 69.76%. The main trade-off of implementing the DA
alternative is that the average linear distance between applicants’ home and school increases
by 0.29km. To assess the overall effect of the policy, we turn to our estimated welfare
comparisons and show that the welfare gains are between 0.655km and 0.315km higher when
the DA algorithm is used in Pre-School grades. Meanwhile, if the analysis is restricted only
to applicants who are assigned to a different school under each alternative mechanism, these
gaps more or less double in magnitude.

In the first year of primary school, the difference in welfare gains between the preference-
based and distance-based mechanisms is much smaller and is actually reversed to a value
of -0.021km. This is due to the high level of congestion in that grade arising from many
seats being already taken by applicants enrolled in prior grades, which makes it difficult for
many applicants to be assigned to their preferred schools under either mechanism. In this



CHAPTER 3. PREFERENCE VS. DISTANCE-BASED ASSIGNMENT 95

situation, the distance-based alternative seems to provide a very slightly better distribution of
distances to schools and assignment to preferred options. This finding supports the intuitive
expectation that incorporating preferences is particularly beneficial in less-congested entry
grades of the schooling system.

The results showing that coordinated school choice systems are beneficial for families
in developing country contexts is important in that more and more countries are adopting
similar systems worldwide.22 These findings are also timely since the COVID-19 pandemic
has accelerated the adoption of online application and enrollment systems, facilitated by the
fact that an increasing number of countries now have the pre-conditions to realize them.
While various aspects of these policies beg further study, the growing body of evidence that
preferences and coordination are a central driver of welfare gains is one important step in
better understanding how to implement this type of market design in practice. The next
step is to optimize coordinated school choice systems by studying and altering their rules, as
well as implementing complementary policies that enhance their operation and yield better
outcomes. As discussed in the preceding two chapters of this dissertation, these measures can
significantly augment the benefits of such systems for families and help achieve important
social objectives, such as promoting school integration and enhancing teacher selection.

22See Neilson (2021) and www.ccas-project.org.

www.ccas-project.org
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Figures

Figure 3.1: Welfare Differences Between Algorithms

(a) All Applicants

(b) Only Applicants With Different Assignments
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Tables

Table 3.1: Vacancies and Applicants by Geographic Unit (Cantón) and Grade

Panel A: Vacancies
Cantón Pre-School 1 Pre-School 2 Primary 1

Manta 1,830 1,394 425
Montecristi 905 668 654
Jaramijó 110 47 37
Total Grade 2,845 2,109 1,116
Total Global 6,070

Panel B: Applicants
Cantón Pre-School 1 Pre-School 2 Primary 1

Manta 1,101 1,143 338
Montecristi 481 437 124
Jaramijó 125 125 107
Other 2 0 1
Total Grade 1,709 1,705 570
Total Global 3,984



CHAPTER 3. PREFERENCE VS. DISTANCE-BASED ASSIGNMENT 98

Table 3.2: Mechanism Comparison - Results

Panel A: All applicants
Assigned in: DA Distance
Any preference 3,118 1,986

(78.44%) (49.96%)
First preference 2,773 1,686

(69.76%) (42.42%)
Average assignment distance 1.30km 1.01km

Panel B: Applicants maintaining 1st preference (2,206)
Assigned in: DA Distance
Any preference 1,779 1,537

(81.16%) (70.12%)
First preference 1,644 1,472

(75.00%) (67.15%)
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Table 3.3: Mechanism Comparison with Location Misreporting

Applicants assigned Average
to any preference Distance

Distance Mech without misreporting 1,986 (49.96%) 1.01km

Distance Mech + 10% misreporting 2,055 (51.70%) 1.04km
Distance Mech + 30% misreporting 2,142 (53.89%) 1.09km
Distance Mech + 50% misreporting 2,230 (56.10%) 1.18km
Distance Mech + 70% misreporting 2,332 (58.67%) 1.21km
Distance Mech + 90% misreporting 2,403 (60.45%) 1.29km

DA Algorithm 3,118 (78.44%) 1.30km
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Table 3.4: Differences in Welfare: Student-Optimal vs. DC and DA Algorithms

Panel A: All simulated applicants
Pre-School 1 Pre-School 2 Primary 1

Measure DC DA DC DA DC DA
∆ Mean utility (km) -0.657 -0.002 -0.385 -0.070 -0.281 -0.302
(∆Mean utility/σUt. FB) -0.714 -0.003 -0.156 -0.029 -0.084 -0.090

Panel B: Applicants with different assignments across algorithms
Pre-School 1 Pre-School 2 Primary 1

Measure DC DA DC DA DC DA
∆ Mean utility (km) -1.416 -0.005 -0.596 -0.109 -0.369 -0.396
(∆Mean utility/σUt. FB) -1.517 -0.006 -0.264 -0.048 -0.114 -0.122

Note: ∆ Mean utility (km) is measured computing ui,j(µ) − ui,j(TTC), where j(µ) represents the school to
which individual i is assigned under mechanism µ. We then compute average utilities for each algorithm and
simulation and finally compute the average for each algorithm across simulations. ∆Mean utility

σUt. FB
simply uses

the utility variance under the TTC mechanism to scale this difference in each simulation. This is done to
facilitate extrapolations to other contexts. This same table is presented in Appendix C.3 for the specification
without siblings.
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A.1 Additional Figures

Figure A.1.1: Counterfactual loops: Costly consideration
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Figure A.1.2: Counterfactual loops: Costly ranking

.0
7

.0
8

.0
9

.1
.1

1
Ad

-D
un

ca
n 

in
cl

ud
in

g 
un

as
si

gn
ed

0 2 4 6 8 10
Iteration Number

(a) 2019

.0
8

.0
9

.1
.1

1
.1

2
Ad

-D
un

ca
n 

in
cl

ud
in

g 
un

as
si

gn
ed

0 2 4 6 8 10
Iteration Number

(b) 2020

.0
8

.0
9

.1
.1

1
.1

2
Ad

-D
un

ca
n 

in
cl

ud
in

g 
un

as
si

gn
ed

0 2 4 6 8 10
Iteration Number

No policy (max) segregation benchmark

MSB

SR = 0, no residential sorting

SR = low-SeS share in Municipality

(c) 2021



APPENDIX A. EFFECTS OF SOCIOECONOMIC RESERVES 113

A.2 Additional Tables

Table A.2.1: Estimated impact of counterfactual social-welfare results in consideration cost
model 2019

Countefactual Outcomes
Panel A: Only Integration: Reduction Achievement Gap Efficiency
counterfactual sample in educational (% of group)) % of ideal Unassignment
Demand-side SR Randomized segregation gap (∆−%) HA cat. MA cat. occupancy (% of group)

simulation share (%) residences MA-DDWUN MA-DD DD L-SeS N-SeS L-SeS N-SeS HA cat. MA cat. L-SeS N-SeS All
None 15 No 7.1 15 18.9 15.4 19.4 52.9 53.4 - - 9.97 13.32 12.3
None 0 No - - - 15.2 19.5 52.6 53.3 - - 10.74 13.03 12.28
None 0 Yes 41.7 41.8 40.1 15.4 18.8 52 52.9 - - 12.38 11.9 11.98
None Muni. No 17.5 63.1 71.9 16.5 18.8 53.1 53.4 - - 7.13 14.93 12.25
None City No -27.5 41.1 55.6 16.5 19.1 53.4 53.2 - - 4.18 15.44 12.24
∆+δHA Muni. No 34.9 77.1 85.8 20.2 20.7 50.8 52.2 - - 7.21 14.59 12.11
∆−ci Muni. No 20.2 64.6 73.9 16.5 18.7 53.1 53.2 - - 7.05 14.68 12.07
∆−τt Muni. No 47.2 80.9 88.1 16.7 18.2 53.1 52.9 - - 5.24 9.86 8.37
All Muni. No 60.3 95.7 103.4 20 19.9 50.9 51.5 - - 4.91 9.24 7.88
All City No 3.9 15.8 13.9 17.1 21.8 51.3 51.2 - - 7.93 7.83 7.83

Panel B: All Integration: Reduction Achievement Gap Efficiency
applicants in educational (% of group)) % of ideal Unassignment
Demand-side SR Randomized segregation gap (∆−%) HA cat. MA cat. occupancy (% of group)

simulation share (%) residences MA-DDWUN MA-DD DD L-SeS N-SeS L-SeS N-SeS HA cat. MA cat. L-SeS N-SeS All
None 15 No 7.2 18.7 26.5 16.3 21.1 52.8 53.8 89.5 86.7 9.82 14.5 13.03
None 0 No - - - 16.1 21.1 52.8 53.8 89.4 86.7 10.66 14.1 12.97
None 0 Yes 49.5 47.2 44.7 16.3 20.8 52.4 53.4 89.7 86.5 11.6 13.18 12.59
None Muni. No 23.9 89.6 101.6 17.4 20.2 52.9 53.9 89.3 86.7 6.88 16.38 13.15
None City No -41.8 48.7 65.4 17.5 20.5 53 53.8 89.1 86.7 4.27 16.89 13.21
∆+δHA Muni. No 37.5 105.1 117.7 19.3 20.2 52 54.1 92.4 86 7.25 16.77 13.54
∆−ci Muni. No 26.3 92.3 104.7 17.4 20.2 52.9 53.8 89.2 86.5 6.93 16.36 13.16
∆−τt Muni. No 52.7 115.7 126.9 17.5 19.6 52.8 53.5 89.8 88 5.92 14.02 11.3
All Muni. No 63.4 130 142.2 19.2 19.6 51.8 53.4 92.5 87 6.14 14.38 11.59
All City No 11.3 17.8 17.1 16.6 21.3 52.2 53.1 92.5 87.3 9.55 12.42 11.37
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Table A.2.2: Estimated impact of counterfactual social-welfare results in consideration cost
model 2020

Countefactual Outcomes
Panel A: Only Integration: Reduction Achievement Gap Efficiency
counterfactual sample in educational (% of group)) % of ideal Unassignment
Demand-side SR Randomized segregation gap (∆−%) HA cat. MA cat. occupancy (% of group)

simulation share (%) residences MA-DDWUN MA-DD DD L-SeS N-SeS L-SeS N-SeS HA cat. MA cat. L-SeS N-SeS All
None 15 No 1.9 6.8 6.8 16.4 20.7 51.3 53.8 - - 4.04 7.41 6.4
None 0 No - - - 16.1 20.6 51 53.8 - - 5.02 7.25 6.48
None 0 Yes 44.8 45.8 42.2 16.7 20.3 51.3 53.5 - - 6.93 6.69 6.67
None Muni. No 22.1 39.1 39.9 17.1 20 51.1 53.8 - - 3.32 8.17 6.54
None City No -11.1 17 22.4 17.4 20.1 51.3 53.8 - - 1.44 8.65 6.63
∆+δHA Muni. No 29.3 44.8 45.5 21.5 23.4 48.1 51.8 - - 3.51 7.85 6.38
∆−ci Muni. No 25.5 42.7 42.9 17.2 20.1 50.7 53.8 - - 3.23 8.08 6.43
∆−τt Muni. No 32.5 41.5 40.9 17.3 19.7 50.9 53.6 - - 2.22 4.63 3.83
All Muni. No 42.8 51.5 49.7 21.1 22.9 48.1 51.7 - - 2.17 4.23 3.54
All City No 2.5 5.6 4.4 19.2 24 48.5 51.5 - - 3.51 3.56 3.49

Panel B: All Integration: Reduction Achievement Gap Efficiency
applicants in educational (% of group)) % of ideal Unassignment
Demand-side SR Randomized segregation gap (∆−%) HA cat. MA cat. occupancy (% of group)

simulation share (%) residences MA-DDWUN MA-DD DD L-SeS N-SeS L-SeS N-SeS HA cat. MA cat. L-SeS N-SeS All
None 15 No 3.5 13.1 19.1 17.6 22 52.5 53.8 83.3 81.3 4.25 8.07 6.9
None 0 No - - - 17.3 22 52.6 53.8 83 81.3 5.17 7.87 6.97
None 0 Yes 45.9 48.6 45.8 17.8 21.8 52.5 53.8 83.8 80.9 6.44 7.32 6.94
None Muni. No 31.1 59 64.1 18.4 21.5 52.6 53.9 83.3 81.3 3.28 8.85 7.04
None City No -23.3 21.8 31.5 18.9 21.5 52.3 53.9 83.3 81.2 1.4 9.38 7.11
∆+δHA Muni. No 36.7 63.8 68.6 21.1 22.7 50.9 53.3 90.8 79.3 3.59 9.07 7.25
∆−ci Muni. No 33.6 62.5 67.6 18.4 21.5 52.3 53.8 83.3 80.9 3.22 9 7.09
∆−τt Muni. No 41.6 65.7 69.6 18.4 21.3 52.4 53.6 84 82 2.54 6.97 5.54
All Muni. No 50.9 76.8 81 20.7 22.3 50.7 53.1 90.7 80.1 2.76 7.3 5.81
All City No 3.1 6.1 5.1 19 23.4 51 52.8 90.6 80.2 4.65 6.35 5.73

Table A.2.3: Estimated impact of counterfactual social-welfare results in consideration cost
model 2021

Countefactual Outcomes
Panel A: Only Integration: Reduction Achievement Gap Efficiency
counterfactual sample in educational (% of group)) % of ideal Unassignment
Demand-side SR Randomized segregation gap (∆−%) HA cat. MA cat. occupancy (% of group)

simulation share (%) residences MA-DDWUN MA-DD DD L-SeS N-SeS L-SeS N-SeS HA cat. MA cat. L-SeS N-SeS All
None 15 No 5.6 5.6 6.1 17.4 21.1 52.8 54.5 - - 3.94 5.66 5.01
None 0 No - - - 17.4 21 52.7 54.4 - - 3.87 5.58 4.94
None 0 Yes 37.7 40 40.2 17.7 21 52.9 53.8 - - 5.16 5.46 5.38
None Muni. No 19.6 40.3 42 18.4 20.3 52.3 54.8 - - 2.33 6.6 4.88
None City No -12.8 17 20.6 18.8 20.3 52.1 54.7 - - 1.23 7.1 4.97
∆+δHA Muni. No 34.7 54.4 55.8 23.1 25 49.2 52 - - 2.51 6.52 4.92
∆−ci Muni. No 19.2 41.8 43.6 18.2 20.2 52.5 54.5 - - 2.18 6.53 4.78
∆−τt Muni. No 36.7 51.2 52 18.2 20.2 52.5 54.9 - - 1.23 3.51 2.64
All Muni. No 47.2 61.3 62.3 22.7 23.8 49.7 52.2 - - 1.08 3.18 2.41
All City No 5.4 9.5 9 21.1 25.4 50.5 51.6 - - 1.94 2.6 2.39

Panel B: All Integration: Reduction Achievement Gap Efficiency
applicants in educational (% of group)) % of ideal Unassignment
Demand-side SR Randomized segregation gap (∆−%) HA cat. MA cat. occupancy (% of group)

simulation share (%) residences MA-DDWUN MA-DD DD L-SeS N-SeS L-SeS N-SeS HA cat. MA cat. L-SeS N-SeS All
None 15 No 5.1 5.6 6.5 18.4 23 52.7 54.3 80.8 80.8 4.01 6.21 5.31
None 0 No - - - 18.5 22.9 52.7 54.3 80.7 80.8 3.96 6.15 5.26
None 0 Yes 48 46.2 45.8 18.9 23.2 52.8 53.7 81.3 80.1 4.95 5.95 5.49
None Muni. No 34 63.6 65.6 19.4 22.3 52.4 54.6 80.8 80.7 2.47 7.39 5.35
None City No -13.8 25.9 29.2 19.9 22.1 52.2 54.6 80.6 80.6 1.32 7.96 5.45
∆+δHA Muni. No 45.8 79 81 22.5 24.3 50.5 53.6 89.6 78 2.79 7.85 5.7
∆−ci Muni. No 33.7 65.3 67.5 19.3 22.2 52.5 54.4 80.6 80.6 2.35 7.4 5.31
∆−τt Muni. No 51.7 79.8 81.3 19.3 22.1 52.6 54.7 81.9 82.1 1.65 5.58 3.96
All Muni. No 56.8 87.5 89.5 22.2 23.5 50.8 53.6 89.4 79.4 1.77 6.12 4.28
All City No 5.6 9 8.5 20.8 24.8 51.3 53.1 89.4 79.5 2.99 5.15 4.21
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Table A.2.4: All Applicants and Applicants in Preference Estimation by Municipality

All applicants In pref. estimation
Municipality N low-SeS (%) N (%) low-SeS (%)

Puente Alto 8,623 36 75 37
Maipu 6,526 32 78 32
Santiago 5,198 26 74 29
San Bernardo 4,307 44 72 45
Quilicura 3,974 36 71 38
La Florida 3,790 32 76 32
Pudahuel 3,312 45 69 50
La Pintana 2,871 64 73 66
Renca 2,446 48 73 52
Peñalolen 2,402 49 67 54
Cerro Navia 2,211 58 76 62
Estacion Central 2,177 30 72 33
El Bosque 2,047 52 76 56
Recoleta 1,898 46 70 48
Colina 1,874 51 64 54
San Miguel 1,830 19 63 20
Independencia 1,758 28 74 29
Conchali 1,748 43 74 45
Quinta Normal 1,729 37 71 40

Ñuñoa 1,459 18 60 22
La Granja 1,381 50 70 53
Lo Espejo 1,357 57 71 60
Lo Prado 1,342 49 78 52
La Cisterna 1,326 30 71 35
Huechuraba 1,212 47 73 51
Las Condes 1,169 22 62 27
Macul 1,168 32 63 36
Pedro Aguirre Cerda 1150 47 64 54
Cerrillos 1,054 44 75 50
San Joaquin 1,051 44 73 50
San Ramon 1,006 56 69 61
Padre Hurtado 1,003 37 61 37
Lo Barnechea 611 41 61 48
Providencia 600 13 64 14
La Reina 599 26 69 31
Lampa 467 43 14 20
Vitacura 140 15 50 15
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A.3 Definition of Municipalities’ Buffers, Schools and

Applicants

In Santiago, most municipalities are not separated by natural geographical features and are
instead interconnected, although they may be separated by highways, which can complicate
transportation. Given this context of interconnectedness, there is a need to expand the set
of programs included in the choice sets of applicants, particularly in smaller municipalities
that are highly interconnected. To do that, we implemented the following approach.

1. We identified all Municipalities within the urban limits of Santiago city, as illustrated
in Panel A of Figure A.3.1.

2. We locate all PreK applicants in each Municipality as shown in Panel B, limiting
our analysis to those applicants applying to schools in the Metropolitan Region and
with accurate geolocation data. Specifically, the data includes five levels of accuracy
based on the responses obtained from the Google Geocoding API or user information:
(1) a unique response (rooftop or range interpolated quality), (2) a unique response
(geometric center quality), (3) multiple coherent responses, where the centroid of the
responses is used, (4) the user’s shared location, and (5) imputed coordinates of the
Municipality centroid. For the analysis, we considered only the applicants with a
quality score ranging from (1) to (4). The Municipality that is painted in red in Panel
B of Figure A.3.1 is Pirque, excluded from the analysis due to its limited urban area
and to only having 14 applicants located in it.

3. After locating all applicants, we identify all programs that were listed as first prefer-
ences in their ranked order lists and locate them.1 For each Municipality, we determined
the schools that were first listed by the applicants located in that particular Municipal-
ity. We drew a buffer radius around the Municipality such that 90% of these schools
lay within the Municipality + Buffer area. The buffer zones around all Municipalities
are shown in Panel C of Figure A.3.1. Given these geographical units, for each Mu-
nicipality, we do not consider applicants that have schools listed on their applications
outside the defined limits.

To summarize, this process defines (i) the geographical units, (ii) the applicants, and (iii)
the schools we used in the analysis.

One of the main conclusions of the chapter is that the design of SR should take into
account local conditions, but it is important to consider the interaction between different
geographic units used to measure segregation. This interaction can affect how segregation
is measured, as shown in the examples of Maipú and La Cisterna in Section 2.6. To provide
further context, Figure A.3.2 presents the socioeconomic composition of neighborhoods in

1In this step of the procedure, we consider first preferences from all applicants across all years pooled together.
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Figure A.3.1: Geographic units definition

(a) Municipalities in Santiago City (b) Applicants distribution in Santiago City

(c) Municipalities Buffers
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these Municipalities, and in the case of La Cisterna, in neighboring areas, by dividing the
area within their buffers into smaller polygons.

Panel A displays the socioeconomic composition of neighborhoods in Maipú within the
buffer area, which coincides with the Municipality boundary. The polygons in the map
show a maximum low-SeS share of 0.58 towards the west, while the minimum value is 0,
observed in specific zones to the south, east, and north. As previously mentioned, Maipú is
a Municipality that exhibits results similar to the city-wide average, partly due to its relative
isolation from other Municipalities, reflected in the absence of a buffer zone in Maipú.

Panels B and C depict the results for La Cisterna, with Panel B focusing on the Munici-
pality and Panel C encompassing the entire buffer area. La Cisterna tends to exhibit relative
homogeneity in terms of socioeconomic composition, with the low-SeS share of the polygons
ranging from 0.2 to 0.55, excluding polygons in the northeastern and southwestern corners
of the map that contain fewer students and may not be representative. However, the com-
position of the neighboring areas, as shown in Panel C, reveals significant exposure to higher
shares of low-SeS students in the west and southeast, and higher shares of no-SeS students in
the north. This partly explains why results for La Cisterna, and other Municipalities under
similar conditions, may differ from average results.
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Figure A.3.2: Socioeconomic Composition of Neighborhoods in Maipú’s and La Cisterna’s
Buffer

(a) Share of Low-SeS students in Maipú

(b) Share of Low-SeS students in La Cisterna
(Municipality boundaries)

(c) Share of Low-SeS students in La Cisterna
(Municipality+Buffer)

A.4 Costly Consideration Detailed Model to Data

Mapping

Notation

Let’s define Pi as the space of available programs to applicant i (within the Municipality +
Buffer geography defined in Section 1.4), Ci as the set of alternatives considered by the appli-
cant, and RCi as the ordered set of programs considered, and acceptable, that is, descending
on vijt with vijt > 0 (for simplicity we eliminate the time subscript in the expressions below).



APPENDIX A. EFFECTS OF SOCIOECONOMIC RESERVES 120

In other words, RCi is the partial ranking when only programs in Ci have been considered.
Under this notation, we will only use ROLi to express the final RCi of i once it is not optimal
for i to consider any more programs.

We use the notation kr=l to refer to the program ranked in the l position in a given
partial ranking. kr=∣RCi ∣+1 refers to the outside option and has a utility vikr=∣RCi ∣+1

= 0. For

convenience we also define vikr=0 ≡ ∞.
Next, we need to introduce some notation for the normal distribution that models the

uncertainty over ϵij and ξgij . To that end we use the conjugate priors defined for the imple-
mentation of the Gibbs Sampling (see Appendix A.6), assuming that applicants’ expecta-
tions are determined by the same parameters. This implies that, as detailed in Appendix
A.6, ϵij ∼ N(0, σ2

ϵ ), and ξgj ∼ N(0, σ2
ξg), and using these distributions we can further define

σ2
CVi
≡ σ2

ϵ + σ2
ξgi .

ϕ(x) and Φ(x) represent the standard normal probability density and standard normal
cumulative distribution functions evaluated at x. And the standardization of the relevant
distributions is summarized with the notation sbnij ≡

vikr=n−(vij−θij)
σCVi

to simplify the expression

below.
We furthermore use the convention ∏0

l=1 {1 − qikr=l} ≡ 1 and note that given these defini-

tions sb
∣Ri,Ci ∣+1
ij = −(vij−θij)σCVi

, and sb0ij = ∞ (and thus ϕ(sb0ij) = 0 and Φ(sb0ij) = 1).
As a result, the consideration value of program j, conditional on the partial ranking Ri,Ci

can be derived as follows:
First, consider the expected utility of a given partial ranking Ri,Ci :

E[vi,⋅∣Ri,Ci] =
∣Ri,Ci ∣

∑
n=1

n−1
∏
l=1
{1 − qikr=l} qi,kr=nvi,kr=n

When deciding whether to consider a program j, the applicant additionally knows the
observable part of the utility, which we can express as vij − θij. Depending on θij’s value,
vij can take any value above or below the utilities of programs already included in Ri,Ci .
Therefore, all possibilities need to be considered.

Consideration Value

Let’s start considering the possibility of vij being above all other programs in the partial
ranking. That happens with probability Φ(sb0ij) − Φ(sb1ij), and, using the properties of the
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normal distribution,2 the expected value of vij if that is the case is given by

E[vij ∣vij > vikr=1] = vij − θij − σCV

ϕ(sb0ij) − ϕ(sb1ij)
Φ(sb0ij) −Φ(sb1ij)

And combining both:

P(vij > vikr=1)E[vij ∣vij > vikr=1] =
(Φ(sb0ij) −Φ(sb1ij)) (vij − θij) − σCV (ϕ(sb0ij) − ϕ(sb1ij))

Now, if j is ranked first, assignment to the program occurs only with probability qij.
Moreover, what we are interested in is the expected change in the value of the partial ranking
if j were to be considered, which implies also considering that including j in the portfolio
would make assignment to the rest of the programs less likely. Adding these elements, we
have that the change in the value of partial ranking is given by:

P(vij > vikr=1)qij (E[vij ∣vij > vikr=1] − E[vi,⋅∣Ri,Ci]) =
qij (Φ(sb0ij) −Φ(sb1ij)) (vij − θij) − σCV (ϕ(sb0ij) − ϕ(sb1ij))−

qij (Φ(sb0ij) −Φ(sb1ij))
∣Ri,Ci ∣

∑
n=1

n−1
∏
l=1
{1 − qikr=l} qi,kr=nvi,kr=n

Following this logic for the different regions in which the value of vij can affect the partial
rankings’ utility (when it has a positive value),3 we can express the consideration value as
follows:

Definition 3. Consideration Value: CVj,Ri,Ci

CVj,Ri,Ci
=

qijt∑
∣Ri,Ci ∣
n=0 ∏n

l=1 {1 − qikr=lt}{
[Φ(sbnij) −Φ(sbn+1ij )](vij − θij)−

σCVi
[ϕ(sbnij) − ϕ(sbn+1ij )]

}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Expected utility of assignment to j

−

qijt∑
∣Ri,Ci ∣
n=1 {(1 −Φ(sbnij))qikr=ntvikr=n∏

n−1
l=1 {1 − qikr=lt}}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Expected counterfactual utility conditional on assignment to j

2Specifically, if x ∼ N(µ,σ2
), then:

P(b > x > a) =Φ(β) −Φ(α)

E[x∣b > x > a] =µ − σ
ϕ(β) − ϕ(α)

Φ(β) −Φ(α)

where β ≡ b−µ
σ

and α ≡ a−µ
σ

.
3Those regions are {(∞, vikr=1) , (vikr=1 , vikr=2) , ..., (vikr=∣Ri,Ci ∣

,0)}.
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There are different ways to express CVj,Ri,Ci
, but an additional advantage of this formu-

lation is that it is computationally convenient when computing the consideration value of
multiple programs simultaneously.

To determine consideration, we can use the estimated utility parameters and considera-
tion costs. The relation between the restrictions of the model and the data is expressed in
result 2 and the empirical implementation to obtain partial rankings is presented in Appendix
A.6.

A.5 Identification Discussion

To facilitate the discussion, we will start by simplifying equation 1.1 excluding applicants
with family priorities and the coefficient on distance designed to account for the potential
impact of the COVID-19 pandemic. We will also omit time subscripts for clarity:

vij =xjβ
gi + ξgij + ϵij

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
uij

−dij

ci =cgi + ζi

Identification of utility densities

The first part of the discussion in the costly consideration case, is that we could identify the
density of uij conditional on consideration and conditional on vij > 0, by only considering
applicants that included program j in their ROL, using the relative rank of the program to
others in the portfolio of different applicants. Restricting ourselves to programs in ROLs
enables us to use the non-parametric identification argument proposed by Agarwal and
Somaini (2018). It’s important to note that this restriction doesn’t hinder identification in
theory. In fact, with enough data variation, we can identify the same region of utilities
(u > 0) as in the full consideration model. However, due to data limitations, we identify
utilities with less accuracy in practice.

Figure A.5.1 presents a graphical explanation. Panels A.5.1a and A.5.1b display the in-
direct utility regions that correspond to different observed portfolios in the full consideration
and in the costly consideration cases respectively. Additionally, Panels A.5.1c and A.5.1d
explain how we can identify utilities by calculating the difference between the number of ap-
plicants selecting a portfolio at distances dI and dIV and the number of applicants selecting
it at distances dII and dIII .

Panel A.5.1c shows that, in the full consideration case, we can use portfolios with only
one program (or even no programs) to aid in identifying the density of u. We are however
restricted to utilities in the first quadrant due to the non-negative distance. On the other
hand, Panel A.5.1d illustrates how we can identify utilities in the first quadrant in the costly
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Figure A.5.1: Identification of the density of u using only information in ROLs

(a) Full consideration: Utility regions as a function of
ROL chosen

(b) Costly consideration: Utility regions as a function
only of programs in ROL chosen

(c) Shifts in distance between programs ranked and not
ranked ({2,0} here) also identify the density of u

(d) Only shifts in distance between programs ranked (in
this example {2,1}) identify the density of u

consideration case with enough data variation using differences in distance vectors. The
difference is that in the latter case identification in practice relies on fewer observations.

Separating θij and (vij − θij)

After identifying the density of u, the next step would be to identify the density of consider-
ation costs. Understanding the argument in Idoux (2022)’s costly ranking model is insightful
to see the difference. In that model, programs with a ranking value above the ranking cost
are eligible to enter the ROL during the portfolio formation phase, and the decision-making
heuristic used selects the program with the highest indirect utility. Ranking values are a
function of indirect utilities and assignment probabilities, as well as programs already in-
cluded in the partial ranking. As a result, assuming that utility shocks are independent
of ranking cost shocks (ϵij ⊥ ζi) coupled with having identified the density of indirect util-
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ities with other data variation, allows for identification of the ranking costs density using
assignment probabilities.

However, in the costly consideration model, this is not sufficient. The consideration value
of j depends on the indirect utilities of programs already included in the partial ranking, as
well as on the probabilities of assignment to programs in the partial ranking and to program j,
and on the correct identification of the observable vij−θij part of indirect utilities. Therefore,
to identify the density of consideration costs, we must separately identify θij and vij. This is
however not possible without an instrument that correlates with consideration and not with
utilities, which we do not have (and also do not allow in our model). Estimated parameters
thus depend on the specification of δgj and observable program attributes in xj. To clarify
why, take the average of δgj over individuals in a given socioeconomic group g to obtain a
standard linear equation model:

E[uij ∣i ∈ g, j ∈ ROLi] = δgj = xjβ
g + ξgj

Variation in utilities and program characteristics allows the estimation of β under the
standard minimum least squares assumptions, with the normalization that ξgj ’s distribution
centers around zero and one of the programs having ξgj = 0.4

In the implementation of the Gibbs sampling, to obtain βg, we include a constant for
each socioeconomic group in x, taking advantage of it being estimated in a separate step of
the Gibbs sampler from ξgj , thus centering the distribution of ξgj around zero.5

Identification of consideration costs

If θij and vij were separately identified, the next part of the identification argument is the
same as in Idoux (2022): consideration cost densities are identified by assumption ϵij ⊥ ζi
and variation in assignment probabilities, which arises from variability in available seats,
differences in applicant priorities, and changes in the composition of the expected applicant
cohorts over time. As a result, to facilitate this identification, it is advisable to use application
data spanning at least two years.

Figure A.5.2 provides a graphical representation of the identification argument for two
cases: (1) program j is considered with an empty partial ranking, and (2) program k is
ranked at the moment of j’s consideration, implying that the applicant knows vik. In both
cases, the figure displays the consideration value as a function of the observable part of the

4Formally, the distribution of ξgj is centered around zero conditional on xg
j . For simplicity, we do not include

that in the notation.
5An alternative way to specify utilities is by grouping programs with similar observable characteristics, relax-
ing the linearity assumption implied by xjβ

g. Under this alternative, the observed utility corresponds to the
average expected utility of programs with the same observables, while the unobservable part corresponds to
the difference between that average and a given program’s utility (plus the individual match effect ϵij). How-
ever, this approach does not address bias generated by omitted observable program attributes and increases
the number of parameters, making the interpretation of differences in preferences between socioeconomic
groups less intuitive. Therefore, we use the more restrictive but simpler linear projection specification.
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Figure A.5.2: Identification of the density of c using variation in assignment probability

(a) Consideration cost bounds for different levels of
assignment probabilities and no other programs ranked
so far

(b) Consideration cost bounds for different levels of
assignment probabilities and another program already
ranked

utility and, in panel A.5.2b, as a function of the other program’s indirect utility. The figure
varies the assignment probability qij from 1 to 1/2.

We can observe that when vik is close to zero, considering program j for first or second in
the partial ranking has little impact on its CV. However, as vik increases, the consideration
value for program j drops and eventually intersects with CVj,∅∣qij=1/2. The crucial point
to note here is that the assumption that programs with higher consideration values are
included first in the partial ranking enables us to select the consideration value that bounds
the consideration cost.

The role of un-ranked programs

If a program is not ranked, its indirect utilities are either unbounded or bounded below zero,
depending on whether or not it was considered. Therefore, the mass of indirect utilities
above zero for all applicants that considered and ranked program j must be consistent with
that below zero for all those that considered and did not. If too many individuals in group
g consider but do not rank program j, the estimate for ξgj will be pushed down, which in
turn lowers xjβg (albeit to a lesser extent). This leads to a lower estimate of applicants
considering program j due to the smaller average vij −θij −dij and smaller ci values resulting
from the lower average ug

ij for those applicants ranking program j. Additionally, a smaller
likelihood of ranking program j conditional on consideration due to the smaller average θij
resulting from a smaller ξgj will lead to higher ϵij values for those who did rank the program.
The equilibrium result is unclear, but we want to emphasize that in practice estimated
parameters are influenced by both including or not including a program in the ROL.
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λ and ∆d,C19

To end this section, we discuss the identification of the parameters λ and ∆d,C19, which
were omitted until now. The identification of λ depends on the correct specification of the
model and assumes that the average utility differences between applicants with and without
family priorities are constant. It is important to include this parameter to avoid any omitted
variable bias problem in identifying ξgj , as applicants with family priorities are expected to
have higher indirect utilities in those programs. The identification of ∆d,C19 is given by the
variation in preferences between 2019 and the later years.

A.6 Gibbs Sampling Detailed Explanation

Priors

Random coefficients

ξgj ∼N(0, σ2
ξg)

ϵij ∼N(0, σ2
ϵ )

ζi ∼TN(0, σ2
ζ ,−cgi ,∞)

The covariances of the random coefficients are assumed to have an Inverse-Wishart con-
jugate prior given by:

σ2
ξg ∼IW (τξg , dfξg)
σ2
ϵ ∼IW (τϵ, dfϵ)

σ2
ζ ∼IW (τζ , dfζ)

Fixed coefficients

The priors on the fixed parameters are assumed to be:

λ ∼N(µλ,Σλ)
βg ∼N(µβg ,Σβg)

∆d,C19 ∼N(µ∆d,C19
, σ2

∆d,C19
)

cg ∼TN(µcg , σ
2
cg ,0,∞)
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The specific (proper) diffused priors used, following Abdulkadiroğlu et al. (2017), Rossi
et al. (1996) and Idoux (2022) are:

µλprior
=0

Σλprior
=100σ2

ϵ I2

µβg
prior
=0

Σβg
prior
=100σ2

ϵ IK

µ∆d,C19prior
=0

σ2
∆d,C19prior

=100σ2
ϵ

µcgprior
=0

σ2
cgprior
=100σ2

ζ

Here, we include σ2
ϵ and σ2

ζ respectively in the priors to simplify the expression for the pos-
teriors. This implies that the value of the prior changes with each Gibbs sampling iteration
of σ2

ϵ and σ2
ζ . Nevertheless, given that these values scale also the variance of the sample

estimates, the priors remain diffuse and proper as long as these parameters are not “too
large”.

With respect to the covariances, the priors on their distributions are intuitively set to
have an expected variance of 1 (and covariances of 0), with few observations, assumed to
have informed this prior. Specifically and following the literature, we use:6

τξgprior =3

dfξgprior =3

τϵprior =100
dfϵprior =100
τζprior =3
dfζprior =3

6Only for the case and the Municipality of Padre Hurtado do we alter these priors, placing more weight on
that of ϵ. We set dfϵprior = 500. Given that Municipality has 25 programs, that implies weighting the prior
at the equivalent of 20 applicants relative to the 502 in the estimation sample (i.e. 4%). Considering the
larger than average results for σ2

ϵ obtained with the other models, we further increase the prior’s variance,
doubling the value of τϵprior relative to ϵprior , setting it at 1,000.
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Posteriors

For a linear model y = xβ + ϵ where ϵi ∼ N(0, σ2
ϵ ), the estimated parameters β̂ have a

multivariate normal distribution with mean and covariance given by:

µ̂β =(x′x)−1x′y
Σ̂β =σ2

ϵ (x′x)−1

Given that, if we have a prior normal distribution on the β values, say

βprior ∼ N(µβprior
,Σβprior

),

the posterior distribution of β given a sample {x, y} is given by a multivariate normal dis-
tribution with mean and covariances given by:

Σβposterior
=(Σ−1βprior

+ (x
′x)
σ2
ϵ

)
−1

µβposterior
=Σβposterior

(Σ−1βprior
µβprior

+ (x
′x)
σ2
ϵ

(x′x)−1x′y)

=Σβposterior
(Σ−1βprior

µβprior
+ (x

′y)
σ2
ϵ

)

For the Inverse-Wishart distribution on the other hand, if we have a prior

σ2
xprior

∼ IW (τprior, dfprior),

and N observations of x with mean µx, we have that:

σ2
xposterior

∼ IW (τprior +
N

∑
i=1
(xi − µx)2, dfprior +N)

Therefore, the posterior distributions in our case are given by7:

Rλ ≡vijt − xjtβ
gi − ξgij + (1 +∆d,C191t>2019)dijt

Σλposterior
=( 1

100σ2
ϵ

I2 +
(Family′Family)

σ2
ϵ

)
−1

7For all parameters that depend on the socioeconomic group, the posterior is computed only using the
observations that correspond to the group. That is, for example, βg=SeS includes only those applicants with
low-SeS status.
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=( 1

100
I2 + (Family′Family))

−1
σ2
ϵ

µλposterior
=Σλposterior

(Family′Rλ)
σ2
ϵ

=( 1

100
I2 + (Family′Family))

−1
(Family′Rλ),

Rβg ≡vijt − Familyijtλ − ξgij + (1 +∆d,C191t>2019)dijt

Σβg
posterior

=( 1

100
IK + (x′x))

−1
σ2
ϵ

µβg
posterior

=( 1

100
IK + (x′x))

−1
(x′Rβg),

For i’s in group g that have program j in their choice set Pit in year t:

Rξgj
≡vijt − Familyijtλ − xjtβ

gi + (1 +∆d,C191t>2019)dijt

σ2
ξgj,posterior

=( 1

σ2
ξg
+ ∑

N
i=1 1j∈Pit,i∈g

σ2
ϵ

)
−1

µξgj,posterior
=σ2

ξgj,posterior

∑N
i=1Rξgj

1j∈Pit,i∈g

σ2
ϵ

R∆d,C19
≡vijt − Familyijtλ − xjtβ

gi − ξgij + dijt

σ∆d,C19posterior
=( 1

100
+ ((1t>2019dijt)′1t>2019dijt))

−1
σ2
ϵ

µβg
posterior

=( 1

100
+ ((1t>2019dijt)′1t>2019dijt))

−1
((1t>2019dijt)′R∆d,C19

),

Rcg ≡ci1i∈g

σ2
cgposterior =(

1

100
+Ng)

−1
σ2
ζ
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µcgposterior =(
1

100
+Ng)

−1
(1′Rcg),

Posteriors for ϵijt and ζi are then drawn from the prior distribution of those random
coefficients, but using the bounds implied by result 2, which vary for each applicant and
program in the case of ϵijt and for each applicant in the case of ζi. Specifically:

ϵijt ∼TN(0, σ2
ϵ , LBϵijt , UBϵijt)

ζi ∼TN(0, σ2
ζ ,−cgi , UBζi).

The posterior distribution of the covariances in turn is given by:

σ2
ξgposterior

∼IW (3 +
J

∑
j=1

ξgj
2
,3 + J)

σ2
ϵposterior ∼IW (100 +

N

∑
i=1

J

∑
j=1

ϵ2ijt,100 +N × J)

σ2
ζposterior

∼IW (3 +
N

∑
i=1
(ci − cgi)2 ,3 +N)

Gibbs Sampler Iterations

Gibbs Sampler Procedure in Costly Consideration Model

Initiate with

vijt,0 =∣ROLi∣ − rij ∀j ∈ ROLi

vijt,0 = − 1 ∀j ∉ ROLi,

and λ0 = 0, βgi
0 = 0, ∆d,C19,0 = 0, ξj,0 = 0.

Sample covariances from the prior distributions:

σ2
ξg ,0 ∼IW (τξg ,prior, dfξg ,prior)
σ2
ϵ,0 ∼IW (τϵ,prior, dfϵ,prior)

σ2
ζ,0 ∼IW (τζ,prior, dfζ,prior)

And sample ζi,0 ∼ TN(0, σ2
ζ,0,−c

g
0, UBζi,0) to get ci,0 = cg0 + ζi,0. We set cg0 = 0 and UBζi,0 =

∞.
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Then, iterate through the following steps:

1. Sample λ1 from N(µλposterior
,Σλposterior

), given σ2
ϵ,0, vijt,0, β

gi
0 , ∆d,C19,0 and ξj,0.

2. Sample βg
1 from N(µβg

posterior
,Σβg

posterior
), given σ2

ϵ,0, vijt,0, λ1, ∆d,C19,0 and ξj,0.

3. Sample ξgj,1 from N(µξgj,posterior
,Σξgj,posterior

), given σ2
ξg ,0, σ

2
ϵ,0, vijt,0, λ1, β

g
1 , ∆d,C19,0.

4. Sample ∆d,C19,1 from N(µ∆d,C19posterior
, σ2

∆d,C19posterior
), given σ2

ϵ,0, vijt,0, λ1, β
g
1 and ξj,1.

5. Sample covariances for:

σ2
ξg ,1 ∼IW (τξg ,posterior, dfξg ,posterior)
σ2
ϵ,1 ∼IW (τϵ,posterior, dfϵ,posterior)

6. Now we proceed with the consideration process, identifying the set of considered pro-
grams of each applicant and the indirect utilities of the different programs. The process
is as follows:

a) Sample the utilities of programs j where the applicant has family priorities. If
j ∉ ROLi ⇒ vijt,1 < 0. For j ∈ ROLi, we sample first the utility of the program
with the highest ranking using the utility bounds implied by the previous iteration
and so on, as we go on updating sampled applicant utilities.

After this step, some applicants will have a non-empty partial ranking and some
will have an empty one.

b) For k ∈ {1, ...,maxi(ROLi) + 1}:
i. Include all applicants with ∣Ri∣ = k − 1
ii. Compute CVj,Ri,{jcr<k}

for all j not yet considered (including those in the

ROLi).

iii. If k < ∣ROLi∣ + 1, identify the program l ∈ ROLi ∖ Ri with the largest
CVj,Ri,{jcr<k}

and:

A. Include l in Ri, and sample its indirect utility according to the ranking
order determined by ROLi.

B. Include all programs j not yet considered with CVj,Ri,{jcr<k}
> CVl,Ri,{jcr<k}

in the set of considered programs and sample their indirect utility using
the bound of unacceptable programs, that is vijt,1 < 0

iv. If k = ∣ROLi∣ + 1:
A. If CVj,ROLi

> ci,0⇒ vijt,1 < 0
B. If CVj,ROLi

< ci,0⇒ vijt,1 ∈ R

Store the consideration ranking of programs considered in this as crij,1 = k.
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7. Sample cg1 from TN(µcgposterior
, σ2

cgposterior
,0,∞) given σ2

ζ,0 and ci,0

8. Sample σ2
ζ,1 from IW (τζ,posterior, dfζ,posterior) given ci,0 and cg1.

9. For each applicant i, identify the smallest empirical consideration value that bounds
the largest possible value of ci. Here, we use the term empirical to reflect that we only
consider the restrictions implied by the observed choice data and not those implied by
other programs sampled for consideration in step 6 above. Given that, the bound is
given by:

CV Bζi,1 ≡minj∈ROLi∩{j∶ Familyijt=0} {CVj,R
i,{jcr<crij,1}

− cgi1 }

10. Sample ζi,1 (and thus ci,1) from TN(0, σ2
ζ,1,−cgi ,CV Bζi,1) given vijt,1, qijt, σ2

ϵ , σ
2
ξg , λ1,

βg
1 , ∆d,C19,1, ξ

g
j,1, c

g and CV Bζi,1

Gibbs Sampler Procedure in Alternative Specifications

Full consideration

Note: We include random coefficients here to give the reader an example of how these are
incorporated into the procedure, using the same notation of Abdulkadiroğlu et al. (2017).
However, these coefficients are not included in the estimation.

Initiate with

vijt,0 =∣ROLi∣ − rij ∀j ∈ ROLi

vijt,0 = − 1 ∀j ∉ ROLi,

and λ0 = 0, βgi
0 = 0, ∆d,C19,0 = 0, γi,0 = 0, ξj,0 = 0.

Sample covariances from the prior distributions:

Σγ,0 ∼IW (τγ,prior, dfγ,prior)
σ2
ξg ,0 ∼IW (τξg ,prior, dfξg ,prior)
σ2
ϵ,0 ∼IW (τϵ,prior, dfϵ,prior)

Then, iterate through the following steps:

1. Sample λ1 from N(µλposterior
,Σλposterior

), given σ2
ϵ,0, vijt,0, β

gi
0 , ∆d,C19,0, γi,0 and ξj,0.

2. Sample βg
1 from N(µβg

posterior
,Σβg

posterior
), given σ2

ϵ,0, vijt,0, λ1, ∆d,C19,0, γi,0 and ξj,0.

3. Sample ξgj,1 from N(µξgj,posterior
,Σξgj,posterior

), given σ2
ξg ,0, σ

2
ϵ,0, vijt,0, λ1, β

g
1 , ∆d,C19,0 and

γi,0.
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4. Sample ∆d,C19,1 from N(µ∆d,C19posterior
, σ2

∆d,C19posterior
), given σ2

ϵ,0, vijt,0, λ1, β
g
1 , γi,0 and

ξj,1.

5. Sample γi,1 from N(µγi,posterior ,Σγi,posterior), given Σγ,0, σ2
ϵ,0, vijt,0, λ1, β

g
1 , ∆d,C19,1 and ξg1 .

6. Sample covariances for:

Σγ,1 ∼IW (τγ,posterior, dfγ,posterior)
σ2
ξg ,1 ∼IW (τξg ,posterior, dfξg ,posterior)
σ2
ϵ,1 ∼IW (τϵ,posterior, dfϵ,posterior)

7. Sample vijt,1 for ranked alternatives using the bounds implied by their ranking position,
that is: ∞ > vijr=1 > ... > vijr=∣ROLi ∣

> 0.
For programs not included in the ranking, sample their utility in R−.

Costly ranking (as in Idoux (2022))

Initiate with

vijt,0 =∣ROLi∣ − rij ∀j ∈ ROLi

vijt,0 = − 1 ∀j ∉ ROLi,

and λ0 = 0, βgi
0 = 0, ∆d,C19,0 = 0, ξj,0 = 0.

Sample covariances from the prior distributions:

σ2
ξg ,0 ∼IW (τξg ,prior, dfξg ,prior)
σ2
ϵ,0 ∼IW (τϵ,prior, dfϵ,prior)

σ2
ζ,0 ∼IW (τζ,prior, dfζ,prior)

And sample ζi,0 ∼ TN(0, σ2
ζ,0, LBi,0, UBζi,0) to get ci,0 = cg0 + ζi,0. We set cg0 = 0, LBi,0 = 0,

and UBζi,0 = ∞.
Then, iterate through the following steps:

1. Sample λ1 from N(µλposterior
,Σλposterior

), given σ2
ϵ,0, vijt,0, β

gi
0 , ∆d,C19,0 and ξj,0.

2. Sample βg
1 from N(µβg

posterior
,Σβg

posterior
), given σ2

ϵ,0, vijt,0, λ1, ∆d,C19,0 and ξj,0.

3. Sample ξgj,1 from N(µξgj,posterior
,Σξgj,posterior

), given σ2
ξg ,0, σ

2
ϵ,0, vijt,0, λ1, β

g
1 and ∆d,C19,0.

4. Sample ∆d,C19,1 from N(µ∆d,C19posterior
, σ2

∆d,C19posterior
), given σ2

ϵ,0, vijt,0, λ1, β
g
1 and ξj,1.
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5. Sample covariances for:

σ2
ξg ,1 ∼IW (τξg ,posterior, dfξg ,posterior)
σ2
ϵ,1 ∼IW (τϵ,posterior, dfϵ,posterior)

6. For programs in ROLi, and starting with the programs ranked in first position8:

a) Compute the utility bounds, identifying the more binding constraint between:

i. Illustrating with a program ranked in third position:

∞ > vikr=1t,1 > vikr=2t,1 > vijt,1 > vikr=4t,0 > ... > vikr=∣ROLi ∣t,0
> 0

ii. vijr=r̂t,1 ≥
c
gi
i,0

qijt∏r̂−1
l=1 {1−qikr=lt}

iii. For program j ranked in position r̂ within ROLi, and k ∈ {Pi ∖ROLi}:

vikt,0 ≥
cgii,0

qikt∏r̂−1
l=1 {1 − qimr=lt}

⇒ vijt,1 > vikt,0

b) Sample utilities from a truncated normal distribution using the bounds identified
in the previous step.

7. For programs k ∈ {Pi ∖ROLi}:

a) Compute the utility bounds, identifying the more binding constraint between:

i. vikt,1 <
c
gi
i,0

qikt∏
∣ROLi ∣
l=1 {1−qimr=lt}

ii. ∀j ∈ ROLi ranked in position r̂:

vikt,1 <max{vijt,1,
cgii,0

qikt∏r̂−1
l=1 {1 − qimr=lt}

}

b) Sample utilities from a truncated normal distribution using the bounds identified
in the previous step

8. Sample cg1 from TN(µcgposterior
, σ2

cgposterior
,0,∞) given σ2

ζ,0 and ci,0

9. Sample σ2
ζ,1 from IW (τζ,posterior, dfζ,posterior) given ci,0 and cg1.

8Note that starting the Gibbs sampler with cgii,0 = 0 guarantees that the bounds described here are always
mutually consistent, given that the process always fits the ranking cost after utilities are updated. For
example, if for a ranked program j we have that qijt = 0, then the ranking cost will remain equal to zero
throughout the whole Gibbs sampling process.
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10. Sample ζi,1 (and thus ci,1) from TN(0, σ2
ζ,1, LBζi,1, UBζi,1). Here, LBζi,1 and UBζi,1 are

the more restrictive bounds obtained from the following inequalities:

a) ∀j ∈ ROLi ∶ cgii,1 < vijr=r̂t,1qijt∏
r̂−1
l=1 {1 − qikr=lt}

b) ∀k ∈ {Pi ∖ROLi} ∶ cgii,1 > vikt,1qikt∏
∣ROLi∣
l=1 {1 − qimr=lt}

c) For program j ranked in position r̂ within ROLi, and k ∈ {Pi ∖ROLi}:

vikt,1 ≥ vijt,1⇒ cgii,1 > vikt,1qikt
r̂−1
∏
l=1
{1 − qimr=lt}

given vijt,1, qijt, σ2
ϵ , σ

2
ξg , λ1, β

g
1 , ∆d,C19,1, ξ

g
j,1 and cg.

A.7 Estimation Results Complement

PSRF and traceplots

Table A.7.1: PSRF Range for Main Models Parameters

Costly consideration Costly ranking Full consideration

min max min max min max

λSIB 1 1.009 1 1.005 1 1.001

λPW 1 1.052 1 1.261 1 1.009

∆d,C19 1 1 1 1 1 1

σ2
ξNSeS 1.001 1.094 1 1.017 1 1.021

σ2
ξSeS

1 1.066 1 1.003 1 1.027

σ2
ϵ 1 1.014 1 1.013 1 1.013

cNSeS 1 1.095 1 1.029

cSeS 1 1.049 1 1

σ2
zeta 1 1.08 1 1.01

Note: In the costly ranking and full consideration models, the PSRF range is calculated only for the larger
Municipalities of Maipú, Santiago, San Bernardo, La Pintana, La Florida, and Puente Alto. This is because,
for computational efficiency, the other Municipality parameters were estimated with only one Gibbs Sampler chain,
which reduced the burn-in period’s computer time. Note that this approach was not used for the costly consideration
model. In the next iteration of this analysis, we plan to include all Municipalities in the analysis.
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Figure A.7.1: Trace plots for σ2
ϵ

Cerrillos Cerro Navia Colina

Conchali El Bosque Estación Central

Huechuraba Independencia La Cisterna

La Florida La Granja La Pintana
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Trace plots for σ2
ϵ

La Reina Lampa Las Condes

Lo Barnechea Lo Espejo Lo Prado

Macul Maipú Ñuñoa

Padre Hurtado Pedro Aguirre Cerda Peñalolén
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Trace plots for σ2
ϵ

Providencia Pudahuel Puente Alto

Quilicura Quinta Normal Recoleta

Renca San Bernardo San Joaqúın

San Miguel San Ramón Santiago
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Trace plots for σ2
ϵ

Vitacura



APPENDIX A. EFFECTS OF SOCIOECONOMIC RESERVES 140

Additional Model Estimates

Table A.7.2: Summary of Estimated Parameters over Program Attributes

Costly consideration Costly ranking Full consideration
wav range wav range wav range

βNSeS
Private

.143 -.992 - 1.703 .116 -2.316 - 2.486 .132 -1.534 - 1.822
(1.2) (-2.44 - 3.4) (1.2) (-2.82 - 3.89) (1.2) (-2.78 - 5.19)

βSeS
Private

.051 -5.529 - 1.201 .042 -6.335 - 1.36 .045 -5.385 - 1.298
(1.1) (-3.24 - 3.43) (1.1) (-3.72 - 3.59) (1.1) (-3.15 - 3.35)

βNSeS
HA Cat.

.766 -.48 - 2.509 .844 -.551 - 2.958 .751 -.446 - 2.554
(3) (-1.57 - 6.61) (3.2) (-1.49 - 7.23) (3.1) (-1.41 - 6.92)

βSeS
HA Cat.

.664 -1.184 - 2.178 .708 -.767 - 2.373 .64 -1.012 - 2.294
(2.9) (-1.47 - 6.89) (2.9) (-2.08 - 6.99) (2.8) (-1.35 - 6.4)

βNSeS
MA Cat.

.369 -.656 - 1.189 .418 -.398 - 1.649 .376 -.369 - 1.19
(2.5) (-1.57 - 4.98) (2.5) (-.95 - 5.35) (2.5) (-1.29 - 5.34)

βSeS
MA Cat.

.391 -.54 - 2.703 .419 -.736 - 4.045 .368 -.569 - 2.537
(2.4) (-1.98 - 5.14) (2.5) (-2.35 - 6.69) (2.5) (-1.87 - 7.57)

βNSeS
Price

.105 -.915 - .719 .214 -.582 - 1.453 .129 -.529 - .641
(1.3) (-4.17 - 3.69) (2) (-3.61 - 4.69) (1.5) (-4.35 - 3.63)

βSeS
Price

-.073 -1.092 - 1.039 -.042 -1.257 - 1.839 -.085 -1.131 - 1.035
(1.1) (-3.03 - 3.78) (1) (-2.9 - 3.83) (1.1) (-3.92 - 3.7)

Note: weighted av. t-stats in parenthesis (if opposite sign from parameter set to zero)
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Figure A.7.5: Municipality level estimated parameter selection in costly consideration model

(a) Subsidized private school (b) Price (U.F.)

(c) HA cat. (d) MA cat.

(e) Consideration cost
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Figure A.7.6: Municipality level estimated parameter selection in full consideration model

(a) Subsidized private school (b) Price (U.F.)

(c) HA cat. (d) MA cat.
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Figure A.7.7: Municipality level estimated parameter selection in costly ranking model

(a) Subsidized private school (b) Price (U.F.)

(c) HA cat. (d) MA cat.

(e) Ranking cost
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A.8 Counterfactual simulations

The counterfactual simulation process is relatively straightforward, but there are some de-
tails, particularly in the simulation of random coefficients that are important to understand.
First, as in Idoux (2022), in our simulations, we generate random coefficients consistent with
ROLs. This is done in the three models considered, but naturally only for the baseline case
where the socioeconomic quota is at the 15% level in place when applications were submitted
and without any changes in applicant locations or preferences. This implies that in the base-
line case, our applications are by construction exactly identical to those actually reported.
These simulated random coefficients consistent with the baseline scenario are then used to
generate counterfactual applications when changes in assignment probabilities, preferences,
or distance to school are introduced. Only in the case of the minimum benchmark segre-
gation, where we simulate with equal preferences do we introduce a new and fully random
preference shock (ϵijt and ζit) for each applicant-program combination. The idea is to remove
all influence from preference and model specification for this benchmark.

There are specifically two details that are important to keep in mind when reviewing our
procedure: First, for ranked programs, the order in which random coefficients are drawn
matters. The reason is that indirect utilities of other ranked programs affect the bounds of
the draws. Using the simpler full consideration case to exemplify, the program (in the ROL)
drawn first will have an ϵij consistent with an indirect utility bounded between infinity and
zero. If that program was ranked first, the value obtained will imply an upper bound for all
other ranked programs. If it was ranked last, it will imply a lower bound. To tackle this
issue, we randomize the order in which utilities for ranked programs are drawn. Second, for
the consideration cost and the ranking cost models, sampled utilities will bound the cost
values from above, and those costs will then bound the indirect utilities of the programs not
included in ROLs.

Counterfactual procedure (costly consideration)

To simplify, in the description of the process, we omit programs surely considered. They are
included in the same way as in step 6 of the Gibbs sampler described in Appendix A.6.

1. Obtain indirect utility and consideration cost shocks consistent with ROLs under the
baseline.

a) Use estimated parameters for λ, βg, ξg, ∆d,C19, cg and variances σ2
ϵ , σ

2
ζ

b) Restricting now only to j ∈ ROLi:

i. Compute CVj,∅ using the estimated observable part of the indirect utility
(yij − (1 +∆d,C191t>2019)dij)

ii. Select the program with the highest CVj,∅ and sample ϵij consistent with
vij > 0
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iii. Continue with the remaining programs k ∈ ROLi ∖ {j}, selecting the largest
CVk,{j} and so on, sampling ϵik consistent with the relative ranking of the
programs included in the corresponding partial ranking.
Note: It is important to store the consideration values obtained in this step
to use them below in step 1d.

c) The smallest consideration value will be that of the program drawn last (lcr=∣ROLi∣).
Using that program, compute the consideration cost shock ζi consistent with

ci ∈ [0,CVlcr=∣ROLi ∣,ROLi∖{lcr=∣ROLi ∣}).
d) Using ci:

i. Compute, ∀j ∉ ROLi the value CVj,∅ and label as considered all programs
where CVj,∅ > CVkcr=1,∅.

ii. Follow the same logic for all programs not yet considered and not included in
ROLi, comparing their consideration value given the corresponding partial
ranking with that of the program that was identified as included in the ROL
in that step of consideration.

iii. After the last step of comparison with the consideration value of
ranked programs (the step comparing all remaining programs with
CVkcr=∣ROLi ∣,ROLi∖{kcr=∣ROLi ∣}

), label as considered all remaining programs for
which CVj,ROLi

> ci
e) Sample the ϵij of programs j ∉ ROLi depending on their consideration. That

means that the sampled ϵij has to be consistent with:

j ∉ ROLi and j considered⇒ vij < 0
j ∉ ROLi and j not considered⇒ vij ∈ R

2. For any given counterfactual affecting preferences, distance to school, or initial rational
expectation assignment probabilities, use estimated preference parameters, simulated
utility and consideration cost shocks, and Result 2 to identify which programs are
considered and included in the applicant’s reported portfolio.

3. Given these applications, obtain new rational expectation assignment probabilities, as
detailed in Appendix A.10.

4. Iterate over steps 2 and 3 until educational segregation is moving within a range of
values.

Counterfactual procedure in alternative specifications

Full consideration

1. Obtain random utility shocks consistent with reported ROLs under the baseline.
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a) Use estimated parameters for λ, βg, ξg, ∆d,C19 and σ2
ϵ .

b) Restricting now only to j ∈ ROLi:

i. We draw one of the ranked programs at random and simulate its ϵij consistent
with vij ∈ R+

ii. We then draw a second program and now sample its ϵik consistent with its
relative ranking to program j drawn in the first step. This implies:

rk < rj ⇒ vik ∈ (vij,∞)
rk > rj ⇒ vik ∈ (0, vij)

iii. Continue with the rest of the ranked programs finding the correct upper and
lower bounds

c) For j ∉ ROLi, simply sample ϵij consistent with vij < 0

2. For any given counterfactual affecting preferences or distance to school, use estimated
preference parameters and simulated utility shocks to identify which programs are
included in the counterfactual ROLi (vij > 0), and in what order.

Costly ranking (as in Idoux (2022))

1. Obtain utility and ranking cost shocks using the reported ROLs of the baseline scenario.

a) Use estimated parameters for λ, βg, ξg, ∆d,C19, cg and variances σ2
ϵ , σ

2
ζ

b) Restricting now only to j ∈ ROLi, as in the full consideration case:

i. We draw one of the ranked programs at random and simulate its ϵij consistent
with vij ∈ R+

ii. We then draw a second program and now sample its ϵik consistent with its
relative ranking to program j drawn in the first step. This implies:

rk < rj ⇒ vik ∈ (vij,∞)
rk > rj ⇒ vik ∈ (0, vij)

iii. Continue with the rest of the ranked programs finding the correct upper and
lower bounds

c) We now compute the expected ranking value that each of these ranked programs
had when included in the ranking (i.e. conditional on the partial portfolio which
in this case is known due to the nature of the portfolio formation heuristic). If
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the program j is ranked in position r̂, this value is given by9:

RVij = vijqij
r̂−1
∏
l=1
{1 − qikr=l}

d) We now sample the ranking cost shock of the applicant, such that it is consistent
with being equal or larger than zero, and:

ci <minj∈ROLi
RVij

e) Using the ranking cost, we can now bound the indirect utilities of all programs
not ranked by applicant i. This can be written in short as, ∀j ∈ Pi ∖ROLi, ϵij
has to be consistent with:

vij <min

⎧⎪⎪⎨⎪⎪⎩
mink∈ROLi

{vik},
ci

qij∏∣ROLi∣
r=1 {1 − qikr}

⎫⎪⎪⎬⎪⎪⎭

2. For any given counterfactual affecting preferences, distance to school, or initial rational
expectation assignment probabilities, use estimated preference parameters, simulated
utility and ranking cost shocks, and Result 1, or more generally the portfolio formation
process detailed in Idoux (2022) to obtain new applications.

3. Given these applications, obtain new rational expectation assignment probabilities, as
detailed in Appendix A.10.

4. Iterate over steps 2 and 3 until educational segregation is moving within a range of
values.

A.9 Deferred Acceptance Algorithm and Application

Process Description

The algorithm implemented in Chile is based on the deferred acceptance mechanism proposed
by Gale and Shapley (1962), with some context-specific features explained in detail in Correa
et al. (2019). Here we summarize the process:

Step 0: i) Collect vacancies at each academic program and divide them into the quotas
described in Table 1.1.

Step 0: ii) Collect all applications, priorities and family relations between applicants (blood-
related siblings as well as family-linked applications).

9Remember the convention used throughout the chapter that ∏
0
l=1 xl = 1
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Step 0: iii) Get lottery draws for each applicant at each school.

Note: In Chile, lotteries are drawn at the school and family levels. That is: all
applicants belonging to a family get the same lottery draw (and are then ordered
within the family), and relative orders at all programs of a given school are the same
for any given pair of applicants.

Step 1: Starting with the highest grade:

a) Identify the quota-ordering in which each applicant is processed in each school
program.

b) Temporarily assign, up to the available vacancies in a given program-quota,
applicants that have that program-quota first on their applications list. If
there are more applicants than vacancies available at that program-quota com-
bination, select the applicants with the highest priority and lottery number
combination.

Note: If an applicant has secured enrollment priority, she is assigned to the
program irrespective of its capacity. That means the assignment is forced be-
yond program capacity in those cases.

c) All applicants temporarily unassigned that have been processed in all their
program-quota combinations exit the algorithm and are labeled as unassigned.

Those that have not been processed in at least one of the program-quota com-
binations in their ROL are now considered at the next program-quota in their
list.

d) Among all applicants temporarily assigned to a given program-quota, and all
those included for consideration in the previous step, those with the highest
priority-lottery combination up to capacity are (or remain) temporarily as-
signed to that program quota.

e) The process continues until no temporarily unassigned applicant has remaining
program-quota combinations at which she has not been processed in their ROL.

Temporarily assignments are then considered permanent.

Step 2: For the highest grade not yet processed:

a) Identify all applicants in the current grade with siblings assigned in higher
grades to schools shared in their ROLs. Update the priority status of those ap-
plicants in all programs in their ROLs offered by those schools to the maximum
between the current status and dynamic sibling priority.

b) Identify all applicants in the current grade with family-linked applicants as-
signed in higher grades to schools shared in their ROLs. Update the ROL
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order of those applicants using the lexicographic criterion of placing first pro-
grams affected by the family link and then programs originally ranked higher
in the applicant’s ROL.

c) Repeat the process described in the previous step for the highest grade with
the grade currently processed.

Step 3: After the smallest grade, the algorithm finishes.

A.10 Process to obtain rational expectation

assignment probabilities (ratex)

Ratex estimation challenges

As explained in Appendix A.9, on top of vacancies, an applicant’s assignment to a given
program depends on: i) her application and that of other applicants, ii) her priorities relative
to those of other applicants, and iii) the lottery assigned to that applicant in that program. It
is important to note that the lottery, or more importantly, the relative ranking of applicants
is the same in all programs offered by the same school.

Applicants know their priority ordering but are uncertain about their lottery number and
that of other applicants. But additionally, applicants are uncertain about the congestion lev-
els that will exist in equilibrium in a given program, as they also depend on the characteristics
of the pool of applicants participating in the process in a given year and on the applications
submitted by them. As a consequence, the ex-post observed pool of applicants is ex-ante
uncertain, which increases the dispersion in estimated or expected assignment probabilities
beyond that generated by lotteries. In simple, if more children residing in a given neighbor-
hood participate in the system in a given year, schools in that neighborhood will likely have
smaller ratex. To accommodate both sources of uncertainty, the ratex estimation process
described below samples both lotteries and the pool of applicants in each simulation.

Before describing our procedure in detail, we first give some context on the challenge
of estimating the assignment probabilities to a program when its vacancies are divided into
different quotas.

Under a given assignment, determined by a given set of applications and lotteries, com-
puting the probability of assignment that an additional applicant i would have had in a
given program j -if ranked first- is straightforward: we can simply look at the priorities and
lotteries of assigned applicants and ask: What lottery number would the additional applicant
require to displace one of the currently assigned ones? The answer to this question is:

• If the program has remaining vacancies, any lottery number suffices ⇒ one.

• If in any quota of the program, the applicant with the worst priority has a worse
priority than the new applicant ⇒ one.
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• If, on the other hand, in all the quotas of the program, the applicant with the worst
priority has a better priority than the new applicant ⇒ zero.

• If, in one or more quotas, the applicant with the worst priority has the same priority
as the new applicant ⇒ the assignment likelihood is determined by the probability of
obtaining a lottery number better than that of at least one of them.

This response has two problems. First, the probability computed depends on the lottery
draws, particularly that of the assigned applicant with the worst priority. To get a more
precise estimate, we would want to generate several lottery draws (and assignments). Con-
ceptually, we could tackle this problem computing the expected lottery value of the marginal
applicant which corresponds to the expected value of the ordered statistic of all applicants in
the same priority group that were processed to that quota. Second, and more importantly,
the cutoff value doesn’t exactly answer the question of interest for us, which is what were
the assignment probabilities of applicants with different priorities in a given year. Instead,
it gives us the probability that an additional applicant would face.

These problems are well illustrated with a simple example on which we will continue
to expand throughout this section: imagine for now that we only have one quota with
one vacancy and two applicants with the same priority participating in the process. The
probability of assignment that we would want to obtain is 50%, but using the cutoff value
we first get a random (problem one), but additionally (and assuming a uniform distribution
of lotteries), we get on average an assignment probability of 33.3% (problem two).

To tackle these issues, Arteaga et al. (2021) implement a process that does not rely
on cutoff values. They instead identify the priority of the assigned applicant with the worst
priority and using the pool of applicants processed at the program with that priority compute
the ratio of assigned applicants to processed applicants. In our example above, we have one
assigned applicant and two processed applicants, which implies that the ratio is 50%. The
problem with this approach however is that it is not robust to the variations in priorities
between applicants processed at the different quotas of a given program. To see this, let’s
expand on the previous example. Imagine now that we have two quotas, the low-SeS and the
regular one, with one vacancy each, and four applicants in total, two with low-SeS priority
(and no other priorities), and two with parent school-worker priority (and no other priorities).
This implies, using the ordering described in Table 1.1, that one low-SeS applicant will be
assigned to the first quota, and one of the applicants with parent school-worker priority will
be assigned to the other. Using the procedure of Arteaga et al. (2021), we get that applicants
with only low-SeS priority of 50% and applicants with only parent school-worker priority have
also 50%. This is correct. The problem, however, is computing the expected assignment
probability of an applicant that has both priorities, as she could receive an assignment in
either quota. If using her priorities, we compute the maximum between quotas, we get
50%, which is biased downward. If we instead process her sequentially, assuming lottery
independence between quotas, we get an assignment probability of 50% + (100% − 50%) ∗
50% = 75%. This value overestimates her assignment likelihood because the applicant is
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not assigned to the low-SeS quota when her lottery number (which is the same as the other
quota!) is low.

To tackle the problem explained in the previous paragraph, which arises due to the het-
erogeneity in priorities, relying on cutoffs is preferable as they provide us with an empirical
estimate of the correct distribution of assignment probabilities for all groups simultaneously.
In our example above, the relevant assignment probability for an applicant with both pri-
orities is the minimum cutoff between both quotas, which implies an expected probability
of assignment above the 33,3% computed for the one quota case (now we are computing
the expected minimum of two separate maximums in two draws). However, we are still
faced with the problem that the cutoff characterizes the assignment probabilities of a new
additional applicant - a fifth applicant in our expanded example -. Note that this problem
is diminished as the number of vacancies and applicants increases, but we can additionally
do better.

Our method to approximate relevant ratex using cutoffs is to some extent similar to that
of Agarwal and Somaini (2018) in that they identify cutoff values that maintain the overall
assignment unchanged. We instead use a more direct approximation based on the formula
of the expected value of the n-statistic in scenarios with independent draws from a uniform
distribution. Omitting the quotas and priorities for a moment, if we have V vacancies
in a program and A applicants being processed for assignment, the expected assignment
probability implied by the expected cutoff value is given by V/(A+1). Therefore, if we use
the correction factor (A+1)/A, we get the desired probability V/A. Following this logic, our
approach consists in using a correction factor at the quota level that is given by the ratio
between the number of applicants assigned to that quota with the lowest priority and all
applicants processed to that quota with the same priority (i.e. those with the same priority
in the quota that are assigned to it plus those unassigned to the program, plus those assigned
to the same program, but in a quota that was for them processed later following the process
described in Appendix A.9).

A final point to consider that is unrelated to the computation of ratex, but that is re-
lated to their use in our preference estimation and counterfactuals is that, as explained in
Appendix A.9, lotteries are drawn at the school rather than program level. This implies
that the possibility of assignment to different programs offered by the same school is cor-
related. We do not however take this correlation into account and thus indirectly assume
that lotteries are drawn at the program level, because i) applicants are unlikely to know this
fact, ii) integrating this correlation complicates the estimation and counterfactual generating
processes significantly, and iii) if this correlation is taken into account, so should the fact
that consideration (or ranking) costs are likely to be smaller when adding a second program
from the same school. Given that this force operates in the opposite direction, they are
compensated to some extent.

Process Description

The ratex simulation process is as follows:
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Step 0: For computational efficiency, we fix the assignment of all applicants in grades above
PreK. It would be more accurate to sample families, including applicants in PreK
and higher grades, but it implies increasing the computational burden significantly
for a small gain in accuracy.

For each simulation:

Step 1: In each Municipality separately, using the number of applicants in a given year as
target, we sample with repetition the simulated cohort of applicants. Note here
that the share of low-SeS applicants is allowed to vary between simulations.

Sampled applicants have the ROL either corresponding to their original application
or to that generated in a given counterfactual. The same goes for priorities. The
only difference in the simulation is that some applicants are absent, and some are
repeated.

Step 2: For the simulated cohort of applicants, we sample new lotteries at the school level
(independently of family-related applicants in higher grades).

Step 3: Using the simulated applicants and applications, we now simulate assignment using
the available vacancies in each program-quota, depending on which counterfactual
is being implemented (0% low-SeS quota, 15% or the share of low-SeS applicants in
the Municipality).

Step 4: For each simulated assignment, we compute the simulated probability of assignment
of any given combination of priorities - which we label as priority profile - in a
program as follows:

a) If all applicants assigned in the simulation to that program have a higher prior-
ity in each of the quotas than the priority profile being evaluated, the simulated
probability of assignment is zero.

b) If in at least one of the quotas, one of the assigned applicants has a priority
below that of the priority profile, then the simulated probability of assignment
is one.

c) If in all quotas, all assigned applicants have a priority number equal or better to
that of the priority profile being evaluated, and if in at least one of the quotas
the assigned applicant with the lowest priority number has the same one as the
priority profile evaluated in that quota - the marginal priority -, the probability
of assignment is given by the maximum probability of assignment to any such
quotas, which is computed using the corrected cutoff value described above.

Using NMP,q to express the total number of applicants with the “marginal
priority” processed in a given quota during the simulation, and using QMP to
express the quotas in which the marginal priority is the same as in the priority
profile, we can express the value as:
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maxq∈QMP
P(lottery number ≻ cutoff lotteryq) ×

NMP,q + 1
NMP,q

Remember that processed applicants are those assigned to the quota plus those
that were processed but did not receive an assignment in that quota (they were
however maybe assigned in another quota in that program but processed after
and not before the one being evaluated).

Step 5: We run 100 simulated assignments and average out the probabilities obtained in
each of them.

A.11 Educational Segregation in Chile

As explained in (Bellei, Valenzuela, and De los Rios, 2010), educational segregation in Chile
received increasing attention during the late 2000s. While some studies reached different
conclusions depending on the methodology used,10 international comparisons such as the ones
highlighted in (Bellei et al., 2010), driven in part by Chile’s increasing development levels,
raised public awareness of the issue. In particular, Chile’s level of educational segregation
was found to be among the highest when compared with the 57 countries that participated
in the 2006 PISA exams. Subsequently, when Chile was included in the OECD group of
countries in 2010, it was revealed that it had the highest level of educational segregation
among the group.

Regarding the roots of observed educational segregation, residential sorting is a
consensus-relevant contributing factor, which is why residency-based priorities are not in-
cluded in the SAE system. Nevertheless, the level of residential segregation has been below
that of educational segregation, suggesting the presence of other contributing factors (Car-
rasco, Mizala, Contreras, Santos, Elacqua, Torche, Flores, and Valenzuela, 2014). School
selection practices had been identified as one likely relevant factor prior to the Inclusion Law
Reform (Bellei et al., 2010; Carrasco et al., 2014). In a survey of school principals, Car-
rasco, Bogolasky, Flores, San Martin, and Gutierrez (2015) argue that selection practices
were openly used in admissions, with high levels of sophistication, mainly concentrated in
voucher schools, including those that had an agreement with the Ministry imposing tighter
restrictions under the SEP Law. They conclude that the law restricting such practices (The
Ministry of Education’s Decree Law 196 from 2006) was ineffective as it was not tightly
enforced, and the system’s incentives on schools to obtain good test results pushed them to
be more selective, countering the spirit of the Decree.

Although selection practices in public and voucher schools have been eliminated under
the new CCAS, as discussed earlier, it appears that educational segregation in Chile has not

10More specifically, Valenzuela, Bellei, and de los Ŕıos (2009) argued that educational segregation was high
and had experimented a slight increase, while Elacqua (2009) argued that the level of educational segregation
was moderate, on par with developed countries, and that it had been decreasing.
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decreased significantly. This underscores the need to prioritize addressing the underlying
drivers of segregation and devising effective policies to reduce it, which should be a key focus
of policy discussions.
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B.1 Additional Figures

Figure B.1.1: Portfolio size

(a) Pre-validation period

(b) Post-validation period

Note: Distribution of portfolio size pre and post-validation period. The sample is limited to the applicants
who received the personalized report.
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Figure B.1.2: Risk distribution for compliers

Note: 2,051 observations. The extremes are omitted.

Figure B.1.3: Treatment Probability

Note: Total observations: 3,653. The bin that contains 0 consists of 727 observations. The bin that
contains 1 consists of 1078 observations. The rest of the bins consist, on average, of 18.7 observations. The
size of the bins is 0.01.
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Figure B.1.4: RDD results on assignment probability

(a) Assignment probability (b) Assignment probability with CI

Note: Figure (a) plots the probability of obtaining an assignment using linear polynomials. Figure (b)
plots the same but within the optimal bandwith and with confidence intervals. Total observations are 3,653.
The size of the bins is 0.01. The bin that contains 0 consists of 727 observations. The bin that contains 1
consists of 1,078 observations. The rest of the bins consist, on average, of 18.7 observations.

Figure B.1.5: RDD on assignment probability comparing partial and final applicants
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Figure B.1.6: Balance near the threshold

(a) Male (b) Married

(c) Non-mestizo (d) Experienced

Note: Figure (a) plots the probability of being male. Figure (b) plots the probability of being married.
Figure (c) plots the probability of being non-mestizo. Figure (d) plots the probability of being experienced.
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Figure B.1.7: Placebo test

(a) Probability of changing the application
with fake cutoff at 0.5 risk level

(b) Probability of changing the application
with fake cutoff at 0.2 risk level

(c) Assignment probability with fake cutoff at
0.5 risk level

(d) Assignment probability with fake cutoff at
0.2 risk level

Note: Figure (a) plots the probability of changing the application with a fake cutoff at risk level 0.5. Figure
(b) plots the probability of changing the application with a fake cutoff at risk level 0.2. Figure (c) plots the
assignment probability with fake cutoff at risk level 0.5. Figure (d) plots the assignment probability with
fake cutoff at risk level 0.2.
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Figure B.1.8: Quality of reassigned teachers
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Figure B.1.9: Scores of assigned applicants pre- and post-validation period

(a) All vacancies assigned pre- and post-validation

(b) All vacancies assigned to different applicants pre- and post-validation

Note: Figure (a) presents the distribution of scores for vacancies that had someone assigned both pre-
and post-validation. Figure (b) presents only the vacancies where the assigned teacher is different in the
post-validation assignment.
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B.2 Additional Tables

Table B.2.1: Pre-Bonus Scoring System

Merits Oposition
Criteria Maximum score Criteria Maximum score

Academic Background 20 Specific knowledge test 40
Work experience 10 Mock lecture 25
Publications 3

Continuous training 2
Total weight 35 Total weight 65

Table B.2.2: Shares by specialties

Specialty Share (%)
Basic General Education (Egb) From 2nd to 7th grade 22.33
Initial education 17.54
Mathematics Basic General Education (Egb From 8th To 10th grade) 9.15
Social Studies Basic General Education (Egb From 8th To 10th grade) 6.96
Entrepreneurship and Management General Unified High School (Bgu) 6.72
Natural Sciences Basic General Education (Egb From 8th To 10th grade) 6.58
Fip: Accounting 4.62
English 3.59
Education for Citizenship General Unified High School (Bgu) 3.54
Language and literature General Unified High School (Bgu) 3.23
Physical Education 2nd grade Egb to Bgu 2.99
Biology General Unified High School (Bgu) 2.10
Artistic and Aesthetic Education 2º grade Egb to Bgu 1.93
Fip: Computing 1.83
Special education 1.36
Chemistry General Unified High School (Bgu) 1.01
Fip: Agricultural production 0.88
History General Unified High School (Bgu) 0.71
Physics General Unified High School (Bgu) 0.67
Fip: Sales and Tourist Information 0.54
Fip: Electromechanics 0.47
Philosophy General Unified High School (Bgu) 0.43
Fip: Consumer electronics 0.43
Fip: Music 0.40
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Table B.2.3: Sensitivity test

(1) (2) (3) (4) (5)
BW 0.3 BW 0.25 BW 0.2 BW 0.15 BW 0.1

Panel A. Any modification
RDD estimate 0.387 0.388 0.407 0.429 0.425

(0.065) (0.074) (0.086) (0.096) (0.115)
Total observations in BW 941 650 490 384 244
Panel B. Add any
RDD estimate 0.437 0.469 0.515 0.518 0.538

(0.064) (0.072) (0.084) (0.092) (0.109)
Total observations in BW 941 650 490 384 244
Panel C. Add any from recommendations
RDD estimate 0.661 0.634 0.604 0.549 0.449

(0.087) (0.104) (0.126) (0.135) (0.210)
Total observations in BW 441 334 256 201 127
Panel D. Assigned
RDD estimate 0.215 0.286 0.271 0.317 0.359

(0.063) (0.072) (0.083) (0.095) (0.123)
Total observations in BW 941 650 490 384 244
Panel E. Assigned in recommendation
RDD estimate 0.491 0.461 0.422 0.354 0.361

(0.063) (0.071) (0.079) (0.085) (0.119)
Total observations in BW 680 442 330 256 161

Note: Robust standard errors in parentheses. All columns only consider model (1) from Table 2.3 using
different arbitrary BW. All estimates control for specialty, sex, marital status, and region. Panel C is
conditional on having added something to the application. Panel E is conditional on having been assigned.
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Table B.2.4: Balance tests

(1) (2) (3) (4) (5)
Panel A. Male
RDD estimate -0.099 -0.062 -0.069 -0.035 -0.085

(0.098) (0.091) (0.129) (0.119) (0.150)
Left BW 0.113 0.096 0.075 0.063 0.113
Right BW 0.113 0.221 0.075 0.147 0.113
Total observations in BW 267 384 180 245 267
Panel B. Non-mestizo
RDD estimate -0.062 -0.058 -0.100 -0.046 -0.039

(0.066) (0.070) (0.073) (0.076) (0.098)
Left BW 0.097 0.095 0.064 0.063 0.097
Right BW 0.097 0.219 0.064 0.145 0.097
Total observations in BW 238 366 152 245 238
Panel C. Married
RDD estimate -0.151 -0.153 -0.245 -0.156 -0.430

(0.137) (0.113) (0.170) (0.150) (0.194)
Left BW 0.103 0.099 0.068 0.066 0.103
Right BW 0.103 0.223 0.068 0.148 0.103
Total observations in BW 248 384 170 255 248
Panel D. Experienced
RDD estimate 0.170 0.300 0.407 -0.082 0.396

(0.180) (0.155) (0.260) (0.215) (0.281)
Left BW 0.063 0.048 0.042 0.032 0.063
Right BW 0.063 0.190 0.042 0.126 0.063
Total observations in BW 152 276 94 180 152

Note: Robust standard errors in parentheses. This table reports parametric estimates using different
strategies to calculate the optimal bandwidth and different types of polynomials. (1) is estimated using a
linear polynomial and the BW is calculated using the “one common MSE-optimal”. (2) is estimated using
a linear polynomial and the BW is calculated using the “two different MSE-optimal” that calculates two
different BW below and above the cutoff. (3) is estimated using a linear polynomial and the BW is calculated
using the ”one common CER-optimal” bandwidth selector. (4) is estimated using a linear polynomial and
the BW is calculated using the “two different CER-optimal” that calculates two different BW below and
above the cutoff. (5) is estimated using a quadratic polynomial and the BW is calculated using the “one
common MSE-optimal” method. All estimates control for specialty, sex, marital status, and region. Panel C
is conditional on having added something to the application. Panel E is conditional on having been assigned.
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Table B.2.5: Determinants of the probability of adding a recommendation

(1) (2) (3)
Coefficients of interest
Recommendation in teacher’s province 0.230 1.320 2.516

(0.008) (0.039) (0.076)
Another province in pre-validation applications 0.184 0.962 1.819

(0.012) (0.046) (0.085)
Rural institution -0.011 -0.065 -0.120

(0.004) (0.028) (0.056)
Original application size 0.003 0.018 0.036

(0.001) (0.011) (0.021)
Score−Mean score specialty

Sd.specialty -0.025 -0.210 -0.423

(0.003) (0.025) (0.050)
Male 0.014 0.101 0.167

(0.005) (0.036) (0.072)
Number of observations 19,783 19,694 19,694
Controls
Number of recommendations Yes Yes Yes
Specialty Yes Yes Yes
Teacher’s Province Yes Yes Yes

Note: Robust standard errors in parentheses. This table reports estimates of the probability of adding
one of the recommendations included in the personalized report, during the validation period. We include
only teachers in the treatment group that opened the personalized report and include different controls to
try to isolate the coefficient on recommendations in the applicant’s province or other provinces included in
the pre-validation applications, as well as on rural alternatives, in line with the process used to create the
recommendations in the first place.
(1) is estimated using a linear probability model, while (2) is estimated using a probit model, and (3) is

estimated using a logit model.
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Table B.2.6: Percentage of assigned vacancies

(1) (2)
Partial assignment + new applicants Final assignment

Total assignment 6,839 6,904
Unfilled vacancies 1,170 1,105
Treatment compliers (% assignment) 9.07 20.32
Control compliers (% assignment) 96.83 90.95
New applicants (% assignment) 30.78 28.02

Note: Column (1) considers partial applicants and the new applicants that appeared after the validation
period. Column (2) considers new applicants and partial applicants with modifications after the validation
period.

B.3 Description of the bonus score

In the QSM7 contest, the bonus score was calculated using the following criteria:

1. 2 points for each of the following:

• Applicants residing in the “educational circuit” where the institution offering the
vacancy is located.

• Applicants that present proof of a non-limiting disability.

• Applicants currently residing abroad in “migration” status for at least one year.

• Applicants choosing “fiscomisional” institutions (which are private institutions
receiving government funds to complement public alternatives).

• Applicants who already served their one year mandatory rural service.

• Applicants from indigenous, Afro-Ecuadorian or Montubio ethnic groups.

• Applicants demonstrating status as a “person returned to Ecuador.”

• Applicants residing in rural localities within a 40km radius of the Ecuadorian
border.

2. 1 point for each of the following criteria:

• Applicants currently serving under an occasional, definitive or provisional contract
in public schools.

• Applicants who are a “former community teacher.”

3. Additional criteria:

• 10% score bonus over the pre-bonus score for applicants demonstrating the status
of “heroe” (hero) according to the corresponding law.



APPENDIX B. SMART MATCHING PLATFORMS IN TEACHER ASSIGNMENT 168

• 5% score bonus over the pre-bonus score for applicants demonstrating the status
of “former combatiente” (former combatant) according to the corresponding law.

• 6 points to applicants residing in the Galápagos province and applying to a school
within that province.



APPENDIX B. SMART MATCHING PLATFORMS IN TEACHER ASSIGNMENT 169

B.4 Personalized Report Outline

Figure B.4.1: Personalized Report Outline

(a) Section 1: Welcome (b) Section 2: Your Portfolio
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(c) Section 3: Non-assignment Warning (d) Section 4: Recommendations
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(e) Section 5: Link to Application Webpage

B.5 Survey Results

The survey was implemented after the application period but before the results of the contest
were published. It was distributed via email to all teacher candidates and aimed to measure
different dimensions of the process, as well as beliefs regarding assignment and awareness of
available alternatives within an applicant’s specialization.

• 11,948 teachers participated in the survey. On average, they rated the application
process at 6.96 on a scale of 1 to 10.

Table B.5.1: Survey: Evaluation of Application Process

Mean Standard deviation Total
Vacancy search 6.85 2.49 11,609
Information about educational institutions 6.93 2.47 11,609
On average, which grade would you give to the application process? 6.96 2.38 11,609

• If only the best teachers are considered (those who are above the 75th percentile of the
distribution), the average of the evaluation rises to 7.17.
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Table B.5.2: Survey: Evaluation of Application Process for Only Top 75th Score Percentile
Teachers

Mean Standard deviation Total
Vacancy search 7.05 2.45 2902
Information about educational institutions 7.14 2.44 2902
On average, which grade would you give to the application process? 7.17 2.28 2902

• Most of the teachers did not have a clear idea about the institutions to which they
were going to apply: 18.3% did not have any institution in mind, 63% only had some
in mind, and just 18.4% knew all or almost all of them.

Figure B.5.1: Survey: Answer to the question: “Did you have in mind which educational
institutions you wanted to work at?”

• 69% claim to have received the personalized report and, on average, they rated the
report at 8.22 on a scale of 1 to 10.

Table B.5.3: Survey: Evaluation of Personalized Report

Mean
Standard
deviation

Total

Ease of access to the link 8.32 1.82 8,067
Design and clarity of the personalized report 8.28 1.82 8,067
Usefulness of the information presented 8.17 1.93 8,067
Usefulness of the recommendations received 7.55 2.36 3,286
Clarity of the message 7.70 2.30 3,400
On average, which grade would you give to the personalized report? 8.22 1.86 8,067
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• For those who answered the question about what information they would like to re-
ceive in the personalized report, 34.8% stated that they would like to receive more
information about the educational institutions to which they applied.

• 82% say they want more information about their chances of getting assigned.

• 15% want more information about the institutions they did not apply to.

• For those not assigned, 55% state they would have wanted more information about
their chances of assignment.

• 91.94% of the teachers would have liked to apply to more educational institutions.

Figure B.5.2: Survey: Interest in Applying to More Alternatives

• 33% did not apply to their preferred educational institutions because they thought
they would not get assigned. Of those, 58% said that they wanted more information
about probabilities of assignment.

• The main reason why applicants applied for fewer than 5 options was because the
system did not display more vacancies in their specialty.

• 16% stated that it was difficult to find other institutions to apply to.

• 2% preferred to not be assigned to a position rather than apply to the available alter-
natives.

• 13.1% were sure that they were going to get assigned; however, only 25% of these
applicants were finally assigned.
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• Most of the teachers did not change their beliefs after receiving the personalized report.

Figure B.5.3: Survey: Change in Assignment Belief After Receiving Personalized Report

• Most of the teachers that did not change their application despite receiving the per-
sonalized report were confident about their assignment probabilities.

• Teachers were asked how satisfied they would feel if they were placed at the first-ranked
school on their application, if they were placed at the last-ranked school, or if they were
not placed. Most of the teachers stated that they would feel satisfied if placed at any
option, while 81% would be unsatisfied with non-placement.
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Appendix C

Appendix: The Welfare Effects of
including Household Preferences in
School Assignment Systems: Evidence
from Ecuador

C.1 Additional Figures

Figure C.1.1: Distribution of Declared Applicant Priorities and Ranked Ordered List Size

Priorities declared by applicants Application length
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Figure C.1.2: Perceived Probability of Admission to 1st Preference

Note: These responses were obtained in an online survey carried out after the end of the appli-
cation period but before assignment results were communicated (to avoid biasing responses).

Figure C.1.3: Ranking Assigned: DA and Distance Mechanism
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Figure C.1.4: Ranking Assigned by Grade: DA and Distance Mechanism

Pre-School 1 Pre-School 2

Primary 1
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Figure C.1.5: School and Applicants in Pilot and in Welfare Estimation

(a) Schools in pilot (b) Schools in estimation

(c) Applicants in pilot (d) Applicants in estimation

Note: A very small proportion of applicants from the urban area of Manta, where the estimation sample
was located, were not included in the estimation process as they had included schools located outside of
this area in their applications.
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Figure C.1.6: Trace Plots σϵ in Main Specification

Pre-School 1 Pre-School 2

Primary 1
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Figure C.1.7: Welfare Distribution
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Note: In this figure, we plot the utilities obtained with our model when using the scale normalizations
δ ≡ 0 and −1 as the average disutility from each linear km of distance between the school and the reported
location of the family. The level of utility is not relevant, as it depends on the normalization. However,
the mass from the utility distribution when using the distance-centric algorithm being shifted to the left is
relevant, as it indicates how the relative distributions of utilities compare, and lead to the average differences
presented in Table 3.4.
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Figure C.1.8: Figure 5 of Abdulkadiroğlu et al. (2017)

C.2 Additional Tables

Table C.2.1: Comparative Statistics for Guayaquil and Manta

Guayaquil Manta
Total population 2,291,158 221,122
Population 3-5 years old (% of population 3-17 years old) 19.7 19.1
Minors in the school system (% of population 3-17 years old) 78.9 80.2
Average Mother’s Education (of minors 3-17 years old) 11.3 years 10.8 years

Total schools 885 153
Share of public schools 54% 43%
Share of private schools 44% 54%
Share of “fiscomisional” schools 2% 3%

Total enrollment 687,046 86,455
Share of enrollment in public schools 57% 67%
Share of enrollment in private schools 40% 25%
Share of enrollment in “fiscomisional” schools 4% 8%
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Table C.2.2: Estimates and Potential Scale Reduction Factors: Main Specification

Pre-School 1 Pre-School 2 Primary 1
Mean Mean Mean

Estimate (SD) PSRF (SD) PSRF (SD) PSRF
Mean(ξj) 0.084 -0.915 0.055

(0.157) (0.250) (0.296)
λ 2.962 1 4.402 1.001 3.698 1

(0.354) (0.527) (0.804)
σξ 0.268 1.007 1.227 1.027 0.486 1

(0.060) (0.410) (0.123)
σϵ 0.967 1.015 0.935 1.001 1.238 1

(0.042) (0.046) (0.093)
σγ 0.294 0.307 0.145

(0.055) (0.073) (0.029)
Tot. schools 55 57 54
Tot. students 1,098 885 389

Table C.2.3: Mechanism Comparison - Results Pre-School 1

Panel A: All Applicants
Assigned in: DA DC
Any preference 1,654 1,102

(96.95%) (64.60%)
First preference 1,592 966

(93.32%) (56.62%)

Average assignment distance 0.87km 0.52km

Panel B: Applicants maintaining 1st preference (985)
Assigned in: DA DC
Any preference 965 955

(97.97%) (96.95%)
First preference 942 946

(95.63%) (96.04%)
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Table C.2.4: Mechanism Comparison - Results Pre-School 2

Panel A: All Applicants
Assigned in: DA DC
Any preference 1,199 737

(70.45%) (43.30%)
First preference 93.32 609

(58.52%) (35.78%)

Average assignment distance 1.32km 1.08km

Panel B: Applicants maintaining 1st preference (959)
Assigned in: DA DC
Any preference 708 607

(73.83%) (63.30%)
First preference 618 569

(64.44%) (59.33%)

Table C.2.5: Mechanism Comparison - Results Primary 1

Panel A: All Applicants
Assigned in: DA DC
Any preference 265 147

(46.74%) (25.93%)
First preference 185 111

(32.63%) (19.58%)

Average assignment distance 2.56km 2.29km

Panel B: Applicants maintaining 1st preference (281)
Assigned in: DA DC
Any preference 144 112

(51.25%) (39.86%)
First preference 116 103

(41.28%) (36.65%)
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Table C.2.6: Assignment In and Out Preferences under DA and DC Algorithms

Panel A: Share of Applicants With the Same of Different Assignment
Pre-School 1 Pre-School 2 Primary 1

Applicants assigned to same 967 801 261
schools under DA and DC (56.68%) (47.06%) (46.03%)
Applicants assigned to different 739 901 306
schools under DA and DC (43.32%) (52.94%) (53.97%)

Panel B: Outcomes of Each Group
B.1.: Applicants assigned to same schools under DA and DC

Pre-School 1 Pre-School 2 Primary 1
Both DA and DC in preferences 941 630 113

(97.31%) (78.65%) (43.30%)
Both DA and DC out of preferences 26 171 148

(2.69%) (21.35%) (56.70%)

B.2.: Applicants assigned to different schools under DA and DC
Pre-School 1 Pre-School 2 Primary 1

DA in preferences and DC out of preferences 569 478 125
(77.00%) (53.05%) (40.85%)

DA out of preferences and DC in preferences 17 16 7
(2.30%) (1.78%) (2.29%)

Both DA and DC in preferences 144 91 27
(19.49%) (10.10%) (8.82%)

Both DA and DC out of preferences 9 316 147
(1.22%) (35.07%) (48.04%)

Table C.2.7: Transfer Requests and Changes Between Assignment in Enrollment

Aftermarket outcome All Grades Pre-School 1 Pre-School 2 Primary 1
Transfer requests 380 40 196 144
Enrollment ≠ Assignment 585 89 282 214
Transfer request & Enrollment ≠ Assignment 360 38 192 130
Applicants with enrollment data 3,907 1,680 1,667 560
Total Applicants 3,985 1,710 1,705 570
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Table C.2.8: The Effect of Preference Assignment on Aftermarket Movements

Panel A: Congested 1st Pref.
Probability (%) (1) (2) (3)

β0
4.31 8.65 9.19
(0.85) (1.01) (1.01)

β1
18.90 24.27 22.87
(1.62) (1.92) (1.90)

Observations 2,314
FE categories 127

Panel B: Congested Last Pref.
Probability (%) (1) (2) (3)

β0
4.14 9.17 9.61
(0.91) (1.10) (1.10)

β1
11.28 13.36 12.77
(1.24) (1.49) (1.49)

Observations 2,681
FE categories 128

Notew: Column (1) shows the probability of a transfer request, Column (2) shows the probability of
having a different assigned school and school of enrollment, and Column (3) shows the probability of either
of the outcomes.
Standard errors in parenthesis

C.3 Robustness Checks

Table C.3.1: Estimates and Potential Scale Reduction Factors. Main Specification without
Random Coefficients

Pre-School 1 Pre-School 2 Primary 1
Mean Mean Mean

Estimate (SD) PSRF (SD) PSRF (SD) PSRF
Mean(ξj) 0.131 -1.480 0.075

(0.532) (0.693) (0.606)
λ 3.486 1 4.719 1 4.301 1

(0.396) (0.561) (0.919)
σξ 0.350 1.001 2.766 1 0.497 1

(0.082) (0.747) (0.131)
σϵ 1.403 1 1.314 1 1.702 1

(0.054) (0.061) (0.121)
Tot. schools 55 57 54
Tot. students 1,098 885 389
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Table C.3.2: Estimates and Potential Scale Reduction Factors. Main Specification without
Siblings

Pre-School 1 Pre-School 2 Primary 1
Mean Mean Mean

Estimate (SD) PSRF (SD) PSRF (SD) PSRF
Mean(ξj) 0.075 -1.116 0.047

(0.160) (0.25) (0.309)
σξ 0.269 1 1.642 1.018 0.495 1.001

(0.061) (0.525) (0.130)
σϵ 0.991 1.003 0.886 1 1.270 1

(0.042) (0.045) (0.097)
σγ 0.292 0.266 0.144

(0.056) (0.058) (0.029)
Tot. schools 55 57 54
Tot. students 1,021 839 345

Table C.3.3: Differences in Welfare: Student-Optimal vs. DC and DA algorithms. Specifi-
cation without Random Coefficients

Panel A: All simulated applicants
Pre-School 1 Pre-School 2 Primary 1

Measure Dist DA Dist DA Dist DA
∆ Mean utility (km) -0.773 -0.003 -0.456 -0.071 -0.317 -0.296
(∆Mean utility/σUt. FB) -0.750 -0.003 -0.177 -0.027 -0.091 -0.085

Panel B: Applicants with different assignments across algorithms
Pre-School 1 Pre-School 2 Primary 1

Measure Dist DA Dist DA Dist DA
∆ Mean utility (km) -1.667 -0.006 -0.707 -0.109 -0.415 -0.388
(∆Mean utility/σUt. FB) -1.631 -0.006 -0.302 -0.047 -0.124 -0.116

Note: ∆ Mean utility (km) is measured computing ui,j(µ) − ui,j(TTC), where j(µ) represents the school to
which individual i is assigned under mechanism µ. We then compute average utilities for each algorithm
and simulation and finally compute the average for each algorithm across simulations. ∆Mean utility

σUt. FB
simply

uses the utility variance under the TTC mechanism to scale this difference in each simulation. This is done
to facilitate extrapolations to other contexts.
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Table C.3.4: Differences in welfare: Student-optimal vs DC and DA algorithms. Specification
without Siblings

Panel A: All simulated applicants
Pre-School 1 Pre-School 2 Primary 1

Measure Dist DA Dist DA Dist DA
∆ Mean utility (km) -0.661 -0.004 -0.331 -0.073 -0.170 -0.339
(∆Mean utility/σUt. FB) -0.835 -0.005 -0.169 -0.037 -0.053 -0.105

Panel B: Applicants with different assignments across algorithms
Pre-School 1 Pre-School 2 Primary 1

Measure Dist DA Dist DA Dist DA
∆ Mean utility (km) -1.439 -0.008 -0.517 -0.113 -0.222 -0.441
(∆Mean utility/σUt. FB) -1.603 -0.009 -0.243 -0.053 -0.069 -0.136

Note: ∆ Mean utility (km) is measured computing ui,j(µ) − ui,j(TTC), where j(µ) represents the school to
which individual i is assigned under mechanism µ. We then compute average utilities for each algorithm
and simulation and finally compute the average for each algorithm across simulations. ∆Mean utility

σUt. FB
simply

uses the utility variance under the TTC mechanism to scale this difference in each simulation. This is done
to facilitate extrapolations to other contexts.

Table C.3.5: Priorities and Assignments in DA: Potential Improvements for SIC and TTC

Panel A: Ranking of schools where
an applicant has sibling priority(*)

Pre-School 1 Pre-School 2 Primary 1
1st preference 100 157 42
2nd preference 7 3 1
3rd preference 1 2 0

Panel B: Ranking of DA assignments for applicants
with sibling priority below 1st preference

Pre-School 1 Pre-School 2 Primary 1
1st preference 8 3 0
2nd preference 0 2(**) 1(***)
3rd preference 0 0 0

Note: None of the potential applicants that could participate in an improvement cycle (Panel B) coincide
in the programs to which they were applying, such that no cycles were attainable.
(*) Panel A shows the highest ranked program where applicants have a sibling priority. If an applicant has
priority in both the 1st and 2nd preference, they will only appear in the 1st preference in this table.
(**) One of these two applicants had sibling priority in their second preference, and the other had sibling
priority in their third preference.
(***) This applicant had sibling priority in their second preference.
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C.4 Phases of the Distance-Centric Algorithm

Implementation Process

The overall process started with the Preparation Phase, in which the Ministry of Education
updated all school supply information (i.e., location, available spaces, closure or opening of
educational programs, etc.).

In the second, or Registration Phase, families registered their children on a website in
order to be granted a spot in a public school. Legal guardians needed to indicate the type of
registration (individual or sibling group), the grade level to be attended, any older siblings
already enrolled in the public school system, special educational needs, and nationality. They
also provided their electricity bill number so as to be geo-located.

This was followed by the Assignment Phase and then the Consultation Phase, during
which time families could enter the website to see their school assignments. Finally, the fifth
and sixth phases consisted of the School Change Petitions Phase and Continuous Enrollment.
Applicants could ask to change schools if there were spaces available, and they could also
enroll in a given school once the academic year had already started.

C.5 Full Utility Specification

uij =Sijλ + δj − dij + γidij + ϵij
δj =δ + ξj
δ ≡0

λ ∼N (0, σλ)
γi ∼N (0, σγ)
ξj ∼N (0, σξ)
ϵi,j ∼N (0, σϵ)
σγ ∼IW (τγ, dfγ)
σξ ∼IW (τξ, dfξ)
σϵ ∼IW (τϵ, dfϵ)

We follow Rossi et al. (1996) and Abdulkadiroğlu et al. (2017) in using disperse priors.
The only exception is the use of a smaller τγ, given that in this context it is reasonable
to impose a smaller prior on the mean variance of the parameter, considering that γi > 1
would imply that a family actually prefers schools farther away from home. Specifically, we
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use σλ = 100, τγ = 1
5(3 + nschools), dfγ = 2(3 + nschools),1 τξ = 1, ξ = 2, τϵ = 3 + nschools, and

dfϵ = 3 + nschools.

C.6 DA-SIC and TTC Equivalence in our Context

As shown in Table C.3.5, there is no potential for priority trading cycles.
The Top Trading Cycles (TTC) algorithm includes the possibility of trading priorities

between applicants, which happens when they prefer the alternatives in which they do not
have the priority more than ones in which they do, and are thus “willing to trade” the priority.
In other words, TTC has the potential to provide improvements over SIC, when there is not
a complete correlation between priorities and preferences. In our case, for the priority at
declared preferences (over non-preferences imputed by distance), the correlation is one since
these are always ranked higher. Thus, the only possibility for the TTC algorithm to improve
over the SIC algorithm is to find trades involving the static sibling priority. However, as
shown in Table C.3.5 (and explained in the footnote), that is not feasible.

To illustrate this, imagine a system with two schools (A and B), both with only one
vacancy, and three applicants(i, j and k). i has priority in A but prefers B over A.j has
priority in school B, but prefers A over B. k has priority in both schools, prefers A over B,
and has the worst lottery number of the system. The result of the DA and SIC assignment
would be i assigned to A and j assigned to B. The TTC algorithm would allow them to
trade their priorities and switch their assignments. With that assignment switch, applicant
k is now unassigned but has a higher priority in both schools that rejected him (higher
priority pre-trade, of course). Such a situation can only arise when the correlation between
preference and priority is not one, thus leaving room to trade the priority and get a better
assignment.

1This implies that the mean of the σγ prior is 0.1.
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