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ABSTRACT OF THE THESIS

Parameter-free Adversarial Attack via Learned Optimizer

by

Lalit Bhagat

Master of Science in Computer Science

University of California, Los Angeles, 2023

Professor Cho-Jui Hsieh, Chair

As the domain of adversarial attack countermeasures continues to expand, the accurate eval-

uation of these defenses remains a challenge. Adversarial attacks pose significant challenges

to the security and robustness of deep learning models. Traditional methods typically depend

on predetermined parameters, such as ensembles of certain methods and manually designed

rules, which may not be optimal for generating effective attacks. In this research, we propose

a parameter-free adversarial attack by leveraging a learning-to-learn (L2L) framework.

We train a recurrent neural network-based optimizer to adaptively update directions

and steps, enabling more efficient and adaptive adversarial attacks. We conduct extensive

experiments on robust models trained on the MNIST and CIFAR-10 datasets.

Our findings show that the learned optimizer outperforms traditional methods, such as

PGD, in generating adversarial attacks for small networks and smaller datasets like MNIST.

For larger networks, our method demonstrates improved performance only for smaller attack

steps. These results highlight the potential of parameter-free attacks in evaluating and

understanding the robustness of deep learning models.
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CHAPTER 1

Introduction

Deep learning has revolutionized various domains, including computer vision, natural lan-

guage processing, and speech recognition, due to its ability to learn from vast amounts of

data and achieve state-of-the-art performance in many tasks. However, deep learning mod-

els have been found to be vulnerable to adversarial attacks, where small perturbations are

added to the input data, leading to misclassifications by the model. These attacks pose

significant challenges to the security and robustness of deep learning systems, especially in

critical real-world applications such as object recognition in self-driving cars.

Adversarial examples and adversarial training were first introduced by Ian Goodfellow

[8]. Various algorithms, such as DeepFool [16], FGSM [8], I-FGSM [12] and CW [2], have

made it easy to generate adversarial examples. Furthermore, adversarial attacks have been

demonstrated to be effective in black-box settings [12], where the attacker has limited knowl-

edge of the target model, and have also been validated through real-world applications [17].

This has prompted the development of numerous defense mechanisms to safeguard deep

learning models against adversarial attacks, among which adversarial training remains the

most effective.

The Projected Gradient Descent (PGD) attack [14] is a popular method for testing adver-

sarial robustness due to its computational efficiency and effectiveness in many circumstances.

However, even PGD has been found to fail [6], resulting in a considerable overestimation of

robustness. One of the reasons for potential failure is the estimation of fixed step size.

Therefore, automating the step size for adversarial attacks has become an important topic

in the field of adversarial robustness.
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To address the limitations of the traditional PGD attack, researchers have developed the

Auto-PGD, an adaptive version of PGD. Auto-PGD adaptively tunes its parameters, such as

the step size and number of iterations, allowing it to generate stronger adversarial examples

and provide a more accurate estimate of a model’s robustness. Despite its advantages, Auto-

PGD has some limitations. For instance, the adaptive nature of Auto-PGD might increase

the computation complexity, as it requires tuning parameters during the attack. This can

lead to higher computational costs compared to fixed-parameter methods like PGD. Fur-

thermore, although Auto-PGD adapts its parameters to perform better against a particular

defense, it might not be universally optimal for all defense mechanisms, requiring further

adaptation or the combination of different attack methods.

Considering the limitations of both PGD and Auto-PGD, the adaptive auto attack, Au-

toAttack, has become the standard for assessing adversarial defenses. As described by Croce

and Hein [6], AutoAttack offers a reliable and effective way to evaluate adversarial defenses

by combining an ensemble of white-box adversarial attacks. This ensemble includes different

attack methods, such as decision-based, gradient-based, and score-based attacks, providing

a comprehensive assessment of a given defense’s robustness. By identifying weaknesses in

defenses, the ensemble approach contributes to the development of more robust and secure

deep learning models.

However, AutoAttack also has some limitations. One notable limitation is its compu-

tation complexity, as combining multiple attack methods increases the computational com-

plexity and runtime compared to using a single attack method. Additionally, AutoAttack

relies on human-designed rules and ensembles, which might not fully capture the adaptabil-

ity and flexibility needed to address the wide range of adversarial defense mechanisms. This

might make it less suitable for real-time applications or large-scale evaluations. Therefore,

it is important to design a single adaptive attack that does not use hyperparameters and

human-designed rules and ensembles. In the following sections of this thesis, we will explore

such an adaptive attack method and evaluate its effectiveness in comparison to traditional

attack methods.
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1.1 Contributions

In this work, we advance the field of adversarial robustness in deep learning through a set

of pivotal contributions. First, we introduce a parameter-free attack package designed to

assess the robustness of deep learning models. Unlike existing auto-attack packages, which

are reliant on human-designed rules and heuristics [6], our approach uses a learned optimizer.

Our approach introduces a Recurrent Neural Network (RNN) based Learn-to-Learn (L2L)

adversarial attack. This approach utilizes the capability of RNNs to capture long-term

dependencies, as corroborated by prior work [13], and employs them as the optimizer for

generating coordinate-wise perturbations. This aligns closely with the framework we propose,

thus making it a significant departure from traditional adversarial attack methods.

Finally, we delve into the specifics of optimizer training and present novel insights.

Through experimental evaluations, we ascertain that training the optimizer for fewer steps

can generate perturbations that are more effective than those produced by PGD. However,

the advantage is mitigated and can even turn into a disadvantage when a larger step size

is employed for training. This observation serves as an essential guideline for future work

regarding step size configuration in optimizer training.

In summary, the contributions of the thesis are as follows:

• Developed a parameter-free Learn-to-Learn (L2L) based adversarial attack, utilizing

Recurrent Neural Networks (RNNs) as the optimizer

• Demonstrated that the parameter-free L2L-based adversarial attack outperforms tra-

ditional methods like Projected Gradient Descent (PGD) when smaller step sizes are

used for training.

• Conducted rigorous evaluations to assess the limitations of existing L2L frameworks,

offering valuable guidelines concerning the impact of step size during optimizer training.
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1.2 Overview

The remainder of this thesis is organized as follows:

Chapter 2 reviews the related work on adversarial attacks and defense mechanisms, set-

ting the stage for our research in the broader context of adversarial machine learning.

Chapter 3 details our methodology, introducing our RNN-based Learn-to-Learn (L2L)

approach for adversarial attacks and explaining the unique aspects of our model.

In Chapter 4, we present experiments and results, showcasing the effectiveness of our

approach compared to traditional adversarial methods and state-of-the-art techniques.

Finally, Chapter 5 concludes the thesis, summarizing our key findings and contributions,

and outlines directions for future research in this area.
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CHAPTER 2

Related Work

2.1 Adversarial Attack and Defense

Adversarial attacks have become a significant area of research within the field of machine

learning, particularly concerning the security and robustness of deep learning models. Szegedy

et al. [19] were among the first to reveal the susceptibility of neural networks to adversarial

examples—inputs crafted with imperceptible perturbations designed to mislead models. This

seminal work laid the groundwork for a multitude of subsequent studies aiming to under-

stand and mitigate such vulnerabilities. Goodfellow [8] introduced the concept of adversarial

training as a countermeasure, which involves augmenting the training process with adver-

sarial examples. They also presented the Fast Gradient Sign Method (FGSM), a technique

for generating adversarial examples rapidly, underscoring the linear nature of deep networks

as a potential cause for their fragility.

The quest for more sophisticated attacks led to the development of iterative methods,

such as Projected Gradient Descent (PGD) [14], which are more effective at finding adver-

sarial examples than one-step methods like FGSM [12]. [12] demonstrated that adversarial

examples could be crafted even in the physical world, not just in digital space, raising con-

cerns about the practical implications of such attacks. Meanwhile, the Carlini & Wagner

Attacks [2] offered a set of methods that provided a benchmark for the robustness of defensive

strategies, indicating that defensive distillation [18] could be overcome.

In parallel, the pursuit of robust optimization techniques led to the formulation of adver-

sarially robust models. [14] posited that robustness could be viewed as a property emerging

from solving a min-max optimization problem, where the inner maximization is responsible
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for finding the most adversarial perturbation, while the outer minimization improves the

model’s parameters against such perturbations. This perspective has fueled research into

the interplay between attack generation and model robustness.

In summary, the body of work on adversarial attacks reflects a dynamic tension between

the development of attack methodologies and the quest for model robustness. The evolving

nature of adversarial tactics—from simple gradient-based approaches to complex learned op-

timizers—highlights the importance of ongoing research in this field. It underscores the need

for a continued focus on devising robust training mechanisms and exploring the theoretical

underpinnings of adversarial resilience.

2.2 Learning to Learn

The Learning to Learn (L2L) framework, also known as meta-learning, is an emerging

paradigm in machine learning that focuses on designing algorithms capable of learning how

to learn. The central idea is to develop models that can generalize learning strategies across

various tasks, thereby improving their performance on unseen challenges. One of the seminal

works in this area by [1] introduced the concept of training neural networks with a meta-level

knowledge of what constitutes an effective learning process.

In the current study, our focus is on a specialized niche within the Learning to Learn

(L2L) domain, specifically the learning of optimizers that enhance performance. Instead of

relying on predefined update rules crafted by human experts, the L2L framework advocates

the use of neural networks to autonomously devise optimization strategies. The roots of

this approach can be traced back to the pioneering work of [4] and [10], where the initial

models of adaptive algorithms were applied to straightforward convex challenges. Building on

this foundation, [1] introduced an LSTM-based optimizer capable of tackling more intricate

optimization tasks, including the training of convolutional neural network classifiers.

In the context of adversarial machine learning, L2L approaches have been explored to

design models that can learn robust optimization strategies. The work of [?] stands out
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in this regard, utilizing a CNN generator to transform clean images into their perturbed

counterparts. However, as this approach mirrors the one-step, deterministic nature of attacks

like FGSM, it has limitations in terms of strength and diversity. Addressing this, [9] refined

the algorithm to iteratively generate more potent and varied attacks. A significant challenge

with the CNN generator, however, is its extensive parameterization and its inability to

effectively account for long-term dependencies, which complicates the optimization process,

particularly in the context of the minimax challenges posed by adversarial training. This led

to [22] introducing an RNN optimizer-based method, which not only facilitates a more stable

training regimen but also offers a more nuanced understanding of the update mechanism.

Inspired by these developments, our research adopts a similar RNN-based optimizer but with

a specific focus on enhancing the efficacy of adversarial attacks, tailoring it to be more adept

at generating sophisticated adversarial examples.
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CHAPTER 3

Methodology

3.1 Preliminaries

3.1.1 Notations

In our work, clean images and their labels are denoted by the bold lowercase letters x and y,

respectively. The focus of this paper is on a task related to image classification, where the

classifier f is parameterized using θ. The operation sign(·) is applied element-wise to identify

the sign of an input, with the convention that sign(0) = 1. The vicinity of x and the set of

allowable perturbed images are represented by B(x, ϵ), defined as {x′ : ∥x′−x∥∞ ≤ ϵ}, here

employing the infinity norm as the metric for distance. The projection operator, denoted as

Π, is responsible for mapping the perturbed data back into the allowable set. Specifically,

ΠB(x,ϵ)(x
′) is calculated as max(x− ϵ,min(x′,x+ ϵ)), functioning on an element-wise basis.

Finally, L(·, ·) symbolizes a loss function used in multi-class scenarios, such as cross-entropy.

3.1.2 Adversarial Attack

In this section, we delve into the formulation of adversarial attacks, adapting certain hand-

designed optimizers for this purpose. The goal of constructing a robust adversarial attack is

to maximize the loss within a bounded neighborhood B(x, ϵ), effectively challenging the clas-

sifier’s resilience. This process can be conceptualized as a maximization problem, contrasting

the minimization approach in adversarial training. The objective is to identify perturbations

that lead to the maximal loss, thereby effectively exploiting the weaknesses of the classifier.

This concept is formalized as follows:
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max
x′∈B(x,ϵ)

L(f(x′),y) (3.1)

Here, L denotes the loss function, f represents the classifier parameterized by θ, and D is

the empirical distribution of the input data. This maximization problem seeks to discover the

most effective adversarial examples within the permissible perturbation set B(x, ϵ), thereby

rigorously testing the robustness of the classifier against adversarial threats.

The effectiveness and efficiency of the inner maximization process are vital for developing

an improved adversarial attack. A widely utilized method for this inner maximization is the

projected gradient descent (PGD) algorithm. PGD performs a predetermined number of

update steps as follows:

x′
t+1 = ΠB(x,ϵ)(αsign(∇x′L(x′

t)) + x′
t) (3.2)

In this equation, L(x′
t) signifies the term we aim to maximize.

3.1.3 Adaptive Step Sizes

The efficacy of adversarial attacks is significantly influenced by the choice of the optimiza-

tion algorithm used for inner maximization. As suggested by [6, 22], the prevalent Projected

Gradient Descent (PGD) method might not be the most effective strategy. Minor mod-

ifications to PGD, without altering the core objectives of the adversarial approach, can

significantly enhance the attack’s impact. Utilizing the CNN architecture outlined in [24],

experiments on the MNIST dataset show that a constant step size in a typical 10-step PGD

setup may not always be optimal for the attack’s progression. Integrating backtracking

line search (BLS) dynamically determines the step size for the adversarial attack. Starting

with maximum step size α0 and reducing it iteratively as αt = ραt−1 until the condition

L(x′ + αtp) ≥ L(x′) + cαtTp is met, where p = ∇x′L(x′), ensures that each update con-

tributes to a meaningful increase in the loss function. This method stops after a finite

number of steps once a sufficiently small α is achieved, following the standard in gradient

9



ascent optimization (refer to discussions in [22]). With ρ = 0.5 and c = 10−4, the results

indicate that the combination of adversarial attack with BLS produces stronger adversarial

examples and diminishes robust accuracy more effectively than the standard PGD approach.

3.1.4 Learning to learn by gradient descent by gradient descent

The Learning to Learn by Gradient Descent by Gradient Descent (L2L-GDGD) [1] approach

represents a novel paradigm in neural network optimization. This method involves a neural

network, referred to as the ’learner’, which is trained to optimize the parameters of another

network. The learner network dynamically determines the best strategy for optimization,

and this process is mathematically expressed as:

θt+1 = θt + gt(∇f(θt), ϕ). (3.3)

Here eq. (3.3), θ denotes the parameters of the network being optimized, gt is the update

function determined by the learner, and ϕ represents the parameters of the learner network.

The learner’s objective is to adaptively modify the optimization path to effectively minimize

the loss function of the target network.

The essence of L2L-GDGD lies in its ability to self-improve the optimization process.

Rather than relying on predefined rules or fixed algorithms, the learner network identifies and

implements the most efficient strategies for optimizing the target network. This approach

is transformative as it allows for the development of optimization strategies that are not

constrained by traditional limitations, offering a more flexible and potentially more effective

approach to neural network training.

3.2 Learning to Learn for Adversarial Attack

In the advancement of adversarial attack methodologies, the role of the maximization pro-

cess has emerged as a pivotal factor. Prior discussions, particularly in Section 3.1.3, have

10



acknowledged the efficacy of Backtracking Line Search (BLS) in this context. Nevertheless,

the practical application of BLS within adversarial attack frameworks encounters signifi-

cant computational challenges. These arise primarily from the algorithm’s inherent need for

repetitive line searches and continuous loss assessments, leading to an escalated computa-

tional load. This situation raises a fundamental question in the optimization of adversarial

attacks: Is there an approach to autonomously determine an optimal step size for inner

maximization that circumvents excessive computational demands? Extending this line of

inquiry, one might also consider the potential for crafting a bespoke maximizer, tailored to

specific datasets and models, as a viable alternative to general-purpose optimizers like PGD.

In recent years, the field of learning-to-learn has been exploring the potential of machine

learning, particularly neural networks, to develop improved optimizers that could supersede

traditional hand-designed ones. Despite the promising nature of this research [1, 20, 13],

the real-world application of machine learning-driven optimizers faces notable challenges. A

primary issue, identified as gradient explosion [15], occurs in extended optimization sequences

and hampers the ability of these optimizers to adapt to longer optimization steps. One major

issue is the phenomenon of gradient explosion [15] in unrolled optimization, which hinders the

generalization of these ML-learned optimizers to scenarios with longer steps. Additionally,

truncated optimization often leads to short-horizon bias [21], further complicating their

practical application.

In our research, we demonstrate the feasibility and practicality of learning an optimizer

specifically for the inner maximization process in adversarial attack strategies. It is important

to note that in the context of these strategies, the maximization problems typically exhibit

a similar structure: maxx′∈B(x,ϵ) L(f(x
′),y). Here, the loss function L and the network

f (both in terms of structure and weights) remain consistent across different instances,

with the primary variables being the input x and the label y. This uniformity presents an

opportunity to develop a specialized maximizer, one that is fine-tuned to perform efficiently

on a predefined set of optimization challenges inherent to adversarial attacks. Moreover,

the requirement for the maximizer is not to generalize across a wide range of problems but

11



to excel in a fixed set of scenarios specific to the adversarial framework. This distinction

allows for the creation of an optimizer that can potentially surpass the performance of more

generalized methods like PGD.

To develop a more effective adversarial attack, we have chosen to parameterize our opti-

mizer using a Recurrent Neural Network (RNN), inspired by the learning-to-learn framework

[1]. Our approach diverges from conventional methods through the incorporation of spe-

cialized design modifications tailored for the specific challenges of adversarial optimization.

These enhancements enable the RNN to effectively navigate the complexities inherent in

crafting potent adversarial examples. Optimizing the parameters of the RNN, represented

by ϕ, is crucial in this process, ensuring that our strategy is finely tuned for the nuanced

demands of effective adversarial attacks.

In our work, we have integrated an RNN-based optimizer, denoted as m and parame-

terized by ϕ, to enhance the adversarial attack methodology. This optimizer is designed to

follow a parameterized update rule that aligns with the PGD update rule:

δt, ht+1 = mϕ(gt, ht), x′
t+1 = ΠB(x,ϵ)(x

′
t + δt). (3.4)

In this formula, gt represents the gradient∇x′L(f(x′),y), and ht is the hidden state of the

RNN. A distinctive aspect of our RNN optimizer is its ability to generate perturbations in a

coordinate-wise manner. This approach differs from other learning-to-learn (L2L) methods,

which typically process the entire image as input. One of the key benefits of our method is

the significant reduction in the number of trainable parameters, resulting in a more efficient

and expedited training process.

Furthermore, the hidden state of our RNN optimizer plays a critical role in the opti-

mization process. By maintaining a separate hidden state for each coordinate, our model

ensures varied update behaviors across different aspects of the input. This structure not

only captures rich information, such as the trajectory of loss gradients as mentioned in [9],

but also allows for a recursive update mechanism that is simpler in structure yet effective in

adapting to the adversarial context.
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In adapting the RNN architecture for our purposes, we have taken inspiration from the

model outlined in [1] but introduced several key adjustments inspired from [22] to better align

it with the requirements of adversarial attack optimization. The perturbation calculation at

each step of our modified RNN can be described as:

δt = tanh(V ht + b1), (3.5)

ht+1 = tanh(Ugt +Wht + b2) (3.6)

Here, ht is a vector in Rd, with V , U , and W being matrices of dimensions R1×d, Rd×1,

and Rd×d respectively, and b1 and b2 as biases in appropriate dimensions, facilitating the

coordinate-wise update. During the optimization process, as the gradients diminish in mag-

nitude upon nearing local maxima, the perturbation values should stabilize, exhibiting min-

imal fluctuation between iterations. However, as indicated in equations (3.5) and (3.6), even

with minimal gradients gt, the update mechanism can still generate notable changes due to

the influence of tanh(b1). In scenarios where an optimal solution is achieved with a zero-

initialized hidden state (thus necessitating b2 to also be zero), the presence of a non-zero

δt = tanh(b1) can inadvertently shift the adversarial example away from its optimum. Con-

sequently, the inclusion of biases b1 and b2 may hinder optimization near-optimal solutions.

Given the typically brief horizon of the optimization process in adversarial contexts, it is

improbable for the network to autonomously learn to nullify these biases. Therefore, to

promote stability and efficacy in training, we have opted to omit these bias terms from the

standard RNN structure in all our implementations.

In our framework, we train the RNN optimizer parameters ϕ. The optimal parameters

are determined by:

ϕ∗ = argmaxL(ϕ) (3.7)

where x′
T (ϕ

∗) is computed by iteratively running Eq. (3.4) for T times. Since our aim
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is to find better adversarial examples, we define the objective function for training over the

horizon T as:

L(ϕ) =
T∑
t=1

wtL(fθ(x
′
t(ϕ)),y). (3.8)

Setting wt = 0 for all t < T and wT = 1 implies that our learned maximizer mϕ

will maximize the loss after T iterations as per equation (10). It should be noted that

[15] highlighted potential issues with this kind of unrolled optimization, such as the risk

of gradient explosion, which remains an unresolved challenge in learning-to-learn (L2L). To

mitigate this, we perform unrolling after every 10 iterations of T . For example, unrolling

is conducted at T = 10, 20, 30, . . . for the number of attack steps. We discovered that

without this unrolling step, the learned optimizer fails to generate more effective attacks.

Algorithm 3.2 contains the complete algorithm.

14



Algorithm 1 RNN-based adversarial attack

1: Input: clean data {(x, y)}, batch size B, step size α, number of inner iterations T ,

classifier parameterized by θ, RNN optimizer parameterized by ϕ

2: Output: Learned optimizer mϕ

3: Randomly initialize mϕ and initialize fθ with pre-trained configurations

4: repeat

5: Sample a mini-batch M from clean data.

6: for (x, y) in B do

7: Initialization: h0 ← 0, Lϕ ← 0

8: Gaussian augmentation: x′
0 ← x+ 0.001 · N (0, I)

9: for t = 0, . . . , T − 1 do

10: gt ← ∇x′
0
L(fθ(x

′
t), y)

11: δt, ht+1 ← mϕ(gt, ht), where coordinate-wise update is applied

12: x′
t+1 ← ΠB(x,ϵ)(x

′
t + δt)

13: Lϕ ← Lϕ + wt+1L(fθ(x
′
t+1), y), where wt+1 = t+ 1

14: end for

15: end for

16: Update ϕ by ϕ← ϕ+ α∇ϕLϕ/B

17: until training converged

15



CHAPTER 4

Experiments and Results

In this section, we meticulously detail the experimental results obtained from the deployment

of our proposed RNN-based adversarial attack framework. Our investigation encompasses

a thorough comparison of our method against a series of established baselines, specifically

within the context of white-box adversarial attacks. To ensure the robustness and generaliz-

ability of our results, we extend our experiments across a variety of datasets and delve into

the performance implications of employing different network architectures.

The experimental analysis is methodically organized to facilitate a comprehensive under-

standing of the attack efficacy and system behavior. Section 4.1.1 delves into the Datasets

and Classifier Networks, providing an overview of the experimental canvas upon which our

adversarial strategies are tested. Following this, Section 4.1.2 introduces the Baselines for

Comparison, where our RNN-based method is juxtaposed with existing adversarial attack

strategies to underscore its relative performance and highlight its strengths. Section 4.1.3

then elucidates the Evaluation and Implementation Details, offering transparency into the

metrics used for performance assessment and the specifics of the implementation that might

influence the reproducibility and comparability of the results.

With the experimental groundwork laid out, Section 4.2 presents the Results of our ex-

periments, where the empirical data is meticulously examined and interpreted. This segment

is pivotal, as it not only demonstrates the practical potency of our proposed attack but also

places it within the spectrum of current adversarial attack methodologies. Lastly, Section

4.3 offers an Analysis of the findings, delving deeper into the implications, the potential for

scalability, and the adaptability of our adversarial attack approach. Here, we dissect the ele-
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ments of success and the areas for improvement, setting the stage for subsequent discussions

and future research directions.

Through this structured experimental discourse, we aim to substantiate the claims of

our thesis with quantifiable evidence and critical insights, hence contributing to the body of

knowledge with findings that are both verifiable and instrumental for the advancement of

adversarial attack techniques in deep learning.

4.1 Experimental settings

4.1.1 Datasets and classifier networks

In the experimental setup of our study, we meticulously selected the datasets and correspond-

ing classifier networks to evaluate the performance of our proposed adversarial attack model.

The experiments are primarily conducted using two benchmark datasets well-established in

the domain of machine learning: MNIST [7] and CIFAR-10 [11].

For the MNIST dataset, which comprises grayscale images of handwritten digits, we

adopt a Convolutional Neural Network (CNN) architecture with four convolutional layers as

described in [2]. This particular architecture is chosen for its proven effectiveness in digit

recognition tasks within the MNIST context. It serves as a standard against measuring the

impact of adversarial attacks.

Turning to the CIFAR-10 dataset, known for its collection of color images across ten

diverse categories, we employ the Wide ResNet architecture [23] as the classifier. The selec-

tion of Wide ResNet is deliberate; its extensive use in prior defense papers, including those

exploring adversarial training [14] and TRADES [24], provides a rigorous benchmark for

evaluating the robustness of our adversarial approach. By utilizing classifier networks that

are well-established within the research community, we ensure that our experimental results

are relevant and that our findings on the effectiveness of the proposed RNN-based adversarial

attack can be compared directly with the current state-of-the-art defensive strategies.
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4.1.2 Baselines for Comparison

In our Baselines for Comparison section, the evaluation of our RNN-based adversarial at-

tack extends to a comprehensive set of benchmarks, providing a robust context for assessing

its performance. The foundational baseline for our comparisons is the Projected Gradient

Descent (PGD) attack, which is universally recognized as a standard method for testing the

robustness of neural networks against adversarial examples. To ensure a fair and objective

comparison, we utilize the source code provided by the original authors on GitHub, meticu-

lously applying the attack using their recommended set of hyper-parameters. This adherence

to the established PGD protocol allows us to set a consistent and transparent benchmark

for the initial assessment of our attack’s effectiveness.

To align our work with the latest advancements in adversarial machine learning, we fur-

ther compare our attack strategy with AutoAttack, an ensemble method that represents the

forefront of adversarial attack techniques. AutoAttack is acclaimed for its comprehensive

evaluation of model robustness, incorporating a variety of attack vectors to challenge deep

learning models. By incorporating AutoAttack into our baseline comparisons, we acknowl-

edge and position our work within the current state-of-the-art, ensuring that our findings

remain relevant and significant in the rapidly evolving landscape of adversarial research.

Our comparative analysis is conducted in a tiered manner. The first level involves the

deployment of our attack against models trained using standard techniques, such as the small

CNN architecture for the MNIST dataset and the Wide ResNet architecture for CIFAR-

10. This initial stage allows us to determine the base level of robustness that conventional

training methods offer against adversarial interventions.

Building on this foundation, we then escalate our comparative analysis to adversarially

trained models known for their enhanced defense capabilities. From the AutoAttack [6]

and RobustBench [5] library, we select models that have been specifically engineered to

withstand adversarial attacks. For MNIST, we examine the robustness of the ’TRADES’

model [24], which utilizes a small CNN architecture, while for CIFAR-10, we evaluate the

’Carmon2019Unlabeled’ model [3], based on the robust Wide ResNet-24-10 architecture.
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These models acknowledged for their robustness against adversarial examples, provide a

stringent benchmark for evaluating the strength of our proposed adversarial approach.

Our evaluation employs a two-tiered approach: initially, our RNN-based attack is tested

against standard training models, and then it is pitted against top-tier adversarially trained

models. This strategy reveals the attack’s effectiveness across a spectrum of defenses, pro-

viding a clear measure of its potential in real-world applications.

4.1.3 Evaluation and implementation details

In our experimental setup, we evaluated the effectiveness of adversarial attacks on classifier

models trained on datasets both with and without perturbations, employing the previously

mentioned architectures. The adversarial examples were tested against robust classifiers,

setting the maximum L∞ perturbation strength at ϵ = 0.3 for MNIST and ϵ = 8
255

for

CIFAR-10.

Our methodology includes a learned attacker, which we trained for 10 and 40 steps to

assess how training duration impacts the efficacy of attacks and to explore if longer training

can lead to a generalized attacker across various steps.

We conducted attacks using 10, 20, 30, 40, 60, and 100 steps to comprehensively test

robustness, with a step size of ϵ/4. In addition to using PGD with a step size of ϵ/4, we tested

a variant with a step size of ϵ/10 to examine the sensitivity of robustness against step size

alterations. We also integrated the leading-edge AutoAttack into our evaluation, employing

both the Auto PGD with Cross-Entropy loss (CE) and the Auto PGD with Difference of

Logits Ratio (DLR) loss configurations [6]. Additionally, our study includes various ablation

experiments to understand the effects of increasing the number of layers in the attacker,

altering the step size, and training the attacker with different step sizes.

Through these multifaceted attack iterations and by incorporating various models and

loss configurations from AutoAttack, our analysis offers an in-depth perspective on the adver-

sarial landscape. This extensive array of tests is vital for pinpointing strengths and potential
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vulnerabilities across different models and attack methods, thus providing a holistic view of

the robustness of the classifiers being studied.

4.2 Results

In the present examination, we meticulously evaluate the robustness of models trained using

various defense strategies against white-box attacks. The empirical findings, as detailed

in Tables 4.1 and 4.2, showcase the superior performance of our proposed Learn-to-Learn

(L2L)-based adversarial attack. Our method outperforms traditional approaches across most

of the tested scenarios.

Upon review of the results on the MNIST dataset, our proposed L2L-based adversarial

attack demonstrates its effectiveness against the TRADES model. The robust accuracy

attained by the model against this attack dips as low as 94.62% for certain attack steps,

indicating a significant vulnerability. This is in stark contrast to the PGD attack with a step

size of ϵ/4, which maintains a higher robust accuracy, not dropping below 95.07%, suggesting

that the model is better defended against this form of attack.

Directly contrasting the L2L method with the PGD attack using a step size of ϵ/10,

it becomes evident that our method is more effective, as indicated by the lower robust

accuracies achieved across all attack steps. This difference in performance is particularly

noticeable at the 40-step mark, where the L2L attack lowers the robust accuracy to 94.65%

compared to PGD’s 95.30

Attacker Attack steps

10 20 40 60 80 100

PGD (ϵ/4) 95.68 95.28 95.12 95.07 95.08 95.08

PGD (ϵ/10) 97.46 96.05 95.30 95.17 95.16 95.14

L2L 95.32 94.98 94.65 94.70 94.62 94.68

Table 4.1: Comparison with baseline adversarial attacks on the TRADES model with small-

CNN architecture for MNIST dataset
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In the more challenging CIFAR-10 dataset, the L2L-based attack continues to demon-

strate its efficacy, particularly in scenarios with lower attack steps of 10 and 20. The robust

accuracy for the ’Carmon2019Unlabeled’ model employing the Wide-Resnet-24-10 architec-

ture declines to as low as 63.97% under the L2L attack, compared to a reduction to 62.33%

in the most potent PGD attack with a step size of ϵ/10. These results highlight the nuanced

yet effective performance of our L2L approach in diverse adversarial contexts.

Attacker Attacker Steps

10 20 40 60 80 100

PGD (ϵ/4) 65.11 64.37 64.15 64.08 64.02 64.03

PGD (ϵ/10) 72.51 64.29 62.68 62.38 62.50 62.33

L2L 64.32 64.09 64.03 63.97 63.97 63.97

Table 4.2: Baseline performance comparison on ’Carmon2019Unlabeled’ with Wide-Res-

net-24-10 for CIFAR-10

In conclusion, the detailed results demonstrate the L2L-based attack’s notable efficiency,

especially evident in the MNIST dataset where it consistently surpasses PGD in reducing the

model’s robust accuracy. In the CIFAR-10 dataset, the attack’s performance is particularly

effective at lower attack steps, indicating a nuanced relationship with model complexity and

defense mechanisms. The step-free nature of the L2L attack adds to its adaptability and

effectiveness, marking it as a significant advancement in adversarial attack methodologies.

These outcomes not only illustrate the L2L method’s potential in varying adversarial contexts

but also highlight the importance of continuous innovation in developing robust defense

strategies for machine learning models.

4.3 Analysis

The cornerstone of this analysis is a rigorous comparison of our model’s performance against

the state-of-the-art AutoAttack. It must be stressed that unlike other attacks, which often

rely on hand-designed rules and predefined step sizes, our model operates free of such con-
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straints. This step-size-free characteristic is integral to our approach, allowing for a more

flexible and potentially more potent adversarial strategy.

4.3.1 Comparison with auto-attack

When analyzing the results on the MNIST dataset, as detailed in Table 4.3, our model

exhibits a strong initial performance. Specifically, our L2L-based attack outperforms tradi-

tional methods for attack steps up to and including 30 iterations. This is indicative of our

model’s proficiency in quickly identifying and exploiting vulnerabilities within the TRADES

model. However, beyond this point, the AutoAttack begins to demonstrate its robustness,

overshadowing our model’s performance.

Attacker Attack Steps

10 20 40 60 80 100

PGD (ϵ/4) 95.680 95.280 95.120 95.070 95.080 95.080

PGD (ϵ/10) 97.460 96.050 95.300 95.170 95.160 95.140

L2L 95.320 94.980 94.650 94.700 94.620 94.680

Auto PGD-ce 96.420 96.150 95.310 94.560 94.280 94.120

Auto PGD-dlr 96.650 96.410 95.500 94.960 94.510 94.720

Table 4.3: Comparison with state-of-the-art adversarial attacks on the TRADES model with

smallCNN architecture for MNIST dataset

Moving to the CIFAR-10 dataset, the scenario presents a more challenging environment

for our L2L-based model. While the results, as seen in Table 4.4, do not show our model

outperforming AutoAttack, they do indicate that our approach remains competitive. The

performance is close to that of the state-of-the-art, suggesting that with further refinement,

our step-size-free model could potentially match or surpass the current leading methods.

In both datasets, the implications of a step-size-free adversarial model are profound,

offering a new perspective on the development of attack strategies. By removing the reliance

on step size, our model demonstrates adaptability and a potential for enhanced efficacy,
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Attacker Attack Steps

10 20 40 60 80 100

PGD (ϵ/4) 65.110 64.370 64.150 64.080 64.020 64.030

PGD (ϵ/10) 72.510 64.290 62.680 62.380 62.500 62.330

L2L 64.320 64.090 64.030 63.970 63.970 63.970

Auto PGD-ce 64.220 63.980 63.680 63.560 63.510 63.530

Auto PGD-dlr 63.190 62.980 62.720 62.510 62.470 62.460

Table 4.4: Comparison with state-of-the-art adversarial attacks on the ’Car-

mon2019Unlabeled’ model with Wide-Resnet-24-10 architecture for CIFAR-10 dataset

which may prove vital in advancing the arms race between adversarial attacks and defenses

in machine learning.

4.3.2 Increasing the number of neurons in RNN

In an effort to enhance the efficacy of our Learn-to-Learn (L2L) adversarial model, we ex-

plored the impact of scaling up the RNN’s complexity by increasing the number of neurons.

This adjustment was hypothesized to potentially improve the model’s capacity to generate

more effective adversarial examples by capturing more complex patterns and dependencies

within the data.

The results of this modification are presented in Table 4.5. When applied to the small-

CNN model, we observed a trend where the increased RNN size led to a measurable im-

provement in the attack’s performance, particularly at smaller step sizes. For instance, the

L2L model with an enhanced RNN consisting of 15 neurons showed a slight increment in

performance at the 10 and 20 attack steps compared to the standard L2L model.

This observation suggests that the model’s ability to perturb the input data in a way that

is more challenging for the defense mechanisms to counteract benefits from a larger neural

capacity. It indicates a threshold of complexity within the RNN’s architecture that, when

exceeded, can yield more potent adversarial examples.
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Model Attack Steps

10 20 40 60 80 100

L2L 95.320 94.980 94.650 94.700 94.620 94.680

L2L (15 RNN) 95.300 94.960 94.780 94.640 94.630 94.620

Table 4.5: Impact of increasing the number of neurons in RNN on adversarial attack effec-

tiveness

The implications of this finding are significant for the design of adversarial attacks. It

points to the possibility that there exists an optimal size for the RNN that balances the

computational efficiency with the attack’s effectiveness, advocating for further research into

the relationship between RNN size and adversarial success.
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CHAPTER 5

Conclusion and Future work

5.1 Conclusion

The research presented in this thesis has made several substantial contributions to the field of

adversarial machine learning. Through the development and evaluation of a Learn-to-Learn

(L2L) based adversarial attack model, we have demonstrated the potential for step-size-free

attacks to produce significant perturbations, challenging the robustness of well-established

defense models.

Our findings have consistently shown that the L2L approach can outperform traditional

adversarial methods, such as PGD, particularly on the MNIST dataset with the TRADES

model. Notably, the model’s performance was markedly superior at smaller attack steps,

showcasing the effectiveness of the L2L methodology in quickly identifying and exploiting

model vulnerabilities. Even when faced with the more complex CIFAR-10 dataset, the L2L

model displayed a close competition with state-of-the-art techniques, hinting at the untapped

potential of step-size-free adversarial models.

Furthermore, the investigation into the impact of increasing the RNN’s neuron count

revealed promising results. On both the smallCNN andWideResNet architectures, enhancing

the RNN size proved beneficial up to a certain complexity threshold, beyond which the

returns diminished. These results have underscored the importance of carefully considering

the trade-offs between model complexity and computational efficiency.

The adaptability and flexibility of our step-size-free adversarial model stand out as its

most significant advantage. This characteristic not only opens new avenues for crafting
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more potent attacks but also underscores the need for developing robust defenses that can

withstand such adaptable threats.

In light of these contributions, future work should aim to further explore the limits of step-

size-free adversarial training. This includes investigating the optimal RNN size for various

model architectures and attack scenarios, as well as examining the potential for real-time

application in dynamic environments. The goal moving forward is to refine these adversarial

techniques to enhance their efficacy while also bolstering the resilience of machine learning

models against such innovative attacks.

The journey through this research has been one of discovery and innovation. The im-

plications of this work are far-reaching, providing a foundation for more secure and reliable

machine learning applications in an era where adversarial threats continue to evolve.

This thesis presented a novel approach to generating adversarial attacks in deep learn-

ing models, emphasizing a parameter-free methodology utilizing a learning-to-learn (L2L)

framework. Our approach innovatively employed a recurrent neural network (RNN) based

optimizer, marking a significant departure from traditional methods reliant on predetermined

parameters and manual rule designs.

Our extensive experiments demonstrated the efficacy of the learned optimizer, particu-

larly in the context of small networks and datasets like MNIST. The results indicated that

our method outperforms traditional attacks, such as Projected Gradient Descent (PGD), es-

pecially when smaller step sizes are used. This signifies a notable advance in the adaptability

and efficiency of adversarial attacks, highlighting the potential of parameter-free methods in

assessing and understanding the robustness of deep learning models.

The research also critically assessed the limitations of existing L2L frameworks in learn-

ing an optimizer for adversarial attacks. We found that while the L2L framework showed

promise, its applicability was not universal, underscoring the need for caution in its widespread

application. This insight is crucial for future research in the field.

Moreover, we observed that training the optimizer for fewer steps can generate effective

perturbations, more so than those produced by PGD, although this advantage diminishes
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with larger training step sizes. This finding serves as an essential guideline for future work

regarding the configuration of step sizes in optimizer training.

In conclusion, this thesis contributes significantly to the field of adversarial robustness in

deep learning. By developing a parameter-free L2L-based adversarial attack and exploring

its nuances, we provide a foundation for future research aimed at creating more robust and

secure deep learning models. The work encourages a shift towards more adaptive, efficient,

and effective adversarial attack methodologies, a crucial step in the ongoing development of

resilient AI systems.

5.2 Future work

In future work, we aim to extend and refine the capabilities of the Learn-to-Learn (L2L)

adversarial framework presented in this thesis. A primary focus will be on adjusting the

L2L network architecture to enhance its effectiveness in adversarial attack scenarios, incor-

porating the latest advancements in machine learning techniques to improve efficiency and

potency. This will involve not only optimizing the existing framework but also exploring new

strategies and methodologies, particularly in the realm of black-box attacks, to broaden the

applicability of our model in more realistic and varied scenarios. Additionally, a significant

extension of our research will be the application and testing of our learned optimizer on

Vision Transformer (ViT) models. ViTs, with their unique architectural approach, offer a

novel testing ground for our methods, potentially revealing insights into the adaptability and

effectiveness of the L2L framework across different neural network architectures.

Alongside these developments, we plan to conduct extensive testing across a wider array

of datasets and model types. Such comprehensive validation is crucial to ascertain the

strengths, limitations, and areas for improvement of our approach, ensuring its robustness

and relevance in the rapidly evolving landscape of adversarial machine learning. Through

these endeavors, our future work aspires not just to enhance the current model but also

to make substantial contributions to the field, addressing both theoretical and practical
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challenges in adversarial machine learning.
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