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ABSTRACT OF THE THESIS

End-to-End Joint Multi-View 3D Object Detection and Tracking via Learning to Associate

by

Wenlong Yi

Master of Science in Computer Science

University of California, Los Angeles, 2024

Professor Bolei Zhou, Chair

Associating objects accurately across cameras and frames is essential but challenging for

vision-based perception in autonomous driving system. In a vanilla tracking-by-detection fashion,

most prior works associate detected objects over views and time via a great many of heuristic

matching rules. In this work, we propose a simple yet efficient method named EMAT, or End-

to-end Multi-view Association Tracker, which jointly performs 3D detection and tracking from

multi-camera and multi-frame images in an end-to-end manner. Our key design is to predict the

object appearing information and affinity of each object in sequential frames from temporally

fused object query embedding features, which extracted from a temporal fusion module designed

for learning to associate. Without any post-process, 3D tracklets are built up across frames,

along with 3D detection and velocity estimation. Additionally, we propose a novel strategy to

boost object velocity estimation by the information of object appearing. Experiments on the

large-scale nuScenes dataset demonstrate that our approach outperforms the 3D detection baseline

we build upon, achieving superior camera-based 3D tracking and velocity estimation performance.

Additionally, it surpasses traditional 3D tracking methods, showcasing its effectiveness in real-

world scenarios.
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Chapter 1

Introduction

Camera-based 3D object detection andmulti-object tracking (MOT) are crucial for visual perception

system in the field of autonomous driving and robot. 3D object detection task aims to predict 3D

bounding box, namely the location, orientation and dimension of objects in 3D space. 3D MOT

requires detection of objects in each frames and associate those to build up tracklets. The tracking-

by-detection paradigm plays a dominant role in 3D MOT for a long time. Normally, a 3D detector

is firstly conducted to estimate 3D bounding boxes for individual frames, and then association

module establishes correspondence between the objects in different frames to form trajectories.

Usually formulating association step as a bipartite matching problem, recent works have explored

several cues in recent years, like Intersection-over-Union (IoU) [2], motion modeling [1, 38],

appearance [36, 38, 42] and etc. to association. Although simple and fast, these hand crafted

procedures may fail easily in challenging scenarios, consequently hinder the performance of data

association. Also following this paradigm, some recent learning-based methods are introduced to

first find object proposals in different frames and then obtain the association in the feature space

in a supervised learning manner, applied in 2D MOT [3, 32] and 3D MOT [7, 12, 38]. However,

optimizing detection and association separately will cut off the transmission of the uncertainty

and error gradient between detector and tracker [18].
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Recently, multi-view 3D perception in bird’s eye-view (BEV) has attracted considerable

attention and shown promising performance and efficiency over those in Perspective View

(PV), which based on the monocular 3D detector followed by hand craft cross-camera post-

processing rules. At the same time, transformer-based framework demonstrates strong capabilities

in several perception tasks like detection [6, 43] and segmentation [28, 39]. Further, multi-

camera 3D perception methods based on transformer are proposed for autonomous driving

scenarios [15, 17, 18, 20, 35, 41]. By leveraging multi-frame information [17, 18, 20], the temporal

attributes of objects such as velocity can be better estimated than methods which only take single

frame of multi-view images as input.

Therefore, to avoid the weakness of traditional visual 3DMOT framework, we propose a simple

but efficient framework EMAT (End-to-endMulti-viewAssociation Tracker), which have the ability

to detect and track 3D objects from multi-view and multi-frame images in an end-to-end manner.

As shown in the bottom part of Figure 1.1, EMAT takes multi-view images It−1 and It at both

t-1 and t timestamps as input, and simultaneously performs 3D detection Dett, data association

Assot−1,t and object velocity estimation V elt−1,t. To be specific, on the basis of off-the-shelf

transformer-based multi-view 3D detector, such as DETR3D [35], PETR [21, 22], BEVFormer [20],

we first design Association-oriented Temporal Fusion (ATF) module to aggregate features from

object query embedding of different frames. Instead of simply stacking sequential features as

most previous works, ATF module leverages attention mechanism for feature fusion. Second, to

achieve the purpose of end-to-end training and unified optimization for 3D detection and MOT,

these fused features are utilized to predict the object appearing information and affinity of each

object in sequential frames, eventually to establish correspondence across time. Additionally, we

propose Trustworthy Velocity Estimation (TVE) strategy, which further leverages object appearing

information as an important cue to improve velocity estimation.

We summarize our main contributions as follows:
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1. We propose a unified and general framework EMAT, to jointly optimize multi-view object

detection and 3D multi-object tracking by learning to associate, where data association is

finished without any post-process via estimating sequential objects appearing information

and affinity.

2. We design ATF, a temporal fusion module to aggregate features from sequential object query

embedding features for association.

3. We introduce a novel strategy, Trustworthy Velocity Estimation (TVE) to reduce object

velocity error.

4. Our simple approach EMAT outperforms the 3D detection baseline we build upon, and

surpasses traditional 3D tracking methods.

Figure 1.1: Brief Comparison Between Tracking-by-Detection Pipeline with Our Proposed
Framework EMAT. Traditional tracking-by-detection paradigm first performs 3D detection
frame by frame, and then a tracker is used for establishes correspondence between the objects in
different frames to form trajectories, along with object velocity estimation. EMAT takes multi-view
images input It−1 and It at both t-1 and t timestamps, and simultaneously performs 3D detection
Dett, data association Assot−1,t and object velocity estimation V elt−1,t. Best viewed in color.
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Chapter 2

Related Work

Multi-View Camera-based 3D Object Detection For camera-based 3D object detection in

the field of autonomous driving, early methods [4, 23, 24, 26, 29, 31] mainly estimate the 3D

bounding boxes and categories in the single image view. To perform multi-view 3D detection,

a naive solution is first to process different views separately with 3D detector and then utilize

cross-camera postprocessing.

To make full use of information across cameras and take efficiency into account, recent works

attempt to conduct 3D object detection in 3D world space given multi-view images as input.

Based on view transformation methods from perspective view (PV) to bird’s eye-view (BEV),

most multi-view detection works can be divided into two main categories [25]. One branch of

works [13,14,19,29] follow LSS [27], predicting depth distribution and generate pseudo point clouds

with probability-weighted image features for BEV object detection. Another paradigm follows

DETR3D [35]. Extending from DETR [35] and Deformable DETR [43], DETR3D defines sparse

3D object queries interacting with extracted multi-view image features by iterative transformer

attention layers. PETR [21] and PETRV2 [22] further introduce 3D position-aware representations.

BEVFormer [20] uses deformable transformer to aggregate image features and uses temporal

attention to fuse the sequential BEV features. As temporal information plays an important role
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in predict the motion state of dynamic objects, more recent works get better 3D detection and

velocity estimation performance by leveraging multiframe features [13, 18–20, 22]. Under this

trend of exploiting temporal information, a joint 3D detection and tracking framework is proposed

in this work.

3DMulti-Object Tracking Following the common tracking-by-detection paradigm, 2D multi-

object tracking has been studied extensively in recent years. In autonomous driving, most modern

3D trackers still follow this pattern, where they perform 3D detection frame by frame and then

associate them with previous tracklets via several hand crafted cues, and finally followed by a

heuristic matching step, either using a greedy matching or Hungarian matching algorithm [16].

Many methods estimate motion state of tracklets through 3D Kalman filtering, then perform

association using 3D IoU [37] or L2 distance [40]. Except for location of objects, more cues like

velocity [40] and appearance features [7, 9, 12, 38] are explored for a more robust association.

Apparently, there are still much left for improvement with regard to these approaches, where

treating detection and association separately, with limited handcrafted cues and complicated

post-process procedures. To this end, we jointly learn multi-camera detection and tracking in the

3D space by exploiting the framework of transformers [33] in this work.
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Chapter 3

Method

In this section, we first elaborate overall architecture of EMAT, and then getting into the specifics

of our designs. we introduce how to conduct end-to-end multi-view 3D detection and tracking

by proposed EMAT framework in 3.2, how to aggregate temporal features for data association

by proposed ATF module in 3.3 and how to boost object velocity estimation by proposed TVE

strategy in 3.4.

3.1 Overall architecture

The overall framework of EMAT can be built upon off-the-shelf transformer-based multi-view

3D detector [15, 20–22, 35], where takes multi-view images as input, followed by a image feature

extractor backbone and then multi-level image features and learnable object queries are interacted

by iterative transformer attention layers to generate instance-level embedding feature and finally

get 3D detection results via detection head.

As illustrated in Figure 3.1, we extend the basic transformer-based multi-view 3D detector to

simultaneously detect and associate objects across time. Given the images captured by on-board

cameras from Nv views at timestamp t, the multi-view images It ∈ RH×W×C×Nv are fed to the
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backbone network (e.g. ResNet [11]) to obtain the image features. H,W,C denotes height, width

and number of channels of images, respectively. With preserved instance-level embedding features

Et−1 at the prior timestamp t-1, we aggregates temporal information from Et−1 and Et at time t,

by proposed association-oriented temporal fusion module. Then we build prediction heads upon

these fused features for association and velocity estimation. We estimate the object appearing

information and affinity across frames to produce association and generate tracking IDs directly.

For velocity prediction, we propose trustworthy velocity estimation strategy to reduce object

velocity error with objects appearing information.

Each sample of the video sequence will be fed into EMAT in chronological order during online

inference. The instance embedding features Et are preserved for the next.

Figure 3.1: Schematic illustration of our framework. EMAT extends the basic transformer-
based multi-view 3D detector to simultaneously detect and associate objects across frames. we
aggregates temporal information from Et−1 and Et by association-oriented temporal fusion
module. We estimate the object appearing and affinity across frames to produce association
Assot−1,t and generate tracking IDs without any post-process. We propose trustworthy velocity
estimation strategy to reduce object velocity estimation error.

8



3.2 Objects Appearing and Affinity Estimation

In order to establish correspondence across time to produce data associationAssot−1,t and generate

tracking IDs without any post-process, we estimate the dynamic objects appearing information

and affinity from features produced by Association-oriented Temporal Fusion module described

in the next subsection. Specifically, for each dynamic instance assigned ground truth at time t, we

predict its appearing status by a binary category classification:

1. new-born object that only appears at time t.

2. old object that appears at both t-1 and t.

As new-born objects will be assigned a new tracking ID, we focus on relation of sequential old

objects.

Then, for the set of old objects

Bold
t = {boldt , i = 1, 2, ..., N old

t } (3.1)

at timestamp t, we further predict the object affinity with filtered dynamic objects

Bflt
t−1 = {bfltt−1, i = 1, 2, ..., Nflt} ∈ Bt−1 (3.2)

Where the Bt−1 is the full set of objects at t-1, N old
t is the number of old objects at time t, and Nflt

is a pre-defined fixed number smaller than number of object query Nq and Bflt
t−1 is the top-Nflt

confidence objects within Bt−1. Based on the temporal fused features which embed rich instance-

level information, we model the affinity estimation as a multi-category classification problem.

We perform a Nflt-category classification for each old object boldt ∈ Bold
t at time t. For the ith old

object boldt i, we predict the corresponding index idxi which denotes the index of filtered dynamic

objects Bflt
t−1. The classification score normalized by softmax to 0-1, can be used as similarity for
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tracking, and the classification results can be used for association directly.

During inference, the appearing head distinguishes old or new-born objects. We keep the

tracking IDs of old objects and assign new-born objects with new ones according to the prediction

of affinity. Object trajectories are yielded with the assignment process frame by frame.

3.3 Association-oriented Temporal Fusion

Most previous works towards vision-based 3D detection try to exploit the temporal information

by simply stacking spatial-aligned BEV features [13, 22] or pseudo point clouds [19] from several

frames. Since all these temporal fusion strategies are designed to boost 3D detection and temporal

attributes like velocity, the fused features may not be friendly for data association. To this end,

instead of stacking features from different frames or adding a FFN on weights of cross-attention

to producing affinity matrix [18], we design Association-oriented Temporal Fusion (ATF) module,

that utilizes cross-attention to aggregate inter-frame features for learning to association.

To be specific, as illustrated in Figure 3, first, we combine implicit object query embedding

feature Emb and explicit location information Loc decoded by regression branch to generate

combined feature

CF = MLP(Emb⊕ Loc) (3.3)

by MLP layer, where weights are shared across frames and ⊕ denotes concatenation. Then,

multi-head cross attention is adopt for aggregating objects information across time. In detail, we

use the combined feature CFt at time t as query, and the combined feature CFt−1 at time t - 1 as

key and value for multi-head cross-attention:

FQ = MHA(CFt, CFt−1, CFt−1) (3.4)

Where MHA denotes multi-head attention.
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The learnable attention weight matrix AW explores the correspondence of detected objects

in different frames and contains matching information [18]. So, both AW and output fused

embedding feature FQ are concatenated for generating final feature

FA = MLP(AW ⊕ FQ) (3.5)

for learning to associate by another MLP layer.

Figure 3.2: Association-Oriented Temporal Fusion Module. Using implicit object query
embedding feature and explicit location information as input, multi-head cross-attention is adopt
for aggregating objects information across frames. Attention weight matrix and fused feature are
both used for generating final feature.
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3.4 Trustworthy Velocity Estimation

Since velocity is a temporal attribute of dynamic objects, information from multi-frame is a

necessity for valid velocity estimation. However, when an object is new-born, that is, only

appearing at timestamp t instead of t-1, this is no temporal cues for velocity estimation of

this object at timestamp t. Moreover, forcibly learning velocity of objects which only appear

at a single frame brings into much noises for training, leading to lower velocity estimation

performance. Therefore, we propose Trustworthy Velocity Estimation (TVE) strategy, which make

sure the velocity estimation branch focus on objects with temporal cues, leading to reasonable

and trustworthy velocity estimation.

In contrast to previous works, which widely use standardL1 loss for all assigned object samples

when training, we consider object appearing information for velocity learning. Specifically, we

treat new-born and old objects differently through the velocity loss of TVE Lvel, defined as:

Lvel = λnew · lnewvel + λold · loldvel (3.6)

where lnewvel , l
old
vel present velocity loss generated by newborn objects and old objects, respectively.

We set λnew far smaller than λold to softly ignore new-born objects and ensure the velocity learning

to focus on objects with temporal cues, avoiding velocity training noises by new-born objects. We

adopt standard L1 loss for lnewvel and loldvel .

3.5 Training Loss

Following prior transformer-based works [6, 35], a set-to-set loss, of which the assignment is

solved by Hungarian algorithm, is adopt for all of loss items in EMAT. The multi-task losses can

be divided into three parts: multi-view 3D object detection loss Ldet, object velocity loss Lvel

introduced in 3.4 and association loss Lasso. Follows DETR3D [35], the multi-view 3D object
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detection loss consists of two major parts, a focal loss [30] for object category classification and a

L1 loss for object bounding box parameters regression, of which including location, dimension

and orientation in 3D space. For association loss Lasso, we apply cross entropy loss LCE for both

object appearing and affinity. The object appearing loss is formulated as:

Lapp =

Np∑
i=1

LCE(ĉi, ci) (3.7)

where ĉ is the predicted appearing categories in new-born, old, c is the ground truth categories,

and Np is the number of assigned positive samples by Hungarian algorithm [16] as most set-

to-set detection methods [6, 20, 35, 43]. For each old object boldt ∈ Bold
t at time t, we perform a

Nflt-category classification. The affinity loss is formulated as:

Laff =

Nold
i∑

i=1

LCE( ˆidxi, idxi) (3.8)

where idxi denotes the index of filtered dynamic objects Bflt
t−1 that the ith old object boldt i is

corresponding to.

To summarize, EMAT is supervised with the combination of these loss items:

L = λdetLdet + λvelLvel + λappLapp + λaffLaff (3.9)

where λdet, λvel, λapp and λaff are the loss weight of detection, velocity, appearing and affinity,

individually.
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Chapter 4

Experiments

4.1 Dataset and Metrics

We validate our proposed method on nuScenes dataset [5], a challenging large-scale public dataset

in the field of autonomous driving. It contains 1000 scenes and is officially divided into 700/150/150

for training/ validation/testing set, respectively. Each sample consists of images from 6 cameras,

and is fully annotated with 3D bounding boxes of 10 categories at 2hz. 7 of 10 object categories

are also provided with tracking annotation.

For 3D object detection task, the evaluation is performed on the full 360° panorama. Followed

the official evaluation protocol, we report mean Average Precision (mAP) and nuScenes Detection

Score (NDS). NDS is computed by five metrics, including mATE, mASE, mAOE, mAVE, and mAAE

defined for measuring translation, scale, orientation, velocity, and attribute errors of true positive

objects, respectively. We report Mean Average Velocity Error (mAVE) to evaluate velocity error.

For 3D MOT task, also consistent with office metrics, we evaluate performance by two major

metrics, Average multi-object tracking accuracy (AMOTA) and average multi-object tracking

precision (AMOTP), by averaging over the multi-object tracking accuracy (MOTA) and multi-

object tracking precision (MOTP) metric at different recall thresholds, respectively. We refer

14



readers to the official paper [5] of nuScenes dataset for more details.

4.2 Experiment setting

We build up our method based on the transformer-based multi-view 3D detector BEVFormer [20]

with the ResNet-DCN [10, 11] backbone. The image feature extractor use pretrained model

initialized from FCOS3D [34] checkpoint. The number of object queries Nq and filtered boxes

Nflt are set to 900 and 300. We set λdet = 1.0, λvel = 0.05, λapp = 0.05 and λaff = 0.25. By default,

we train our model for 24 epochs, with a starting learning rate of 2e-4. The batchsize is 8 on

4 GPUs, with 1 sample per GPU. For ablation study, we use half of the whole training set and

ResNet-50-DCN as backbone for memory efficiency.

4.3 Comparison with Baseline

Without relying on any external data, we use only the training set for generating the results on the

testing set. The results are obtained using a single model without any testing time augmentation.

As shown in Tab 4.1, our method achieves significant improvements over traditional methods

on the nuScenes camera 3D tracking benchmark, reaching an AMOTA of 37.0% and an AMOTP

of 1.12m. Notably, it surpasses the best traditional method by a substantial margin of 9.3% in

AMOTA.

We also compare this work with other vision-based methods which report both 3D detection

and tracking performance on the nuScenes test set. As listed in Tab 4.2, our work outperforms the

second place on the tracking metrics AMOTA and AMOTP, particularly on AMOTA by a large

margin of 9.3%, and on velocity metric mAVE by a significant improvement of performance from

0.845 m/s to 0.326 m/s, while remaining comparable 3D detection performance evaluated by mAP

and NDS.
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Method AMOTA(%) ↑ AMOTP(m) ↓

CenterTrack [40] 4.6 1.54
DEFT [7] 17.7 1.56
Time3D [18] 21.4 1.36
QD-3DT [12] 21.7 1.55
MUTR3D [41] 27.0 1.49
PolarDETR [8] 27.3 1.39
EMAT 37.0 1.12

Table 4.1: Comparison with camera-based tracking methods on the nuScenes test set. Our
method demonstrates competitive performance for the camera-based 3D MOT task, achieving an
AMOTA that surpasses traditional methods by a notable margin of 9.3% on the test split, without
relying on any external data for training.

Method mAP(%) ↑ NDS(%) ↑ mAVE(m/s) ↓ AMOTA(%) ↑ AMOTP(m) ↓

MonoDIS 30.4 38.4 1.553 1.8 1.79
Time3D 31.2 39.4 1.523 21.4 1.36
PolarDETR 43.1 49.3 0.845 27.3 1.19
EMAT 42.2 52.9 0.326 37.0 1.12

Table 4.2: Comparison with camera-based detection and tracking methods on nuScenes
test set. EMAT outperforms the second place for 3D tracking task and velocity estimation by a
large margin, with comparable 3D object detection performance.

4.4 Ablation Study

Association-oriented Temporal Fusion Module. First, we examine the effect of proposed ATF

module by comparing the training loss. Figure 4.1 compares several settings of different fusion

methods and involved features for learning to association. Exp. A is the baseline fusion setting,

where using concatenated embedding features. Exp. B utilizes cross-attention to aggregate object

query embedding features to produce fused feature for association. Instead of final fused features,

Exp. C treats the learnable attention weight of cross-attention as the feature for association. Exp.

D fuses the features of Exp. B and Exp. C, but considers no explicit location information. By

adopting ATF module, we get lower training loss than other settings, revealing the effectiveness
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Figure 4.1: Ablation on ATF module. ATF module (plotted in green) achieve lower training loss
than other settings. Best viewed in color.

of this module.

Trustworthy Velocity Estimation Strategy. Second, we study the effect of TVE strategy.

As shown in Tab 4.3, training our models with proposed TVE strategy is beneficial for object

velocity estimation performance. TVE reducing the velocity error metric mAVE from 0.6704 m/s

to 0.6211 m/s when using two frames for training, and from 0.5269 m/s to 0.4918 m/s for four

frames. Besides, the 3D detection metric mAP and NDS are also slightly improved. By softly

ignore new-born objects and focusing on objects with temporal cues, more accurate and valid

cues are learned to estimate velocity.

4.5 Qualitative Results

Figure 4.2 shows some qualitative detection and tracking results in BEV space for 3 different

scenes of 4 seconds clips. EMAT produces stable tracking IDs across time for dynamic objects on

the full 360° panorama by six cameras.
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Figure 4.2: Qualitative Results. We visualize the 3D box in the BEV space and tracking ID on
4 consecutive frames with 1 FPS in each row. Stable tracking IDs for objects in BEV space are
shown by these examples. LiDAR point clouds are only used for the purpose of visualization.
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Exp. Setting num. frame mAVE(m/s) ↓ mAP(%) ↑ NDS(%) ↑

w/o TVE 2 0.6704 33.60 42.54
w/ TVE 2 0.6211 33.85 43.12
w/o TVE 4 0.5269 33.82 44.37
w/ TVE 4 0.4918 34.15 45.06

Table 4.3: Ablation on TVE strategy. “num. frame” denotes the number of frames during
training. Training our models with the proposed TVE strategy is beneficial for object velocity
estimation for both 2 and 4 frames used for training.
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Chapter 5

Conclusion

In this work, we design a novel end-to-end multicamera joint 3D detection and MOT framework

EMAT. On the nuScenes dataset, we outperform the 3D detection baseline we build upon, achieving

superior camera-based 3D tracking and velocity estimation performance, along with notable

improvements over traditional 3D tracking methods, showcasing its effectiveness in real-world

scenarios. We have shown that the association-oriented temporal fusion module ATF effectively

aggregates features from different frames, and proposed trustworthy velocity estimation strategy

TVE reduces velocity error. Compared with traditional tracking-by-detection paradigm with

hand-designed associating strategies and cumbersome post-processes, our proposed approach

may inspire researchers to jointly optimize 3D detection and MOT task, which is of considerable

practical significance especially in vision-based autonomous driving field.
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