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ABSTRACT OF THE DISSERTATION 

 

A Reproducing Kernel Particle Method Framework for Modeling Failure of  

Structures Subjected to Blast Loadings  

 

by 

Guohua Zhou 

 

Doctor of Philosophy in Structural Engineering 

University of California, San Diego, 2016 

Professor Jiun-Shyan Chen, Chair 

 

The numerical simulation of transient dynamic failure of structures subjected to 

blast loadings requires the key physics such as strong shocks in fluid (explosive gas and 

air) and solid media, fluid-structure interaction, material damage and fragmentations, and 

multi-body contact to be properly considered in the mathematical formulation and the 

associated numerical algorithms. These dominant phenomena in blast events yield “rough 

solution” in the conservation equations in the form of moving discontinuities that cannot 

be effectively modeled by the conventional finite element methods. A semi-Lagrangian 



 

xix 

meshfree Reproducing Kernel Particle Method (RKPM) framework is proposed to model 

such extreme events in this study. In this work, shock waves in both air and solid are 

modeled by embedding the Godunov flux into the semi-Lagrangian RKPM formulation in 

a unified manner. The essential shock physics are introduced in the proposed node-based 

Riemann solver, and the Gibbs oscillation is limited by introducing a gradient smoothing 

technique. In this thesis, two formulations are proposed and verified by solving a set of 

multi-dimensional benchmark problems involving strong shocks in fluids and solids. The 

air-structure interface is treated by a level set enhanced natural kernel contact algorithm, 

which does not require the definition of potential contact surfaces a priori. The blast-

induced fragmentation is simulated by the damage model under the semi-Lagrangian 

RKPM discretization without using the artificial element erosion technique. Several 

benchmark problems have been solved to verify the accuracy and performance of the 

proposed numerical formulation. This computational framework is then applied to the 

simulation of a reinforced concrete column subjected to blast loading and explosive 

welding processes, demonstrating the effectiveness and robustness of the proposed 

methods. 

 



 

1 

Chapter 1  

 

 

Introduction 
 

  



2 

 

1.1  MOTIVATION 

 

Structures subjected to blast loading (Figure 1.1 and Figure 1.2) cannot be 

effectively modeled by the conventional mesh-based methods due to the complexity of 

multiple physics in strong shock waves in both fluid and solid, fluid-structure interaction 

(FSI), high strain rate phenomenon, and material damage and fragmentations. Reliable and 

robust numerical simulation techniques of such problems is in high demand in defense and 

commercial industries and meshfree RKPM approach offers a number of unique features 

particularly suitable for resolving the said challenges in blast events modeling. 

 

 

Figure 1.1. Concrete structures subject to blast loading  
(http://www.nydailynews.com/new-york/authorities-rush-assess-damage-ave-subway-blast-

article-1.1141228) 

 

In these events, the material damage and fragmentation typically occur and appear 

as flying debris from concrete structure or the jetting from explosive welding plates. 

http://www.nydailynews.com/new-york/authorities-rush-assess-damage
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Meshfree methods [1, 2, 3] are more suitable for modeling problems with fragmentations 

compared with mesh-based methods such as finite element method (FEM). These methods 

build their approximation functions based on a set of scattered nodes instead of the mesh. 

Therefore they are not plagued by mesh alignment, mesh entanglement and fragmentation 

occurs naturally governed by the constitutive model due to separation of the particles. 

Among such, semi-Lagrangian meshfree formulation has been shown effective for 

modeling impact-fragmentation problems [4, 5]. In order to further tackle the problems 

involving strong shock waves as mentioned above, the shock physics must be addressed 

for these methods. Therefore it is desirable to develop a physics-based shock modeling 

technique for simulation of these extreme events involving shock-induced fragmentations. 

 

 

 

Numerically, these fragmentations break the description of the original surfaces and 

create countless new surfaces, which add the complexity to the FSI scheme. It is common 

to use an arbitrary-Lagrangian– Eulerian (ALE) formulation for the FSI [6, 7]. However, 

when fragmentations occur in the concrete structure under blast loadings, ALE methods 

often flounder because it is difficult to have a robust scheme to move the fluid mesh to 

accommodate the deformation of the structure where the material separation takes place. 

Figure 1.2. Explosive welding process 
 ( http://smt-holland.com/#/explosive_cladding). 
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On the other hand, Lagrangian solid and Eulerian fluid can be directly coupled by using 

Lagrange multipler method or penalty method [8]. However effort must be spent on the 

interface description, such as using level set method, which could be tedious when 

countless pieces of debris occur. An effective scheme is required to be developed to handle 

FSI with the fragmentations.   

 

1.2  OBJECTIVES 
 

The objective of this work is to develop a Reproducing Kernel Particle Method 

framework for modeling transient dynamic failure of structures under blast loadings. The 

major tasks of this dissertation are summarized as follows: 

• Development of physics-based shock modeling techniques under RKPM 

meshfree framework for both fluids and solids. Two formulations are proposed to 

embed the Godunov flux into the RKPM formulation. The Gibbs oscillation 

control are performed by a gradient smoothing technique in pressure and velocity 

gradients. The numerical formulations are verified by solving several multi-

dimensional benchmark problems involving strong shocks. The proposed 

approach is applied to model shock-induced fragmentations. 

• Development of a meshfree FSI scheme. The fluid-structure interface is treated 

by the level set enhanced natural kernel contact algorithm, which does not require 

the definition of potential contact surfaces a priori. This approach doesn’t require 

any surface tracking technique, mesh moving or re-meshing scheme, and is 

applicable to FSI with solid fragmentations. 

• Application of this framework to model transient dynamic failure of concrete 

structures subject to blast loading. A reinforced concrete column subject to blast 

loading is modeled in this work. The simulation results and experimental data are 
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in good agreement. 

• Application of this framework to model explosive welding. Both impact welding 

and explosive welding are studied. The numerical results show that the key 

phenomena are properly captured. 

 

1.3  OUTLINE 
 

The dissertation has been divided into seven chapters. They are outlined as follows: 

Chapter 1 discusses the motivation, objectives and outline of this dissertation. 

Chapter 2 gives an overview on shock wave modeling techniques, meshfree 

methods for shock modeling, meshfree methods for fragmentation-impact problems and 

FSI in blast problems. 

Chapter 3 presents the first formulation for shock modeling under RKPM, 

‘Meshfree Shock Hydrodynamic Formulation I: A Lagrangian Reproducing Kernel 

Particle Method for Shock Hydrodynamics’. In this formulation, the Godunov flux is 

embedded into the RKPM formulation by defining the Riemann problem at the middle 

point of each nodal pair within the domain of influence along the axial direction. And RK 

gradient approximation is employed to obtain the pressure and energy gradients. It is 

verified by solving a set of multi-dimensional benchmark problems with strong shock 

waves. 

Chapter 4 presents the second formulation for shock modeling under RKPM, 

‘Meshfree Shock Hydrodynamic Formulation II: A Godunov-type Shock Capturing 

Algorithm in Galerkin Meshfree Methods for Solid and Fluid dynamics’. Different from 

the scheme in Chapter 3, Godunov flux is embedded into the RKPM formulation by 

defining the Riemann problem based on the node-based flux gradient evaluation technique. 

This formulation is capable to solve problems involving both shocks and fragmentations. 
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It is verified by solving several multi-dimensional benchmark problems with strong shock 

waves in solids and fluids. 

Chapter 5 is dedicated to present a framework for modeling transient dynamic 

failure of concrete structures subject to blast loadings. It includes the details about 

modeling of high explosive, equivalent shock Hugoniot of concrete material and FSI. Each 

part is validated by solving corresponding bench mark problems. Finally, the simulation 

results are compared with experimental data and they are in good agreement.  

Chapter 6 applies the framework developed in Chapter 5 to further model 

explosive/impact welding. The key phenomena, wavy interface and jetting are reproduced 

quite well in the simulation. And the results are compared with the theoretical prediction 

and other publications, and they are in good agreement. 

Chapter 7 summarizes the research work performed, emphasizes the important 

original contributions, and discusses future research directions and recommendations. 
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Chapter 2  

 

 

Literature Review 
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2.1  SHOCK WAVE MODELING TECHNIQUES 

 

Shock wave is a propagation of discontinuities in pressure, density, temperature 

and velocity, and is an essential physics involved in high velocity impact and blast 

problems which must be carefully addressed. Artificial shock viscosity [9] and Godunov 

scheme [10] are two main approaches for modelling shocks and are widely used in different 

methods. von Neumann and Richtmyer [9] introduced the concept of artificial shock 

viscosity in 1950 permitted for the first time to practically deal with the problems involving 

strong shock waves. In the formulation, the artificial viscosity is considered as an extra 

artificial pressure term, added to the conservation of momentum and energy equations. In 

this manner, the shock wave front is spread over several computational cells depending on 

the viscosity magnitude. Artificial viscosity techniques are widely used in different 

methods, such as in finite element methods (FEMs) [11, 12, 13, 14, 15, 16], isogeometric 

analysis (IGA) [17] and Smoothed particle hydrodynamics (SPH) [18]. Proper selection of 

artificial viscosity coefficients for sharp and non-oscillatory shock profiles is an essential 

shortcoming of this method.  

Godunov’s method proposed by Godunov in 1959 [10] introduces the Riemann 

problem (RP) solution to resolve discontinuities at the interfaces between cells in finite 

volume method (FVM). In this method, all quantities in a computational cell are assumed 

constant given by the cell average. As a result, there are discontinuities across the cell 

boundaries which form the RP and the solution of RP provides the driving flux. The great 

advantage of this method is that the essential shock physics are considered and 

consequently it is free of problem-dependent parameters. Originally, it is only first-order 

accurate due to the piece-wise constant assumption in each cell. Later, van Leer [19, 20] 

improved the accuracy to second-order by representing the distribution of variables in each 
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cell using a piece-wise linear distribution rather than uniform except at the shock front, 

limited in such a way to preserve monotonicity. This higher order improvement by van 

Leer popularize Godunov scheme in the computational fluid dynamics community. And 

later essentially non-oscillatory scheme (ENO) [21] and weighted essentially non-

oscillatory schemes (WENO) [22] scheme are proposed to further improve the accuracy.  

 

2.2  MESHFREE METHODS FOR SHOCK MODELING   

 

To address shock physics, Godunov scheme which is originally proposed in finite 

volume method, has been introduced into the meshfree methods [23, 24, 25, 26, 27, 28, 

29]. Inutsuka [26] and, Cha and Whitworth [23] independently proposed the so-call 

Godunov-type SPH (GSPH) method. In this method, the force acting on each particle is 

determined by the RP solutions. And the use of the Riemann solver is introduced in a 

simple analogy of the grid-based method such as FVM. However, on its own this technique 

of introducing RP solution does not eliminate other low-order SPH errors, in particular the 

so-called ‘E0’ zeroth-order error [30] and those errors can de-stabilize the solution [31]. In 

[32], Luo et al developed an edge-based upwind finite element scheme in which the 

standard weak form is manipulated into a finite volume form and the Roe’s numerical flux 

function is used to replace the original unstable flux to perform an upwind effect. Later, 

Löhner et al extended the idea in [32] to finite point method [28]. In [25, 27], the authors 

proposed the so-called finite volume particle method (FVPM) and claimed that the 

meshfree method can be treated as the classic finite volume method with the difference that 

the geometrical coefficients (cell volume, surface and normal vector) are calculated 

implicitly via domain integrals rather than given by physical cells. FVPM depends crucially 

on the accuracy of this integral which can be performed by numerical integration [33, 30]. 



10 

 

An acceptable accuracy of these geometrical coefficient integrals is computationally 

expensive.  

Under the Galerkin meshfree framework, a Riemann-SCNI method [34, 35] has 

been developed to introduce Godunov scheme into the Reproducing Kernel Particle 

Method (RKPM) [2, 36] by defining local Riemann problems at the interfaces of stabilized 

conforming nodal integration (SCNI) [37] smoothing cells when performing pressure 

gradient smoothing. However, it requires a conforming Voronoi discretization and 

therefore is difficult to be applied for modelling shock-induced fragmentation problems. 

 

2.3  MESHFREE METHODS FOR FRAGMENT-IMPACT PROBLEMS  

 

Belytschko et al [38] modeled the impact-penetration problem using FEM. In order 

to deal with mesh distortion and fragmentations, the element erosion model [38] is 

employed. This approach is simple but introduces errors in mass conservation, as well as 

in energy and momentum conservations. On the other hand, it causes numerical diffusion 

of material damage and leads to artificial material degradation inconsistent with the 

physical material damage.  

In comparison with mesh-based methods, meshfree methods [1, 2, 3] are more 

suitable for modelling problems involving fragmentations. These methods construct the 

approximation based on a set of scattered nodes without the connectivity between them 

(mesh). Therefore, they are not plagued by mesh alignment, mesh entanglement, time-

consuming mesh generation, and other issues related to mesh-based methods. In particular, 

fragmentations occur naturally due to material damage and the separation of particles. The 

SPH has been applied for simulations of hypervelocity impact and fragmentation [39, 40, 

41, 42]. However, the aforementioned instability, lack of linear consistency, and the 
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existence of zero-energy modes [39] are the common issues in SPH methods that require 

additional treatments and modifications.  

The reproducing kernel particle method (RKPM) [2, 36] was proposed as a 

correction to SPH in recovering the consistency conditions that are not satisfied in the 

conventional SPH method. In particular, semi-Lagrangian RKPM [43] has been proposed 

to model extremely large deformation problems and successfully applied to earth moving 

simulations [5] and the impact and fragmentation problems [4, 44]. And recently there are 

further progresses made on this method for modeling fragment-impact problems: the quasi‐

linear reproducing kernel particle method [45] to improve the accuracy during the linear to 

constant basis transition; the accelerated, convergent, and stable nodal integration in 

Galerkin meshfree methods [46] to improve the efficiency and stability; and the level set 

enhanced natural kernel contact algorithm [44] to improve the accuracy in the contact 

algorithm for problems involving fragmentations. 

 

2.4  FLUID-STRUCTURE INTERACTION IN BLAST PROBLEMS 

 

In modelling structures under blast loadings, compressible fluid-structure 

interaction (FSI) severs as the mechanism to impart the strong shock wave from fluid to 

solid, and requires to be addressed carefully. Structures are typically described by the 

Lagrangian formulation where it avoids the numerical difficulty associated with convective 

transport terms and a precise definition of moving boundaries is straightforward. In [47], 

it also models the compressible fluid with Lagrangian formulation and however large flow 

distortions lead to the element entanglement. Therefore, usually the fluid is described by 

Eulerian formulation where the mesh is fixed. Arbitrary-Lagrangian-Eulerian (ALE) 

formulation is a common framework used for the compressible FSI [6, 7]. An important 
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ingredient of ALE formation is the mesh-updating algorithm used to adjust the fluid mesh 

to accommodate the structure deformation. ALE formulation can satisfy the interface 

condition accurately since the interface is well preserved by Lagrangian description. 

However, if fragmentations occur in the structure as in blast problems, ALE methods often 

flounder because it is difficult to have a robust scheme to move the fluid mesh to match 

the deformation of the structure where the surface cracking and fragmentations take place. 

Legay et al [8] directly coupled Lagrangian solid and Eulerian fluid by using Lagrange 

multipler method and penalty method. This approach does not require to update the mesh 

since it is fully Eulerian description in fluid domain. And efforts must be spent on the 

interface tracking, such as using Level set method as in [8]. However under the 

circumstance of concrete structures subjected to near-field detonation as shown in Figure 

1.1, there are countless pieces of debris (fragmentations) to be tracked, which is tedious. 
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3.1  INTRODUCTION 

 

A Lagrangian description of the Reproducing Kernel Particle Method (RKPM) is 

proposed for modeling shock hydrodynamics. The weak forms of the compressible 

hydrodynamic equations are discretized by a set of scattered nodes without any background 

mesh for discretization or domain integration. Shock physics is embedded into the 

formulation by computing the pressure gradient using the Riemann problem solution in 

conjunction with gradient smoothing, which also precludes the Gibbs phenomenon. 

Correspondingly, the weak form of hydrodynamics is integrated using Stabilized 

Nonconforming Nodal Integration (SNNI) with the embedded Riemann solution, and is 

termed Riemann-SNNI. The performance of the proposed method for shock dynamics is 

examined by solving a set of benchmark problems, where results are attained with good 

accuracy.  

This chapter is organized as follows. In section 2, the reproducing kernel 

discretization of the Lagrangian hydrodynamic equations is presented. In section 3, the 

compressible flow solver for shock physics under the RKPM framework is introduced. 

Numerical results are presented in section 4 to demonstrate the effectiveness of the 

proposed method, and conclusions and discussions are given in section 5. 

 

3.2  REPRODUCING KERNEL DISCRETIZATION OF LAGRANGIAN HYDRODYNAMICS 

 

3.2.1  Basic equations 

 

This work solves the Euler equations of compressible hydrodynamics in the 

Lagrangian description. We denote by sdn
tΩ ∈ℜ the configuration of the problem material 
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domain at time t, where nsd is the number of spatial dimensions. The domain 0
sdnΩ ∈ℜ

represents the initial configuration at time t = 0. We denote by x and X the particle positions 

in tΩ and 0Ω respectively, and the mapping ϕ  between the two is ( , )t=x Xϕ . Denote 

u as the displacement vector where ( ) ( ), ,t t= −u X x X X .  

Without loss of generality, Lagrangian forms of the conservation equations of 

compressible hydrodynamics in the absence of body force and heat conduction in tΩ are  

 ( )(0) det ,ρ ρ= F   (3.1) 

 d ,
dt

ρ = ⋅xv σ∇   (3.2) 

 ( )d ,
d
E
t

ρ = − ⋅ ⋅x v σ∇   (3.3) 

where ρ(0) and ρ are the densities in the initial and current configuration respectively, 

d( )/dt denotes material time derivative, d dt=v u /  is the velocity vector, x∇  denotes the 

gradient with respect to x, σ is the Cauchy stress tensor, E is the total energy per unit mass, 

( )det F is the determinant of the deformation gradient tensor = ∂ ∂F x / X , and 

/ 2E e= + ⋅v v  is the total energy density, where e is the internal energy density.  

 

3.2.2  Lagrangian reproducing kernel (RK) approximation 

 

The Lagrangian RK approximation of displacement u, denoted as hu , is 

constructed using the material coordinate X as 

 
supp( )

( , ) ( ) ( ),h
I I

I
t t

∈

= Ψ∑
X

u X X d   (3.4) 

where  and ( )I td  are the RK shape function and the generalized coordinate of )(XIΨ
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the I-th node respectively, the set supp(X) is defined as,  

 { }supp( ) ( ) 0 .II= Ψ ≠X X  (3.5) 

The shape function is constructed as a correction to a kernel function ( )a Iφ −X X  with a 

compact support a, 

 ( ) ( ; ) ( ),I I a IC φΨ = − −X X X X X X   (3.6) 

where the kernel function ( )a Iφ −X X is a positive function, which defines the locality and 

order of the smoothness of the approximation: 

 
( ) 0,

,
( ) 0,

a I I

a I I

a
a

φ
φ
 − ≥ − ≤
 − = − >

X X X X
X X X X

  (3.7) 

where ‘ ’ denotes the distance measure. The function ( ; )IC −X X X is a correction function 

which is a linear combination of complete n-th order monomials as 

 1 1 2 2 3 3
0

( ; ) ( )( ) ( ) ( )

( ) ( ),

n
i j k

I ijk I I I
i j k

T
I

C b X X X X X X
+ + =

− = − − −

= −

∑X X X X

H X X b X
  (3.8) 

( ) ( )2
1 1 2 2 3 3 1 1 3 3( ) 1 ,nT

I I I I I IX X X X X X X X X X − = − − − − − H X X   

 (3.9) 

where bijk(X) is the coefficient of the basis function, and ( )I−H X X and ( )b X  are vectors 

of the basis functions and the associated coefficients, respectively. The coefficient vector 

( )b X  is obtained by enforcing the reproducing conditions of monomial bases up to n-th 

order,  

 1 2 3 1 2 3
supp( )

( ) , 0,1, , ,i j k i j k
I I I I

I
X X X X X X i j k n

∈

Ψ = + + =∑
X

X    (3.10) 

which is equivalent to the following equation 
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( ) ( ) ( )1 1 2 2 3 3 0 0 0
supp( )

( ) , 0,1, , ,i j k
I I I I i j k

I
X X X X X X i j k nδ δ δ

∈

Ψ − − − = + + =∑
X

X    (3.11) 

whereδ is the Kronecker delta. Expressing the above equation in matrix form, we have 

 
supp( )

( ) ( ) ( ).T T
I I

I∈
Ψ − =∑

X
X H X X H 0   (3.12) 

Combining equation (3.6), (3.8) and (3.12) yields  

 1( ) ( ) ( ),−=b X M X H 0   (3.13) 

where ( )M X  is the so-called moment matrix 

 
supp( )

( ) ( ) ( ) ( ).T
I I a I

I
φ

∈

= − − −∑
X

M X H X X H X X X X   (3.14) 

By substituting equation (3.13) into (3.8) the correction function ( ; )IC −X X X  is 

obtained, and consequently the RK shape function is constructed as 

 1( ) ( ) ( ) ( ) ( ).T
I I a Iφ−Ψ = − −X H 0 M X H X X X X   (3.15) 

The kernel function ( )a Iφ −X X defines the order of smoothness and the locality, 

and the basis function vector ( )I−H X X controls the order of completeness of the 

approximation.  

 

3.2.3  Galerkin approximation 

 

For convenience we choose the updated Lagrangian form of the weak statement of 

the problem, which is more natural in the treatment of shocks via the Reimman problem. 

The weak form for conservation of linear momentum (i.e. equation (3.2)) with reference 

as the current configuration is: find 1
gH∈v , such that 1

0H∀ ∈w : 
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 d d + : d d 0,
d h

t t t
t

ρ
Ω Ω Γ

⋅ Ω ∇ Ω− ⋅ Γ =∫ ∫ ∫xvw w σ w h   (3.16) 

where h
tΓ  denotes the natural boundary in the current configuration, and h is the traction 

vector on h
tΓ .  

Note that in hydrodynamics, the pressure dominates the shock behavior. To treat 

the pressure portion of the shocks using a Godunov scheme, the Cauchy stress tensor σ  

is decomposed into deviatoric and volumetric parts 

 d v ,= +σ σ σ   (3.17) 

where ( )v
11 22 33

1
3
σ σ σ= + +σ I ( I is the identity tensor), and d v= −σ σ σ . 

The weak form is then expressed with volumetric and deviatoric decomposition of the 

stress, and the volumetric part of the internal force is integrated by parts to obtain: 

 ( )d v vd d + : d ( )d d 0.
d h

t t t t
t

ρ
Ω Ω Ω Γ

⋅ Ω ∇ Ω− ⋅ ∇ ⋅ + ⋅ ⋅ − Γ Ω =∫ ∫ ∫ ∫x xvw w σ w σ w n σ h   (3.18) 

Note that an additional term on the boundary has appeared in the formulation; the last term 

in the above represents the weak enforcement of natural boundary conditions inherent in 

the employment of the weak form. The weak form (3.18) is applicable to both solid and 

fluid if a suitable constitutive material law or equation of state is provided. For 

compressible flow, the pressure is given by an equation of state (EOS). For example, the 

EOS of ideal gas can be described by 

 ( )1 .P eγ ρ= −   (3.19) 

here γ is the adiabatic index, assumed to be constant for a given gas. Without loss of 

generality, in this work we consider the inviscid flow case where 

 v ,P= = −σ σ I   (3.20) 
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where P is the pressure.  

The Galerkin approximation of (3.18) with inviscid flow asks to find h hS∈v , 

such that h hV∀ ∈w : 

 ( )d d + d ( )d 0.
d h

t t t

h
h h hP P

t
ρ

Ω Ω Γ

⋅ Ω ⋅ Ω− ⋅ − Γ =∫ ∫ ∫xvw w w n h∇   (3.21) 

where 1h
gS H⊂  and 1

0 .hV H⊂  Note that kinematically admissible meshfree 

approximations can be constructed by e.g., the transformation method [36], or boundary 

singular kernel method [48]. In this work we employed the latter. The energy equation 

(3.3) and conservation of mass equation (3.1) is not discretized, but instead enforced 

strongly at each node. We choose to formulate the Galerkin approximation under the 

framework of nodal integration, when, if treated properly, can provide a stable, accurate, 

and efficient means to perform domain integration, and is far more efficient than Gaussian 

integration [37, 49, 46]. With the employment of nodal integration, the numerical 

integration of the Galerkin equation (3.21) is expressed as 

 int ext g 0+ − − =Ma f f f   (3.22) 
where d dt=a v / , and 

 

1

int *

1

ext

1

g

1

( ) ( )

( )

( )

( )( )

NP

I L I L L
L
NP

I I L L L
L
NPh

I I L L
L

NPh

I I L L
L

V

P V

S

P S

ρ
=

=

=

=

Ψ

Ψ ∇

Ψ

Ψ −

∑

∑

∑

∑

x

M = x I x

f = x

f = x h

f = x n

  (3.23) 

where NP is the total number of nodes, VI is the volume for node I in the current 

configuration, LS  is the L-th weight of the NPh integration points on the natural boundary 
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in the current configuration, and * *( )L LP P∇ ≡∇x x X is the smoothed pressure gradient at 

node L which has been substituted for ( )LP∇x X , calculated by embedding shock physics 

under the strain smoothing framework as will be discussed in section 3. In this dissertation, 

‘− ’ is used to denote smoothed terms. In the discrete equations (3.23), mass lumping has 

been employed in conjunction with the partition of unity of the shape functions.  

Note that in the Lagrangian RK approximation given, if the reference configuration 

is chosen as current configuration as in equation (3.16), mapping x  to the material 

configuration via 1( , )t−X = xϕ  is, in theory necessary to construct the approximation. 

However since quantities are evaluated at fixed material points in the Lagrangian 

description, the mapping does not actually need to be performed. Spatial derivatives can 

be constructed implicitly by chain rule rather than directly as discussed in section 3. 

 

3.3  THE FLOW SOLVER 

 

In this section, we show how the pressure gradient term in equation (3.23) is 

evaluated, how the energy equation (3.3) is solved, and how the density and pressure are 

updated. 

 

3.3.1  Local Riemann problem for nodal pairs 

 

In the finite volume method and Riemann-SCNI [35, 34], the pressure gradient is 

computed by performing a contour integral over the boundaries of a control volume. At 

each cell boundary, the Godunov flux [50] based on the local Riemann problem solution is 

computed by satisfying the Rankine-Hugoniot jump equations. In meshfree methods, 
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efforts have been made to bring in the spirit of Godunov scheme, such as the work in [23, 

24, 25, 26, 27, 28, 29]. One common feature of these work is that midpoints between nodes 

are treated as the ‘boundary’ and the flux is evaluated there. In this work, we adopt the 

same approach by defining the Riemann problem at the midpoint of each nodal pair in the 

current configuration.  

 

 
 

Figure 3.1. The local Riemann problem defined at the middle point of each nodal pair IJ in the 
current configuration (two-dimensional space case for illustration purpose). 

 

 
Figure 3.2. One single Riemann problem pair IJ and velocity decomposition. 

 

Different from in Riemann-SCNI where the Riemann Problem is defined at the cell 

boundaries, here the local Riemann Problem is defined at the middle point of each nodal 

J 

IJ 

I : Node 
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IJ 

s 
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pair in the current configuration as shown in Figure 3.1. In this work we consider pairing 

only nodes J within the support of a given node I, denoting each node in the set with as 

pair IJ. For each pair IJ, we define a local Riemann Problem at the middle point between 

the pair, as shown in Figure 3.2. In this work, the non-iterative Riemann solver by 

Dukowicz [51] is adopted to solve the problem. 

The Riemann problem is defined as: given the left state { LP , Lv , Lρ } and the right 

state { RP , Rv , Rρ  }, solve for the pressure P* and velocity v* at the interface. In this 

work, the subscripts ‘L’ and ‘R’ denote the left and right state variables, respectively. By 

using Dukowicz Riemann solver [51], the velocity v* is obtained by solving the following 

semi-quadratic equation, 

 ( ) ( )* * * * * * * * * *
min min max max 0,L L R R L RB v v v v B v v v v P Pρ ρ− − + − − + − =   (3.24) 

where  

 
* *
min max
* 2 * 2

0.5 / , 0.5 / ;
0.25 ( ) / , 0.25 ( ) / .

L L L R R R

L L L L L R R R R R

v v C B v v C B
P P C B P P C Bρ ρ

= − = +

= − = −
  (3.25) 

Here C is the sound speed, and B is a parameter directly related to the shock density ratio 

in the limit of strong shocks. For an ideal gas B= (γ+1)/2. The details of selecting B are 

given in [51]. After the velocity v* is solved, the pressure P* can be easily obtained by the 

following equation,  

( ) ( ) ( )* * * * * * * * * * *
min min max max

1 1 1 .
2 2 2R L L L R RP P P B v v v v B v v v vρ ρ= + + − − − − −   (3.26) 

Thus, this Riemann solver is non-iterative and efficient.  

For the interacting pair of node I and J, we employ the Riemann solution P* and v* 

as the corrected midpoint pressure and velocity fields as  

 * *,IJP P=   (3.27) 
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 * *v ,
2

n n
I J

IJ
+

= +
v vv s   (3.28) 

where s is the unit vector connecting nodes I and J, and n
Iv  and n

Jv  are the transverse 

velocity components at nodes I and J, respectively, as shown in Figure 3.2. 

 

3.3.2  Calculation of pressure gradient by Lagrangian strain smoothing 

 

Since the direct nodal derivative can yield unstable solutions due to severe 

underestimation of short-wavelength modes [37], here we compute smoothed gradients 

using the Stabilized Nonconforming Nodal Integration (SNNI) [4, 5] to enhance the 

numerical stability. The basic idea of the SNNI gradient is that instead of directly taking a 

derivative at the node, the gradient is averaged over a nodal domain and converted to a 

contour integral [4, 5]. The SNNI gradient of the shape function JΨ  with respect to XI, 

denoted as ( )J I∇ ΨX X , is 

 ( ) ( ) ( )1 1 ,
II

J I J J K K K
K EI I

d L
A A ∈Ω

∇ Ψ = ∇ Ψ Ω ≈ Ψ∑∫X XX X X N   (3.29) 

where in two-dimensional space case (see Figure 3.3), IΩ  is the smoothing cell 

associated with node I, the set EI is a set containing all the edges surrounding the smoothing 

cell IΩ  , AI  is the area of IΩ , XK is the coordinate of the evaluation point on the edge 

K, LK and NK are the edge length and outward normal vector respectively. Although the 

inverse mapping to calculate Lagrangian shape functions can be avoided since all 

evaluation points are fixed material points, spatial derivatives are still required for the 
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updated Lagrangian formulation. To avoid computing spatial derivatives directly, 

( ),J I t∇ ΨX X  can be obtained implicitly by the chain rule,   

 ( ) ( ) ( ) ,T
J I I J I

−Ψ Ψ∇ = ⋅∇x XX F X X  (3.30) 

where 1−F  is computed by taking the inverse of the smoothed deformation gradient tensor 

F calculated point-wise as [52]: 

 ( ) ( ) ( )
supp( )

, , .
I

I J I J J
J

t t
∈

= ∇ Ψ ⊗∑ X

X
F X X x X  (3.31) 

 

 

 

 

Figure 3.3. SNNI non-conforming cells in the undeformed configuration 

 

 The pressure gradient with respect to the current spatial coordinate at each node 

can be approximated as 

 * *

supp( )
2 ( ) ,

I

I J I IJ
J

P P
∈

∇ = ∇ Ψ∑x x

X
X  (3.32) 

where * *( )I IP P∇ ≡∇x x X  and *
IJP  is the pressure associated with the IJ pair. In arriving 

at the above, we have assumed the mapping near node I is affine, such that the midpoint 

remains the midpoint after the local deformation. The factor of two naturally comes from 

the fact that a set of shape functions constructed at the midpoints can be calculated simply 

by scaling ( )J I∇ Ψx X .  

 

: Evaluation point K K 
 

: Middle points  
: Node I  

: Smoothing cell  

I 
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3.3.3  Solution procedures 

 

In preprocessing, all shape functions and gradient approximation terms are 

computed and stored. We employ the explicit second-order version of the Newmark-Beta 

method to integrate the semi-discrete momentum equation (3.22). The Riemann solution 

enriched pressure gradient in intf  is calculated for each node at each time step using the 

technique presented in the last section. 

For the Energy equation (3.3), forward time integration is performed with the Euler 

scheme and the equation is solved strongly at each node. Consistent with the momentum 

equation, the smoothed gradient, the Riemann solution enriched pressure and velocity are 

used to calculate the total internal energy density, 

 ( 1) ( ) * * ( )( ) ,n n nE E t P+  = + ∆ ∇ ⋅ − 
x v  (3.33) 

where superscript n denotes the n-th time step, and * *( )P∇ ⋅ −x v is computed by the 

following smoothed gradient 

 ( )* * * *
( , )( ) 2 .

I
I

t J I IJ IJ
J Z

P P
∈

∇ − = − ∇ Ψ∑x x
x Xv X v  (3.34) 

where *
IJP  and *

IJv is the Riemann solution enriched pressure and velocity associated with 

the IJ pair for node I.  

The internal energy density is then updated as 

 ( )( 1) ( 1) ( 1)1 .
2

n n ne E+ + += − ⋅v v  (3.35) 

The conservation of mass in the Lagrangian form leads to the following simple update of 

density, 

 
(0)

( 1)
( 1) .

det( )
n

n

ρρ +
+=

F
 (3.36) 
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With the updated internal energy and density at hand, the pressure is then computed at each 

node by the EOS (assuming idea gas), 

 ( )( 1) ( 1) ( 1)1 .n n nP eγ ρ+ + += −  (3.37) 

The formulation developed above is a combination of using the Riemann problem 

solution to evaluate the Godunov flux by considering the shock physics and the SNNI 

gradient smoothing technique and is termed ‘Riemann-SNNI’ in this work.  

 

3.4  NUMERICAL EXAMPLES 

 

For all the numerical examples, the support size for the RK approximation is set to 

be 1.75 times the nodal spacing, and linear basis with a cubic spline kernel function is 

employed.  

 

3.4.1  One-dimensional Sod shock tube problem 

 

We consider the one-dimensional Sod shock tube problem [53]on the domain [0, 

1] consisting of two materials with initial states as 1Lρ = , 0Lv = , 1LP =  and 0.125Rρ = , 

0Rv = , 0.1RP = , separated by a contact discontinuity at x = 0.5. The adiabatic index for the 

ideal gas is γ = 1.4. After the interaction between the two sides, a shock wave propagates 

towards the right and a rarefaction wave moves left. Three uniform discretizations are 

employed (250 nodes, 500 nodes and 1000 nodes) to perform the simulation, and the results 

are compared with the exact solutions in Figure 3.4 at time 0.2. As shown in the figure, the 

numerical results obtained by Riemann-SNNI agree well with the exact solution in terms 

of the solution magnitude and shock speed, and the solution converges with mesh 
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refinement. For all three simulations, the sharp discontinuity is captured by the scheme. 

The so-called ‘wall-heating’ phenomenon [54] is observed in internal energy, which is 

expected to occur in Lagrangian hydrodynamic formulations [54]. 

 

 
(a) 

 
(b) 

Figure 3.4. The results of one-dimensional Sod shock tube problem at time t = 0.2. (a) pressure; 
(b) velocity; (c) density; (d) internal energy. 
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(c) 

 
(d) 

Figure 3.4. The results of one-dimensional Sod shock tube problem at time t = 0.2. (a) pressure; 
(b) velocity; (c) density; (d) internal energy. (Continued) 

 

3.4.2  One-dimensional Noh implosion problem  

 

For the one-dimensional Noh implosion problem [54], the problem states that a cold 

gas (with zero internal energy) impacts the wall from the right and generates a shock wave 
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moving toward the right. The initial velocity is chosen as v(0) = − 1.0 and initial pressure is 

chosen as zero. For numerical purposes the initial pressure is set to 610− . The adiabatic 

index and density are set to γ = 5/3 and ρ(0) = 1.0 respectively. It is a strong shock problem 

and tests whether a method is capable to correctly transform the kinetic energy into internal 

energy. The problem domain is chosen as [0, 0.5] and is discretized by three uniform node 

distributions: 100 nodes, 200 nodes and 400 nodes. 

 

   
    (a)                                     (b) 

Figure 3.5. The results of one-dimensional Noh implosion problem at time t = 0.125: (a) pressure; 
(b) velocity;(c) density; (d) internal energy. 
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(c)                                     (d) 

Figure 3.5. The results of one-dimensional Noh implosion problem at time t = 0.125: (a) pressure; 
(b) velocity;(c) density; (d) internal energy. (Continued) 

 

Based on the results in Figure 3.5, we can see that the solution magnitude and shock 

wave speed obtained by Riemann-SNNI matches well with the exact solution [54] and the 

sharp shock front is captured. With mesh refinement, the solution converges as shown in 

the figure. This example demonstrates that Riemann-SNNI can capture strong shock waves 

and correctly transform kinetic energy into internal energy.   

 

3.4.3  The Sedov blast wave problem 

 

Two-dimensional Sedov blast wave problem [55] is computed on a square domain 

with edge length L = 1.2. Here, a sudden release of the energy at the origin generates an 

expanding shock wave. The initial condition of the problem consists of zero velocity field 
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and the Dirac delta distribution of the internal energy at the origin. In order to approximate 

the Dirac delta function, the four nodes nearest to the origin are assigned non-zero energy 

with a bilinear distribution which attains the maximum at the origin and vanishes between 

the second and third row of nodes, and the second and third column of nodes. The value of 

the bilinear function at the origin is set such that the total energy is 0.25. For numerical 

purposes, the initial pressures for the rest nodes are set to 610− . The adiabatic index and 

density are set to γ = 1.4 and ρ(0) = 1.0, respectively. This problem tests whether a method 

is capable to correctly transform internal energy into kinetic energy. The direction of 

energy transformation is opposite to the previous Noh implosion problem.  

 

 

(a) 
Figure 3.6. The result of two-dimensional Sedov problem at time t = 1.0. (a) the deformed node 

distribution;(b) the scatter plot of density v.s. radial distance in different directions. 
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(b) 

Figure 3.6. The result of two-dimensional Sedov problem at time t = 1.0. (a) the deformed node 
distribution;(b) the scatter plot of density v.s. radial distance in different directions. (Continued) 

 

Since the problem is symmetric, the top right quarter of the domain is modeled with 

proper symmetry conditions prescribed on the boundaries. On the right edge and top edge, 

the pressure is equal to the initial pressure 610− . A uniform node distribution 48 × 48 is 

used to perform this simulation. The deformed nodal position and the density distribution 

obtained by Riemann-SNNI at time t = 1.0 are given in Figure 3.6 (a) and (b) respectively. 

The numerical density result is compared with exact solution in Figure 3.6 (b). The results 

are consistent with exact solution in terms of the shock speed and the density magnitude. 

On the other hand, the density distributions at time 1.0 for every 2° between 0° and 45° are 

plotted (the results at different angles are marked with different markers) and the result 
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shows good radial symmetry even though the problem is solved in Cartesian coordinates 

and discretized with nodes aligned with the Cartesian axes.  

 

3.4.4  The Dukowicz problem 

 

The Dukowicz problem is a two-dimensional shock refraction problem designed by 

Dukowicz and Meltz [56]. Here we use this problem to test whether Riemann-SNNI is 

capable to deal with multimaterial shock interaction in a multidimensional setting. The 

computational domain consists of two adjacent regions with equal pressures, but differing 

densities. They are separated by an interface aligned at 30° to the horizontal direction as 

shown in Figure 3.7. The initial conditions of the two regions are 1Lρ = , 0Lv = , 1LP =  

and 1.5Rρ = , 0Rv = , 1RP = , respectively. The upper and lower boundaries are fixed in 

the normal directions and the left boundary is a piston, which moves from left to right with 

a constant speed 1.48. A uniform node distribution 110 × 30 is employed. The simulation 

is run to a time of 1.25, just before the simulation breaks down due to large distortions, 

which is expected for a Lagrangian formulation. The exact solution in terms of shock 

reflection and transmission angles and density distribution is given in Figure 3.8. The 

deformed node distribution is given in Figure 3.9 (a). Figure 3.9 (b) shows the density 

contour plot obtained by Riemann-SNNI which is consistent with the exact solution. On 

the other hand, in the same figure, it also shows the interfaces along with the incident and 

the transmitted shock waves clearly and they match well with the theoretic interfaces 

marked by the black straight solid lines. The reflective shock does not show up clearly in 

the figure, which is expected since the difference in density across it is small. This problem 

demonstrates Riemann-SNNI can naturally handle multimaterial shock interaction in the 

multidimensional case.  
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Figure 3.7. The initial conditions of the Dukowicz problem. 

 

       

Figure 3.8. The exact solution for the Dukowicz problem. 

 

 

(a) 
Figure 3.9. The result of Dukowicz problem by using Riemann-SNNI at time t =1.25. (a) the 

deformed node distribution; (b) the density contour plot. 

Region 1 2 3 4 5 

Angle 60.00 131.02 21.90 90.96 56.12 

Density 1.00 1.50 4.29 2.93 2.67 

 
Interface 
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(b) 
Figure 3.9. The result of Dukowicz problem by using Riemann-SNNI at time t =1.25. (a) the 

deformed node distribution; (b) the density contour plot. (Continued) 

 

3.5  CONCLUSION  

 

In this chapter we introduced a Lagrangian RKPM meshfree formulation with a 

node-based SNNI Godunov flux computation for modeling shock hydrodynamics in 

compressible flows. In comparison with the former work Riemann-SCNI in [35, 34], the 

proposed Riemann-SNNI eliminates the requirement of the conforming gradient 

smoothing cells by defining a node-based Riemann problem with pressure smoothed by 

non-conforming cells. Compared with GSPH, Riemann-SNNI inherits the advantages of 

RKPM over SPH and assures consistency and accuracy. In this framework only the 

orientation connecting node pairs is updated to form the Riemann problem in contrast to 

other Lagrangian methods (for example FVPM) where all the geometry information of 

cells is updated at each time step. This allows the shock physics to be embedded into the 

solution in a truly meshfree (node-based) setting. A set of numerical examples are given to 

demonstrate how the proposed method is capable of capturing the strong shock waves with 

sharp fronts as well as shock interactions.  
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This formulation works well for problems without material separation as shown in 

all the benchmark problems. However, it involves an extra contour integral term (the fourth 

term in equation (3.18)) which requires the definition of a physical boundary even at free 

surfaces, which could be difficult for problems with fragmentations. This limitation 

provides the motivation to further improve the formulation, which is to be discussed in next 

chapter.  
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4.1  INTRODUCTION

 

A new formulation is proposed in this chapter to introduce the Godunov scheme 

into Galerkin meshfree methods to address shock physics. Compared with the formulation 

in Chapter 3, this formulation does not require conforming smoothing cells and utilizes the 

regular weak form (no extra contour integral term), and therefore is capable to model 

shock-induced fragmentations. The formulation is applicable to both solid and fluid 

dynamics. The performance of this method is examed by solving a set of benchmark 

problems, where the computational results are attained with good quality. As a general 

framework, it can be applied to other Galerkin meshfree and Galerkin mesh-based 

methods.  

This chapter is organized as follows. In section 2, we provide the details of Galerkin 

approximation of the conservation laws. In section 3, both the Lagrangian and semi-

Lagrangian discrete formulations are presented. The flow solver and the time integration 

procedure are discussed in section 4 and 5 respectively. The numerical results are presented 

in section 6 to demonstrate the effectiveness of this method, and followed by conclusions 

in section 7. 

 

4.2  GALERKIN APPROXIMATION 

 

The same as in the formulation in Chapter 3, we choose the updated Lagrangian 

form of the weak statement of the problem, which is more natural in the treatment of shocks 

via the Reimman problem. The weak form for conservation of linear momentum equation 

(3.2) with reference to the current configuration is: find 1
gH∈u , such that 1

0H∀ ∈w : 
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2

2

d d + : d d 0,
d h

t t t
t

ρ
Ω Ω Γ

⋅ Ω Ω− ⋅ Γ =∫ ∫ ∫xuw w σ w h∇   (4.1) 

where h
tΓ  denotes the natural boundary, and h is the traction vector on h

tΓ . Let the 

Cauchy stress tensor be decomposed into deviatoric and volumetric parts,  

 d v ,= +σ σ σ   (4.2) 

where v P−=σ I ; the identity tensor and P is the hydrostatic pressure. Using (4.2), 

equation (4.1) is then expressed as 

 
2

d v
2

d d + : d + : d d 0.
d h

t t t t
t

ρ
Ω Ω Ω Γ

⋅ Ω Ω Ω− ⋅ Γ =∫ ∫ ∫ ∫x xuw w σ w σ w h∇ ∇   (4.3) 

Let hu  and hw  be the Lagrangian reproducing kernel (RK) approximation (details are 

given in section 3) of u and w, the Galerkin method for (4.3) is to find h hS∈u , such that
h hV∀ ∈w : 

    
2

d v
2

d d + : ( )d + : ( )d d 0,
d h

t t t t

h
h h h h h h

t
ρ

Ω Ω Ω Γ

⋅ Ω Ω Ω− ⋅ Γ =∫ ∫ ∫ ∫x xuw w σ u w σ u w h∇ ∇   (4.4) 

with 1
g

hS H⊂  and 1
0

hV H⊂ . Note that kinematically admissible RK approximations can 

be constructed by e.g., the transformation method [36], or boundary singular kernel method 

[48]. In this work we employed the latter. The energy equation (3.3)  and conservation 

of mass equation (3.1) are not discretized, but instead enforced strongly at each node. 

The second and third terms in equation (4.4) contribute to the deviatoric and 

volumetric internal force terms, and are denoted by df and vf respectively. By 

introducing 
1

NPh
I II =

= Ψ∑w c where IΨ is the RK shape function and cI is arbitrary 

coefficient, their components associated with node I in the i-th direction are: 
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d d
,

v v
,

,

.
t

t

I i I j ij

I i I j ij

f d

f d

σ

σ

Ω

Ω

= Ψ Ω

= Ψ Ω

∫

∫
  (4.5) 

To introduce shock physics into (4.4), a Riemann solution enriched flux gradient 

was introduced in Riemann-SCNI [34, 35]. There, Rankine-Hugoniot jump condition and 

entropy condition was met by solving the Riemann problem on Voronoi cell interfaces, 

and gradient smoothing via contour integral is performed to evaluate the Riemann problem 

solution enriched smoothed pressure gradient. However, for applications such as shock-

induced fragmentation problems where semi-Lagrangian meshfree methods must be 

employed, continually reconstructing Voronoi cells is extremely cumbersome and 

computationally expensive. To avoid this difficulty, a general framework of node-based 

flux gradient evaluation is proposed which is applicable to direct gradients and smoothed 

gradients using both conforming and nonconforming cells, and is well-suited for 

Lagrangian and semi-Lagrangian meshfree simulations. 

First, we rewrite equation (4.5) as 

 

( )

v v
,

v
,

1

v
, ,

1 1

v
, ,

1
.

t

t

t

t

I i I j ij

NP

J I j ij
J

NP NP

J I j I J j ij
J J

NP

J I j I J j ij
J

f d

d

d

d

σ

σ

σ

σ

Ω

=Ω

= =Ω

= Ω

= Ψ Ω

 = Ψ Ψ Ω 
 

    = Ψ Ψ −Ψ Ψ Ω    
    

= Ψ Ψ −Ψ Ψ Ω

∫

∑∫

∑ ∑∫

∑ ∫

  (4.6) 

In the above derivation, the 0-th order completeness of RK shape functions as been 

employed:  

 ,
1 1

1, 0.
NP NP

J J j
J J= =

Ψ = Ψ =∑ ∑   (4.7) 
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We now make an assumption that v
ijσ  is constant in the intersection of the supports of 

nodes I and J, denoted as v IJ
ijσ − , and equation (4.6) reduces to 

 

( )

( )

v v
, ,

1

v
, ,

1

v

1
,

t

t

NP

I i J I j I J j ij
J

NP
IJ

J I j I J j ij
J

NP
IJ IJ
j ij

J

f d

d

σ

σ

β σ

= Ω

−

= Ω

−

=

= Ψ Ψ −Ψ Ψ Ω

= Ψ Ψ −Ψ Ψ Ω

=

∑ ∫

∑ ∫

∑

  (4.8) 

with 

 ( ), , .
x

IJ
j J I j I J j dβ

Ω

= Ψ Ψ −Ψ Ψ Ω∫   (4.9) 

Similar procedures can be found in finite volume method where IJ
jβ  is obtained from a 

cell geometry [57], and therefore IJ
jβ can be interpreted as equivalent geometric 

coefficients corresponding to the normal direction multiplied by the surface area of a virtual 

interface between node I and J as shown in Figure 4.1. 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 4.1 The local Riemann problem of nodal pair I-J . 
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Note that in strong shock problems, the pressure is the dominant component of 

Cauchy stress tensor. The Godunov scheme is then employed to introduce shock physics 

into the volumetric internal force term v
If  in equation (4.8) as follows.  

In order to capture the shock discontinuity, Riemann problem is solved between 

node I and J (denoted by IJ) based on IJβ (see Figure 4.1) and then v IJ
ijσ − in equation (4.8) 

is calculated using the Riemann problem solution for the pressure *IJP (‘*’ denotes the 

Riemann problem solution). That is, 

 v* v *

1
,

NP
IJ IJ

I i j ij
J

f β σ −

=

=∑   (4.10) 

where 

 v * * .IJ IJ
ij ijPσ δ− = −   (4.11) 

Consistent with Godunov scheme, the energy equation (3.3) now becomes, at each node 

 ( )* v *d ,
d

I
I IJ IJE

t
ρ −= − ⋅ ⋅x v σ∇   (4.12) 

where *IJv is the velocity solution of the Riemann problem and ( )* v *IJ IJ−⋅ ⋅x v σ∇ is given 

by the trace of the following gradient 

 ( )* v * * *

1
,

NP
IJ IJ IJ IJ IJ

J
P− −

=

⋅ = ∑x nv σ β v∇   (4.13) 

On the other hand, it is easy to show from equation (4.9) that 

 .IJ JI
j jβ β= −   (4.14) 

And with the Riemann problem solved between I-J pair, during the evaluations of 

volumetric internal force and energy rate change by equation (4.10) and equation (4.12) 

respectively, the pressure flux and energy flux for I-J pair cancel out with that of J-I pair 
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and thus the flux is conserved. Namely, this anti-symmetric property of IJβ ensures the 

conservation of linear momentum and energy for the volumetric contribution to the weak 

form [24]. 

In this work, the Dukowicz solver [51] is adopted for its robustness and efficiency 

(see Chapter 3, equation (3.24)− (3.26)).  

Note that this framework can be applied to both solids and fluids. Without loss of 

generality, we consider inviscid compressible flow for fluids and therefore d
If vanishes. 

A pressure-density relationship given by equation of state (EOS) for the ideal gas is 

utilized:  

 ( )1 ,P eγ ρ= −   (4.15) 

where γ is the adiabatic index (assumed to be constant for a given gas).  

 

4.3  LAGRAGIAN AND SEMI-LAGRANGIAN DISCRETE FORMULATIONS 

 

4.3.1  Lagrangian RKPM with conforming strain smoothing 

 

For problems where the deformation gradient is non-singular and also well-

conditioned (e.g. in the absence of extreme material distortion or fragmentation), we 

consider the Lagrangian RKPM formulation [36]. All the approximations are computed in 

the undeformed configuration, stored and mapped to the current configuration, and thus 

this formulation is efficient. 
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4.3.1.1  Stabilized conforming nodal integration 

 

In Lagrangian framework, the reproducing kernel approximation ( , )h tu X of a 

function ( , )tu X  using a set of NP nodes in the underformed configuration is constructed 

as  

 
1

( , ) ( ) ( ),
NP

h
I I

I
t t

=

= Ψ∑ Xu X X d   (4.16) 

where ( )IΨX X  and ( )I td  are the Lagrangian RK shape function and the generalized 

coordinate of the I-th node, respectively. The shape function ( )IΨX X derived in last chapter 

is given by 

 1( ) ( ) ( ) ( ) ( ).T
I I a Iφ−Ψ = − −X X H 0 M X H X X X X   (4.17) 

In this chapter, IΨX  and IΨx  are used to distinguish the shape functions associated of 

node I defined in the undeformed and current configurations.  

Under Lagrangian framework, we consider stabilized conforming nodal integration 

(SCNI) [37], which utilizes the conforming gradient smoothing cells constructed via 

Voronoi diagrams, as shown in Figure 1(a). The key idea of SCNI is to replace the direct 

nodal gradient by a smoothed gradient ∇  (‘− ’ denotes a smoothed term). This avoids 

instability in the solution due to employing direct gradients evaluated at nodes, which 

severely under-estimates the energy of short-wavelength modes. With the employment of 

conforming cells, SCNI satisfies the linear integration constraint and can achieve optimal 

convergence for approximations with linear completeness [37]. 
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In SCNI under Lagrangian framework, the gradients are smoothed over each nodal 

representative domain LΩ by 

 1 1( ) ( )d ( ) ( )d ,
L L

I L I I
L LW W

Ω Γ

Ψ = Ψ Ω = Ψ Γ∫ ∫
X X

X X X X X
X XX X X N X∇ ∇   (4.18) 

where ( )IΨX X is the RKPM shape function computed in the undeformed configuration, 

LΓ
X  is the boundary of the conforming nodal cell LΩX  in the undeformed configuration 

associated with node L, N is the normal of that cell, and 
L

LW d
Ω

= Ω∫ X

X . 

           
                  (a)                               (b) 

Figure 4.2. (a) Conforming SCNI, and (b) non-conforming SNNI smoothing cells. 

 

Note that in the Lagrangian RK approximation, if the reference configuration is 

chosen as current configuration, an inverse mapping is necessary to construct the 

approximation 1( ) ( ( , ))I I t−Ψ = ΨX XX xϕ . However, since all quantities are evaluated at fixed 

material points, the inverse mapping 1( , )t−=X xϕ  does not have to be calculated. Spatial 

derivatives can be constructed implicitly rather than directly as follows. After ( )I LΨX X X∇

is computed, ( )I LΨx X X∇  can be obtained by the chain rule as needed for path-dependent 

materials,  
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 T( ) ( ) ( ),I L L I L
−Ψ = Ψx X X XX F X X∇ ∇   (4.19) 

 
1

( ) ( ) ,
NP

L I L I
I =

= Ψ ⊗∑ X XF X X x∇   (4.20) 

where T ( )L
−F X is the smoothed deformation gradient computed point-wise (see [37] for 

details).  

With Lagrangian RK approximation and all the domain integral terms in Galerkin 

equation (4.4) integrated using SCNI, the following discrete equation is obtained 

 
ext int*

int* d v*

,
,

= −

= +

Ma f f
f f f

  (4.21) 

where d dt=a v / , and 

 

1

d d

1

v* *

1

ext

1

( ) ( ) ,

( ) ( ) ,

,

( ) ,

NP

I L I L L
L

NP

I L I L L
L

NP
IJ IJ

I
J

NPh

I I L L
L

V

V

P

S

ρ
=

=

=

=

Ψ

= ⋅ Ψ

= −

Ψ

∑

∑

∑

∑

X

x X

X

M = x I x

f σ x x

f β

f = x h

∇
  (4.22) 

with 

 ( )
1

( ) ( ) ( ) ( ) ,
NP

IJ
J L I L I L J L L

L
V

=

= Ψ Ψ −Ψ Ψ∑ X x X X x Xβ x x x x∇ ∇   (4.23) 

where VI is the volume for node I in the current configuration, LS  is the L-th weight of 

the NPh integration points on the natural boundary in the current configuration. In the 

above discrete equations (4.22), mass lumping has been employed in conjunction with the 

partition of unity of the shape functions. Note that in equations (4.22), the variable 
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( ) ( ( , )) ( )L L Lg g t g= =x x X X (g represents d, , ,I Iρ Ψ ΨX x Xσ ∇ ) since it is a Lagrangian 

formulation with a nodal integration scheme. 

 

4.3.2  semi-Lagrangian RKPM with non-conforming strain smoothing for extreme 
deformation 

 

For problems with severe material distortion where the deformation gradient can 

become ill-conditioned or singular, and a purely Lagrangian description can no longer 

suffice. Thus, we consider the semi-Lagrangian formulation to overcome this issue. 

 

4.3.2.1  semi-Lagrangian reproducing kernel approximation 

 

In the semi-Lagrangian RK formulation [43], the nodal point xI associated with the 

shape function ( )IΨx x which is defined in the current configuration follows the motion of 

material point, that is, ( , )I I t=x x X , whereas the kernel function can be defined 

independent of the material deformation as shown in Figure 4.3.  

 

 
 
 
 
 
 
              (a)                     (b)                     (c) 

Figure 4.3. Comparison of Lagrangian and semi-Lagrangian reproducing kernel(RK) shape 
functions: (a) undeformed configuration, (b) Lagrangian RK in the deformed configuration, and 

(c) semi-Lagrangian RK in the deformed configuration. 
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The semi-Lagrangian RK shape function is constructed as 

 ( ) ( ; ( , )) ( ( , )).I I a IC t tφΨ = − −x x x x x X x x X   (4.24) 

Note that the kernel function which defines the locality and smoothness is not purely 

Lagrangian meaning that its support may covers different node set during the material 

motion. Similar to equation (3.10), the associated coefficients vector b(x) can be obtained 

by imposing the following reproducing conditions: 

 1 2 3 1 2 3
1

( ) , 0,1, , .
NP

i j k i j k
I I I I

I
x x x x x x i j k n

=

Ψ = + + =∑ x x    (4.25) 

Substituting b(x) into equation (4.24) yields the semi-Lagrangian RK shape function, 

 1( ) ( ) ( ) ( ( , )) ( ( , )),T
I I a It tφ−Ψ = − −x x H 0 M x H x x X x x X   (4.26) 

where 

 
1

( ) ( ( , )) ( ( , )) ( ( , )).
NP

T
I I a I

I
t t tφ

=

= − − −∑M x H x x X H x x X x x X   (4.27) 

Note that different from the Lagrangian shape function, here the x coordinate in IΨ and 

M is a function of time. Consequently, if the primary variable in equation (4.4) is velocity 

vi which is approximated by semi-Lagrangian RK shape functions: 

 
1

( , ) ( ) ( ),
NP

h
i I Ii

I
v t v t

=

= Ψ∑ xx x   (4.28) 

then the corresponding acceleration a  is given by 

 
*

1

d ( , ) d ( )( ) ( ) ( ) ,
d d

h NP
i Ii

i I I Ii
I

v t v ta v t
t t=

 
= = Ψ +Ψ 

 
∑ x xx x x   (4.29) 

where 
*

( )IΨx x  is the correction due to the time-dependent change of the semi-Lagrangian 

kernel d ( ) / da I tφ −x x  
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* d( ) ( ; ( , )) ( ( , )),
d

( , ) ( )d d( ( , )) ,
d d

I I a I

I I
a I a a

C t t
t

t
t

t t a a

φ

φ φ φ

Ψ = − −

 −  ⋅ −
− = = 

 

x

'

x x x x X x x X

x x X q v vx x X
  (4.30) 

where ( )( , ) / ( , ) .I It t= − −q x x X x x X  Here the correction function C in the above 

equation is used to enforce the reproducing condition of the time derivative of the semi-

Lagrangian kernel d ( ) / da I tφ −x x  and thus, the time rate change of C is not considered. 

 

4.3.2.2  Stabilized non-conforming nodal integration 

 

Under semi-Lagrangian framework, the SCNI becomes computationally 

demanding and impractical because the Voronoi cell reconstruction in the deformed 

configuration at each time step is required and thus time-consuming. In this case, we adopt 

the stabilized non-conforming nodal integration (SNNI) [4, 5] which utilizes the non-

conforming gradient smoothing cells with simple geometry such as spheres or bricks, as 

shown in Figure 1(b). The simplified SNNI technique may not optimally converge due to 

the relaxation of the conforming condition, but this deficiency can be corrected by 

employing variationally consistent integration [49].  

In SNNI under semi-Lagrangian framework, the smoothed gradients constructed 

directly in the current configuration [4, 5]: 

 1 1( ) ( )d ( ) ( )d ,
L L

I L I I
L LW W

Ω Γ

Ψ = Ψ Ω = Ψ Γ∫ ∫
x x

x x x x x
x xx x x n x∇ ∇   (4.31) 

where ( )IΨx x  is the RKPM shape function constructed in the current configuration, LΓ
x  

is the boundary of the non-conforming nodal cell associated with node L in the current 
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configuration LΩx , n  is the normal of that cell, and 
L

LW d
Ω

= Ω∫ x

x . The smoothing cells 

also remain centered around the nodes and translate with their movement without 

deformation. 

Substituting equation (4.29) into equation (4.4) and integrating all the domain 

integral terms by using SNNI lead to the following discrete equation 

 
ext int*

int* d v*

,
,

+ = −

= +

Ma Nv f f
f f f

  (4.32) 

where  

 

1
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1

d d
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L
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ρ
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=

=

=

=

Ψ

= Ψ Ψ

= ⋅ Ψ

= −

Ψ

∑

∑

∑

∑

∑

x

x x

x x

x

M = x I x

N x I x x

f σ x x

f β

f = x h

∇   (4.33) 

with 

 ( )
1

( ) ( ) ( ) ( ) ,
NP

IJ
J L I L I L J L L

L
V

=

= Ψ Ψ −Ψ Ψ∑ x x x x x xβ x x x x∇ ∇   (4.34) 

where VI is the volume for node I in the current configuration, LS  is the L-th weight of 

the NPh integration points on the natural boundary in the current configuration. The key 

differences between equation (4.33) and equation (4.22) are that the former one has the 

convective effect, Nv and its shape function is defined in the current configuration. 

Note that if a nodal integration scheme is used to integrated equation (4.32)-(4.34) 

such as SNNI, the diagonal terms of N vanish, and the off-diagonal terms of N have 
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relatively negligible influence over (4.32) [5, 4]. Therefore, the convective effect, Nv in 

equation (4.32) is omitted for computational efficiency.  

 

4.4  FLOW SOLVER 

 

In order to compute v*
If and energy evolution, defining and solving Riemann 

problems to obtain v* and P* are discussed in this section. 

With IJβ at hand, Riemann problem can be defined between node I and J which is 

denoted by IJ.  As shown in Figure 4.1, it can be interpreted as that there is a virtual 

surface ‘A’ between node I and J with the surface normal direction IJ
βn given by 

normalizing IJβ , 

  ,
IJ

IJ
IJβ =

βn
β

  (4.35) 

where IJβ  is the length of vector IJβ . Here, Riemann problem is considered one-

dimensional and the velocity vector is projected along the IJ
βn  direction while pressure is 

scalar and there is no need to do so. For the I-J pair, the projected velocity of vI and vJ are 

vn-I and vn-J, respectively. 

 
,

.

n I I IJ

n J J IJ

β

β

−

−

= ⋅

= ⋅

v v n

v v n
  (4.36) 

Then the Riemann problem is defined as left state { IP , vn-I, Iρ } and right state { JP , vn-J,

Jρ } and after using Riemann solver (here it is Dukowicz solver [51]) the solution is 
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obtained as { *IJP , vn-IJ*}. Then v*
If is evaluated by either equation (4.22) or equation 

(4.33). 

Energy equation (4.12) is satisfied strongly and solved locally at each node using 

the forward Euler scheme, 

 ( 1) ( ) * * ( )( ) ,I n I n IJ n IJ nE E t P+ − = + ∆ ⋅ − 
x v∇  (4.37) 

where superscript (n) denotes the n-th time step, and * *( )IJ n IJP −⋅ −x v∇ is given by the trace 

of the following gradient 

 * * * *
( , )

1
) .

I

NP
IJ n IJ IJ IJ n IJ

t
J

P P− −

=

− = −∑x
x X( v β v∇  (4.38) 

Here, as shown in the above equation (4.38), the gradient for computing energy is also 

based on the Riemann solution enriched pressure and velocity, which is consistent with the 

computation of the volumetric internal force terms in equation (4.22) and (4.33). The 

internal energy is updated directly at each node by 

 ( )( 1) ( 1) ( 1)1 .
2

I n I n I I ne E+ + += − ⋅v v  (4.39) 

The conservation of mass equation leads to the density update. For Lagrangian SCNI 

formulation, it has the following simple form 

 
( )

(0)
( 1)

( 1) ,
det( )

I
I n

n
I

ρρ +
+=

F X
 (4.40) 

while for semi-Lagrangian formulation, F  is not defined and the density is updated by 

solving the conservation of mass equation in an equivalent form of equation (3.1),  

 ( )d .
dt
ρ ρ= − ⋅x v∇   (4.41) 

Therefore if the forward Euler scheme is applied to the above equation, the nodal density 

is updated as 
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 ( )( 1) ( ) ( )1 .I n I n I nρ ρ+ = − ⋅x v∇   (4.42) 

With the updated internal energy and density at hand, the pressure at each node is then 

computed by the EOS (assuming ideal gas), 

 ( )( 1) ( 1) ( 1)1 .I n I n I nP eγ ρ+ + += −  (4.43) 

 

4.5  TIME INTEGRATION PROCEDURES 

 

The Newmark-beta time integration is employed for temporal discretization of 

equation (4.4) with 0β = , and 1/ 2γ =  yielding the explicit central difference scheme. 

The central difference time integration procedures are given as follows in predictor-

corrector format: 

(1) Initialization: 

(a) Form lumped mass M, and initial external force ext(0)f . 

(b) Compute the initial nodal acceleration by 

(0) ext (0) .=Ma f  

(2) At (n+1)th time step 

(a) Predictor phase (predicted variable is denoted with ‘^’) 

 

2
( 1) ( ) ( ) ( )

( 1) ( ) ( )

ˆ ,
2

1ˆ .
2

n n n n

n n n

tt

t

+

+

∆
= + ∆ +

= + ∆

u u v

v v

a

a
  

(b) Compute smoothed spatial gradient ( 1) ( 1) ( 1)ˆ( )n n n+ + +Ψ = Ψx x u∇ ∇  (If 

Lagrangian, according to equation (4.19)). 

(c) Compute ( 1)n+β according to equation (4.23) (Lagrangian) or (4.34) (semi-

Lagrangian). 
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(d) Compute predictors d( 1) ( 1)ˆ( )n n+ +σ u (if solid) and ( 1) ( 1)ˆ( ).n nP + +u  

(e) Compute ext( 1)n+f , d( 1)n+f  

(f) Compute v*( 1)n+f by solving Riemann problems from predictors. 

(g) Compute energy (if fluid) E(n+1) = E(n+1)( ( 1)ˆ n+v , ( 1)n+β ) and e(n+1) ( ( 1)ˆ n+v , ( 1)n+β

) according to equation (4.37) and (4.39) respectively.  

(h) Solve ( 1) ext ( 1) d( 1) v*( 1)n n n n+ + + += − −Ma f f f for ( 1)n+a . 

(3) Corrector phase:  

( )( 1) ( ) ( ) ( 1)

( 1) ( 1)

1 ,
2

ˆ .

n n n n

n n

t+ +

+ +

= + ∆ +

=

v v

u u

a a  

(4) If t < tfinal let 1n n→ +  and go to (a) in step 2. 

 

4.6  NUMERICAL EXAMPLES 

 

A set of benchmark problems including both solid and fluid dynamics are examined 

in this section. For all the numerical examples, the normalized RK support size is set to be 

1.75 times of the nodal spacing and linear basis and cubic spline kernel function are 

employed. For the sake of simplicity, ‘LAG-SCNI’ denotes the case using Lagrangian 

SCNI without the proposed shock algorithm; ‘LAG-SCNI-SHOCK’ denotes Lagrangian 

SCNI with the shock algorithm; ‘SEMI-LAG-SNNI-SHOCK’ denotes semi-Lagrangian 

SNNI and the shock algorithm. The implementation of the algorithm is in a three-

dimensional code. The first two examples are examined to show the ability to correctly 

represent shock physics in solids and the last two are designed to test whether the 

formulation is able to correctly represent strong shocks physics in compressible fluids. In 

all but the last example, the discretization required for reasonable accuracy is course 
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enough as to not require additional stabilization of nodal integration [58], which will be 

considered in future work.  

 

4.6.1  One-dimensional elasto-plastic bar impact  

 

In this problem, an elasto-plastic bar with initial velocity of 273 m/s impacts 

another bar of the same material initially at rest, as shown in Figure 4.4. The bars are made 

of 6061 T-6 aluminum and described by a perfect plasticity model with Young’s modulus 

E = 77.11GPa, Possion’s ratio υ = 0.334, density ρ = 2703 kg/m3 and yield strength Y0 = 

270 MPa. In this case, only weak shock waves are produced in the bar. The problem is 

modeled as one-dimensional; the two lateral directions are fixed (as rollers) as shown in 

Figure 4.4. This impact velocity 273 m/sec is designed such that it is sufficient to cause the 

yield strength to be exceeded so that an elastic wave is formed and followed by a plastic 

wave. There exists an analytical solution for this problem, see chapter 10 in [59]. The 

lengths for both bars are 50 mm and discretized with 800 nodes in the axial direction. The 

axial stress and velocity distribution at time t = 6 µsec are given in Figure 4.5 for three 

cases, LAG-SCNI-SHOCK, SEMI-LAG-SNNI-SHOCK and LAG-SCNI. From the figure, 

one can observe that LAG-SCNI captures the correct shock speed and jump, but with 

severe oscillations due to the Gibbs phenomenon. On the other hand, the proposed methods 

LAG-SCNI-SHOCK and SEMI-LAG-SNNI-SHOCK capture the correct shock speed and 

jump and do not suffer from the Gibbs phenomenon.  
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Figure 4.4. Schematic diagram for one-dimensional elasto-plastic bar impact 
 
 

 
(a) 

Figure 4.5. One-dimensional elasto-plastic bar impact, axial stress and velocity distribution t = 6 
µsec (a) LAG-SCNI-SHOCK, (b) SEMI-LAG-SNNI-SHOCK and (c) LAG-SCNI. 

 

Impact velocity 

  projectile target 
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(b) 

  
(c) 

Figure 4.5. One-dimensional elasto-plastic bar impact, axial stress and velocity distribution t = 6 
µsec (a) LAG-SCNI-SHOCK, (b) SEMI-LAG-SNNI-SHOCK and (c) LAG-SCNI. (Continued) 

 

4.6.2  Two-dimensional plate impact with rarefaction waves  
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In this problem, a two-dimensional plane-strain high velocity plate impact problem 

is considered where the edges are unconstrained and allow lateral deformation. Peak 

pressure behind the shock wave is measured in the experiment by Marsh [60]. The 

unconstrained edges result in multi-dimensional wave propagation as the traction free 

boundary condition generates a rarefaction wave propagating inside from the edges. 

Consequently, this problem assesses the formulation accuracy for multi-dimensional wave 

propagation and rarefaction formation. The model was constructed as two plates impacting 

at a velocity of 1,000 m/sec. It can be noted that this velocity is typical of a high velocity 

ballistic impact. Each plate is 8 mm wide by 2 mm thick and was discretized with 161 

nodes across the width and 41 nodes through the thickness. The impact surface is along the 

8 mm edge. The material is 6061 T-6 aluminum, modeled with the same material properties 

and constitutive model as the previous problem. The pressure contours at time t = 0.25 µsec 

is given in Figure 4.6. As expected, a compression wave propagates along the impact 

direction while the rarefaction wave grows from the lateral edges and relieves the pressure 

in the initially compressed region. In the experiment, the peak pressure is measured as 8 

GPa [60]. The numerical peak pressures obtained from the three cases are (a) LAG-SCNI, 

8.820 GPa with 10.25% difference (b) LAG-SCNI-SHOCK, 7.612 GPa with 4.85% 

difference and (c) SEMI-LAG-SNNI-SHOCK, 7.611 GPa with 4.86% difference. All the 

three give acceptable solution in terms of peak pressure, however the two methods with 

the shock algorithm provide better accuracy. In addition, the oscillations are almost non-

existent when using the proposed shock algorithm. 
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(a)                       (b)                       (c) 

Figure 4.6. Two-dimensional plate impact with rarefaction waves, pressure contours at time t 0.25 
µsec (a) LAG-SCNI-SHOCK, (b) SEMI-LAG-SNNI-SHOCK and (c) LAG-SCNI.  

 

4.6.3  Two-dimensional Noh implosion problem  

 

In two-dimensional Noh implosion problem [54] , the cold gas (with zero internal 

energy) moves toward a center from all the directions with a unit velocity. This process 

generates a strong shock wave propagating toward outside. This problem tests the ability 

to capture the physics of strong shock waves, and whether a method is capable of correctly 

transforming the kinetic energy into internal energy in strong shock problems. The gas is 

described by EOS of ideal gas with the adiabatic index γ = 5/3 and initial density ρ(0) = 1.0. 

Only one quarter of the whole domain is modeled. The domain size is 1.0 × 1.0 and a 

uniform node distribution 40 × 40 is used to perform this simulation. The initial velocity is 
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a unit velocity pointing to the origin, i.e. (0) /= −v r r (r is the position vector). The initial 

pressure is zero, but for numerical purposes it is set to 610− . Since the code is three-

dimensional and in order to model this two-dimensional problem, two layers of nodes are 

used in the out of plane direction, fixed in that direction to form a plane strain problem. 

Only the top quarter of the domain is modeled, with the left and bottom edge prescribed 

with the appropriate symmetry condition. On the right edge and top edge, the boundary 

pressure is equal to the initial pressure. 

 

 
             (a)                                     (b) 
Figure 4.7. Two-dimensional Noh implosion problem, pressure contours at time t = 0.6, (a) LAG-

SCNI SHOCK, and (b) SEMI- LAG-SNNI-SHOCK. (dots represent the nodes in the current 
configuration) 
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(a) 

 
(b) 

Figure 4.8. Two-dimensional Noh implosion problem, the scatter plot of density v.s. radial 
distance at time t = 0.6, (a) LAG-SCNI-SHOCK, and (b) SEMI- LAG-SNNI-SHOCK. 

 

The Noh implosion problem is computed until time t = 0.6 using both formulations, 

LAG-SCNI-SHOCK and SEMI-LAG-SNNI-SHOCK. Note that for this class of strong 
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shock problems, the numerical solution by using the formulation, LAG-SCNI (without 

shock algorithm) diverges due to severe oscillation and therefore only the results by using 

shock algorithms are shown. First, the contours of pressure are given in Figure 4.7.  In the 

figure, we can see LAG-SCNI-SHOCK and SEMI-LAG-SNNI-SHOCK give quite stable 

results. The scatter plot for density is also shown in Figure 4.8. In the plots, the density 

distribution for every 2° between 0° and 45° are plotted with different angles marked by 

different markers.  According to the analytical solution [54], at time t = 0.6, the shock 

wave travels a radial distance 0.2 from the origin with a peak post-shock density

( 0.6) 16tρ = = . In Figure 4.8, the results are compared with the analytical solution. It shows 

that for both formulations, LAG-SCNI-SHOCK and SEMI-LAG-SNNI-SHOCK, the 

shock wave arrives at |r| = 0.2 which shows the method accurately captures the shock 

speed, and on the other hand the peak post-shock density shows very good agreement to 

the analytical value 16 which shows the method captures the shock jump. The drop in 

density near the origin is due to the known ‘wall-heating’ error [54] in the Lagrangian 

hydrodynamics formulation, which is expected. This can be remedied by adding artificial 

heat [54] which is not considered in this study.  

 

4.6.4  Two-dimensional Sedov blast wave problem 

 

In the Sedov blast wave problem [55], a sudden release of the energy at the origin 

generates an expanding shock wave. The initial condition of the problem consists of zero 

velocity field and the Dirac delta distribution of the internal energy at the origin. This 

problem examines whether a method is capable to correctly transform internal energy into 

kinetic energy, which is opposite to the previous Noh implosion problem in 4.3 in terms of 

the energy transformation. The gas is described by EOS of ideal gas with the adiabatic 
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index γ = 1.4 and initial density ρ(0) = 1.0. A two-dimensional version of the problem is 

considered with plane strain condition imposed as previously discussed. Only the top right 

quarter of the problem is modeled; the left edge and bottom edge the boundary conditions 

are prescribed the symmetry condition. The size of the domain is chosen as 1.2×1.2 and is 

discretized by uniform node distribution of 48×48 nodes.  In order to approximate the 

Dirac delta function, the four nodes nearest to the origin are assigned non-zero energy with 

a bilinear distribution which attains the maximum at the origin and vanishes between the 

second and third row of nodes, and the second and third column of nodes. The value of the 

bilinear function at the origin is set such that the total energy is 0.25. For numerical 

purposes, the initial pressures for the rest nodes are set to 610− . For the free boundaries, 

the boundary pressure is also prescribed this value. 

 

 
Figure 4.9. Two-dimensional Sedov blast wave problem, pressure contour at time t = 1.0. (dots 

represent the nodes in the current configuration) 
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Figure 4.10. Two-dimensional Sedov blast wave problem at time t = 1.0, the scatter plot of 

velocity v.s. radial distance.  

 
Figure 4.11. Two-dimensional Sedov blast wave problem at time t = 1.0, the scatter plot of 

density v.s. radial distance. 
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Figure 4.12. Two-dimensional Sedov blast wave problem at time t = 1.0, density distribution 

along 45° radial direction using varying discretizations. 

 

In this Sedov blast problem, LAG-SCNI-SHOCK is used only. LAG-SCNI 

(without shock algorithm) again diverges due to the strong shock effect. Since the problem 

is discretized finer than the previous examples, SEMI-LAG-SNNI-SHOCK shows 

instability in the form of node-to-node oscillation, which is expected in finer discretizations 

when no stabilization for nodal integration is employed. Therefore, only the results 

obtained by using LAG-SCNI-SHOCK are present here to show the effectiveness of this 

framework, setting aside this issue. The simulation is run until time t = 1.0. First, the 

contour of pressure is given in Figure 4.9.  In the figure, we can see LAG-SCNI-SHOCK 

gives a stable result with a sharp shock front. The scatter plot for radial velocity and density 

are also shown in Figure 4.10 and Figure 4.11 respectively. In the plots, the variable 

distribution for every 2° between 0° and 45° are plotted at different angles marked by 

different markers. According to the analytical solution [55], at time t = 1.0, the shock wave 
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travels a radial distance 1.0 from the origin with a peak post-shock radial velocity 0.415 

and density 6.0. The figures show that in the simulation using LAG-SCNI-SHOCK, the 

shock wave arrives at |r| = 1.0 which shows the method accurately captures the shock 

speed. The velocity and density distributions behind shock front also show good agreement 

with the exact solutions. The result shows good radial symmetry even though a radial mesh 

is not used. Lastly, a convergence study based on the discretization sequence of 24 × 24 

nodes, 48 × 48 nodes, and 96 × 96 nodes. The density distributions in these three cases at 

the 45° radial direction are given in the Figure 4.12. From the figure, it is clear the solution 

converges with mesh refinement. 

 

4.7  CONCLUSION  

 

In this chapter, a new algorithm is developed to introduce shock physics into semi-

Lagrangian Galerkin meshfree methods. In this approach, the Godunov scheme is 

embedded in the volumetric internal force via a purely node-based flux gradient evaluation. 

The coefficients for converting the results of the Riemann problems between nodes to the 

enriched pressure and velocity are obtained by a domain integral as opposed to cells, which 

makes it possible to dispense with cells altogether. The anti-symmetric property of the 

coefficients in the proposed method ensures the conservation of linear momentum and 

energy for the volumetric contribution. This approach can also be applied to other Galerkin 

meshfree methods, as well as mesh-based Galerkin methods such as FEMs and IGA. 

The method proposed is broad and is applicable to different types of nodal 

integration. It was shown to be an effective technique for the nodal integrations tested, for 

problems involving both weak and strong shocks, in both solids and fluids. This included 

SCNI under a Lagrangian RKPM formulation and notably SNNI under a semi-Lagrangian 
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RKPM formulation. This work paves the way for modeling shock-induced fragmentation 

problems, which are to be discussed in next two chapters. 
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Chapter 5  

 

 

A Semi-Lagrangian Reproducing Kernel Particle 
Method Framework for Modeling Transient 
Dynamic Failure of Concrete Structures Subjected 
to Blast Loadings 
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5.1  INTRODUCTION

 

Concrete is one of the most common construction material for civil and defense 

infrastructures. Blast loadings and their effects on these concrete structures have received 

considerable attention in recent years due to the many accidental or intentional events that 

have damaged important structures. It is a multi-physical process: a strong shock wave is 

first generated in the explosive gas after the ignition of the high explosive; then it 

propagates through air and, finally hits the structure and imparts the shock wave into solid 

via FSI, causing the concrete material spalling and fragmentations. The objective of this 

dissertation is to develop a framework capable to effectively capture those key phenomena, 

which is presented in this chapter. 

The new formulation discussed in chapter 4 is adopted here to model the strong 

shock waves in both fluid and solid fields. These two media are all discretized by 

Lagrangian particles, and thus the interface is naturally described without extra tracking 

efforts when fragmentations occur. The fluid-structure interaction is addressed by the level 

set enhanced natural kernel contact algorithm (LSENKC) [44]. 

This chapter is organized as follows. In section 2, the details of high explosive 

physics and modeling under meshfree framework are discussed. In section 3, an approach 

is proposed to obtain an equivalent shock Hugoniot for the Riemann solver from a general 

concrete material model with the damage considered. The fluid-structure interaction by the 

LSENKC algorithm is described in section 4. In section 5, a reinforced concrete (RC) 

column subjected to blast loading is modeled to show the effectiveness of this framework, 

and followed by conclusions in section 6.  
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5.2  HIGH EXPLOSIVE MODELING 

 

In the blast, the shock wave initiates from the high explosive (HE) and in this 

section the basic physics and modeling technique are discussed.  

 

5.2.1  High explosive physics and modeling 

 

 

 

The HE explosion process involves in a violent chemical reaction which converts 

the original high energy explosive charge into gas at very high temperature and pressure. 

A typical HE explosion consists of the detonation process which is the propagation of the 

reactive wave phenomenon that advances through the explosive with constant detonation 

velocity. As shown in Figure 5.1, it has three zones, i.e. original high explosive, reaction 

zone and the detonation-produced explosive gas. In a steady state detonation process, the 

reaction rate is essentially infinite and the chemical equilibrium is attained. As shown in 

Figure 5.1 a shock front moves with a detonation velocity D and compresses the HE from 

Detonation direction  

  

2 1 

Reaction zone  

Original high explosive  
Detonation shock front  

Detonation-produced explosive gas  

1 

2 Reaction end plane 

Figure 5.1. High explosive detonation. 
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an original status point (P0, V0) to another specific status point (P1, V1) along the Hugoniot 

curve of HE, and proceeds the chemical reaction in a very thin reaction zone. Chapman 

and Jouguet’s hypothesis states that for a plane detonation wave to propagate steadily, the 

Rayleigh line must be tangential to the Hugoniot curve of the gaseous detonation products 

(see Figure 5.2) at the C-J point. 

 

 

 

In this study, TNT is used as the high explosive and the material properties are, 

initial density ρ(0) = 1630 Kg/m3, detonation velocity D = 6930 m/sec, CJ pressure PC-J = 

2.1×1010 Pa. A possible choice of the equation of state of explosive gaseous product is to 

simply use the ideal gas that takes the form of 

 ( 1) eP γ ρ= −   (5.1) 

whereγ is generally taken as 3 for most of the high explosives [61]. Here, the equation of 

state in equation (5.1) is used for TNT with γ =3.  

 

 

 

Hugoniot for HE 

Hugoniot for gaseous product 

C-J point 

(P0, V0) 
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Rayleigh line 
 

 

Figure 5.2. Schematic Hugoniots and Rayleigh line. 
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The chemical reaction is not modeled explicitly in this work. Instead, an empirical 

formula is adopted by considering the high explosive physics discussed above. Based on 

the Chapman and Jouguet’s hypothesis, in the stable state the detonation velocity should 

be a constant D and the state of the gaseous product should be at C-J point as shown in 

Figure 5.2. Therefore, D determines which node is trigged as gas. At the moment the node 

is being trigged, the C-J pressure is prescribed to the node. And after the detonation wave 

moves away, the node is then governed by the compressible hydrodynamics, namely all 

the conservation laws given in chapter 3. A 1D case as shown in Figure 5.3 is used to 

illustrate the algorithm. In the figure, it shows a 1D high explosive detonation which is 

initiated at point O and then propagates toward left and right with a constant detonation 

velocity D. The distances the two waves travel in both directions are Dt. At t = 0, all the 

meshfree nodes are not activated (i.e. with P = 0 and v = 0), and they are marked by empty 

dot in Figure 5.3. After time t, the nodes within the distance Dt from initiation point O are 

trigged (i.e with non-zero pressure) and they are marked by solid dot in the figure.  

 

5.2.2  One-dimensional TNT slab explosion with detonation and dispersion 

 

The approach to model the HE discussed above is validated by solving a one-

dimensional TNT slab explosion with detonation and dispersion. In this problem, a one-

Ignition point 

Dt Dt 

Detonation direction Detonation direction 

Figure 5.3. 1D high explosive, discretized by meshfree nodes. 
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dimensional TNT slab explodes in the vacuum with detonation initiated from the left end 

(x = 0) as shown in Figure 5.4. After the ignition, the gas product disperses outwards with 

rarefaction wave advancing through the gas behind the detonation wave. The EOS of ideal 

gas is used with 3γ =  [61], and the C–J pressure can be approximated as, 

 2 10
0

1 1.957 10 .
1C JP D Paρ

γ− = = ×
+

  (5.2) 

 

 

 

 

 

 

In Figure 5.4, A denotes the ignition point and B denotes an RK node in the domain. 

The question is when should the node B be trigged by the detonation wave? The so-called 

burning function is defined for this purpose. Here a simple approach is used under meshfree 

framework, 

 ( ) ,B C J if abs ABP P Dt aβ− − ≤=   (5.3) 

where Dt is the distance that the detonation wave has propagated, AB  is the distance 

between the ignition point A and the node B, a is the support size of node B, β  defines 

the width reaction zone and in this study β =0.5, and PC-J is a given material parameter for 

TNT. After the node is trigged, the node becomes a gas product (fluid) node and it is then 

governed by compressible hydrodynamics. Note that this approach is applicable to 

multidimensional spaces case by replacing the distance measure accordingly. The pressure 

transient behind the detonation wave is given in a close form [62], 

Figure 5.4. Detonation in a 1D high explosive, TNT. 

Ignition point 

0.2m  

TNT 
A B 
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  (5.4) 

The problem is solved using the formulation given in Chapter 4 with 1000 nodes 

and the numerical solutions at t = 10 µsec and t = 20 µsec are given in Figure 5.5. As 

shown, they agree very well with the analytical solutions and the shock front is modeled 

sharply without non-physical oscillations. This example shows the implementation of 

hydrodynamic code is correct and also the way to deal with the ignition and propagation 

of the detonation wave in TNT is also appropriate. 

 

 

Figure 5.5. The detonation wave and the pressure distributions at t = 10 µsec and t = 20 µsec.  

 

 

5.3  EQUIVALENT SHOCK HUGONIOT FOR CONCRETE  
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In this study, the concrete structure is modeled using the Advanced Fundamental 

Concrete (AFC) model [63] coupled with a microcrack informed damage model [64]. The 

AFC model is a 3-invariant plasticity model which incorporates damage evolution, strain 

rate effects, and a nonlinear pressure-volume relationship (equation of state) as shown in 

Figure 5.6. And the tensile damage evolution law is physically obtained from a microcell 

analysis [64] which considers the evolution of defects such as microvoids and microcracks.  

In this framework, in order to capture shock discontinuity by introducing Riemann 

problem solution, a Hugoniot of the following form is required in the Riemann solver [51],  

 (sgn[[ ]]) [[ ]],S BU C u A u= +    (5.5) 

where SU is the shock speed,[[ ]]u is the particle velocity difference across the discontinuity 

front and ‘sgn’ represents the sign of a real number, BC and A are two material constants 

which is usually obtained by performing costly flyer plate experiments. This Hugoniot can 

be used to deduce an EOS [59], which also means it is equivalent to an EOS. Therefore if 

an EOS of a specific concrete is known beforehand, the Hugoniot of the form in equation 

(5.5) can be derived accordingly. In terms of AFC concrete model, the two coefficients 

BC and A can be consistently derived as  

 
,

1.0 10 0.

B
KC

A E
ρ

=

= − ≈

  (5.6) 

where K and ρ are the bulk modulus and the density in AFC respectively and therefore BC  

is actually the sound speed of the concrete. In this way, it avoids the costly experiment by 

making use of the known EOS. The EOS in AFC model [63] is  
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  (5.7) 

where crushµ µ µ= − , Ke, K1, K2, K3, Klock, crushµ , lockµ , and 0µ are given material constants, 

as shown in Figure 5.6 (μ is the volumetric strain which is assumed positive in compression, 

K is the bulk modulus, P is the pressure, DT is the tensile damage and Tmax the maximum 

tension limit). K can be obtained at different volumetric strain level by taking first-order 

derivatives of the EOS. That is 

 2
1 2 3

(elastic region)
2 3 (crush-up region).

(lock-up region)

e crush

crush lock

lock lock

K for
K K K K for

K for

µ µ
µ µ µ µ µ

µ µ

≤
= + + ≤ ≤
 ≤

  (5.8) 

And BC is obtained by substituting K into equation (5.6).  
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Figure 5.6. The equation of state in AFC. 
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Material damage affects the wave propagation speed. In AFC, for the volumetric 

response, there is only tensile damage applied and no volumetric compression damage. 

Therefore, considering tensile damage, the BC is adjusted as  

 
(1 ) , if <0 (in tension).T e

B
D KC µ
ρ

−
=   (5.9) 

This approach is validated by performing a numerical test, 1D concrete bar impact 

with velocity 100 m/sec. The numerical result with the derived shock Hugoniot is 

consistent with that obtained by using the original AFC model and free of spurious 

numerical oscillation as shown in Figure 5.7 (‘SNNI-AFC’ represents SNNI with original 

AFC; ‘Riemann-SNNI-AFC’ represents SNNI with shock algorithm and the Hugoniot 

derived from the original AFC).  

 

 
Figure 5.7. 1D concrete bar impact with velocity 100 m/sec, axial stress distribution. 
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In this section, one approach is proposed to couple the Riemann solver with AFC 

concrete model with micro-crack informed damage considered and as a general approach 

it can be extended to other concrete material models.  

 

5.4  FLUID-STRUCTURE INTERACTION MODEL 

 

5.4.1   FSI modeling via a contact algorithm 

 

In Figure 5.8, it shows the interface ГC of fluid domain ΩF and solid domain ΩS. At 

the interface, the following kinematic and dynamic interface conditions, which imply the 

continuity of the normal component of velocity and normal stress, must hold: 

 S ,
.

iS i iF iF

ijS iS jS F

v n v n
n n Pσ
= −

=
  (5.10) 

where the subscripts ‘S’ and ‘F’ denote the solid and the fluid, respectively, and PF 

represents the pressure in the fluid. There is no constraint in the tangential direction where 

the two media can slip freely due to the viscid flow assumption (no shear stress in fluid). 

In this work, both fluid and solid fields are described by Lagrangian particles, the condition 

in equation (5.10) is essentially the non-penetration and frictionless condition which can 

be fulfilled by the contact algorithm. 

 

 
 
 

   
 
 
 
 Figure 5.8. Interface of fluid and solid. 

 
ΩS ΩF 
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In the conventional contact algorithms, all possible contact surfaces (master 

surfaces) and contact nodes (slave nodes) are to be defined a priori. However, for problems 

which involve fragmentations such as concrete structure under blast loadings, contact 

surfaces are unknown and are part of the solution. Thus, the level set enhanced natural 

kernel contact (LSENKC) algorithm [44] is adopted. 

 

         
         (a)                                 (b)         

Figure 5.9. Natural kernel contact algorithm by kernel interaction between contacting fluid 
domain ΩF and solid domain ΩS : (a) fluid is impacting toward solid and (b) kernel overlapping 

and interacting in the contact zone ΩC marked as shaded area. 

  

The idea of the LSENKC algorithm emanates from the inherent property of the 

semi-Lagrangian RK shape functions. In the case of FSI, Figure 5.9 shows when the fluid 

domain ΩF is approaching the solid domain ΩS and the kernel supports associated with 

these two domains overlap in the contacting zone ΩC, and it naturally serves as the non-

penetration condition which is to be discussed in what follows. 

It has been shown in [44] that contact conditions can be equivalently met by 

introducing an artificial elasto-perfectly-plastic material in the contacting zone ΩC with the 

stress Cσ in this zone satisfying  

ΩF ΩS ΩF ΩS 

ΩC 
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 ,C S N S Tt⋅ = +σ n n t   (5.11) 

where tN and tT are the normal and tangential contact forces respectively and here Sn is 

chosen as the contact normal direction. Cσ is determined by satisfying the following the 

yield function and the associated Karush-Kuhn-Tucker conditions based on a local 

coordinate system where 1-direction is aligned with the contact surface normal Sn . 
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=

τ τ

e
τ

   (5.12) 

where υ  is the friction coefficient (in this FSI slip-free case, 0υ = ) and γ is the 

consistency parameter, [ ]12 13 11ˆ ˆ ˆ, 0σ σ σ= ≤τ is the normal contact stress,e is the tangential 

strain rate, ˆ T=σ LσL is the rotated Cauchy stress tensor onto the local coordinate system 

with 2- and 3- directions aligned with two mutually orthogonal unit vectors, p and q, which 

are laid on the contact surface and are orthogonal to Sn , and [ , , ]T
S=L n p q . Since 0υ = , 

[ ] [ ]12 13ˆ ˆ 0 0σ σ= =τ according to equation (5.12). And then  

 ˆ ,T
C C=σ L σ L   (5.13) 

where 
11ˆ 0 0

ˆ 0 0 0
0 0 0

C

σ 
 =  
  

σ .  

When the fluid and the solid domains approach each other and the semi-Lagrangian 

RK shape function forms the partition of unit [4], as shown in Figure 5.10 (a), the 

interaction between the RK nodes from different domains induces non-zero internal forces 
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(see Figure 5.10 (b)). With the nodal integration scheme SNNI and consideration of the 

slip-free condition, the summation of the interactive forces associated with point I is  

 ( ) ( ) ,
C
I

I
C J I J J

J N

V
∈

= ⋅ Ψ∑ x xf σ x x∇   (5.14) 

where { }, 0, ( ) /C
I S F IJ IJ IJ I J I JN J J= ∈Ω ∪Ω ⋅ ⋅ < = − −r σ r r x x x x is the set that 

contains the neighbor points of point I, while contact stress between those points and point 

I is in compression. In this approach, the pair-wise interaction due to overlapping kernel 

functions naturally prevent the interpenetration between solid and fluid domains and 

consequently the conditions in equation (5.10) are met implicitly. 

 

 
 
 
 
 
 
 
 
 

Figure 5.10. Determination of the zero level set and the contact surface normal for contact force 
calculation.  

 

On the other hand, the definition of the interface surface and its normal direction 

are yet to be defined. In LSENKC [44], the level set function is constructed for this purpose 

by using the semi-Lagrangian-RK shape function:  

 ( ) ( ) ,
F S

I I
I

Cφ
∈Ω Ω

= Ψ∑ xx x


  (5.15) 

where CI is the level set nodal value associated with the RK shape function ( )IΨx x . Let the 

level set nodal value be defined as 

 
  

ΩF ΩS 
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  (5.16) 

The interface surface position is defined by the set { }( ) 0φ =x x (see Figure 5.10) and 

surface outward normal can then be estimated using the level set function by 

 on ( ) 0.S
φ φ
φ

∇
= − =

∇
n x   (5.17) 

The details about identifying the surface ( ) 0φ =x are given in [44].  

 

5.4.2  1D piston problem 

 

A simple acoustic oscillator problem [40] is chosen as the first validation problem 

where there is an analytical solution available in the frequency domain. This problem is 

inspired by the well-known piston problem [65], which consists of a rigid-wall tube filled 

with a compressible fluid and closed by a moving piston at its right-hand side. In [40], the 

piston is replaced by a deformable solid bar of a finite length LS (see Figure 5.11), since 

the interest here is the interaction of fluid and deformable solid bar. The initial equilibrium 

state of this coupled system is defined by a zero pressure and velocity inside the acoustic 

fluid and the solid bar. Given a perturbation, the system oscillates around a static 

equilibrium position. The derivation of the analytical frequency is given in [40].  

The following geometric and material characteristics are used: LF = 1.0 m, LS = 0.2 

m, S = 0.01 m2 (cross section area), ρF = 1000.0 kg/m3, ρS = 2000.0 kg/m3, E = 200.0 GPa, 

υ = 0.0 (Possion’s ratio), CF = 1450.0 m/sec (speed of sound in fluid). In order to perturb 

the system, we apply to the solid a constant longitudinal tension force F = 12,500.0 N 

which is evenly distributed on all the solid particles lying on the fluid–structure interface. 

1000 and 200 meshfree nodes are used to discretize the fluid and solid domain in the axial 
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direction respectively. According to the analytical solution, the exact period is 2.76 msec 

and the obtained numerical period is 2.72 msec, as shown in Figure 5.12. The accuracy of 

the numerical solution is very good (error of 1.7%). 

 

 

 

 

 
Figure 5.12. FSI computation: displacement history. 

 
 
 
 

LF LS 
 solid fluid 

Rigid wall tube 

Figure 5.11. Piston problem. 
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5.5  MODELING OF A REINFORCED CONCRETE COLUMN UNDER BLAST LOADING 
 

 
(a)  

 

 (b) 
Figure 5.13. (a) Geometry and section details of RC column specimen, (b) test setup 

configuration (adapted from [66]). 

In order to show the effectiveness of this framework, a reinforced concrete column 

under blast loading [66], on which there was experiment performed, is modeled in this 

section. The column specimen is included with a top head and a foundation. Figure 5.13 

(a) shows the geometry and section details of the test specimen and the setup configuration 
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is given in Figure 5.13 (b). The TNT mass is 25 kg and the stand-off distance is 200mm. 

The characteristic of TNT is the same as given in section 2. According to [67], when the 

stand-off distance is less than 1.6 radius of TNT, the shock wave in the explosive gas is 

dominant and the effect of air is very small and therefore negligible. In this case, the 

equivalent radius of 25 kg TNT is 226 mm and obviously the air can be neglected since the 

real stand-off distance is only 200 mm. Therefore, for the sake of simplicity and saving 

computational cost, air is not modeled in this simulation. As shown in Figure 5.13 (a), T20 

high tensile strength steel bars with a nominal yield strength of 420 MPa were used as 

longitudinal reinforcement and R6 mild steel bars with a nominal yield strength of 280 

MPa were used a transverse reinforcement. And Young’s modulus and Possion’s ratio are 

210 GPa and 0.3 respectively. The steel bars are modeled by the standard J2 plasticity. 

Ready-mix concrete, with a characteristic compressive strength of 30 MPa at 28 days, 13 

mm aggregate size and slump of 125 mm was used to cast the column specimen [66]. This 

strength value was adopted in the AFC concrete model [63] for the response simulation of 

the test specimen. In this work, both the steel rebar and concrete are modelled as meshfree 

nodes and 257207 nodes are used in total to model half of the specimen due to symmetry. 

(a)Time: 0.08 msec 
Figure 5.14. Pressure contours at different time, (a) time: 0.08 msec, (b) time: 0.12 msec, (c) 

time: 0.16 msec. 
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(b)Time: 0.12 msec 

 
(c)Time: 0.16 msec 

Figure 5.14. Pressure contours at different time, (a) time: 0.08 msec, (b) time: 0.12 msec, (c) 
time: 0.16 msec.(Continued) 

 

 

Figure 5.15. Tensile damage contour at time: 0.20 msec. 
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Some of the snapshots for pressure contours are listed in Figure 5.14: (a) shows the 

shock wave is clearly imparted from the explosive gas into the concrete column through 

the proposed FSI algorithm; (b) shows the shock wave reaches the free surface and 

afterwards it is reflected and turns into a tensile wave at the bottom as shown in (c). The 

tensile damage at time 0.2 msec is shown in Figure 5.15. At the bottom of the figure, we 

can see there is a tensile damage band indicating that spalling is occurring as a result of the 

reflected tensile wave. On the other hand, there are several tensile bands along the 

transverse direction which may be caused by the local bending effect. In the experiment 

setup, there were some sensors placed on the column meant to record the pressure and 

displacement histories, but unfortunately they were all destroyed by the powerful impact 

of the explosive gas. In the end, only the damaged profiles are compared in Figure 5.16, 

where we can see the damaged zone length, 1200 mm predicted by the numerical 

simulation agrees well with the experimental result. 

 

   

                  (a)                                   (b) 
Figure 5.16. RC column specimen (a) explosive test (adapted from [66]), (b) numerical result. 
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5.6  CONCLUSION  

 

A semi-Lagrangian RKPM framework is proposed to model transient dynamic 

failure of concrete structures subjected to blast loadings in this chapter. The strong shocks 

in both fluid and solid are modeled by embedding Godunov flux into the semi-Lagrangian 

RKPM formulation. This formulation was shown effective for modeling shock-induced 

fragmentations. The fragmentations from concrete structure make the fluid-solid 

interaction challenging to be modelled due to the surface cracking and countless new 

surface generation. In this framework, fluid-structure interaction involving material 

fragmentations is effectively addressed by the level set enhanced natural kernel contact 

algorithm. 

In this framework an approach is proposed to derive a consistent shock Hugoniot 

(required by Riemann solver) from the AFC concrete material model with microcrack-

informed damage considered. This approach has been validated by solving the benchmark 

problem and it is applicable to other concrete material models. 

A reinforced concrete column subjected to the blast loading is modeled to 

demonstrate the effectiveness of the proposed framework. The numerical results show that 

the key failure mechanisms are well captured and they are in good agreement with the 

experimental data. 
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Chapter 6  

 

 

Numerical Modeling of Explosive Welding Using Semi-

Lagrangian Reproducing Kernel Particle Method 
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6.1   INTRODUCTION       

 

Explosive welding (see Figure 1.2 and Figure 6.1) is well known as an effective 

technique to directly join a wide variety of both similar and dissimilar combinations of 

metals that cannot be joined by any other welding or bonding methods due to their 

dramatically different melting points. Furthermore, this approach is capable to bond these 

metals over large surface area because the explosive can be distributed over any welding 

zone in an economical fashion. In explosive welding, the flyer plate is propelled by the 

high pressure from high explosive detonation and gains sufficient energy to form the 

welding. The flyer plate can also be accelerated by firing a gun and impact the base plate 

to form the same welding, which is the so-called impact welding [68]. 

During the high velocity oblique collision of metal plates, a jet can form in front of 

the collision point provided the collision angle β and collision velocity vp are in an 

appropriate combination (see Figure 6.1(b)). Based on the experimental evidence it is 

generally accepted that the formation of a jet is detrimental for a successful welding [68]. 

The jet chemically clean the mating surfaces by sweeping away the non-metalic films (such 

as oxide films) and other contaminants, and therefore enable for the new exposed atoms of 

two materials to approach close enough to form a bond [68]. On the other hand, given 

certain processing parameters, a distinct wavy morphology can be observed at the interface 

of the two bonded materials (see Figure 6.2). The specific mechanism for this wavy 

patterning is not clearly understood yet. Some researches claim that localized melting and 

solidification at the interface occurs [69] is the key reason, while others believe it is due to 

the high interfacial shear-rate deformation [70] or a shear plastic flow instability between 

the two impacting materials [71]. There is no agreement on whether the wavy interface is 

necessary to achieve a strong bond. In [72, 73], the authors believe that the formation of 
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wavy morphology indicates a successful welding and is necessary for obtaining the 

optimum weld strength and mechanical interlocking, while others claim a high-quality 

weld can be achieved even if the interface is straight [74]. In this study, a wavy interface 

is not treated as an indicator for a successful welding and instead a jet formation is 

considered as a crucial sign of a high-quality weld. 

 

 

 

 

 

 

 

 

(a)                               (b) 
Figure 6.1. (a) Explosive welding process; (b) geometrical analysis. 

 

There are some simulation results reported in other publications. Grigonon et al [75] 

modeled the explosive welding of aluminum to aluminum using RAVEN, a 2D explicit 

Eulerian finite difference code. The jetting is shown in the simulation, but the resolution is 

relatively low which is expected for an Eulerian formulation. In Eulerian description, the 

interface is smeared out and a tracking technique is required. Nassiri et al [76] performed 

an arbitrary Lagrangian-Eulerian (ALE) finite element simulation on an impact welding 

process and however the jetting is not produced. Fragmentations (jetting) are very difficult 

to model for conventional Lagrangian or ALE mesh-based methods such as FEMs, finite 

difference methods and isogeometric analysis (IGA). Among meshfree methods, Wang et 

al [77] modeled the explosive welding by using material point method (MPM) and however 

it fails to reproduce the jetting. The smoothed-particle hydrodynamics (SPH) has been 
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applied for modelling the impact welding process [78] and the jetting is well captured. 

However, tensile instability, undesired numerical fracture [79, 80], inaccurate gradient 

estimate for stress calculation [39] and lack of linear consistency, and the existence of zero-

energy modes [39] are the common difficulties in SPH methods that require additional 

treatments and modifications. 

 

Figure 6.2. Wavy morphology at the weld interface, (a) Ti-Stainless steel [81]; (b) Brass-Copper 
[76]; (c) Cu-CP Ti [82]. 

 

Key physics in explosive welding to be captured in numerical modeling includes, 

the strong shock waves in fluid (explosive gas and air) and solid (metal plates), fluid-

structure interaction (FSI), contact between the flyer plate and base plate, and the material 

fragmentation (jetting), which is essentially the same as in the reinforced concrete column 

subjected to blast loading problem discussed in Chapter 5. And thus the developed 

framework is adopted in this chapter to model the explosive/impact welding process. 

This chapter is organized as follows. In section 2, an impact welding is first 

simulated and analyzed to show the wavy interface and jetting can be well captured by 

using semi-Lagrangian RKPM. In section 3, an explosive welding is modeled and 

discussed to show the effectiveness of this framework, and followed by conclusions in 

section 4. 
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6.2  IMPACT WELDING MODELING 
 

 

 
 

Numerically, impact welding only involves two impacting solid metal plates and 

the key physics to be modelled consists of shock wave propagation in solid, contact at the 

collision interface and material fragmentations (jetting). Compared with the explosive 

welding, the compressible fluid (air and explosive gas) and FSI are not required here. In 

order to show this framework is capable to reproduce the wavy interface and jetting, an 

impact welding example is first simulated in this section. Furthermore, the collision angle 

β remains constant in this case, which makes the following analysis more focused. Wavy 

interfacial morphology and jetting only occur under certain combination of impact velocity 

vp and collision angle β (see Figure 6.1 (b)). However, so far there does not exist a generic 

and specific description of the combination. In this study, we believe two conditions must 

be fulfilled. First, the impact velocity must be high enough to provide sufficient energy to 

drive the material at the interface yield and then fluid-like behaviors, wavy interface and 

jetting are possible to occur. However, the impact velocity should be limited such that the 

Figure 6.3. Schematic of impact welding. 

15 mm 

 

vp=1000m/sec 

3 mm 
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collision velocity vc (see Figure 6.1(b)) is less than the sound speed of the solid material, 

which is the second condition. As known, the wavelets generated by impacting at colliding 

point O involves P wave and S wave (S wave runs faster than P wave). These wavelets 

must travel faster than the speed of the closure of the colliding surfaces, i.e. collision 

velocity vc, in order to spall the material to form jetting ahead of the colliding point O. 

Therefore, the second condition (i.e. vc< SC , SC  is the lower sound speed of the two 

mating materials) should hold. Based on the geometric relationship shown in Figure 6.1(b), 

the collision velocity can be derived,  

 .
2sin( / 2)

p
c

v
v

β
=   (6.1) 

Considering the two conditions, given the collision angle β, vp can be chosen as 

high as possible within the range S/ (2sin( / 2))c pv v Cβ= < . For example, if we choose 

both the flyer and base plates to be 6061 T0 aluminum alloy with the sound speed SC , 

5356 m/sec, for a given collision angle β = 20º, vp should be set less than 

2sin( / 2) 1860SCβ =  m/sec. In this study, within the valid region (

S/ (2sin( / 2))c pv v Cβ= < ), the case vp = 1000 m/sec in the vertical direction is selected to 

be modeled and the problem setup is shown in Figure 6.3. 178158 nodes are used to 

discretize the model. The contact between the two impacting plates are addressed by the 

level set enhanced natural kernel contact (LSENKC) algorithm [44]. A modified Johnson-

Cook constitutive model [83] and failure criterion [84] (the details are given in Appendix 

A at the end of this chapter) are used for the 6061 T0 aluminum alloy and the parameters 

are listed in Table 6.1. The following is the discussion and analysis on the simulation 

results. 
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Table 6.1. Material constants for the 6061 T0 aluminum alloy (modified Johnson-Cook model). 

Young’s modulus E  69 GPa 

Poisson’s ratio υ  0.33 

Density ρ 2700 kg/m3 

Specific heat capacity Cp 

Reference temperature Tr 

Initial temperature T0 

Melting temperature Tm 

Temperature softening coefficient m 

Taylor–Quinney constant χ 

900 J/kgK 

293K 

293K 

926K 

1.0 

0.9 

Yield stress A 

Strain hardening B 

Strain hardening exponent n 

Strain rate hardening C 

Reference strain rate ε0 

60MPa 

500MPa 

0.3 

0.02 

5.0×10-4 s-1 

Fracture strain coefficients D1 

                      D2 

                      D3 

                      D4 

                      D5 

0.18 

1.936 

-2.964 

-0.014 

1.014 
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Figure 6.4. Wavy interface and jet formation at time 2.2 µsec. 

 

 
Figure 6.5. Pressure distribution at time 2.2 µsec. 

Wavy interface 

    
Jetting 
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Figure 6.6. Velocity distribution at time 2.2 µsec. 

 

 
Figure 6.7. Equivalent plastic strain evolution at straight and wavy areas. 

 

6.2.1  Temperature 

 

At the interface, the peak temperature is about 700 K which is far lower than the 

melting point 900 K. This result confirms that impact welding is a solid state welding 

process. 
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6.2.2  Jet formation 

 

Jetting is believed as a prerequisite for a successful welding. In this simulation, 

jetting starts at time 0.6 µsec and the one at time 2.2 µsec is shown in Figure 6.4. As shown, 

the phenomenon of jetting is reproduced very well by using the semi-Lagrangian RKPM 

formulation. Near the collision point, the pressure gradient is very high (see Figure 6.5), 

which drives the material to have large plastic deformation. As a result the zone also has 

the highest velocity (see Figure 6.6) and the jetting is also formed in the zone. Simply 

speaking, the high pressure gradient due to the impact at the collision point is the driving 

force of jetting. The jet velocity obtained from the simulation is about 4480 m/sec. It is 

16% lower than the standard equation [85] vj = [vp/sin(β)](1+cos(β)) = 5237 m/sec, which 

is derived based on the jet formation in fluid mechanics. Therefore this equation are only 

used in the literature (such as [78, 68]) as a rough estimation since pure fluid assumption 

is not realistic for solid plate impacting problem and its correctness has not been proved. 

And in [78, 68], the error 10-15%, 15-20% are reported respectively. The jet velocity herein 

actually agrees reasonably with the estimation and is in good agreement with results in [78, 

68]. 

 

6.2.3   Straight and wavy interface 

 

The transition from a straight to a wavy interface is observed in this simulation as 

shown in Figure 6.4. There are some hypotheses on the mechanism of the wavy interface 

and it is still an open research area. However, based on the numerical experience in [78, 

68] and also in this simulation, the plastic strain must be high enough in order to form the 
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wavy interface. The equivalent plastic strain at the straight region is less than at the wavy 

interface (see Figure 6.7), which is consistent with the conclusion in [78, 68]. One 

reasonable explanation is that the higher the plastic deformation level, the more the 

material behaves like fluid where wavy interface can form as a result of physical instability. 

 

6.3  EXPLOSIVE WELDING MODELING 

 

In section 2, it shows this framework is capable to model the key phenomena, 

jetting and wavy interface in impact welding. In this section, an explosive welding case is 

simulated and the compressible fluid (air and explosive gas) and FSI are included compared 

with impact welding case. 

 

 

 

 

 

 

 

 

 

 

Figure 6.8. Configuration used in explosive welding of capsule. 
 

In Figure 6.8, it shows the proposed capsule used in Mars Sample Return Mission 

[75]. After the initiation of the explosive, the flyer tube is accelerated and impacts the 

parent tube, which enables the hermetic seal of the capsule. The explosive is initiated from 
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a point and the resulted detonation follows a circular pattern with two fronts. In this case, 

the axial collapse, instead of the radial one is responsible for the welding [75]. The problem 

can be reduced to a 2D problem [75]. A PETN-based plastic explosive was used with a 

linear density of 4.25 g/m. The initial angle between the two tubes is denoted as α. In [75], 

it models multiple cases with the initial angles varying from 4º to 14º. Since the parametric 

study is not the main point of this work, for validation purpose, only the case with angle 

9.46º where the jetting is formed, is recomputed in this section and compared with the 

original simulation result in [75] which is obtained by using RAVEN code, a 2D explicit 

Eulerian finite difference code.  

 

 
Figure 6.9. 2D section used for the computation (dimensions in meter); yellow: explosive; blue: 

flyer and base plates; gray: air. 

 

The representative 2D configuration is shown in Figure 6.9. According to [67], for 

contact detonation case (i.e. the standoff distance is zero), the shock wave in the explosive 

gas is dominant and the effect of air is small enough to be neglected. For the sake of 

simplicity and saving computational cost, the air is not modeled in this simulation. PETN-

based plastic explosive is modeled by the following equation of state ( 1) eP γ ρ= −  where

γ is taken as 3 for the high explosives gas [61]. Here the chemical reaction of the explosive 

is not modeled. Instead, an empirical burn function is used as described in section 5.2. 
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Again, the modified Johnson-Cook constitutive model [83] and failure criterion [84] are 

used for the 6061 T0 aluminum alloy and the parameters are specified in Table 6.1. The 

contact between the two impacting plates and FSI are addressed by the level set enhanced 

natural kernel contact (LSENKC) algorithm [44]. 324364 nodes are used to discretize the 

explosive, flyer and base plates. 

 

 

Figure 6.10. Evolution of impact angle β in the simulation of original paper (adapted from [75]).  

 

Different from the impact welding case where the impact angle β and velocity vp 

are close to constant, herein they are dynamically changing as a function of time, as shown 

in Figure 6.11 and Figure 6.12. The impact angle arrives at a stable value (about 60º), which 

is consistent with the original simulation as shown in Figure 6.10 (the curve with angle 

10º). This is due to that it takes time to gradually impart the energy from the explosive gas 

to the flyer plate through FSI. Impact angle β increases with time, which can also be seen 

in Figure 6.13. Impact velocity vp also grows with time and reaches a stable value, about 

1000 m/sec. As mentioned earlier, jetting occurs only under certain combination of β and 

  The case simulated in this thesis 

β 

Time 
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vp. Based on the two conditions discussed in section 2, when the impact velocity increases 

to 1000 m/sec, β must be big enough such that sin(β/2)> vp/(2Cs) holds and the jetting is 

expected to form. Obviously, β > 20º is a valid option, since vp =1000 m/sec and β = 20º 

are used in section 2 and jetting is formed. As shown in Figure 6.11, β = 20º is achieved at 

time around t = 1.5 µsec and after some accumulation of the plastic deformation, jetting is 

first observed at time 2.2 µsec. Here it takes about 0.7 µsec (= 2.2 µsec-1.5 µsec) to 

accumulate enough plastic deformation, which is consistent with the jetting time in impact 

welding case in the last section where it takes about 0.6 µsec (because the jetting first 

occurs at t = 0.6 µsec with a constant β = 20º). In [75], it reports that the jetting starts at 

time 2.5 µse, which is close to our result 2.2 µsec. The progress of jetting is shown in 

Figure 6.13. As can be seen, the overall deformed configuration is very similar to the 

original simulation (see Figure 6.14). The jetting is modeled very well and it is better 

represented than that in [75] by comparing Figure 6.13 with Figure 6.14. 

 

 
Figure 6.11. Evolution of impact angle β.  
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Figure 6.12. Evolution of impact velocity at the collision point. 

 
 
 

 
(a) 

Figure 6.13. Numerical simulation of the explosive welding process: jetting formation (a) time t = 
2.0 µsec, (b) time t = 3.0 µsec, (c) time t = 3.5 µsec. 
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(b) 

 
(c) 

Figure 6.13. Numerical simulation of the explosive welding process: jetting 
formation (a) time t = 2.0 µsec, (b) time t = 3.0 µsec, (c) time t = 3.5 µsec. (Continued) 

 

In Figure 6.13, we can see a narrow zone with high plastic strain at the impacting 

plate interface and FSI interface, which is due to the high shear stresses at these interfaces. 

The wavy interface is not obvious in this simulation, which is in agreement with the 

numerical result in [75] as shown in Figure 6.14.  
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Figure 6.14. Jetting formation in the original paper (adapted from [75]). 

 

6.4  CONCLUSION  

 

In this chapter, the semi-Lagrangian RKPM framework discussed in chapter 5 is 

applied to model the explosive/impact welding process. An impact welding process is first 

modelled and analyzed, and the wavy interface and the jetting are well reproduced. The 

simulated jet velocity is consistent with the theoretical prediction and other publications. 

Finally, the explosive welding case, the capsule used in Mars Sample Return Mission [75] 

is recalculated and compared with the original simulation results. The dynamic changing 

of the impact angle, the forming of jetting are in agreement with the results in [75] and the 

jet formation is better represented in term of resolution. 

This framework is shown well suited for modelling explosive/impact welding 

processes and is promising to be applied to design the parameters of the experiment in the 

future.  
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APPENDIX A: MODIFIED JOHNSON-COOK MATERIAL MODEL AND FAILURE 

CRITERION 

 

The modified Johnson-Cook constitutive model [83] and failure criterion [84] are 

used to describe all the metals in this chapter. In the modified Johnson-Cook model, the 

equivalent stress is defined as 

 ( )( ) ( )* *1 1 ,
Cn m

eq A B Tσ ε ε= + + −   (6.2) 

Where ε  is the equivalent plastic strain and *
0/ε ε ε=   represents the plastic strain rate 

normalized by a reference strain rate at which experiments were conducted to obtain the 

material properties. The normalized temperature ( ) ( )* /r m rT T T T T= − − is utilized to 

characterize thermal softening caused by adiabatic hearting due to the plastic work and rT

is the reference temperature, mT is the melting temperature. Damage accumulation is 

expressed as  

 ,
f

D ε
ε
∆

=∑   (6.3) 

where fε is the failure strain,  

 
* 43 * *

1 2 51 1 ,
DD m

f D D e D Tσε ε     = + + + +        (6.4) 

where D1-D5 are five given material constants and the pressure-stress ratio *σ  is given by  

 * .
3

xx yy zz

eq

σ σ σ
σ

σ
+ +

=   (6.5) 
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7.1  SUMMARY OF THE RESEARCH PERFORMED AND THE NOVEL CONTRIBUTIONS 

 

In this dissertation, an RKPM based computational framework is developed to 

model two types of blast events, the transient dynamic failure of reinforced concrete 

column subjected to blast loading and explosive/impact welding processes, which involve 

strong shock waves in both fluid and solid, fluid-structure interaction (FSI), high strain rate 

phenomenon, material damage and fragmentations, multi-body contact. The main 

contributions of this study are summarized as following. 

In this study, two hydrodynamic formulations are proposed under RKPM 

framework with physics-based shock modeling techniques. Essential shock physics is 

considered by introducing Godunov flux into RKPM and oscillation control is achieved by 

a gradient smoothing in pressure and velocity gradients. In particular, the second 

formulation is applicable to problems with shock-induced fragmentations, which is 

challenging for existing methods. A variety of benchmark problems are examed for these 

two formulations and the results agree well with reference solutions.  

Another difficulty in blast modeling comes from FSI which involves the surface 

cracking and new surface generation in structures when fragmentations occur. In this work, 

the level set enhanced natural kernel contact (LSENKC) algorithm is adopted to address 

FSI with both solid and fluid fields discretized by Lagrangian particles. This contact 

algorithm does not require the definition of potential contact surfaces a priori and is 

effective for FSI involving fragmentations.  

Finally, by combining the new developed RKPM hydrodynamic formulation (for 

strong shock waves in both solid and fluid) and the LSENKC contact algorithm (for FSI 

with fragmentation), the proposed computational framework is applied to model the 
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transient dynamic failure of reinforced concrete column subjected to blast loading and the 

explosive/impact welding processes with satisfactory results. 

 

7.2  RECOMMENDATIONS FOR FUTURE STUDIES 

 

Based on the research experience gained in this dissertation, directions for future 

research are recommended as follows:  

• This framework can be further applied to simulate marine structures subjected to 

underwater explosion and soil structures subjected to the buried charge explosion, 

which share the key features with the two comprehensive problems modelled in 

Chapter 5 and 6 and are frequently encountered in defense. 

• In the simulation of explosive/impact welding, prediction of meso-scale material 

properties is critical in determining the weld bond strength. In this work, only 

continuum scale is considered and microstructure effects are not investigated. 

• Adaptive refinement in RKPM can be implemented to further improve the 

efficiency and accuracy of this framework.  
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