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Abstract

In this paper, we investigate an approach towards curve framing using material
frames (MF). Motivated from the successful application of MF in shape sensing of rods in
our previous work, we now present these frames as an alternative curve framing method.
There are numerous instances of practical importance, where the dynamic system in
consideration can be geometrically modeled by means of framed space curve. Unlike the
Frenet-Serret and relatively parallel adapted frames (RPAF), the MF is conveniently
defined in terms of the parameters associated with the system configuration.

We detail the construction of the various material frames. We develop the relation-
ships among the MF, Frenet frame, and the RPAF. We discuss the estimation of state
space of the system from a limited set of material curvature and velocity data. In one
of the approaches discussed, we obtain curvature-dependent shape functions to estimate
the framed curve globally and discuss the errors associated with such estimations.

We also describe the potential strengths of framed space curves in the reconstruc-
tion of slender structures, trajectory estimation of moving objects (like drone swarms),
and in computer graphics. We do this by creating an analogy between the non-linear
geometry of Cosserat beams and these applications.

Keywords: curve framing; material-adapted frame; material frame; computer graphics;
path estimation; shape reconstruction.
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1. Introduction
The space curves are the simplest structures in the theory of differential geometry because

they are manifolds of dimension one. The interest in space curves dates back to 17th century.
The idea of tangent to the curve is attributed to Pierre De Fermat that was first mentioned
in 1629 in a letter to M. Despagnet. It seemingly was invented as a side product of Fermat’s
investigation on maxima and minima (refer to [1]). In 1637, Descartes was the first to define
the algebraic curve in his famous work [2]. In 1748, Euler used the parametric representation
of curves in his renowned work [3]. The idea of curve framing by means of tangent, normal,
and binormal vectors are attributed to Frenet [4] and Serret [5]. Darboux [6] exploited the
moving frame technique to study surfaces, which was further generalized by Cartan (refer to:
for example, [7] and [8]) and it was used to develop tetrad theory of general relativity [9].
Under the Frenet-Serret curve framing technique, the curve is geometrically characterized by
means of coordinate system invariant quantities: curvature κ and torsion τ . A unique Frenet
frame exists for a regular, at least C3 continuous and non-degenerate curve.

Despite the fact that a Frenet–Serret formulation is at the heart of curve framing, it
has limitations for certain practical problems and applications such as (but not limited to)
graphics generation, shape reconstruction from finite strain measurements, modeling the
trajectory and motion of certain classes of moving objects, defining the configuration of
object swarms, modeling the continuum mechanics of Cosserat beams, and so forth. These
applications demand the existence of a continuously varying frame along the curve, even
if the curvature vanishes at certain point on the curve. The principal normal of the curve
is discontinuous at the point where the curvature is 0 (point of inflection or when the
curve straightens momentarily), rendering a limitation to use of the Frenet frame for these
applications.

Bishop [10] proposed an alternative framing methodology called relatively parallel adapted
frame (RPAF). RPAF can be used to frame a regular, minimally C2 continuous curve using
two invariants say (κ1, κ2) that can be uniquely defined if we specify the orthogonal vectors
spanning the normal plane of such a curve at a particular point on it. Bishop called the
invariants (κ1, κ2) as the normal development of the curve. Like the Frenet frame, we only
have two invariants in RPAFs that define the curve. The curve still needs to be regular, but
the requirements of continuity and the non-degeneracy condition of the curve are relaxed.

The benefit of RPAF has been proven since its proposal in 1975. The application of
RPAF in computer graphics to create ribbons, tubes from 3D space curves, and the generation
of forward-facing camera orientation was investigated by Hanson and Ma [11]. The RPAF
has successfully been used to develop trajectory tracking and auto-pilot control system for
UAVs (refer figure 1 in Xargay et al. [12] and references therein). The work by Zahradová
[13] used RPAF to construct waveguides for curves that did not possess unique Frenet frames.
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The Frenet frames and RPAF are intrinsic to the curve itself. Therefore, the curvature
terms (κ, τ) in case of Frenet frame and the terms (κ1, κ2) in case of a unique RPAF are
frame invariants and depend solely on the properties of the curve. However, in multiple
practical applications where a physical system can be modeled by means of framed curve, it
is convenient to frame the curve by means of the material frame (MF). The evolution of the
MF along the curve depends on the configuration-dependent parameters. When MF includes
the tangent vector of the curve, it is called as material-adapted frame (MAF). The curvatures
related to such frames usually have a physical meaning associated with the change of state of
the system. One of the best example to justify the importance of the MF is the kinematics
of rods and beams (slender structures).

The inception of the idea to use framed curves in studying the mechanics of rods is likely
attributed to Duhem [14] and was used by Cosserat and Cosserat [15] to develop the finite
strain theory of rods and shells. In this framework, a configuration of the beam is defined by
the midcurve (locus of centroid of the cross-section) and the family of cross-sections given by
the director frame (also known as the Cosserat triad). The director triad is an example of
MF used to frame Cosserat beams, for example. Interested readers are recommended to refer
to Chadha and Todd [16], Ericksen and Truesdell [17] and the references therein for further
details. The contribution of Simo (refer to: for example, [18]) and Eric Reissner (refer to [19])
on the development of geometrically-exact non-linear beam theory is note worthy. The idea
to capture the three-dimensional shape of slender rod-like structure subjected to bending and
elongation using a finite number of surface strain gauges was proposed by Todd et al. [20]
using MAF. Chadha and Todd [21] extended the work in [20] by developing a general shape
reconstruction theory that captures shear deformations and torsion by using a director triad.
The geometric relationship between MAF and director triad was used to uniquely define
orientation of cross-section and the shear angles (refer to section 3.2 of Chadha and Todd
[16]). It was also proved that the director triad reduces to MAF when shear deformation and
torsion is ignored. The fact that the Frenet-Serret frame and the RPAF do not materially
change orientation with the cross-section during the deformation of the beam, motivated
Todd et al. [20] to propose a problem-specific MAF (we will later call this as special material
adapted frame or SMAF as it ignores torsion and this adds some interesting properties to this
frame). This also makes it favorable to define geometry of single-manifold characterizable
structures like DNA, tubes with continuously varying cross-section, architectural design of
spiral stair case and their handrails where the central column is not necessarily a vertical
element, and body-centered frame for fixed wings airplanes to name a few.

Motivated from the success of a MAF in the theory of shape reconstruction, we attempt
to further investigate the properties of MAF and explore its potential applications in the field
of computer graphics and path estimation (for drones and swarms of drones, for example).
In this exposition, we systematically elucidate the construction of the MAF and establish the
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relationship between MAF, Frenet frame, and RPAF. We finally detail the general material
frame. We illustrate the application of these frames towards generation of certain structures:
double helix intertwining a space curve (like DNA), a leaf and a plant.

We derive the evolution equations of the material frames and illustrate an algorithm
to estimate a smooth framed curve using limited set of curvature data. This estimation
technique is very useful for structural monitoring of slender structures like pipelines or for
path estimation of underwater drones, where the data is scarce due to challenges associated
with underwater communication. We illustrate various interpolation approaches. One of the
approaches that has a closed form solution is smooth patch estimation and gluing technique
(SPEG) that involves C−1 estimation of the material linear and angular velocity data (or
equivalently cross-sectional strain and curvature in case of beam). We develop curvature-
dependent local shape functions (for a given segment or patch of the curve) and “glue”
these patches together such that the global solution obtained is smooth. Other higher order
interpolation of the input curvature data to numerically obtain the configuration space is also
discussed. The accuracy of the estimated curve depends on the quality of curvatures data set
and the interpolation method that was used to estimate the path. We illustrate application
of this algorithm to estimate the path of a moving object or swarm of drones using limited
set of data obtained from the sensors (like Inertial Measurement Units (IMU), strain gauges,
etc.).

In section 2, we briefly describe the Frenet frame and RPAF. We delineate the construction
of the MF and discuss the concept of finite rotations in section 3. In section 4, we derive the
curvature vector for various frames and obtain the required constraints for Frenet frame and
RPAF to be a special case of GMAF. In section 5, we delineate the estimation of the state
space of a single-manifold characterized system from limited material curvature and velocity
data. We also perform error analysis for different interpolation approaches. In section 6, we
illustrates various applications of theory discussed so far in the field of computer graphics,
and we finally draw some conclusions and primary observations in Section 7.

2. Curve framing by Frenet-Serret frame and RPAF
In this section, we briefly review the concepts of Frenet frame and RPAF and discuss

the relevant concepts for completion. Unless otherwise stated, the curves are parametrized
using arc-length ξ1 throughout the paper. The dot product between two vectors v1 and v2 is
defined as 〈v1,v2〉.

2.1. Frenet-Serret frame
Consider a fixed orthonormal Cartesian frame {Ei} in Euclidean space R3. Consider

a non-degenerate and at least C3 continuous space curve ϕ : [0, l0] −→ R3, such that,
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ϕ(ξ1) = ϕi(ξ1)Ei, with the arclength ξ1 ∈ [0, l0]. Uniquely framing a curve using Frenet
frame requires a continuously varying Frenet triad consisting of tangent T (ξ1), principal
normal N (ξ1), and binormal vectors B(ξ1) defined as

T (ξ1) = ϕ,ξ1 ;

N (ξ1) =
ϕ,ξ1ξ1

‖ϕ,ξ1ξ1‖
;

B(ξ1) = T (ξ1)×N (ξ1).

(1)

The vector triad {T (ξ1),N (ξ1),B(ξ1)} as given in Eq. (1) defines the Frenet frame. Before
we mention the Frenet formula that governs the evolution of the Frenet triad, we make
the following remarks that are required to understand the unique existence and continuity
requirement of the frame.

Remarks:

Remark 2.1.1: A parametrized C1 continuous curve ϕ(ξ1) is called a regular curve if
it has a non-vanishing derivative. This guarantees the existence of non-zero and continuous
tangent vector T . A regular curve parametrized by the arc-length ξ1 gives a unit tangent
vector, i.e. ‖ϕ,ξ1‖ = 1.

Remark 2.1.2: For a parametrized C2 continuous curve ϕ(ξ1), we define the scalar curvature
κ(ξ1) = ‖ϕ,ξ1ξ1‖. The point on the curve at which the curvature vanishes κ = 0, is called as
the inflection point. The point with κ 6= 0 on a regular curve is called as a strongly regular
point. At the point of inflection, the curve is momentarily straight and the normal vector is
not uniquely defined. Thus, the Frenet frame consisting of unique principal normal does not
exist at the point of inflection.

Remark 2.1.3: At a strongly regular point of C2 continuous curve with κ(ξ1) 6= 0, the
tangent T and the principal normal vector N are linearly independent (orthonormal) and
spans the osculating plane. This condition is called as non-degeneracy. The normal vector
points towards the center of curvature. The circle on the osculating plane centered at the
center of curvature with the radius 1

κ
is called as the osculating circle. A regular C2 curve

with κ(ξ1) 6= 0 (implying linear independence of T and N ) is called as non-degenerate curve.
The curvature κ(ξ1) measures the rate of change of the tangent when moving along the curve.
It represents the deviation of the curve at a point from a straight line (along the tangent at a
point) in the neighborhood of the point in consideration.

Remark 2.1.4: The binormal vector B as defined in Eq. (1) is perpendicular to the
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osculating plane. The plane spanned by the vectors T and B is called as the rectifying plane.
For the Frenet frame to be continuous along the curve, the osculating plane must change
continuously along the curve. This brings us to the definition of torsion τ(ξ1). The deviation
of the osculating plane is obtained from the derivative of the binormal vector, which can be
obtained as B,ξ1 = −τN (refer Chapter II of Kreyszig [22]). The continuity of the Frenet
frame along the curve requires the vector B,ξ1 to be at least C0 continuous, implying the
curve ϕ(ξ1) to be at least C3 continuous. The C2 continuity of a non-degenerate curve implies
the existence of osculating circle (curvature continuity) and the C3 continuity of such curve
implies that osculating circle or osculating plane changes smoothly (torsion continuity).

The Frenet-Serret formulas represent the first derivatives of vectors T ,ξ1 , N ,ξ1 and B,ξ1

as a linear combination of the Frenet triad as is shown below
T ,ξ1

N ,ξ1

B,ξ1

 =


0 κ 0
−κ 0 τ

0 −τ 0



T

N

B

 . (2)

The Frenet triad continuously moves along the curve. If the Frenet triad is obtained by finite
rotation of the fixed triad {Ei}, we have

Qf = T ⊗E1 +N ⊗E2 +B ⊗E3. (3)

The tensorQf(ξ1) represents the family of orthogonal tensors belonging to the SO(3) rotational
Lie groups. From Eq. (3), the following holds

T ,ξ1 = Qf,ξ1Q
T
f T = κf × T ;

N ,ξ1 = Qf,ξ1Q
T
f N = κf ×N ;

B,ξ1 = Qf,ξ1Q
T
f B = κf ×B.

(4)

For an orthogonal matrix Qf(ξ1), it can be proven that Qf,ξ1Q
T
f is an anti-symmetric matrix.

Therefore, there exists a corresponding axial vector κf such that Eq. (4) holds. The vector
κf = τT + κB is called as the Darboux vector (refer Chapter II of Kreyszig [22]). It can also
be interpreted as a rotation vector of the Frenet triad for a non-degenerate C3 continuous
curve ϕ(ξ1) causing infinitesimal rotation of the triad as we move along the curve. Finally
we present the formula for the frame invariants (κ, τ),

κ(ξ1) =
‖ϕ,ξ1 ×ϕ,ξ1ξ1‖
‖ϕ,ξ1‖3 ;

τ(ξ1) =

〈
(ϕ,ξ1 ×ϕ,ξ1ξ1), (ϕ,ξ1ξ1ξ1)

〉
‖ϕ,ξ1 ×ϕ,ξ1ξ1‖2 .

(5)

Figure 1 illustrates the construction discussed above.
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Figure 1: Frenet-Serret frame

2.2. Relatively parallel adapted frame
As explained in the last section, a curve may be uniquely framed by Frenet triad if it

is non-degenerate and at least C3 continuous. Bishop [10] proposed an alternative curve
framing approach that relaxes the continuity requirement among others. For a curve to be
framed by RPAF, it needs to be at least C2 continuous and regular. We present an argument
that justifies the construction of RPAF.

Let us consider a regular and at least C2 continuous curve. Such a curve guarantees a
non-zero tangent vector. The idea is to device a method to span the plane perpendicular to the
tangent vector (normal plane) such that the two vector fields spanning the normal plane and
the tangent vector forms an orthonormal triad that is continuously varying along the curve.
Therefore, we first define a normal vector field as the vector field that is perpendicular to the
tangent vector T (ξ1) of the curve ϕ(ξ1). Let χ represent set of all the continuous normal vector
field. The aim is to obtain a unique pair of orthonormal vector fields N 1(ξ1),N 2(ξ1) ∈ χ
spanning the normal plane. For the construction of the triad, we assume that the normal
vector fields N 1(ξ1) and N 2(ξ1) are perpendicular to each other. Bishop proposed that the
normal vector fields N 1(ξ1) (or N 2(ξ1)) can be obtained if the total derivative dN i

dξ1
= N i,ξ1

is parallel to the tangent vector field T (ξ1) for i = 1, 2. The uniqueness of this field can be
guaranteed by fixing the normal vectors at a fixed arclength ξ10 such that N i(ξ10) = N i0

(called as generators). Let us call this as the uniqueness criterion and the vector N i0 as the
generator.
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The vector field N i(ξ1) ∈ χ is called as relatively parallel normal field if N i,ξ1 is parallel
to the tangent vector T (ξ1). Theorem 1 in Bishop [10] gives continuity and uniqueness
requirement of relatively parallel normal fields. The frame consisting of the tangent vector
T (ξ1) and two unique relatively parallel orthonormal fields N 1(ξ1),N 2(ξ1) ∈ χ is called as
relatively parallel adapted frame (RPAF). Theorem 2 in Bishop [10] defines the family of
RPAF (we can obtain a unique frame by invoking the uniqueness criterion). If {T ,N 1,N2}
is a RPAF, we have, 

T ,ξ1

N 1,ξ1

N 2,ξ1

 =


0 κ1 κ2

−κ1 0 0
−κ2 0 0



T

N 1

N 2

 . (6)

It is thus clear that if the regular curve ϕ is Cr continuous with r ≥ 2, the tangent
vector is Cr−1 continuous. Using the Eq. (6), this fact implies that the normal fields are Cr−1

continuous (refer Theorem 1 in Bishop [10]). The parameters (κ1, κ2) governs the evolution
of the RPAF and are determined uniquely upto rotation (for properly oriented frame). These
parameters can be determined uniquely by invoking the uniqueness criterion defined above
and are called as the normal development of the curve ϕ. The Darboux vector corresponding
to RPAF is κb = κ1N 2 − κ2N 1.

For a regular non-degenerate and at least C3 curve, the relationship between Frenet
frame and the RPAF can be summarized as (refer Bishop [10]),

κ2 = κ2
1 + κ2

2; (7a)
τ = η,ξ1 ; (7b)

η = arctan κ2

κ1
. (7c)

Here, η represents the angular deviation of the vectors N and B from the vectors N 1 and
N 2 respectively measured in clockwise direction (refer Fig. 2).

Remarks:

Remark 2.2.1: An arbitrary vector field is relatively parallel if its tangential compo-
nent is a constant multiple of the unit tangent field T (ξ1) and its normal component is
relatively parallel in the sense discussed above.

Remark 2.2.2: In differential geometry, there is a notion of parallel-transport, in which, a
geometric object (say a vector) is said to be parallel transported along a curve in a manifold if
its covariant derivative vanishes (refer chapter 2 of Do Carmo [23]). Two parallel-transported
vector fields do preserve length and relative orientation in Riemannian manifold. However,
it must be noted that the relatively parallel vector field, say M(ξ1), is not obtained by
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parallel-transport of the normal vector M(ξ10) = M 10 along the curve. Therefore, in our
opinion, it is inappropriate and misleading to call RPAF as parallel-transport frame.

3. Material frames and finite rotations

3.1. Motivation
In numerous practical applications the idea of curve framing is very useful to model

the geometry of the system. Many a times, the frame is required to be attached to the
system, thus justifying the word “material” in Material frames (MF). The configuration
of such system is defined by a curve and the frame attached to the curve. If the frame
consist of the tangent vector of the curve as one of three orthogonal vectors, it is called
as “adapted” frame. We shall see in a while that there are systems that requires a more
general frame that are attached to the curve but does not contain tangent vector as a part of
the triad (for example, a general director triad). Those are still “material” frames, but not
“material-adapted” frames. Unlike Frenet frame or the RPAF, the orientation of these frames
depends on the parameters defining the configuration of the system under consideration. Let
us explain the idea of “material adapted” frame with some examples.

Consider the non-linear large deformation of a cantilever beam subjected to pure bending
(no shear deformation) and elongation. Such a structure may be modeled by a curve (called
the midcurve, obtained by joining the cross-sectional centroidal loci along the rod) and
the family of Euler-Bernoulli rigid cross-sections. Euler-Bernoulli beam theory assumes
bending as the predominant cause of deformation and ignores shear and other inplane and
out of plane deformations. For such a case, bending guarantees that the cross-sections
of the rod is perpendicular to the tangent vector of the midcurve, or in other words, the
cross-sections lie on the normal plane of the curve at any deformed configuration. Thus, we
need a material-adapted frame to model such a rod (as we shall see later, this frame will be
called as special material adapted frame SMAF). Todd et al. [20] in their first work on shape
reconstruction used SMAF because pure bending curvatures and elongation dominate the
overall contributions to deformation.

Consider a similar rod subjected to torsion along with the bending and elongation. The
cross-sections still lie on the normal plane but they are subjected to rotation about the
tangent vector. Consider another example of a fixed wing airplane that has three degrees of
freedom in rotation. The configuration of an airplane can be modeled by a curve parametrized
by time. The normalized tangent vector of such curve is along the roll axis, whereas the pitch
axis and yaw axis span the normal plane. We call these kind of frames as general material
adapted frame (GMAF). If the roll angle in case of airplane and the torsion deformation in
case of rods vanish, the GMAF reduces to SMAF. In other words, GMAF can be obtained
from SMAF by orthogonal rotation about the tangent vector.
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Finally, consider a general example of rod deformation. Let us subject the rod to shear
deformation along with all the other effects discussed before. Inclusion of shear deformation
relaxes the constraint of the cross-section to lie on the normal plane. Therefore, to model such
a structure, we need a frame that contains a vector perpendicular to the cross-section (need
not be along the tangent vector of the curve) and a pair of orthogonal vectors to span the
cross-section (that need not lie on the normal plane but still is subjected to rigid cross-section
assumption). Chadha and Todd [21],[24] used this framing technique (in this case we used
Cosserat frame) to generalize the theory of shape sensing to include shear deformations and
Poisson’s inplane cross-sectional deformation among other effects. In general, we call this
frame as material frame (MF) and not MAF because the tangent vector is not a part of triad
anymore.

Another interesting application of MF can be realized in the design of a spiral staircase.
If the central column is straight (which is usually the case in practical designs), the tread
falls on the normal plane of the column and the hand rail is perfectly spiral, thus MAF
is apt to describe such a geometry. However, if the central column is slightly deviated or
inclined due to construction requirement, the tread may no longer be on the normal plane and
secondly, the handrail will not be a perfect spiral anymore. We would need MF to address
such geometries.

3.2. Finite rotations: rotation matrix and rotation tensor
In practical applications, the material frames are obtained by finite rotation of the triad

{Ei}. For instance, the Inertial Measurement Unit (IMU) of a dynamic system are always
initially calibrated with respect to some fixed triad, say {Ei}. Before we construct various
material frames, we briefly describe finite rotation of a vector and an orthonormal triad.

3.2.1. Rotation of a vector: Rotation tensor
The rotation tensor belong to a proper orthogonal rotation group SO(3). The SO(3)

manifold is a compact Lie group having skew-symmetric matrix as its Lie algebra, so(3). The
Lie algebra to SO(3) represents its tangent plane at the identity element of SO(3).

Consider a vector V i that is to be rotated to V f by a proper orthogonal tensor Q ∈
SO(3) such that, V f = QV i. The component of the tensor Q represented by the matrix
[Q]Ei⊗Ej

= Qij(Ei ⊗Ej) has three independent entries because QTQ = I3. Therefore, Q
can be parametrized by three parameters or a vector in R3. There are multiple ways for the
parametrization of the rotation tensor. We focus on three of them: the Euler Angles, the
quaternions and the Rodrigues rotation formula. We omit the description of Euler angles
(that deals with sequential rotations) for they are straight forward and common. However,
we briefly describe the quaternion approach and Rodrigues rotation formula.
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3.2.1.1 Rodrigues rotation formula

We first describe Rodrigues rotation approach for finite rotations. The vector V f can be
obtained by rotation of the vector V i about the unit vector nθ = nθiEi by an angle θ. This
enables us to parametrize the rotation tensor Q by means of a vector θ = θnθ, such that
V f = Q(θ)V i. By Rodrigues formula,

V f = [V i + nθ × nθ × V i] + [nθ × V i] sin θ − [nθ × nθ × V i] cos θ. (8)

If Θ ∈ so(3) represents the spin matrix with the corresponding axial vector θ = θ(nθiEi) =
θiEi, we have,

Θ(θ) = θ


0 −nθ3 nθ2
nθ3 0 −nθ1
−nθ2 nθ1 0

 . (9)

We state a useful property associated with Eq.(9) as

θ2 = 〈θ,θ〉 = 1
2Θ : Θ = 1

2Tr(Θ
2). (10)

Noting that nθ × V i =
(

1
θ

)
Θ(θ)V i and using the MacLaurin expansion of sin θ and cos θ

(refer Eq. (29) in Argyris [25]), we get

Q(θ) = I3 + sin θ
θ

Θ + (1− cos θ)
θ2 Θ2 =

n∑
i=0

Θi

i! = eΘ; (11a)

QT (θ) = I3 −
sin θ
θ

Θ + (1− cos θ)
θ2 Θ2 = e−Θ. (11b)

Here, Θ0 = I3. Subtracting Eq. (11b) from (11a), we obtain the associated skew-symmetric
matrix Θ as

Θ = θ

2 sin θ (Q−QT ). (12)

Taking trace of Q in Eq. (11a) and using the result in Eq. (10), we get another important
relation:

cos θ = Tr(Q)− 1
2 . (13)

It is a known fact that the exponential map is a homeomorphism in the neighborhood of
Identity element I3 ∈ SO(3) such that θ ∈ [0, π). That implies the existence of an inverse of
exponential map (the logarithm) in the neighborhood of I3 such that

log (Q(θ)) = log(eΘ) = Θ ∈ so(3). (14)
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Using the above result along with Eq. (12) and (13), we get

log (Q(θ)) = θ

2 sin θ (Q−QT ). (15)

We define the norm of logarithm map as the Euclidean norm of the associated rotation vector,
such that

‖log (Q(θ)) ‖ = θ =
√

1
2Tr(Θ

2). (16)

Section 3.2.2 discusses local homeomorphism of exponential maps.

3.2.1.2 Unit quaternions

Another approach to capture finite rotations is by using unit quaternions. In general, a
quaternion is a 4-tuple q = q0 + q1i+ q2j + q3k, where qi ∈ R, such that,

i2 = j2 = k2 = ijk = −1;
ij = k, ji = −k;
jk = i, kj = −i;
ki = j, ik = −j.

(17)

The first of the equations mentioned above has a special significance in the history of
mathematics (refer to [26]). The relationship between a complex number and plane geometry
inspired William Rowan Hamilton to find a higher dimensional number that can be associated
with 3D geometry. Hamilton realized need of 4-tuple (not a triplet) to establish a 4D algebra
that can be related to 3D geometry, that he called quaternions.

The multiplication between two quaternion (called Hamilton product) can be carried
in a way similar to the complex numbers using the properties in Eq. (17). Unlike complex
numbers, the multiplication of quaternion is non-commutative. The conjugate, norm and
inverse of a quaternion are defined as

conjugate : q∗ = q0 − q1i− q2j − q3k;

norm : ‖q‖ =
√
qq∗ =

√
q2

0 + q2
1 + q2

2 + q2
3;

inverse : q−1 = q∗

‖q‖2 .

(18)

To establish the relationship between a quaternion and 3D geometry, Hamilton suggested
considering quaternion to be consisting of a scalar and a vector (the terms that he proposed),
such that q = (q0, q). For two quaternion q = (q0, q) and a = (a0,a), the quaternion sum,
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Hamilton product, conjugate and norm is then given by:

q + a = (q0 + a0, q + a);
qa = (q0a0 − 〈q,a〉 , q0a+ a0q + q × a);
q∗ = (q0,−q);

‖q‖ =
√
q2

0 + 〈q, q〉.

(19)

We can consider a vector V i as a pure quaternion Vinitial = (0,V i). A unit quaternion
qu = (q0, q) with ‖qu‖ = 1 can be used to rotate vector V i to V f (with the associated pure
quaternion Vfinal = (0,V f)), such that

Vfinal = quVinitialq
∗
u = (0,Q(qu)V i);

V f = Q(qu)V i.
(20)

The rotation tensor Q can be parametrized by a unit quaternion qu. If V i = VijEj and
q = qiEi, then using Eq. (20), we get

[Q(qu)]Ei⊗Ej
= 2


q2

0 + q2
1 − 0.5 q1q2 − q0q3 q0q2 + q1q3

q0q3 + q1q2 q2
0 + q2

2 − 0.5 q2q3 − q0q1

q1q3 − q0q2 q0q1 + q2q3 q2
0 + q2

3 − 0.5

 . (21)

We can parametrize the unit quaternion using the rotation vector θ. Notice from Eq. (21)
that the Tr (Q(qu)) = 4q2

0 − 1. A trace being an invariant of a tensor implies (from Eq.(13))
that

4q2
0 − 1 = 2 cos θ + 1;

q0 =
√

cos θ + 1
2 .

(22)

Thus, there exist two possible and equivalent qu leading towards same rotation. The qu with
q0 > 0 implies 0 < θ ≤ π about the axis nθ and the one with q0 < 0 represents rotation about
the axis −nθ with the magnitude 2π − θ, representing same rotation. We call this property
as the equivalence of the unit quaternion and its negative or double cover.

Lets consider q0 = cos
(
θ
2

)
. The unity quaternion constraint implies

qu(θ) =
(

cos
(
θ

2

)
, sin

(
θ

2

)
nθ

)
. (23)

This representation, sometimes called as rotation vector representation, satisfies the unit
quaternion constraint and is same as the Rodrigues rotation.

The equivalence of the unit quaternion and its negative in representing rotation was
exploited by Klumpp [27] to extract the quaternion from the component of rotation tensor
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without any singularity. Spurrier [28] recognized the Klumpp’s algorithm to be sensitive to
numerical imprecision and proposed a modified algorithm, now popularly known as Spurrier’s
algorithm.

The primary disadvantage of representing the rotation using Euler angle formulation is
its dependence on the sequence of angles considered and singularities arising due to gimbal
lock. Unit quaternion approach completely gets rid of this singularity but is subjected to
the unit quaternion constraint. There is plenty of excellent literature to which one may refer
for further understanding of rotations (for example, [25], [29], [30] and [31]). The work by
Diebel [31] serves as an excellent resource that describes all these approaches and establishes
relationships to obtain one form from the other.

3.2.2. On many-to-one nature and local homeomorphism of expo-
nential map

As discussed in section 3.2.1, the exponential map is a mapping from Lie algebra so(3) to
Lie group SO(3). However, the exponential map is not bijective. For a given Θ ∈ so(3), there
is a unique Q(θ) = eΘ ∈ SO(3) (thus surjective), however, for a given Q(θ) = eΘ ∈ SO(3),
there are many possible Θ ∈ so(3) (hence not injective). For example for θ1 = θnθ and
θ2 = (θ+ 2nπ)nθ with n being an integer, Q(θ1) = Q(θ2). However, if we restrict θ ∈ [0, π),
we obtain a local homeomorphism in the exponential map as explained below.

Let us start our discussion by restricting θ ∈ [−π, π). For this case every rotation tensor
identifies a unit vector as ±nθ (unique up to a multiple of ±1) except at θ = −π, in which
case nθ is unique. Thus, the rotation angle and unit vector combination (θ,nθ) and (−θ,−nθ)
defines same rotation vector. This fact looks trivial because θ = θnθ, however it forbids us
to uniquely define a unit rotation vector nθ.

To uniquely define the unit rotation vector nθ, we restrict θ to positive value θ ∈ [0, π).
At θ = 0, the unit vector nθ can be any arbitrary vector but θ = 0 and the corresponding
rotation tensor is Q = I3. At θ = π, there are two possible unit vectors ±nθ (thus the map
is not homeomorphic for θ = π). Thus the exponential map is local homeomorphism in the
neighborhood of I3 such that θ ∈ [0, π).

From equation (13), Tr(Q) = −1 at θ = π. Therefore, the logarithm map is a well-defined
continuous map if Tr(Q) 6= −1 and θ ∈ [0, π). Equation (15) can be used to obtain logarithm
of rotation tensor (the associates spin matrix), however, as θ approaches 0 and π radians,
Eq (15) becomes unstable as sin θ vanishes. Spurrier’s algorithm [28] can be used to extract
the quaternions and the associated rotation vector. Spurrier’s algorithm gives θ ∈ [0, π] and
restricts quaternion component q0 ≥ 0. However, at q0 = 0 or equivalently θ = π, there are
two possible unit vectors. The quaternions are related to the rotation vector θ = θnθ by the
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following relationships:

θ = 2 arcsin
(√

q2
1 + q2

2 + q2
3

)
= 2 arccos(q0);

nθi = qi√
q2

1 + q2
2 + q2

3

.
(24)

3.2.3. Rotation of a triad: Rotation matrix
The entity Q discussed in previous section, transforms one vector to another. Therefore,

it is a tensor. However, consider a properly orthonormal triad {di} such that di = QEi.
We can then obtain direction cosine matrix R such that, [d1,d2,d3]T = R.[E1,E2,E3]T .
The component of matrix Rij = 〈di,Ej〉 = Qji. Here, Qji represents Ej ⊗Ei component of
the rotation tensor Q. It can be observed that R = [Q]TEi⊗Ej

. Notice that R is a matrix
whereas Q is a tensor.

3.3. Construction of MAF and MF
In this section, we construct these frames by carrying finite rotations of the fixed

orthogonal triad {Ei} using Euler angle approach. We use the following notations: cos θ = cθ
and sin θ = sθ, for any angle θ.

3.3.1. Special material adapted frame: SMAF
Consider a regular and at least C2 continuous curve ϕ(ξ1). Let Qs ∈ SO(3) be the

rotation tensor that generates SMAF consisting of orthonormal triad {T ,Y s,P s}, such that
〈P s,E2〉 = 0. This can be obtained by first rotating the frame {Ei} about E2 by an angle
φy (yaw angle) and then rotating about the updated E3 by an angle φp (pitch angle). Thus
if, Qs = T ⊗E1 + Y s ⊗E2 + P s ⊗E3, then,


T

Y s

P s

 =

[Qs]TEi⊗Ej︷ ︸︸ ︷
cφpcφy sφp −cφpsφy

−sφpcφy cφp sφpsφy

sφy 0 cφy



E1

E2

E3

 . (25)

Here, Y s and P s represent the yaw axis and pitch axis.

The fact that 〈P s(ξ1),E2〉 = 0 or P s(ξ1) lies in (E1 − E3) plane is advantageous in
practical standpoint. This is because P s(ξ1) acts as a reference vector in the normal plane
with respect to which, the torsion angle or the roll angle and the shear angles can be defined
to obtain GMAF and MF. Note that we can define another special case in which only one
angle is non-zero (either pitch or yaw angle). But that would define a curve in 2D plane,
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hence not desirable for spatial curves.

3.3.2. General material adapted frame: GMAF
Rotating SMAF about the tangent vector by an angle φr (roll angle) gives us GMAF

consisting of orthonormal triad {T ,Y g,P g}, obtained by finite rotation of {Ei} by the
rotation tensor Qg, such that Qg = T ⊗E1 + Y g ⊗E2 + P g ⊗E3. Thus,


T

Y g

P g

 =

[Qg]TEi⊗Ej︷ ︸︸ ︷
cφpcφy sφp −cφpsφy

−cφrcφysφp + sφrsφy cφpcφr cφysφr + cφrsφpsφy

cφysφpsφr + cφrsφy −cφpsφr cφrcφy − sφpsφrsφy



E1

E2

E3

 . (26)

This sequence of rotations falls under Tiat-Bryan intrinsic rotation with the sequence yaw
first, pitch second and roll third.

3.3.3. Material frames: MF
As discussed in section 3.1, we might encounter a situation in which the plane of interest

need not be normal to the curve. Consider a general orthogonal triad {di} such that the
vector d1 is not along the tangent vector of the curve T and the vectors {d2 − d3} spans a
plane normal to d1. For instance, a cross-section of a beam subjected to shear is not normal
to the tangent vector or a rigid swarm of drones need not be perpendicular to the direction
of motion. In such instances, MF are desirable.

Consider a general orthonormal frame {di} with its origin at some point on the curve.
It can be obtained from finite rotation of the frame {Ei} such that di = QmEi or from any
other triad, say SMAF using the rotation tensor Qms such that,

Qm =
3∑
i=1
di ⊗Ei;

Qms = d1 ⊗ T + d2 ⊗ Y s + d3 ⊗ P s;
Qm = QmsQs.

(27)

4. Curvature of an evolving frame

4.1. Curvatures of a general material frame
Let us consider the material frame {di}. The frame is a function of the quantity

parameterizing the curve under consideration. The choice of parameter is problem-dependent.
For instance, the frame attached to a UAV is evolving with time. Similarly, a frame
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representing the orientation of a cross-section of a beam varies along the arclength of the
deformed beam or the frame attached at a fixed cross-section of a cable changes with time
when the cable undergoes dynamic deformation. The change of directors with respect to
the parameter gives local information about deviation of the configuration of system at a
point. For instance, the curvature κ of Frenet frame gives the deviation of the curve from its
tangent vector at the given arclength.

The derivative of the director triad {di} with respect to the arclength parameter ξ1 is
obtained using the Eq. (27) as

di,ξ1 = Qm,ξ1Ei = Qm,ξ1Q
T
mdi = Kdi = κ× di. (28)

SinceQm ∈ SO(3), it can be proved thatK = Qm,ξ1Q
T
m is anti-symmetric with corresponding

axial vector κ. Here, κ = κiEi = κidi, represents the Darboux vector of the frame when
parameterized by the arclength ξ1. Note that the overline on the components κi represents
the component of the Darboux vector in the MF. In matrix form,


d1,ξ1

d2,ξ1

d3,ξ1

 =

KT︷ ︸︸ ︷
0 κ3 −κ2

−κ3 0 κ1

κ2 −κ1 0



d1

d2

d3

 . (29)

4.1.1. Curvature terms of Frenet frame
The fact that the tangent vector T (ξ1) depends on the pitch φp and yaw angle φy, enables

us to represent the Frenet frame in terms of these functions. With the rotation about E2 first
followed by the rotation about the updated E3, and using the results discussed in section 2.1,
the following results can be obtained

ϕ(ξ1) = ϕ(0) +
∫ ξ1

0
T (s)ds; (30a)

κ =
√
φ2
p,ξ1 + φ2

y,ξ1c
2
φp

; (30b)

τ =
( 1
κ2

) (
φy,ξ1

(
2sφpφ

2
p,ξ1 + cφp(cφpsφpφ

2
y,ξ1 + φp,ξ1ξ1)

)
− cφpφp,ξ1φy,ξ1ξ1

)
; (30c)

[Qf]TEi⊗Ej
=
(1
κ

)
κcφpcφy κsφp −κcφpsφy

−cφysφpφp,ξ1 − cφpsφyφy,ξ1 cφpφp,ξ1 sφpsφyφp,ξ1 − cφpcφyφy,ξ1

sφyφp,ξ1 − cφpcφysφpφy,ξ1 c2
φp
φy,ξ1 cφyφp,ξ1 + cφpsφpsφyφy,ξ1

 . (30d)
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4.1.2. Curvature terms of SMAF and GMAF
From Eq. (25) and (28), we arrive at the Darboux vector for the SMAF κs = κs1T +

κs2Y s + κs3P s such that,

κs1 = φy,ξ1sφp ; κs2 = φy,ξ1cφp ; κs3 = φp,ξ1 . (31a)
〈κs,κs〉 = φ2

p,ξ1 + φ2
y,ξ1 ; (31b)

κ2 = κ2
s2 + κ2

s3. (31c)

Similarly, from Eq. (26) and (29), we arrive at the Darboux vector for the GMAF,
κg = κg1T + κg2Y g + κg3P g such that,

κg1 = φr,ξ1 + φy,ξ1sφp = φr,ξ1 + κs1; (32a)
κg2 = φy,ξ1cφpcφr + sφrφp,ξ1 = κs2cφr + κs3sφr ; (32b)
κg3 = cφrφp,ξ1 − cφpsφrφy,ξ1 = −κs2sφr + κs3cφr ; (32c)
〈κg,κg〉 = (φ2

p,ξ1 + φ2
y,ξ1 + φ2

r,ξ1) + 2sφpφr,ξ1φy,ξ1 . (32d)

It is interesting to note from above relations that
κg1

κg2

κg3

 =


1 0 0
0 cφr sφr

0 −sφr cφr



κs1
κs2
κs3

+


φr,ξ1

0
0

 . (33)

The curvatures in terms of quaternions and Rodrigues parameters are presented in the
Appendix 8.1.

4.2. RPAF and Frenet frame as GMAF
The RPAF can be considered as GMAF with φr = ρb representing the rotation of the

normal vectors N 1 and N 2 from the vector Y s and P s respectively, in a constrained fashion.
It is clear from Eq. (6) and (29) that the constraint over RPAF is κg3 = 0. With this
constraint in mind, we can obtain the roll angle field ρb(ξ1) for the RPAF by using Eq. (32a).
We have

ρb(ξ1) = ρb(0)−
∫ ξ1

0
κs1(k)dk. (34)

Fixing the value of ρb(0) provides uniqueness to the RPAF. From Eq. (32b) and (32c), we
can arrive at the expression of the normal development (or curvatures) of RPAF in terms of
the Euler angles associated with the GMAF as

κ1 = −κg2|(φr=ρb) = −κs3sρb − κs2cρb ; (35a)
κ2 = κg3|(φr=ρb) = κs3cρb + κs2sρb . (35b)
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Substituting for κ1 and κ2 from the results obtained in Eq. (35a) and (35b) into the Eq.
(7a) yields the result in Eq. (31c). Using equations (35a) and (35b) along with the result in
(7c), we arrive at an important relationship between the angle ρb and η, thus enabling us to
express Frenet frame as a GMAF (refer Fig. 2).

tan ρb = −
(
κs2 + κs3 tan η
κs3 + κs2 tan η

)
. (36)

We can independently arrive at the angle (φr = ρf) subtended by the vectors N and B with
Y s and P s respectively by imposing a constraint κg2 = 0 on GMAF such that,

tan ρf = −κs2
κs3

= tan (η + ρb). (37)

We note that the results obtained in Eq. (36) and (37) are consistent.

Figure 2: Orientation of various adapted frames in the normal plane

Figure 3 shows a curve with the point of inflection marked by a dot, the red vectors
representing the tangent vector field and the circles representing the normal plane to the
curve. In Fig. 3a, the solid green and blue arrows represent Y s and P s field, whereas the
dotted green and blue vectors stand for N 1 and N 2 respectively. Similarly, the green and
blue vectors in Fig. 3b show N and B respectively. Figure 3a and 3b shows that the SMAF
and RPAF (obtained using Eq. (34) and setting ρb(0) = 0) are continuous whereas the Frenet
frame is not uniquely defined at the point of inflection and the normal vector (binormal
vector as well) abruptly changes its orientations at the inflection point.
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(a) SMAF and RPAF (dashed arrows) (b) Frenet frame
Figure 3: Example of a curve with point of inflection (marked by black dot) and the SMAF, RPAF

and Frenet frames

4.3. Linear and angular velocity
A regular Cr continuous curve ϕ(ξ1) parametrized by the arclength ξ1 can be re-

parametrized by another variable t (say time) such that ξ1 = ξ1(t) is at least C1 continuous
and dξ1

dt 6= 0. We define linear velocity of the curve as,

ϕ,t = ∂ϕ

∂t
= ∂ϕ

∂ξ1

dξ1

dt = dξ1

dt T = v(t)T ;

ϕ,t = vidi = v(t)(tidi).
(38)

The scalar v(t) = dξ1
dt =

√
v2

1 + v2
2 + v2

3 gives the magnitude of linear velocity vector at time
t. The angular velocity vector ω is related to the evolution of the frame when the curve is
parametrized by time.

Let us consider the derivative of the director triad {di(t)} with respect to time t. From
Eq. (27), we have,

di,t = Qm,tEi = Qm,tQ
T
mdi = W (t)di = ω(t)× di(t). (39)

The fact that K = Qm,ξ1Q
T
m implies thatW (t) = v(t)K(ξ1(t)) or ω(t) = v(t)κ(ξ1(t)). Thus,


d1,t

d2,t

d3,t

 = v(t)


0 κ3(ξ1(t)) −κ2(ξ1(t))

−κ3(ξ1(t)) 0 κ1(ξ1(t))
κ2(ξ1(t)) −κ1(ξ1(t)) 0



d1

d2

d3

 =


0 ω3(t) −ω2(t)

−ω3(t) 0 ω1(t)
ω2(t) −ω1(t) 0



d1

d2

d3

 .
(40)

Note that ω = ωidi = ωiEi such that [ω1, ω2, ω3]T = [Qm]Ei⊗Ej
.[ω1, ω2, ω3]T .

The results presented so far describes the construction of various frames, their curvatures
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and their relationship to each other. These results will be used to develop algorithm to
estimate a smooth framed curve from limited set of curvature data.

5. Estimating the global state space of single-manifold
characterized system using limited number of material

curvature and velocity data

5.1. configuration and state space of single-manifold charac-
terized systems

5.1.1. Tangent space and tangent bundle of the configuration space
Consider a rigid body, the configuration of which is defined by a space curve ϕ and the

vector triad field {di} that defines the orientation of the rigid body under motion. Thus, the
configuration space C := R3 × SO(3) ≡ SE(3) defines such systems and is parametrized by a
single-parameter (time in case of rigid body motion). Here SE(3) is the special Euclidean
group, that defines rigid body motion. Thus,

Φ(t) :=
{

(ϕ(t),Q(t)) | ϕ : R+ −→ R3, Q : R+ −→ SO(3)
}
⊂ C. (41)

In the equation above, R+ represents set of non-negative real number. If ξ1(t) ∈ R+ represents
the total distance travel at time t ∈ R+, the linear velocity is defined as ξ1,t = v(t).

Consider the curve parametrized by the arclength ξ1. For any Φ(ξ1) ∈ C, we define the
tangent space TΦC as,

TΦC :=
{(
ϕ,ξ1 ,Q,ξ1

)
| ϕ,ξ1 : R+ −→ R3, Q,ξ1 = KQ : R+ −→ TQSO(3)

}
. (42)

Here, TQSO(3) refers to the tangent plane of the non-linear manifold SO(3) at Q such that
Q,ξ1 ∈ TQSO(3). We recall that K = Q,ξ1Q

T is an antisymmetric matrix with the axial
vector κ(ξ1). If the rotation tensor Q is parametrized by the rotation vector θ = θnθ as
shown in the section 3.2, then using Eq.(11a) the following relationship is obtained

K =
(

sin θ
θ

)
Θ,ξ1 +

(
1− cos θ

θ2

)
(ΘΘ,ξ1 −Θ,ξ1Θ) +

(
θ − sin θ

θ3

)
〈θ,θ,ξ1〉Θ. (43)

In the equation above, (ΘΘ,ξ1 −Θ,ξ1Θ) := [Θ,Θ,ξ1 ] is the Lie bracket of two anti-symmetric
matrices. The action of the Lie bracket on any vector p ∈ R3 is given by: [Θ,Θ,ξ1 ]p =
(θ× θ,ξ1)× p. Using Eq.(43) and the definition of Lie bracket, we obtain the corresponding
axial vector (the curvature vector) as
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κ = T θθ,ξ1 ;
θ,ξ1 = T−1

θ κ;

T θ = sin θ
θ
I3 + 1− cos θ

θ2 Θ +
θ − sin θ

θ3

θ⊗ θ;

T−1
θ = 1

2
θ

tan θ
2
I3 −

1
2Θ + 1

θ2

1− 1
2

θ

tan θ
2

θ⊗ θ.

(44)

Refer to Ibrahimbegovic [29] for the derivation of T−1
θ . In the above equations Θ and Θ,ξ1

represents the spin matrix associated with the vector θ and θ,ξ1 respectively.

Therefore, with slight abuse of notation, we define an abused but equivalent tangent
space as,

TΦC ≡
{
Φ̃ =

(
ϕ,ξ1 ,κ

)
| ϕ,ξ1 : R+ −→ R3, κ : R+ −→ R3

}
⊂ R3 × R3. (45)

A one-to-one correspondence between R3 and so(3) justifies this abuse of notation. The state
space of the problem is defined by the tangent bundle TC of the configuration space C defined
as,

TC :=
{(

Φ, Φ̃
)
| Φ ∈ C, Φ̃ ∈ TΦC

}
. (46)

From Eq. (45) and (46) it is clear that the state space is defined by the set
(
ϕ, {di},ϕ,ξ1 ,κ

)
.

5.1.2. Material and spatial representation of curvature (or equiv-
alently angular velocity and the associated spin tensor)

We define the quantityK = QTKQ ∈ TI3SO(3) := so(3) obtained by parallel transport
of KQ from TQSO(3) −→ so(3). Here, I3 = Ei ⊗Ei represents the rotation tensor with
respect to which the motion is calibrated and is usually taken as identity.

Thus, if Q = di⊗di, such that di = QEi, then Q represents the finite rotation, whereas
K represents an infinitesimal rotation with respect to the calibrating frame of reference
{Ei}. Whereas, QK = KQ represents infinitesimal rotation with respect to {di} frame. In
the physical context of rotation, the tangent vector QK and KQ performs an infinitesimal
rotation with respect to {di} frame but the quantity QK is obtained by left translation of
the quantity K ∈ so(3) to QK ∈ TQSO(3), whereas, KQ represents the superimposition of
infinitesimal rotation contributed by K onto the finite rotation contributed by Q (this is also
called as right translation of K ∈ so(3) to the tangent vector KQ ∈ TQSO(3)). The former
kind of tangent vector fields are known as left-invariant and the later as right-invariant fields.
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We also observe that,

[K]di⊗dj
=
[
K
]
Ei⊗Ej

=


0 −κ3 κ2

κ3 0 −κ1

−κ2 κ1 0

 (47)

Let κ and κ represent the axial vector corresponding to the anti-symmetric matrix K and
K respectively. It can then be proved that κ = QTκ such that if κ = κidi, then κ = κiEi.
As in continuum mechanics, we call the quantities K and κ as material representation; and
K and κ are the spatial representation of the curvature tensor and the curvature vector
respectively. Figure 4 and the figure 5 provide a physical and geometric interpretation of the
discussions carried out in this section.

Similar to the curvature tensor, we summarize following relationship associated with the
angular velocity vector ω and the associated spin tensor W .

W = −εijkωk(di ⊗ dj);
W = QTWQ = −εijkωk(Ei ⊗Ej);

[W ]di⊗dj
=
[
W
]
Ei⊗Ej

;

WQ ∈ TQSO(3) and W ∈ so(3);
ω = QTω.

(48)

Figure 4: Finite and infinitesimal rotations and the flowchart of various transformations
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Figure 5: Geometric representation of the finite and infinitesimal rotations, curvature tensor
K and the projection from the tangent plane TQSO(3) to the manifold SO(3) using
exponential map

5.2. Estimating global framed curve from limited material
curvature and velocity data

We motivate the problem statement by a real life example. Consider a moving rigid
body with midcurve and director triad parametrized with time. From section 4.3, the system
is governed by the following set of differential equations

ϕ,t
d1,t

d2,t

d3,t

 = v(t)


0 t1 t2 t3
0 0 κ3 −κ2

0 −κ3 0 κ1

0 κ2 −κ1 0




ϕ

d1

d2

d3

 =


0 v1 v2 v3

0 0 ω3 −ω2

0 −ω3 0 ω1

0 ω2 −ω1 0




ϕ

d1

d2

d3

 (49)

In this section, we attempt to obtain estimated state space from discrete linear velocity
(equivalently axial strain in case of beams) and angular velocity (or equivalently Darboux or
curvature vector in case of beams). This would involve integrating equation 49. We assume the
initial condition at t = 0 as ϕ(0) = 0 and di(0) = di0 = Ei . There is no loss of generality in
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considering the initial condition di0 as our reference frame. We assume that we have the data
for linear and angular velocity expressed in {di} frame at time steps tn such that v(tn) = vn,
ω(tn) = ωn (with W n being corresponding material spin matrix) and n = 1, 2, 3, ..., N . The
frame {di} is to be approximated using Eq. (49). However, knowing the component of spatial
quantity in current frame {di} naturally gives the associated material quantity as is clear in
Eq. (47) and (48). This is the key observation that is exploited to develop the estimation
algorithm discussed in the upcoming section.

The idea is to approximate the material linear and angular velocity (recall R3 and so(3)
are linear spaces). We use these interpolated quantity to estimate our state space. From
here on, the component of any material quantity will be expressed in {Ei} frame. Thus, for
simplicity, we write

[
W
]
Ei⊗Ej

= W .

5.2.1. Smooth patch estimation and gluing technique (SPEG)
In this approach, we discretized the total time span into N patches (n = 1, 2, ..., N) or

segments with center of the segment n being at tn (except for the first and last segment). We
consider the co-rotated derivatives of linear velocity and the angular velocity to vanish for
each patch. Equivalently, we truncate the Taylor series expansion of the velocity fields about
tn to zeroth order, thereby reducing the system of differential equations (49) into a constant-
coefficient system such that the solution of the differential equation gives an approximated
configuration Φh

n = (ϕhn,Qh
n) ≡ (ϕhn, {dhin}) ∈ C valid in the patch n. Therefore, N segments

would involve solving for 12N constants of integration. Imposing continuity in the (ϕ, {di})
fields at the boundary between the segments gives 12(N − 1) constraints, and an appropriate
boundary condition gives the additional 12 conditions.We obtain a solution for nth segment
as

ϕhn(t) = An1 +An2t+An3 sinωnt+An4 cosωnt;
dhin(t) = Bni1 +Bni2t+Bni3 sinωnt+Bni4 cosωnt.

(50)

In the above equation ωn = ‖ωn‖. Equation (50) yields a helix (which is smooth). This is
commensurate with Mozzi–Chasles’s theorem, the equivalent statement of which for this case
would be: ‘the motion of a rigid body with the co-rotational derivative of linear and angular
velocity vanishing, is a screw (or helix) motion’.

We glue the solution of each patch using heavy side function (as shown in (51)) such
that the global approximated configuration Φh = (ϕh, {dhi }) ∈ C is continuous at the point
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of gluing, thus justifying the name smooth patch estimation and gluing technique (SPEG).

ϕh(t) =
N∑
n=1
ϕhn(t)

[
H(t− t̂n−1)−H(t− t̂n)

]
;

dhi (t) =
N∑
n=1
dhin(t)

[
H(t− t̂n−1)−H(t− t̂n)

]
.

(51)

In the equation above H(.) represents Heaviside function and t̂n represents the right boundary
of nth segment (such that t̂n−1 < t̂n), with t̂0 = 0. Appendix 8.2 details the vector coefficients
in equation (50). Interestingly, a closed form solution of the director triads can be arrived
without solving the differential Eq. (49), by using our understanding of SO(3) manifold as
discussed in section 5.1.2.

To carry out the discussion further, let Qh(t) ∈ SO(3) represent the approximated
rotation tensor with respect to I3 = Ei ⊗Ei = d0i ⊗ d0i. For the first segment n = 1, the
approximated director dhi(n=1) = dhi1 is obtained by rotating the prescribed boundary di0 = Ei

by an angle
∫ t

0 ω1dt = ω1t (with t̂0 ≤ t ≤ t̂1) about the unit vector ω1
ω1

such that,

dhi1(t) = eW 1tdi0 = Qh
1(t)di0 with t̂0 ≤ t < t̂1. (52)

The director triad at the right end of patch 1 becomes the boundary for the patch n = 2.
For patch 2 with t̂1 ≤ t ≤ t̂2 the approximate director triad dhi2(t) can be obtained by
rotating dhi1(t̂1) (obtained in Eq. (52)). However, W 2 ∈ TI3SO(3) is a material tensor
whose corresponding spatial counterpart associated with TQh

1 (t̂1)SO(3) is given by W h
2 =

Qh
1(t̂1)W 2Q

hT

1 (t̂1) such that W h
2Q

h
1(t̂1) ∈ TQh

1 (t̂1)SO(3). We observe that W h
2Q

h
1(t̂1) is a

right translated vector field. Similarly we can obtain left-translated vector field asQh
1(t̂1)W 2 ∈

TQh
1 (t̂1)SO(3). Equation (53a) and (53b) gives the approximated director field for patch 2 by

using right invariant and left invariant vector fields, respectively.

dhi2(t) = eW
h
2 .(t−t̂1)dhi1(t̂1) = eW

h
2 .(t−t̂1)Qh

1(t̂1)di0 = Qh
2(t)di0 with t̂1 ≤ t ≤ t̂2; (53a)

dhi2(t) = Qh
1(t̂1)eW 2.(t−t̂1)di0 with t̂1 ≤ t ≤ t̂2. (53b)

Similarly for the third patch with W h
3 = Qh

2(t̂2)W 3Q
hT

2 (t̂2), we have,

dhi3(t) = eW
h
3 .(t−t̂2)Qh

2(t̂2)di0 = Qh
3(t)di0 with t̂2 ≤ t ≤ t̂3; (54a)

dhi3(t) = Qh
2(t̂2)eW 3.(t−t̂2)di0 with t̂2 ≤ t ≤ t̂3. (54b)

Along similar lines of reasoning, the solution for nth patch is given by

dhin(t) = Qh
n(t)di0. (55)
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where

Using right invariant vector field : Qh
n(t) = eW

h
n.(t−t̂n−1)Qh

n−1(t̂n−1) with t̂n−1 ≤ t ≤ t̂n;
(56a)

Using left invariant vector field : Qh
n(t) = Qh

n−1(t̂n−1)eWn.(t−t̂n−1) with t̂n−1 ≤ t ≤ t̂n.

(56b)

The spatial curvature tensorW h
n in Eq. (56a) is given below. Note thatW h

n is not a function
of time for a given patch n and unlike the material tensor W n, the spatial curvature tensor
is an approximated quantity.

W h
n = Qh

n−1(t̂n−1)W nQ
hT

n−1(t̂n−1). (57)

The global approximated rotation tensor is then given by,

Qh(t) =
N∑
n=1
Qh
n(t)

[
H(t− t̂n−1)−H(t− t̂n)

]
. (58)

From Eq. (49) and (56b), the approximated position vector for patch n is obtained as,

ϕhn(t) =
[∫ t

t̂n−1

eWntdt
]
.vn +

n−1∑
k=1

[∫ t̂k

t̂k−1
eW ktdt

]
.vk. (59)

Figure 6 gives geometric interpretation of the discussion so far.

Figure 6: Geometric representation of SPEG
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Remarks: This approach has following noteworthy geometric interpretations:

Remark 5.2.1.1: Consider the nth patch where the approximated configuration Φh
n is

parametrized by t ∈ [tn−1, tn]. The co-rotated derivative of angular velocity being zero implies
that the angular velocity is parallel-transported along a curve Qh

n(t) on the manifold SO(3)
such that the approximated angular velocity ωhn at time t is given as,

ωhn(t) = Qh
n(t)ωn = Qh

n(t)QhT

n (t̂n)ωhn. (60)

The vector ωhn is the associated axial vector for the spatial tensor W h
n. From the equation

above and Eq. (57), we observe that the spatial angular velocity ωhn = Qh
n(tn)ωn and

the associated spin tensor W h
n are approximate quantities. Its interesting to observe that

‖ωhn‖ = ‖ωn‖ = ωn.

Remark 5.2.1.2: The solution obtained above is free of singularity (unlike Frenet frame).
If the angular velocity measurement for the nth patch is zero (implying point of inflection),
we have the solution of the form,

lim
ωn→0

ϕhn(t) = (Cni4 + t(Cnijvnj))Ei; (61a)

lim
ωn→0

dhin(t) = CnjiEj = dhi(n−1)(t̂n−1). (61b)

Solution of the form above suggests a local linear solution for the approximated position
vector and a constant solution for the approximated director triads. However, if vn = 0 and
ωn = 0, the approximated local solution is a point (the object is stationary) with a fixed
director triad given by Eq. (61b) and the position vector reduces to,

lim
vn→0
ωn→0

ϕhn(t) = Cni4Ei = ϕhn−1(t̂n−1). (62)

Similarly, the limiting case of solution with vn = 0 represents a rotating rigid body with
no translation. In case where vn 6= 0 and ωn 6= 0, the solution represented by Eq. (50) is
a helix. Thus, if the moving object follows a helix exactly with constant speed, we need
only one data point along with the prescribed boundary condition to give exact state space
(provided there is no noise in the data). Lastly, the accuracy of global solution depends on
the nature of data. If the data is representative of the local configuration of a patch, a good
approximation is obtained.
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5.2.2. Other higher order approximation techniques
In the SPEG technique discussed above, the approximated linear and angular velocity

fields were C−1 continuous. The advantage of the SPEG technique lies in the existence
of a closed-form solution, making it a desirable approach provided the linear and angular
velocity data (or equivalently, strain and curvature data in case of shape sensing of rods) does
not vary too much along the patch. Todd et al. [20] and Chadha and Todd [21], [24] used
SPEG to develop shape reconstruction of rods and observed that a fairly accurate solution is
obtained in such case. However, if the system is more dynamic (like a UAV), a higher order
approximation of linear and angular velocity field is desirable. We can approximate these
fields using Lagrangian Polynomial, cubic splines, Hermite polynomial interpolation, and
moving least square (MLS), to name a few.

Note that the data for linear and angular velocity are obtained in {di} frame, which is
time dependent. However, to numerically integrate Eq. (49), we utilize the approximated
fields of the components vhi and ωhi (we do not approximate the spatial linear velocity and
the angular velocity vectors). Equivalently, we are interpolating the material linear velocity
v(t) = viEi and the material angular velocity ω(t) = ωiEi. Let vh(t) and ωh(t) (withW h(t)
being the corresponding spin tensor) represent the approximated material linear and angular
velocity. The estimated configuration is obtained as

Qh(t) = e
∫ t

0 W
h(t)dt;

ϕh(t) =
∫ t

0
Qh(t).vh(t)dt,

(63)

with, ∫ t

0
W

h(t)dt ∈ so(3). (64)

5.2.3. Error quantification
We quantify the error eϕ(t) in the position vector by the usual Euclidean norm of

difference in the exact and estimated position vector,

eϕ(t) = ‖ϕ(t)−ϕh(t)‖; (65a)

RMSϕ =

√∑M
k=1 e

2
ϕ(tk)

M
. (65b)

Similarly, we define error in each director as,

edi
(t) = ‖di(t)− dhi (t)‖; (66a)

RMSdi
=

√∑M
k=1 e

2
di

(tk)
M

. (66b)
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Local homeomorphism (refer to section 3.2.2) of exponential map allows us to define
Reimannian metric on SO(3) that evaluates the deviation between the approximated rotation
tensor Qh(t) and the exact rotation tensor Q(t) by measuring the length of geodesic between
them. The error is associated with the amount of rotation Qerror(t) required to align Qh(t)
with Q(t) such that,

Q(t) = Qerror(t)Qh(t). (67)

Let Qerror(t) be parametrized by θe = θenθe such that θe ∈ [0, π). We define the error eQ as,

eQ(t) =
〈
Q,Qh

〉
= θe(t) = ‖log(Qerror(t))‖ ∈ [0, π); (68a)

RMSQ =
√∑M

k=1 eQ(tk)2

M
. (68b)

In the equation above, 〈., .〉 : SO(3) × SO(3) −→ [0, π) defines a bi-invariant (refer to Eq.
70e and 70f below) Reimannian metric such that for any Q1,Q2 ∈ SO(3),

〈Q1,Q2〉 = ‖log(Q1Q
T
2 )‖. (69)

For any Q1,Q2,Q3 ∈ SO(3) the metric defined above has following properties:

Non-negativity : 〈Q1,Q2〉 ∈ [0, π) (70a)
Identity of indiscernibles : 〈Q1,Q2〉 = 0⇔ Q1 = Q2 (70b)
Symmetry : 〈Q1,Q2〉 = 〈Q2,Q1〉 (70c)
Triangle inequality : 〈Q1,Q2〉 ≤ 〈Q1,Q3〉+ 〈Q3,Q2〉 (70d)
Right invariant : 〈Q1Q3,Q2Q3〉 = 〈Q1,Q2〉 (70e)
Left invariant : 〈Q3Q1,Q3Q2〉 = 〈Q1,Q2〉 (70f)

Refer to Park [32] for more details on this metric. The paper by Huynh [33] serves as a great
reference to understand various kinds of metric on SO(3). Huynh [33] also provides proof for
the properties stated above.

5.3. Similarities in the path estimation of rigid body (or swarm
of rigid bodies) and shape reconstruction of slender structure
(like rods)

A rigid body motion and a beam with rigid Euler-Bernoulli’s cross-section is defined by
an identical configuration space C := R3×SO(3). The Cosserat beam is defined by a midcurve
curve ϕ and the director triad field {di} that defines the orientation of the cross-section.
However, the configuration of the beam Φ1 ∈ C is parametrized by the undeformed arc length
of the mid-curve, lets call it s ∈ R+, and the configuration of the moving rigid body Φ2 ∈ C
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is parametrized by time t ∈ R+, such that

Φ1(s) :=
{

(ϕ(s),Q(s)) | ϕ : R+ −→ R3, Q : R+ −→ SO(3)
}
∈ C;

Φ2(t) :=
{

(ϕ(t),Q(t)) | ϕ : R+ −→ R3, Q : R+ −→ SO(3)
}
∈ C.

(71)

If ξ1 represents the arclength in the deformed state of the beam or the distance traveled by
the moving object, then an analogy can be observed between the axial strain of the midcurve
e(s) for the beam and the velocity v(t) of the moving object, such that, ξ1,s = 1 + e(s) for
beams, and ξ1,t = v(t) in case of a moving rigid body.

Like the configuration space, the tangent space of the two systems is identical. The
equivalent of angular velocity (spin) tensorW (t) = Q,tQ

T is the spin tensor corresponding to
the Darboux vector (also called the curvature tensor) K(s) = Q,sQ

T . Therefore the problem
of shape reconstruction of beam from finite number of surface strain gauge readings bears a
striking similarity with the path estimation of rigid body motion using discrete linear and
angular velocity data. In case of path estimation, the data is obtained in the form of Euler
angles (or quaternions) and their derivatives (from the IMU and other sensors), whereas in
case of shape sensing, the strain gauge data can be used to obtain the sectional curvatures
and midcurve strains. Furthermore, the problem of dead reckoning is common in case of path
estimation and shape sensing (refer to [21]). Chadha and Todd [21] presents the method to
obtain cross-sectional curvatures and finite strains using strain gauges attached to the surface
and a more recent work of Chadha and Todd [34], explores the relationship between scalar
strain gauge readings with the finite strain parameters.

A geometrically-exact Kirchhoff beam and a rigid body can be defined by an adapted
frame. If the torsion angle is zero along the beam or if the roll angle field vanishes (which is
seldom in case of rigid body motion), SMAF is sufficient to define the orientation. Presence
of torsion field in the beam and roll angle in the rigid body demands GMAF to define the
orientation.

A more interesting case arises when we consider swarm of rigid-bodies (say drones).
If the swarm is a rigid-formation, the relative positions of follower drone is fixed (with
vanishing co-rotational derivative) and pre-defined with respect to the leader drone. If the
rigid-formation is planar, the orientation of the plane and the position vector of the leader
drone defines the configuration of the system. This is analogous to Simo-Reissner beam
(refer to: Simo [18] and Reissner [19]) that has rigid cross-section and is allowed to have
shear deformation (unlike Euler-Bernoulli beam, where the cross-section is perpendicular
to the midcurve and shear deformations are ignored). In a leader-follower model of drone
formations, the follower drones need not have a fixed relative position with respect to the
leader drone. However, if the relative positions of follower drones are pre-defined (that is
useful for drone light-shows that have gained recent popularity), the system maintains its
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single-manifold character. This system is similar to Simo-Reissner beam with in-plane and
out-of-plane cross-sectional deformation with warping and Poisson’s transformation being
pre-defined. Material frame (MF) can be used to define orientation in these type of problems.
The paper by Chadha and Todd [34] is dedicated to developing a generalized single-manifold
beam kinematics that includes fully coupled Poisson’s and warping effect (such that the
cross-sectional deformation is pre-defined to maintain single-manifold nature of problem).

The compact approach in defining the shape of swarm at any given time is accomplished
using partial differential equation. For a system like swarm of drones, trajectory tracking
is essential to define controls for the system so that the shape of swarm converges to the
solution of prescribed differential equation at a given time. Defining the shape as a solution
to governing differential equation is compact, communication and memory efficient, and it
helps in developing a local corrective algorithm (distributed control) where one drone corrects
its position based on the position of neighboring drones. This process is very much similar to
obtaining warping function from the Neumann boundary value problem corresponding to
warping in beam. The local corrective algorithm in case of swarm of drones is comparable to
the compatibility conditions in solid mechanics.

5.4. Illustration and simulation
We simulate the path of a moving rigid body like UAV. We consider the pitch, yaw and

roll angle fields parametrized by t ∈ [0, t] calibrated with respect to {Ei} frame,

φp(t) = 0.5 sin(0.7t) + π

2

[
cos

(
πt

t

)
+ sin

(
πt

t

)
.
(

1− sin
(3.5πt

t

))]
;

φy(t) = 4 + 1
25(t− t) + sin(t) + π sin

(4πt
t

)
;

φr(t) = 0.1
(
π sin

(4πt
t

)
+ sin(t)

)
;

v1(t) = 1 + 0.15 sin (0.3t) + 0.2 cos
(4πt

2t

)
;

v2(t) = v3 = 0.

(72)

The rigid-body motion defined by (72) is similar to Kirchhoff beam kinematics. A GMAF
is sufficient to frame this path because v2(t) = v3(t) = 0. Thus we obtain the angular velocity
components ωi from the assumed Euler angles in Eq. (72) using the results obtained in
section 4.1.2 (except that the independent parameter here is time t). We can equivalently
consider unit quaternion field and obtained the angular velocity using equations (86a), (86b)
and (86c). The exact rotation tensor is obtained by using Eq. (26). Note that for this
example {d1,d2,d3} ≡ {T ,Y g,P g}. At t = 0, the initial conditions are di(0) = di0 = Ei.
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Figure 7: Estimated trajectory and orientation of the rigid body (or equivalently the cross-section
of slender rod)
Cases Interpolation method
Case 1 C−1 approximation (constant over the patch n of SPEG)
Case 2 Cubic Hermite
Case 3 C0 approximation
Case 4 Moving least square approximation (MLS)
Case 5 Cubic B-Spline
Case 6 Quadratic B-Spline

Table 1: Various approach to interpolate the material linear and angular velocity data

The exact position vector is then obtained as,

ϕ(t) =
∫ t

0
v1(k)d1(k)dk. (73)

We consider t0 = 100s and number of discrete data points as N with tn representing the time
corresponding to nth data point. We assume t1 = 0.25s and tN = (t− 0.25)s. The time steps
in between t1 and tn are uniformly spaced. We use 6 different interpolation techniques listed
in table 1 to approximate the material linear and angular velocity.

Consider the following points:

1. In case 1, the data vn and ωn are assumed constant over the patch n as described in
section 5.2.1. The estimated configuration space using SPEG is the same as the config-
uration space obtained using equation (63) with vhn and ωhn being C−1 approximation
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of the data over the patch n. This technique was used by Chadha and Todd [21] to
develop shape sensing algorithm for beams.

2. Readers can refer to chapter 3 of Bartels et al. [35] for more information on Cubic Her-
mite and B-Spline interpolation. Case 3 represents the data being linearly interpolated
between two time steps tn and tn+1.

3. We briefly describe the MLS approach here. Let P (t) = {1, t, t2, ..., tm}T represent set
of mth order polynomial set and W (t− tn) represent the moving weight function, then
the approximate linear velocity component vhi (t) is given as,

vhi (t) = P T (tn)M−1
N∑
n=1
P (tn)vniW (t− tn);

M := Moment matrix =
N∑
n=1
P (tn)P T (tn)W (t− tn).

(74)

We have used cubic B-spline weight function, such that

W (t− tn) = W (zn) =


2
3 − 4z2

n + 4z3
n, for 0 ≤ zn ≤ 0.5

4
3 − 4zn + 4z2

n − 4
34z3

n, for 0.5 ≤ zn ≤ 1
0 otherwise

;

zn = |t− tn|
a

.

(75)

The term a in the equation above is the support size. For mth order basis set, the weight
function must be spread enough to cover at least (m+ 1) data points. This fact is used
to evaluate the support size. The accuracy of MLS approach depends on the choice of
support size and the order of polynomial. In a similar fashion, the approximate angular
velocity fields ωhi (t) is obtained. Interested readers can refer to the landmark paper
on interpolation of surface using MLS approach by Lancaster and Salkauskas [36]. A
paper by Levin [37] discusses how MLS is the near-best approach towards interpolation.
MLS approximation became popular in the field of applied mechanics after it was used
to develop Meshfree finite element analysis (refer Belytschko et al. [38] and Chen et al.
[39]).

We consider N=20, 50, 75, 100, 300 and 500 to compare various approaches. The idea is
to estimate the configuration space (ϕh(t),Qh(t)) using Eq. (63) (for all cases except Case 1)
and (51) (for Case 1). The spatial linear and angular velocity is estimated by left translating
approximated material linear and angular velocity as,

vh(t) = Qhvh(t);
ωh(t) = Qhωh(t).

(76)
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(a) N=100

(b) N=300
Figure 8: RMS error in the approximated material linear and angular velocity fields by various

approaches
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(a) N=100

(b) N=300
Figure 9: RMS error in the estimated Q and di by various approaches
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(a) N=100 (b) N=300
Figure 10: RMS error in the estimated ϕ by various approaches

Figure 7 demonstrates the estimated configuration (the trajectory and the orientation of object
at 20 uniformly spaces time steps) for N=50, 75, 100 and 300 obtained using interpolation
methods mentioned in Table 1. The estimated shape converges with the increase of data points
as expected. Figure 8 shows RMS errors in the approximated material linear and angular veloc-
ity (vh,ωh) and the estimated position vector, director triads and rotation tensor for N=100
and 300, calculated using M=500 in equations (65b), (66b) and (68b). Excellent estimates are
obtained for N=100 with the error: RMSQ = {0.386, 0.216, 0.516, 0.226, 0.141, 0.148} radian
and RMSϕ = {2.237, 0.570, 4.193, 0.669, 0.309, 0.326} m for case 1 to 6 respectively. The
RMS error further reduces with increase of data points, as observed in Fig. 9. Figure 9 and
10 show the error fields eϕ(t), eQ(t) and edi

(t) obtained using the error definition in equations
(65a), (66a) and (68a). Figure 11 shows comparison of RMS error in the configuration space
for different interpolation approaches with increasing number of sensors.

Here are the important observations:

1. As is clear from figure 13, the algorithm is convergent.

2. The MLS (case 4) and Cubic spline interpolation (case 5 and 6) are amongst the
best approaches to estimate the state space. This is because Case 4 and 5 (and 6)
interpolated the input data better than other approaches.

3. Proper choice of support size and polynomial order in MLS method can drastically
reduce the error. In this case, we have used polynomial of 2nd order with support size
of a=15.7, 5.08, 3.09, 2.5 and 0.998; for N=20, 50, 75, 100 and 300 respectively.

4. Linear interpolation of input data (case 3) is the worst performer in terms of the
configuration space estimate.

5. Despite having highest RMS error in estimating the input data, SPEG technique (case
1) performs fairly well (better than case 3 that gives highest error) at the estimation of
configuration. The advantage of SPEG is existence of a closed form solution as discussed
in section 5.2.1 whereas other higher order approaches (case 2-5) includes numerical
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Figure 11: Error eϕ and eQ for N = 100 and N = 300

integration (equation (63)) to obtain the configuration space. We also observe that the
error propagates along the trajectory of object attaining maximum value at the farthest
end from the point of initial condition.

6. Cubic and quadratic B-splines gives nearly same result. With increase in number of
data, B-spline approximation and Cubic Hermite approximations converges.

7. The error discussed here is purely due to the numerical algorithm used to estimate
the configuration space. However, in real time, the noise in the measurement must be
considered. Another source of error might be in the uncertainty of initial condition
(especially in shape sensing of beams: refer to Chadha and Todd[21]).

6. Applications in computer graphics
Theory of curves and moving frames has found a dominant place in generating computer

graphics, including but not limited to ribbons, orientation of camera frames and quantum
waveguide construction, CAD-CAM modeling and animations (refer [11], [13] and [35]).
Extruding a cross-section along a straight center line has long been used in CAD modeling.
In this section, we present few applications of various types of framed space curves discussed
so far in computer graphics.
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Figure 12: Error edi
for N = 100 and N = 300

(a) RMS error in the position vector (b) RMS error in the rotation tensor
Figure 13: RMS error in the approximated configuration space considering no noise in the data

obtained from the sensors

6.1. Double helix intertwining a space curve
We elucidate the construction of double helix using GMAF. Consider the the pitch

φp(ξ1) and yaw angle φy(ξ1) field corresponding to the space curve ϕ(ξ1) with total length l0,
parametrized by the arclength ξ1 ∈ [0, l0] such that,

ϕ(ξ1) =
∫ ξ1

0
T (k)dk. (77)

In the above equation, T (ξ1) represents the tangent vector field of the curve, the component
of which can be obtained from either Eq. (25) or (26) (note than T (ξ1) is sufficient to define
the midcurve). Let r and c represents the radius and total number of windings (that can
be fractional) of double helix respectively. We can obtain the position vectors of two curves
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constituting the double helix as ϕ1(ξ1) and ϕ2(ξ1) as,

ϕ1(ξ1) = ϕ(ξ1) + rY g(ξ1);
ϕ2(ξ1) = ϕ(ξ1)− rY g(ξ1).

(78)

In the equation above, Y g(ξ1) represents the constituent vector of GMAF as defined in (26),
with the roll angle field as,

φr(ξ1) = 2πc
(
ξ1

l0

)
. (79)

This formulation can be used to generate graphics and defining the reduced geometry of DNA
molecule with the curves ϕ1(ξ1) and ϕ2(ξ1) representing the sugar-phosphate backbone and
the vector rY g(ξ1) and −rY g(ξ1) showing the nitrogenous base pairs.

Figure 14 shows two examples of double helix intertwining a space curve ϕ(ξ1). The
dotted black curve represents the curve ϕ(ξ1), the green and red strand (with n being number
of strands per cycle) represents the vectors rY g(ξ1) and −rY g(ξ1) respectively. The blue
curves shows the curves ϕ1(ξ1) (connected to green strands) and ϕ2(ξ1) (connected to red
strands). Following are the parameters required to obtain the structures in Fig 14a,

(a) Example 1 (b) Example 2

Figure 14: Double helix intertwining a space curve

l0 = 500, r = 40, c = 6, n = 16;

φp(ξ1) = π

2 sin
(
πξ1

l0

)
.
(

1− 0.5 sin
(3.5π

l0

))
;

φy(ξ1) = π sin
(
πξ1

l0

)
.

(80)
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Following are the parameters required to obtain Fig 14b,

l0 = 500, r = 35, c = 3, n = 12;

φp(ξ1) = π

8 sin
(

2πξ1

l0

)
;

φy(ξ1) = π

8 sin
(

2πξ1

l0

)
.

(81)

Animation 1 shows evolution of double helix with changing midcurve. It is obtained by using
dynamic pitch and yaw angle field (say, time dependent). The winding and unwinding effect
can be obtained by making φr(ξ1) dynamic. Figure 15 shows a 3D printed model of double
helix. The beads in the left figure marks the center curve ϕ(ξ1) (absent in 3D printed model).

Figure 15: 3D printed model of double helix

6.2. Leaf like structure using RPAF
To obtain a leaf like structure that bears a single manifold character, we first consider a

leaf with node at origin (node is the point of contact of stem and leaf). The midrib of leaf
(vein running from the node to the leaf tip) is given by the curve ϕ(ξ1), obtained using the
pitch and yaw angle fields φp(ξ1) and φy(ξ1) with ξ1 ∈ [0, l0]. Here, l0 gives the length of
midrib.

We generate the lamina of leaf as a mesh obtained using relatively parallel normal vector
field and the inner and outer margins of the leaf. We divide the leaf surface into two parts:
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Figure 16: Geometry of leaf obtained using RPAF

lamina 1 and lamina 2. The relatively parallel normal vector field M 1(ξ1) and M 2(ξ1) with
the generators M 10 and M 20, used to define lamina 1 and 2 respectively, are given as

M i(ξ1) = M i0 + [Y g]φr(ξ1)=ρbi(ξ1) ; (82a)

ρbi(ξ1) = ρbi(0)−
∫ ξ1

0
κs1(k)dk = ρbi(0)−

∫ ξ1

0
φy,k sin (φp(k))dk; (82b)

M i0 = Qg(0)
∣∣∣∣∣
(φr(0)=ρbi(0))

.E2, with i = 1, 2. (82c)

In Eq. 82b, ρbi(ξ1) is obtained using the results (31a) and (34). It represents the roll angle
field required to obtain a relatively normal vector field (refer section 4.2). The predefined
angle ρbi(0) are used to obtain the generator M i0 using Eq. (82c).

Leaf margin essentially represents the outer boundary of the lamina. We call that as an
outer margin, with Γ1

outer and Γ2
outer representing outer margin for lamina 1 and 2 respectively.

In order to mesh the lamina, we define inner margins with Γ1
innerI and Γ2

innerI representing Ith

inner margin for lamina 1 and 2 respectively. The position vectors representing these curves
are given by,

ϕΓi
outer

= ϕ+ rW (ξ1)M i for outer margin of lamina i; (83a)
ϕΓi

innerI
= ϕ+ rW (ξ1)ΨIM i for Ith inner margin of lamina i. (83b)

In the equation above, r represents the width parameter of the lamina, W (ξ1) represents
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the weight function for the outer margin and ΨI ∈ (0, 1) is additional weight for the Ith

inner margin. Note that if max(W (ξ1)) = 1, then r represents the maximum width of lamina,
similarly, if W (ξ1) = constant, then all the inner and outer margins transforms to relatively
parallel curves to the midrib. Therefore, the width of lamina at the arclength ξ1 is given by
rW (ξ1). Figure 16 demonstrates the construction discussed so far.

Any other orientation of the leaf defined by l0, φp(ξ1), φy(ξ1), ρbi(0), can be obtained by
rotating the leaf pivoted at the origin and then translating it as required. The stem of leaf
can be obtained by extruding the cross-sections along a space curve.

(a) Leaf 1 (b) Leaf 2

(c) Leaf 3
Figure 17: Leaf obtained using same midrib but different weight function

Figure 17 shows three different leaves constructed using same l0, φp(ξ1), φy(ξ1), ρbi(0)
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but different weights W1(ξ1), W2(ξ1) and W3(ξ1) and widths r as,

l0 = 6, ρb1(0) = 0.7, ρb2(0) = 0.7 + 5π
9 ;

r1 = r2 = l0
3.5 , r3 = 0.4;

φp(ξ1) = φy(ξ1) = π

8 sin
(
πξ1

l0

) (84)

W1(ξ1) = 0.5
(

1 + sin
(

2πξ1

l0
− π

2

))
;

W2(ξ1) = W1(ξ1) + 2
75 sin2

(
4πξ1

l0
− π

)
;

W3(ξ1) = f(ξ1) +



14ξ1
3 0 ≤ ξ1 ≤ 0.75
−4ξ1

3 + 4.5 0.75 ≤ ξ1 ≤ 1.5
5ξ1
6 + 1.25 1.5 ≤ ξ1 ≤ 3
−3ξ1

5 + 3.6 3.5 ≤ ξ1 ≤ l0

.

(85)

In the equation for the weight W3 of leaf 3, the function f(ξ1) represents the triangular wave
with the period of 0.16 and amplitude of 0.084. This is used to generate corrugation and
irregularity in the outer margin of the leaf 3 (Figure 17c).

(a) View 1 (b) View 2
Figure 18: Computer generated plant with varying sizes and orientation of leaves
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An entire plant can be generated as shown in figure 18. The stems are obtained by
extruding circular cross-section varying smoothly along the curves. Leaves of different sizes
and orientation are obtained as discussed before.

The dynamic motion in the leaf (say due to wind load) can be graphically obtained by
making φp(ξ1), φy(ξ1), ρbi(0) dynamic. Animation 2 shows the dynamic effect added to leaf
(fluttering of leaf).

7. Summary and Conclusions
This paper can be broadly summarized into three domains. In the first part, we detail

various approaches to curve framing. After a brief discussion on Frenet and RPAF frame and
their continuity requirements, we delineate the construction of general material frame MF.
We also discuss three approaches to parameterize finite rotations: Euler angle approach, unit
quaternion and Rodrigues rotation formula. The relationship between curvature tensor of
various frames are obtained.

Secondly, we propose an algorithm to estimate the state space of a single manifold
characterized system using a limited set of material curvature and velocity data. The idea is
to estimate the material linear and angular velocity data (or equivalently midcurve strain
and curvature vector of beam) using various interpolation approaches. This interpolation is
consistent as we estimate the material linear and angular velocity field (vh(ξ1), ωh(ξ1)) in
a linear so(3) plane. We use the approximated fields (vh(ξ1), ωh(ξ1)) to first estimate the
configuration space (ϕh(ξ1),Qh(ξ1)) and then the tangent space (vh,ωh). Amongst all the
interpolation approaches suggested, the C−1 interpolation of material data is special, because
it results in a closed form solution to the estimated configuration, and because it leads to the
development of curvature dependent shape functions that may be glued together to obtain
a smooth global configuration. We call this approach smooth patch estimation and gluing
technique (SPEG). An interesting method to obtain the solution of SPEG merely by using
the idea of parallel-transport is presented. The estimation methods discussed are convergent
and free of singularity. An illustration that compares all the approaches and demonstrates
the error analysis is presented. We also note that the state space of beam and a moving rigid
body has similar mathematical nature because both of them are single manifold characterized
systems. Thus, we observe the similarity in the problem of path estimation of moving object
and the shape sensing of the beam under deformation.

The applications of framed space curves are numerous. Finally, we demonstrate the
ability of the framed space curve to develop computer graphics. We do this by presenting the
construction of double helix intertwining a space curve using GMAF. We present a second
example demonstrating construction of leaves and plant using RPAF.

We anticipate that in the future, we will combine the estimation method developed in
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this paper with the general kinematics of the Cosserat beam (refer Chadha and Todd [34]) to
extend our work in the field of shape reconstruction of slender structures.

Acknowledgements: Funding for this work was provided by the United States Army
Corps of Engineers through the U.S. Army Engineer Research and Development Center
Research Cooperative Agreement W912HZ-17-2-0024.
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8. Appendix

8.1. Curvature in terms of unit quaternion parameters and
Rodriguez parameters

8.1.1. Curvature in terms of unit quaternion parameters

κ1 = 2 (−q1q0,ξ1 + q0q1,ξ1 + q3q2,ξ1 − q2q3,ξ1) ; (86a)
κ2 = 2 (−q2q0,ξ1 − q3q1,ξ1 + q0q2,ξ1 + q1q3,ξ1) ; (86b)
κ3 = 2 (−q3q0,ξ1 + q2q1,ξ1 − q1q2,ξ1 + q0q3,ξ1) . (86c)

8.1.2. Curvature in terms of Rodriguez parameters

κ1 = sθnθ1,ξ1 + (1− cθ)(nθ3nθ2,ξ1 − nθ2nθ3,ξ1) + nθ1θ,ξ1 ; (87a)
κ2 = sθnθ2,ξ1 + (1− cθ)(nθ1nθ3,ξ1 − nθ3nθ1,ξ1) + nθ2θ,ξ1 ; (87b)
κ3 = sθnθ3,ξ1 + (1− cθ)(nθ2nθ1,ξ1 − nθ1nθ2,ξ1) + nθ3θ,ξ1 . (87c)

Note that above set of equations can be obtained by using Eq. (9) and (11a) or alternatively
by substituting q0 = cθ/2, qi = sθ/2nθi where i = 1− 3, in equations (86a), (86b) and (86c).

8.2. Vector coefficient for SPEG technique of state estima-
tion

We represent the vector coefficients in the form given below,[
[An1]{Ei}, [An2]{Ei}, [An3]{Ei}, [An4]{Ei}

]
3×4

= [Cn]3×4[An]4×4; (88a)[
[Bni1]{Ei}, [Bni2]{Ei}, [Bni3]{Ei}, [Bni4]{Ei}

]
3×4

= [Cn]3×4[Bin]4×4; (88b)

In the equation above, the notation [An1]{Ei} = [〈An1,E1〉 , 〈An1,E2〉 , 〈An1,E3〉]T , rep-
resents the component of the coefficient vector [An1]{Ei} in {Ei} frame. Therefore, the
approximated solution is expressed in {Ei} frame (Note that the boundary conditions were
expressed in {Ei} frame). The matrix [Cn] represents the 12 constants of integration cor-
responding to nth patch and is determined using continuity conditions or the boundary
conditions. The matrices [An] and [Bin] (for i = 1, 2, 3) contains coefficients that are function
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of the discrete velocity data vn and ωn.

[An] =


〈ωn×vn,E1〉

ω2
n

〈vn,ωn〉〈ωn,E1〉
ω2

n
− 〈ωn×ωn×vn,E1〉

ω3
n

− 〈ωn×vn,E1〉
ω2

n
〈ωn×vn,E2〉

ω2
n

〈vn,ωn〉〈ωn,E2〉
ω2

n
− 〈ωn×ωn×vn,E2〉

ω3
n

− 〈ωn×vn,E2〉
ω2

n
〈ωn×vn,E3〉

ω2
n

〈vn,ωn〉〈ωn,E3〉
ω2

n
− 〈ωn×ωn×vn,E3〉

ω3
n

− 〈ωn×vn,E3〉
ω2

n

1 0 0 0

 (89)

[Bin] =


〈di0+ωn×ωn×di0,E1〉

ω2
n

0 〈di0×ωn,E1〉
ωn

− 〈ωn×ωn×di0,E1〉
ω2

n
〈di0+ωn×ωn×di0,E2〉

ω2
n

0 〈di0×ωn,E2〉
ωn

− 〈ωn×ωn×di0,E2〉
ω2

n
〈di0+ωn×ωn×di0,E3〉

ω3
n

0 〈di0×ωn,E3〉
ωn

− 〈ωn×ωn×di0,E3〉
ω2

n

0 0 0 0

 (90)
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