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Significance

Under climate change, ecological 
communities are becoming 
dominated by species with higher 
temperature optima. The rate of 
this “thermophilization” process 
is difficult to predict. We show 
that recent changes in 
temperature and hydrology have 
driven thermophilization in 
western US forests, but that 
thermophilization rates are 
lagging behind climate change by 
roughly tenfold. These trends 
suggest that forest trees are 
becoming increasingly 
mismatched with their 
environments, potentially 
threatening ecosystem service 
provision. We also show that 
thermophilization is caused by 
high mortality among species 
with lower temperature optima, 
and that thermophilization is 
occurring more rapidly on 
north-facing hillslopes and in 
forests damaged by insects. Our 
results clarify mechanisms of 
climate-driven shifts in ecological 
communities, and these insights 
can inform forest management.
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Climate change, tree demography, and thermophilization 
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Climate change is driving widespread changes in ecological communities. Warming 
temperatures often shift community composition toward more heat-tolerant taxa. 
The factors influencing the rate of this “thermophilization” process remain unclear. 
Using 10-y census data from an extensive forest plot network, we show that mature 
tree communities of the western United States have undergone thermophilization. 
The mean magnitude of climate warming over the 10-y study interval was 0.32 °C, 
whereas the mean magnitude of thermophilization was 0.039 °C. Differential tree 
mortality was the strongest demographic driver of thermophilization, rather than 
growth or recruitment. Thermophilization rates are associated with recent changes 
in temperature and hydrologic variables, as well as topography and disturbance, 
with insect damage showing the strongest standardized effect on thermophilization 
rates. On average, thermophilization occurred more rapidly on cool, north-facing 
hillslopes. Our results demonstrate that warming temperatures are outpacing the 
composition of western US forest tree communities, and that climate change may 
erode biodiversity patterns structured by topographic variation.

climate change | forests | tree mortality | demography | thermophilization

Global climate change is reorganizing ecological communities (1, 2), often in ways that 
are difficult to anticipate. For example, drought-driven tree mortality rates are increasing, 
but it remains challenging to predict when, where, and to which species mortality events 
will occur (3). Successful natural resource management will depend on improved under-
standing of the factors governing variation in community responses to climate change.

Although community responses to climate change vary, there are likely underlying 
commonalities in relation to species’ functional attributes or climatic niches (4). Warming 
temperatures often increase the relative abundance of heat-tolerant (“thermophilic”) taxa 
(5). This “thermophilization” process has been documented across many taxa, regions, 
and spatial scales (6–8). However, thermophilization rates vary widely, and although they 
are often associated with warming rates, much variation remains unexplained.

Additional factors beyond warming rates could influence thermophilization rates. For 
example, many organisms, such as plants, exhibit physiological links between their water 
and temperature regulation mechanisms. Consequently, thermophilization rates may be 
associated with changes in hydrologic variables (6). Additionally, in forests, canopy dis-
turbance increases penetration of solar radiation into forest understories, which can accel-
erate changes in climate and community composition (9, 10). Tree species may also be 
differentially susceptible to biotic factors, such as insect damage, which could influence 
rates of thermophilization.

Topographic features such as hillslope orientation (i.e., slope and aspect) might also 
modify thermophilization rates. A site’s hillslope orientation affects the amount of heat 
received from the sun, with the warmest climates occurring on equator-facing hillslopes 
and the coolest climates on pole-facing hillslopes. In turn, plant community composition 
is shaped strongly by hillslope-mediated microclimatic variation (11), with 
warmer-associated species occurring on more equator-facing hillslopes. It is less clear how 
hillslope orientation might interact with climate change to affect rates of change in com-
munity composition over time.

Another key step toward improved understanding of thermophilization is to examine 
the demographic processes underlying shifts in community composition. The average 
climatic niche (or “community temperature index”) of a community can be quantified as 
the mean of all cooccurring species’ temperature optima, often weighted by a metric of 
species’ abundance. When metrics that account for each organism’s size (e.g., basal area) 
are used, a community’s temperature index can be changed by losses (mortality), gains 
(recruitment), or changes in size (growth) (12, 13). Algebraic decomposition can quantify 
the contributions of each of these processes to overall thermophilization (12, 13). 
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Quantifying these contributions will be instrumental in predicting 
the long-term trajectories of ecological communities responding 
to climate change. For example, recruitment-driven thermophil-
ization indicates that warm-associated propagules are recruiting 
successfully, which could help stabilize community biomass as 
climate change progresses. In contrast, mortality-driven thermo-
philization indicates that cool-associated taxa are being lost and 
not necessarily replaced by other taxa.

Here, we analyze 10-y changes in tree community composition 
across 44,992 forest subplots in the western United States from 
the United States Department of Agriculture Forest Service Forest 
Inventory and Analysis (FIA) dataset. Using hierarchical Bayesian 
models that account for latent spatial processes (14), we model 
the mean temperature indices of tree communities over time as a 
function of long-term average climate, recent climate change, 
topography, multiple forms of disturbance, and other predictors. 
We use these models to address three questions: 1) Are western 
US forests undergoing thermophilization? 2) What factors modify 
thermophilization rates? 3) What are the separate contributions 
of mortality, growth, and recruitment to thermophilization, and 
how do these contributions respond to potential thermophiliza-
tion rate modifiers?

Results

In western US forest subplots, baseline community temperature 
index is greater in warmer regions (0.564 °C community temper-
ature index per 1 °C plot mean annual temperature, in a model 
containing other climate variables), as well as in regions with 
greater climatic water deficit (CWD) and precipitation (Figs. 1 

and 2). Because continuous predictors were standardized in our 
models (mean = 0, SD = 1), their effect sizes can be interpreted 
as °C per SD in the given predictor, thus allowing for comparisons 
of effect sizes among predictors with different units.

Forested areas in the western United States have warmed on 
average (Fig. 3; mean temperature change = 0.32 °C over 10 y). 
Correspondingly, the average subplot-scale tree community has 
shifted toward warmer-associated taxa—i.e., undergone thermo-
philization (Figs. 3 and 4). Thermophilization rates are greater in 
plots that warmed more (0.112 °C thermophilization per 1 °C 
warming), as well as plots that experienced greater drying, as rep-
resented by CWD and precipitation (Figs. 3 and 4). The mean 
observed thermophilization rate in western US forests is 0.00391 
°C/y, whereas the mean observed rate of macroclimatic warming 
over the same interval is approximately 0.032 °C/y.

The dataset comprised 316,519 trees that survived between 
censuses (mean = 5.6 per subplot), 64,024 that died (1.1 per 
subplot), and 35,836 that recruited (0.63 per subplot). Per-tree 
growth and mortality rates are shown in SI Appendix, Fig. S1. 
Mortality contributed most to thermophilization, followed by 
growth, with minimal contributions from recruitment (Fig. 4). 
In this analysis, recruitment is considered as entry into the 12.7 
cm diameter-at-breast-height class. In a separate analysis of sap-
lings in the 2.5 cm to 12.7 cm diameter-at-breast-height class, we 
found that the contribution to thermophilization of recruitment 
at the 2.5 cm threshold was also negligible (SI Appendix, Fig. S2).

Using data from only the portions of each subplot where saplings 
were recorded (diameter-at-breast-height 2.5 to 12.7 cm), we found 
that 87% of trees recorded as new 12.7 cm class recruits in the 
second census had been recorded as saplings in the baseline census. 
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Fig. 1. (A) Baseline mean annual temperature at 30-arcsecond (roughly 1 km) spatial resolution. (B) Baseline mean annual precipitation at 30-arcsecond resolution. 
(C) Baseline climatic water deficit at 1/24-degree (roughly 4 km) spatial resolution. (D) Tree community temperature index. In A–D, the 4 subplot-scale values 
for each plot are summarized by a single mean value per plot. (E) Tree community temperature index vs. baseline mean annual temperature, with hexagons 
colored by data density. The red trendline, added for illustrative purposes, is generated by simple linear regression (slope = 0.843). The black “one-to-one” line 
has slope 1 and y-intercept 0.

http://www.pnas.org/lookup/doi/10.1073/pnas.2301754120#supplementary-materials
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For another 9% of new 12.7 cm class recruits, there was no record 
of a matching sapling in the baseline census, but there was at least 
one conspecific seedling with diameter-at-breast-height less than 
2.5 cm (which are counted but not marked individually). The 
remaining 4% of new 12.7 cm class recruits had likely not germi-
nated yet at the baseline census.

Mortality-driven and recruitment-driven thermophilization 
were greater in plots that warmed more (Fig. 4). Growth-driven 
thermophilization was greater in plots that increased more in tem-
perature and CWD, as well as plots that decreased more in pre-
cipitation (Fig. 4).

Initial community temperature index was greater on warm, 
south-facing slopes (Fig. 2)—i.e., those with high topographic heat 
load. Thermophilization was greater on cool, north-facing slopes 
(Fig. 4). This pattern was driven primarily by mortality (Fig. 4).

Thermophilization was greater at sites where insect damage was 
observed between surveys (Fig. 4). The effect of this binary pre-
dictor on thermophilization rates is stronger than the effect of a 
one-SD change in any of our continuous predictors, as well as the 
effect of our binary fire predictor. Similar patterns appear for 
mortality-driven and growth-driven thermophilization (Fig. 4).

The 95% credible interval for the net effect of fire on thermo-
philization rates overlaps zero substantially (Fig. 4). However, fire 
had opposite effects on mortality-driven and growth-driven ther-
mophilization. In subplots that burned between censuses, 
mortality-driven thermophilization was stronger than that in 
unburned subplots, whereas growth-driven thermophilization was 
weaker (Fig. 4).

Thermophilization was greater in conifer-dominated subplots 
(Fig. 4). This pattern appears in growth-driven thermophilization, 
as well as in the analysis of recruitment to the 12.7 cm 
diameter-at-breast-height class (Fig. 4).

All effect sizes are shown in SI Appendix, Tables S1–S3, includ-
ing those not shown in figures. These include the “effects” of fire, 
insect damage, and recent changes in climate variables on baseline 
community temperature index. It would be incorrect to interpret 
these associations as direct causes because the events described by 
these predictors occurred after baseline community temperature 
index was measured. Instead, they may reflect causal relationships 
involving unmeasured covariates (15). Mapped predictions from 
fixed effects only are shown in SI Appendix, Fig. S3, and mapped 
random effect values are shown in SI Appendix, Fig. S4.

Discussion

Our analyses reveal widespread, fine-grained patterns of change in 
western US forest tree communities. Subplot-scale community com-
position has shifted in favor of tree taxa with higher temperature 
niche means (Figs. 3 and 4). We quantified this thermophilization 
process using community temperature indices—i.e., weighted aver-
ages of species’ climatic niche means in each subplot at each time 
point. Similarly, baseline community temperature indices are higher 
in plots with higher multidecadal baseline mean temperatures 
(Figs. 1 and 2). These results suggest that the observed changes in 
forest composition were driven at least in part by recent warming.

Thermophilization in western US forests is also associated with 
drying conditions. This trend is represented in our analyses by the 
negative effect of precipitation changes and the positive effect of 
CWD changes (Fig. 4), which were modeled alongside the effect 
of temperature in our hierarchical Bayesian models. (Variance 
inflation factors for all predictors were less than 5, although some 
predictors are moderately correlated, with the greatest Pearson’s 
correlation of 0.65 occurring between baseline temperature and 
baseline CWD.) These patterns are consistent with the hypothesis 
that tree species from warmer climate zones are better adapted to 
the increased evaporative demands caused by increasing tempera-
tures. This hypothesis is further supported by the positive associ-
ation we find between baseline community temperature index and 
baseline CWD in our hierarchical Bayesian regression models.

Although most patterns we found are consistent with warming 
and drying as drivers of thermophilization, some associations sug-
gest that more complex processes may have operated during or 
before our study’s timeframe. For example, baseline community 
temperature index is greater in plots with greater precipitation 
(Fig. 2). Additionally, although the effect of baseline temperature 
on baseline community temperature index in our data is near the 
commonly expected value of 1 in a univariate, ordinary least 
squares linear regression (Fig. 1E), the effect is only 0.564 in our 
full hierarchical Bayesian regression model, likely reflecting com-
plex causal relationships among community temperature index 
and the other climatic variables. While effects of precipitation 
require further consideration, the strongest effects in our data 
point to warming and drying as the predominant climatic drivers 
of thermophilization in western US forests.

Thermophilization rates in western US forests are lagging 
behind macroclimatic warming rates by roughly tenfold. Our 
results suggest that western US forests are becoming mismatched 
with their environments. Should the observed trends continue, 
macroclimatic temperatures will increase by roughly 3 °C on aver-
age by the end of the century, whereas the average community 
temperature index will increase by less than half a degree, thereby 
adding over 2.5 °C in “climatic debt” (16, 17). This debt will 
compound any debt these communities may have already accrued 
due to earlier anthropogenic climate change, migration lags fol-
lowing glacial retreat (18), or other factors that may have restricted 
species’ realized climatic niches (19). The timeframe of our study 
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Fig. 2. Violin plot of 95% credible intervals for standardized effects of fixed 
predictors on baseline community temperature index in western US tree 
communities. Results come from hierarchical Bayesian regression models 
of tree community temperature index over time. Violins can be interpreted 
as smoothed, horizontally symmetrical histograms, with the vertical axis 
representing parameter values and the horizontal axis representing probability 
density. The total area of each violin is set to be equal, so shorter and wider 
violins correspond to model parameters for which the posterior probability 
density is more concentrated around the mean.

http://www.pnas.org/lookup/doi/10.1073/pnas.2301754120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2301754120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2301754120#supplementary-materials
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coincided with severe drought events in the western United States 
(20), so it is possible that the patterns we observed are more 
extreme than future trends will be. However, recently developed 
climate models indicate that drought is expected to become 
increasingly frequent and severe in the western United States, and 

that the timeframe of our study may provide a reasonable preview 
of upcoming climate change (20). Moreover, to the extent that 
drought accelerated mortality, it could have led to higher rates of 
thermophilization, notwithstanding the tenfold lag we observed. 
Disturbances allow for more rapid forest turnover and in some 
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Fig. 3. (A) Recent 15-y changes in mean annual temperature from gridMET data at 1/24 arcsecond (roughly 4 km) spatial resolution. (B) Recent 15-y changes in 
mean annual precipitation from gridMET. (C) Recent 15-y changes in CWD from TerraClimate data at 1/24-degree (roughly 4 km) spatial resolution. (D) Recent 
10-y changes in tree community temperature index. In A–D, the 4 subplot-scale values for each plot are summarized by a single mean value per plot. (E) Change 
in tree community temperature index vs. change in mean annual temperature. Each point represents one subplot. The red trendline, added for illustrative 
purposes, is generated by simple linear regression. The red point represents the mean of the x and y variables. The black “one-to-one” line has slope 1 and 
y-intercept 0. In A–E, points below the fifth percentile or above the 95th percentile of change in community temperature index are omitted to improve pattern 
visibility and color scale perceptibility.
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circumstances may allow plant communities to better track chang-
ing environments and minimize climate debt (9).

The consequences of climatic debt may be particularly severe 
for western US forests because recent thermophilization has been 
driven primarily by mortality, with little influence from recruit-
ment to the small-tree size class (Fig. 4) or recruitment of smaller 
saplings (SI Appendix, Fig. S2). These patterns indicate that in 
most subplots, the tree taxa that recruited over the study interval 
have thermal niches that are no warmer on average than the base-
line communities into which they recruited. Instead, thermophil-
ization has mostly resulted from mortality among taxa with the 
coolest thermal niches. If thermophilization continues to be driven 
by mortality, then climate change may threaten ecosystem services 
more strongly than a simple extrapolation of climatic debt might 
suggest. In this scenario, not only will 3 °C of warming occur, but 
the 0.5 °C of thermophilization that occurs in response will be 
due to losses of the most climatically vulnerable species—not 
recruitment of warmer-associated species that can cope better with 
warming conditions. These increasingly maladapted forests would 
likely decline in their ability to provide ecosystem services, such 
as carbon sequestration (21).

The lack of evidence we find for recruitment-driven thermophil-
ization contrasts with another recent study, which found that hot 
spots of fecundity and seedling recruitment for western US tree 
species are shifting toward cooler, moister regions at a rate roughly 
commensurate with observed climate change (22). This difference 
in results between studies might be explained by the difference in 
demographic scope, as our study does not examine seedling dynam-
ics directly, instead examining recruitment of saplings and small 
trees. If this explanation for the discrepancy in results is correct, 
then mature tree communities could be primed for more rapid 
recruitment-driven thermophilization in the coming decades as the 
current cohorts of seedlings mature. Ackerly et al. (11) predicted 
that thermophilization driven by seedling recruitment will occur 
faster on pole-facing hillslopes due to shorter dispersal distances 
for warmer-associated propagules from communities on adjacent 
equator-facing hillslopes. Alternatively, our study’s contrasting find-
ings may be explained by the difference in the spatial grain of 
analysis. There may be a lag between the time when the first seed-
ling of a species recruits anywhere within a new macroclimatic zone 
and the time when conspecifics have spread to a substantial number 
of forest plots within that new zone. If this explanation is correct, 
then the species composition of new recruits in western US forests 
will likely continue to lag behind climate change.

In addition to climatic predictors, recent thermophilization 
rates in western US forests are associated with several nonclimatic 
predictors. Thermophilization rates are roughly three times greater 
in subplots with recorded evidence of insect damage (Fig. 4). This 
is the strongest effect size of all thermophilization “rate modifiers” 
we considered. There is likely at least an indirect causal link 
between insect damage and thermophilization because some 
insects, such as bark beetles, attack drought-stressed trees prefer-
entially (23). Insect damage could be an indicator of drought 
patterns occurring at finer spatiotemporal scales than our predictor 
variables can capture. Additionally, insect damage may have a 
direct influence on thermophilization if insect-driven canopy loss 
accelerates microclimatic change in the understory (24, 25).

We find little evidence for a net effect of fire on thermophiliza-
tion rates in western US forests over the 10-y study interval (Fig. 4). 
However, fire appears to have exerted opposite effects on 
mortality-driven and growth-driven thermophilization. In subplots 
that burned between censuses, mortality-driven thermophilization 
was stronger than that in unburned subplots, whereas growth-driven 
thermophilization was weaker (Fig. 4). A previous study of western 

US forests found that cool-associated tree taxa have functional 
traits associated with poor fire tolerance (26), suggesting that fire 
may disproportionately kill cool-associated taxa. Our results sup-
port this prediction. It is unclear why the pattern might be opposite 
for growth-driven thermophilization. This pattern may reflect fea-
tures of the postfire environment that disproportionately benefit 
cool-associated taxa, like decreased competition for moisture, or 
harm warm-associated taxa, like decreased canopy-mediated ther-
mal buffering during winter (27). It is also possible that the prob-
ability of fire occurring during the census interval was influenced 
by the balance between the growth of cool-associated and 
warm-associated taxa. Our data on fire occurrence, as well as insect 
damage, are coarse, and further study is needed regarding the influ-
ence of these processes on thermophilization.

Our analyses indicate that topography influences thermophili-
zation in western US forests. Thermophilization was strongest on 
cool, pole-facing (i.e., north-facing) hillslopes, and this pattern is 
driven by mortality and growth (Fig. 4). We also find that warmer, 
more equator-facing sites were occupied by warmer-associated tree 
taxa at baseline (Fig. 2). For example, our data indicate that at 
45°N latitude, the expected difference in community temperature 
index between a community on a 30° hillslope facing due north 
and a 30° hillslope facing due south is 0.372 °C. However, it is not 
clear why thermophilization rates are greatest on pole-facing 
hillslopes. This pattern would be expected if the rates of change in 
microclimatic conditions—i.e., exposure to climate change (28)—
vary with hillslope orientation (29, 30). Alternatively, thermophil-
ization might be faster on pole-facing hillslopes because tree 
community sensitivity to climate change [as opposed to exposure 
(28)] varies with hillslope orientation. Hillslope orientation could 
have affected historical disturbance regimes (31), which may have 
shaped variation in resident tree species’ climatic niches (24) and, 
thus, their sensitivity to climate change.

Because western US tree communities on pole-facing hillslopes 
are undergoing thermophilization more rapidly than those of 
equator-facing neighbors, community temperature indices are 
becoming more similar between adjacent pole- and equator-facing 
slopes. In topographically heterogeneous landscapes, this process 
could drive biotic homogenization—a reduction in spatial turn-
over of community composition among subplots (11, 32)—as 
well as declines in landscape-scale species richness. Fig. 5 shows a 
hypothetical example. This trend could be a bellwether of more 
pervasive future climate-driven biodiversity loss in topographically 
heterogeneous landscapes. When biotic homogenization is driven 
by extirpations, the homogenizing effect of each successive extir-
pation grows (33). More work is needed to explore the extent and 
consequences of climate-driven homogenization in topographi-
cally heterogeneous forests.

Our study underscores the utility of large datasets with high 
spatial replication for early detection of biotic responses to climate 
change, such as thermophilization, accrual of climatic debt, and 
biotic homogenization. These results could provide a crucial pre-
view of future changes in western US forests that will unfold over 
longer timescales. We also demonstrate the importance of analyz-
ing the demographic processes underlying thermophilization, 
showing that western US forests are suffering disproportionately 
rapid mortality of tree taxa with cool thermal niches, and that new 
recruits do not have warmer thermal niches than their recipient 
communities. Additionally, we reveal nonclimatic factors that may 
modify thermophilization rates, including insect attacks and top-
ographic heat load. Our findings elucidate the mechanisms by 
which ecological communities respond to climate change, as well 
as highlight concerning trends in western US forest dynamics that 
can help inform management strategies.

http://www.pnas.org/lookup/doi/10.1073/pnas.2301754120#supplementary-materials
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Materials and Methods

Forest Plot Data. We used the United States Department of Agriculture Forest 
Service’s FIA Program plot network (34) to quantify changes in western US forest 
composition over recent 10-y intervals, with baseline plot censuses occurring 
from 2000 through 2008 and resurveys from 2010 to 2018. FIA uses a rand-
omized systematic sampling approach in which plots are randomly located within 
hexagonal grid cells of approximately 2,428 ha. We used data collected solely 
from Phase 2 FIA plots classified as forested (≥10% tree canopy cover), excluding 
plots that were only partially covered by forest, in the following US states: NM, AZ, 
CA, NV, UT, CO, ID, OR, WA, and MT. (Wyoming plots had not been recensused at 
the time of data download.) Each plot comprises four circular subplots, each with 
a radius of 7.32 m. Within each subplot, the diameter-at-breast-height of each 
tree with a diameter-at-breast-height of at least 12.7 cm was measured. For all 
subplots, we disregarded any trees recorded more than 7.32 m from the subplot 
center so that all sampling units in our analyses were equivalent. In our main 
analyses, we also disregarded saplings with diameter-at-breast-height less than 
12.7 cm, which were recorded in 2.07 m microplots within the main plots. We 
used the sapling data for supplementary analyses described below. Additional 
data-filtering protocols are described in SI Appendix, Supplementary Methods, 
and all data filtering and preparation steps are shown with comments in our 
publicly available R code. Forest plots are marked, allowing census protocols to be 
repeated precisely. Our unit of analysis is the subplot, and our regression models 
included random effects to account for nonindependence among subplots within 
the same plot (details below). In total, we analyzed data from 44,992 subplots.

Quantifying Community Temperature Index. We quantified temperature index 
values for each of the 110 species in the dataset using three approaches, which are 
described in SI Appendix, Supplementary Methods: modeled niche means, mod-
eled niche optima, and simple niche means. These values are calculated in °C and 
reflect a measure of the mean or optimal value of mean annual temperature for 
each species across its geographic range in the western United States. The mgcv R 
package (35) was used for thermal niche modeling, and CHELSA (Climatologies at 
high resolution for the Earth's land surface areas) (36, 37) was used for climate data.

To quantify the mean community temperature index in each subplot’s tree 
community at each timepoint, we calculated the mean temperature index value 
across all species using each of the three niche modeling methods detailed in 
SI Appendix, Supplementary Methods, weighted by the basal area of each species.

Regression Models of Thermophilization. Our regression models were built 
in a Bayesian framework using R-INLA. We used community temperature index 
in one subplot at one time point (either “T1” or “T2”) as a response variable ( Yijk ). 
The subscript “i” denotes the ith plot, “j” denotes the jth subplot, and “k” denotes 
our binary timescale (T1 or T2). We tested for changes over time (i.e., thermophil-
ization) using a binary “T1 vs. T2” indicator variable as one of our predictors ( x1k ). 
Its coefficient ( �1 ) represents the mean change in community temperature index 
between censuses, which are 10 y apart for all sites in our dataset. A zero value of 
x1k represents T1, and a one value represents T2.

Fixed effects representing climate in our regression models include baseline 
mean annual temperature, baseline mean annual precipitation, baseline mean 
annual CWD, and temporal changes in the same three variables. These six plot-level 
variables are denoted by x2i…x7i with coefficients �2…�7 , respectively. Topographic 
heat load for each subplot is denoted by x8ij with coefficient �8 , and the binary fire 
and insect damage variables are denoted by x9ij…x10ij with coefficients �9…�10 , 
respectively. x11ij , with coefficient �11 , denotes the subplot’s baseline percent basal 
area of conifers, which have distinctive temperature and water regulation physiology 
and represent a large component of western US forests. Each subplot is represented 
by two observations in the dataset (one at T1 and one at T2), and the values for 
each of the above predictors are equal in each set of paired T1 and T2 observations. 
Only the value of x1k (the binary T1 vs. T2 indicator) differs, with the T1 observations 
receiving a zero value. Consequently, the coefficients �2…�11 on their own represent 
their associations with baseline (T1) community temperature indices. Similarly, the 
y-intercept ( �0 ) represents the mean of the T1 observations—i.e., the mean baseline 
community temperature index.

We also included interactions between x1k (the T1 vs. T2 predictor) and each 
other predictor to test the modifying effects of these predictors on temporal 
changes in community temperature index (i.e., thermophilization rates). These 
interactions are denoted by x1kx2i … x1kx11ij with coefficients �12…�21 . For exam-
ple, in the interaction between x1k (the T1 vs. T2 variable) and x8ij (topographic 
heat load), the coefficient ( �18 ) represents the mean effect of topographic heat 
load on thermophilization rates.

Random effects in our regression models include a subplot-level normally 
distributed random effect ( vij ), as is typically used in linear mixed-effects mode-
ling, and a plot-level spatially covarying random effect ui . The plot-level spatial 
random effect is modeled using a Matérn covariance structure in a Gaussian 
Markov Random Field, which is computed as the solution to a stochastic partial 
differential equation using the finite element method (38).

The full model structure is written below:

Yijk
∼N

(

μijk , σ
2
)

,

μijk=�0+�1x1k+�2x2i+�3x3i+�4x4i+�5x5i

+�6x6i+�7x7i+�8x8ij+�9x9ij+�10x10ij+�11x11ij

+�12x1kx2i+ … +�21x1kx11ij+ui+vij,

 ui
∼ GMRF (0,Σ),

vij
∼N(0, d2).

We used R-INLA’s default uninformed (i.e., “flat”) prior probability distributions 
for all parameters.

Changes in forest composition (including size distributions) over time reflect 
three distinct demographic processes: mortality, growth, and recruitment 
of small individuals into the minimum censused size class. In our analyses, 
“recruitment” denotes entry into the 12.7 cm and above size class, as smaller 
individuals were not recorded. Consequently, recruitment rates reflect the com-
bined effects of reproduction (both in situ and dispersal from outside the plot), 
germination and seedling establishment, and seedling and sapling growth to 
reach this size threshold.

To quantify the contributions of each demographic process to thermophilization, 
we repeated the regression analysis described above with three additional versions 

Pole Equator

A

B

Fig.  5. Before (A) and after (B) views of a topographically heterogeneous 
landscape occupied by a hypothetical tree community that exemplifies 
key trends in our data. Effect sizes are magnified for illustrative purposes. 
Three tree species are shown with three different temperature indices: a low 
temperature-associated species (five long crown layers shown in yellow, styled 
after Abies), a medium temperature-associated species (four short crown 
layers shown in orange, styled after Pinus), and a high temperature-associated 
species (an icosahedral crown shown in red, styled after deciduous trees). 
Trees with black trunks were present at both time points. Trees with gray 
trunks were only observed in one time point, due either to mortality (present 
in panel A only) or recruitment (present in panel B only). Topographic heat 
load ranges from low (yellow) on the pole-facing hillslope (Left) to high (red) 
on the equator-facing hillslope (Right).

http://www.pnas.org/lookup/doi/10.1073/pnas.2301754120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2301754120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2301754120#supplementary-materials


PNAS  2023  Vol. 120  No. 18  e2301754120 https://doi.org/10.1073/pnas.2301754120   7 of 8

of the community temperature index response variable (12, 13), Yijk . The predictors 
and the T1 values of Yijk are unchanged in all models, whereas the T2 values of Yijk 
represent the effects of different demographic processes. In the recruitment model, 
all individuals that recruited between censuses are included at their observed diam-
eter-at-breast-height values, any trees that died are treated as still alive using the 
diameter-at-breast-height observed in the first census, and any trees that survived are 
fixed at zero net growth—i.e., their diameter-at-breast-height for the second census is 
equal to the value observed in the first census. In the “growth” model, all individuals 
that recruited between censuses are omitted in the second census, all individuals 
that survived are included with their observed T1 and T2 diameter-at-breast-height 
values, and mortality is ignored as described above. In thef “mortality” model, new 
recruits are ignored as described above, net growth for surviving trees is fixed at zero 
as described above, and any trees that died are recognized as absent in the second 
census. Fig. 6 shows a visual example of our analytical approach to isolating the 
effects of the three demographic processes.

We built a separate version of the recruitment model for the sapling data 
(diameter-at-breast-height 2.5 cm to 12.7 cm) to explore the sensitivity of 
our results to the 12.7 cm diameter-at-breast-height recruitment threshold. 
Community-weighted niche means were computed as described above, except 
only trees in the sapling class were considered. The model structure was identical 
to that described above.

All continuous predictors were centered and scaled (mean 0, SD 1). Each model 
was built twice; once with dummy coding for binary predictors (presence or absence 
of fire and insect damage), and once with weighted effect coding for these predictors. 
Weighted effect coding of categorical predictors produces, for each category, an esti-
mate of the deviation from the population mean, while accounting for differences in 
numbers of observations among categories (39). We included this second coding 
scheme to obtain estimates of population mean thermophilization.

Among the three versions of community temperature index we generated 
(SI  Appendix, Supplementary Methods), Pearson’s correlation values are all 
greater than 0.95 (SI Appendix, Fig. S5). For simplicity, the main results presented 
here represent only the “modeled niche mean.”

Status of New Recruits. We used the sapling data (diameter-at-breast-height  
2.5 cm to 12.7 cm), along with the FIA seedling dataset (diameter-at-breast-height 
less than 2.5 cm), to check the status of each new recruit to the 12.7 cm diameter-
at-breast-height class at the baseline census: present as a sapling, likely present as 
a seedling (although individual seedlings were not marked), or not yet germinated.

Data Sources for Predictors. Our mean annual temperature and mean 
annual precipitation predictors, which we used to quantify broad, macroclimatic 
variation among climate zones, were extracted from CHELSA’s (Climatologies at 
high resolution for the Earth's land surface areas) 1981 to 2010 climatologies  
(36, 37). We used the temperature change and precipitation change predictors to 
quantify climate change over a time interval relevant to the observed changes in 
vegetation. For each plot, we extracted daily temperature and precipitation data at 
4 km resolution from gridMET (40) and calculated the difference in mean values 
between two time intervals, where t is the year of the first census: t−19 through 
t−5, and t−4 to t+10. These sliding-window measures average over short-term 
interannual variability to quantify climate change over a 15-y interval, rather than 
the 10-y interval between tree censuses, and begin earlier to account for potential 
lagged effects of climate on vegetation (41).

Baseline CWD, as well as recent changes in CWD, was computed from TerraClimate 
data (42). Annual CWD was computed as the sum of positive monthly CWDs, where 
deficit equals potential evapotranspiration minus actual evapotranspiration.

In the publicly available FIA dataset, plot geographic coordinates are subject to 
a “fuzzing and swapping” protocol designed to prevent unauthorized site access 
and ensure confidentiality of private data (34). “Fuzzing,” which applies to all 
plots, displaces plot coordinates by up to 0.8 km in a random direction in most 
cases, or up to 1.6 km for a small subset of plots. “Swapping,” which only affects up 
to 20% of plots on private land, trades coordinates between plots on private land 
in the same county. We assume that fuzzing and swapping introduced random 
noise into our extracted climate data, but not systematic bias.

The remainder of our predictors are generated from within the FIA dataset. 
Topographic heat load is calculated from slope and aspect, which were measured 
by field crews for each subplot, as well as latitude, which is provided in fuzzed and 
swapped forms as described above (43). This variable is a measure of the extent to 
which energy from the sun warms each microsite. Fire damage and insect damage are 
binary predictors recorded by field crews that indicate whether each type of damage 
was observed to have affected at least 25% of the vegetation in each subplot between 
censuses (or 50% of an individual species’ damage count).

Software. We used R software for all data processing, analysis, and visualization, 
including the following packages: raster (44), R-INLA (45), mgcv (35), ggplot2 
(46), patchwork (47), ncdf4 (48), foreach (49), doParallel (50), rgdal (51), spData 
(52), sf (53), adehabitatHR (54), rgeos (55), usdm (56), and rcartocolor (57). All 
R scripts and data are available at https://doi.org/10.6078/D1RX4X.

Data, Materials, and Software Availability. Forest inventory, climate, and R 
code data have been deposited in Rosenblad, Baer, and Ackerly (2023) Code and 
Data (https://doi.org/10.6078/D1RX4X) (58).
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