
UC San Diego
Recent Work

Title
Dynamic Conditional Correlation - A Simple Class of Multivariate GARCH Models

Permalink
https://escholarship.org/uc/item/56j4143f

Author
Engle, Robert F

Publication Date
2000-05-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/56j4143f
https://escholarship.org
http://www.cdlib.org/


2000-09

UNIVERSITY OF CALIFORNIA, SAN DIEGO

DEPARTMENT OF ECONOMICS

DYNAMIC CONDITIONAL CORRELATION –
A SIMPLE CLASS OF MULTIVARIATE GARCH MODELS

BY

ROBERT F. ENGLE

DISCUSSION PAPER 2000-09
MAY 2000



1

DYNAMIC CONDITIONAL CORRELATION –

 A SIMPLE CLASS OF MULTIVARIATE GARCH MODELS

Robert F. Engle

July 1999

Revised May 2000

Abstract

Time varying correlations are often estimated with Multivariate Garch models

that are linear in squares and cross products of returns.  A new class of

multivariate models called dynamic conditional correlation (DCC) models is

proposed. These have the flexibility of univariate GARCH models coupled1 with

parsimonious parametric models for the correlations.  They are not linear but can

often be estimated very simply with univariate or two step methods based on the

likelihood function. It is shown that they perform well in a variety of situations

and give sensible empirical results.

                                                
1 This research has been supported by NSF grant SBR-9730062 and NBER.
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I. INTRODUCTION

The quest for reliable estimates of correlations between financial variables has

been the motivation for countless academic articles, practitioner conferences and back

room Wall Street research.  These correlations are needed for derivative pricing, portfolio

optimization, risk management and hedging.  Simple methods such as rolling historical

correlations and exponential smoothing have been widely used because of the complexity

and potential unreliability of methods such as multivariate GARCH or Stochastic

Volatility and the unavailability of implied correlations for most markets.

In this paper Dynamic Conditional Correlation (DCC) estimators are proposed

which have the flexibility of univariate GARCH but not the complexity of multivariate

GARCH.  These models, which parameterize the conditional correlations directly, are

naturally estimated in two steps – the first is a series of univariate GARCH estimates and

the second the correlation estimate.

The next section of the paper will give an overview of various models for

estimating correlations.  Section 3 will introduce the new method and compare it with

some of the other cited approaches.  Section 4 will investigate some properties of the

method including correlation forecasting in Section 5.  Section 6 carries out a series of

Monte Carlo experiments.  Section 7 presents empirical results for several pairs of daily

time series and Section 8 concludes.

II. CORRELATION MODELS

The correlation between two random variables r1 and r2 that each have mean zero, is

defined to be:

(1) 
( )

( ) ( )2
2

2
1

21
12

rErE

rrE
=ρ

Similarly,  the conditional correlation is defined as:

(2) 
( )

( ) ( )2
t,21t

2
t,11t

t,2t,11t
t,12

rErE

rrE

−−

−=ρ .

In this definition, the conditional correlation is based on information known the previous

period, however multi-period forecasts of the correlation can be defined in the same way.
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By the laws of probability, all correlations defined in this way must lie within the interval

[–1,1].  The conditional correlation satisfies this constraint for all possible realizations of

the past information.

To clarify the relation between conditional correlations and conditional variances,

it is convenient to write the returns as the conditional standard deviation times the

standardized disturbance:

(3) ( ) t,it,it,i
2
t,i1tt,i hr,rEh ε== − ,  i=1,2

Epsilon is a standardized disturbance which has mean zero and variance one for each

series. Substituting into (2) gives

(4) 
( )

( ) ( ) ( )t,2t,11t2
t,21t

2
t,11t

t,2t,11t
t,12 E

EE

E
εε

εε

εε
ρ −

−−

− == .

Thus, the conditional correlation is also the conditional covariance between the

standardized disturbances.

Many estimators have been proposed for conditional correlations.  The ever

popular rolling correlation estimator is defined for returns with a zero mean as:

(5) 
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Substituting from (3) it is clear that this is only an attractive estimator in very special

circumstances.  In particular, it gives equal weight to all observations less than n periods

in the past and zero weight on older observations.  The estimator will always lie in the

[-1,1] interval, but it is unclear under what assumptions it consistently estimates the

conditional correlations.

The exponential smoother used by RiskMetrics™ uses declining weights based on

a parameter λ , which emphasizes current data but has no fixed termination point in the

past where data becomes uninformative.
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(6) 

















=

∑∑

∑

−

=

−−
−

=

−−

−

=

−−

1

1

2
,2

1
1

1

2
,1

1

1

1
,2,1

1

,12ˆ
t

s
s

st
t

s
s

st

t

s
ss

jt

t

rr

rr

λλ

λ
ρ

It also will surely lie in [-1,1]; however there is no guidance from the data on how to

choose lambda and it is necessary that the same lambda be used for all assets. Defining

the conditional covariance matrix of returns as:

(7) ( ) ttt1t H'rrE ≡− ,

these estimators can be expressed in matrix notation respectively as:

(8) ( ) ( ) ( ) 111
1

1','
1

−−−
=

−− −+== ∑ tttt
n

j
jtjtt HrrHandrr

n
H λλ

A simple approach to estimating multivariate models with somewhat more

flexibility than these methods is the Orthogonal GARCH method or principle component

GARCH method.  This has recently been advocated by Alexander(1999).  The procedure

is simply to construct unconditionally uncorrelated linear combinations of the series r.

Then univariate GARCH models are estimated for some or all of these and the full

covariance matrix is constructed by assuming the conditional correlations are all zero.

More precisely, let ( ) V'yyE,Ary tttt ≡=  is diagonal. Univariate GARCH models are

estimated for the elements of y and combined into the diagonal matrix Vt.  Assuming in

addition that ( ) ttt1t V'yyE =−  is diagonal (a strong assumption), then

(9) 1
t

1
t AV'AH −−=

In the bivariate case, the matrix A can be chosen to be triangular and estimated by least

squares where r1 is one component and the residuals from a regression of r1 on r2 are the

second.  In this simple situation, a slightly better approach is to run this regression as a

GARCH regression, thereby obtaining residuals which are orthogonal in a GLS metric.

Multivariate GARCH models are natural generalizations of this problem.  Many

specifications have been considered, however most have been formulated so that the

covariances and variances are linear functions of the squares and cross products of the
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data.  The most general expression of this type is called the vec model and is described in

Engle and Kroner(1995).  The vec model parameterizes the vector of all covariances and

variances expressed as vec(Ht).  In the first order case this is given by

(10) ( ) ( ) ( ) ( )111 ' −−− Β+Α+Ω= tttt HvecrrvecvecHvec

where A and B are n2xn2 matrices with much structure following from the symmetry of

H.  Without further restrictions, this model will not guarantee positive definiteness of the

matrix H.

Useful restrictions are derived from the BEKK representation, also introduced by

Engle and Kroner(1995), which in the first order case can be written as:

(11) ( ) ''' 111 BBHArrAH tttt −−− ++Ω=

Various special cases have been discussed in the literature starting from models

where the A and B matrices are simply a scalar or diagonal rather than a whole matrix,

and continuing to very complex highly parameterized models which still ensure positive

definiteness.  See for example Engle and Kroner(1995),  Bollerslev, Engle and

Nelson(1994)  and Engle and Mezrich(1996)  for examples.  In this study the scalar

BEKK and the diagonal BEKK will be estimated.

As discussed in Engle and Mezrich(1996), these models can be estimated subject

to the constraint that the long run variance covariance matrix is the sample covariance

matrix.  This constraint differs from MLE only in finite samples but reduces the number

of parameters and often gives improved performance.  In the general vec model of

equation (9), this can be expressed as

(12) ( ) ( ) ( ) ( )∑=Β−Α−=Ω
t

ttrr
T

SSvecIvec '
1

    where,

This expression simplifies in the scalar and diagonal BEKK cases.  For example for the

scalar BEKK the intercept is simply

(13) ( )Sβα −−=Ω 1
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III. DYNAMIC CONDITIONAL CORRELATIONS

This paper introduces a new class of multivariate GARCH estimators which can

best be viewed as a generalization of Bollerslev(1990)’s constant conditional correlation

estimator.  In Bollerslev’s model,

(14) { }titttt hdiagDwhereRDDH ,, ==

where R is a correlation matrix containing the conditional correlations as can directly be

seen from rewriting this equation as:

(15) ( ) RDHDE tttttt == −−
−

11
1 'εε , since ttt rD 1−=ε

The expressions for h are typically thought of as univariate GARCH models, however,

these models could certainly include functions of the other variables in the system as

predetermined variables.

This paper proposes an estimator called dynamic conditional correlation model or

DCC.  The dynamic correlation model differs only in allowing R to be time varying

giving a model:

(16) tttt DRDH =

Parameterizations of R have the same requirements that H did except that the conditional

variances must be unity.

Probably the simplest and one of the most successful is the exponential smoother

which can be expressed as:

(17) [ ] j,it

s

2
st,j

s

s

2
st,i

s

1s
st,jst,i

s

t,j,i R=

















=

∑∑

∑

−−

=
−−

ελελ

εελ
ρ ,

a geometrically weighted average of standardized residuals.  Clearly these equations will

produce a correlation matrix at each point in time.  A simple way to construct this

correlation is through exponential smoothing.

(18) ( )( ) ( )
t,jjt,ii

t,j,i
t,j,i1t,j,i1t,j1t,it,j,i

qq

q
,q1q =+−= −−− ρλεελ
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A natural alternative is suggested by the GARCH(1,1) model.

(19) ( ) ( )j,i1t,j,ij,i1t,j1t,ij,it,j,i qq ρβρεεαρ −+−+= −−−

Rewriting gives,

(20) ∑
∞=

−−+







−

−−
=

,1s
st,jst,i

s
j,it,j,i 1

1
q εεβα

β
βα

ρ

The unconditional expectation of the cross product is ρ  while for the variances:

(21) 1i,i =ρ .

The correlation estimator

(22) 
tjjtii

tji
tji qq

q

,,,,

,,
,, =ρ

will be positive definite as the covariance matrix, [ ]t,j,it qQ = , is a weighted average of a

positive definite and a positive semidefinite matrix.  The unconditional expectation of the

numerator of (22) is ρ  and each term in the denominator has expected value one.  This

model is mean reverting as long as 1<+ βα  and when the sum is equal to one it is just

the model in (18).  Matrix versions of these estimators can be written as:

(23) ( )( ) ,Q'1Q 1t1t1tt −−− +−= λεελ and

(24) ( ) ( ) 111 '1 −−− ++−−= tttt QSQ βεεαβα

where S is the unconditional correlation matrix of the epsilons.

Clearly more complex positive definite multivariate GARCH models could be

used for the correlation parameterization as long as the unconditional moments are set to

the sample correlation matrix.  The goal however is to keep this simple.
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IV. ESTIMATION

The log likelihood for this estimator can be expressed as

(25) 

( )

( )

( )∑

∑

∑

−

−−−

−

−

+++−=

++−=

++−=

ℑ

t
t

1
tttt

t
t

1
t

1
t

1
ttttt

t
t

1
ttt

t1tt

R'RlogDlog2)2log(n
2
1

L

rDRD'rDRDlog)2log(n
2
1

L

rH'rHlog)2log(n
2
1

L

)H,0(N~r

εεπ

π

π

which can simply be maximized over the parameters of the model.  However one of the

objectives of this formulation is to allow the model to be estimated more easily even

when the covariance matrix is very large.  In the next few paragraphs several estimation

methods will be presented which give simple consistent but inefficient estimates of the

parameters of the model.  There will be no attempt to develop the properties of such

estimators although they will be illustrated on both real and artificial data.

Let the parameters in D be denoted θ  and the additional parameters in R be

denoted φ .  Suppose for a moment that θ  is known, then the relevant part of the log

likelihood becomes

(26) ∑ −+−=
t

t
1

tttC )R'R(log
2
1

)(L εεφ ,

which can be maximized directly.  If consistent estimates of θ  can be found, then the two

step estimation strategy will be consistent but not fully efficient.  In the two dimensional

case, this can be written quite simply as:

(27) ( ) ( )
( )∑ 














−

−+
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t
2
t

t,2t,1t
2

t,2
2
t,12

tC
1

2
1log

2
1

)(L
ρ

εερεε
ρφ

where tρ  is given either by (18) or (22).

An even simpler approach is available.  Rewrite (19) as

(28) ( ) ( ) ( ) ( )tjitjitjitjitjitji qeqeee ,,,,1,,1,,1,,,, 1 −+−−++−−= −−− ββαβαρ
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where tjtitjie ,,,, εε= .  This equation is an ARMA(1,1) since the errors are a Martingale

difference by construction.  The autoregressive coefficient is slightly bigger than the

negative of the moving average if α is positive.  This equation can therefore be estimated

with conventional time series software to recover consistent estimates of the parameters.

The drawback to this method is that ARMA with nearly equal roots are numerically

unstable and tricky to estimate.  These parameters would then be used to construct the

correlation estimates in (22).  The problem is even easier if the model is (18) since then

the autoregressive root is assumed to be one.  The model is simply an integrated moving

average or IMA with no intercept.

(29) ( ) ( )tjitjitjitjitji qeqee ,,,,1,,1,,,, −+−−=∆ −−β ,

which is simply an exponential smoother with parameter ( )βλ −= 1 .

In a multivariate context each of these approaches remains feasible although

slightly more complicated.  The regressions in (24) would necessarily have to fit all the

covariance equations to the same parameters.  This could be done by stacking the off

diagonal elements and estimating one model possibly with breaks between each series.

Possibly, estimating each covariance equation separately and then averaging the

coefficients could even do it.  One would hope that the results would not be very

sensitive to these choices.

To complete the discussion it is necessary to propose how to consistently estimate

the parameters θ  that appear in the individual GARCH models.  The original likelihood

in (25) can be viewed as a GLS estimator for D-1r.   An inefficient but consistent

estimator can be found by replacing R by the identity matrix.  In this case the univariate

quasi-likelihood function becomes:

(30) ∑ ∑ 


























++−=

=t

n

1i t,i

2
t,i

t,iU h
r

)hlog()2log(n
2
1

)(QL πθ

that is the sum of the QLU  for each of the individual assets.  Since the parameters for

each asset can be different, these can all be estimated as univariate models and the

standard QMLE properties will hold.  Thus consistent estimates of all the parameters can

be obtained by estimating the univariate models and then using these models to define the
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standardized residuals and finally using one of the listed methods to estimate the

parameters of the correlation process.

The sum of the likelihood in (26) plus (30) plus the total sum of squared

standardized residuals, which is given almost exactly by NT/2, equals the log likelihood

in (25).  Thus it is possible to compare the log likelihood of this method with other

methods and similarly to determine the likelihood sacrificed by the two step estimation

procedure.

(31) 2/')(QL),(L),(L
t

ttUC ∑++= εεθθφφθ

V. FORECASTING CORRELATIONS

In all of the models for dynamic conditional correlations, the correlation

coefficient is expressed as a ratio with a square root in the denominator.  Thus unbiased

forecasts cannot easily be computed.  In fact, for all multivariate GARCH models, the

correlation coefficient is not itself forecast, it is the ratio of the forecast of the covariance

to the square root of the product of the forecasts of the variances.   To develop a

forecasting expression for the DCC models, it will be necessary to approximate the

correlation coefficient by its first order Taylor series expansion.

Consider the mean reverting model in (19) that specializes to the integrated model

in (18) if 1=+ βα .

(32) ( ) ( ) ( ) ( )1kt,j1kt,it1kt,j,itkt,j,it EqE1qE −+−+−++ ++−−= εεαββαρ

The last expectation is by construction equal to 1 for i=j since these are standardized

residuals.

For ( ) ( )1kt,j,it1kt,jk1kt,it EE,ji −+−+−+ =≠ ρεε .

Finally, by expanding the correlation coefficient about the point { }j,iq , the correlation

function can be expressed

(33) 

( ) 








 −
+

−
−−+≅ ++

++
jj

jjkt,jj

ii

iikt,ii

jjii

j,i
j,ikt,j,i

jjiijjii

j,i
kt,j,i q

qq

q
qq

qq

q
*5.qq

qq
1

qq

q
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By successively solving forward equations (31)-(33), forecasts of correlations can be

built up.

To determine the whether these are satisfactory approximations, data are

generated following the DCC model.  In the integrated case the RiskMetrics parameters

(.94,.06) are chosen while in the mean reverting case, (.90,.06) are used with an

unconditional correlation of .5.  The starting point for the forecast is taken to be

{ } { }2,1,1q,q,q 221112 = so the initial correlation is .707.  In the integrated case, the

correlation coefficient is expanded in (33) around the starting point of the forecast.  In the

mean reverting case, this option is computed as well as the expansion around the

unconditional values of {.5,1,1}.  With 1000 replications of the forecast period, the

average rho is plotted against the forecast calculated as above.

From these  pictures,  this approximation is reasonably close to giving accurate

correlation forecasts.  The forecasts incorporate mean reversion when the model has

mean reversion.  They incorporate some predictability also in the integrated model that

arises from deviations of the smoothed standardized residuals from the unconditional

value of one.  Probably, better approximations can be found that give yet more accurate

forecasts.
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Figure 1.

Figure 2
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VI. COMPARISON OF ESTIMATORS

In this section, several correlation estimators will be compared in a setting where the true

correlation structure is known.  A bivariate GARCH model will be simulated 200 times

for 1000 observations or approximately 8 years of daily data for each correlation process.

Alternative correlation estimators will be compared in terms of simple goodness of fit

statistics, multivariate GARCH diagnostic tests and Value at Risk tests.

The data generating process consists of two gaussian GARCH models; one is

highly persistent and the other is not.

(34) 
tttttttttt

tttttt

Ehrhr

hrhhrh

,2,11,2,2,2,1,1,1

1,2
2

1,2,21,1
2

1,1,1

,,

5.2.5.,94.05.01.

εερεε −

−−−−

===

++=++=

 The correlations follow several processes that are labeled as follows:

• Constant 9.=tρ

• Sine ( )200/2cos4.5. tt πρ +=

• Fast Sine ( )40/2cos4.5. tt πρ +=

• Step ( )5005.9. >−= ttρ

• Ramp ( )200/mod tt =ρ

These processes were chosen because they exhibit rapid changes, gradual changes and

periods of constancy. Various other experiments are done with different error

distributions and different data generating parameters but the results are quite similar.
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Figure 3

Eight different methods are used to estimate the correlations – two multivariate

GARCH models, Orthogonal GARCH, two integrated DCC models and one mean

reverting DCC plus the exponential smoother from RISKMETRICS and the familiar 100

day moving average.  The methods and their descriptions are:

• SCALAR BEKK – scalar version of (10) with variance targeting as in (12)

• DIAG BEKK- diagonal version of (10) with variance targeting as in (11)

• DCC IMA – Dynamic Conditional Correlation with integrated moving average

estimation as in (26)

• DCC INT –Dynamic Conditional Correlation by Log Likelihood for integrated

process

• DCC LL MR – Dynamic Conditional Correlation by Log Likelihood with mean

reverting model as in (24)

• MA100- Moving Average of 100 days

• EX .06 –Exponential smoothing with parameter=.06

• OGARCH- orthogonal GARCH or principle components GARCH as in (9).

0.0

0.2

0.4

0.6

0.8

1.0

200 400 600 800 1000

RHO_SINE

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

200 400 600 800 1000

RHO_STEP

0.0

0.2

0.4

0.6

0.8

1.0

200 400 600 800 1000

RHO_RAMP

0.0

0.2

0.4

0.6

0.8

1.0

200 400 600 800 1000

RHO_FASTSINE

CORRELATION EXPERIMENTS



15

Three performance measures are used.  The first is simply the comparison of the

estimated correlations with the true correlations by mean absolute error.  This is defined

as:

(35) ∑ −= ttT
MAE ρρ̂

1

and of course the smallest values are the best.  A second measure is a test for

autocorrelation of the squared standardized residuals.  For a multivariate problem, the

standardized residuals are defined as

(36) ttt rH 2/1−=ν

which in this bivariate case is implemented with a triangular square root defined as:

(37) 

( ) ( )2
,11

,1
2

,22
,2,2

,11,1,1

ˆ1

ˆ

ˆ1

1

/

tt

t
t

tt
tt

ttt

H
r

H
r

Hr

ρ

ρ

ρ
ν

ν

−
−

−
=

=

The test is computed as an F test from the regression of 2
,1 tν  and 2

,2 tν on 5 lags of the

squares and cross products of the standardized residuals plus an intercept.  The number of

rejections using a 5% critical value  is a measure of the performance of the estimator

since the more rejections, the more evidence that the standardized residuals have

remaining time varying volatilities.  This test can obviously be used for real data.

The third performance measure is an evaluation of the estimator for calculating

value at risk.  For a portfolio with w invested in the first asset and (1-w) in the second, the

value at risk, assuming normality, is

(38) ( )( )tttttt HHHwHwVaR ,22,11,22
2

,11
2 ˆ*2165.1 ρ+−+=

and a dichotomous variable called hit should be unpredictable based on the past where hit

is defined as:

(39) ( )( ) 05.*1* ,2,1 −−<−+= tttt VaRrwrwIhit

The Dynamic Quantile Test introduced by Engle and Manganelli(1999) is an F test of the

hypothesis that all coefficients as well as the intercept are zero in  a regression of this
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variable on its past, on current VaR, and any other variables.  In this case 5 lags are used

and the number of days since the last hit (lagged one day) are used. The number of

rejections using a 5% critical value is a measure of model performance. The reported

results are for w =.5, but similar results were obtained for a hedge portfolio with weights

1,-1.  As these tests are both done “in sample” it is not surprising to find that often they

have less than a 5% rejection rate.

VII. RESULTS

Table I presents the results for the Mean Absolute Error for the eight estimators

for 6 experiments with 200 replications.  In four of the six cases the DCC mean reverting

model has the smallest MAE.  When these errors are summed over all cases, this model is

the best.  Very close second and third place models are DCC integrated with log

likelihood estimation, and scalar BEKK.

In Table III the second standardized residual is tested for remaining

autocorrelation in its square.    This is the more revealing test since it depends upon the

correlations;  the test for the first residual does not.  For five out of six cases, the DCC

mean reverting model is the best.  When summed over all cases it is a clear winner.  The

test for autocorrelation in the first squared standardized residual is less uniform across

experiments as seen in Table IV.  Overall the best model appears to be the diagonal

BEKK.

The VaR based Dynamic Quantile Test is presented in Table V for a portfolio that

is half invested in each asset.  The number of rejections for many of the models is well

below the 5% nominal level.  The minimum is somewhat spread out over models

although the worst cases are dramatic.  The MA100 is so much worse than other models

that it is not included in the graph of Figure 4.  Overall, the best method is found to be

DCC integrated by log likelihood.

From all of these performance measures, the Dynamic Conditional Correlation

methods are either the best or very near the best method.  Choosing among these models,

the mean reverting model is the general winner although the integrated versions are close

behind.
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TABLE  I

MEAN ABSOLUTE ERROR OF CORRELATION ESTIMATES

MODEL SCAL

BEKK

DIAG

BEKK

DCC LL

MR

DCC LL

INT

DCC

IMA

EX .06 MA 100 O-GARCH

FAST SINE  0.2292  0.2307  0.2260  0.2555  0.2581  0.2737  0.2599  0.2474

SINE  0.1422  0.1451  0.1381  0.1455  0.1678  0.1541  0.3038  0.2245

STEP  0.0859  0.0931  0.0709  0.0686  0.0672  0.0810  0.0652  0.1566

RAMP  0.1610  0.1631  0.1546  0.1596  0.1768  0.1601  0.2828  0.2277

CONST  0.0273  0.0276  0.0070  0.0067  0.0105  0.0276  0.0185  0.0449

T(4) SINE  0.1595  0.1668  0.1478  0.1583  0.2199  0.1599  0.3016  0.2423

SUM OF MEAN ABSOLUTE ERROR ESTIMATES OF CORRELATIONS

Figure 4
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TABLE II

FRACTION OF 5%TESTS FINDING AUTOCORRELATION IN SQUARED

STANDARDIZED SECOND RESIDUAL

MODEL SCAL

BEKK

DIAG

BEKK

DCC LL

MR

DCC LL

INT

DCC IMA EX .06 MA 100 O-GARCH

FAST SINE  0.1750  0.0550  0.0450  0.2400  0.2350  0.5750  0.9700  0.0500

SINE  0.3769  0.1313  0.0500  0.0800  0.1850  0.5750  1.0000  0.1200

STEP  0.7638  0.4650  0.1616  0.1900  0.4900  0.7500  0.9900  0.6000

RAMP  0.3550  0.1350  0.1150  0.4400  0.6350  0.6450  0.9950  0.1200

CONST  0.9600  0.2050  0.0182  0.0200  0.0250  0.9400  0.9950  0.8550

T(4) SINE  0.2000  0.1300  0.1500  0.1950  0.1050  0.2450  0.8450  0.1300

SUM OF REJECTIONS OF AUTOCORRELATION TEST2

Figure 5
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TABLE III

FRACTION OF 5% TESTS FINDING AUTOCORRELATION IN SQUARED

STANDARDIZED FIRST RESIDUAL

MODEL SCAL

BEKK

DIAG

BEKK

DCC LL

MR

DCC LL

INT

DCC IMA EX .06 MA 100 O-GARCH

FAST SINE  0.0900  0.0100  0.0050  0.0150  0.0150  0.0300  0.5150  0.0150

SINE  0.0151  0.0051  0.0100  0.0100  0.0050  0.0200  0.4850  0.0050

STEP  0.0151  0.0100  0.0051  0.0050  0.0200  0.0150  0.5350  0.0100

RAMP  0.0150  0.0050  0.0200  0.0200  0.0150  0.0250  0.6050  0.0100

CONST  0.0150  0.0100  0.0121  0.0150  0.0100  0.0100  0.5050  0.0100

T(4) SINE  0.0500  0.0450  0.0550  0.0600  0.0500  0.0600  0.3950  0.0650

SUM OF REJECTIONS OF AUTOCORRELATION TEST1

Figure  6
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TABLE IV

FRACTION OF 5% DYNAMIC QUANTILE TESTS REJECTING

VALUE AT RISK

MODEL SCAL

BEKK

DIAG

BEKK

DCC LL

MR

DCC LL

INT

DCC IMA EX .06 MA 100 O-GARCH

FAST SINE  0.0050  0.0100  0.0000  0.0000  0.0050  0.0400  0.3000  0.0100

SINE  0.0000  0.0000  0.0000  0.0000  0.0000  0.0100  0.2000  0.0650

STEP  0.0352  0.0150  0.0253  0.0200  0.0250  0.0600  0.2350  0.2850

RAMP  0.0100  0.0100  0.0000  0.0000  0.0000  0.0300  0.3300  0.0450

CONST  0.0250  0.0200  0.0000  0.0000  0.0000  0.0900  0.2650  0.0500

T(4) SINE  0.0300  0.0300  0.0200  0.0100  0.0150  0.0300  0.2100  0.0400

SUM OF REJECTIONS VALUE AT RISK

Figure 7
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VIII. EMPIRICAL RESULTS

Empirical examples of these correlation estimates are presented for several

interesting series.  First we examine the correlation between the Dow Jones Industrial

Average and the NASDAQ composite for the ten years ending in March 2000.  Then we

look at correlations between stocks and bonds, a central feature of asset allocation

models.  Finally we examine the correlation between returns on several currencies around

major historical events including the launch of the Euro.

The dramatic rise in the NASDAQ over the last part of the 90’s perplexed many

portfolio managers and delighted the new internet start-ups and day traders.  A plot of the

GARCH volatilities of these series reveals that the NASDAQ has always been more

volatile than the Dow but that this gap widens at the end of the sample.

Figure 8.
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The correlation between the Dow and NASDAQ was estimated with the DCC

integrated method  using the volatilities in the figure above.  The results are quite

interesting.

Figure 9

While for most of the decade the correlations were between .6 and .9, there were two

notable drops.  In 1993 the correlations averaged .5 and dropped below .4, and in March

of 2000 they again dropped below .4.  The episode in 2000 is associated with sector

rotation between “new economy” stocks and “brick and mortar” stocks.  The drop at the

end of the sample period is more pronounced for some estimators than for others.

Looking at just the last year in Figure 10, it can be seen that only the Orthogonal GARCH

correlations fail to decline and that the BEKK correlations are most volatile.
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Figure 10

The second empirical example is the correlation between domestic stocks and

bonds.  Taking bond returns to be minus the change in the 30 year benchmark yield to

maturity, the correlation between the Dow and the Nasdaq are shown in Figure 11 for the

integrated DCC for the last ten years.   The correlations are generally positive in the

range of .4 except for the summer of 1998 when they become highly negative, and the

end of the sample when they are about zero.  While it is widely reported in the press that

the Nasdaq does not seem to be sensitive to interest rates, the data suggests that this is

also true for the Dow.  Throughout the decade it appears that the Dow is more highly

correlated with bond prices than is the Nasdaq.
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Figure 11

Currency correlations show dramatic evidence of non-stationarity.  That is, there

are very pronounced apparent structural changes in the correlation process.   In

Figure 12
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Figure 12, the breakdown of the correlations between the Deutschmark and the Pound

and Lira in August of 1992 is very apparent.   For the Pound this was a return to a more

normal correlation while for the Lira it was a dramatic uncoupling.

Figure 13 shows currency correlations leading up to the launch of the Euro in

January 1999.  The Lira has lower correlations with the Franc and Deutschmark from 93

to 96 but then they gradually approach one.  As the Euro is launched the estimated

correlation has moved essentially to one.  In the last year it drops below .95 only once for

the Franc/Lira and not at all for the other two pairs.

Figure 13
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IX. CONCLUSIONS

In this paper a new family of multivariate GARCH models has been proposed

which can be simply estimated in two steps from univariate GARCH estimates of each

equation.  A Maximum Likelihood estimator has been proposed and several different

specifications suggested.  The goal of this proposal is to find specifications that

potentially can estimate large covariance matrices.  In this paper, only bivariate systems

have been estimated to establish the accuracy of this model for simpler structures.

However, the procedure has been carefully defined and should also work for large

systems.  A desirable practical feature of the DCC models, is that multivariate and

univariate volatility forecasts are consistent with each other.  When new variables are

added to the system, the volatility forecasts of the original assets will be unchanged and

correlations may even remain unchanged depending upon how the model is revised.

The main finding in this paper is that the bivariate version of this model provides

a very good approximation to a variety of time varying correlation processes.  The

comparison of DCC with simple multivariate GARCH and several other estimators

shows that the DCC is often the most accurate.  This is true whether the criterion is mean

absolute error, diagnostic tests or tests based on value at risk calculations.

Empirical examples from typical financial applications are quite encouraging as

they reveal important time varying features which might otherwise be difficult to

quantify.
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