UCLA
UCLA Previously Published Works

Title
A unimorph nanocomposite dielectric elastomer for large out-of-plane actuation

Permalink
https://escholarship.org/uc/item/56p1f43w

Journal
Science Advances, 8(9)

ISSN
2375-2548

Authors

Pu, Junhong
Meng, Yuan
Xie, Zhixin

Publication Date
2022-03-04

DOI
10.1126/sciadv.abm6200

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/56p1f43w
https://escholarship.org/uc/item/56p1f43w#author
https://escholarship.org
http://www.cdlib.org/

A unimorph nanocomposite dielectric elastomer for large out-of-plane actuation
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ABSTRACT

Dielectric elastomer actuators (DEAs) feature large, reversible in-plane deformation, and stacked DEA
layers are used to produce large strokes in the thickness dimension. We introduce an electrophoretic process
to concentrate boron nitride nanosheet dispersion in a dielectric elastomer precursor solution onto a
designated electrode surface. The resulting unimorph nanocomposite dielectric elastomer (UNDE) has a
seamless bilayer structure with 13 times of modulus difference. The UNDE can be actuated to large bending
curvatures, with enhanced breakdown field strength and durability as compared to conventional
nanocomposite dielectric elastomer (CNDE). Multiple UNDE units can be formed in a simple
electrophoretic concentration process using patterned electrode areas. A disc-shaped actuator comprising 6
UNDE units outputs large bidirectional stroke up to 10 Hz. This actuator is used to demonstrate a high-
speed lens motor capable of varying the focal length of a two-lens system by 40 times.

INTRODUCTION

Dielectric elastomers are a class of electroactive polymers that can efficiently transduce electromechanical
energy(/-3). Dielectric elastomer actuators (DEAs) operate through an electrostatic stress mechanism in
response to an applied voltage, and are characterized by their large strain and high energy density(/). DEAs
have attracted tremendous interest in the past decade due to their extensive applications for artificial
muscles(3, 4), soft robotics(9, 6), and haptics(7, §).

Among the most studied dielectric elastomers, acrylic elastomers have been identified to exhibit the largest
actuation strain(/), but this outstanding performance is overshadowed by the prestretch procedure involved
during fabrication, which wanes over time due to stress relaxation(9). In addition, bulky rigid frames are
required to support the prestretched film, which complicates the device structure and limits potential
applications. Numerous efforts have been made to eliminate prestretch while retaining the featured
actuation performance of acrylic elastomers. Dielectric elastomers produced by introducing a second
interpenetrating polymer network(/0) and chemical modification(//, /2) can achieve large actuation strains
(> 100%) without prestretch. However, most of the non-prestretched dielectric elastomers work under
relatively high driving fields and tend to have low field strengths. It is possible to enhance the dielectric
constant of a material and effectively lower the driving field by blending high permittivity ceramics into
the dielectric matrix(/3, /4). However, many of these additives invariably increase the leakage current and
lower the breakdown field strength, and a high filler loads (> 15 wt%) are usually required to see a
considerable performance improvement(/5, 16).

Conventional DEAs generate in-plane deformation which is difficult to outcouple and not the most practical
mode of actuation. In order to produce large out-of-plane actuation that can be conveniently coupled for
practical applications, such as haptic displays(/7), soft grippers(/8), and robot locomotion(/9), various



actuator configurations have been proposed with non-prestretch dielectric materials. Stacked DEAs can
enlarge the linear stroke in the thickness (z) direction. Multilayer devices comprising hundreds of stacked
dielectric elastomer thin films have been reported to deliver millimeter-scale linear motion in the z-
direction(4, 20, 21). These stacking processes, however, often are extremely time-consuming and have low
yield. Alternatively, dielectric elastomer films can also be attached to passive structures to generate out-of-
plane actuation(22, 23). While it is possible to use the DE material’s inherent tackiness(24) and covalent
bonds(25) to adhere to constraining layers, the two-part structures are often jeopardized by trapped air
bubbles and delamination after repeated bending cycles, and the actuation is limited with non-linear bending
deformation.

Here we introduce an electrophoretic approach followed by in-situ crosslinking for the fabrication of an
interface-free unimorph nanocomposite dielectric elastomer (UNDE) comprised of locally concentrated
boron nitride nanosheets (BNNS). The BNNS function as a passive structure that creates anisotropic
stiffness along the z-direction, so that the UNDE film can bend in response to an applied electric field. The
thin (~3.1 pm) and dense (~72 wt% of BNNS) BNNS-concentrated insulating layer also contributes to the
breakdown strength enhancement of the UNDE. The electrophoretic process is highly programmable to
produce multiple functional unimorph units in a disc-shaped monolithic DEA film via customized electrode
patterning. This new multi-unit device structure converts synchronized individual bending actuations into
linear displacement, and generates linear motions up to £1.38 mm in the z-direction, which is 13 times the
thickness of the DEA film. The actuation strain could be varied with the applied voltage, and shows no
degradation with increasing frequency up to 10 Hz. This compact actuator can provide large linear actuation
within a narrow space, and we demonstrated its use as a direct-drive lens motor for an optical zoom system
to obtain large focal length variation at high speed.

RESULTS

Fabrication of an UNDE film via electrophoretic concentration
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Fig. 1. Illustration of electrophoretic concentration process to create an UNDE film. (A) BNNS dispersed
in a dielectric elastomer monomer solution are attracted to the positive electrode surface through an
electrophoretic concentration process. (B) A setup to study the kinetics of the electrophoretic concentration
process: a light source and a photodetector are placed on opposite sides of a cuvette chamber where the
electrophoretic concentration of BNNS takes place. (C) Grayscale images of the cuvette chamber taken by the
photodetector at specified elapsed time of the electrophoretic process. The electric field applied is 4 MV/m
constant. (D) Recorded grayscale value versus electrophoretic time at the specified electric field. The grayscale



value is taken as the average value along the dashed line shown in Fig. 1C. Numbered arrows indicate the time
the images in Fig. 1C.

A continuous UNDE film with highly concentrated BNNS on one surface was fabricated using the
electrophoresis process shown in Fig. 1A. BNNS, a commonly used dielectric filler to enhance dielectric
strength (26), were dispersed in a dielectric elastomer precursor to form a colloidal suspension (Fig. S1).
The dispersion was injected between two parallel electrodes where a direct current (DC) electric field was
applied. Since the BNNS was negatively charged(27), they were attracted to the surface of the positive
electrode. After this electrophoretic concentration process, the precursor was cured via UV exposure. The
resulting solid dielectric elastomer film comprised a layer of BNNS within one of its surface layers, forming
a continuous bilayer structure.

Fig. 1B shows the optical setup used to monitor the BNNS electrophoretic concentration process. The
process was imaged using a light beam that passes through the cuvette chamber where electrophoresis takes
place (Fig. 1C). The grayscale images were used to monitor the BNNS concentration in the dispersion
during electrophoresis(28). The temporal evolution of the midline between the two electrophoretic
electrodes shown in Fig. 1D and Fig. S2 indicates a faster BNNS concentration toward the positive electrode
and a more thorough depletion of BNNS in the bulk of the solution at higher electric fields. Electric fields
larger than 5 MV/m increased the probability of dielectric breakdown of the liquid precursor. As a result,
the BNNS electrophoretic concentration was performed at 5 MV/m for 40 min to make the continuous
UNDE below.



Structure characterization and bending mechanism of the UNDE film
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Fig. 2. Structural characterization and bending mechanism of the UNDE film. (A) Illustration of the cross-
section of a UNDE film, with BNNS concentrated layer in its upper surface. (B) SEM images of the cross-
section of UNDE with 3 wt% BNNS at two different magnifications. (C) Optical images of (i) top view of the
UNDE film with 3 wt% BNNS laid on a bench, (ii) side view of the film clapped at one end with the BNNS
concentrated layer on top and (iii) on bottom. (D) Young’s modulus and (E) Weibull distribution of the
breakdown field strength of a neat elastomer and CNDE and UNDE with different BNNS contents. (F) Bending
actuation of the UNDE film toward the surface with concentrated BNNS in response to voltage application,
and recovery to original shape when the voltage is removed. (G) Optical images of the side view of the 3 wt%
UNDE during an actuation cycle (square wave with peak electric field of 19 MV/m at 5 Hz).

The UNDE structure fabricated after electrophoretic concentration and photocuring is displayed in Fig. 2A.
The cross-section scanning electron microscope (SEM) images of the control conventional nanocomposite
dielectric elastomer (CNDE) and the UNDE with 3 wt% BNNS are shown in Fig. S3 and Fig. 2B,
respectively. In the CNDE, BNNS are homogeneously dispersed in the matrix, whereas after electrophoretic
concentration, BNNS are distributed exclusively in a layer of ~ 3.1 um close to the surface.

The UNDE film, horizontally held at one end with the BNNS concentrated layer on the top, displays a
smaller bending curvature than when the BNNS concentrated layer is on the bottom (Fig. 2C). This indicates
that the BNNS-concentrated layer is stiffer than the BNNS-depleted layer. The stiffness difference between
the two layers is further evidenced with a tensile test (Fig. S4). The Young’s modulus of the neat dielectric



clastomer film without BNNS is 0.74 MPa. The modulus of the CNDEs are slightly higher (Fig. 2D) due
to the stress transfer from the polymer matrix to the BNNS. After electrophoretic concentration, the
modulus of the UNDEs further increase. Typically, the modulus of 3 wt% UNDE comprising a 3.1 pm
thick BNNS-concentrated layer and 102.9 um thick pure DE layer is 1.0 MPa. The filler loading and
Young’s modulus of the 3.1 um thick BNNS-concentrated layer are estimated to be 72 wt% and 9.63 MPa
(Fig. S5), respectively, based on the relative thickness of the bilayer structure. In general, it is challenging
to fabricate nanocomposites with high filler-loading which can contribute a power-law modulus increase
(Fig. S5 and S6)(29).

The UNDE without interface between the stiff BNNS-concentrated layer and the soft neat DE matrix layer
has clear advantages over other laminate structures fabricated with multiple steps (Fig. S7), and could be
exploited to obtain bending actuation. To fabricate the unimorph actuators, single-walled carbon nanotubes
(CNTs) were spray-coated onto both surfaces of the freestanding UNDE film as the compliant electrodes.
A Weibull distribution of the breakdown field strength of the film was first measured. The result shown in
Fig. 2E suggests that the breakdown strength (Ep) is improved in the UNDEs, i.e., from 124 MV/m of pure
DE to 149 MV/m of the 3 wt% CNDE and further to 182 MV/m of the 3 wt% UNDE. The introduction of
3 wt% BNNS almost has no effect on the cross-linking structure of the DEs (Fig. S8), the largely enhanced
field strength is likely due to the compact BNNS layer acting as an effective insulating barrier, blocking the
development of electrical trees(26). The 3 wt% UNDE (Fig. S9) displays the lowest dielectric constant (&
=4.96 @ 100 Hz) and suppressed dielectric loss (tan 5= 0.026 @ 100 Hz), compared to the neat dielectric
elastomer (&= 5.47 and J'=0.053 @ 100 Hz) and 3 wt% CNDE (&= 5.08 and J'=0.034 @ 100 Hz).

When a high voltage is applied across the UNDE film, a bending actuation is immediately initiated. The
actuation mechanism is illustrated in Fig. 2F. The applied electric field generates Maxwell stress, p, that
compresses on the dielectric elastomer:

p= g6 (1)

where ¢, is the material relative permittivity, & is the vacuum permittivity, and E is the electric field.
Assuming a linear elasticity of the material in a small strain range, the transverse compressive strain, s, is
expressed as:
EZ
s, = 2= -0 ()
Y Y

where Y is apparent Young’s modulus of the compressed film. Since the volume of the elastomer does not
change, the thickness reduction is shown as in-plane expansion in the x and y directions.

Specifically, the UNDE film can be analyzed with a two-layer model consisting of a BNNS concentrated
layer and a neat matrix layer, and the properties in each layer can be assumed homogeneous. Thus, the
electric field strength in each layer is inversely proportional to the dielectric constant when CNT electrodes
are charged. Consequently, the electric field induced compressive strain ratio (k) of neat matrix layer and
BNNS concentrated layer is expressed as:
p=352z_hén (3)
Sz1 Y2é&r

where S;; and S, Y; and Y>, and ¢,; and ¢, are the compressive strain, Young’s modulus, and dielectric
constant of BNNS concentrated layer and neat matrix layer, respectively.

Since the BNNS-concentrated layer in the 3 wt% UNDE film has a much higher Young’s modulus than the
pure DE layer (9.63 MPa vs 0.74 MPa), and the dielectric constant of BNNS concentrated layer is estimated



to be larger than 4, because the dielectric constant of BNNS and neat matrix are 4 and 5.47 @ 100 Hz,
respectively. The two layers possess very different Y. Upon application of an electric field, the two layers
experience non-uniform compressive strains (k > 9.5), which effectively translates into a bending
deformation towards the BNNS-concentrated side. When the electric field is removed and Maxwell stress
is released, the UNDE film quickly recovers its original shape. A full cycle of the bending actuation and
recovery is shown in Fig. 2G.

Bending actuation of the UNDE actuators
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Fig. 3. Bending actuation performance of a 3 wt% UNDE actuator. (A) Photograph of a trapezoid-shaped
UNDE actuator with 106 um total thickness. (B) Side view images of the actuator at the specified electric
fields. (C) Bending curvature plotted versus electric field. (D) Three consecutive waveforms of the applied
electric field and the dynamic curvature responses at specified peak electric field. (E) Normalized curvature
with time in one cycle from Fig. 3d to show the response time (63% curvature change) of the actuator when an
electric field is applied and removed. (F) Bending curvature with time under square wave actuation at 0.1, 2,
and 10 Hz with 19 MV/m peak electric field. (G) Bending actuation fatigue test under 21 MV/m peak electric
field and 10 Hz in over 10,000 s of consecutive operation. The excerpted data demonstrate 1-10, 101-110,
1,001-1,010, 10,001-10,010, and 100,001-100,010 cycles.



A typical 3 wt% UNDE bending actuator is shown in Fig. 3A. The actuator is shaped in a trapezoid to
suppress actuation at the corners. With one edge fixed to a rigid frame, the DEA actuates in a unidirectional
bending manner in response to the applied electric fields across the thickness dimension (Fig. 3B). At a
field intensity of 28 MV/m, a bending curvature of 4.4 cm™ is achieved, resulting in an almost closed loop
structure (Movie S1). The specific dependence of bending curvature on the electric field intensity is shown
in Fig. 3C. UNDE with higher BNNS content requires higher electric field strength to achieve the same
bending curvature (Fig. SI0A) due to the stiffness increase, but it can produce larger blocked forces (Fig.
S10B). Fig. 3D exhibits the recorded curvature values plotted as a function of time in three consecutive
actuation cycles, under different applied field intensities at 0.2 Hz. Viscoelasticity of the dielectric
elastomer results in a short delay when actuating between the two stationary states. The actuation and
recovery processes can both be fitted with an exponential response using (30):

c=cy [1 —exp (— %)] for actuation “4)

C =y exp (— E) for recovery ®)]

where ¢y is the maximum stable bending curvature, ¢ is time and 7 is the response time constant. As shown
in Fig. 3E, the response time constant of actuation is determined to be ~ 330 ms under three different field
intensities (16, 22, and 28 MV/m); and the recovery time constant is calculated to be ~ 100 ms. The fast
response of the bending DEA is attributed to the direct energy conversion from electricity to mechanical
work, instead of relying on slower processes such as heat conduction, ionic migration, and solvent diffusion
that occurred in unimorph actuators based on other mechanisms (Fig. S11 and Table S1)(30-57). The UNDE
bending actuator displays uniform curvature changes in a wide range of operating frequencies from 0.1 to
10 Hz. (movie S2 and Fig. 3F). The specific dependence of curvature on operation frequency suggests that
there is a trade-off between large bending curvature and high operation frequency, however, increasing the
BNNS amount can broaden the bandwidth (Fig. S10C). The result of a continuous fatigue test of an actuator
sample over 100,000 operating cycles under 21 MV/m and a frequency of 10 Hz is shown in Fig. 3G. After
a short training process in the first 1,000 cycles, the repeated bending-induced strain could rearrange the
existing reversible non-covalent bonds, i.e., hydrogen bonding(52), polymer chain entanglements, and other
inter-polymer chain interactions.(53) Consequently, the stiffness of UNDE decreases during the training
process and the bending curvature progressively improved from 0.4 to over 0.9 cm; and this large
deformation is preserved in the subsequent actuation cycles. Thanks to the interface-free feature between
the passive BNNS concentrated layer and the active neat dielectric elastomer layer, the UNDE actuator
display nondestructive bending performance after a 180° folding (Movie S2). It is worth noting that the
electrophoretic concentration procedure is also applicable to silicone elastomers. The resulting actuator
with a similar unimorph structure shows lower actuation curvatures and a wider bandwidth than acrylic
elastomer due to their electromechanical differences (Fig. S12). Compared with ionic polymer metal
composite (IPMC) actuator, the UNDE actuators shows superior performance in blocking force, curvature,
response speed, and durability (Table S2)(47-51, 54-56).



Disc-shaped linear DEA based on multiple UNDEs
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Fig. 4. Structure of a disc-shaped linear DEA and its actuation performance. (A) An illustration of a
localized electrophoretic concentration process and the fabricated disc-shaped monolithic film with 6 BNNS
concentrated sectors alternatively placed on the top and bottom surfaces; cross-sectional distribution of BNNS
within the structure along the dashed line (a-b-c) are shown in the bottom. (B) Finite element analysis results
on the actuation of a unimorph and a disc-shaped film with 6 unimorphs. (i) A single annular sector shaped
unimorph with BNNS concentrated on the top surface bends upwards under an applied electric field. (ii) A
simplified model of the disc-shaped monolithic film shown in Fig. 4A with BNNS alternately concentrated on
the top (¢) and bottom (b) surfaces. (iii) and (iv) the simplified model strokes up and down via application of
electric fields across ¢ and b regions, respectively. (C) A working principle diagram of a disc-shaped linear
DEA. By separately applying a voltage to different actuator sections, a linear bidirectional stroke can be
generated on the inner rim of the actuator. (D) Bidirectional stroke plotted versus electric field. (E) Blocking
force of a disc-shaped linear DEA generated under different electric field strengths. (F) Bidirectional stroke
under square wave actuation at 1, 2, 5, and 10 Hz with 19 MV/m peak electric field. Magnified view of several
actuation cycles under 1 and 10 Hz are shown at the bottom. (G) Normalized curvature of a bending unimorph
DEA and stroke of a disc-shaped linear DEA consisting of 6 unimorph units under 19 MV/m peak electric field
at different actuation frequencies.

The UNDE fabrication process can be adapted to fabricate multiple individually accessible unimorphs
integrated into a monolithic thin film. As a proof of concept, a soft disc-shaped actuator composed of 6
UNDE units was fabricated with a modified electrophoretic process (Fig. 4A and Fig. S13). To be specific,



BNNS in 6 annular sector regions were concentrated onto alternating surfaces (Fig. 4A) by applying electric
fields in opposite directions among the adjacent localized regions. Both surfaces of the 6 UNDEs in the
cured disc-shaped film were coated with CNT electrodes. When an electric field is applied to 3 functioning
UNDE units with BNNS on the same surface, bending responses of the 3 charged sector regions collectively
translate into an out-of-plane displacement at the inner rim (Fig. 4B). A bidirectional linear actuation of the
film device is fulfilled by periodically triggering the two sets of UNDE units with voltages (Fig. S14 and
Fig. 4C). A stable linear stroke generated upon application of certain voltage is shown in Fig. 4D, with
symmetric linear strokes in either direction. At 25 MV/m, a unidirectional stroke of 0.69 mm is obtained,
and the stroke combining the bidirectional motions is 1.38 mm, which is almost 4 times as large as the
maximum stroke of 0.37 mm for the state-of-the-art commercial disc-shaped actuator made of multilayered
piezoelectrics (57). Alternatively activating a half area of the disc-shaped film, the linear DEA
understandably produces diluted blocked force which is linearly related to the electric field strength (Fig.
4E). Fig. 4F and Movie S3 indicate that the disc-shaped actuator operated under 19 MV/m performs the
same stroke distance at 1, 2, 5, and 10 Hz, implying the displacement of this linear film DEA does not
decrease with operational frequency up to 10 Hz, unlike the UNDE bending actuator whose bending
curvature diminishes quickly with increasing frequency (Fig. 4G). Such a frequency-independent actuation
performance is mainly contributed by the constrained small deformation and the antagonal mechanism in
the disc-shaped DEA. Specifically, the disc-shaped actuator contains two sets of UNDE units, and delivers
a bidirectional stroke by alternatively activating the two sets, meaning that only half the area of the disc-
shaped film is activated while the other inactive half could constrain the actuation. As a result, the disc-
shaped DEA generates a smaller deformation than a bending UNDE with a free end under the same electric
field strength. Also, the response speed is enhanced from 150 ms via pure viscoelastic recovery to 40 ms
via activation of one set of the UNDESs in sync with the recovery of the other set, thus vanquishing the
material’s viscoelasticity (Fig. S15). This large out-of-plane stroke, fast response, and stable DEA actuation
was previously only obtained within multilayered structures (4) or relatively complex multi-component
devices (58, 59).



Compact and direct-drive lens motor

A

B Without lens
With lens

o
k-
4

Stroke (mm)
P

o
wn

0.0-
2 5

Frequency (Hz)

. = 565mm
Building _ 107y . £ 6mm
(~300 m) £ * B6.5mm
E + Tmm
£
2107 .,
@
Flower §
(=12 ecm) S .. .
Lens [ Tree T T T el
system 10'4 R 20064
Camera

30 20 -0 0 10 20 30
Electric field (MV/m)

Fig. 5. An optical zoom system driven by the disc-shaped linear DEA (lens motor). (A) Mechanism of an
optical zoom system composed of a convex lens (L) and a concave lens (L). The focal length and the working
distance of the system changes as L; moves from S to S’. (B) Double exposure images showing a convex lens
(CAW110, ©6.28 mm, 0.05 g) linearly driven by a lens motor by applying a 24 MV/m electric field. The lens
is mounted to the inner rim of the motor via a pre-defined paper tape. (C) Stroke distance of a lens motor
without and with the convex lens mounted to the inner rim. Bidirectional stroke under square wave actuation
at 1, 2, 5, and 10 Hz with 24 MV/m peak electric field. (D) Left: photographic images showing the zoom
system and objects at different distances; right: photographic images captured by the optical zoom system at
two different focal lengths. (E) Focal length variation as a function of the initial distance between the two
lenses and the electrical field applied.

The disc-shaped linear DEA was used as a self-contained lens motor to directly reposition an optical
element and change the focal length of a compact and adaptive zoom lens system in a broad range. A
schematic representation of a two-lens zoom system is shown in Fig. SA. By increasing the distance
between the two lenses, the system’s focal length decreases, and objects from far to close working distances
can be subsequently projected onto the same image plane. For electrically controlled zooming, the convex
lens was mounted in the inner hollow space of the lens motor (Fig. S16). Unlike the commercial ultrasonic
motors (USMs) that require extra components, such as gears, rotors, sliders to transform vibrations into
linear movement that drives lenses. The disc-shaped lens motor can directly drive a convex lens along its
optical axis (Fig. 5B), which allows the focusing unit to be made more compact, Fig. 5C compares the
linear stroke of linear DEA with and without the lens mounted. Operating at 24 MV/m, the lens motor
generates a stroke of ~ 1.4 mm, whose deviation is within 5% of the stroke by the motor without the lens
mounted. The stroke holds quite well with operation frequencies from 1 to 5 Hz, but it declined by ~20%
at 10 Hz. The center point of the lens drifted marginally (~ 50 um) during the actuation under all frequencies
(Fig. S17).

Fig. 5D left shows a specific setup of a zoom lens system consisting of the aspheric convex lens (f; = 10.92
mm) mounted in the center hollow space of the disc-shaped lens motor and a bi-concave lens (f> = -6.0 mm)
placed 6.6 mm apart. The movement of the mounted convex lens effectively adjusts the distance between
the two lenses, switching the working distance from a flower 12 cm away from the lens set to a building



structure 300 m from the system (Fig. 5D middle and right) at a frequency up to 5 Hz (Movie S4). As we
reframe the up-side-down scene from the flower to the building, a 230% focal length increase from 9 mm
to 30 mm was achieved, as is evidenced by a narrower angle of view and a higher degree of magnification.
Importantly, the bidirectional actuation of the lens motor doubles the movement range of the mounted lens,
without referring to an even higher driving voltage.

Depending on the initial lens distance, a 1.38 mm linear relative movement between the two lenses provided
by the lens motor operating at 25 MV/m electric field can be translated into a wide range of focal length
variation as shown in Fig. 5E. Specifically, a 40 times focal length change from 20 mm to 850 mm can be
achieved with an initial lens distance of 5.65 mm. And this tuning can be controlled incrementally to cover
the entire range of the plotted focusing dynamic range, if both lenses were driven by synchronized
individual lens motors. Compared to tunable liquid lens technology, this linear actuator-driven optical zoom
system achieves a greater focal length tuning capability (Table S3)(60-65), and minimizes the load during
focus drive, which are desirable in devices such as endoscopes, smartphone cameras, virtual reality headsets,
and machine vision systems.

DISCUSSION

In summary, a new approach has been developed to fabricate unimorph configuration in a monolith
dielectric elastomer film. Electrophoresis was shown to be an effective technique to concentrate BNNS
nanofillers in monomers which are subsequently cured to form an interface-free UNDE. The concentration
of BNNS stiffens the surface layer of the dielectric elastomer film by more than 10 times, and suppresses
the propagation of electrical treeing much more effectively than a uniform nanocomposite at the same
BNNS loading(26). The UNDE film was bending actuated due to the non-uniform modulus in the z-
direction. Several UNDE units were readily formed in a single DEA film by concentrating BNNS to
designated surface areas. The disc-shaped DEA film incorporating 6 such UNDE sectors produced large
and undecayed linear out-of-plane stroke up to 10 Hz. The bidirectional motion of 1.38 mm is 13 times as
large as the film thickness. This linear DEA was thin (at 106 um thickness) and versatile enough to fitin a
compact lens system to drive an aspheric convex lens to obtain optical zooming with a wide focal length
variation (> 40 times) at operational frequencies up to 5 Hz. Overall, the approach should prove beneficial
in fabricating compact actuating device for robotic systems. In particular, the linear DEA could be
promising for artificial robotic vision that seeks compact actuation solutions due to its customizability,
scalability, and large stroke-thickness ratio. The operation frequency might be further enhanced by tuning
the polymer viscoelasticity or further optimizing the device structure.

MATERIALS AND METHODS
Preparation of monomer solution

The DEA monomer solution is based on a formulation reported previously(/1, 52).
Preparation of BNNS

BNNS was exfoliated from h-BN purchased from Shengyi Technology Co., Ltd. A mixture of 1 g h-BN,
40 g urea, and 16 ml deionized (DI) water was ball-milled at 500 rpm for 16 h, and the supernatant was
collected after the product was diluted to 400 ml with DI water and centrifuged at 3,000 rpm for 30 min.
The product was centrifuged at 8,000 rpm for 30 min to collect precipitation, diluted with 200 ml DI water,
and bath sonicated for 1 h, these procedures were repeated three times to get a BNNS/water dispersion
without residual urea. BNNS powder was collected by freeze-drying for 72 h.

Preparation of CNT solution



10 mg carbon nanotubes (P3-SWNT, Carbon Solution, Inc.) were dispersed in a mixed solvent of 18 ml
isopropanol (IPA) and 2 ml DI water. The supernatant was collected after the solution was bath sonicated
for 24 h and centrifuged at 7,500 rpm for 15 min.

Preparation of UNDE bending actuator

The as-prepared BNNS and monomer solutions were mixed and stirred overnight to form a uniform
colloidal suspension containing 3 wt% of BNNS. An indium tin oxide (ITO) coated polyethylene
terephthalate (PET) film was rendered hydrophilic by a UVO cleaner (144AX, Jelight Company Inc.) for
30 min, and a 5 wt% poly(acrylic acid)/water solution was spin-coated at 3,000 rpm for 60 s on the ITO
surface to prepare a water-soluble sacrificial layer. The colloidal suspension was injected into an isosceles
trapezoid-shaped (long base 18 mm x short base 10 mm x altitude 14.5 mm) mold with a thickness of 90
um between the two as-prepared electrodes. An electric field (5 kV/mm) was applied across the electrodes
for 40 min, after removing the electric field, the mixture was photo cross-linked with a UV light-curing
equipment (Dymax ECE 5000) for 20 min, and post-cured by a Dymax ultraviolet curing conveyor
equipped with a 2.5 W c¢cm 2 Fusion 3008 type ‘H’ ultraviolet curing bulb, at a speed of 6 feet per minute
for one pass. The cured film was released from electrodes by immersion in DI water for 24 h. CNT solution
was spray-coated onto both surfaces of the freestanding film through masks (long base 16 mm x short base
8 mm x altitude 11.5 mm). Conductive wires were connected onto the long base side of the CNT electrodes
with carbon grease and fixed with polyester tapes.

Preparation of disc-shaped linear DEA

Two sets of ITO patterned on PET film (Fig. S18) was fabricated by etching with a pre-defined mask tape
in a mixture solution of HCI (37%)/H>O/HNO3 (69%) with a volume ratio of 10:10:1, washing with DI
water, and drying with a nitrogen gun. A water-soluble sacrificial layer was coated on the electrode with
the same procedure mentioned in the previous paragraph. The colloidal suspension was injected into an
annulus-shaped (outer diameter 53 mm, inner diameter 13 mm) mold with a thickness of 90 um between
two patterned ITO/PET. Electric fields (5 MV/m) with opposite directions were separately applied across
the thickness dimension of two patterned regions for 40 min, and UV curing was subsequently conducted.
A freestanding film was obtained with the same procedure mentioned in the previous paragraph, CNT
solution was spray-coated on both surfaces of the film with pre-defined masks to fabricate compliant
electrodes for the disc-shaped DEA. The disc-shaped DEA was mounted on two ring-shaped PET frames
(outer diameter 63 mm, inner diameter 50 mm, each 100 um thick). Silver paste traces were printed on the
PET frames before the mounting.

Electrophoretic kinetics characterization

A colloidal suspension containing 3 wt% BNNS was injected into a customized PDMS cuvette (length 2.5
mm X width 0.3 mm x height 1 mm) with parallel ITO electrodes on the top and bottom sides. A light source
was set behind the cuvette to supply a beam of incident light. Different electric fields (0, 3, 4, and 5 MV/m)
were applied across the two electrodes. A digital camera (Canon 70D) was used to record the light intensity
after transmitting the cuvette by shooting videos. Pictures exported from videos by the time were
transmitted into grayscale to evaluate light intensity with the equation:

grayscale =R x 0299+ G x 0.587+B x 0.144 (6)

Where R, G, and B are the RGB values of the exported pictures. To calibrate grayscale readings against
known mass concentrations of the suspended BNNS in monomer solution, grayscale values of colloidal
solutions with certain BNNS concentrations (0.03, 0.09, 0.15, 0.95, and 3 wt%) were acquired with the



same method. As the incident light beam is scattered due to the presence of the suspending BNNS. The
attenuated transmitted light intensity can be described with the function (2§):

[ =1Ie ™ (7)

where Iyis the incident light intensity, / is the light intensity after passing through a medium of length /, and
T is the turbidity coefficient of the medium, which is proportional to the concentration of the dispersed
BNNS. Given the transmitted light intensity is proportional to the grayscale values, the fitting correlation
between grayscale and BNNS concentration is obtained with an exponential function.

SEM characterization

The CNDE and UNDE films were freeze fractured in liquid nitrogen to acquire cross-section surfaces, and
the surfaces were sputter-coated with gold. The dispersion and distribution of BNNS in both composites
were characterized with a field emission scanning electron microscope (FESEM, ZEISS Supra 40VP) at an
accelerating voltage of 3 kV.

TEM characterization

The freeze-dried BNNS were dispersed in a mixture solution of IPA/H,O (volume ratio of 1:1). After a 30
min sonication, 20 ul of the suspension was drop cast onto a copper grid, and the sample was characterized
with a transmission electron microscopy (TEM, T12 Quick CryoEM) after complete drying.

Mechanical property characterization

The uniaxial tensile fracture test was performed on a dynamic mechanical analyzer (DMA, TA RSA III)
with a crosshead speed of 0.05 mm/s at room temperature. At least five dumb-bell samples with a dimension
of 10 mm % 3 mm X 0.1 mm were repeatedly tested and average results were reported.

Breakdown and dielectric property characterization

Dielectric breakdown strength was measured under a DC voltage ramp of 500 V/s supplied by a hi-pot
tester (9571 Vitrek). At least 15 samples were measured for each test. The frequency-dependent dielectric
constant and loss were measured by an LCR meter (GwInstek LCR-819) from 12 Hz to 10* Hz.

Bending actuation characterization

The UNDE bending actuator was vertically mounted on a grip. Conductive wires attached to the compliant
electrodes were connected to a high-voltage power source (10/10B-HS, Trek). The bending actuation in
response to square wave voltage signals was recorded using the digital camera. Videos were subjected to
frame-wise analysis to determine bending curvatures.

Linear actuation characterization

The disc-shaped linear DEA mounted on PET frames was vertically hold. Printed silver paste attached to
the compliant electrodes was connected to a circuit (Fig. S14) controlling voltages supplied by the high-
voltage power source. The out-of-plane actuation in response to voltage signals was recorded by shooting
videos at 120 fps, and videos were subjected to frame-wise analysis to extract displacements of the inner
rim.

Finite element analysis

A simulation of the Disc-shaped linear DEA based on multiple UNDEs was carried out in COMSOL
Multiphysics. An electrostatics (electrostriction) module was coupled with the solid mechanics module to



simulate the dielectric actuation process. The three parameter Mooney-Rivlin model was chosen to model
the hyperelasticity of the two layers of UNDEs. The material parameters were based on the measured
materials properties (modulus, density, etc).

Lens motor and optical zoom lens system characterization

A plastic aspheric convex lens (CAW110, ?36.28 mm, f; = 10.92 mm, Thorlabs, Inc.) was mounted in the
inner circle part of the disc-shaped DEA with a pre-defined paper tape. The disc-shaped DEA was operated
under square wave actuation at 1, 2, 5, and 10 Hz with a 24 MV/m peak electric field. The motion trail of
the lens was recorded by the phone camera. The stroke distance and center drift of the lens center were
measured by video frame-wise analysis. The zoom lens system was set up with the convex lens mounted
lens motor and a Bi-concave lens (LD2746, @6 mm, f> = -6.0 mm, Thorlabs, Inc.), with a lens separation
of 6.6 mm. The digital camera with a macro lens (EF 100mm {/2.8L Macro IS USM) was 300 mm away
from the lens set for object image recording. The lens motor was activated under square wave actuation at
1,2, 5, and 10 Hz with a 24 MV/m peak electric field to regularly change the lens distance. The dynamic
inverted real images produced by the zoom lens system were continuously recorded by the digital camera.
We calculated the back focal length (b. f. [.) variation of the two-lens zoom system driven by the lens motor
under different electric fields using the two-lens equation:

_ fad=f)
b.f.l.= PR (8)

where f> and f; are the focal length of the concave lens and convex lens, respectively, d is the distance
between two lenses.

SUPPLEMENTARY MATERIALS

Fig. S1. BNNS and colloidal dispersion.

Fig. S2. Kinetic study of the electrophoretic concentration process.

Fig. S3. SEM images of the cross-section of the 3 wt% CNDE.

Fig. S4. Stress-strain curves of a neat elastomer and CNDE and UNDE with different BNNS contents.

Fig. S5. Young’s modulus of CNDEs with 10, 20, and 30 wt% BNNS fabricated by directly mixing method
and the concentrated 72 wt% BNNS layer in 3 wt% UNDE.

Fig. S6. Fabrication of high-loading nanocomposite by directly mixing BNNS and monomers.

Fig. S7. Laminate structures fabricated via conventional multi-step methods and electrophoretic
concentration studied in this report.

Fig. S8. Gel content of the cross-linked neat elastomer, 3 wt% CNDE, and 3 wt% UNDE.

Fig. S9. Dielectric constant and tan J of a neat elastomer, CNDEs and UNDESs containing 1, 2 and 3 wt%
BNNS.

Fig. S10. Bending actuation performance of UNDE actuators with 1, 2, and 3 wt% BNNS.

Fig. S11. The figure of merit actuation performance (curvature x thickness vs. response time) of important
polymer thin film bending actuators.



Fig. S12. Structure and performance of 3 wt% Silicone-UNDE bending actuator.
Fig. S13. A disc-shaped linear DEA.

Fig. S14. Circuit and electric field waveforms employed to power the disc-shaped DEA with two actuator
sets (AS; and AS;).

Fig. S15. The electric field waveforms applied on a disc-shaped DEA with two UNDE sets and the
generated stroke.

Fig. S16. A photograph of lens motor.
Fig. S17. Central drift of a lens driven by a disc-shaped actuator.

Fig. S18. A diagram of electrode for localized electrophoretic concentration to make the disc-shaped linear
actuators.

Table S1. Performance comparison of photo-thermal, electro-thermal, solvent, electro-chemical, and
electric field stimulated film bending actuators.

Table S2. performance comparison of IPMC and UNDE bending actuators with similar dimensions.
Table S3. Size and performance comparison of tunable lenses using DEAs.

Movie S1. Closed loop bending of a UNDE actuator.

Movie S2. Durable bending actuation of a UNDE actuator after folding.

Movie S3. Bending at different frequencies of a UNDE actuator.

Movie S4. Linear stroke at different frequencies of a disc-shaped DEA.

Movie S5. Working distances change at different frequencies of an optical zoom system driven by the disc-
shaped linear DEA.
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