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ABSTRACT OF THE DISSERTATION 
 
 

Synthesis of Graphene Layers from Metal-Carbon Melts:  
Nucleation and Growth Kinetics 

 
  

by 
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Doctor of Philosophy, Graduate Program in Mechanical Engineering 
University of California, Riverside, Dec 2012 

Dr. Reza Abbaschian, Chairperson 
 
 
 
 

A new method for growth of large-area graphene, which can lead to a scalable low-cost 

high-throughput production technology, was demonstrated. The method is based on 

growing of graphene films on the surface of metal-carbon melts and involves dissolving 

carbon in a molten metal at a specified temperature and then allowing the dissolved 

carbon to nucleate and grow on top of the melt at a lower temperature. The synthesized 

graphene layers were subjected to detailed microscopic and Raman spectroscopic 

characterizations. The deconvolution of the Raman 2D band was used to accurately 

determine the number of atomic planes in the resulting graphene layers and access their 

quality. The results indicated that the technology can provide bulk graphite films, few-

layer graphene as well as high-quality single layer graphene on metals. It was also shown 

that upon cooling of supersaturated metal-carbon melts; graphite would also grow inside 

the melt either with flake or sphere morphology, depending on the solidification rate and 

degree of supersaturation. At small solidification rates, graphite crystals are normally 
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bounded by faceted low index basal and prismatic planes which grow by lateral 

movement of ledges produced by 2D-nucleation or dislocations. At higher growth rates, 

however, both interfaces become kinetically rough, and growth becomes limited by 

diffusion of carbon to the growing interface. The roughening transition from faceted to 

non-faceted was found to depend on the driving force and nature of growing plane. Due 

to high number of C-C dangling bonds in prismatic face, its roughening transition occurs 

at smaller driving forces. At intermediate rates, the prismatic interfaces become rough 

and grow faster while the basal plane is still faceted, leading to formation of flake 

graphite. At higher growth rates, both interfaces grow with a relatively similar rate 

leading to initiation of graphite sphere formation, which later grows by a multi-stage 

growth mechanism. An analytical model was developed to describe the size and 

morphology of graphite as a function of solidification parameters. 
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Graphite has been observed to grow during solidification of supersaturated metal-carbon 

melts with different morphologies. In this chapter, first the graphite crystal structure will 

be discussed. Then different morphologies of graphite which has been observed to grow 

within metal-carbon melts will be reviewed. The graphite growth mechanisms and 

kinetics as well as instabilities inside the melt are later discussed. Finally, the properties 

and preparation techniques of single layer graphene (graphite building block) will be 

reviewed.  

1.1. Graphite crystal structure 

Graphite has a layered structure that in each layer carbon atoms are arranged in 

a honeycomb lattice called graphene. In a graphene sheet each carbon atom is covalently 

bonded to three carbon atoms with sp2 hybridization. Three out of four valence electrons 

of each carbon atom are used in a covalent σ-bond formation with three other carbon 

atoms in graphene lattice while the fourth electrons forms week Van der Waals forces or 

delocalized π-bonds. The graphite structure is built up by stacking of 2D graphene layers, 

as shown schematically in Fig. 1(a). The different inter- and intra-atomic bonding of 

carbon in graphene makes the graphite a strong anisotropic material with different 

properties normal and parallel to graphene stacks. For instance while graphite possesses 

good thermal and electrical conductivity parallel to graphene sheets (a direction), it is 

almost a thermal and electrical insulator normal to the sheet (c direction) [1]. In normal 

condition, graphite is bounded by low index planes of and family which 

are the so-called basal and prismatic planes respectively. These planes have been marked 
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Phase diagrams in Fig. 2 contain simple eutectics at 1154, 1320 and 1326.5 °C and 

composition of nearly 4.2 wt%C, 10 and 12 at%C for Fe, Co and Ni respectively. Beside 

the graphite which is the stable form of carbon in these systems, there are also 

possibilities of metastable carbide formation. In Fig. 2(a) and (b) the iron-iron carbide 

(cementite, Fe3C) and nickel-nickel carbide (Ni3C) phase diagrams have been shown with 

dashed lines. Cementite is a metastable compound that decomposes into iron and graphite 

under some special heat treatments. Nickel carbide has also been observed to form in 

quenched Ni-C alloys [6]. The tendency to form graphite or carbide is regulated by the 

melt composition and cooling rate and will be discussed later in section 0. 

Among the above systems, Fe-C has been drawn the most attention due to diversity of 

grown graphite morphologies which makes it the most important casting material with 75 

percent of total world tonnage [7]. The Fe-C phase diagram in Fig. 2(a) shows carbon 

concentration below 7 wt%. This part of the diagram is practically in use and higher 

carbon concentrations are not industrially significant. Fe-C alloys with the composition 

less than 2 wt%C are generically called steels. It is also observed in diagram of Fig. 2(a) 

that iron alloys within the composition range of 3.0 and 4.5 wt%C are around the eutectic 

composition and become liquid at lower temperatures than the one for steel. Thus, iron 

alloys with this range of carbon are easily melted in lower temperature and suitable for 

casting. This is beneficial for those brittle Fe-C structures which are difficult to be 

fabricated by forming techniques. Due to the castability of these alloys, this group of iron 

materials is called cast irons.  
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1.3. Graphite growing from a melt 

It has been observed that graphite grows during cooling of supersaturated metal-carbon 

melts with different morphologies. The graphite formation is of crucial importance since 

it will significantly affect the metal-graphite composite properties. For example when the 

graphite morphologies alter from flake to sphere, the fatigue properties of cast iron will 

dominantly improve [8]. The nucleation and growth of various graphite morphologies 

will be reviewed here. 

1.4. Graphite nucleation 

Similar to growth of any other crystal from a melt, the graphite growth initiates by its 

nucleation which is either homogenous or heterogeneous [2]. Homogenous nucleation 

occurs in the interior of a metastable melt and is only induced by random thermodynamic 

fluctuations and uninfluenced by any extrinsic surfaces. Heterogeneous nucleation, on the 

other hand, takes place on foreign sites such internal interfaces provided by inclusions or 

dispersed colloidal particles or through contact with crucible walls. These types of 

graphite nucleation will be discussed below [9-11].  

1.4.1. Homogenous nucleation 

The homogenous nucleation occurs by thermodynamic fluctuations and by no means of 

other effects and therefore has higher barrier energy and is more difficult to obtain [3, 10, 

11]. However, in pure systems which are free from impurities, this type of nucleation 
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1.4.1.2. Wrapped graphene nucleation 

Another possibility of homogenous nucleation is when the formed graphene sheets are 

wrapped within the melt. The wrapped graphene layers can form a loose ball or tangle 

containing ordered shells. The loose ball may grow epitaxially by addition of carbon 

atoms to steps of these shells. There is no identifiable barrier energy for this type of 

nucleation beyond the one for carbon addition in a directions [13]. The ball may 

eventually develop into a sphere and trap a few metal atoms inside [14, 15]. It is pertinent 

to point out that the graphene layers are prone to become wrapped in pure melts to reduce 

their surface energies [16, 17]. 

1.4.1.3. Fullerene nucleation 

Another possibility of graphene homogenous nucleation is the formation of fullerene 

shells [1, 18]. Configurational considerations for a fullerene cage formation impose the 

presence of pentagonal and hexagonal rings together. The formation may begin by 

wrapping of two or three hexagons and later continue by additions of carbon atoms. 

Geometrically, 20 hexagons and 12 pentagons are required to form a fullerene cage. 

Based on the fullerene configurational limitation, formation of closed fullerene shells 

have very large driving force and accordingly low growth potential [13]. 

1.4.2. Heterogeneous nucleation 

The heterogeneous nucleation typically takes place on foreign inclusions and thus will be 

the case for commercial melts which inevitably contain impurities [12, 19]. For instance, 
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commercial cast irons normally contain elements such as sulfur, silicon and oxygen and 

accordingly there is possibility of sulfides, silicates and oxides formations within the melt 

[20-24]. It should be noted that these inclusions may not have a high nucleation potential 

due to large lattice mismatch with graphite. However, if Me (Ca, Sr, or Ba) and Al 

elements are added to the melt, hexagonal silicate phases of the MeO·SiO2 or the 

MeO·Al2O3·2SiO2 type can form on the surface of inclusions. The formations of these 

new phases create coherent or semicoherent interfaces between the inclusions and 

graphite which favor the heterogeneous nucleation [24]. 

1.5. Morphologies of graphite growing from a melt 

Graphite crystals could grow within a molten phase with variety of morphologies. The 

ability of graphite to form different morphologies is due to its layered structure, different 

growth mechanisms in prismatic and basal planes, ability of graphene layers to bend 

during the growth and the effect of impurities. The graphite morphology which grows, 

however, depend on melt chemical composition and ratio of temperature gradient to 

growth rate (G/V) and/or cooling rate (G.V). Some of the most common morphologies of 

graphite crystals growing from the melt are discussed below.    

1.5.1. Graphite flakes 

Graphite may grow in the form of flake which is basically a plate-like morphology with 

higher lengthening rates than thickening. The group of cast iron in which the graphite 

grows with a flaky morphology called gray cast irons. Depending on the graphite growth 
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condition two types of flakes may form: The primary flakes which grow freely within the 

melt and the eutectic flakes which grow side by side of metallic phase. Below the 

morphologies of these two types are explained.   

1.5.1.1. Primary flakes (type C)  

The morphology of primary graphite flakes has been shown in Fig. 5(c). This form of 

graphite which is also called type C or Kish graphite possesses a straight flaky 

morphology with a few hundred micron length and a few tens of micron width. This 

morphology forms prior to eutectic temperature as the graphite grows freely within the 

melts of hypereutectic compositions without any constraints by the solid phase [8, 25, 

26].  

1.5.1.2. Eutectic flakes 

The eutectic flakes form during a eutectic reaction and side by side of a metal. The 

growth of these flakes has been shown schematically in Fig. 4(a). It is observed in the 

figure that upon formation of graphite nucleus inside the melt, it branches out into some 

flakes. As these flakes grow, they consume the carbon atoms in their vicinity and favor 

the nucleation of metallic phase which later grow side by side of graphite in the form of 

spherical eutectic cells. Growing flakes may also change their crystallographic 

orientation and ultimately produce a fully interconnected plate-like structure [22, 27, 28]. 

One of these networks of flakes in a eutectic cell whose metallic phase etched away has 

been shown in Fig. 4(b). Comparing this figure with Fig. 5(c) depicts that eutectic flakes 
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1.5.1.2.1. Type A flakes  

The morphology of type A flakes has been shown in Fig. 5(a). It is observed that type A 

flakes possess a convoluted morphology and arrange in a randomly oriented pattern. 

Type A flakes form in the area of low cooling rates with a minimum amount of 

undercooling. Beside the cooling rate, changing the melt composition by addition of Al 

and Ca will also favor the formation of these flakes due to increase of graphitization 

potential and reduction of chilling tendency [8, 25, 26]. 

1.5.1.2.2. Type B flakes  

The morphology of type B flakes has been shown in Fig. 5(b). It is observed that this type 

of flake is in the form of rosettes or clusters and grows in a mechanism similar to the one 

shown in Fig. 4(b). Type B graphite occurs in gray cast iron with near-eutectic 

composition which cools faster than the rates associated for type A flakes. This type of 

graphite forms in thin-walled castings or in the surface of thicker sections. [8, 25, 26].  

1.5.1.2.3. Type D flakes   

The morphology of type D flakes has been shown in Fig. 5(d). It is observed that these 

types of flakes possess very fine morphologies with a preferred orientation and a distinct 

pattern. Normally, they grow in between the metallic dendrites at the final stage of 

solidification. It should be noted that the formation of type B flake needs higher cooling 

rates than the one needed for Type A and B, yet lower than the one needed for carbide 

formation [8, 25, 26].  
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1.5.1.2.4. Type E flakes   

The morphology of type E flakes has been shown in Fig. 5(e). It is observable that Type 

E flakes possess coarser morphology that type D but a preferred interdendritic 

distribution. It should be noted that how the plane of polish intersects with the flakes may 

be responsible for their orientation [8, 25, 26].  
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1.5.3. Coral (fibrous) graphite 

The coral graphite has a very fine semi-fibrous morphology which is an intermediate 

form between flake and sphere [39-42]. The optical and SEM micrographs of coral 

graphite have been shown in Fig. 8(a) and (b). As it is shown in this figure, these fibers 

are often composed rounded cross sections typically less than one micron in diameter 

where graphene sheets wrapped around the fiber axis. It is observed that the fibers have 

branched irregularly and form a highly convoluted and interconnected three-dimensional 

framework, shown schematically in Fig. 8(c) [43]. 

The coral morphology normally forms during rapid cooling of iron melt with low sulfur 

contents (less than 0.001%). However, there is some uncertainty about coral graphite 

internal structure due to its fine and irregular features.  
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1.6. Graphite growth mechanisms 

1.6.1. Liquid-solid interface structures 

The structure of a growing interface between the solid and liquid depends on the nature 

of the interface (thermodynamic) and the amount of growth driving force (kinetics). 

Normally two extreme cases of interface structures are considered: non-faceted (rough, 

diffuse or continuous) and Faceted (smooth, flat or singular) [3]. The structure of non-

faceted interface has been shown schematically in Fig. 13(a). It is observed that non-

faceted interface is atomically rough and composed of many incomplete atomic layers. 

During the growth of a non-faceted interface, individual atoms are readily accommodated 

by closely spaced jogs. The characteristic of this type of interface is this high 

accommodation factor for arriving atoms and normal grows of interface to itself at all 

atomic sites. It should be noted that non-faceted interface is thermodynamically in local 

equilibrium and it will advance by removal of heat or supply of atoms to the interface in 

the case of pure materials and solutions respectively. This implies that the growth of a 

non-faceted interface is transport controlled. The faceted interface, on the other hand, is 

atomically smooth and contains interfacial steps of a few atomic dimensions, the so-

called ledges. The structure of this interface has been shown schematically in Fig. 13(b). 

The faceted interface will only grow by provision of atoms into the ledges and their 

lateral migration. Accordingly advancement of faceted interfaces depends upon constant 

supply of ledges. The new ledges can be generated by various mechanisms such as, 

repeated surface 2D nucleation, intersection of a screw dislocation with interface, 

nucleation at the crystal edges, intersection with other crystals or termination of twins at 
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The characteristic of graphite interfaces during non-equilibrium growth will be discussed 

comprehensively in section 5.3.1.  

To date, different growth mechanisms have been proposed for graphite interfaces which 

will be described here briefly.  

1.6.2. Growth mechanisms of graphite interfaces 

Due to different crystallographic characteristic of graphite prismatic and basal planes, 

different growth mechanisms have been suggested for these families of planes. For 

instance, it has been shown that graphite prismatic planes are non-faceted in most of 

growth conditions and their growth is controlled by diffusion of carbon atoms into the 

interface. On the other hand, graphite basal plane is believed to be faceted, whose growth 

is controlled by provision of steps created by defects on the surface, i.e. surface 

controlled. These mechanisms will be discussed bellow.   

1.6.2.1. Diffusion controlled growth 

Hillert [57] assumed that growth of flake tip (prismatic planes) is controlled by transport 

of carbon atoms to the interface. He then applied the theory of diffusion controlled 

growth of a plate tip treated by Zener [58] and found the following equation for growth of 

graphite prismatic planes: 

ݒ ൌ
ܦ ܸ



2ܴ ܸ


ݔ െ ݔ
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Where D is carbon diffusivity in liquid metal, and  are molar volume of graphite 

and liquid metal, R is tip radius,  is carbon content of the liquid phase,  is carbon 

content of the liquid phase with graphite boundary and is carbon content of graphite. 

The equation shows growth rate depends on level of supersaturation ሺݔ െ ݔ
/ሻ as well 

as flake tip radius (R) [10, 58]. This will be discussed in more details in section 5.3.3.1.   

1.6.2.2. Defect controlled growth 

It has been observed that existence of some defects on graphite interfaces will supply the 

necessary steps for accommodation of carbon atoms and subsequent growth of interface. 

For instance, screw dislocations and twisted boundaries are two types of defects which 

are believed to play dominant role in the growth of graphite basal and prismatic planes 

respectively [2, 59, 60] and are discussed below.  

1.6.2.2.1. Dislocation assisted growth 

When the line of a screw dislocation intersects the free surface, a step will be created on 

the interface. Upon the addition of carbon atoms to this step, it continues to move 

forward and never disappears [61]. Accordingly, this constant supply of steps will give 

rise to continues growth of interface at a low level of driving force [11]. This mechanism 

is the so-called spiral or dislocation assisted growth and has been shown schematically in 

Fig. 14. Evidence of spiral growth has been observed for graphite basal plane and shown 

in Fig. 15.  
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will provide the necessary sites for attachment of atoms. These steps will aid the growing 

of the crystal specifically in small supersaturation that the driving force for 2D nucleation 

is low. An example of rotation boundary in a graphite crystal has been shown in Fig. 

18(c). Rotation boundaries were also evidenced by definig the crystallographic directions 

of graphite dendrites. Fig. 18(d) show a graphite dendrite whose crystallographic 

direction were determined by X-ray observations using both Laue technique and conical 

beam camera [68, 69]. Angles between the marked directions implies that the the dendrite 

is a bicrystal in which the two crystals have rotated by angles of 27.8° about <0001> axis 

[70].  This rottaion angle is not accidental and in fact it has been reported to be a low 

energy stacking faults of graphene layers [71]. 
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1.6.3. Growth of flakes 

The graphite flakes form since the growth rate of basal plane (c direction) is much less 

than that of prismatic planes (a direction). In fact, the higher growth rate of prismatic 

planes causes the elongation of graphite nucleus in a direction and formation of a plate-

like morphology, i.e. flakes. However, it is mostly believed that growth of flakes is 

assisted by impurities. For instance, when the melt contains sulfur and oxygen, these 

elements may be incorporated into graphene lattice. Since these elements are divalent and 

can only form two bonds, their addition to graphene lattice will leave saturated. Fig. 19(a) 

depicts schematic of saturated sites (shown by squares) in a graphene sheet caused by 

incorporation of sulfur or oxygen into lattice. In spite of the fact that these saturated sites 

block the growth in those points, the rest of lattice will continue to grow and leaves 

behind points with one missing bond [Fig. 19(a)]. It should be noted that due to less 

surface energy of basal plane than that of prismatic planes, the graphene sheets naturally 

tend to become curved while they grow inside the melt. However, the introduction of 

these divalent atoms into the carbon network will decrease the surface energy of the 

prism face and also reduce the graphene sheet bending ability due [73-75]. While the 

bending of the graphene sheets become less probable by these point defects, nucleation 

and thickening in the c direction continues, as shown schematically in Fig. 19(b). The 

graphite thickening then reduces the flexibility of graphene dramatically and makes the 

bending of crystal less possible. As the crystal becomes thicker, it takes the form of a 

flake and no longer can bend to form other morphologies such as spheres. It should be 

noted that besides the incorporation of sulfur and oxygen atoms, the rotation boundaries 
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oxygen and sulfur are available than necessary to cover all the graphite flake surfaces. 

Moreover, oxygen and sulfur have not been detected at the surfaces of graphite flakes due 

to limited incorporation of impurities in random sites which are not detectable by Auger 

analysis [82].  

Besides sulfur and oxygen, there are other elements also aiding the flakes formation such 

as Sb, Pb, Al, Bi and Ti [83-86]. All of these impurities which aid the flake formation are 

called subversive impurities and their effect increases with their atomic weight and 

concentration. 

Based on the proposed model, graphite flakes are a modified shape growing by aid of 

impurities. In fact, graphite spheres are natural grown morphology of graphite within a 

pure melt and discussed in the next section.    

1.6.4. Growth of spheres  

The initial models for growth of spherical graphite proposed that spheres were growing in 

solid state within an austenite shell by decomposition of cementite [87-91] or by carbon 

depletion of a supersaturated austenite [92-94]. Although, these mechanisms may 

contribute to the growth of spherical graphite, later observations including quenching of 

partially solidified melt [95, 96], graphite flotation [97-99], graphite segregation during 

centrifuging [96, 99, 100] and records of volume temperature curve [101] have shown 

that spheres grow directly from the melt. Moreover, investigation of graphite spheres 

grown from a melt containing cerium showed that while the cerium existed in spheres 
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structure, it was not detected in metallic austenite [34-38, 99]. Since the solubility of 

cerium in solid austenite is very low, it is almost impossible for cerium to diffuse through 

the solid shell. Therefore, this provides another evidence for direct growth of graphite 

spheres from the melt. 

As it was described in section 1.6.3, incorporation of subversive elements reduces the 

bending ability of graphene sheets and promotes the formation of flakes. However, 

addition of nodulizers such as Mg or Ce will scavenge the sulfur and oxygen as oxides 

and sulfides (e.g. MgO and MgS) and favors the formation of graphite spheres.  

Although it is observed that sphere grow from the melt until it is enveloped by a metallic 

shell, growth after the envelopment may continue by solid-state diffusion of carbon 

through solid shell [102, 103]. Radius measurements of graphite spheres and austenite 

shell, however, have shown that most of spheres mainly grow in direct contact with the 

melt [100, 103, 104].   

Several models have been proposed for growth of spheres and its structure which will be 

described below. However, to date there is not unanimity on growth mechanism of 

spherical graphite.  

1.6.4.1. Screw dislocations model 

According to this model [105], the foreign atoms of Ce or Mg are adsorbed into growing 

steps of graphite and causes the generation of screw dislocations. After some spiral 

growth, since they would not fit together, they divide into new branches and lead to the 
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1.6.6. Graphite to carbide transition 

As it was explained in section 1.2 in some of metal-carbon systems there are possibility 

of both stable graphite and metal stable carbide formation. For instance, in Fe-C system, 

it has been observed that formation of graphite or carbide mostly depends on the cooling 

rates, i.e. in high cooling rates the carbide will form while in slower cooling rates the 

graphite will grow [57, 132]. Therefore, there is a critical cooling rate range below which 

the graphite will grow (gray structure) and higher than that the carbide forms (white 

structure). Inside this range a mixture of carbide and graphite will form (mottled 

structure). These transitions were already shown in graph of Fig. 29.   

In order to explain the formation of carbides in higher cooling rates, Hillert [22] 

calculated the critical thickness of graphite and cementite 2D nuclei as well as growth 

rate of two phases as functions of undercooling. For this purpose, he used the concept of 

a disk-shaped 2D nucleus for calculation of nucleus critical thickness (h*) and also the 

Zener diffusion controlled growth of a plate for growth of graphite and cementite plate 

tips [58]. Fig. 31 shows the critical thickness (h*) of graphite and cementite 2D nuclei as 

well as growth rate (vmax) of the two phase within a eutectic melt functions of 

undercooling. 
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that for its formation, there is no need for long range diffusion of carbon and its lattice is 

more similar to melt structure [12]. 

As it was shown in Fig. 29, increasing the cooling rate (undercooling) gives rise to 

graphite morphology changes. In the following section, the effect of undercooling on 

growth velocities of graphite will be discussed.  

1.7. Kinetics of graphite growth 

The growth velocities of graphite in prismatic and basal planes can be described by 

growth driving force (thermodynamics) and growth mechanism (kinetics). The driving 

force is the amount of undercooling (∆T) or supersaturation (∆C) which is controlled by 

experimental parameters. However, the growth rate or interface mobility is the 

characteristic of the material and depends on the crystal growth mechanism which is 

active on the interface. Fig. 32 compares the growth rates of austenite and prismatic face 

of graphite as well as dislocation assisted growth rate of basal plane [86, 132, 133]. 
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that the eutectic graphite flakes can grow in undercooling as small as 1K while the 

necessary undercooling for sphere growth is at least 10K [115].  

Adding impurities to the melt will, however, change the growth kinetics. Impurities can 

be categorized into three groups [70, 134] 1) reactive element: such as rare earth elements 

which have strong reaction with graphite; 2) solutes: such as silicon and boron which 

have no chemical reaction with graphite and 3) weakly reactive element: like sulfur and 

oxygen which are adsorbed weakly and change the edge energies. Fig. 33 shows the 

qualitative relationship of undercooling and growth rates for basal and prismatic planes of 

graphite within pure melt and ,as an example, the melt containing weakly reactive 

elements [70]. Both prismatic growth curves of Fig. 33(a) are in the forms of R=exp(-

ΔQ/RT) Where ΔQ is the free energy of nucleation for one mole of crystal layer on 

prismatic face, T is the absolute temperature and R is the gas constants. ΔQ is a function 

of mechanism of formation and the environment. It is also observed that growth of 

prismatic planes by means of rotation boundary is to the left of growth curve without 

rotation boundary. This is owing to the fact that interfaces with rotation boundaries 

possess less nucleation barrier energy and higher growth rates.  
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This graphene sheet could be the basic building block of important allotropes of carbonic 

materials; the stacking of graphene layers in 3D space can form the graphite. It can also 

be wrapped up into 0D fullerenes or rolled into 1D nanotubes [138].  

For a long time it had been thought that two dimensional crystals are thermodynamically 

unstable at finite temperatures since any atomic monolayer was assumed to roll or fold in 

order to achieve its lowest potential energy. However, later with using electron 

microscopy it was observed that there are small ripples in graphene preventing it from 

rolling into nanotubes or other carbonic structures [138].  

Since graphite is stacks of graphene layers, isolation and separating of graphite layers 

with mechanical forces was always thought as a viable technique for manipulating nano 

graphitic layers and even single layer graphene. Accordingly the scientists used 

mechanical exfoliation of graphitic layers to produce thin sheets for some time. In 1999, 

with utilization of an atomic force microscope (AFM) tip, small pillars were patterned 

into highly oriented pyrolytic graphite (HOPG) by plasma etching [139]. The thinnest 

sheets that could be obtained by this technique at the time were 200 nm (600 layers of 

graphene). Later this technique was modified by transferring the pillars to a tipless 

cantilever which stamped down slabs on a SiO2 substrate [140]. The schematic of the 

process has been shown in Fig. 40(a).  
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with diamond tip [144]. The results correspond to a Young’s modulus of E = 1.0 TPa, 

intrinsic strength of σint = 130 GPa and spring constants ranging from 1 to 5 N/ m. These 

values establish graphene as the strongest material ever known with a strength of two 

hundred times more than that of steel [145].  

Moreover, experimental results from transport measurements also showed that graphene 

has high electron mobility of 15000 cm2V−1s−1 at room temperature [138]. The 

corresponding resistivity of the graphene sheet is found to be 10−8 Ω·m, which is even 

less than the resistivity of silver, the substance with the lowest resistivity known at room 

temperature. The superior electrical properties of graphene have not yet been observed in 

any other element or compound.  

Furthermore, the thermal conductivity of graphene was also found to exceed ~3000 

W/mK at room temperature for the large suspended graphene flakes [146-149]. The 

enhanced current and heat conduction properties are beneficial for electronic, 

interconnect and thermal management applications of graphene. It has also been 

demonstrated that graphene devices can operate at very low-levels of the electronic 

flicker noise, which is important for applications in sensors and communications [150-

152]. 

1.9.2. Single layer graphene preparation techniques 

There are different techniques for graphene preparation, above all, three major purposes 

are followed. First of all, the technique must produce high quality crystal in a 2D lattice 
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to ensure high mobility of carriers. Secondly, if the technique deals with growing of the 

single layers, it must provide fine control over crystallite thickness so that in the 

application inside the electronic device it delivers uniform performance. Finally the 

technique should be scalable industrially. Below some of the graphene preparation 

techniques are reviewd.  

1.9.2.1. Mechanical exfoliation 

In this technique the graphene layers are peeled off utilizing a scotch from a graphite 

flake. For this purpose millimeter-thick platelets of HOPG are pressed on a 1-mm-thick 

layer of a fresh wet photoresist spun over a glass substrate. Then the substrate is baked 

which leads to attachment of the flakes to the photoresist layer. The graphene layers are 

then peeled off form the rest of the HOPG by a celluphene tape. Finally thin flakes left in 

the photoresist are released in acetone and picked up by a Si wafer. The wafer is finally 

washed in water and propanol. The wafer is then investigated with optical microscope 

and Raman Spectroscopy for the possible presence of graphene layers. Fig. 41 shows 

mechanically exfoliated graphene layers on a Si wafer. The technique results in high-

quality crystallites of more than 100 μm2 in size [142]. It should be noted that due to light 

interference effect, single layer graphene is observable on a on Si wafer with a 300 nm 

SiO2 [142]. 
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1.9.2.3. Chemical vapor deposition 

In chemical vapor deposition (CVD) techniques, a hydrocarbon gas decomposes on a 

transition metal (substrate) at high temperature leaving behind carbon adatoms which 

grow as graphene layers [158-161]. The growth of graphene monolayers on single 

crystalline transition metals such as Ni [162, 163], Pt[164], Co [165] , Ru [166-168] and 

Ir [169, 170] is well known. However, there are different approaches for CVD growth of 

graphene which will be discussed here briefly. In the first approach, graphene layers 

nucleate and grow directly on the surface of a solid while a hydrocarbon gas decomposes 

on the surface in temperatures around 1000 °C [171-173]. Normally the graphene 

nucleation occurs on grain boundaries of solid substrate which leads to inhomogeneity in 

density and size distribution of graphene layers. So, liquefaction of the substrate may 

give rise to formation of a uniform layers graphene. Accordingly, the second approach is 

based on CVD growth of graphene layers on the surface of a melt [174] . In the third 

approach the carbon atoms coming from decomposition of a hydrocarbon gas diffuse into 

the metal in elevated temperatures. Later upon cooling, the substrate become 

supersaturated and excess amount of carbon diffuse to the surface and form graphene 

layers. It has been shown that in this approach cooling rate is one of the most critical 

parameters controlling the growth of thin graphene layers. In the case of extremely fast 

cooling rate the atoms will lose mobility before they can diffuse and accordingly in this 

case no layer could be formed at the surface. On the contrary at extremely slow cooling 

rate the carbon atoms will diffuse to the metal bulk so there will not be enough carbon 

segregated at the surface to form any layer. In the case of medium cooling rates, a finite 
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1.9.2.5.  Chemically derived graphene from graphite oxide 

In this method the graphite oxide dispersed in water is exfoliated with mechanical energy. 

Basically, the hydrophilicity of graphite oxide leads water to readily intercalate between 

the sheets and due to strength of interactions between water and the oxygen-containing 

functionalities in basal plane the graphene oxide layers will be exfoliated. The dispersed 

graphene oxide layer will later be reduced to single layer graphene [176].  

1.9.3. Curved graphene layers 

Due to the strong bonds of carbon in the graphene sheets, they can bend and form curved 

structures without losing their crystalline network. These curved graphene layers are 

good candidate for various applications including high energy density supercapacitor 

electrodes [177], modern optical devices [178], Reversible Hydrogen Storage [179] and 

electronic devices [180]. 

Nano-curved carbonic materials are currently synthesized by slow condensation of 

carbon vapor in high-temperature processes [1], ball milling [181], annealing of diamond 

particles [182] and unzipping of carbon nanotubes [183]. Molten metals can also be 

utilized as a medium for growing of curved graphene layers. For instance, the 

macroscopic curved graphite layers have been grown by melting small amount of iron on 

graphite in high vacuum by electrons bombardment [184]. The curved graphite by this 

technique had approximately 1 mm radius of curvature and consisted of solely one single 

arc shaped graphite.  
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Although graphene layers have been synthesized by different above-mentioned 

techniques, yet there is no report on growth of graphene layers from a molten phase. 

Moreover, despite all of the research in the growth of graphite from metal-carbon melts, 

the exact mechanisms of nucleation and growth of graphite and the characteristic of 

morphology changes due to variation of cooling rates are not fully understood yet. In this 

research, the graphene layers have first been synthesized on the surface of metal-carbon 

melts. Later different morphologies of graphite grown within the melt along with their 

nucleation and growth mechanisms were investigated.   
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2. Experimental Procedures 

  

 

Chapter II 
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Since the main scope of his research was investigation of graphene layers growth from a 

metal-carbon melts, different metal-carbon systems and melting processes were deployed 

which will be explained below.   

2.1. Alloys preparation 

Ni and Al chunks (99.99%) and Cu (99.99%) wire of 0.25” diameter by Alfa AESAR™ 

and graphite powder or chunk (99.98%) by POCO™ graphite were selected as raw 

materials. For alloying of carbon and metal two approaches were utilized. First, the 

desired amounts of carbon were added to the molten metal in the form of graphite chunk 

or powder inside copper chilled plate or boron nitride crucibles. Second, the melting 

process of the metal was carried out in graphite crucibles as carbon source.  

2.2. Melting process 

2.2.1. Arc melting 

For the arc melting process a Centorr™ arc-melting furnace was utilized which has been 

shown in Fig. 43. The arc melting furnace utilized a Direct-Current Electrode Negative 

(DCEN) process. The processing chamber was initially vacuumed to 150 µm-Hg and 

then backfilled with argon for two times to minimize oxidation during the arc-melting 

process. Prior to each melting, a titanium getter was remelted to absorb the remaining 

oxygen of the chamber.  
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2.2.3. Electromagnetic levitation  

In order to achieve containerless melting process, an Electromagnetic Levitation (EML) 

apparatus were used for this study. The 1.5 g shots of metal-carbon which had already 

been alloyed in arc melting furnace were levitated in the EML apparatus, schematically 

shown in Fig. 45. The levitation coil was made of a dehydrated-soft copper refrigeration 

tube of 1/8” O.D. x 0.030” wall thickness sleeved with insulating fiberglass. The sleeved 

coil with a desirable length was cut and both ends were drilled to ensure decent cooling 

water flow through the coil. The coil was then shaped into a configuration consisted of a 

double wound in opposite directions. It was important to minimize the spacing between 

each round to ensure the uniformity of the magnetic generated by this coil. The coil was 

then powered by a 20-kW high-frequency (8 MHz) generator. A two-color pyrometer 

was employed to measure the temperature of the sample continuously. The accuracy of 

the pyrometer readings was checked by measuring the melting temperature of pure nickel 

and pure copper. It was found that the measured temperatures were within ±10 °C of the 

expected values with small oscillations due to sample rotation and vibration, as well as 

liquid circulation. Based on computed velocity and temperature fields for a 6-mm-

levitated iron droplet proposed [185], a severe circulation is expected within the sample 

as well. The fluid flow field in levitated metal droplets can only be driven by two forces, 

i.e., electromagnetic force and the buoyancy force fields. The computational analysis of 

the temperature and flow fields in the levitated droplet can be found in [185]. This 

vigorous circulation causes a uniform temperature distribution with a maximum 7 °C 

difference from surface to core of droplet. 
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2.3. Sample preparation for characterization 

2.3.1. Transfer of graphene layers  

For better characterization of graphene layers grown in the surface of the melts, the 

graphene layers were transferred to a silicon wafer by the method previously reported for 

the transfer of carbon nanotubes and graphene layers [186, 187]. To achieve this, a layer 

of poly methyl methacrylate (PMMA) was spin coated on the substrate (1800 rpm for 30 

seconds). Afterwards, the metal substrate was etched away by a nitric acid solution (1:2) 

allowing the PMMA/carbonic layer to float on top of the solution. The layer was then 

placed on a glass substrate and washed with isopropanol and water. The dual layer of 

PMMA and carbonic layer was then transferred to a Si/SiO2 wafer. The film was 

annealed at 60°C for 1 hour to adhere firmly to the target substrate. The PMMA is then 

dissolved with the acetone drops gradually and the carbonic layers are left on the 

substrate. The wafer with the carbonic layers is washed with isopropanol and dried with 

the nitrogen gas. 

2.3.2. Polishing and etching 

The specimens were sectioned using a South Bay Technology™ diamond saw and then 

mounted using a Buehler™ mounting apparatus. The specimens were then grinded using 

180, 400, 800 SiC grinding papers for a rough surface finishing. The polishing solutions 

for a fine surface finishing were the water-based alumina (-Al2O3) solutions of 1 and 
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0.05 micron accordingly. The specimens were finally etched using HCl-H2O-FeCl3 

(50mL-100mL-5g) solution to reveal the microstructures. 

2.4. Characterization techniques  

2.4.1. Microscopy  

The microstructure of polished and as-received samples were mapped using a Nikon™ 

stereo microscope and a Nikon™ Optiphot equipped with a digital imaging system with a 

Nikon™ Coolpix 5000 digital camera. The electron micrographs of the samples were 

captured using a XL30 FEG scanning electron microscope. The chemical composition of 

different phases were determined by energy dispersive spectroscopy (EDS) system at 20 

kV using a standard ‘‘ZAF’’ (Z-atomic number, A-absorption, and F-fluorescence, plus 

background and dead time corrections) technique. 

2.4.2. Raman spectroscopy 

Raman spectroscopy has been utilized as a convenient technique for identifying and 

counting graphene layers [188-191]. Raman spectroscopy has been carried out using a 

Horiba Jobin Yvon micro-Raman spectrometer. All spectra were excited with visible 

(632.8 nm) laser light (power 3.6mW) and collected in the backscattering configuration. 

The spectra were recorded with a 1800 lines/mm grating. A 100X objective to focus the 

excitation laser light on different spots of the samples were used.  
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The most prominent features in the Raman spectra of graphitic materials are the  G band 

(~1582 cm-1) , D band (~1350 cm-1) ,D´ band (~1620 cm-1) and the 2D band (~2700 cm-1) 

[188, 192]. The G band is Raman active for sp2 carbon networks. In contrast, sp3 and sp 

carbon show characteristic Raman features at 1333 cm-1 (diamond) and in the range 

1850–2100 cm-1 (linear carbon chains), respectively. The D and D´ bands are defect 

induced Raman features. Thus these bands cannot be seen for highly crystalline graphite 

without any defect. The integrated intensity ratio for the D band and G band (ID/IG) is 

widely used for characterizing the defect quantity in graphitic materials. The 2D (or G´) 

band corresponds to the overtone of the D band observed in all kinds of graphitic 

materials and exhibit a strong Raman band which appears in the range 2500–2800 cm-1.It 

has been shown[188] that the evolution of the 2D band Raman signatures with the 

addition of each extra layer of graphene can be used to accurately count the number of 

layers. A rough estimate on the number of layers can also be obtained from analysis of 

IG/I2D ratio [188, 193]. What is also important in our case is that the micro-Raman 

spectroscopy based graphene identification was shown to be reliable for graphene on 

various substrates (not only on Si/SiO2) [194, 195]. It also has been shown that among 

the metallic substrates, nickel is an appropriate one for direct Raman Spectroscopy 

investigation[160]. 
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3. Synthesis of graphene layers 
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In Fig. 47(a) nickel is melted in contact with a carbon source. As the carbon source one 

can use a graphite crucible (in this case the melting process is carried out inside the 

crucible), graphite powder or chunk, which is simply placed in contact with the melt. 

Keeping the melt in contact with carbon source at a given temperature results in carbon’s 

dissolution and saturation of carbon atoms in the melt. The process is described by the 

binary phase diagram of metal-carbon [Fig. 47(b)]. Upon lowering the temperature, the 

solubility of carbon in the molten metal decreases and the excess amount of carbon 

precipitates on top of the melt [Fig. 47(c)]. The temperature-time diagram of the process 

is shown in Fig. 47(d). The floating layer can be either skimmed or allowed to freeze for 

removal. The described processing technique was utilized with copper and nickel for 

which the corresponding phase diagrams have been shown in Fig. 48. The processing 

temperatures, indicated in Fig. 47 are also shown in Ni-C phase diagram in Fig. 48(b). 

The goal of this process is to grow single and few layer graphene controllably. Fig. 49 

shows calculated thickness of graphene layers formed on the surface of supersaturated 

semispherical copper melts with different diameters (D) during cooling from different 

temperature. The graphs were obtained from the calculations based on the lever rule [3] 

on Cu-C phase diagram. Fig. 49 shows that cooling of the melt from 1200 and 1800 °C to 

the melting point of copper (1080°C) results in the formation of layers with the thickness 

ranging from several nanometers to several micrometers respectively. Selecting the 

higher alloying temperatures leads to dissolution of more carbon atoms in the melt and, 

consequently, larger amount of carbon precipitating on the melt upon cooling. The latter 

will result in the formation of a thicker graphite layer. However, the formed graphite 
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Fig. 49. Thickness of graphene layers formed on the surface of supersaturated semispherical copper melts 
with different diameters (D) during cooling from different temperature, calculated based on the lever rule 

on Cu-C phase diagram 

 

Direct visual observation of graphite growth on top of the melt was utilized by means of a 

portable microscope. Fig. 50 shows video frames of a hypereutectic Ni-C melt which is 

cooled from uniform liquid to liquid + graphite region in phase diagram and once more 

heated up. Frames 1-4 demonstrate the cooling while the frames 5-6 show the heating 

process. The frames show two distinct regions of different brightness, with the brighter 

area showing graphite layer. The graphite is completely dissolved in higher temperature 

(frame 1). Nevertheless, there are observations that propose the phase in frame 1 is not 

purely bare metal and it is possible that thin graphitic shell is present over the entire 

surface [184]. As the melt is cooled down to lower temperature (liquid + graphite region) 

the excess amount of carbon grows as graphite patches on the surface (frame 2-3). With 
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3.2. Morphology of surface graphene layers  

Fig. 52(a) shows the graphite layer which has been formed on top of nickel upon 

complete solidification of the Ni+2.35wt%C melt. Magnified view of the layer in Fig. 

52(b) reveals that the film has a specific morphology of smooth surface areas which have 

been separated from each other by out-of-plane faceted wrinkles. The structure at the 

joint between the wrinkles is more complicated, but the faceted structure is still evident. 

Fig. 52(c) shows typical Raman spectra of graphite in smooth areas and wrinkles. The 

two curves, which have been shifted slightly for the ease of visualization, are basically 

identical. The spectra show an intense G band as well as an asymmetric 2D band. No D 

(~1350 cm-1) and D´ (~1620 cm-1) bands could be noticed in either spectrum. As 

discussed in section 2.4.2, D and D´ bands are indicative of defects. Similar Raman 

Spectroscopy was carried out in different spots of the graphite and the results were 

identical.  
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The Raman features shown in Fig. 52(c) were found to be similar to those of bulk 

crystalline graphite reported in literature [188]. By comparing the smooth areas and 

wrinkles Raman features it is evident that the structure of wrinkles is identical to flat 

areas. In fact, the wrinkles are part of the graphite film and hold the same crystal structure 

of flat areas.  

The wrinkled feature of the graphite layers is believed to be due to the accommodation of 

the thermal expansion coefficient difference between the metal substrate and the graphite 

layer [196]. After the formation of the graphite shell on top of the melt and conclusion of 

the eutectic reaction both nickel and graphite contract as the sample cools down. The 

thermal expansion coefficient of nickel [197] varies from 21.0 to 12.89×10-6 K-1 for the 

temperature range from 1200 to 27°C while the in-plane thermal expansion coefficient of 

graphite [198] changes from 1.25 to -1.25×10-6 K-1 for the same temperature range. This 

difference in the thermal expansion coefficients gives rise to a larger lateral contraction 

of the metal substrate than that of graphite film. As a result, a compressive biaxial stress 

[196] will develop on the graphite layer which consequently leads to the formation of 

triangular folds in the film. The wrinkle formation is schematically shown in Fig. 53. The 

ab initio studies [198] as well as experimental results [1, 199] indicate that the bulk 

graphite below 400°C and single layer graphene possess negative thermal coefficient that 

intensify the thermal coefficient expansion mismatch even further.   
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angle can be considered approximately L=10 µm and φ=120° respectively. Based on the 

wrinkles geometry, the amount of layered material shifted from adjacent regions towards 

the wrinkle approximately corresponds to: 2( / 2 cos30) 1.55L L L m    . To 

completely accommodate a 2.3 % strain, an array of wrinkles should be formed with 

spacing of: / 67r L m     . This value is as the same order of magnitude (50 µm) 

which is observed in Fig. 52(a).   

3.3. Thickness of surface graphene layers  

Various thickness of graphene layers were observed on the surface of metals. The 

examples of thick graphite layers were previously shown in Fig. 52. In Fig. 55, the SEM 

photos of electron-transparent graphitic layers on metallic substrate have been shown. 

Layers Transparency indicates that the layers are thin enough to serve as window for 5 

keV and 10 keV electrons to pass along.  
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The characteristic of the Raman bands and IG/I2D ratio in Fig. 56(b) along with the 

deconvolution of 2D band in Fig. 56(c) indicate the presence of 4-layer graphene [191, 

193, 194, 202]. The absence of D and D´ bands represents defect free few layer graphene 

on nickel. 

Additional details of one of the grown few layer graphene island, which was transferred 

to silicon wafer, have been shown in Fig. 57(a). Different color contrasts in this film 

indicate areas which are rather thick, but connected by thinner regions, similar to that 

shown schematically in Fig. 57(b). As a graphitic layer nucleates on the melt, it expands 

laterally and normally by 2D nucleation and faceted growth, in a manner similar to that 

observed for 2D nucleation and growth of faceted materials [56]. The Raman spectrum 

shown in Fig. 57(c) represents the region which labeled as “few layer graphene” on the 

film. The IG/I2D ratio is the evidence that the existing flake has few graphene layers. The 

spectrum features a symmetric 2D band and intense D and D´ bands. The symmetric 2D 

band denotes the existence of turbostratic graphite (without ABAB stacking). The intense 

D and D´ peaks show layers with have high amount of defects.   

Few layer graphene can also be formed at the edges of thick graphite. By transferring the 

graphitic layers to Si/SiO2 substrates it was found that the color contrast at the edges of 

formed graphite islands is different. Thus, there is a possibility of finding few layer 

graphene at the edges. One of the islands grown on copper and the Raman spectrum of its 

edge are presented in Fig. 7.  The spectrum features a symmetric 2D band and intense D 



 

 

an

sy

b

 

nd D´ bands

ymmetric 2D

Fig. 57. a) O
b)schematic of

s. The IG/I2D

D band again

Optical Microc
f 2D growth of

D ratio indic

n suggests a 

copy of a graph
f graphite,  c) R

93 

cate the pre

possibility o

hite film forme
Raman spectrum

(a) 

sence of 5-6

of formation 

ed on copper an
m of the spot la

6 layers gra

 of turbostra

nd then transfe
abeled as “few

aphene[189]

atic graphite.

 

rred to Si/SiO2
w layer graphen

. The 

.  

2 , 
ne” in 

	



 

 

F

 

Fig. 58. a) optiical Microcopyy of a graphite 
b) Raman s

94 

island formed
spectrum at the

on top of copp
e edge of island

per and then tra
d  

 

ansferred to Si//SiO2   

	



 

95 
 

	

The large number of defects in Raman spectra of formed layers on copper due to intense 

D and D´ peaks (Fig. 57 and Fig. 58) is believed to be due to high cooling rate of copper. 

The high thermal diffusivity of copper (nearly five times of nickel) will lead to high 

cooling rate and consequently more defect formation including cracks and entrapped 

vacancies [203]. The lower thermal diffusivity of nickel will result in lower cooling rate 

and subsequent pristine graphene films formation (Fig. 56). 

Interestingly, nickel substrate was found to have inactive Raman spectrograph and not 

affecting the Raman features of graphene and owing to this fact nickel lends itself as an 

appropriate substrate for direct characterization of graphene layers without the need for 

transferring the layers to silicon wafer. Pristine SLG layers were observed in various 

locations on nickel substrate. A pristine SLG and its Raman spectrum are shown in Fig. 

59. The area of the grown SLG is larger than 125 µm2. The Raman spectrum in Fig. 59(b) 

shows G band at 1583 cm-1 and an asymmetric 2D band at 2660 cm-1. The absence of D 

peak proves that the formed SLG is high-quality and defect free. The full length at half 

maximum (FWHM) of the Raman peak of the grown SLG is 17 cm-1 (as compared to the 

reported value of 25 cm-1 [188]). The IG/I2D ratio is 4.53 and the deconvolution of 2D 

band indicates a complete symmetry as it is expected for SLG.  
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The amount of graphite forming on the melt and its characteristic will strongly depend on 

the amount of carbon dissolved in the melt and the solubility limit of carbon in the liquid 

as well as cooling conditions employed. For the present investigation the two alloy 

systems of Cu-C and Ni-C show extensive differences in solubility limit. It appears that 

the Ni-C system is more conducive to the formation of large and defect free layers.  

One should mention here that the formation, structure and energetics of the growth of 

single and few layer graphene from molten metal have many features in common with the 

mono-layer and multi-layer carbon formation by segregation and precipitation from the 

bulk solid solutions. In particular, the data on the equilibrium segregation of carbon to 

nickel surface and carbon interaction with nickel surfaces investigated in details and 

reported earlier [204-210] can be used for optimization of graphene growth from the 

metal-carbon melts proposed in this work.  

The developed technology can lead to applications of the resulting graphene-metal 

composites as thermal interface materials (TIM) for heat dissipation in electronic chips 

and other devices. The layered graphene-metal composites are expected to have enhanced 

thermal conductivity exceeding that of metals [146, 147]. The improved thermal 

management and advanced TIMs are currently important areas of research due to 

increasing power dissipation in state-of-the-art electronic, optoelectronic and photonic 

devices [211].   
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3.4. Synthesis of curved graphene layers on metallic dendrites2 

Based on the nickel-carbon phase diagram [4], upon cooling of a hypoeutectic alloy, the 

first phase to solidify is nickel, which initially grows with plane front, and eventually 

forms dendrites. The microstructure of exposed Ni-Cu dendrites in the surface is shown 

in Fig. 60(a) During alloy solidification, carbon atoms are rejected by the solid and a 

boundary layer richer in carbon than the bulk liquid is formed at the solid-liquid 

interface. As the metallic dendrites continue growing, the amount of carbon in remaining 

liquid goes up to eutectic composition. Applying Scheil equation [3] reveals that prior to 

eutectic reaction, the metallic dendrites would occupy more than 85 vol% of the alloy. 

Consequently, the eutectic liquid at the conclusion of solidification forms very thin films 

or even isolated droplets. However, during the medium stage of solidification the residual 

melt in between the dendrites may be sucked away to feed solidification shrinkage 

elsewhere. To filter the liquid through network of solid dendrites, a competition between 

various pressure terms exists [212]. The pressure drop in the channels and pressure 

against surface tension of solid-liquid are required to overcome to drive the flow. The 

necessary pressure is believed to be provided by metallostatic head pressure, atmospheric 

pressure, gravity and volume shrinkage which pulls the liquid inside the channels. 

Nevertheless, the flow is more difficult through narrower channels and it may be 

entrapped and solidifies in constricted channels prior to decanting.  

                                                 
2 Partially reprinted from Journal of Materials Letters, Vol. 88, S. Amini and R. Abbaschian, ″Synthesis of 
curved graphene layers on metallic dendrites″, pp 129-131, Copyright © 2012, with permission from 
Elsevier. 
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Following the graphene films formation both dendrites and graphene films contract as 

they cool down in solid states and due to the different thermal expansion coefficients a 

network of wrinkles forms in graphene layers (section 0). The schematic of wrinkles 

formation on dendrites has been shown in Fig. 63(a). Owing to geometry, the wrinkling 

phenomenon is intense on concave regions between dendrite arms. This could be 

observed in Fig. 63(b) which shows a highly wrinkled area in between dendrites. It 

should be noted that since the graphene layers are highly resilient, they maintain their 

continuity and crystallinity over the wrinkles through deformation mechanisms of 

kinking or twining. This was confirmed by the similarity of Raman spectra of flat regions 

and faceted wrinkles and observation of no defect bands in Fig. 52(c).  
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4. Graphite crystals grown within metal-carbon melts 

 

Chapter IV  

Graphite crystals grown within 

metal-carbon melt3  

                                                 
3 Partially reprinted from Journal of Acta Materialia, Vol. 60, S. Amini, H. Kalaantari, S. Mojgani and R. 
Abbaschian, ″Graphite crystals grown within electromagnetically levitated metallic droplets″, pp 7123-
7131, Copyright © 2012, with permission from Elsevier. 
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It was shown in chapter I that upon cooing of supersaturated melts graphene layers grow 

on the surface of the melt. It should be noted that graphene layers also grow in the bulk 

with various morphologies. In this chapter, nickel and carbon system was utilized to 

investigate different morphologies of graphite grown within a metal-carbon melt. The 

containerless melting process of electromagnetic levitation has been utilized for heating 

and cooling of supersaturated melts to eliminate the effect of crucible wall during 

solidification. It is shown that melt composition, cooling rate and the mixing of the melt 

by electromagnetic forces affect the microstructure and the subsequent graphite 

morphologies. Graphite crystals grow in this system including graphite flakes, spheres, 

entrapped and engulfed agglomerated particles, curved surface graphite and eutectic 

flakes are discussed.  

4.1. Cooling curves of the melt 

The Ni-C phase diagram consists of a simple eutectic reaction at 1326 °C and 1.9wt%C 

along with a limited solid solubility of carbon in nickel [Fig. 48(b)].  

Fig. 64 shows typical cooling curves during solidification of hypo (Ni+1.8wt%C) and 

hypereutectic (Ni+3.0wt%C) alloys within the levitation coil. In hypereutectic melts, as 

the melt cools down from 1800°C, a recalescence is observed around 1710°C which 

raised the temperature to about 1730°C (∆T=20°C). As will be discussed later, the 

maximum recalescence temperature (1730°C) corresponds to graphite liquidus (Tgr). 

Subsequent to this recalescence, the cooling rate increased abruptly until the melt reached 

the temperature of about 1500°C. Another slope change occurs near the end of 
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4.2. Microstructures 

Fig. 65 shows structure of a hypoeutectic alloy solidified within the levitation coil. The 

microstructure in Fig. 65(a) is uniform and it contains graphite particles engulfed in 

nickel matrix or embedded in between the nickel dendrites [Fig. 65(b)]. Fig. 66 shows 

microstructure of hypereutectic alloys which has been solidified within the levitation coil. 

It is observed in Fig. 66(a) that the graphite morphologies are not uniform and in the 

center and close to the surface are dissimilar. The two distinct regions in the center and at 

the periphery have been separated by a dashed line marked as boundary in Fig. 66(b). 

The microstructure near the center is similar to hypoeutectic structure of Fig. 65(b), i.e. 

graphite morphology is agglomerated particles. Close to the surface of the samples, 

however, relatively large primary graphite flakes and spheres are observed [Fig. 66(b)]. 

Flakes have few hundred micron length and a few tens of micron width and possess 

coarse forms and smooth surfaces. This form of the graphite flake is the so-called Kish 

graphite (or type C) shown in Fig. 5. The primary flakes and spheres are surrounded by a 

very fine form of eutectic flakes which is observed in magnified view of Fig. 66(c). This 

graphite morphology is the so called type D (Fig. 5) which grows side by side with nickel 

during a coupled growth mechanism [8, 31, 213]. 
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The non-uniformity of microstructure is attributed to mixing of the melt caused by EM 

currents and will be discussed later in section 4.3. 

4.3. Primary graphite morphologies 

When the hypereutectic melt is cooled down, the primary graphite flakes and spheres 

start forming as the melt intersects the graphite liquidus. The necessary undercooling for 

the initial nucleation of graphite can be understood from the cooling curve. In the cooling 

rates of 3 and 7 an undercooling of around 20°C was observed on the cooling curve of  

Fig. 64. Nevertheless, in the higher cooling rates (i.e. more flow of He gas) this is not 

observable due to slow response of the pyrometer. Therefore, it is conceivable that 

∆T≈20°C is driving the initial graphite nucleation. As the primary graphite form inside 

the melt, it can also form on the surface of the liquid droplet. The formation or 

accumulation of surface graphite will cause a sudden drop of temperature in the cooling 

curve of Fig. 64. As the melt is continuously cooled down nickel begin to nucleate. The 

plateau in cooling curve of Fig. 64 shows that Ni is often nucleated 90 °C below eutectic 

in 1235 °C. The solidification will be concluded with the formation of nickel-graphite 

eutectic [Fig. 66(c)]. 

Upon cooling of hypereutectic alloys, the primary graphite flakes and spheres form as the 

melt intersects with the graphite liquidus temperature in phase diagram. The graphite 

nucleation causes the first recalescence in cooling curve of hypereutectic melt in Fig. 64. 

Non-uniformity of hypereutectic microstructure in Fig. 66 is owing to circulation of the 
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4.3.2. Graphite spheres 

Fig. 70(a) shows the morphology of a graphite sphere which has been extracted from its 

metallic matrix and transferred to an arbitrary substrate. The SEM photo depicts that the 

sphere is a poly crystal including some pillars which have been grown radially from the 

core. The pillars are evidently the stacks of graphene layers grown normal to graphite 

basal plane. Although Fig. 70(a) reveals the outer morphology of spheres, it will not 

provide information about the core morphology. The inner morphology of spheres, 

however, could be observed in the spheres which have grown partially.  Fig. 70(b) shows 

two partially grown graphite spheres next to each other. The core structure consists of 

graphene layers which have grown circumferentially and covered the crystal similar to 

leaves of a cabbage. Detailed microscopy of graphite spheres which either grew partially 

or their growth has stopped in early stages revealed that graphite spheres structure 

evolves during multiple growth stages.  

It is believed that upon formation of graphite nucleus, due to ample availability of carbon 

atoms in the vicinity of the nucleus, the growth driving force is high and graphite 

interfaces grow in a and c direction with the similar speed. This is the initial stage of the 

growth which has been shown in schematic view of Fig. 70(c) as stack of graphene 

layers. As the growth proceeds, it may slow down and cause the formation of some 

curved facets which conform to crystal. Introduction of defects into the fast growing 

crystal may assist the bending mechanism. As these facets are growing, new ones will 

also nucleate which provide necessary ledges for lateral growth. As it is shown 
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4.4. Graphite formed in eutectic  

4.4.1. Divorced particles 

When a hypoeutectic melt is cooled within levitation coil, it is constantly rotating due to 

EM current. During the cooling of a hypoeutectic alloy of Ni-C, nickel is the first phase 

which nucleates around 1235 °C in  

Fig. 64. The nickel grains are initially small and are constantly mixing with liquid. As the 

grains become larger, their growth becomes dendritic and the EM current may break 

these dendrites and mix the solid and liquid. During the interface growth, the solid will 

take nickel and reject carbon into the liquid. As the liquid is continuously cooled down, 

parts of it might locally get to eutectic composition and the graphite then starts to 

nucleate. The formed graphite nuclei are stirred and mixed along with nickel dendrites 

and meanwhile get coarsened. While the nickel dendrites are not interlocked, the formed 

graphite particles are not entrapped in between the advancing nickel grains and mixed 

along with nickel. The nickel grains eventually become so large that they cannot mix 

anymore. For that reason the liquid would be entrapped in between the nickel boundaries. 

At this time, according to phase diagram nickel occupies relatively high volume fraction 

of the structure and the melt are just confined to tiny droplets in between the dendrites. 

Since the graphite nucleation inside these tiny pools are difficult and needs high 

undercoolings, the nickel dendrites continue to grow and engulf or entrap the prevailing 

graphite particles. Since nickel and graphite grow separately, they form the so-called 
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In the case of static cooling in Fig. 74, since there is no mixing, while the nickel dendrite 

is growing, they reject carbon and the liquid become richer in carbon and closer to 

eutectic composition. While the liquid reached the eutectic composition based on the Ni-

C phase diagram and applying the lever rule, it is only confined into tiny pools in 

between the nickel dendrites. While the nucleation of graphite in these tiny droplets is 

difficult, the nickel dendrites continue to grow. The graphite particles eventually nucleate 

and grow separately in a divorced manner in between the dendrites and get the 

morphology of the Fig. 74(b). Different thermal expansion coefficient of nickel and 

graphite during further cooling may cause the detachment of graphite and nickel in some 

regions as it has been shown in Fig. 74(b). Comparing the graphite morphologies in Fig. 

73 and Fig. 74 shows that while the graphite morphology in dynamic cooling of 

hypoeutectic alloys is agglomerated particles, graphite forms a solid particle during the 

static cooling which its shape is dictated by available interdendritic spaces.  

4.4.2. Eutectic flakes 

Since graphite and nickel are faceted and non-faceted crystals respectively, the coupled 

zone region of this system is skewed toward graphite, beneath the eutectic point [217, 

218]. The coupled region has been shown as a grey area in the phase diagram of Fig. 75 

which has been extracted from the work of Scheil [219]. The eutectic morphology at the 

periphery of the alloy in Fig. 66 indicates that this portion of the sample grew within the 

Ni-C coupled zone which is defined as the range of melt composition and growth 

velocities or temperatures for which the coupled growth leads the growth front.  
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In phase diagram of Fig. 75 the solidification path of a hypereutectic melt cooled from 

temperature higher than graphite liquidus has been sketched. As it was explained 

previously during melt cooling, primary graphites start to form which will consumes the 

carbon atoms and shift the melt composition toward the nickel side in the phase diagram. 

Therefore, as the liquid reaches the necessary undercooling for formation of nickel (1235 

°C in cooling curve of  

Fig. 64), its composition is outside the coupled zone. This can be observed in phase 

diagram of Fig. 75.  Solidification then begins with formation of primary nickel 

dendrites. Since the liquid is below T0 line, the formation of nickel dendrites from liquid 

is initially partitionless. While nickel dendrites nucleate and grow inside the supercooled 

liquid, a recalescence takes place which raises the liquid temperature above the T0 line 

where the melt partitioning will occur. At this temperature as nickel dendrites grow with 

a composition given by metastable extension of nickel solidus line, the carbon atoms are 

rejected into liquid. Carbon rejection will cause a compositional shift of the remaining 

liquid toward higher carbon content. At some temperature, the liquid composition and 

temperature cross into the Ni-C coupled zone. At this time nickel and graphite grow side 

by side and form a coupled eutectic.  

Fig. 76 shows SEM photo of eutectic graphite flakes which are deeply etched and 

filtered. The morphology shows that eutectic flakes frequently branch in the plane of the 

sheets. Possible mechanisms producing this branching with orientation change are 

twinning and tilting [49]. 
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5. Nucleation and growth kinetics of graphene layers  

 

Chapter V 

Nucleation and growth kinetics of 

graphene layers4 

 

  

                                                 
4 Partially reprinted from Journal of Carbon, Vol. 51, S. Amini and R. Abbaschian, ″Nucleation and 
Growth Kinetics of Graphene Layers from a Molten Phase″, pp 110-123, Copyright © 2013, with 
permission from Elsevier. 
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In this chapter, nucleation and growth kinetics of graphene layers have been investigated 

in Ni-C system. For this purpose, graphite flakes and spheres which were grown inside 

molten nickel at different cooling rates (chapter IV) are investigated in more detail. From 

the geometry of the flakes, their growth rates in the basal and prismatic planes are 

obtained. A physical model which treats the growth kinetics is then presented and 

compared to experimental results. Moreover, the morphologies of the grown spheres 

were examined with detailed microscopy techniques and their multi stage growth 

mechanism is explained. Finally effect of cooling rates on flake to sphere morphology 

change kinetics is described. 

5.1. Effect of cooling rates on grown morphologies of graphite 

Fig. 78(a)-(f) show microstructures of hypereutectic Ni-C melts which have been 

electromagnetically levitated and then solidified within the coil or quench in the oil. The 

non-uniformity of the samples and the formed various graphite morphologies were 

explained previously in chapter IV. However, it is visually observable in Fig. 78 (a)-(e) 

that as the cooling rates increase the graphite flakes become finer. Moreover, increasing 

the cooling rates favor the formation of graphite spheres. This is better observable at 

extremely high cooling rate where the microstructure in quenched samples is fully 

spherical in Fig. 78(f).  
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5.2. Geometrical analysis of primary graphite 

The graphite flakes were quantitatively analyzed by their width and length sizes while the 

graphite spheres were characterized by their diameter size. In the polished samples it is 

pertinent to point out that the flakes and spheres dimensions are not the same as they 

appear in cross section. This is due to the fact that the flakes may be cut in various 

directions which change the observed length and width in 2D cross section. Thus, a small 

flake appearing on a 2D microstructure may be just the edge of a larger one which is 

partially cut. Furthermore, cross sectioning of a sphere above and below the diametral 

section will show smaller diameter. Fig. 79(a) and (b) shows the flakes aspect ratio and 

spheres diameter percentile in different cooling rates respectively. Flakes or spheres do 

not possess uniform size and a size distribution prevails.  As an approximation, the 

averages of five longest flakes and ten largest spheres geometries in each cross section 

are considered as the geometry of primary graphites in that sample. Table 1 shows the 

geometrical analysis of the formed primary flakes and spheres in cross section of the 

samples along with the averages of five longest flakes and ten largest spheres.  
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Table 1. Geometrical analysis of primary graphites in ~40 mm2 of area 

Sample 
CR 

(K/s) 

Flakes Spheres 

Count 

10% of longest flakes 

(µm) 
5 longest flakes 

Count 

Ave. 

D 

(µm) 

Ave. 

D 

for ten 

largest 

(µm) 

Max 

D. 

(µm) 

Ave. 

L 

(µm) 

Ave. 

W 

(µm) 

Ave. 

AR 

Ave. 

L 

(µm 

Ave. 

W 

(µm) 

Ave. 

AR 

Ni+3.0 wt%C 3 36 1025.9 69.6 14.7 918.0 60.7 15.1 0 - - - 

Ni+3.0 wt%C 7 379 486.3 31.0 15.7 679.2 37.3 18.2 47 18.5 27.3 32.0 

Ni+3.0 wt%C 13 222 536.0 33.2 16.14 659.2 32.5 20.2 73 22.2 42.2 62.7 

Ni+3.0 wt%C 40 435 382.6 22.9 16.7 479.2 20.8 23.0 167 26.1 46.5 56.0 

Ni+3.0 wt%C 55 241 419.6 18.0 23.3 475.2 16.9 28.1 259 26.6 56.0 78.7 

CR: cooling rate, Ave: Average , L: length, W: width, AR: aspect ratio, D: diameter 
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The results of Table 1 shows that as the cooling rate decrease from 55 to 3 K/s the 

graphite flakes become coarsened while the quantity and size of spheres reduce. The 

longest flakes are the ones that probably started to grow from the beginning of cooling 

and could be used to calculate the growth rate. Moreover, the largest spheres have been 

probably cut diamterally and represent the diameter of the spheres that start to form from 

the beginning of cooling.  

5.3. Graphite growth model  

5.3.1. Graphite interfaces growth kinetics  

The ultimate morphology of primary graphite crystals depends on the growth rates of 

graphite interfaces. For instance the shape of the graphite flakes in Fig. 68 indicates that 

the growth of prismatic planes were faster than the basal planes which lead the graphite 

crystal into more lengthening than thickening. The different growth rates of two graphite 

interfaces (basal and prismatic) are apparently due to different growth mechanisms which 

operate on the two faces. Before explaining the growth behavior of graphite interfaces, it 

would be pertinent to take a look at the crystal structure of graphite in more detail. Some 

typical planes of graphite crystals have been shown in Fig. 80. Due to layered structure, 

in normal situation the graphite crystal is always bounded by {0001} basal plane, as 

shown in Fig. 80.  In normal growth situation, the prismatic faces of graphite, however, 

include different family of planes including {101 }l  [Fig. 80(a)], {112 }l [Fig. 80 (b)], or a 

combination of both [Fig. 80(c)]. In this case, when the hexagonal boundaries of graphite 
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contain planes of {101 }l , the graphene edges in basal planes possess a zigzag form which 

has been shown schematically in Fig. 80(a). When the hexagonal boundaries are formed 

by planes of{112 }l , the graphene edges have an armchair structure as shown in Fig. 

80(b). Eventually when the crystal is bounded by both {101 }l  and {112 }l  planes, the 

graphene boundaries possess a mixed boundary configuration of zigzag and armchair 

seen in Fig. 80(c). The side view arrangements of the atoms in prismatic faces of {1010}

and{1120}have been shown in Fig. 80(d), respectively.  

Later it will be shown that the edge energy of the graphite e , which is the result of 

dangling bonds in the boundaries, plays dominant role in defining nucleation and growth 

rates of interface. Considering E as the C-C molar bond energy, the total bonding energy 

in between two carbon atoms would be: 

2
4 2A A

E E
e

N N
  

 
(eq. 1)

where NA is Avogadro’s number.  

Assuming C-C bond molar energy and length of E=348 kJ/mol and a=154 pm 

respectively [1], the graphene edge energy for zigzag and armchair boundary would be:  

( )

1 2

2 2 4e zigzag
A

E
e

aCos N aCos


 
   

 
(eq. 2)

( )

1 2
(1 )

3 2 3e armchair
A

E
e

a N a
     

 
(eq. 3)
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graphite crystal which can be described by supersaturation. In small driving force the 

prismatic and basal interfaces of graphite are faceted low index planes [70]. Growth of 

these interfaces in this case takes place by lateral movement of the ledges produced by 

2D-nucleation or spiral growth around a screw dislocation. It has been shown that when 

the crystal grows by 2D nucleation and migration of ledges, its growth rate increases 

exponentially with the driving force [56]. This has been shown schematically in Fig. 

81(a). However, as the driving force increases, the faceted interfaces start to lose their 

planar structures as it becomes kinetically roughened [54-56]. This transition from 

faceted to non-faceted depends on the driving force as well as on the nature of the growth 

plane. In small driving force, interface will grow by a surface-controlled mechanism (e.g. 

2D nucleation and growth or spiral growth around a screw dislocation). As the driving 

force increases, it reaches a critical value where the interface grows continuously by a 

diffusion-controlled mechanism. It has been shown that the growth rate of a roughened 

interface increases approximately linearly with the driving force [56] [Fig. 81(a)].  

The concept of kinetically roughening transition for prismatic and basal faces of graphite 

has been shown in graph of Fig. 81(b). The graph depicts that in a definite 

supersaturation growth velocities change as {0001}{112 } {10 1 }l lV V V  . This is basically 

related to planar density of interfaces and the fact that planes with lower atomic density 

grow faster.  
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Based on the interface growth rate curves of Fig. 81(b), the kinetically driven flake to 

sphere morphology change can be understood. At small solidification rates, the graphite 

crystals are normally bounded by the faceted low index basal and prismatic planes. The 

prismatic face roughening transition occurs in smaller driving force than the basal plane. 

As such, at intermediate rates the prismatic interfaces become rough and grow faster 

while the basal plane is still faceted, leading to the formation of flake graphite. In 

extremely high growth rates, i.e. higher than fstC in Fig. 81(b), both interfaces grow 

roughly with a relatively similar rate, resulting in bulky spherical morphology. It is 

believed that for samples moderately cooled in levitation, the supersaturation is mostly in 

between p
rC and b

rC . So the flakes tips are diffuse and their growth is diffusion 

controlled. At the same supersaturation, the basal plane is faceted and its growth is 

surface-controlled. In extremely high supercooling which occurs in quenching of the melt 

droplets, the supersaturation is higher than fstC  where both interfaces are diffuse and 

grow with relatively similar rate. This will result in the formation of bulky spheres.  

5.3.2. Graphite nucleation 

Fig. 82 shows the sequence of graphite flakes nucleation and growth schematically. The 

formed 3D graphite nucleus is shown at the time t1. For regular nucleation, the surface 

energy is assumed to be isotropic, i.e. spherical nucleus. However, for graphite because 

of anisotropy, it is possible for the nucleus to be hockey pock or pancake shaped to 

minimize the total surface energy for nucleation.  
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the graphite/melt interfacial energy would be fully spherical and the equilibrium shape of 

nucleus would be correspondingly spherical. Nevertheless, The surface energy of 

graphite prism face ( )p  is about seven to ten times higher than the basal plane ( )b  [33, 

57]. Accordingly, the   plot of the interfacial energy would be a sphere with two deep 

cusps normal to the basal plane which has been shown on the nucleus of Fig. 82 at the 

time t1.   

Based on the Wulff theorem [11] the equilibrium shape of graphite nucleus would now 

become hockey puck in a way to minimize the total surface energy: 

b b p pS S    
 

(eq. 4)

Where bS  and pS  are the basal and lateral areas respectively. Assuming a constant 

critical volume criticalV for disk-shaped nucleus of diameter D  and thickness b  the total 

surface energy would be: 

2

2 b p

D
Db

     
 

(eq. 5)

Since  

2

(constant)
4critical

D b
V k


 

 
(eq. 6)

Then  
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(eq. 7)
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b
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(eq. 8)

0 p

b

D

b





   

 
(eq. 9)

So the diameter to thickness ratio of the nucleus is equivalent to prism to basal plane 

surface energy ratio.  

5.3.3. Growth of flakes  

As it was explained in section 5.3.1 in samples cooled in levitation, at moderate cooling 

rates the flakes tips are diffuse and their growth is controlled by carbon atoms diffusion 

toward the interface. The high accommodation factor of atoms in the prism face is owing 

to the presence of numerous ledges which contains closely spaced jogs. This has been 

shown schematically in the magnified view of the flake tip in Fig. 82. As such the 

lengthening of the flakes is by a diffusion controlled mechanism. However, at these 

moderate cooling rates, the basal plane grows faceted and its growth is controlled by 

lateral movement of the ledges. The generation of new ledges could dominantly be 

achieved by repeated 2D surface nucleation or intersection of screw dislocations with free 

surface. There are also other available mechanisms such as nucleation at the crystal 

edges, intersection with other crystals or termination of twins at the edges [54]. In our 

model the formation of ledges is presumed to be dominantly by the 2D nucleation in the 

basal plane since no evidence of spiral growth around screw dislocation were observed.  



 

140 
 

	

As the graphite nucleus form (section 5.3.2), the probability of 2D nuclei formation on 

top/bottom of it is low in view of the fact that the 2D nucleation rate is proportional to 

crystal face area [55, 56]: 

*

expn

G
I AK

kT

 
  

   
(eq. 10)

Where *G : the work needed to form a critical 2D nucleus, T : temperature, k : 

Boltzmann constant  and nK  is an uncertain constant. As the nucleus grows, the 

nucleation event occurs repeatedly in the entire basal plane and the movement of the 

created ledges will contribute to the thickening of the graphite crystal (time t3 in Fig. 82).  

Fig. 83(a) shows sequential 2D nuclei, which have been formed on a graphite single 

crystal. It is observed that as the 2D nuclei grow, they are bounded by polygonal faceted 

interfaces. The growing ledges of the graphite have also been shown in Fig. 83(b).   
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Radius of curvature has two opposite effects on the growth velocity of the tip. Firstly, it 

will decrease the growth rate by reducing the concentration profile through the equation

/C C kr   ; Secondly, it increases the growth velocity by a factor proportional to 

*1 /r r  [10]. According to Zener suggestion, it is expected that the growing tip radius 

changes continuously to eventually reach its maximum growth velocity. So the critical 

radius of curvature in the flake tip would be the one that maximizes the growth rate: 

max

0 2 *
p

p

v

dv
r r

dr
  

 
   (eq. 12)

Thus assuming isotropic interfacial energy for prism face, the maximum growth rate will 

occur when the tip radius of curvature is equivalent to 2 *r . 

By inserting (eq. 12) into (eq. 11): 

max 0
*

1

2

gr
m i

p L
m C r

DV C C
v

kV C C r

 
   

 (eq. 13)

Assuming that 0C C r CC C C C C      is constant and 0 iC C C    the flake tip 

velocity would be: 

max
*

1

2

gr
m

p L
m C

DV C
v

kV C r




  
  (eq. 14)

The tip radius of longest graphite flakes in the optical micrographs were measured to be 

approximately * 5r m .Assuming gr 3
mV =5.3 cm /mol , L 3

mV =7.5 cm /mol ,ΔC=3 atom% ,

CΔC =87atom%, k 1 , -6 2D 7.5 10 cm /s   and * 5r m  the max -1
pv =1.8 μms . The 
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conceivable that at the beginning of growth; the driving force for migration of interfaces 

is relatively high due to high amount of supersaturation and availability of carbon atoms 

in close neighboring of the interfaces.  

5.3.3.2. Surface controlled thickening of flakes  

The flakes thickening can be treated by 2D nucleation and growth (2DNG) model. 2DNG 

is divided into two regions based on the relative time between nucleation event and layer 

spreading. If a single nucleus forms and spread over the entire surface prior to occurring 

of next nucleation event, the growth is the so called monolayer nucleation and growth 

(MNG). However, if a large number of 2D nuclei form on the entire surface and also on 

top of the already growing islands before the layer spreading is complete, the growth is 

the so called poly nucleation growth (PNG). The MNG is observed to occur in very small 

driving force [55, 56] and it is believed that in moderate cooling rates of current 

experiments the PNG are dominant. Utilizing the poly nucleation growth model for 

graphite in the basal plane, thickening rate of the flakes would be obtained [56]. To use 

this model the following assumptions are made: a) the 2D nuclei thickness are as small as 

single graphene layer with a ledge height equal to graphite interlayer spacing, b) the 2D 

nuclei grow isotropically, c) the growing 2D nuclei are not affected by proximity of their 

neighbors, d) the ledge migration rate ( )ev  is independent of the cluster size. By 

considering that for a disk shaped 2D nuclei the time, τ, needed for it to cover the 

interface is equal to the mean time between the genesis of two nuclei (i.e. the second one 

on top of the first) or otherwise given by: 
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2

0

( ) 1eJ v t dt


 
 

  (eq. 15)

Where J  is the nucleation rate.  

If the thickening rate is assumed constant, it would be equal to: 

b

h
v


     (eq. 16)

Where h is the ledge height in Fig. 82.  

By Integration of (eq. 15) and using (eq. 16) the steady state growth rate of the graphite 

basal plane by poly nucleation growth model would be: 

1
2 3

3
e

b

Jv
v h

 
  

 
    (eq. 17)

The 1/3 exponent on the equation is governed based on the assumption that the nucleus 

radius increases linearly with time. A similar treatment to that given to graphite tip (eq. 

14) could be deployed for ledge migration rate. Thus presuming *2h r  the lateral 

growth velocity of the ledges would be:     

1gr
m

e L
m C

DV C
v

kV C h





    (eq. 18)

And by inserting (eq. 18)  into (eq. 17) : 

21
33 1

3

gr
m

b L
m C

DVJ C
v h

kV C h

          
 (eq. 19)
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The 2D nucleation rate in (eq. 19)  is defined as the attachments frequency of an atom to 

a cluster of critical size. It has been shown that the 2D nucleation rate per unit area could 

be obtained by [56, 220]: 

*

exp -n

G
J K

kT

 
  

   
(eq. 20)

Where *G : the work needed to form a critical 2D nucleus, T : temperature, k : 

Boltzmann constant  and nK  is an uncertain constant which is commonly taken to be in 

the range of 21 210  [221].  

The total formation work of a graphite disk with the height of h and radius of r on the 

basal plane is: 

2
V eΔG= r ΔG +2πrσh  (eq. 21)

where e : the edge surface energy per unit length, VG : volumetric Gibbs free energy 

for formation of graphite from the melt. So: 

*

( ) 0
r

d G

dr




 

 

*  - e

V

r
h G




  
(eq. 22)

And from (eq. 21)  and (eq. 22): 

2
* σe

V

G
h G


  

  
(eq. 23)
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2σ
exp e

n
V

J K
h G KT

 
     

  (eq. 24)

Inserting (eq. 24) into (eq. 19) the basal plane growth rate would be:  

1 2
2 3 3σ

exp
3

gr
n e m

b L
V m C

hK DV C
v

h G KT kV C

     
            

(eq. 25)

Assuming -10h=3.5×10 m, T=1873K , 10 3
VΔG =10 J/m [222] , 21

nK =10 [221] and 

-1
eσ =1nJm  the growth rate of graphite basal plane would be -1=0.1 msbv   which is in 

good agreement with the experimental results of Fig. 87.  

5.3.4. Growth of spheres  

Result of Table 1 shows that increasing the cooling rate will favor the formation of 

spheres. This morphology change could also be readily observed in the quenched samples 

where the microstructure is fully spherical [Fig. 78(e)]. The fact that the high cooling 

rates promotes the spheres formation have also previously observed in Ni-C, Fe-C-Si, Fe-

C and Co-C systems [99, 115, 125-127], yet the nature of this kinetically driven 

morphology change has not been defined. Detailed microscopy of the spheres revealed 

that different growth mechanisms in various growth stages exist which are going to be 

explained in this section.  

In high cooling rates (i.e. high driving force), upon the formation of a nucleus, its both 

basal and prismatic interfaces grow isotropically with relatively similar rates [Fig. 81 

(b)]. Since both interfaces are growing fast, there is also high probability of defect 
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formation in the crystal. This is stage I of the growth and has been shown schematically 

in Fig. 88(a). Later, as the crystal becomes larger, it consumes the neighboring carbon 

atoms and the growth slows down. At this stage, the rough interfaces of crystal begin to 

form semi curved facets. There is high probability of introducing intrinsic defects into 

these facets owing to the fact that these locally faced interfaces will have to conform to 

the shape of the existing sphere. This could be understood by analogy with the gluing of 

flat tiles on a soccer ball where the tiles need to be slightly curved as well as having 

defective boundaries. The growing facets then run into one another forming boundaries 

on the surface. From these boundaries, new steps can develop and grow circumferentially 

over the surface, producing a pattern similar to cabbage leaves. This stage II of the 

growth has been shown in Fig. 88(b) where a growing step on the crystal has been 

marked by a red arrow. Later, as the supersaturation decreases more, graphite pillars 

emanate radially from the existing surface.  This stage III of the growth is clearly 

observable in partially grown sphere of Fig. 88(c). The pillars will grow epitaxially on the 

existing surface, yet independent of each other to accommodate defects and structural 

features. The pillar growth continues into the melt until the metallic matrix nucleates and 

blocks the sphere from further growth. At this stage the spheres growth would be 

concluded [Fig. 88(d)]. The schematic morphology of a sphere has been shown in Fig. 

88(e) in which different stages of growth have been marked. The difference in stage II 

and III can clearly be observed in schematic representation of Fig. 88(e). In stage II the 

curved graphite facets grow circumferentially to form a morphology similar to cabbage 
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It is pertinent to point out that as the spheres are growing in stage III, sphere to flake 

morphology change may also occur in some particles depending on the local growth 

conditions. The optical and scanning electron micrographs of this morphology change 

have been shown in Fig. 91. As the growth slows down in stage III, there are possibilities 

that the pillars start to take off from the sphere and grow into the liquid and form a flake. 

It is also conceivable that while a sphere is blocked by a metallic shell, a pillar may 

continue to grow locally in the form of a flake. To the best of my knowledge, this is the 

first study which reports a multi stage growth mechanism for graphite spheres. These 

complex growth mechanisms, to some extent, clarify why it has not been unanimity for 

growth of spheres for many years. 
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5.4. Graphite growth defects and instabilities  

Some frequent defects and irregularities were observed in the micrographs of the flakes 

which are the result of their 2D nucleation and growth in the basal planes. Examples are 

superledges, overhangs and cavities which are shown schematically along with their 

micrographs in Fig. 92. As the flakes ledges migrate, their lateral movements may be 

blocked by obstacles such as foreign impurities, inclusions or even larger metal atoms 

incorporated into the graphene lattice. In this case the ledges become immobile and pile 

up on each other and eventually form a superledge. In some instances, however, the 

upper part of the superledge may take off and continuously grow into the liquid and cause 

the formation of overhangs. Ultimately when the overhangs thicken, they would meet the 

crystal again and form internal cavities (Fig. 92). 
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Due to higher interfacial energies of graphite in prismatic and basal planes, the graphite 

nucleus has a hockey puck shape to minimize its total surface energy. However, as the 

nucleus grows, it may be bounded by faceted low index planes due to carbon atom 

consumption and reduction of growth driving force. At this stage the hexagons would 

from, whose corners would eventually become unstable due the fact that the growth in 

the corners is controlled by a large radial field in front of it while the growth of crystal 

edges is controlled by a planar field [223]. Therefore the corners would take off and form 

the morphologies similar to Fig. 93(a). As the growth proceeds the growth may slow 

down and become faceted once more. This transition has been shown by a dashed arrow 

in Fig. 93(a). It should be noted that instability of crystal corners is different from growth 

instabilities of faceted interfaces due to constitutional supercooling. Scale-wise the 

instability of Fig. 93(a) is large and occurs in the whole crystal while instabilities due to 

constitutional supercooling are small with an irregular spacing. Nevertheless, instability 

due to constitutional supercooling (tip branching) could clearly be seen in Fig. 93(b). 

Finally, the growth may be blocked at the tip by other growing crystals and graphite 

interfaces as instances are shown in Fig. 93(c).  

In investigation of the flakes, both non-faceted and faceted tips were observed in the 

microstructure. Fig. 94(a) and (b) show two non-faceted and faceted tips respectively. As 

it was reported in section 5.3, at present cooling rates the flakes tip are mainly non-

faceted. However, as the non-faceted tips grow into the liquid, their growth rate may slow 

down due to consumption of carbon atoms and reduction of growth driving force in the 

tip vicinity. The fast growing planes would then disappear and the tip rearranges itself 
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6. Conclusion 

A new approach for growing large-area graphene and few-layer graphene films was 

proposed. The technique involved dissolving carbon in a molten metal at a specified 

temperature and then allowing the dissolved carbon atoms to nucleate and grow on top of 

the melt at a lower temperature. The detailed microscopy and micro-Raman spectroscopy 

were utilized to characterize the obtained layers. Different morphology including thick 

graphite, few and single layers were observed on metal substrates. The bulk graphite 

microstructure shows the flat areas bounded by the triangular faceted wrinkles formed 

due to the mismatch in the thermal expansion coefficients of the metal substrate and 

graphite. few layer graphene was also grown on both nickel and copper substrate. The 

Raman spectroscopy proved that single layer graphene larger than 125 µm2 has been 

successfully grown on nickel substrate. The absence of the D and D' bands in the Raman 

spectrum of single layer graphene indicates graphene’s high quality. It was found that 

nickel provides a better substrate for growing single layer graphene from the melt.  

Various graphite morphologies which grow inside the electromagnetically levitated melts 

were also investigated. These morphologies included primary flakes and spheres, curved 

surface graphite, eutectic flakes as well as engulfed and entrapped particles were 

observed to grow during solidification of electromagnetically levitated nickel-carbon 

melts. As the hypereutectic melts were cooled from liquidus temperature, graphite flakes 

and spheres grew and accumulated near the surface due to electromagnetic mixing. The 

primary surface graphite was also observed to nucleate and grow on the liquid surface 
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which eventually formed a curved crystal covering the entire liquid. With further cooling, 

the liquid close to the surface solidified as a fine coupled eutectic while the liquid in the 

center went under a divorced eutectic reaction and formed engulfed and entrapped 

graphite particles. It was also observed that the microstructure of hypoeutectic melts was 

uniform and consisted of engulfed and entrapped graphite particles.  

Nucleation and growth of graphene layers from metal-carbon melts was also studied in 

this research within the system of Ni-C. It was shown that the grown morphologies of 

graphite during cooling of supersaturated Ni-C melts depend on the solidification rate and 

supersaturation. At small solidification rates, the graphite crystals are normally bounded 

by faceted low index basal and prismatic planes. Growth of these faceted interfaces is by 

migration of the ledges produced by 2D-nucleation, and with a growth rate that increases 

exponentially with the driving force. However, as the growth rates increase, graphite 

interfaces become kinetically rough and the growth rate then becomes a linear function of 

the driving force and becomes limited by the diffusion of carbon to the growth interface. 

The roughening transition from faceted to non-faceted depends on the driving force as 

well as on the nature of the growth plane. Due to high number of C-C dangling bonds in 

prismatic face, its roughening transition occurs in smaller driving force than the basal 

plane. So at intermediate rates, the prismatic interfaces become rough and grow faster 

while the basal plane is still faceted, leading to the formation of elongated flaky graphite. 

In extremely high growth rates, however, both interfaces grow isotropically with a 

relatively similar rate leading to formation of graphite sphere. It was shown for the first 

time that the graphite spheres would grow in three different sequential stages including I) 
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basal and prismatic planes isotropic growth II) circumferential growth of graphite tiles 

and III) radial growth of pillars. An analytical model was developed for the lengthening 

and thickening rates of graphite flakes. Comparison of the theoretical results with the 

ones from experiments proved the validity of the proposed model.   
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