
UC Davis
UC Davis Previously Published Works

Title
The biogeography of community assembly: latitude and predation drive variation in 
community trait distribution in a guild of epifaunal crustaceans

Permalink
https://escholarship.org/uc/item/56k7w5bg

Journal
Proceedings of the Royal Society B, 289(1969)

ISSN
0962-8452

Authors
Gross, Collin P
Duffy, J Emmett
Hovel, Kevin A
et al.

Publication Date
2022-02-23

DOI
10.1098/rspb.2021.1762
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/56k7w5bg
https://escholarship.org/uc/item/56k7w5bg#author
https://escholarship.org
http://www.cdlib.org/


The biogeography of community assembly: latitude and predation drive variation in 1 
community trait distribution in a guild of epifaunal crustaceans 2 
 3 
Authors 4 
1. Collin P. Gross – Department of Evolution and Ecology, University of California, Davis, CA, 5 

USA. https://orcid.org/0000-0002-0896-8476. colgross@ucdavis.edu* 6 
2. J. Emmett Duffy – Tennenbaum Marine Observatories Network, MarineGEO, Smithsonian 7 

Environmental Research Center, Edgewater, MD, USA. https://orcid.org/0000-0001-8595-8 
6391. duffye@si.edu 9 

3. Kevin A. Hovel – Department of Biology, San Diego State University, San Diego, CA, USA. 10 
https://orcid.org/0000-0002-1643-1847. khovel@sdsu.edu 11 

4. Melissa R. Kardish – Department of Evolution and Ecology, University of California, Davis, 12 
CA, USA. https://orcid.org/0000-0002-2729-9167. mrkardish@ucdavis.edu 13 

5. Pamela L. Reynolds – DataLab: Data Science and Informatics, University of California, 14 
Davis, CA, USA. https://orcid.org/0000-0002-0177-3537. plreynolds@ucdavis.edu 15 

6. Christoffer Boström – Department of Environmental and Marine Biology, Åbo Akademi 16 
University, Åbo, Finland. https://orcid.org/0000-0003-2845-8331. cbostrom@abo.fi 17 

7. Katharyn E. Boyer – Estuary & Ocean Science Center and Department of Biology, San 18 
Francisco State University, San Francisco, CA, USA. https://orcid.org/0000-0003-2680-19 
2493. katboyer@sfsu.edu 20 

8. Mathieu Cusson – Sciences fondamentales and Québec Océan, Université du Québec à 21 
Chicoutimi, Chicoutimi, QC, Canada. https://orcid.org/0000-0002-2111-4803. 22 
mathieu.cusson@uqac.ca 23 

9. Johan Eklöf – Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm 24 
University, Stockholm, Sweden. https://orcid.org/0000-0001-6936-0926. johan.eklof@su.se 25 

10. Aschwin H. Engelen – CCMAR, Universidade do Algarve, Faro, Portugal. 26 
https://orcid.org/0000-0002-9579-9606. aengelen@ualg.pt 27 

11. Britas Klemens Eriksson – University of Groningen, Groningen, Netherlands. 28 
https://orcid.org/0000-0003-4752-922X. b.d.h.k.eriksson@rug.nl 29 

12. F. Joel Fodrie – Institute of Marine Sciences, University of North Carolina at Chapel Hill, 30 
Morehead City, NC, USA. https://orcid.org/0000-0001-8253-9648. jfodrie@unc.edu 31 

13. John N. Griffin – Department of Biosciences, Swansea University, Wales, UK. 32 
https://orcid.org/0000-0003-3295-6480. j.n.griffin@swansea.ac.uk 33 

14. Clara M. Hereu – Universidad Autónoma de Baja California, Mexicali, Baja California, 34 
Mexico. https://orcid.org/0000-0002-2088-9295. chereu@uabc.edu.mx 35 

15. Masakazu Hori – Fisheries Research and Education Agency, Hatsukaichi, Hiroshima, Japan. 36 
https://orcid.org/0000-0002-4677-9377. mhori@affrc.go.jp 37 

16. A. Randall Hughes – Department of Marine and Environmental Sciences, Northeastern 38 
University, Nahant, MA, USA. rhughes@northeastern.edu 39 

17. Mikhail V. Ivanov – Department of Ichthyology and Hydrobiology, St Petersburg State 40 
University, St Petersburg, Russia. https://orcid.org/0000-0002-8277-7387. 41 
ivmisha@gmail.com 42 

18. Pablo Jorgensen – Instituto de Ciencias Polares, Ambiente y Recursos Naturales, 43 
Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, Antártida e Islas del 44 
Atlántico Sur, Argentina. https://orcid.org/0000-0002-6018-7124. pjorgensen@untdf.edu.ar 45 



19. Claudia Kruschel – University of Zadar, Zadar, Croatia. https://orcid.org/0000-0003-4255-46 
8400. ckrusche@unizd.hr 47 

20. Kun-Seop Lee – Department of Biological Sciences, Pusan National University, Busan, 48 
South Korea. https://orcid.org/0000-0003-0431-1829. klee@pusan.ac.kr 49 

21. Jonathan Lefcheck – Tennenbaum Marine Observatories Network, MarineGEO, Smithsonian 50 
Environmental Research Center, Edgewater, MD, USA. https://orcid.org/0000-0002-8787-51 
1786. lefcheckj@si.edu 52 

22. Karen McGlathery – Department of Environmental Sciences, University of Virginia, 53 
Charlottesville, VA, USA. kjm4k@virginia.edu  54 

23. Per-Olav Moksnes – Department of Marine Sciences, University of Gothenburg, Goteborg, 55 
Sweden. https://orcid.org/0000-0001-8611-7848. per.moksnes@marine.gu.se 56 

24. Masahiro Nakaoka – Hokkaido University, Akkeshi, Hokkaido, Japan. 57 
https://orcid.org/0000-0002-5722-3585. nakaoka@fsc.hokudai.ac.jp 58 

25. Mary I. O'Connor – Biodiversity Research Centre and Department of Zoology, University of 59 
British Columbia, Vancouver, BC, Canada. https://orcid.org/0000-0002-3133-0913. 60 
oconnor@zoology.ubc.ca 61 

26. Nessa E. O'Connor – School of Natural Sciences, Trinity College Dublin, Dublin, Ireland. 62 
https://orcid.org/0000-0002-3133-0913. n.oconnor@tcd.ie 63 

27. Jeanine L. Olsen - University of Groningen, Groningen, Netherlands. j.l.olsen@rug.nl 64 
28. Robert J. Orth – Virginia Institute of Marine Science, College of William and Mary, 65 

Gloucester Point, VA, USA. https://orcid.org/0000-0003-2491-7430. jjorth@vims.edu 66 
29. Bradley J. Peterson – School of Marine and Atmospheric Sciences, Stony Brook University, 67 

Stony Brook, NY, USA. https://orcid.org/0000-0001-5942-8253. 68 
bradley.peterson@stonybrook.edu 69 

30. Henning Reiss – Nord University, Bodø, Norway. https://orcid.org/0000-0003-1393-0269. 70 
henning.reiss@nord.no 71 

31. Francesca Rossi – Centre National de la Récherche Scientifique, ECOSEAS Laboratory, 72 
Université de Cote d'Azur, Nice, France. https://orcid.org/0000-0003-1928-9193. 73 
francesca.rossi@cnrs.fr 74 

32. Jennifer Ruesink - Department of Biology, University of Washington, Seattle, WA, USA. 75 
https://orcid.org/0000-0001-5691-2234. ruesink@uw.edu 76 

33. Erik E. Sotka. Grice Marine Laboratory, College of Charleston, Charleston, SC, USA. 77 
https://orcid.org/0000-0001-5167-8549. sotkae@cofc.edu 78 

34. Jonas Thormar – Institute of Marine Research, His, Norway. https://orcid.org/ 0000-0002-79 
7925-3822. jonas.thormar@hi.no 80 

35. Fiona Tomas – IMEDEAS (CSIC), Esporles, Islas Baleares, Spain. https://orcid.org/0000-81 
0001-8682-2504. fiona@imedea.uib-csic.es 82 

36. Richard Unsworth – Department of Biosciences, Swansea University, Wales, UK. 83 
https://orcid.org/0000-0003-0036-9724. r.k.f.unsworth@swansea.ac.uk 84 

37. Erin P. Voigt - Department of Biology, San Diego State University, San Diego, CA, USA. 85 
https://orcid.org/0000-0003-3415-7842. epvoigt@ncsu.edu 86 

38. Matthew A. Whalen – Hakai Institute, Campbell River, BC, Canada, and University of 87 
British Columbia, Vancouver, BC, Canada. https://orcid.org/0000-0002-5262-6131. 88 
matt.whalen@hakai.org 89 

39. Shelby L. Ziegler – Moss Landing Marine Laboratories, Moss Landing, CA, USA. 90 
https://orcid.org/0000-0001-7218-0811. shelbylziegler@gmail.com 91 



40. John J. Stachowicz – Department of Evolution and Ecology, University of California, Davis, 92 
CA, USA. https://orcid.org/0000-0003-2735-0564. jjstachowicz@ucdavis.edu 93 

 94 
*Corresponding author: Department of Evolution and Ecology, University of California, Davis 95 
2320 Storer Hall, One Shields Ave, Davis, CA 95616 96 
(206) 619-3913 colgross@ucdavis.edu 97 
 98 
 99 
 100 
 101 
 102 
 103 
 104 
 105 
 106 
 107 
 108 
 109 
 110 
 111 
 112 
 113 
 114 
 115 
 116 
 117 
 118 
 119 
 120 
 121 
 122 
 123 
 124 
 125 
 126 
 127 
 128 
 129 
 130 
 131 
 132 
 133 
 134 
 135 
 136 
 137 
 138 



Abstract  139 

While considerable evidence exists of biogeographic patterns in the intensity of species 140 

interactions, the influence of these patterns on variation in community structure is less clear. 141 

Studying how the distributions of traits in communities vary along global gradients can inform 142 

how variation in interactions and other factors contribute to the process of community assembly. 143 

Using a model selection approach on measures of trait dispersion in crustaceans associated with 144 

eelgrass (Zostera marina) spanning 30º of latitude in two oceans, we found that dispersion 145 

strongly increased with increasing predation and decreasing latitude. Ocean and epiphyte load 146 

appeared as secondary predictors; Pacific communities were more overdispersed while Atlantic 147 

communities were more clustered, and increasing epiphytes were associated with increased 148 

clustering. By examining how species interactions and environmental filters influence 149 

community structure across biogeographic regions, we demonstrate how both latitudinal 150 

variation in species interactions and historical contingency shape these responses. Community 151 

trait distributions have implications for ecosystem stability and functioning, and integrating 152 

large-scale observations of environmental filters, species interactions, and traits can help us 153 

predict how communities may respond to environmental change. 154 
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Introduction 170 

Community ecology is fundamentally concerned with the assembly and maintenance of 171 

diversity across space and time. Key to this endeavour is the idea that the composition of a local 172 

community is the result of multiple ecological filters selecting species from a regional pool (Poff 173 

1997; Thompson et al. 2020). Different kinds of filters apply different kinds of selective 174 

pressures on the species pool, and because species’ traits are what allow them to pass through 175 

filters, studying the distribution of traits within the community can help us understand how these 176 

filters act on the species pool as a whole. Strong environmental filters (i.e., abiotic filters sensu 177 

Kraft et al. 2015) such as climate are thought to act on large spatial scales to constrain trait 178 

diversity such that species are more alike (clustered) in traits that respond to these factors than 179 

we would expect under a purely random assembly process (Webb et al. 2002; Cavender‐Bares et 180 

al. 2009; Starko et al. 2020; Thompson et al. 2020). Biotic filters, such as competition, then act 181 

at smaller spatial scales to enhance or reduce trait diversity among species with broadly similar 182 

abiotic tolerances, depending on which traits are affected (Mayfield & Levine 2010). When traits 183 

related to the acquisition of distinct resources are considered, competition for these resources 184 

drives the distribution of traits to be wider than expected by chance (overdispersed) as there are 185 

multiple resource niche optima that can be occupied (Webb et al. 2002; Cavender‐Bares et al. 186 

2009; Pavoine & Bonsall 2011). In contrast, competition for a single, dominant limiting resource 187 

can also act as a filter, selecting for traits related to acquiring this resource to converge around an 188 

optimal value, because species deviating from the optimum are otherwise competitively 189 

excluded. All else being equal, as richness increases, an increase in trait dispersion may point to 190 

stronger stabilising mechanisms and limiting similarity, while a decrease in trait dispersion can 191 

suggest stronger equalising mechanisms promoting unstable coexistence.  (Chesson 2000; 192 

Mayfield & Levine 2010).  193 

Despite well-known geographic patterns in the strength of both biotic interactions and 194 

environmental filters (Schemske et al. 2009; Reynolds et al. 2018; Longo et al. 2019; Zvereva & 195 

Kozlov 2021), few studies have examined the global-scale consequences of geographic variation 196 

in these filters for community trait distributions (Ford & Roberts 2018, Skeels et al. 2020). In 197 

particular, intense predation, competition, and mutualistic interactions at lower latitudes 198 

(Freestone & Osman 2011; Longo et al. 2019; Zvereva & Kozlov 2021), may lead to the 199 

predominance of biotic interactions over environmental filters in structuring low-latitude 200 



communities. This may cause stronger trait clustering near the poles that shifts towards more 201 

overdispersed communities at lower latitudes. On the other hand, selection for tolerance of 202 

extreme heat conditions could also cause trait clustering at low latitudes. Finally, patterns in 203 

community structure along latitudinal gradients could be dominated by idiosyncratic and 204 

historically-contingent effects of predators, prey, competitors, and mutualists that vary among 205 

biogeographic provinces (Sanford & Bertness 2009; Mittelbach & Schemske 2015; Ford & 206 

Roberts 2019; Whalen et al. 2020). Local abiotic factors, habitat complexity, assemblage 207 

composition, and adaptation to these local factors could further obscure broader geographic 208 

patterns of community assembly (Sanford & Bertness 2009; Lavender et al. 2017), stressing the 209 

importance of assessing patterns across multiple independent species pools. For example, the 210 

effects of regional gradients in predation may be overshadowed by local increases in habitat 211 

complexity, which can decrease predation pressure (Reynolds et al. 2018) and increase trait 212 

dispersion as species assort into disparate microhabitat niches (Best & Stachowicz 2014). 213 

Understanding trait distributions and their drivers should provide insight into the likely responses 214 

of communities to environmental fluctuations or perturbations in the same way that 215 

understanding the diversity of traits within a population can inform us on its evolutionary 216 

potential (Cadotte et al. 2011; Rumm et al. 2018). 217 

Here we examine geographic patterns in the trait distribution of epifaunal invertebrates 218 

living on eelgrass throughout the northern hemisphere to assess the extent and causes of 219 

geographic variation in the drivers of the assembly of these communities. Eelgrass (Zostera 220 

marina) is the world’s most widespread species of temperate seagrass, a marine angiosperm 221 

found throughout the Northern Hemisphere from 30º to 67º N latitude in both the Atlantic and 222 

Pacific Oceans (den Hartog 1970; Green & Short 2003). Much of the animal community in 223 

eelgrass beds is made up of invertebrate mesograzers that primarily feed on the epiphytic 224 

microalgae fouling the seagrass blades (Valentine & Duffy 2006). Competition for food and 225 

microhabitat space occurs among mesograzers, and can significantly affect community 226 

composition (Edgar 1990; Best et al. 2013; Best & Stachowicz 2014; Amundrud et al. 2015). 227 

Peracarid crustaceans (amphipods, isopods, and tanaids) are the most widespread, abundant, and 228 

species-rich mesograzer taxon in these eelgrass beds, and they experience elevated predation in 229 

low-latitude eelgrass beds (Reynolds et al. 2018) which could either cause clustering of 230 

communities around traits that increase resistance or tolerance to predation, or cause dispersion 231 



of communities due to competition for enemy-free space. Z. marina’s wide range across latitudes 232 

provides an opportunity to assess the role of gradients of ecological filters on global scales 233 

without the confounding influence of changing habitat type. We predicted: (1) that trait 234 

dispersion would increase with decreasing latitude as species interactions become more intense 235 

and (2) that abiotic filters would be strongest and result in clustering at higher latitudes and 236 

where biotic interactions are weak. While marine systems often show non-linear variation in 237 

species diversity and interaction strength with latitude (peaking at mid-latitudes; Chaudhary et 238 

al. 2017; Whalen et al. 2020), our predictions are reasonable within the range of latitudes 239 

occupied by eelgrass (~30-70ºN). We test these predictions in separate ocean basins with largely 240 

unique fauna, allowing us to assess whether the unique histories of these zoogeographic 241 

provinces result in different patterns and drivers of trait distribution in each ocean basin (Roy et 242 

al. 2009; Dyer & Forister 2019).  243 

Methods 244 

Study design and sample collection. Between May and September 2014, we sampled 42 245 

sites across the range of Z. marina, spanning 30 degrees of latitude along both coasts of Eurasia 246 

and North America (30.4ºN to 60.1ºN; Fig. 1) to characterize the biological and physical 247 

structure of eelgrass beds using standardized measurements. We implemented a hierarchical 248 

sampling design consisting of two oceans (Atlantic and Pacific), each with two coasts (east and 249 

west), each with 6-14 sites, each with 20 plots, for a total of 840 plots in 42 sites sampled as part 250 

of the Zostera Experimental Network (ZEN; Fig. S1). Plots were 1 m2 and spaced 2 m apart at 251 

each site. Along each coastline, sites were separated by 4.9 km (Virginia, USA) to 485.4 km 252 

(Washington State, USA) of water.  253 

Assessing eelgrass habitat characteristics. We sampled eelgrass biomass by haphazardly 254 

placing and pushing a 20-cm diameter core tube 20 cm into the sediment within each plot. We 255 

gathered all shoots rooted within the core bottom area into the core tube to ensure that no shoots 256 

were cut off during sampling. We then removed the shoots from the sediment, transferred the 257 

core contents into a mesh bag. In the lab, we rinsed the core contents, removed fouling algae and 258 

sediment from the eelgrass tissue, and separated above- and belowground biomass by cutting the 259 

plant above the rhizome. In addition to eelgrass, we also removed all of the macroalgae from the 260 

plot. All eelgrass and macroalgal tissue was dried to a constant weight at 60ºC and weighed. 261 



From five haphazardly collected eelgrass shoots per plot, we also collected 3-cm lengths of 262 

tissue from a healthy, unfouled inner leaf and processed these samples for tissue nitrogen using a 263 

CHN analyser (Thermo Fisher Scientific Inc., Waltham, MA, USA). 264 

We quantified eelgrass habitat structure at the plot level by measuring shoot density and 265 

canopy height. We estimated shoot density by counting the number of shoots emerging within a 266 

20-cm diameter ring placed haphazardly in the plot. In plots where density was particularly low 267 

(less than 50 shoots m-2, about 5% of plots), we counted all of the shoots in the plot. We 268 

measured canopy height by haphazardly collecting five shoots from each plot and measuring 269 

their length from the tip of the longest leaf to the leaf sheath. 270 

We sampled epiphyte load on the eelgrass blades by selecting four shoots from each plot 271 

and removing them from the substrate either by gently uprooting or clipping at the meristem and 272 

placing them in a plastic bag on ice for transport. In the lab, we scraped both sides of all the 273 

leaves with a glass slide to remove fouling material, which was then filtered, transferred to an 274 

aluminium pan, dried to a constant weight at 60ºC, and weighed.  275 

Measuring predation intensity. Predation intensity was quantified by tethering locally-276 

collected prey (“gammarid” amphipods) in each plot for 24 hours. These data and methods are 277 

reported in detail in Reynolds et al. (2018). Briefly, each individual amphipod was glued to a 10-278 

cm piece of monofilament line 0.133 mm in diameter (Berkley Fireline™, Spirit Lake, IA, USA) 279 

tied to a transparent acrylic stake anchored in the sediment, so that it could swim freely in the 280 

water column and cling to adjacent eelgrass blades. After 24 hours, we removed the stakes and 281 

scored prey as present (uneaten) or absent (eaten); partially-consumed prey were considered 282 

eaten, and moulted prey were excluded from analyses. Site-level predation was calculated by 283 

averaging scores across plots. 284 

 Abiotic environmental variables. To characterize the abiotic environment experienced by 285 

epifauna across the range of eelgrass, we measured in-situ temperature and salinity at each site at 286 

the time of sampling. To characterize the overall abiotic environment of each site, we also 287 

retrieved estimates of annual mean sea surface temperature (SST), photosynthetically active 288 

radiation (PAR), and surface chlorophyll A (Chl a) from the surrounding region, available in the 289 

Bio-ORACLE data set (Tyberghein et al. 2012). These data were taken from monthly readings of 290 

the Aqua-MODIS and SeaWiFS satellites at a 9.6 km2 spatial resolution from 2002 to 2009. We 291 

used the raster package in R v. 3.6.3 (Hijmans & Etten 2020; R Development Core Team 2021) 292 



to extract the annual mean SST, SST range, PAR, and Chl a from all cells within 10 km of each 293 

site, and averaged these cell-level estimates to generate site-level predictors. Other water quality 294 

parameters, including dissolved nitrate and other nutrients, were spatially interpolated based on 295 

surface measurements in the World Ocean Database 2009 (Garcia et al. 2010).  296 

Epifaunal community composition. To sample the macrofauna associated with the 297 

eelgrass blades, we carefully placed an open-mouthed fine-mesh drawstring bag (500 µm mesh, 298 

18 cm diameter) over a clump of shoots in the centre of the plot so that the mouth of the bag was 299 

flush with the sediment surface. We then cut the shoots where they emerged from the sediment 300 

and quickly closed the drawstring to capture the shoots and associated animals. The shoots were 301 

transferred to the lab on ice, rinsed and hand-inspected to dislodge the epifauna, which were then 302 

passed through a 1-mm sieve and ultimately transferred into 70% ethanol. Epifauna were then 303 

identified to the lowest possible taxonomic level (typically species). Epifaunal abundance was 304 

standardized by the aboveground biomass of the eelgrass sample from which they were 305 

collected.  306 

 We scored all peracarids (amphipods, isopods, and tanaids) for a series of traits based on 307 

information available in the literature, including body size, fecundity, body shape, living habit, 308 

motility, bioturbation, and diet components (Table 1, Appendix 1 for literature). Due to a paucity 309 

of data on intraspecific trait variation for most species, literature values were assumed to be 310 

representative for all individuals in our study. For subsequent analyses, we categorized each of 311 

these traits as related to microhabitat or dietary niche; we also performed analyses with all traits 312 

ungrouped. While we acknowledge that these broad categories may overlap, we elected to sort 313 

traits into these categories because they represent two potential components of trait dispersion 314 

exhibited by peracarids in field studies and laboratory experiments (Best et al. 2013; Best & 315 

Stachowicz 2014). Correlations among traits were generally weak, save for strong positive 316 

relationships between eating live seagrass tissue and macroalgae, detritivory and consuming 317 

seagrass detritus, and suspension feeding and bioturbation (Fig. S2).  318 

Characterizing community dispersion. For all the peracarid species observed in our 319 

dataset, we used the trait dataset to generate three matrices of Gower distances between species: 320 

one of all traits, one for diet traits, and one for microhabitat traits using the FD package in R 321 

(Laliberté et al. 2014). Using subsets of these matrices for communities at the site level (summed 322 

across 20 plots at each site, n = 42), we measured the trait distance between species as the Mean 323 



Pairwise Distance (MPD) and Mean Nearest Taxon Distance (MNTD) for each set of traits 324 

(Webb et al. 2002; Sessa et al. 2018). MPD is the average of the trait distances between all pairs 325 

of species found within a given sample unit (site), while MNTD is the average minimum 326 

distance between species pairs in a site. Both are independent of species richness, but the two 327 

metrics can behave differently depending on the clustering of species in trait space within a 328 

sample (Sessa et al. 2018).  329 

To determine whether the observed species traits in each community differed from those 330 

expected by chance, we standardized MPD and MNTD against null distributions generated 331 

according to two permutation algorithms. The first, independent swap, is a semi-constrained 332 

model that randomly re-assembles the sample-by-species community matrix while maintaining 333 

the species richness of each sample and the presence/absence of each species across samples. 334 

The second, tip shuffle, is a more constrained model that directly shuffles the traits of the species 335 

in the community while maintaining richness, occurrence, and trait distances between 336 

community members, effectively moving the tip labels on a trait dendrogram. Imposing more 337 

constraints on permutation controls for patterns in the data that are not directly relevant to the 338 

question at hand, such as species richness, occurrence, or identity, ultimately reducing type I 339 

error rates (Swenson 2014). Because of the relatively low overlap in species pools across the 340 

range of our study, comparing the results relative to both types of models can be informative of 341 

the importance of species identity in these types of permutations, and also facilitate comparison 342 

with other studies in which the independent swap algorithm has been used together with less 343 

constrained permutations (e.g., Best and Stachowicz 2014). These permutations were each 344 

completed 999 times for each community, and null distributions of MPD and MNTD were 345 

generated based on values calculated from randomized communities. 346 

We examined the effect of the species pool on community dispersion, using varying 347 

degrees of constraint on the matrix and trait dendrogram used to generate null distributions. To 348 

make comparisons among sites, we permuted within the global species pool (all sites) and ocean-349 

level Atlantic and Pacific species pools. Using a global pool in our permutations is appropriate 350 

because while all species were not present in all regions, there were no traits that were exclusive 351 

to any region (Fig. S2). 352 

Each observed value of community trait distance was then compared to the corresponding 353 

null distribution by calculating the standard effect size (SESMPD or SESMNTD). A positive value of 354 



SES indicates that the observed community trait distance (as measured by MPD or MNTD) is 355 

greater than the null mean, meaning that community members are more dissimilar than expected 356 

under a random draw (overdispersion), while a negative SES indicates that trait distance is less 357 

than the null mean, meaning that community members are more similar to each other than 358 

expected under a random draw (clustering). MPD, MNTD, null distributions and SES values 359 

were calculated using the picante package in R (Kembel et al. 2010).  360 

 Data analysis. Two distance metrics (MPD and MNTD), two permutation algorithms 361 

(independent swap and tip shuffle), three species pools (global, Pacific, and Atlantic), and three 362 

trait sets (all, diet, and microhabitat) totalled 36 sets of SES values. However due to missing diet 363 

data for some species, we were unable to calculate diet SESMNTD with the tip shuffle algorithm, 364 

leaving us with a total of 33 sets. For each distance metric, algorithm, species pool, and trait set, 365 

SES values were used as response variables in a set of 16 linear models incorporating latitude, 366 

ocean, continental margin (east vs. west), in-situ temperature and salinity, annual mean and 367 

range of SST, total crustacean abundance and median crustacean size, epifaunal and peracarid 368 

richness, macroalgal biomass, average predation intensity, epiphyte load, Chl a, PAR, water 369 

column nitrate, mean leaf nitrogen content, and two axes of eelgrass habitat structure as derived 370 

from a principal component analysis incorporating shoot density, leaf sheath width and length, 371 

longest leaf length, and aboveground biomass (PC1 and 2, Fig. S4) as predictor variables, as well 372 

as select interactions between them (Table 2). Predictors were log-, square-root-, or arcsin-373 

transformed where appropriate to conform to a normal distribution based on Shapiro-Wilk 374 

normality tests and visual examinations of histograms. Collinearity of predictors was accounted 375 

for using variance inflation factors (VIF) for variables in composite models using the car 376 

package in R (Fox & Weisberg 2019). Predictors with a VIF greater than five were removed 377 

from composite models. We also examined the effects of predictors on the SES of individual 378 

traits to understand what traits may drive the patterns we see across environmental gradients 379 

(Appendix 2).  380 

We ranked these initial hypothesis-driven models of SES using AICc scores (MuMIn 381 

package; Bartoń 2020), and then incorporated predictors from the three lowest-scoring models of 382 

each set into a set of composite models to examine the combined effects of multiple predictor 383 

types. We then used backwards elimination to select the lowest-scoring model from these 384 



composite models. Where two models had a DAICc less than 3 units, we selected the model with 385 

the fewest parameters for interpretation.  386 

Results 387 

Peracarid assemblages at Pacific sites had greater trait dispersion than Atlantic sites, and 388 

dispersion increased with increasing predation and decreasing latitude, though there were some 389 

differences among the two oceans that we outline below. Across our sites, we found a total of 390 

105 species, 55 of which were found in the Atlantic, and 60 of which were found in the Pacific, 391 

with 10 species found in both oceans. There were 15 species in the Northwest Pacific, 48 species 392 

in the Northeast Pacific, 36 species in the Northwest Atlantic, and 24 species in the Northeast 393 

Atlantic (Fig. S3). The patterns and predictors of trait dispersion were robust across SES metrics 394 

and permutation algorithms (Table S1; Fig. S5); here we present and interpret the results of 395 

model selection on SESMNTD calculated using the tip shuffle algorithm, with exceptions 396 

presented where relevant.   397 

Dispersion of traits by ocean basin. Of the set of all traits examined, communities at 398 

Atlantic sites were on average clustered (SES < 0) relative to the global null, particularly for 399 

body size and living habit (Fig. A2-2) – species clustered around a mean body size of 14.09 mm 400 

(47.5% smaller than the mean Pacific body size), and most were free-living. Communities at 401 

Pacific sites were overdispersed (SES > 0) on average relative to the global null (Fig. 2, Table 402 

S1, Table S2). This pattern held for both metrics and null models but was significant only for 403 

SESMPD (SESMPD independent swap t38.097 = 2.43, p = 0.020; SESMPD tip shuffle t38.242 = 2.31, p = 404 

0.027; two-sample t tests). Within the global pool, the separate calculations of SES using 405 

microhabitat and feeding traits showed a similar pattern; for microhabitat traits, Pacific 406 

communities were more overdispersed and Atlantic communities more clustered (SESMNTD tip 407 

shuffle t35.654 = 3.64, p = 0.00086; Fig. 2).  408 

Correlates of among-site variation in trait dispersion. Predation intensity, latitude, 409 

epiphyte load, and ocean basin (within the global species pool) were the strongest and most 410 

consistent predictors of SES across all species pools and all trait sets (Table S1, Fig. S5). In-situ 411 

temperature, bed characteristics, epifaunal richness, continental margin, nitrate, and salinity also 412 

appeared occasionally (less than 30% of models) across the best models of SES. Mean annual 413 

sea surface temperature, epifaunal richness, salinity, nitrate, in-situ temperature, and crustacean 414 

abundance also varied significantly with latitude (Fig. S8). 415 



In all of the best models, peracarid communities at sites with higher predation intensity 416 

had more overdispersed traits, whereas those with less intense predation had more clustered traits 417 

relative to a random draw from the species pool (Fig. 3a, Table S1, Fig. S5a-c). Predation 418 

(removal of amphipod baits) varied from 20% in Quebec to 100% in Sweden, San Francisco 419 

Bay, Ireland, Korea, and British Columbia; the average predation rate was significantly greater in 420 

the Pacific than in the Atlantic Ocean (Table S3, Fig. S7, S8), but this did not translate to a 421 

difference in the effect of predation on dispersion across the two basins when permuting within 422 

the global pool (p = 0.48; Fig. 3a). Across the three species pools, the predation effect was 423 

stronger on average when permuting within the Pacific than the Atlantic or global pools, (Fig. 424 

S5a), and strongest in models of the dispersion of all traits together (Fig. S5b).  425 

As predicted, trait dispersion decreased with increasing latitude in the best models (global 426 

species pool, microhabitat traits); communities became more clustered at higher latitude, while 427 

communities toward the equatorward edge of Z. marina’s range were more overdispersed (Fig. 428 

3b, Fig. S5d-f). These latitude effects were stronger in the Pacific Ocean than in the Atlantic 429 

(F1,38 = 7.95, p = 0.0076; Fig. 3b) although they did not appear in the top models when 430 

permuting within the Pacific species pool (Fig. S5d); the best model including latitude was 1.3 431 

AICc units better than the top model, but it was not selected as the top model because of the 432 

small difference in AICc score and greater number of parameters. Like predation, the latitude 433 

effect was strongest in models including all traits together (Fig. S5e).  434 

Communities were more clustered (more negative SES) at sites with high epiphyte loads, 435 

but this effect was most obvious in the Atlantic species pool when only microhabitat traits were 436 

considered (Fig. 3c; Fig. S5g-h). There was rarely an effect of epiphyte load on SES when using 437 

other species pools (Fig. S5g, Table S1) and never for diet traits (Fig. S5h).  438 

Discussion 439 

Using a global dataset of eelgrass-associated peracarid crustaceans, we found a strong 440 

increase in community trait dispersion with decreasing latitude and increasing predation (Fig. 3a, 441 

b). Latitudinal clines in different ecological filters have been well-characterized in a wide variety 442 

of systems (Schemske et al. 2009; Reynolds et al. 2018; Zvereva & Kozlov 2021), particularly 443 

temperature and the strength of species interactions (Schemske et al. 2009; Longo et al. 2019; 444 

Zvereva & Kozlov 2021), both of which decrease at high latitudes. Stronger biotic interactions, 445 

in particular stabilizing interactions (sensu Chesson 2000), at lower latitudes may select for an 446 



overdispersed community (Webb et al. 2002; Mayfield & Levine 2010; Pavoine & Bonsall 447 

2011), while stronger abiotic filters (or relatively weaker biotic filters) at either end of range (e.g. 448 

cold at the poleward edge or hot at the equatorward edge) could select for a clustered community 449 

(Webb et al. 2002; Cavender‐Bares et al. 2009; Kraft et al. 2015). We found similar total 450 

numbers of species in the two oceans (Fig. S3) given similar sampling effort, and all traits were 451 

found in both oceans, so the differences we observe among oceans are not simply the result of 452 

different diversities in the underlying species pool. 453 

Several lines of evidence point to the relatively greater effect of biotic interactions over 454 

temperature in structuring our communities. First, temperature rarely appeared as a significant 455 

factor in our best models (Fig. 3d, Table S1). Second, latitudinal clines in dispersion were more 456 

dependent on ocean basin than continental margins, which differ significantly in their 457 

temperature gradients (western side of oceans are warmer at an equivalent latitude; Fig. 3b; 458 

Reynolds et al. 2018). Third, predation in this system decreases with latitude, as it does in many 459 

others (Reynolds et al. 2018; Longo et al. 2019; Zvereva & Kozlov 2021). Fourth, we observed 460 

greater dispersion in living habit, motility, and macroalgae consumption at lower latitudes (Fig. 461 

A2-1b-d), all of which can be reasonably linked to stabilizing competition for food or enemy-462 

free space. Finally, for some traits (body size, fecundity), we would expect clustering at both 463 

ends of a thermal gradient, but around different optima: large-bodied and highly fecund 464 

peracarids at cool sites, and small-bodied peracarids that produce fewer eggs at warm sites 465 

(Sainte-Marie 1991; Jaramillo et al. 2017). However, in ectotherms like peracarids, decreases in 466 

temperature at higher latitudes are less likely to be strong drivers of community structure than 467 

increases in temperature at lower latitudes as a result of asymmetrical performance curves 468 

(Martin & Huey 2008; Vasseur et al. 2014). While we saw that high-latitude sites tended to have 469 

species with high fecundity (65 to <135 eggs per brood; part of a general trend for clustered sites 470 

to have high or very high fecundity; Fig. A2-1a), we saw no similar trend towards clustering at 471 

low latitudes around low fecundity values or any other traits. 472 

The decline in trait dispersion with latitude was significantly greater in the Pacific than 473 

the Atlantic. This difference in latitudinal clines and trait dispersion more generally between the 474 

two ocean basins (Fig. 2, Fig. 3b) may be in part due to differences in these assemblages’ 475 

biogeographic and evolutionary histories (Mittelbach & Schemske 2015). First, glaciation in the 476 

north Atlantic during the last Ice Age means that many of the areas in which eelgrass now occurs 477 



would have been colonized after glaciers retreated (Vermeij 1991; Olsen et al. 2004), leaving 478 

less time for in-situ adaptation and specialization that might lead to increased trait dispersion 479 

(Cavender‐Bares et al. 2009). Similarly, given Z. marina’s origin in the Pacific and more recent 480 

Pleistocene expansion into the Atlantic (Olsen et al. 2004), we might also generally expect 481 

Atlantic species to have colonized eelgrass from other Atlantic-native habitats, perhaps 482 

predisposing them to be less overdispersed in their traits as they cluster around a single mean.  483 

Consistent with this, we found that species in Atlantic sites were clustered around a smaller mean 484 

body size, which may be selected for by the denser eelgrass habitat in the Atlantic (Fig. S4, Fig. 485 

A2-2a; (Bartholomew et al. 2000). Finally, gastropod relative abundance increases with latitude, 486 

and gastropods are a more abundant and speciose component of the epifaunal community in the 487 

north Atlantic than in the Pacific (Gross et al. unpublished). Competition with gastropods for 488 

epiphytes or other shared resources may push the peracarids there into a more constrained area of 489 

trait space, leading to the clustering we observed.  490 

The precise impacts of these and other historical factors are difficult to quantify but may 491 

be further investigated with analyses of phylogenetic dispersion or more detailed studies of trait 492 

distributions in the regional species pool (Denelle et al. 2019; Skeels et al. 2020). However, we 493 

currently lack a phylogeny of peracarids with sufficient resolution and taxon sampling with 494 

which to evaluate underlying differences in phylogenetic diversity between the two ocean basins.  495 

We do note that richness of species, genera and families did not vary substantially between the 496 

ocean basins (Fig. S3). 497 

One of the most striking results of our study was the positive effect of predation intensity 498 

on community dispersion among sites that was consistent in both oceans (Fig. 3a); peracarid 499 

species were more dissimilar in their traits than expected by chance in sites with high predation 500 

intensity. This effect appeared across trait sets, species pools, dispersion metrics and methods 501 

(Table S1), although we rarely saw this signal at the level of individual traits (Table A2-1, Fig. 502 

A2-3). Changes in predator community structure, predation intensity, or both could lead to an 503 

increase in competition for predator-free space, an ecological selective filter that may result in 504 

overdispersion, particularly with respect to microhabitat and predator avoidance traits (Best & 505 

Stachowicz 2014). Herbivorous arthropods in both marine and terrestrial systems are known to 506 

select their microhabitat niches based largely on their effectiveness as shelter from predators 507 

rather than the availability or quality of food (Bernays & Graham 1988; Duffy & Hay 1991; 508 



Lasley-Rasher et al. 2011). Consequently, competition for enemy-free space can be an important 509 

factor structuring communities. Alternatively, predation could affect trait dispersion by reducing 510 

competition (Pianka 1966; Amundrud et al. 2015), but we would expect this to lead to an 511 

increase in dispersion from strongly clustered (SES < 0) to random communities (SES = 0) as 512 

stabilizing competition lessened, rather than the observed shift from clustered to overdispersed 513 

(SES > 0, Fig. 3a, Fig. S5b).  514 

Latitudinal patterns of species interactions are now broadly appreciated (Schemske et al. 515 

2009; Freestone & Osman 2011; Reynolds et al. 2018; Longo et al. 2019; Whalen et al. 2020; 516 

Zvereva & Kozlov 2021), but rarely are these results explicitly connected to variation in the 517 

structure of communities. By examining both how species interactions and environmental drivers 518 

vary within a single habitat type across a broad geographic gradient, we demonstrate an 519 

important role for latitudinal variation in species interactions in driving patterns of community 520 

assembly. Diversity in important traits can increase the completeness with which epiphytes are 521 

removed, leading to increased seagrass growth (Duffy et al. 2003), an effect that is strongest in 522 

the presence of predators (Duffy et al. 2005). More generally, trait clustering and dispersion have 523 

implications for redundancy, stability, and ecosystem functioning (Cavender‐Bares et al. 2009; 524 

Cadotte et al. 2011; Leibold et al. 2017). For instance, communities may be less resilient to 525 

environmental change if they are clustered by environmental filters (Cadotte et al. 2011, Rumm 526 

et al. 2018). Clustering that occurs as a result of equalizing mechanisms (sensu Chesson 2000) 527 

can weaken the relationship between diversity and ecosystem functioning, or certain ecosystem 528 

functions may be enhanced in communities with overdispersed effect traits, especially if 529 

diversity-function relationships arise through complementarity (Leibold et al. 2017; Thompson 530 

et al. 2020). Thus, historical contingency and broad-scale ecological drivers may play an 531 

important role in constraining not only the assembly of local communities, but the resulting trait 532 

diversity can affect the functioning of the entire ecosystem. This approach, if applied broadly, 533 

offers the potential for developing a predictive understanding of how entire communities respond 534 

to environmental change.  535 
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 687 

Tables 688 

Table 1. Traits used in analyses of ZEN peracarid communities. Full citations, as well as sources 689 

for individual species traits, are listed in Appendix 1.  690 

Trait Type Values Category Interpretation Citations 

Maximum fecundity 
(number of eggs) 

Ordered 
categorical 

Very low (0 to <18), Low 
(18 to <31), Medium (31 to 

<65), High (65 to <135), 
Very high (>135) 

Neither 
Competitive ability, 

population resilience, 
population density 

Sainte-Marie 1991, 
Best and Stachowicz 
2013, Lefcheck and 
Duffy 2015, Ashford 

et al. 2018 

Maximum adult length Continuous 2-50 mm Microhabitat 
Susceptibility to 

predators, ability to 
occupy physical space 

Sainte-Marie 1991, 
Best and Stachowicz 
2013, Lefcheck and 
Duffy 2015, Ashford 

et al. 2018 

Body shape Categorical 
Laterally compressed, 

Dorsoventrally compressed, 
Vermiform 

Microhabitat 
Ability to occupy 
physical space, 

palatability 

Lefcheck and Duffy 
2015 

Living habit Categorical 
Free, Parasite/direct 

commensal, Tube/burrow 
dweller 

Microhabitat 

Degree of substrate 
association, substrate 

type, population 
density 

Best and Stachowicz 
2013, Ashford et al. 

2018 

Motility Categorical Swimmer, Crawler Microhabitat 

Susceptibility to 
predators, dispersal 
ability, degree of 

substrate association 

Lefcheck and Duffy 
2015, Ashford et al. 

2018 

Bioturbator? Binary  Microhabitat 
Degree of substrate 

association, substrate 
type 

Ashford et al. 2018 



Microalgae feeding Binary  Diet 

Dietary niche 
partitioning 

Duffy and Harvilicz 
2001, Best and 

Stachowicz 2012, 
2013 

Macroalgae feeding Binary  Diet 
Seagrass feeding Binary  Diet 
Seagrass detritus 

feeding Binary  Diet 

Suspension feeding Binary  Diet 
Detritivory, deposit 

feeding Binary  Diet 

Carnivory, parasitism, 
scavenging Binary  Diet 

 691 

Table 2. A priori models used to analyse site-level SES values. These 16 models were separately 692 

applied to 33 sets of SES values for different trait distance metrics, permutation algorithms, 693 

species pools, and trait sets, for a total of 528 models. 694 

Model name Predictors 

Biogeography 1 Latitude     

Biogeography 2 Latitude Continental 
Margin Ocean   

Biogeography 3 Latitude Continental 
Margin 

Latitude × 
Continental Margin   

Biogeography 4 Latitude Continental 
Margin Ocean Latitude × 

Continental Margin  

Biogeography 5 Latitude Continental 
Margin Ocean Latitude × 

Continental Margin Latitude × Ocean 

Abiotic Environment in-situ Temperature in-situ Salinity Mean Leaf % N   
Temperature Regime 1 Mean SST     

Temperature Regime 2 SST Range     

Temperature Regime 3 Mean SST SST Range Mean SST × SST 
Range   

Community log(Mean Standard Total 
Crustacean Abundance) 

Median 
Crustacean Size    

Total Biodiversity log(Site Epifaunal 
Richness)     

Peracarid Biodiversity log(Site Peracarid 
Richness)     

Habitat PC1 PC2 log(Macroalgal 
Biomass + 1)   

Predation arcsin(Mean Amphipod 
Predation)     

Resource 1 log(Mean Epiphyte load) log(Mean Chl 
a)    

Resource 2 !NO2 Mean PAR    
 695 

Figure legends 696 

Figure 1. Zostera Experimental Network (ZEN) sites used in our analyses. Sites spanned 30º of 697 

latitude on the Pacific and Atlantic coasts of North America and Eurasia, including the 698 



Baltic and Mediterranean seas, covering most of the range of Zostera marina (eelgrass). 699 

Colours indicate trait dispersion (SESMNTD calculated using the tip shuffle algorithm); 700 

positive values of SESMNTD indicate greater dispersion in traits than expected from a 701 

random draw from the global species pool, whereas negative values of SESMNTD indicate 702 

clustering in traits relative to a random draw. See Fig. S1 for more detailed information 703 

about site locations.  704 

Figure 2. Trait dispersion (SESMNTD) in eelgrass-associated peracarid crustacean communities 705 

across trait sets. In general, communities at sites in the Pacific Ocean were more 706 

overdispersed, while communities at Atlantic sites were less dispersed than expected. The 707 

dashed horizontal line represents an SESMNTD value of 0, indicating random assembly. 708 

Asterisks indicate means significantly different from zero (two-tailed one-sample t tests; 709 

see table S2); error bars represent standard errors. Figure shows SESMNTD calculated 710 

according to the Tip Shuffle permutation algorithm; results were comparable across 711 

permutation algorithms and SES values. 712 

Figure 3. The effects of predation (a), latitude (b), epiphyte load (c), and in-situ temperature (d) 713 

on trait dispersion (SESMNTD using the tip shuffle algorithm) in univariate analyses. In all 714 

of the best models of dispersion, sites with higher predation intensity had more 715 

overdispersed communities, while those with lower predation intensity had more 716 

clustered communities (a; R2 = 0.15, p = 0.012). In the best models that had a non-zero 717 

latitude effect, sites at lower latitudes had more overdispersed communities, while those 718 

at higher latitudes had more clustered communities. This effect was stronger in the 719 

Pacific than the Atlantic species pool (b; R2 = 0.36, interaction p = 0.0076). In the best 720 

models with a non-zero epiphyte effect, sites where eelgrass had lower epiphyte density 721 

had more overdispersed communities, while sites with more heavily fouled blades had 722 

clustered communities (c; plot shows SESMNTD for microhabitat traits in the Atlantic 723 

species pool; R2 = 0.15, p = 0.046). In-situ temperature appeared only sporadically across 724 

permutations and dispersion metrics, and was not significant for total trait dispersion (R2 725 

= 0.0094, p = 0.54). The dashed horizontal line represents an SES value of 0, indicating 726 

random assembly; sites in bold italics are those for which SES is significantly different 727 

from 0 at α = 0.05. See Fig. S1 for an explanation of site codes.  728 
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Supplemental tables and figures 
Table S1. Top models of trait dispersion (SES) selected by backwards elimination by AICc 
scores. Models highlighted in grey are discussed in the main text. (table uploaded in separate 
Excel document). 
 
Table S2. Results of t-tests comparing average SES values within ocean basins to zero. SES 
values are calculated relative to the global species pool; p values in bold represent significance at 
an a level of 0.05. 

Ocean Metric Permutation Algorithm Trait Set Mean SES t df p 

Pacific MPD Independent Swap All 0.393 2.27 19 0.0352 
   Microhabitat 0.404 2.41 19 0.0261 
   Diet 0.415 1.66 19 0.114 
  Tip Shuffle All 0.363 2.12 19 0.0479 
   Microhabitat 0.412 2.86 19 0.0101 
   Diet 0.381 1.56 19 0.135 
 MNTD Independent Swap All 0.155 0.589 19 0.563 
   Microhabitat 0.686 3.48 19 0.00254 
   Diet -0.0449 -0.155 17 0.879 
  Tip Shuffle All 0.221 0.855 19 0.403 
   Microhabitat 0.737 3.73 19 0.00143 
   Diet 0.263 0.684 14 0.505 

Atlantic MPD Independent Swap All -0.156 -1.07 21 0.295 
   Microhabitat -0.0959 -0.518 21 0.61 
   Diet -0.0998 -0.532 20 0.601 
  Tip Shuffle All -0.699 -4.23 21 0.000375 
   Microhabitat -0.505 -2.55 21 0.0185 
   Diet -0.382 -2.06 20 0.0531 
 MNTD Independent Swap All -0.364 -2.4 21 0.026 
   Microhabitat -0.314 -1.74 21 0.0974 
   Diet -0.272 -1.77 19 0.0935 
  Tip Shuffle All -0.358 -2.35 21 0.0285 
   Microhabitat -0.3327 -1.69 21 0.011 
   Diet 0.00933 0.0394 14 0.9691 

 
 
 
 
 
 
 



Table S3. Average predation rate and epiphyte load across ocean basins. Values in the first two 
rows are mean ± standard deviation. Values in the third row represent the results of two-sample 
t-tests on untransformed (predation) and log-transformed (epiphytes) data across oceans.  

Ocean Prop. Tethered Prey Removed g Epiphytes g Eelgrass-1 
Pacific 0.80 ± 0.20 0.30 ± 0.31 
Atlantic 0.64 ± 0.24 0.13 ± 0.12 

Difference t = 2.18 p = 0.037 t = 1.13 p = 0.27 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S1. Hierarchical design of the ZEN 2014 seagrass ecosystem survey. Sites are nested in 
one of 22 areas: KO = South Korea; JS = southern Japan (Seto Inland Sea); JN = northern Japan 
(Hokkaido); SD = San Diego Bay, US; MX = Mexico (Pacific Baja California); SF = San 
Francisco Bay, US; BB = Bodega and Tomales Bays, US; OR = Oregon, US, BC = British 
Columbia, Canada; WA = Washington State, US; NC = North Carolina (Back Sound), US; VA = 
York River, Virginia, US; ES = Virginia Eastern Shore, US; LI = Long Island, US; MA = 
Massachusetts, US; QU = Quebec (St. Lawrence Estuary), Canada; PO = Algarve, Portugal; FR 
= Mediterranean France; UK = Wales, UK; IR = Ireland; FI = Archipelago Sea, Finland; SW = 
Swedish west coast. Numbers in parentheses indicate the number of sites in a given area. 
 



 
Figure S2. Principal coordinates analysis (PCoA) biplot of peracarid species in our global species 
pool, based on Gower distances. Solid symbols represent species in trait space, with symbol 
shape and colour corresponding to where they were found in our samples; hollow symbols 
represent centroids for categorical traits. Traits were fairly independent, and few were strongly 
correlated. Additionally, locale was not a significant predictor of where a given species fell in 
trait space (PERMANOVA; pseudo F9,95 = 0.98, p = 0.51). In other words, there were no traits 
that were particularly distinct to regions. Amphi-Pacific and Amphi-Atlantic distributions refer 
to species that occur in both the western and eastern margins of the Pacific and Atlantic Oceans, 
respectively. 
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Figure S3. Peracarid species richnesses across the four coastlines observed in this study. 55 
species were collected from Atlantic sites and 60 species were collected from Pacific sites. Of 
these, 15 species were collected from the Northwest Pacific, 48 species from the Northeast 
Pacific, 36 species from the Northwest Atlantic, and 24 species from the Northeast Atlantic. 
There were 37 genera in 24 families in the Pacific and 40 genera in 22 families in the Atlantic.  
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Figure S4. Principal component biplot for eelgrass habitat structure across sites. Most of the 
variation in eelgrass was between short canopies of dense shoots and taller canopies of sparser 
shoots. The first two principal components accounted for 85.64% of the total variation in habitat 
structure at the site level. Eelgrass beds in the Atlantic Ocean were mostly characterized by 
small, densely packed shoots, while those in the Northwest Pacific contained larger, sparser 
shoots. Northeast Pacific sites contained both of these bed types.  
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Figure S5. Effects of predation (a-c), latitude (d-f), and epiphyte load (g-h) in best models of 
site-level trait dispersion (SES values) across three species pools (a, d, g), 3 sets of traits (b, e, g), 
two permutation algorithms, and two dispersion metrics (c, f, h). Columns show mean effect 
sizes (across best models selected by AICc) averaged across species pools, trait sets, algorithms, 
and metrics where appropriate; error bars represent standard errors. 
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Figure S6. Maps of salinity (a), water column nitrate (b), in-situ temperature (c), and crustacean 
abundance (d) across sites and ocean basins. Of these predictor, only crustacean abundance was 
significantly greater in the Pacific (R2 = 0.076, p = 0.043). See Fig. S1 for more detailed 
information about site locations. 
 



 
Figure S7. Maps of predation intensity (a), epiphyte load (b), mean annual sea surface 
temperature (c), and epifaunal species richness (d) across sites and ocean basins. None of these 
predictors varied significantly by ocean basin. See Fig. S1 for more detailed information about 
site locations.  
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Figure S8. Predictors used in models of dispersion, including predation intensity (a), epiphyte 
load (b), mean sea surface temperature (c), epifaunal richness (d), salinity (e), water column 
nitrate (f), in-situ temperature (g), and crustacean abundance (h), plotted against latitude. 
Without accounting for other variables, latitude was a significant predictor of mean sea surface 
temperature (R2 = 0.58, p < 0.0001), site epifaunal richness (log-transformed; R2 = 0.15, p = 
0.0062), salinity (R2 = 0.16, p = 0.0056), nitrate (square root-transformed; R2 = 0.26, p = 
0.00034), in-situ temperature (R2 = 0.074, p = 0.046), and crustacean abundance (log-
transformed; R2 = 0.092, p = 0.029). Points represent sites, color-coded by ocean; Atlantic sites 
are in red, Pacific sites are in blue.  
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