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Abstract

We have developed a field prototype of a laser-based non-intrusive detection system for real-time measure-
ment of delineationsof moving vehicles for highway testing, based on our previous research on the laboratory
prototype of the system. As described in the last report, the primary goal of this project is to develop a road-
way detection system that can be used to gather reliable travel time data non-intrusively. The system uses
a laser line that is projected onto the ground as a probe. The reflected light is collected and focused into a
photodiode array by an optical system. Vehicle presence is detected based on the absence of reflected laser
light. By placing two identical laser/sensor pairs at a known distance apart, the speed of both the front and
rear of a vehicle is measured based on the times when each sensor is triggered. The length of each vehicle is
determined by using these speed measurements and the residence time of the vehicle under each sensor. We
have built a field prototype detection system which is used not only to proof the concept and algorithm of
the detection system, but also to test the system in the real trafic environment. Several tests have been done
with the field prototype system on the highway, and the test results further verified that the principle of our
detection system is technically sound and indicated that the algorithm implemented in the software works
in most cases. The software for the real-time data acquisition, data processing and graphic user interface
has been developed in a real-time operating system. In the software, the speed, acceleration, and length of
a detected vehicle can be calculated and displayed simultaneously. This document describes the design and
implementation of each functional component and software of the field prototype system. The measurement
and calculation of laser power has been performed to ensure that the system is safe to expose to public during
the field tests and future operation on the highway.



Chapter 1

Introduction

Travel time is the most important aspect of the Intelligent Transportation System (ITS). Travel time is a good
indicator of other direct constraints on ITS efficiency: cost, risk, and attentive workload. The importance of
travel time is verified in ATIS user surveys which indicate that what travelers most want from a transportation
system is (almost always) reduced travel time and higher reliability (e.g. reduced travel time variance and
reduced risk) [1]. Every traveler must implicitly or explicitly make an assessment of these various travel time
options before embarking on every trip, therefore this information is definitely of high value. Because trip
travel time is the parameter the public most wants to minimize, this is the parameter that is most important
for transportation service providers to measure and minimize.

Speed is commonly used as an indicator of the travel time across a link. In current practice, speed is
measured at one or more points along a link and extrapolated across the rest of the link [1]. This extrapolation
method is used regardless of the mechanism of detection. Example detection methods are loops—which
determine speed from two elements twenty feet apart; radar—which can directly determine speed from the
carrier frequency shift (Doppler effect); or video image processing—which tracks vehicles across the pixel
elements within the field of view. The extrapolation from a point to a line is not necessarily valid. At the
onset of flow breakdown, the speed variations along the length of a link can be quite large. Also, the onset
of flow breakdown is when routing decisions are most time-critical and accurate information has the highest
value, so inaccurate extrapolations could have detrimental effects to the traveler.

An alternate method to determine the traverse travel time (e.g. the true link speed) is to use Vehicles As
Probes (VAP). A VAP system determines travel time directly by identifyingvehicles at the start of the link and
re- identifying them at the end of the link, with the time difference being the true travel time. The problem
with VAP systems is that they require large numbers of both vehicle tags and tag readers to be effective,
and the cost justification of such a system seems unwarranted in the light of other options. The key aspect
to measuring the actual travel time is simply to identify some distinguishing characteristic on a vehicle at
the beginning of a link and then to re-identify that same characteristic on the same vehicle at the end on the
link. This is the basic idea of VAP, however the characteristic does not have to be entirely unique (as in a
vehicle tag), and it does not necessitate the infrastructure set-up costs of VAP. If a characteristic can be found
to separate the fleet into (say) 100 classifications, “the maximum probability fit” can be determined for the
same sequence of classifications at the downstream detector as was identified at the upstream detector. This
is what is currently being done in Germany with the low resolution imaging provided by (new high speed)
loops [1]. If a higher-resolution detector is used so that it is possible to get a few thousand classes, then it
should be quite possible to perform a 100% upstream-downstream Origin and Destination (O/D) (even if a
significant percentage of the vehicles switch lanes) using time gating and other relatively straight-forward
signal processing techniques. The mechanism of detection must allow highly resolved delineation between
commonly available “commuter” vehicles, because commuter vehicles represent the majority of the vehicle
stream during the period that traverse travel time information is most needed (e.g. the peak hours).
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Any mechanism to measure travel time, by definition, is only determining the “past state” of the trans-
portation system. Collecting data on what happened in the past has no utility except if it is used to infer what
may happen in the future. All decisions, by definition, are based on an inference of future consequences.
When a traveler learns that speed on a route is 50 MPH, the traveler generally infers that the speed will remain
50 MPH when she/he traverses it. This may or may not be a reasonable inference. Travelers want to know
the “state” of the system (in the future) when they traverse it. In the simplest case, this is just a straight ex-
trapolation of current “state.” More sophisticated travelers may develop their own internal conceptual model
of the typical build up and progression of congestion along routes with which they are familiar. A major
benefit of ITS will be to provide travelers with a much more valid and comprehensive “look ahead” model
of the (short term) future state of the transportation system. Validation of any traffic model requires (either
implicitly or explicitly) traffic O/D data. The lack of valid O/D data has been the major impediment in the
calibration, validation and usage of traffic models. In this research project we are developing a roadway de-
tection system that can directly determine O/D data non-intrusively without violating the public’s privacy (as
in license plate recognition systems).

1.1 Comparison of Different Detection Schemes

Our detection system has a number of advantages over other systems currently in use. In current practice,
vehicle features are most commonly measured using inductive loops or video image processing. An advan-
tage of our system over loop detectors is the relative ease of installation and maintenance. Because loops are
buried beneath the pavement, installation requires heavy equipment, and traffic must be re-routed [2]. It is for
this reason that loops are expensive to install and repair. Because our system is mounted above the road, once
installed, it can be maintained without disrupting the flow of traffic. More importantly, loop detectors cannot
be relied upon to produce accurate speed (and therefore length) measurements because the inductive prop-
erties of the loop and loop detectors vary [2]. Video can be used to directly measure the length of vehicles,
however the use of real time video image processing is problematic due to its computationally intensive na-
ture. Our system operates on a simple “on/off” basis, requiring much less computation for vehicle detection,
and consequently much less computational hardware. Because video is a passive system (gathering ambi-
ent light), video images are dependent on the lighting conditions. Vehicle length measurements taken from
video, even on the same vehicle, may not produce consistent results depending on time of day and weather
conditions. For truly site and time independent vehicle length measurements, video would require an exter-
nal source of illumination. Because our system is active, it produces its own signals to be sensed and it does
not suffer from these limitations.

One system that bears some similarity to the system we have developed is the Automatic Vehicle Dimen-
sion Measurement System (AVDMS) developed by the University of Victoria [3]. However, the AVDMS
would not be suitable for our purposes. The AVDMS uses laser time-of-flight data to classify vehicles based
on length, width, or height, and is based on the Schwartz Electro-Optics Autosense III sensor [4] [5][6][7].
The Schwartz systems are entirely dependent on time-of-flight laser measurements with moving parts, simi-
lar to conventional lidar (laser radar) in the principle of measurement. There are some significant functional
differences between our system and Schwartz’s. For example, the fundamental mechanism of detection is
that the Schwartz detector determines the range (or distance) from the detector to the objects being detected.
Our detector functionally does not determine the range (or distance) from the detector to the objects being
detected. The laser of the Schwartz’s detector reflects off the vehicle to determine the size, shape, and ”pres-
ence” of the vehicle. In our detector, the laser reflects off the pavement. The lack of a reflection determines
the size, shape, and ”presence” of the vehicle. Therefore, our system will be more reliable because of its
simplicity.

In comparison with other conventional traffic detection techniques, our system will offer the following
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salient features:

� The system is mounted above the road and is relatively easy to install. Traffic need not be rerouted.

� The system is insensitive to ambient lighting conditions due to the active lighting source (the laser).
It detects every passing object more than 46 cm (18 in) tall in all lighting conditions. No vehicles are
missed, yielding nearly 100 % accuracy.

� The laser and detector have no moving parts, giving the system high reliability. The primary raw data
gathered by the sensor are computationally easy to process.

� Not only does the detector produce local vehicle speed, vehicle volume, and vehicle classifications,
but it also allows highly deterministic re-identification of vehicles between sites, even under high flow
conditions. Point-to-point travel time, incident detection, and Origin/Destination data can easily be
determined with this detector.

� The system has very low power and communication bandwidth requirements, allowing the develop-
ment of a stand-alone detector untethered from hard-wired infrastructure.

1.2 Previous Works

A laboratory prototype was developed to verify the principle the detection system in the previous project.
The detection system hardware was constructed using off-the-shelf parts for rapid assembly and easy mod-
ification. The laser chosen for use in the indoor prototype system was a Melles Griot model 56 DIL 452/P1
laser line projector. This product has a 30 mW red laser diode and all of the necessary optics for line pro-
jection built into a single package. In the laboratory prototype system, the current output from the sensor
is amplified and conditioned for interfacing with a Delta Tau PMAC digital I/O board. The data are then
collected in real-time by a computer for processing. Sensor software performs low-level gathering of the de-
tector data and an application programmers interface (API) provides a standard way of accessing the data.
Applications use this sensor API to display the data in various ways. The X window program shows the time
history of the sensor data, displaying multiple detector values at regular intervals and profiles of vehicles as
they pass under the sensor. The text based interface displays raw data. The laboratory prototype was tested
in the laboratory and on the roof of a building in a simulation environment. The experimental results from
laboratory system showed that the principle of the detection was feasible.

1.3 System View of Field Prototype

In the field prototype system, vehicle length is used as the primary identifying feature and is measured using
two laser-based vehicle detectors. The system operates in the following manner, as illustrated in Figure 1.1.
The basic detector unit consists of a laser and a spatially offset photodetector positioned above the plane
of detection. The laser is a pulsed infrared diode laser that utilizes line-generating optics which project to
a flat planar surface where objects are to be detected. The detector consists of imaging optics and a linear
photodiode array. The offset photodiode array receives the laser light that is reflected back from the region
of detection. The signal from the photodiode is amplified and sent to a computer for processing. Vehicle
presence is detected based on the absence of reflected laser light. Two of these units are integrated and placed
a known distance apart, allowing the velocity of the object and its residence time under each detector to be
measured, giving the object’s length and top-down outline profile.
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Figure 1.1: System Overview

Figure 1.2 shows the positioning of the system hardware. The detector is mounted at a distance of about
6.4 m (21 ft) (the height of a typical highway overpass) above the highway. The distance between each com-
ponent of a laser/sensor pair is 30.5 cm (1.00 ft). The offset between the two sensor pairs is 10 cm (4 in). The
sensors are mounted in a fixed vertical position, pointing downward, and are focused on the ground, forming
two detection zones. The lasers are pointed towards the detection zones and are mounted at an adjustable
angle, allowing the system to be mounted at different heights. The detection zones stretch across the width
of the lane and are each about 13 mm (0.5 in) wide in the direction of traffic flow. In this configuration the
minimum detectable object height, also called the critical height, is about 46 cm (18 in). This is lower than
the bumper height of most common vehicles. For objects below this height, the laser line will still be visible
by the sensor. This can result in the object remaining undetected or can cause signal spike due to reflections,
depending on the surface properties and geometry or the object. In either case, for vehicle bumper heights
below the critical height, the speed and length measurements will be incorrect due to the fact that one or more
of the vehicle edges will be incorrectly found.
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Figure 1.2: System Hardware Configuration

When a vehicle moves into a detection zone, it blocks the laser from being received by the sensor, as
shown in Figure 1.3. When the first beam is blocked the current time is recorded. When the second beam is
blocked, a second time is recorded. These times give the speed of the front of the car. In a similar manner,
when each of the beams is no longer blocked, as shown in Figure 1.4, the times are recorded and the speed of
the rear of the vehicle can be calculated. The time that each detector is blocked is also recorded and is used
to calculate the vehicle length, assuming constant vehicle acceleration. A more detailed description of the
speed and length measurement algorithms is presented in the software section. The assumption of constant
acceleration is valid for free-flow traffic conditions, where there is negligible acceleration, and for conditions
where the vehicle is accelerating or decelerating uniformly during the time it is in the detection zone. These
cover the majority of situations, but there are a few situations, such as stop-and-go traffic, where this basic
detection method will not work well.
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Chapter 2

Field Prototype system

2.1 Laser and Optics

2.1.1 Laser

Two off-the-shelf integrated diode laser systems, ML20A15-L2 high power diode laser systems from Power
Technology Inc are used as the laser source in the current prototype. This is an integrated laser system that
incorporates a DC/DC voltage converter, voltage regulator, pulse generator, laser diode and line generation
optics into a single unit. Operation requires only a +9V - +14.5V DC power supply and a trigger pulse. The
system has a peak power output of 20W at 905 nm, with a pulse width of 15ns. It can be pulsed at a maximum
rate up to 10 KHz. The line generating optics produce a beam with a full fan angle of 15 degrees. Its high
performance and small size make it a good candidate for use in the field deployable prototype system.

Figure 2.1: ML20A15-L2 Integrated Laser System

A wavelength of 905 nm for the laser was chosen for a number of reasons. Infrared light has good trans-
mittance through fog, giving the system better performance under a larger range of weather conditions. Fur-
thermore, the intensity of sunlight around the wavelength of the laser is a local minimum, giving the system
better rejection of noise due to sunlight. An infrared laser was also thought to be more appropriate for outdoor
use because it is invisible to the human eye, and would therefore cause no distraction to passing motorists.

In the field-deployable prototype it is necessary that the laser be eye-safe. The ML20A15-L2 has a pulse
width of 15 ns, a maximum outputpower of 20 W and a maximum frequency of 10 kHz. With the assumptions
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that the laser is located 6 m above the roadway, the laser line is 4 m long and 5 mm wide, and that a potential
observer is 2 m above the roadway as shown in Figure 2.2, the safety of the laser is verified in this section.

.1 cm

.15 cm

5 m

6 m

2 m

333 cm

Figure 2.2: Projection Area of the Laser

maxP

16 ns

Power (W)

T (s)
1 ns 5 ns

Figure 2.3: Laser Pulse Waveform

Assuming the laser pulse has the form shown in Figure 2.3 and the area of exposure is 267 cm x 0.33 cm,
the radiant exposure per pulse of the laser system can be calculated by:

Hexposure

pulse
�

� 1
2 � 5ns � 15ns � 1

2 � 16ns � � 20W

L � W
� 4 � 7 � 10 � 7J

267cm � 0 � 33cm
� 5 � 33 � 10 � 9 J

cm2 (2.1)

For the pulse width of 32 � 10 � 9s, the single pulse maximum permissible exposure (MPE) for a 905 nm
laser expressed as radiant exposure (H) is given by [10]:
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MPE : H � 5 � CA � 10 � 7 J
cm2 (2.2)

with CA
� 2 � 56 for our laser, this becomes

H � 1 � 28 � 10 � 6 J
cm2 (2.3)

The MPE per pulse for repetitively-pulsed intra-beam viewing is n � 1
�
4 times the MPE for a single pulse

exposure where n is the number of pulses found from the viewing time (Tviewing) and the pulse frequency
( fpulse). Assuming a pulse frequency of 10 kHz, the maximum safe viewing time can be found by equating
the MPE per pulse and the radiant exposure per pulse.

MPE
Pulse

: H � Hexposure

pulse

n � 1
�
4 � 1 � 28 � 10 � 6 J

cm2
� 5 � 33 � 10 � 9 J

cm2

n � 1
�
4 � 4 � 17 � 10 � 3

n1
�
4 � 240

n � 3 � 32 � 109

Tviewing � fpulse
� 3 � 32 � 109

Tviewing � 10000
1
s

� 3 � 32 � 109

Tviewing
� 3 � 32 � 105s � 92h � (2.4)

The laser is safe for viewing times up to 92 hours. Although it is unlikely that a driver would stop on the
highway and stare into the beam for this long, warning signs will be posted to prevent it.

In the June, 1999, we measured the laser power of our prototype detection system at both UC Berkeley
and UC Davis, and performed extensive calculations using computer software for laser safety with the laser
safety officer at UC Davis. The calculation results indicate that the laser power of our detection system is
below the minimum national laser safety standard by a large margin.

2.1.2 Sensor Optics

The sensor optics consists of three main components: an imaging lens system, a telescopic lens system, and
a filter.

The imaging lens system focuses the reflected laser light onto the active area of the sensor array. The
imaging lens was selected based on the criteria that it should have an adjustable focal length within a range
around the desired focal length, that it should have a field-of-view large enough to capture the width of an
entire lane and that it should be compact for easy integration into the outdoor system.

Based on the assumptions that the lane width
�
ho � is around 3.05 m (10.0 ft) and that the unit will be

mounted about 6.40 m (21.0 ft) above the roadway
�
So � and given that the sensor is 7.5 mm (0.295 in) long�

hl � , According to the Figure 2.4, an image distance
�
Si � was calculated for the sensor using Equation 2.5,

where it was determined that s= 15.8 mm (0.620 in).
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Si
� S0

hl

ho
(2.5)

The desired focal length (f) of the lens was then calculated using Equation 2.6.

f � 1
1
si

� 1
s0

(2.6)

The focal length was calculated to be 15.7 mm (0.616 in). As a practical matter, the sensor array is placed
at the focal point of the imaging lens system. Because so is large in comparison with si, f is nearly equal to
si.

The lens we selected, a Tamron 23VM816, has an adjustable focal length of between 0.315 in (8 mm)
and 0.630 in (16 mm) and was selected because of this feature. The Tamron lens is also suitably compact
and has a field of view that should be large enough to capture the entire lane width. Any lens system that has
the correct focal length and an acceptable field-of-view could be used.

The telescopic lens system is mounted in front of the imaging lens system. It is designed to restrict the
field-of-view of the imaging lens along the width of the laser line, but not alter the field-of-view along the
length of the line. Because the laser line is much longer than it is wide, use of the imaging lens alone would
result in a much wider strip of pavement being visible to the sensor than is desired. The telescopic lens system
is used to match the dimensions of the laser line image with those of the sensor array. Figure 2.5 shows the
imaging lens and the cylindrical lenses used in our system.
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Figure 2.5: Imaging Lens and Cylindrical lenses

The telescopic lens system consistsof one positive plano-cylindrical lens and one negative plano-cylindrical
lens. The prototype uses a 150 mm focal length cylindrical lens and a -19 mm focal length cylindrical lens
both manufactured by Melles Griot Inc. These lenses are positioned to form a Galilean telescope. When
positioned correctly the cylindrical lenses will not effect the proper operation of the imaging lens. The ratio
of the focal length of these lenses is approximately equal to the ratio of the uncorrected field-of-view of the
width of the sensor to the desired field-of view. The desired field-of-view, X, is determined based on Equa-
tion 2.7, where Y is the separation of the sensor and laser, H is the height of the system above the road, and Hc
is the desired minimum detectable object height, as shown in Figure 2.6 To insure reliable vehicle detection,
it is important that Hc be below the bumper height of most common vehicles.

c

H

Receiver Laser Line Generator

Field of View
Receiver

Y

X

H

Figure 2.6: Minimal Object Height

Y � X
�
H � Hc �

Hc
(2.7)

The uncorrected field of view, about 13 cm (5 in), results in a critical height of about 1.8 m (6.0 ft). To
ensure vehicle detection it is necessary to have a critical height somewhere below the bumper height of the
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vehicles. A height of around 46 cm (18 in) was thought to be acceptable. To achieve this it is necessary to
restrict the field of view X to about 2.3 cm (0.92 in). This is a factor of reduction of about 5. In our case,
where f1 = 150 mm and f2 = -19 mm, the factor of reduction is equal to about -7.9 (the negative sign indicates
an inverted image), giving us a field of view of about 16 mm (0.63 in). The factor of reduction is commonly
referred to as the angular magnification of the system. As shown in Figure 2.7, a ray of light entering the
system from the left at an angle θ1 exits the system at the right at an angle θ2 equal to θ1

� �
f 1

�
f 2 � . Because

of this, objects to the left appear to be larger than they actually are. This is how the field of view is reduced. A
sensor on the right of the telescopic system will have its field of view reduced by a factor equal to the angular
magnification of the system. The telescopic system does not alter the position or focus of the image. Objects
that are properly focused by the imaging lens remain in focus when the telescopic system is added.

θ2

1θ

= ∗ θ
25.4
150θ

d

2 1

f = 150 mm f = -25.4 mm1 2

Figure 2.7: Telescopic Lens System

A bandpass filter that is matched with the wavelength of the laser is used to reduce the level of ambient
light received by the sensor. The filter is mounted between the telescopic and imaging lens systems. The
filter used in the prototype is manufactured by Omega Optical Inc. (model 904DF15). This filter is mounted
on a ring that is threaded onto the front of the imaging lens.

2.1.3 System Electronics

A block diagram of the prototype hardware construct is shown in Figure 2.8. The hardware can be divided
into five main parts: the power supply, the clock generator, the laser components, the sensor circuit, and the
A/D converter and computer.
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Figure 2.8: Diagram of Electronics Hardware

Power Supply Section
The power supply section delivers power to both the laser components and the sensor circuit. There are

many different voltages needed by the system. A triple output power supply provides +12 V, -12 V and +5 V.
The +5 V output is used to power the clock generator. The +12 V output supplies power to the laser system
and the DC/DC converter required for the sensor array. A high voltage DC/DC converter changes 12 V DC to
250-350 V DC and is used to bias the sensor array to -290 V. The sensor circuit (except for the pre-amplifier)
uses both the +12 V and -12 V outputs. For our triple-output DC power supply, the maximum output ripple
is 5mV peak-to-peak value. This is a little large for a weak-signal amplifier power supply. The high voltage
pulse generator for the laser diode is built in the laser unit which is powered by 12 volts DC. Because the
pulse generator is isolated by a transformer and is well shielded, there is a very low noise induced by the
pulse. In order to further reduce noise, a separate power supply for the pre-amplifier is used to increase the
signal quality. In the system, a linear encapsulated power module, which produces +/- 5V, is used to power
the pre-amplifier. The maximum output ripple of this power supply is 1mV peak-to-peak value.

Clock Pulse Generator Section
The clock generator provides a clock signal that is used to trigger the laser and to synchronize it with the

sampling of S/H. In our system, an LM555 is used as the oscillator, as shown in Figure 2.9. A 4µs pulse-
width, 2.2kHz clock signal was chosen to operate the laser system. The frequency and width of the pulse can
be chosen by adjusting the values of resistors Ra and Rb. Increasing the value of Ra will increase the pulse
frequency and increasing the value of Rb will increase the pulse width. In the near future, we will increase
the clock frequency to 10 kHz.

13



2

R
Q

DIS

THR

TRIG

CVolt
GND

VCC

LM555

5

4 8

3

7

6

5V

Ra

Rb

C

Figure 2.9: Clock Circuit

Sensor Circuit Section
A 25-element avalanche photodiode(APD) array is used as the sensor in our detection system, though

currently only four elements of each array are used. In the future we plan to use all elements of the array.
The sensor converts the reflected laser light into a current signal. The sensor circuit is the main part of the
electronic hardware in the detection system. This circuit conditions and amplifies the signal produced by
a single element of the sensor array so that it is suitable for sampling by the data acquisition board. Each
element of the sensor that is used has its own circuit as described below.

The circuit can be divided into three stages: signal conditioning and amplification, peak detection, and
sample/hold, as shown in Figure 2.10.
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Figure 2.10: Sensor Circuit

The current produced by a sensor element is converted to a voltage by U1. U1 is a low-noise, high-speed
amplifier and is used in a non-inverting configuration. C2 is a small value capacitor used for noise reduction.
The signal is then passed through a resistor, R4, and capacitor, C7, which filters out the DC or low frequency
signals components from the previous stage. U2 is used as an inverting amplifier. The signal is amplified to
a suitable value for the computer to handle. Similar to the pre-amplifier stage, C9 is used to further reduce
the noise. The amplified signal is a voltage pulse. The peak detector is needed to pick up the signal peak and
deliver it to the sample & hold circuit. D2 and C14 consist of a peak detector. The output of the amplifier
stage charges C14 through diode D2. The highest point of the output waveform of the amplifier is held by
C14 while the diode D2 is back-biased. R7 and a -12V power supply are used to reset the capacitor C14. The
detected peak is then input to the sample & hold circuit. This circuit uses the same clock pulse that is used
as a trigger by the laser to synchronize the sampling of the signal with the laser pulse. C3, C4, C5, C6 and
C10, C11, C12, C13 are de-coupling capacitors which filter noise from the power supply.
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A/D Converter and Computer Section

The output from the sample & hold is an analog signal that must be digitized for processing. A PC-based,
16-channel A/D board installed in an industrial computer is used for this purpose. The converted digital data
is then sent to the computer through the data bus for further handling. The main computer used in the system
is an industrial Pentium computer. Custom software is used for processing of the data.

2.2 Mechanical Design

The test system is enclosed in a box mounted on a cantilevered structure (see Figure 2.11) that was designed
for use during testing. The structure allows the system to be placed at various locations and is easy to assem-
ble and modify for testing purposes. Figure 2.11 shows the system mounted on the cantilevered frame with
box opened.

Figure 2.11: Testing prototype mounted on the cantilevered frame

The mechanical design of the test system is shown in Figure 2.12. Figure 2.13 is the picture of the pro-
totype.
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Figure 2.12: Testing prototype mechanical design
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Sensor

Laser

Figure 2.13: Picture of the testing prototype

To integrate the optical and electronic components, we have designed and manufactured several mechan-
ical components. A laser stand was designed to hold the laser. It allows the angle of the laser to be adjusted.
This swiveling mount (shown in Figure 2.14, Figure A.1, and Figure A.2) holds the laser with two extending
arms while providing angular adjustments through the rotation of a threaded bolt.

17



Figure 2.14: Laser stand

The receiving end of the detection system, consisting of a CCTV camera lens with two cylindrical lenses,
is mounted directly on the bottom of the enclosure. The spacing of the cylindrical lenses can be adjusted.
The photodiode array and circuitry are mounted above the CCTV lens inside the enclosure. The mechanical
components draft are shown in Appendix A.
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Chapter 3

Real-Time Data Aquisition and Processing
Software

The purpose of the laser detector software was to collect, process and display vehicle delineation data, all
in real time. The software is separated into layers as shown in Figure 3.1. Each layer performs a specific
function and implementation is hidden from other layers. The layers interact and pass data by using function
calls.

X WindowTCP/IP
Server

User
ProgramApplication

Sensor Library

Device Driver

Hardware

Synchronous/Unbuffered Data Gathering

Asynchronous/Buffered Data Gathering

A/D & Window Comparator

Figure 3.1: Component diagram of the Laser-Detector system software

The device driver is the first layer of software. It communicates with the computer hardware in a low-
level fashion. The interface to the data acquisition device driver occurs through standard function calls, such
as open(), close(), read(), write() and ioctl(). The device driver hides the low-level tasks
necessary for communication between the hardware and the software. In this way, the rest of the sensor
software does not have to be burdened with low-level communication. The device driver uses a circular
queue to buffer the data while it is continuously collecting data from the data acquisition board. It does this
so no data are lost between requests for data.

19



The sensor library layer requests detector data from the device driver and processes the data for applica-
tions and other software libraries. The sensor library is used by both the vehicle delineation library and the
applications in the top layer of the software. A TCP/IP server is used to send the vehicle data over a network.
X Windows System applications are used to display the detector and vehicle data in real-time. Finally, a user
program is used to perform simple operations on the data.

3.1 Sensor Library

The sensor library is the largest portion of the software. It obtains detector data from the data acquisition
device driver and processes the data for other applications and software libraries. The sensor library requests
data from the device driver in a specified block size. The library converts the data from digitized values to
values usable on other layers. The library consists of various levels of functionality. The library is multi-
tasking and multi-threaded. It is multi-tasking because of the various tasks that must occur simultaneously.
Multi-tasking is implemented by using threads that run at separate scheduling priorities. A higher priority
thread blocks other threads from running. Using priority based threads increases the responsiveness of the
software for real-time data acquisition.

Window Comparator

Averaging

Synchronous/Unbuffered Data Gathering

Asynchronous/Buffered Data Gathering

Device Driver I/O and File I/O

Figure 3.2: Component diagram for the sensor library

Figure 3.2 shows the separate layers of the sensor library. The bottom layer consists of the device driver
function calls and the file input and output (I/O) function calls. The next layer computes a running average
of the photodiode signal data. The Synchronous/Unbuffered Data Gathering layer sets up and collects data
from the device driver. This layer contains a high priority thread that uses the averaging layer and the device
driver and file I/O layer. The interaction between the high priority thread and the application is synchronized.
No buffer exists between the thread and the application requesting the data.

The next layer is the Asynchronous/Buffered Data Gathering layer. This layer sets up and uses a buffer
that allows asynchronous requests of data while the high priority thread reads the data and stores them in the
buffer. This scheme is desirable because the application does not directly affect the gathering of data. As a
result, no data are lost.

The top layer of the sensor library is the window comparator. The window comparator converts floating-
point signal values to detection states, which indicate whether or not the laser is blocked. A blocked laser
indicates the presence of a vehicle under a particular photodiode element. The comparator is configurable
during run time to be responsive to changing signal conditions.
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Figure 3.3: Sensor Library Functional Diagram

Figure 3.3 shows the data flow between the different functions of the sensor library. The sensor library re-
quests clock data and ADC data from the device driver. Data from the ADC are in the form of 12 bit digitized
voltage values. The clock count is a 32 bit number representing ticks of time. Each block of data contains a
clock count so each sample of data can be linked directly to an instance in time. The sensor library has the
option to save the clock counts and digitized values to a file for later playback or use the values directly from
the device driver. The averaging function of the sensor library converts a specified number of samples to a
single average voltage. This is done to eliminate random noise read from the ADC. A high priority thread
reads the device driver or reads from a file and averages the data. A low priority thread saves data to a file
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so the higher priority collection of data is not interrupted. All other functions are of the same priority as the
application program using the sensor library.

Next, the digitized values are converted to floating-point voltages by dividing the digitized value by the
total voltage range of the ADC. Once the data has been converted, the voltages can be used directly or passed
through a window comparator. The comparator converts the voltage values to a comparator state. The com-
parator consists of a window bordered by a high threshold level and a low threshold level. The software
compares the current voltage value with the high and low threshold values. When the value is between the
two thresholds, the state of the comparator is false and when the value is above or below the threshold, the
comparator state is true. Before the software compares the value to the threshold levels, it removes a bias
voltage value. The bias voltage value is the level of the ADC when the laser is blocked. In other words, the
software comparator removes the ambient light from the voltage value in order to compare the signal of the
laser to the threshold levels.

One problem with window comparators is their inability to handle noise. Signals that make rapid transi-
tions across threshold levels cause the comparator state to change rapidly. To remedy this problem, feedback
or hysteresis is used to eliminate rapid changes of state due to noisy signals. An electrical hardware device
used to solve this problem is the Schmitt trigger[11]. The trigger essentially widens the threshold “line” that
the signal must pass through for the comparator to change states. The width of this line or envelope is dic-
tated by the threshold level and the hysteresis level. The envelope size should be adjusted according to the
noise level of the signal to eliminate rapid changes in comparator states.

3.1.1 Sensor Library Data

The data structure for the sensor library is shown in Figure 3.4. The complete sensor library code is listed in
[12].
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typedef struct _sensor {

int pmac; /* PMAC ascii file descriptor */
int gather; /* PMAC gather file descriptor */

unsigned long status; /* sensor status word */
time_t start_time; /* start time (since Epoch 1/1/70) */

unsigned long **data32; /* 32 bit data queue */
unsigned short *data16; /* 16 bit data array */
int n_data; /* size of data buffers in queue */
int dhead; /* data queue head */
int dtail; /* data queue tail */
int dsize; /* data queue size */

/* File I/O */

FILE *file; /* record/playback file */
long block_size; /* size of data block */
long play_timeout; /* playback timeout (ns) */
long curr_pos; /* file position */

long cal_bias_pos; /* bias signal position */
long cal_mean_pos; /* mean signal position */
long data_pos; /* start of data */

void (*notify)(struct _sensor *); /* called when array filled */

int n_scan; /* number of scans */
float period; /* sample period (ms) */

short ***queue; /* queue of arrays of scans */
int qhead; /* write location of queue */
int qtail; /* read location of queue */
int qsize; /* queue size */

clock_t *tick; /* timestamp in clock ticks */

int n_average; /* # of samples to average */

/* window comparator parameters */

float threshold_lo[N_DIODE]; /* low threshold level */
float threshold_hi[N_DIODE]; /* high threshold level */
float hysteresis_lo[N_DIODE]; /* low hysteresis level */
float hysteresis_hi[N_DIODE]; /* high hysteresis level */

float bias[N_DIODE]; /* signal bias */

float threshold[N_DIODE]; /* threshold percentage */
float hysteresis[N_DIODE]; /* hysteresis percentage */

} sensor_t;

Figure 3.4: The sensor library data structure

int pmac: The file descriptor for ASCII communication with the PMAC board
and device driver.

int gather: The file descriptor for the gather node of the PMAC board and de-
vice driver.

unsigned long statusd: The sensor library status word. Each bit represents a mode or status
of the sensor library.
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time t start time: The time when the gathering of data was started.

unsigned long **data32: Low level circular queue for 32 bit or 4 byte data. This queue is
used for reading from a file or a device driver. The queue acts as a
buffer between the high-priority reading thread and the lower-level
recording (writing to a file) thread.

unsigned short *data16: Array of 16 bit data for reading and writing to a file. File data after
the 32 bit clock counter are saved in 16 bit format to reduce the file
size since most analog-to-digital converters use 12 bit values.

int n data: Number elements in each array of data (n_scan*(1+N_DIODE)).

int dhead: The entry point of the data queue.

int dtail: The exit point of the data queue.

int dsize: The number of arrays of data in the data queue.

FILE *file: The pointer for reading and writing to a file.

long block size: The size of one block of file data.

long play timeout: Time delay between reading a buffer of data from a file. The delay
is used to simulate the amount of time during data gathering.

long curr pos: Current read/write position in a file.

long cal bias pos: Position of bias calibration data in a file.

long cal mean pos: Position of averaged calibration data in a file.

long data pos: Position of the start of the data in a file.

void (*notify)(struct sensor *): A pointer to a function that is called when sensor library has read one
data buffer. This function can be an internal function or a supplied
function. The function is specified as an argument tosensorGatherArray().

short ***queue: Circular queue of data buffers. Each photodiode element is one 12-
bit analog value (short). An array of N DIODE photodiode ele-
ments (short*) is one scan. An array of scans (short**) is one
buffer of data. A queue is an array of data buffers (short***).

int n scan: The number of scans in each data buffer (short**).

float period: The actual sample period in milliseconds as dictated by the hardware
A/D board.

int q head: The entry point of the queue.

int q tail: The exit point of the queue.

int q size: The total number of buffers in the queue.

clock t *tick: An array of clock ticks representing the time when each data buffer
was gathered.

int n average: Number of samples to average in running-average filter.

float threshold lo[N DIODE]: An array of low threshold values for the window comparator. Each
element in the array represents the low threshold value for one pho-
todiode element.
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float threshold hi[N DIODE]: An array of high threshold values for the window comparator. Each
element in the array represents the high threshold value for one pho-
todiode element.

float hysteresis lo[N DIODE]: An array of low hysteresis values for the window comparator. Each
element in the array represents the low hysteresis value for one pho-
todiode element.

float hysteresis hi[N DIODE]: An array of high hysteresis values for the window comparator. Each
element in the array represents the high hysteresis value for one pho-
todiode element.

float bias[N DIODE]: An array of bias voltages for the window comparator. Each element
in the array represents the bias voltage signal for one photodiode el-
ement. The bias is removed from the input signal before the signal is
passed through the window comparator. The bias signal is removed
so that the detector only examines the laser induced portion of the
photodiode signal.

float threshold[N DIODE]: An array of percentage threshold values for calibrating the window
comparator. Each element in the array represents a percentage that
is used for calculating both the high and low threshold levels. The
threshold levels are based on mean signal values for each photodi-
ode element and are obtained during the calibration of the window
comparator. The percentages are expressed in non-negative values
where 1 represents 100 percent of the average photodiode signal.

float hysteresis[N DIODE]: An array of percentage hysteresis values for calibrating the window
comparator. Each element in the array represents a percentage from
the associated threshold level. The percentages are expressed in non-
negative values where 1 represents 100 percent of the high and low
threshold levels.

3.1.2 Sensor Library General Routines

sensor t* sensorOpen()

This function allocates memory for and initializes the sensor data structure, opens communication to the de-
vice driver and initializes the hardware. It returns an address to the sensor structure used by all sensor library
routines.

void sensorClose(sensor t* s)

This function resets the hardware, closes communication to the device driver and frees allocated memory.

int sensorNotifyOff(sensor t* s)

This function stops the sensor library from updating the circular queue. New data will not be written to the
queue; however, data already in the queue can be read. The function returns 0 if successful and -1 if not.

int sensorNotifyOff(sensor t* s)

This function updates the circular queue. New data will be written to the queue. The function returns 0 if
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successful and -1 if not.

3.1.3 Averaging Routines

int sensorSetAverage( sensor t* s, int n samples )

This function sets the size of the window for the running-average filter. A size of 0 turns averaging off. The
function returns 0 if successful or -1 if an error occurs.

int sensorGetAverage( sensor t* s )

This function returns the window size of the running-average filter. It returns -1 if an error occurs.

3.1.4 Buffered Data Gathering Routines

float sensorGather(sensor t* s, int n scans, float period)

This function allocates buffer memory and starts the data gathering process by invoking the low-level func-
tionsensorGatherArray(). The size of each buffer is specified by then scans argument. Theperiod
argument specifies the time interval in milliseconds between each scan. This high-level function invokes the
low-level functionsensorGatherArray(). The function prints out an error message and terminates the
application program if there is an error. It returns the actual sample period in milliseconds dictated by the
PMAC board if no error occurs.

short** sensorGetData(sensor t* s, clock t *tp)

This function returns an address of a two-dimensional array of gathered data. The clock value at the time
the data was collected is stored in the address tp. Scans of data are stored in a circular queue. The sensor
library reads the device driver and places the scans of data at one end of the queue. At the same time, the
application program reads the opposite end of the queue. If the queue is empty, the function waits until data
are available. The scans of data are two-dimensional arrays of photodiode signal levels. One scan is defined
as a short* array that contains N DIODE number of 12-bit digitized values (short) for each photodiode
element. The short** array is an array of scans. The sensor library stores the clock value at the time the
data was collected in the address tp, if it is not NULL.

int sensorSetQueueSize( sensor t *s, int n )

This function sets the queue size. The size must be set before queue memory is allocated. The function
returns -1 if the queue’s memory is already allocated and 0 if setting the queue size was successful.

int sensorGetQueueSize( sensor t *s )

This function returns the size of the data queue. If the sensor instance argument is invalid, a -1 is returned to
indicate an error.
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3.1.5 Unbuffered Data Gathering Routines

float sensorGatherArray(sensor t* s, short **scans, int n scans, float
period, void (*notify)(sensor t*))

This function is the low-level interface for collecting and storing data. The short** scans argument
is an array of scans, where int n scans is the size of the array. One scan is defined as a short* array
that containsN DIODE number of 12-bit digitized values (short) for each photodiodeelement. Thefloat
period argument specifies the time interval in millisecondsbetween each scan. Thevoid (*notify)(sensor t*)
argument is the function that is called when the short **scans array is filled. The following steps are
performed by sensorGatherArray():

1.Creates thread attributes and raises thread priority. The priority is raised to ensure that data are always
read before the application program processes the data.

2.Initializes sensor library data for gathering. The exact sample period is calculated based upon the PMAC
servo update interval. If a name of a function is specified as an argument tosensorGatherArray(),
a bit is set in the library status word to direct the thread to call the specified function.

3.If direct access to data is desired, the circular queue, short ***queue, is set to the address of the
two-dimensional array passed as the argument, short **scans.

4.Setup and start the device driver to gather data. Pass to the device driver the number of scans, number
of servo cycles between scans and the PMAC memory address of the source of data. The device driver
starts gathering data.

5.Start clock. The clock is used for time stamping each array of scans.

6.Create, start and detach the high-priority sensor thread. The sensorThread(), is started and de-
tached from the current process. The thread is detached because it does not return.

If any one of these steps is unsuccessful, the function prints out an error message and terminates the applica-
tion program. If successful, the function returns the exact sample period in milliseconds, as dictated by the
PMAC board.

3.1.6 Window Comparator Routines

int sensorConvertToFloat(sensor t *s, short** analog, float** f)

This function converts the array of gathered data,short** analog, from 12-bit digitizedvalues to floating-
point voltages. The float* array contains N DIODE number of voltage values (float) for each photodi-
ode element. The float** f array is an array of scans. The function returns -1 if an error occurred and 0
if successful.

int sensorComparator(sensor t *s, short** analog, char** binary)

This function passes data through a window comparator or detector. The function converts the array of gath-
ered data, short** analog, from 12-bit digitized values to floating-point voltages and then converts
them to binary detector states. The char** binary array is a two-dimensional array of detector states.
The char* array contains N DIODE number of detector states (char), one for each photodiode element.
The function returns -1 if an error occurred and 0 if successful.
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int sensorSetWindow(sensor t *s, int element, float threshold, float
hysteresis)

This function sets the threshold levels for the window comparator. The int element argument specifies
the desired photodiode element. The float threshold argument specifies the distance at which the
threshold levels should be set from the average signal, in terms of a percentage of the average signal. The
average signal level is determined during calibration. The float hysteresis arguments specifies the
distance at which the hysteresis levels should be set from the threshold levels, in terms of a percentage of the
threshold level. The function returns -1 if an error occurred and 0 if successful.

int sensorGetWindow( sensor t *s, int element, float *threshold, float
*hysteresis )

This function returns the threshold and hysteresis values. The function returns -1 if an error occurred and 0
if successful.

int sensorCalibrate(sensor t *s)

This function starts calibration of the window comparator. Calibration of the threshold and hysteresis levels
are dictated by the threshold and hysteresis percentage values passed to function
sensorSetWindow(). The actual threshold and hysteresis levels are based on an average signal level.
The function returns -1 if an error occurred and 0 if successful.

int sensorSetHighThreshold(sensor t *s, int element, float threshold)
int sensorSetLowThreshold(sensor t *s, int element, float threshold)

These functions set the high and low threshold levels of the window comparator. The int element ar-
gument specifies the desired photodiode element. The float threshold is the threshold voltage value.
The function returns -1 if an error occurred and 0 if successful.

int sensorSetHighHysteresis(sensor t *s,int element,float hysteresis)
int sensorSetLowHysteresis(sensor t *s, int element,float hysteresis)

These functions set the high and low hysteresis levels of the window comparator. The int element ar-
gument specifies the desired photodiode element and the float hysteresis is the hysteresis voltage
value. The function returns -1 if an error occurred and 0 if successful.

int sensorSetBias(sensor t *s, int element, float bias)

This function sets the bias of the window comparator. The int element argument specifies the desired
photodiode element and the float bias is the bias voltage value. The function returns -1 if an error oc-
curred and 0 if successful.

float sensorGetBias(sensor t *s, int element)

This function returns the bias for the window comparator. The int element argument specifies the de-
sired photodiode element and the function returns the bias value, in volts.
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float sensorGetHighThreshold(sensor t *s, int element)
float sensorGetLowThreshold(sensor t *s, int element)

These functions return the high and low threshold levels for the window comparator. The int element
argument specifies the desired photodiode element and each function returns the associated threshold value,
in volts.

float sensorGetHighHysteresis(sensor t *s, int element)
float sensorGetLowHysteresis(sensor t *s, int element)

These functions return the high and low hysteresis levels of the window comparator. The int element
argument specifies the desired photodiode element and each function returns the associated hysteresis value,
in volts.

int sensorCompressData(sensor t *s, char** old, unsigned long* new)

This function takes the detector data in a two-dimensionalarray and compresses the data into a one-dimensional
array. Thechar** old argument is the two-dimensionalarray of binary states, where each element (char)
represents the state of the detector. The char* array contains N DIODE number of detector states (char),
one for each photodiode element. The data is converted and stored in the unsigned long* new array.
Each photodiode element is represented as one bit in each unsigned long element of new. Photodiode
element 0 is the right most bit (LSB) and subsequent elements are to the left (MSB). The function returns -1
if an error occurred and 0 if successful.

int sensorSaveParameters( sensor t *s, char *filename )

Saves window comparator parameters to filename. Threshold and hysteresis window parameters are saved
to a file that can be later used to restore the window comparator configuration.

int sensorReadParameters( sensor t *s, char *filename )

Reads window comparator parameters from filename. Threshold and hysteresis parameters are read from a
file to restore a previous window comparator configuration.

3.1.7 Data Recording and Playback Routines

Data read from the device driver can be saved to a file to be retrieved and played back at a later time. A
circular queue is used to buffer the data between the device driver and the file. The following routines are
used to record and playback the collected data. If not otherwise specified, each routine below returns a zero
when successful or non zero when an error has occured.

int sensorFileOpen( sensor t *s, char *filename )

This function opens the file filename if it already exists, or creates it if it does not exist. The file header
is read and compared to the current sensor configuration if the file exists and written to the file if it is new.
Next, the file positions are set and the file pointer is positioned at the starting data block. Finally, a timeout
value is set to estimate the time it takes to collect data from the device driver.
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int sensorFileClose( sensor t *s )

This function simply stops recording or playing and closes the file.

int sensorFileBegin( sensor t *s )

This function stops recording or playing and rewinds the file pointer back to the first sensor data block.

int sensorFileEnd( sensor t *s )

This function stops recording or playing and moves the file pointer to the last sensor data block.

int sensorFileBack( sensor t *s, int n block )
int sensorFileForward( sensor t *s, int n block )

These function rewind and fast forward the file pointer n_blocks data blocks, respectively.

int sensorFilePause( sensor t *s )

The function stops recording or playing.

int sensorFileStop( sensor t *s )

This function stops recording or playing and moves the file pointer back to the starting data block.

int sensorFileRecord( sensor t *s )

This function starts the recording of the sensor data to a file. An error occurs if the file is currently being
played.

int sensorFilePlay( sensor t *s )

This function starts the playing of the sensor data from a file. An error occurs if the file is currently being
recorded.

long sensorFilePosition( sensor t *s )

This function returns the position of the file pointer.

int sensorFilePlayEOF( sensor t *s )

This function returns a true (1) if the end of file has been reached, false (0) if not.

int sensorFileSetPlayTimeout( sensor t *s, long timeout )
long sensorFileGetPlayTimeout( sensor t *s )

These functions set and get the play timeout value, respectively. The timeout value is used to mimic the delay
associated with reading the device driver. The units are in nanoseconds.
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3.1.8 Internals of the Sensor Library

Internal routines are only used by the sensor library and cannot be used by applications.

void *sensorThread(sensor t *s)

This function is the high priority thread that collects the sensor data from the data acquisitionboard and places
the data in buffers for lower priority threads to process. It runs at high priority so that it is scheduled before
any other thread in the data pipeline to prevent the loss of data during the collection process. The library
keeps track of the time when data was collected and prints out a warning if data are lost.

Data from the PMAC device driver are stored in a low-level circular queue, data32. The queue is used
to buffer the data between the device driver and a disk file. The data from the device driver enters at the
head of the queue in the same format of the PMAC buffer, a single dimensional array as shown in 3.5. The
info.size size calculates the largest buffer size that is a multiple of(N_DIODE+1). Data exits the queue
at the tail by the data recording thread, sensorRecordThread(). The head and tail move independently
of each other, but a warning is displayed if the head catches up to the tail. When the library is not saving data
to a file, neither the head nor the tail move.

0 1 32 0 1 32

N_DIODE

clk clk

                              /(float)(N_DIODE+1));
info.size = (N_DIODE+1)*(int)( GATHER_MAX_SIZE

info.size

Figure 3.5: Data format in PMAC memory

After data are saved in the low-leveldata32 queue, the first clock tick of the block of scans is stored into an
array ticks. The subsequent clock ticks for the rest of the block are ignored. For buffered data acquisition,
photodiode signal values are stored in a circular queue of two dimensional arrays, shown in Figure 3.6, one
dimension indexed with the scan and the other dimension indexed with the photodiode element. Each clock
tick in the array of clock ticks are associated with each block of queued scans.
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N_DIODE

Figure 3.6: Low-level 32 bit data format, array of clock ticks and high-level data queue

The clock ticks and the photodiode signal values are stored at the head of the queue by the high priority
thread. A specified function passed as an argument to the functionsensorGatherArray() is then called
to indicate that data has been written to the queue, only if a bit is set in the status word. The setting and
clearing of this bit is done in functions sensorNotifyOn() and sensorNotifyOff(), respectively.
For buffered data acquisition, thesensorNext() function is specified by the sensor library and is decribed
below.

Averaging is also performed in the high-priority thread if astatus bit is set by the functionsensorSetAverage().
A circular queue is used to calculate a running average by storingn_average number of signal values, sum-
ming them up and converting them to a single average value, for each photodiode element. The head and tail
are spaced n_average data points apart. Data points enter the queue at the head and leave at the tail. A
running sum is used for each photodiode element. Each signal value at the head of the queue is converted
to a floating point number and added to the sum. Each signal value at the tail of the queue is converted to a
floating point number and subtracted from the sum. An average is calculated, converted back to a 12 bit dig-
itized value and stored at the head of the high-level queue. If the value of n_average number of samples
has been changed the running sum for each photodiode is set to zero and the values between the head and
tail are set to zero. The tail moves away from the head for larger values of n_average and the tail moves
closer to the head for smaller values.

void *sensorNext(sensor t *s)

This function is called from the high priority thread, sensorThread(), to move the head of the queue to
the next buffer during buffered data gathering, where data enters. A warning is printed out to the standard
error terminal if the head reaches within one buffer of the tail, called overrun, indicating that a loss of data is
possible. Increase the size of the queue if overruns occur frequently. Next, the function signals a semaphore
to indicate that data are ready to be read from the queue at the tail. The queue is drained at the tail during
buffered data collection by the function sensorGetData() by waiting on this same semaphore.
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int sensorCalibration( sensor t *s )

This function is used to read and/or store a block of data scans used for calibrating the window comparator for
a specified number of photodiode elements. The high priority thread sensorThread() calls this function
when a bit is set to perform the calibration in the status variable. The status variable also contains bits
for each of the desired photodiode elements to calibrate.

Calibration in conducted with two sets of data. The first set of data is collected without the laser signal
present, to determine bias signals for each specified photodiode element. The bias signals are used to remove
the portion of the signal that is not from the laser (e.g. sunlight). The routine then calculates the average bias
signal for each specified photodiode element. In addition, bias signal minimum, maximum and standard de-
viation are calculated and printed out for informational purposes only. The next set of data is collected with
the laser signal present and is used to calculate the window comparator threshold and hysteresis levels. The
bias signal is removed and the remaining signal values are averaged for each specified photodiode element of
the data. The threshold and hysteresis levels are determined based on the specified percentage of the voltage
range of the analog-to-digital converter. The signal minimum, maximum, mean, standard deviation, thresh-
old levels and hysteresis levels are printed out for each of the desired photodiode element to the standard
error terminal.

void *sensorReadData(sensor t *s)

This function is used by the high priority threadsensorThread() and the functionsensorCalibration()
to read low-level data from the device driver or from a file.

If the data comes from a file, the first data point is read as the 32 bit clock tick value for the entire block of
scans. The rest of the block of data is read as 16 bit data, which is converted to 32 bit data. Finally, a delay
is added to mimic the collecting time of the data acquisition board.

The data comes from the device driver if the data does not come from a file. If a file is used to store the data, a
semaphore for the low-leveldata32 queue is signaled, indicatingthat previous queued data are available for
saving to a file. The head is then moved to the next empty buffer in the data queue. If the head meets up with
the tail, an overrun warning is issued indicating the loss of data. Increase the value of DATA_QUEUE_SIZE
if overruns occur frequently during data recording to a file. Lastly, the data from the device driver are placed
at the head of the data queue. Note that the signaling of the data semaphore and the moving of the head
occurs before the device driver is read because current data will be processed by the high priority thread
(e.g. calibration, averaging and placing the data in a high-level queue).

void *sensorRecordThread(sensor t *s)

This function is a low priority thread that saves data from the low-level data32 queue to a file. The high
prioritysensorThread() thread reads the data from the driver and places them at the head of thedata32
circular queue. A semaphore is signaled to write the data to file one data block at a time so it does not interrupt
the data gathering process. By writing only one data block at a time, the low priority thread can be switched
out of context by the higher priority thread and resumed when the high priority thread is idle.

The data file is comprised of three sections, as shown in Figure 3.7. The first section is the header, which
specifies the configuration of the sensor that is associated with the file. The header contains the number of
photodiodes that the data was collected, the calibration block data size, the number of scans per block of
data and the time. The next section of calibration data consists of two sections, the bias data section and the
mean data section. The bias data contains the photodiode signal levels when the laser is off. The mean data
contains averaged photodiode signals with the laser on. The last section contains an unlimited number of
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sensor data blocks from the recording process. Each block of data contains a 4 byte (32 bit) clock value, 2
bytes (16 bits) for each photodiode element, followed by groups of 2 byte clock values, which are ignored,
and photodiode values until n_scan number of blocks have been collected.

block0 block1 block2

sensor data:

4

0 1 32

2*n_diode 2

0 1 32clk

2*(n_scan*(1+n_diode)-1)

(clk)

block:

header calibration data sensor data

data file:

4 4

n_diode calibrate_size n_scan time

44

header:

block*calibrate_size block*calibrate_size

bias data mean data

calibration data:

Figure 3.7: Data Recording File Format. Sizes are in bytes.

3.2 Vehicle Delineation Library

The purpose of the vehicle delineation library is to convert sensor library data to vehicle delineation data,
such as vehicle front velocity, rear velocity, average acceleration and ultimately length. Figure 3.8 shows
the functional diagram of the vehicle delineation library, indicating the flow of data between the functional
aspects of the library.
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Figure 3.8: Vehicle Delineation Library Functional Diagram

The vehicle library obtains photodiode data from the sensor library. The photodiode data are comprised
of two separate photodiode sensors combined into one block of data. The block of photodiode data is then
passed through the sensor library comparator and converted to comparator states. A comparator state indi-
cates if a photodiode signal is outside or between two threshold levels.

Next, the software finds the timing of the front of the vehicle and the rear of the vehicle by using com-
parator data from the two separate photodiode sensors. When a vehicle passes under a particular photodiode
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element, the comparator state changes, creating an “edge.” Every photodiode element for each sensor is cou-
pled with another element, forming a “pair”, (e.g. element 1 for the first sensor corresponds to element 1 for
the second sensor).

The software looks for four edges for each pair of photodiodes, corresponding to the front of the vehicle
and the back of the vehicle. Once the edges are found, the software calculates the time between the first two
edges and the last two edges using the clock count from the sensor library. A clock count is associated with
each block of data so each instant of time for every sample of data can be calculated. Figure 3.9 shows the
timing of the two sensors. The front of the vehicle is indicated by times t0 and t1 and the rear of the vehicle
is indicated by t2 and t3.

t3t2t1t0

Sensor 2

Sensor 1

Figure 3.9: The timing diagram when a vehicle passes under two sensors.

The timing data are used by the vehicle library to calculate the front velocity and the rear velocity of a detected
vehicle. The software uses the time interval of the two sensors and the distance between them to calculate
the front velocity v0,

v0
� d

t1 � t0

where d is the distance between the two sensors. The rear velocity is calculated in a similar fashion

v1
� d

t3 � t2

The velocities are used to calculate the average acceleration of the vehicle as it passed under the two laser
sensors. The calculation is based on the front velocity, v0, and the rear velocity, v1, and the time of the first
rising edge, t0, and the time of the second rising edge, t2.

a � v1
� v0

t2 � t0

The length of the vehicle is determined from the front velocity, the timing of the first edges and the average
acceleration

l � v0
�
t2 � t0 � � 1

2
a

�
t2 � t0 � 2

The vehicle delineation library obtains the current time and then groups all of the above calculated parameters
into one block of data and makes the data available for reading by an application. The group contains the
timing information, the front and rear velocities, the average acceleration and finally the calculated length of
the vehicle.
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3.2.1 Vehicle Data Format

Figure 3.10 shows the data structures used by the vehicle delineation library. The complete vehicle library
code is listed in [12].

typedef struct vehicle_data {

char pair; /* which photodiode pair is this for? */

float v[2]; /* velocity (m/s) */
float a; /* average acceleration (m/s/s) */
float l; /* length */

time_t time; /* time (s) since the Epoch (1/1/70) */

} vehicle_data_t;

typedef struct _vehicle {

sensor_t *sensor; /* sensor instance */

unsigned long status; /* module status */
unsigned long timing_status[N_PAIR]; /* timing status of each

* photodiode pair */

int n_scans; /* buffer size */
float period; /* actual time between scans */

float distance; /* between laser lines */

short ***data; /* photodiode data queue */
int dsize; /* size of data queue */
int dtail; /* reading end of queue */
int dhead; /* writing end of queue */

/* vehicle data queue */
vehicle_data_t *queue; /* circular queue */
int qsize; /* queue size */
int qtail; /* reading end of queue */
int qhead; /* writing end of queue */

struct timeval timeout; /* semaphore wait timeout */

void (*notify)(struct _vehicle *v); /* called when data ready */

} vehicle_t;

Figure 3.10: The vehicle library data structures

The first data structure contains the vehicle delineation data that is available to applications. Vehicle
delineation data for each photodiode pair is grouped into a single structure. Each member of the structure is
described below:

char pair: The number that identifies the photodiode pair for this set of delineation data.

float v[2]: An array of velocities associated with the calculated front and rear velocities of the vehicle.

float a: The calculated average acceleration of the vehicle.

float l: The calculated length of the vehicle.

time t time: The calendar time when the vehicle passed under the sensor.
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The following data structure is internal to the vehicle library.

sensor t *sensor: The instance of sensor. This pointer points to the internal data
structure used by the sensor library.

unsigned long status: The vehicle library status word. Individual bits of this word are
used by the library to indicate the state or mode of the library.

unsigned long timing status[N PAIR]: An array of timing status word for each photodiode pairs. This
word is used to indicate the timing edges found by the library.

int n scans: The number of scans read from the sensor library per scan.

float period: The actual sample period in milliseconds as dictated by the hard-
ware A/D board returned from the sensor library.

float distance: The distance in meters between the laser lines on the road. This
value is used to determine the velocity of the front and rear of the
passing vehicle.

short ***data: A circular queue of photodiode data. The queue consists of two-
dimensional arrays obtained from the sensor library. One index
of the array is one scan of photodiode signals and the other index
of the array is a photodiode element.

int dsize: The size of the circular queue. The size determines the number of
scans of data the library stores.

int dtail: The location where data exits the circular queue. The tail moves
through the queue as data are used by the vehicle library.

int dhead: The location where data enters the circular queue. The head moves
through the queue when data are read from the sensor library.

vehicle data t *queue: The circular queue of vehicle delineation data. The queue is a sin-
gle dimensional array of data of vehicles that were detected.

int qsize: The size of the circular queue of vehicle delineation data. The size
specifies the amount of data the library buffers.

int qtail: The circular queue exit point of vehicle delineation data. The tail
moves through the queue as the data are requested from the appli-
cation program.

int qhead: The circular queue entry point of vehicle delineation data. The
head moves through the queue as vehicles are detected.

struct timeval timeout: The wait timeout period for vehicle delineationdata. ThevehicleGetData()
function waits for the specified time if no vehicle data is available.

void (*notify)(struct vehicle *v): A low-level function to signal that vehicle delineation data are
available. This function is invoked by the vehicle library thread
to indicate that vehicle data can immediately be processed. This
function is internal to the library for buffered data processing.

3.2.2 Vehicle Delineation Library Routines

A function interface is provided to allow the application program to setup, start and stop the vehicle detection
process. The routines interact with the underlying sensor library so the application does not have to. Raw
sensor data are obtained from the vehicle library as well. Each routine is described below:
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vehicle t *vehicleOpen( float distance )

Opens communication with the vehicle detection library. The distance argument specifies the distance
between the two laser lines on the road. The function allocates memory for the library data structure, initial-
izes members of the structure, opens communication with the sensor library and returns the memory address
of the structure. NULL is returned if an error occurs.

void vehicleClose( vehicle t *v )

Closes communication with the vehicle detection library. Communication is closed with the sensor library
and memory used by the vehicle library is freed.

float vehicleDetectData( vehicle t *v, int n scans, float period,
vehicle data t *vehicle data, void (*notify)(vehicle t *) )

Initialize and start unbuffered vehicle detection. A low-level circular queue of n_scans are allocated in
memory. The desired period between scans is passed to the sensor library and the sensor library starts
collecting data. The vehicle detection thread is created and started. The thread places detected vehicle data
in the vehicle_data array and calls the notify function to indicate that data has been placed in the
array. The function terminates the application program if an error occurs or returns the exact period dictated
by the PMAC servo update rate when it is successful.

int vehicleSetQueueSize( vehicle t *v, int n )

Sets the circular queue size of detected vehicle data. Returns a zero if successful or a -1 if an error occured.

float vehicleDetect( vehicle t *v, int n scan, float period )

Initialize and start buffered vehicle detection. A circular queue of detected vehicle data is allocated in mem-
ory based on the current queue size. The argumentsn_scan andperiod are passed to thevehicleDetectData()
function, which starts the data collection and vehicle detection process. The exact data collection rate dic-
tated by the PMAC servo update rate is returned if the function was successful or terminates the application
if an error occurs.

vehicle data t *vehicleGetVehicle( vehicle t *v )

Returns detected vehicle delineation data if they available in the circular queue or NULL if no data are avail-
able after a timeout period. The function waits on a data semaphore. If no data are available, it waits for a
period of time dictated by the timeout library variable and returns NULL. If data are available, the func-
tion reads from the tail of the circular queue and returns an address location of the vehicle_data_t data
structure, containing delineation data for the detected vehicle.

short **vehicleGetData( vehicle t *v )

Returns low-level sensor data that was obtained from the sensor library. The function waits on a data semaphore
for an unlimited amount of time. When data becomes available, the function reads from the tail of the data
queue and returns an array of scans.
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int vehicleDataReset( vehicle t *v )

Resets the detection state of vehicle library. All previous vehicle timing data are cleared. The function returns
a zero if successful or a -1 if an error occurs.

int vehicleEnable( vehicle t *v, int number )

Enables the photodiode pair number for vehicle detection. The vehicle library will detect edges on the
number pair of photodiodes. The function sets a status bit and returns zero if successful and a -1 if an
error occurred.

int vehicleDisable( vehicle t *v, int number )

Disables the photodiode pair number for vehicle detection. The vehicle library will not detect edges on the
number pair of photodiodes. The function clears a status bit and returns zero if successful and a -1 if an
error occurred.

3.2.3 Vehicle Library Internals

The following functions are internal to the vehicle library and cannot be used by application programs. De-
tails of the functions are described below.

void *vehicleThread( void *arg )

A high-priority thread that reads photodiode data, processes the data, finds vehicle delineations based in the
data and places the delineation data in a buffer. The thread priority should be lower than the data collection
thread, but higher than the data recording thread in the sensor library. The thread detects vehicle delineations
by using two separate photodiode sensors that are focused a specifieddistance apart. The time differential
in the signals allows the thread to calculate the front and rear velocity of the vehicle, the average acceleration
and the length. The time of the detected signal is stored and the delineation data are stored at the head of a
high-level circular queue. Vehicle data can be obtained from the queue by an application program.

The thread obtains photodiode signal data from the sensor library and places the data at the head of a low-
level circular queue. This queue is used to buffer the raw photodiode signals so an application program may
request data periodically from the tail of the queue. The photodiode signal data are passed through a window
comparator that converts the data to binary states. Basically, the comparator indicates if the laser is blocked
(true) by a vehicle or not (false). The thread moves the head of the low-level queue to the next buffer and
signals that photodiode signals are available. The thread checks a reset status bit and clears the detection
states if the bit is set.

After the photodiode signal is queued and converted to comparator states, the thread finds the changes of
state for each element of the two photodiode sensors. Consecutive elements of each sensor are associated in
pairs. The sensor library reads both photodiode sensors as one scan, one sensor before the other. For each
scan of photodiode data, the thread examines each photodiode element pair. The thread ignores pairs that are
disabled for detection.

The thread then finds any change in comparator states, called edges. The edge detection algorithm was writ-
ten so it does not matter which sensor is the leading sensor, as long as they are consistent. Once an leading
edge is detected on a particular sensor, that sensor must be the first trailing edge. As a result, this algorithm
supports a vehicle passing backwards through under laser detector. The time of the scan is calculated based
on the first scan clock tick once two edges have been detected. Once all four edges have been found, the front
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velocity of the vehicle is calculated based on the specified distance between the laser lines and the time
difference between the first two edges. The rear velocity is calculated in the same manner, based on the last
two edges. Average acceleration is calculated from the two velocities and then the length is calculated from
the front velocity, the time difference between the first edge and the third edge and the average acceleration.

After the length is calculated and stored, the current time is stored as well as the pair number that the cal-
culations were based upon. The thread then calls the specified notify function that indicates that data are
available in the queue buffer for further processing. The edge detection algorithm loops again for each pho-
todiode pair in each scan of data.

void vehicleNext( vehicle t *v )

This internal notify function is called from the vehicle library thread to move the head of the vehicle data
queue to the next available buffer, where data enters the queue. A semaphore is signaled to indicate that data
are available in the queue for the application program to read from the tail. A warning is displayed if the
head meets up with the tail, which indicates that data is lost. If these warnings occur frequently, increase the
amount of QUEUE_SIZE defined sensor.h file of the sensor library.

3.3 X Windows System Applications–Xvehicle

X Windows System applications are used to display the photodiodesensor and vehicle delineation data in real
time. They use the sensor and vehicle libraries to collect and process the data and display the data in vari-
ous ways. The applications use common visual interfaces to the window comparator, the file recording and
playback operations and the configuration averaging filter. The typical application program is the Xvehicle.

The Xvehicle application is used to display analog photodiode sensor signals and the vehicle delineation
data in real time. The signals are displayed on the left of a strip chart that scrolls from right to left, showing
the time history of the signals, as shown in Figure 3.11. At the bottom of Xvehicle window is the strip chart
signal bar, which shows a colored button for each corresponding signal in the strip chart. Clicking on a signal
button turns on or turns off the signal in the strip chart. A solid button indicates the corresponding signal is
on. Vehicle delineation data is displayed for each pair of photodiodes as the application receives them. The
data includes the front velocity (v1) average acceleration (a), rear velocity (v2) and the resulting length (l).

Figure 3.11: Xvehicle
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3.3.1 Common Window Interfaces

All applicationscontain a menu bar, a status window and a strip chart. TheFilemenu button in the menu bar
contains a quit entry that exits the application and an entry that displays a file recording and playback window.
The Chart button in the menu bar raises a window to configure the strip chart. The Comparator menu
button contains entries to read, save, start, configure and adjust the window comparator calibration. The next
button in the menu bar is the ON/OFF button that switches the collection of data and the strip chart on or off.
The next button is the displays the number of photodiode signal samples that are averaged in the strip chart.
This number is changed by clicking on the button and entering the desired number of samples in a pop-up
window. Below the menu bar is a status window that displays data collection parameters and scan display
rate. The data collection parameters include the number of scans per desired scan period and the actual scan
rate dictated by the PMAC board. The scan display rate is the rate at which the application requests data
from the sensor library. But it does not mean that the data are not actually displayed at that rate because the
application waits until data are available.

3.3.2 Stripchart Configuration Window

The Chart button raises window for strip chart configuration, as shown in Figure 3.12. A selected window
comparator state for one photodiode element can be displayed at the bottom of the xsensor or xvehicle strip
chart. A strip chart grid can be turned on or off with the gridON/OFF button and the strip chart scale displayed
in the scale button can be changed using the scale menu. The chart voltage offset can be changed by entering
a number in the offset field. The Done button applies any changes and closes the window. The Cancel
button closes the window without changing the strip chart. The Apply button applies any changes without
closing the window.

Figure 3.12: Chart configuration window

3.3.3 Comparator Calibration Windows

The Calibration menu contains an entry to calibrate the window comparator of the sensor library. When
the Calibrate Element... entry is selected, the window shown in Figure 3.13 is displayed. The de-
sired element to calibrate is shown at the top in a menu button. A new element can be selected by clicking on
the button and selecting another element in the menu. The threshold and hysteresis fields are used to change
their respective percentages of analog-to-digitalconverter voltage range. TheCancel button closes the win-
dow without changing the comparator configuration. The Reset button changes the values back to previous
values. The Set button sets the parameters in the sensor library. The Apply button sets the parameters and
starts calibration for the displayed photodiode element. The Done button is the same as the Apply button,
but also closes the window.
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Figure 3.13: Comparator calibration window

When the Adjust Element... entry of the Calibration menu raises the window shown in Fig-
ure 3.14. This window is used to adjust window comparator parameters for a desired photodiode element.
The top of the window shows the desired photodiode element. The element can be changed by clicking on the
element menu button and selecting the desired element to adjust. Text fields are used to change the individual
window comparator parameters. The Cancel button closes the window without changing the parameters.
The Reset button changes any changes parameters back to previous values. The Set button sends the pa-
rameters to the sensor library and the Done button applies the parameters and closes the window.

Figure 3.14: Comparator adjust element window

3.3.4 The Record & Playback Window

For each X windows application, the Record/Play... entry in the File menu button displays the win-
dow in Figure 3.15. The File menu button contains entries for closing the window as well as creating,
opening and closing a data file. The area to the right of the File menu button is used to display the name
of the current data file, which is blank if no file is open.

Below theFile menu button two playback speed buttons surrounding a file byte counter. The two speed
buttons, - and +, lower the playback speed and increase the playback speed, respectively. Holding these
buttons down is the same as repeatedly clicking on them.

Below the counter and speed buttons are the play/record buttons. Starting with the left button, the stop
button (with the square) stops the playing or recording of the data file. The play toggle button starts play-
ing the file and the record toggle button starts data recording. The pause toggle button stops the playing or
recording of the data file. Below the play/record buttons are the rewind and fast forward buttons. The move
to start button, the rewind button, the fast forward button and the move to end button are used to move the
file pointer during data file playback. Holding down rewind and fast forward buttons increase the speed of
the file pointer.
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Figure 3.15: Data record/play window
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Chapter 4

Experimental Results

4.1 Sensor Field of View

During indoor resting, each of the 25 sensor elements was tested to verify the size of the field of view and
location of each element. To test this a reflective stripwas moved in a small increments across the entire length
of the laser line placed approximately 18 feet from the sensor, and the sensor signal level was recorded. The
sensor produced a negative voltage in response to the laser, so reflections can be seen as large negative values.
Figure 4.1 shows the signal for each of the middle 13 elements plotted as a function of reflector location.
By examining these data in more detail it can be seen that the measured field of view of each element is in
agreement with the theoretical value. Figure 4.2 shows the signals for three representative elements. As can
be seen, the separation between adjacent points of maximum reflection (labeled f, g, and h in Figure 4.2)
along the length of the laser line is approximately 4 inches, consistent with our previous calculations. Note
that the signal level was recorded with a resolution of 0.1 volt using an oscillascope.
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Figure 4.1: Sensor signal for 13 elements
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Figure 4.2: Sensor signal for selected elements

4.2 Field Test Results

Field tests have been made on the highway with real traffic at the junction of highway I-5 and I-80 in Sacra-
mento. In the tests eight elements (four elements from each sensor array) were used. The test results shown
that the system can collect data in the real traffic environment. The front and rear speeds, length and acceler-
ation can be calculated according to the measured data. From the test results, we found that the front and rear
speeds of the four element pairs are different. One reason for this error is because the separating distance of
two laser-sensor set are too small. In the current version, the separating distance is 1 foot and sample rate is
1.11 KHz. Assuming a vehicle pass through detector zone at speed of 60 MPH, there are only 12 samples
during this distance. This caused the relatively big error in speed measurement. The other cause of error is
the slow transition time of the analog signal from system hardware. The transition time is comparable to the
time the vehicle crosses two laser lines. This problem will be fixed in the next version field prototype by
using digital output. Figure 4.3 is a picture of the test site and the mount of detection system on the bridge
acrossing the highway. Figure 4.5 shows the process of testing and correspoding signals and data displayed
on the screen. From this picture we can see that the changes in the signal are clear when the vehicle passed
the detection system. The picture also shows that the signals and data are stable.
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Figure 4.3: Detection system mounted above the highway

Figure 4.4: Test results(1)
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Figure 4.5: Test results(2)
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Chapter 5

Current Work

We are continuing work on the improvement of the field prototype system, according to the problems that sur-
faced in the highway tests. We are designing and building a new version system. A new optical configuration
and new signal amplification and processing electronics are being designed and built. We are using low-cost
amplifier chips with suitable bandwidth which can meet the high demand of our detection system for signal
amplification and without unnecessary features. The time response of the new circuit provides a good match
to the pulse length of the laser. The high-frequency signal is amplified effectively and stably without oscilla-
tion. The new circuit increases the signal-to-noise ratio by a factor of 5 relative to the previous one. A new
method using a TTL logic circuit, instead of a sample-and-hold amplifier, has been designed to handle the
short pulse of the signal. By this method, a TTL logic circuit is triggered by the amplified signal and outputs
a digital signal. This new design simplifies the circuitry and solves the problem of slow time response caused
by the slow sampling rate of the sample-and-hold in the previous version system. Using a digital signal as
output from the sensor electronics will significantly reduce the burden of signal processing in the software.
The implementation of this method is based on the high signal-to-noise ratio of the new circuitry. Because
surface mounted chips and simplied circuits are used, the new version electronics has a compact size. This
makes it possible to place all amplifiers for 24 channels on a small printed circuit board. This is important
to eliminate the noise, because the signal from the photodiode array is very weak. The new version of the
system allows us to gather more channels of the signal, for example up to 24 channels, which is necessary
to obtain precise profile of moving vehicles. The cost of the new version circuitry is only one fifth of that of
the previous one. This will be helpful for the commercialization of our system in the future.

We are developing software for the new version system using a Microsoft platform because of its com-
patibility, low-cost and rich support from third party. In order to ensure the high real-time performance of
the software, a real-time subsystem RTX based on the Microsoft Windows NT is used. It allows determin-
istic real-time and non-real-time processing within the same computer. National Instrument data acquisition
boards will be used in our detection system for signal input hardware. An AT-MIO-16E-10 board will be
used for analog input and a PCI-DIO-32SH or PCI-DIO-96 digital I/O board as digital input.
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Chapter 6

Conclusions

Over the past year we have developed a field prototype of a laser-based real-time, non-intrusive detection
system for measurement of delineations of moving vehicles in real traffic environments. A field prototype
has been constructed and some tests have been done on the highway with real traffic. The test results further
verified that the principle of our detection system is technically sound and indicated that the algorithm imple-
mented in the software works in most cases. The simple method of detecting vehicle presence based on the
absence of reflected laser beam works reliably in the real traffic environment. The real-time data acquisition
software has been developed to gather and process the data from system hardware. The vehicle delineation
library wss developed to convert data from the sensor library, which was developed in previous project, to
vehicle delineation data, such as vehicle velocity, real velocity, average acceleration and length. The speed,
acceleration, and length of a detected vehicle can be displayed on the screen simultaneously. All these data
of the detected vehicle can be saved with a time stamp to a disk in real time. The data can later be analyzed to
improve the performance of our detection system. A significant problem of this version of the field prototype
are a slow time response and not high enough signal/noise ratio. These problems will be solved in the current
work toward a new version field prototype.
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Appendix A

Detail Drafts of Mechanical Components
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Figure A.1: Laser stand 1

53



Figure A.2: Laser stand 2
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Figure A.3: lens Frame 1
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Figure A.4: lens Frame 2
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Figure A.5: Sensor mounter
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