
UCLA
UCLA Electronic Theses and Dissertations

Title
Resource and Data Management in Accelerator-Rich Architectures

Permalink
https://escholarship.org/uc/item/56h233jw

Author
Huang, Muhuan

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/56h233jw
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Resource and Data Management

in Accelerator-Rich Architectures

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Muhuan Huang

2016

© Copyright by

Muhuan Huang

2016

Abstract of the Dissertation

Resource and Data Management in Accelerator-Rich Architectures

by

Muhuan Huang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2016

Professor Jingsheng Jason Cong, Chair

In many domains, accelerators—such as graphic processing units (GPUs) and field

programmable gate arrays (FPGAs)—provide a significantly higher performance than

general-purpose processors and at a much lower power. Accelerator-rich architectures

are thus much more energy-efficient and are becoming mainstream.

This dissertation investigates two important keys to the performance and power effi-

ciency of accelerator-rich architectures—resource and data management. Three broad

classes of accelerator-rich architectures are considered: chip-level accelerator-rich ar-

chitectures such as systems-on-chips(SoC), node-level accelerator-rich architectures, and

cluster-level accelerator-rich architectures.

We first study SoC resource management for a broader class of streaming applica-

tions. On accelerator-rich SoCs, where multiple computation kernels space-share a single

chip, we target the exploration of tradeoffs of on-chip resources and system performance,

and find the best combination of accelerator implementations and data communication

channel implementations to realize the application functionality.

We continue our study of node-level accelerator-rich architectures where we consider

orchestrating two kinds of computation resources, CPU and accelerator, in the PCIe-

integrated CPU-accelerator platform and explore the CPU-FPGA collaboration approach

to improve application performance.

Then we study the resource allocation problem on accelerator-rich clusters, where

accelerators are time-shared among multiple tenants. Unlike traditional cluster resource

management, we propose to consider accelerators as the first-class citizen in the cluster

ii

resource pool, and develop an accelerator-centric resource scheduling policy to enable

fine-grained accelerator sharing among multiple tenants.

Finally, we investigate data shuffling on accelerator-rich clusters and evaluate the

possibility of using accelerators during data shuffling. We find that although data shuffling

involves a large amount of computation, using accelerators does not necessarily improve

system performance due to the data serialization and deserialization overhead introduced

by accelerators.

iii

The dissertation of Muhuan Huang is approved.

Wotao Yin

Wei Wang

Tyson Condie

Jingsheng Jason Cong, Committee Chair

University of California, Los Angeles

2016

iv

To my parents

v

Table of Contents

1 Introduction . 1

1.1 Chip-Level Resource and Data Management Challenges 4

1.2 Node-Level Resource Management Challenges 7

1.3 Cluster-Level Resource and Data Management Challenges 7

1.4 Dissertation Statement . 8

1.5 Organization . 9

2 Background . 10

2.1 Chip-Level Programming Model . 10

2.1.1 Synchronous Data Flow Graph 10

2.1.2 Homogeneous Synchronous Data Flow Graph 11

2.1.3 Throughput Definition . 12

2.2 Chip-Level Design Space Exploration with High Level Synthesis 13

2.2.1 Design Space Exploration . 13

2.2.2 High Level Synthesis . 15

2.3 Node-Level CPU-Accelerator Orchestration 15

2.3.1 Dataflow/Streaming Execution Model 15

2.3.2 CPU and GPU Coordination . 15

2.4 Cluster-Level Programming Model and Resource Management 16

2.4.1 Cluster-Level Programming Model 16

2.4.2 Cluster-Level Resource Management 17

2.5 Cluster-Level Data Sort and Shuffle . 19

3 Chip-Level Resource and Data Management 21

3.1 Introduction . 21

3.2 A Motivation Example . 22

vi

3.3 System Mapping . 23

3.3.1 Implementation Library Constraints 25

3.3.2 Scheduling Constraints From Computation Modules 27

3.3.3 Scheduling Constraints From Communication Channels 28

3.3.4 Problem Statement . 30

3.4 Proposed Approach: ST-Syn . 31

3.4.1 Schedulability Checking . 32

3.4.2 Iterative Improvement . 33

3.4.3 Update Scheduling Graph . 35

3.4.4 Complexity of ST-Syn . 36

3.4.5 Alternative Solution using Integer Linear Programming 36

3.5 Experiments . 37

3.5.1 Settings . 37

3.5.2 FIFO-based Merge Sort . 38

3.5.3 MPEG4 . 40

3.5.4 Overall Speedup and Area Overhead 41

3.6 Conclusion . 41

4 Node-Level CPU-Accelerator Orchestration 43

4.1 Introduction . 43

4.2 CPU-FPGA Co-Scheduling . 44

4.2.1 Dataflow Execution Model . 44

4.2.2 Proposed Runtime Thread Allocation Strategy 45

4.3 A Case Study of In-Memory Samtool Sorting 46

4.3.1 Samtool In-Memory Sorting . 46

4.3.2 Experiment Setup and Initial Profiling 47

4.3.3 Accelerator Design and Performance 48

vii

4.3.4 FPGA Accelerator Integration with CPU 49

4.3.5 Performance of Samtool Sorting 54

4.3.6 Parallelizing the Read Stage . 55

4.3.7 Dataflow-Samtools . 57

4.3.8 Overall Performance . 60

4.4 More Case Studies . 63

4.4.1 Changing Input format . 63

4.4.2 Changing Storage Type . 64

4.5 Accelerator Designs . 64

4.6 Conclusions . 65

5 Cluster-Level Resource Management . 66

5.1 Introduction . 66

5.2 System Overview . 67

5.3 Global Accelerator Manager . 69

5.4 Experiments . 71

5.4.1 Experimental Setup . 71

5.4.2 GAM Analysis . 72

5.5 Offline Scheduling Formulation . 74

5.5.1 Problem Formulations . 74

5.5.2 ILP formulations . 77

5.5.3 Complexity Analysis . 78

5.5.4 Discussions . 78

5.5.5 Related Work on Offline Resource and Task Scheduling 79

5.6 Conclusions . 80

6 Cluster-Level Data Shuffling . 82

6.1 Introduction . 82

viii

6.2 Experiment Setup and Initial Profiling 83

6.2.1 Data Shuffling in Spark . 83

6.2.2 Initial Terasort Profiling . 83

6.2.3 Acceleration Opportunities . 85

6.2.4 Sorting TeraFormat Records in C++ and Java 86

6.3 Using Accelerators in Spark Shuffling . 87

6.3.1 Terasort with Customized Java/Scala Sorting Routines 87

6.3.2 Terasort with Customized C++ Sorting Routines 88

6.3.3 Reducing Memory Footprint . 89

6.3.4 Performance Summary . 90

6.4 Conclusions . 91

7 Conclusions and Future Directions . 92

References . 94

ix

List of Figures

1.1 Xilinx Zynq-7000 EPP dual-core ARM Cortex-A9 + FPGA. 2

1.2 Intel Xeon + FPGA platform. 2

1.3 Our local cluster with FPGA cards. 3

2.1 An example of SDFGs. Producer/consumer rates are labeled at the begin-

ning/end of the edges. 10

2.2 The HSDFG converted from SDFG in Fig. 2.1. 12

2.3 Module implementation with and without pipelining. This figure is adopted

from [viv]. 13

2.4 Tradeoff between performance and area of one module in benchmark “fil-

terbank.” . 14

2.5 Example YARN architecture showing a client submitting jobs to the global

resource manager. 17

2.6 Data Sorting and Shuffling in MapReduce. This figure is adopted from

[Whi12]. 19

3.1 The proposed system synthesis framework. 21

3.2 A motivating example. In scenario 1, buffer size is not considered during

module selection. The implementation with minimum logic is selected. In

scenario 2, buffer size is considered together with module selection. In both

cases, these are feasible schedules that can meet the system throughput

requirement. However in scenario 2 with the consideration of buffer size,

the selected implementation can reduces BRAM use by 20%. 22

3.3 An example of module replication. Module throughput can be further

improved by duplicating the modules and adding the corresponding split

and join logic. 25

3.4 Scheduling graph for SDFG in Fig. 2.1. It contains all the actor firings in

two iterations. Detailed explanations of the edges can be found in Sec. 3.3.2. 27

x

3.5 An example of buffer-constrained edges. An SDFG is shown on the left.

Buffer-constrained edges are shown in the scheduling graph when buffer

size is 1 and 2 respectively. The producer rate and consumer rate is 1. . 29

3.6 An example of part of an ε-critical path. An improved hardware module

of n0 will contribute to both paths in the graph. 34

3.7 An example of merge sort to sort 8 values. m1 takes one value from each

of its two input channels, reorders the two values and then sends them out

to m2. m2 takes two values from each of its two input channels, merges

them into one sorted stream that contains 4 values. m3 works in a similar

fashion and outputs a sorted stream that contains 8 values. 38

3.8 FIFO-based merge sort: area utilization (logic & BRAM) under different

throughput settings. 16384 values are merged. Runtime of ILP buf is

limited to up to 2 hours, and thus ILP buf only generates sub-optimal

results. 39

3.9 MPEG4: area utilization under different throughput settings. Runtime of

ILP buf is limited up to 2 hours. ILP buf does not return a feasible integer

solution at 2 hours when throughput is 35 fps and 40 fps. 40

3.10 Overall speedup and area overhead. 41

4.1 An overview of the sort routine in Samtools. 47

4.2 Effective data transfer bandwidth between CPU and FPGA through PCIe. 51

4.3 Compression and CRC task throughput measured from host CPU side.

Measured FPGA performance includes data transfer time between the

CPU and the FPGA. 53

4.4 Normalized time for in-memory Samtool sorting. 54

4.5 System iostat during 12-thread in-memory sorting. 55

4.6 SAM file read throughput on SSD. 56

4.7 Normalized execution time for in-memory Samtool sorting using different

number of threads. 56

xi

4.8 A dataflow model for in-memory sorting. In this example, 3, 2 and 4

threads are used to execute read, sort and write stages, respectively. Data

between stages are organized using multi-input and multi-output queues. 57

4.9 Design space exploration on thread allocation for Dataflow-Samtool sort-

ing. The number of threads in sort stage equals to (12−# of threads in read stage−

of threads in write stage). Since we need to maintain at least one

thread for each stage, the range of x and y axes are [1, 10]. The z axis

shows the execution time in seconds using different colors. 58

4.10 Runtime adaptive thread distribution on our CPU-FPGA platform. . . . 59

4.11 System iostat during 12-thread in-memory sorting in Samtool, dataflow-

Samtool, and dataflow-Samtool-FPGA. 61

4.12 Overall speedup of different optimizations over original 12-thread Samtool

in-memory sorting. 62

4.13 Overall speedup of different optimizations over original 12-thread Samtool

in-memory sorting using different configurations. 64

5.1 Overview of Blaze runtime system. 68

5.2 Blaze execution flow. 69

5.3 Different resource allocation policies. In this example, each cluster node

has one FPGA platform and two accelerator implementations, “gradient”

and “distance sum”. Four applications are submitted to the cluster, re-

questing different accelerators. 70

5.4 Normalized system throughput and accelerator utilization of mixed work-

loads on a CPU-FPGA cluster. 73

6.1 Google Trend for Apache Spark and Apache Hadoop. Data was collected

from www.google.com/trends on November 6, 2016. 84

6.2 RDD computation lineage for the code in Listing 1. 84

6.3 System metrics of a node when running 64 GB Spark Terasort on 8-node

cluster. 84

xii

6.4 Performance comparison on sorting routines written in C++ and Java.

Speedup of C++ sorting over Java sorting is also measured. 87

6.5 RDD computation lineage for the code in listing 2. 89

xiii

List of Tables

3.1 Denotation of variables. 24

4.1 FPGA resource utilization of compression and cyclic redundancy check

accelerator. 48

4.2 FPGA accelerator comparison. 49

4.3 Comparisons between static thread allocation and adaptive thread alloca-

tion on application time (seconds). 60

4.4 Application execution time for different datasets (minutes). 63

5.1 FPGA accelerator performance profile. 72

6.1 Spark configurations in Terasort. 85

6.2 Performance of sorting 100GB TeraFormat records. 90

xiv

Acknowledgments

First and foremost, I wish to express my deepest gratitude to my advisor, Professor Jason

Cong, for his continuous support and guidance throughout my education. I first met Jason

during an undergraduate exchange program at UCLA in my junior year. Jason guided

me into the area of FPGA acceleration and has sparked my desire to pursue research

in the field of customized computing. Throughout my PhD study, Jason has provided

many insightful suggestions for my research projects. He also generously provided various

amazing opportunities towards conducting better research and producing better industry-

level products. It is my great fortune to have him as my advisor.

I wish to express my appreciation to my doctoral committee members, Professor

Tyson Condie, Professor Wei Wang, and Professor Wotao Yin, for their time, interest

and advice to improve the quality of this dissertation. I especially wish to thank Tyson

for his guidance on the runtime of large-scale distributed data processing system.

I also wish to thank all my collaborators at UCLA, especially Zhenman Fang, Karthik

Gururaj, Hui Huang, Matteo Interlandi, Sen Li, Di Wu, Bingjun Xiao, Peng Zhang and

Yi Zou. They helped to shape my ideas and research. It has been a true blessing to work

with these brilliant people.

In addition, I wish to thank my friends at UCLA VAST lab for supporting me through-

out my lengthy graduate school and making the past six years much more enjoyable.

I wish to thank the staffs in the computer science department for all their help dur-

ing my study here. I especially wish to thank Alexandra Luong for taking care of my

appointments every month, and Janice Martin-Wheeler for proofreading all my paper

submissions.

Beyond UCLA, I wish to thank the fellow researchers at HP Labs for the most re-

warding internship experience they have given me. I have been privileged to work with

many amazing people there, which has certainly brought out the best in me. I especially

wish to thank Kevin Lim who helped mentor me during my times at HPL.

Last but certainly not least, I wish to express my deep appreciation for my parents,

Yan and Feng. They have supported me all throughout my life, allowing me to seek my

own path, providing me security and guiding me in the moments of confusion. I would

xv

not be where I am today without them.

This work is partially supported by the Center for Domain Specic Computing under

the NSF InTrans Award CCF1436827, funding from CDSC industrial partners including

Baidu, Fujitsu Labs, Google, Huawei, Intel, IBM Research Almaden, and Mentor Graph-

ics; C-FAR, one of the six centers of STARnet, a Semiconductor Research Corporation

program sponsored by MARCO and DARPA; grants NSF IIS-1302698 and CNS-1351047;

and U54EB020404 awarded by NIH Big Data to Knowledge (BD2K).

xvi

Vita

2010 B.S. Electronics & Information Engineering,

Xi’an Jiaotong University, China

2010 - 2016 Ph.D. Student, Department of Computer Science,

University of California, Los Angeles

Publications

Muhuan Huang, Di Wu, Cody Hao Yu, Zhenman Fang, Matteo Interlandi, Tyson Condie,

and Jason Cong, “Programming and Runtime Support to Blaze FPGA Accelerator De-

ployment at Datacenter Scale”, Symposium on Cloud Computing (SOCC), 2016.

Jason Cong, Muhuan Huang, Peichen Pan, Di Wu, and Peng Zhang, “Software Infras-

tructure for Enabling FPGA-Based Accelerator in Data Centers: Invited Paper”, Inter-

national Symposium on Low Power Electronics and Design (ISLPED), 2016.

Jason Cong, Muhuan Huang, Di Wu, and Cody Hao Yu, “Invited-Heterogeneous Data-

centers: Options and Opportunities”, Design Automation Conference (DAC), 2016.

Peng Zhang, Muhuan Huang, Bingjun Xiao, Hui Huang, and Jason Cong, “CMOST: a

System-Level FPGA Compilation Framework”, Design Automation Conference (DAC),

2015.

Muhuan Huang, Kevin Lim, and Jason Cong, “A Scalable High-Performance Customized

Priority Queue”, International Conference on Field Programmable Logic and Applications

(FPL), 2014.

xvii

Jason Cong, Muhuan Huang, and Peng Zhang, “Combining Computation and Commu-

nication Optimizations in System Synthesis for Streaming Applications”, International

Symposium on Field Programmable Gate Arrays (FPGA), 2014.

Yu-Ting Chen, Jason Cong, Mohammad Ali Ghodrat, Muhuan Huang, Chunyue Liu,

Bingjun Xiao, and Yi Zou , “Accelerator-Rich CMPs: From Concept to Real Hardware”,

International Conference on Computer Design (ICCD), 2013.

Jason Cong, Milos Ercegovac, Muhuan Huang, Sen Li, and Bingjun Xiao, “Energy-

Efficient Computing using Adaptive Table Lookup based on Nonvolatile memories”, In-

ternational Symposium on Low Power Electronics and Design (ISLPED), 2013.

Jason Cong, Muhuan Huang, Bin Liu, Peng Zhang, and Yi Zou, “Combining Module

Selection and Replication for Throughput-Driven Streaming Programs”, Conference on

Design, Automation and Test in Europe (DATE), 2012.

Jason Cong, Karthik Gururaj, Muhuan Huang, Sen Li, Bingjun Xiao, and Yi Zou,

“Domain-Specific Processor with 3D Integration for Medical Image Processing”, Interna-

tional Conference on Application-specific Systems, Architectures and Processors (ASAP),

2011.

Jason Cong, Muhuan Huang, and Yi Zou, “Accelerating Fluid Registration Algorithm

on Multi-FPGA Platforms”, International Conference on Field Programmable Logic and

Applications (FPL), 2011.

Jason Cong, Muhuan Huang, and Yi Zou, “3D Recursive Gaussian IIR on GPU and

FPGAs — A Case for Accelerating Bandwidth-bounded Applications”, Symposium on

Application Specific Processors (SASP), 2011.

xviii

CHAPTER 1

Introduction

The last decade has witnessed tremendous changes in processor and platform designs,

shifting from higher frequency processors to multi-core processors, and more recently

shifting in favor of accelerator-rich architectures. As pointed out in [CSR11, CGG12],

there often exists a significantly large performance gap between an entirely customized

solution and a general-purpose one. The difference in the case study of the 128-bit

key AES encryption algorithm implies a performance/energy efficiency gap of roughly 3

million. In their study, an investigation of the energy breakdown of the CPU pipeline

components reveals that the majority of the energy consumption (i.e., 64%) is attributable

to supporting the flexible instruction-oriented model of the general-purpose core, and not

for performing actual computations.

Accelerator-rich architectures have two major advantages over traditional general-

purpose processing architectures. On one hand, accelerators such as GPUs and FPGAs

are massively parallel architectures and thus can provide significant higher processing

functionality than CPUs; they can help to meet and even exceed our ever-increasing

processing needs. On the other hand, since energy consumption is becoming one of the

major limiting factors for scaling up the processing capability of computation platforms

(e.g., power-constrained or battery-operated systems-on-chips) and data centers, design-

ers are looking beyond general-purpose processors to leverage accelerators that increase

the performance per-watt metric of the applications and reduce the energy consumption

of the system.

As a result, accelerators have found their home in many computing architectures.

Single-Chip Level Designs: For example, system-on-chip (SoC) FPGAs and SoC

GPUs are widely available on the market. Major FPGA vendors, such as Xilinx [xil]

and Altera [alt], provide SoC FPGAs which integrate an ARM-based processing system

1

Zynq SOC

(a) Zynq board.

Zynq SOC

(b) Zynq architecture [zyn].

Figure 1.1: Xilinx Zynq-7000 EPP dual-core ARM Cortex-A9 + FPGA.

Intel Xeon
Intel® Xeon®+FPGA Platform Intel® Xeon®+FPGA Platform for the Data

Center
http://reconfigurablecomputing4themasses.net/files/2.2%20PK.pdf

FPGA in CPU
socket
- Intel

(a) Xeon + FPGA board.

Intel Xeon
Intel® Xeon®+FPGA Platform Intel® Xeon®+FPGA Platform for the Data

Center
http://reconfigurablecomputing4themasses.net/files/2.2%20PK.pdf

FPGA in CPU
socket
- Intel

(b) Xeon + FPGA architecture [int].

Figure 1.2: Intel Xeon + FPGA platform.

and the on-chip programmable logics on a same chip. Figure 1.1 shows an example of

the Xilinx SoC that contains a dual-core ARM Coretx-A9 and an FPGA [zyn].

Server Node Level Platforms: Server vendors have been looking beyond general-

purpose servers and aim to provide an easy-to-customize server node to boost the perfor-

mace and power efficiency. For example, since early 2013, HP has been building a line of

high-efficiency servers called Moonshot. The servers can be customized to embed GPUs,

DSPs or FPGAs, and thus can provide the most resourceful systems with a minimum

of space. More recently, Intel has built an Xeon + FPGA platform that links CPU and

FPGA together through Quick Path Interconnect (QPI) so that they can share mem-

ory. Figure 1.2 demonstrates the Xeon + FPGA platform. A quantitative comparison

between the QPI-based CPU-FPGA system and PCIe-based CPU-FPGA system can be

2

PCI-e based Integration

Figure 1.3: Our local cluster with FPGA cards.

found in [CCF16].

Datacenter Level Solutions: Cloud computing vendors (e.g., Amazon Web Service)

have incorporated GPUs in their platforms. FPGAs are also becoming popular in the

cloud environment. Recently the Bing search engine from Microsoft [PCC14] demon-

strated 2X better system throughput when its 1632-node servers are equipped with FP-

GAs. At UCLA, we also built a local cluster with FPGA boards as shown in Figure 1.3.

The cluster has 20 CPU nodes and 8 of them have PCIe integrated FPGA boards. Con-

sidering that there is one FPGA board per server, it is not a trivial task to manage all

the FPGAs in the system.

Such accelerator-rich architectures, with their recent increased system heterogeneity,

bring new challenges in accelerator and data management. These challenges are detailed

in the following sections.

3

1.1 Chip-Level Resource and Data Management Challenges

A large percentage of real-world applications can be classified as streaming applications,

where the applications are centered around the notion of streams of data. Streaming

applications are becoming increasingly important and widespread. Due to the prevalence

of streaming applications, there are extensive studies on system modeling and design

techniques. Actor-based streaming modeling is developed to capture the intrinsic features

of these applications, such as synchronous data flow models [LM87a]. Each actor in such

a modeling refers to the computation that is to be performed on the incoming streams of

data. Recent studies also provide language support for streaming applications, such as

StreamIt [TKA02], Brook [BFH04] and Cg [MGA03]. In this modeling an application is

specified as a set of actors connected by communication channels. The parallelism of an

application is implicitly specified within the graph model, and can be derived from the

data dependencies between the actors, i.e., actors that do not have data dependencies

among them can work in parallel. Throughput is an important criterion for evaluating

performance of streaming applications. We can implement efficient FIFO-based dedicated

and low-cost communication channels on FPGAs to support pipelining and thus improve

the system throughput. In addition, we can also design customized computation data-

paths for the actors.

How to best utilize the parallelism and regularity of streaming application at design

time has recently been a hot research topic. The first common approach to increase the

system performance is replicating the actors to exploit the data parallelism. A stateless

actor, whose output is fully determined by its input, offers opportunities for data par-

allelism — replicas of a stateless actor can be executed in parallel. This strategy has

been well studied on the multi-core platforms [GTA06, GTK02, KM08, HCK09, LDW06,

UGT09, ZBS13]. The general idea is to first perform actor fission and fusion and then

allocate the replicas to different processor cores. In the context of FPGA, replication

optimization is more complex, because actors have different resource utilizations in terms

of look-up tables (LUT) and registers, and they have to share the available on-chip re-

source. In [HWB09], a heuristic method is proposed which performs maximal replication

of all the stateless actors and then iteratively fuses the actors that do not affect the

4

throughput. In general, the replication technique is an easy way to increase throughput.

However by simply replicating the actors, not only are the critical computation datapaths

replicated, all the non-critical datapaths and control paths are also replicated, which does

not necessarily contribute to improving the system performance. To better utilize the

FPGA on-chip resources, one should explore different customized actor implementations

with the same functionality, rather than rely on the replication technique only. This is a

typical module selection problem, as discussed below.

The second approach to increase the system performance focuses on module selection

[ID91, ADC95, ILP98, SWN07, CCX05]. Given different implementations of each actor,

one selects the proper implementations to integrate into the system and schedule the

actors to meet the system requirement. A more recent work [JHI10] explores different

configurations of application specific instruction set processors (ASIPs) under throughput

and latency constraints and proposes an ILP-based solution. However, most of the studies

mainly focus on module selection while the design space of module replication, which is

essentially useful in the case of FPGAs, is not explored.

On the other hand, communication between computation actors is also important for

streaming applications in terms of system performance and resource utilization. FIFO is

the common communication mechanism used to enable pipelining between actors. FIFO

size is one of the key design parameters that needs to be optimized in the system synthesis.

It affects the on-chip block RAM (BRAM) utilizations. More importantly, it affects the

concurrency of the actor scheduling and thus has a direct impact on system performance.

The buffer optimization problem is known to be NP-complete [BML12]. [SGB06] formu-

lates the buffer size constraints directly on the SDF graph. The buffer size requirement

on communication channels is imposed on the SDF graph by adding additional backward

channels. The number of initial tokens corresponds to the FIFO size. Thus the original

application model that does not the consider the FIFO size is transformed into a new

model which contains the scheduling constraints imposed by the given FIFO size.

Several approaches have been proposed to optimize the buffer utilization under certain

design metrics [GGD02, NG93]. Integer linear programming is used to obtain the mini-

mal buffer size for synchronous data flow(SDF) [GGD02] and homogeneous synchronous

data flow (HSDF) [NG93] respectively. But these methods are limited to the maximal

5

throughput scheduling which is not efficient in exploring the different performance and

area trade-off options. Some researchers [GBS05,LGX09] use a model checking technique

to efficiently explore the state-space of the SDF graph. But the complexity of these meth-

ods is relatively high, especially for the graphs with large amount of state transitions. In

addition, they minimize buffer size just for a deadlock-free scheduling without considering

actual performance. [SGB06] proposed an efficient way to explore the Pareto-curve of the

buffer size and throughput by pruning the design space without losing the Pareto points,

where throughput is calculated by an eager simulation of the periodic execution, and

buffer size distribution is incrementally explored according to the storage dependencies.

A recent work [CZ12] modeled the buffer size directly in the analytic model and proposed

an efficient heuristic based on it. But it works only on acyclic SDFs and does not prove

optimal or near-optimal in large graphs. In all of this set of work, actor optimizations

like module selection and replication are assumed to be a separate preprocessing or post-

processing stage. This may lose the optimality in finding the scheduling for both actor

and buffer optimization.

Other related work includes [KDV97] where a simulator is adopted to evaluate differ-

ent dataflow architectures for streaming applications. Our problem is a subset of their’s

since in our architecture we only consider FIFO interfaces. With our simplified architec-

ture, we are able to quickly decide the selected modules without resorting to a simulator.

Outside of streaming context, a computation and communication co-optimization frame-

work is studied in [LCM09]. It combines data-reuse optimization using a scratchpad and

loop-level parallelism optimization into a singe framework and formulate it into an integer

geometric programming problem. This is a module-level optimization and does not apply

to our problem directly.

Learning from the existing work, we observe that system design for streaming appli-

cations is still facing two major challenges: (1) System design results are determined by

a complicated combination of different design aspects (module selection, module replica-

tion, buffer size optimization, scheduling and allocation), but current automation frame-

works always take single or limited aspects into considerations. (2) Considering all these

comprehensive design objectives and constraints makes the existing algorithms either

non-scalable for large and complex designs, or difficult to achieve comparable quality of

6

results with the optimal solutions.

We will investigate this problem in Chapter 3.

1.2 Node-Level Resource Management Challenges

Accelerators such as FPGAs and GPUs often serve as slave processors on a host CPU

node. Typical CPU-acceleration integration methods include a PCIe-based approach

and a QPI-based approach. To make use of these slave processors, current solutions

require an explicit user program that handles data communication between the host

and accelerators, and monitors computation tasks that are offloaded to the accelerators

through APIs that are either driver-level APIs or higher-level APIs, such as OpenCL.

This is also true in the virtualized environment (such as the virtual machine (VM) or

the container environment); the operating system or the hypervisor relies on the user to

decide which tasks should be offloaded to the accelerator.

Therefore, it is important to manage both computation resources at runtime to get

the best possible performance. When computation tasks are offloaded to the accelerators,

the CPU should not be idled, waiting for other tasks to finish. Other computation tasks

should be executed on the CPU at the same time in the ideal case. A straightforward

integration of CPU and accelerators that simply offloads tasks to accelerators and leaves

the CPU idle may achieve only marginal performance gains, despite the high speedup

achieved from the accelerator.

1.3 Cluster-Level Resource and Data Management Challenges

At the cluster-level, the current trend in equipping accelerators such as GPUs and FPGAs

in commodity data centers also requires new resource and data management strategies.

Accelerators usually only accelerate part of the application’s execution, and non-

accelerable tasks have to be converted back to the host. Thus, unlike other cluster

resources, accelerators are usually underutilized from a tenant’s perspective; accelerators

should no longer be bundled to a single tenant at a time. Other unique properties of

accelerators include: (1) Accelerators are often treated as I/O devices. (2) CPUs can

7

be treated as a backup resource for accelerators; if accelerators are not available, tasks

can be converted back to the host CPU and can take advantage of CPU computation

power. (3) Accelerators have predictable performance since they are clean slaves that do

not run OS; this feature enables more sophisticated accelerator management based on

runtime accelerator status. However, most current cluster resource management—such as

YARN [VMD13], Mesos [HKZ11] and Omega [SKA13]—are accelerator-oblivious. They

only consider allocating CPU and memory resources. We believe that accelerators should

be the first-class citizen in the resource pool, and this requires dedicated management

techniques.

Traditional cluster resource management support for CPU and memory-sharing mainly

relies on operating system (OS) features. CPU core-sharing is realized by launching mul-

tiple computation processes on a core, and it relies on the context switch by OS. Similarly,

memory-sharing among multiple processes is managed by OS—when the used memory

exceeds the total available memory on the core, memory is swapped out to disks. As

current OS does not manage accelerators directly, it is hard to apply these resource

management techniques to accelerators.

Concurrently, accelerator-rich architectures offer new opportunities in cluster data

management. Data shuffling, which moves the data across all the machines, is the heart

of almost all the cluster-scale data processing frameworks, including MapReduce and

Spark. ”Sorting,” which is the major computation-intensive kernel during data shuffling,

ought to achieve improved performance and energy-efficiency when being offloaded to

accelerators. How to seamlessly incorporate accelerators in the data shuffling stage is yet

an open question.

1.4 Dissertation Statement

This dissertation examines and addresses several resource and data management chal-

lenges in accelerator-rich architectures.

• At chip-level, we explore the design space of mapping streaming applications onto

accelerators. Specifically, we consider FPGAs as the targeted accelerators. A com-

putation and communication co-optimization algorithm is proposed to minimize the

8

occupied resources while meeting system performance requirements.

• At node-level, we study the runtime to orchestrate task execution on CPU and

task execution on accelerators. A dataflow execution model and its corresponding

runtime thread allocation policy are proposed.

• At cluster-level, we develop a cluster accelerator manager which is deployed on

top of a commodity cluster resource manager. The proposed on-line accelerator

allocation allows fine-grained time-sharing of accelerators between multiple tenants

and improves cluster throughput.

• Finally, we present our analysis on accelerating data shuffling on accelerator-rich

clusters. We demonstrate that although data shuffling is computation-intensive,

integrating accelerators into the system does not provide performance gain due to

data serialization and deserialization overhead.

1.5 Organization

This dissertation will examine the above-mentioned challenges. The remainder of the

dissertation is organized as follows. Chapter 3 presents resource and data manage-

ment on accelerator-rich systems-on-chips. Chapter 4 presents resource management on

accelerator-rich nodes. Chapter 5 presents our resource management in accelerator-rich

clusters. Chapter 6 presents our analysis on accelerating data shuffling on accelerator-rich

clusters. We conclude and discusses future research opportunities in Chapter 7.

9

CHAPTER 2

Background

This chapter presents the background for several key topics, including chip-level pro-

gramming model, cluster-level programming model, node-level execution model, node-

level CPU and GPU orchestration, cluster-level resource manager and cluster-level data

shuffling.

2.1 Chip-Level Programming Model

In this section we present synchronous data flow graphs and homogeneous synchronous

data flow graphs which are commonly used to model streaming applications, and we

define system throughput from the graphs.

2.1.1 Synchronous Data Flow Graph

Synchronous data flow graphs (SDFGs) [LM87a] have been traditionally used to model

streaming applications. In an SDFG G(V,E), each node v ∈ V (also called an actor)

represents a computation kernel. Each edge u → v represents a data communication

channel from node u to v. The amount of data tokens consumed and produced by a

computation kernel is determined at design time, and is usually referred to as the producer

rate and the consumer rate. For example, in Fig. 2.1, the producer rate and consumer

rate for actor n1 is 2 and 1 respectively. When an actor starts its firing/execution, it

removes the number of tokens that equals the consumer rate from its input channels. At

2 1n0 n1 n2
2 1

Figure 2.1: An example of SDFGs. Producer/consumer rates are labeled at the begin-

ning/end of the edges.

10

the end of a firing/execution, the actor produces the number of tokens that equals the

producer rate to its output channels. We model the data consumption and production

process as an atomic process where the number of tokens on a channel will only be

changed at the beginning or at the end of an actor firing. Such a fixed producer rate

and consumer rate make it easier to analyze and predict the timing behavior of complex

streaming applications, and this is the main reason that SDFGs are used.

The execution of an SDFG is defined in terms of actor firings:

Definition 1 A periodic execution schedule or iteration of an SDFG is a set of

actor firings such that after all these firings, the SDFG returns to the same state, i.e.,

the number of tokens on each channel remains the same before or after an iteration.

The number of actor firings in one periodic execution schedule is called the repetition

factor vector q [LM87b]. In Fig. 2.1, actors n1, n2 and n3 fire 1, 2 and 4 times respectively

to maintain a data balance between producer and consumer actors. Therefore, the corre-

sponding repetition factor vector q is [1;2;4]. Note that it is possible that the execution of

SDFGs results in deadlock or an infinite number of accumulated tokens on the channels.

In this case, there does not exist a periodic execution schedule. More detailed analysis on

whether there exists a periodic execution schedule given an SDF can be found in [LM87a].

Such a system is called an inconsistent system, and it is beyond the scope of this work.

The periodic execution schedule is very important in analyzing system throughput for

streaming applications. Streaming applications usually perform computation on a very

long data sequence (which is typically assumed to be infinite). It is costly to adopt an

irregular scheduling for each of the repeated actor firings. Since SDFG has a periodic

behavior in actor firings, it’s reasonable to have a periodic scheduling.

Note that in the context of SDF, communication channels are often referred to as

buffers. In the context of FPGA implementations, communication channels are often

referred to as FIFOs. In this chapter we do not distinguish between these two.

2.1.2 Homogeneous Synchronous Data Flow Graph

An SDFG can be transformed into an equivalent single-rate data flow graph, which is

called a homogeneous synchronous data flow graph (HSDFG) [LM87a]. In HSDFG, all

11

n00 n10 n20

n11

n21

n22

n23

Figure 2.2: The HSDFG converted from SDFG in Fig. 2.1.

the actor firings in one iteration are explicitly enumerated. Fig. 2.2 shows the HSDFG

converted from the SDFG in Fig. 2.1. There are two firings of actor n1 (n0
1 and n1

1) and

four firings of actor n2 (ni2, 0 ≤ i < 4). Edges in HSDFG represent data dependency

between producers and consumers. For example, n0
1 and n1

1 can start to work only after

n0
0 finishes and produces one data to each of them, so there are data dependency edges

between them.

We find it easier to start from the HSDFG (instead of the SDFG) when modeling

scheduling constraints since all the actor firings have been enumerated in the graph.

Thus, given an application that is modeled in an SDFG, we will first transform it into an

HSDFG by using the conversion algorithm in [SB00].

2.1.3 Throughput Definition

In this work throughput is viewed as a constraint for streaming applications. Denote nji

as the jth firing of actor ni in the first iteration. We associate each actor firing nji in the

scheduling graph with a start firing time tji , which denotes when the firing can start. We

also refer to tji as scheduling variables.

Throughput is defined as how often the actor firing nji can start a firing again. Par-

ticularly in the scheduling graph, throughput is defined as follows:

Throughput =
1

t′ji − t
j
i

, (2.1)

where t′ji denotes the start firing time of the jth firing of actor ti in the following iteration.

12

Figure 2.3: Module implementation with and without pipelining. This figure is adopted

from [viv].

2.2 Chip-Level Design Space Exploration with High Level Syn-

thesis

2.2.1 Design Space Exploration

The modules in the streaming application typically work on a very large sequence of data.

Therefore it is nature to adopt the module replication strategy, where multiple modules

of the same functionality work on multiple data in parallel. System designers need to

decide the number of replicas of each module.

Besides, system designers may also need to consider the best module implementation.

In general, module replication is not an area-efficient design technique for increasing

throughput because control logics, which do not directly contribute to throughput, are

also duplicated. Moreover, some computing logics might be wasteful after replication. For

example, consider a module that contains two add and one multiply operation, while the

slowest implementation would use one adder and one multiplier to do the computation.

When we duplicate such an implementation, two adders and two multipliers are generated,

and one multiplier is wasted.

When mapping a module in streaming programs onto FPGAs, by setting different

design goals and deploying different optimization configurations we can generate “func-

13

(1, 6059)

(2, 3556)

(4, 2133)
(8, 2125)

(16, 1668)

(32, 1451) (254, 725)

0

20

40

60

80

100

120

140

160

0

1000

2000

3000

4000

5000

6000

7000

1 10 100 1000
Initiation Interval

SLICE

DSP

Figure 2.4: Tradeoff between performance and area of one module in benchmark “filter-

bank.”

tionally equivalent” implementations that differ in area and performance. Therefore, we

could generate a library of implementations for each module so that design space is en-

larged. For example, initiation interval (II) is a well-known parameter that trades off

between area and throughput. In streaming applications, the initiation interval specifies

the number of cycles between the consecutive firing of a module and indicates to what

extent the module is pipelined. A pipelined module offers high throughput, but usually

at a large area cost because resource sharing opportunities are reduced. Figure 2.3 shows

an example of module implementations with and without pipelining.

Figure 2.4 plots the initiation interval and area cost of our FPGA-based implementa-

tions for one module in the StreamIt benchmark “filterbank” [Str]. The initiation interval

of these design points are 1, 2, 4, 8, 16 and 254, respectively. We can see from the figure

that decreasing the initiation interval results in more DSP logics and slices. To achieve

a throughput of one firing per cycle, we could either replicate the slowest implementa-

tion (with II = 254) into 254 copies, or use the implementation with II = 1 directly.

Obviously the latter option is more area efficient.

It’s worthwhile to mention that pipelining does not guarantee that the throughput

target can be satisfied, and replication is still needed in cases where a fully pipelined

design cannot satisfy the high throughput target. There are also situations when hardware

designers choose to use the predefined IP cores to avoid high development cost, and they

do not have many choices for different implementations.

14

2.2.2 High Level Synthesis

Thanks to recent advantages in high-level synthesis (HLS) tools [ZFJ08,CLN11], we are

able to design FPGAs using a C/C++ based programming flow. HLS allows user to

specify the module optimizations. For example, to enable loop pipelining (Figure 2.3),

user only need to insert “pragma HLS pipeline” into the code. HLS greatly reduces

programming efforts, allowing us to quickly design and evaluate the performance and

area consumption of different modules.

2.3 Node-Level CPU-Accelerator Orchestration

Now we present background for node-level CPU execution model and related works on

CPU-GPU execution model. Commonly used execution models to exploit data-level par-

allelism and task-level pipeline parallelism are data-parallel execution model and stream-

ing execution models. In data-parallel execution model, multiple threads are launched in

parallel to process the same task but with different data. While in streaming execution

model, multiple threads may be launched to process different computation tasks.

2.3.1 Dataflow/Streaming Execution Model

Relevant work includes compilation of new streaming languages such as StreamIt [TKA02]

and Brook to multicore architectures [KM08,HCK09,GTA06]. However, these studies do

not consider the scenario of offloading computation to accelerators where CPUs may

become idle, waiting for the accelerator to finish. Our runtime can make good use of

these idled CPU cycles by launching other tasks onto the CPU cores.

2.3.2 CPU and GPU Coordination

Prior works studied the CPU-GPU collaboration for data parallel kernels [KDT12,KKL11,

LSP13, LHK09]. These studies present frameworks that can partition the workload-

s/threads across multiple devices such as CPUs and GPUs. StarPU [KDT12] presents

new APIs to offload kernel computations to OpenCL-based GPUs. The work in [KKL11]

presents an OpenCL framework/runtime that works on multiple GPUs using a single

15

compute device image. The work in [LSP13] deals with a single kernel multiple devices

system. Scheduling optimizations based on prior profiling information or prediction mod-

els are studied as well in [LSP13,LHK09]. However, these studies only explore data-level

parallelism and do not consider pipeline parallelism between different tasks.

In this thesis, we will investigate the execution models that consider both data-

level parallelism and task-level pipeline parallelism on the heterogeneous CPU-accelerator

node.

2.4 Cluster-Level Programming Model and Resource Manage-

ment

Further expanding the scope of accelerator-rich architectures, we look into resource and

data management at cluster-level accelerator-rich architectures. In this section we will

review the conventional cluster-level application programming model and discuss how to

management cluster resources for cluster tenants.

2.4.1 Cluster-Level Programming Model

MapReduce, originally proposed from Google [DG08], is a programming model and an

associated implementation for processing and generating datasets. It inspires much of

the initial big data analytics work and serves as a template for open source systems like

Apache Hadoop.

In the MapReduce programming model, users specify the computation in terms of

a map and a reduce function. In the map function, each input record is processed to

generate a key-value pair. In the reduce function, values associated with the same key

are grouped together, and an operation is applied to them to obtain the final results.

map: (k1, v1) → list(k2, v2)

reduce: (k2, list(v2)) → list(v2)

16

Client RM
AM

NM

NM

Container
Container

Job	submission
Note	status
Application	status
Resource	request

Figure 2.5: Example YARN architecture showing a client submitting jobs to the global

resource manager.

2.4.2 Cluster-Level Resource Management

YARN (Yet Another Resource Negotiator) is a widely used cluster resource management

layer in the Hadoop system that allocates resources, such as CPU and memory, to mul-

tiple big data applications (or jobs). Figure 2.5 shows a high-level view of the YARN

architecture. A typical YARN setup would include a single resource manager (RM) and

several node manager (NM) installations. Each NM typically manages the resources of

a single machine, and periodically reports to the RM, which collects all NM reports and

formulates a global view of the cluster resources. The periodic NM reports also pro-

vide a basis for monitoring the overall cluster health at the RM, which notifies relevant

applications when failures occur.

A YARN job is represented by an application master (AM), which is responsible

for orchestrating the job’s work on allocated containers, i.e., a slice of machine resources

(some amount of CPU, RAM, disk, etc.). A client submits an AM package—that includes

a shell command and any files (i.e., binary executable configurations) needed to execute

the command—to the RM, which then selects a single NM to host the AM. The chosen

NM creates a shell environment that includes the file resources, and then executes the

given shell command. The NM monitors the containers for resource usage and exit status,

which the NM includes in its periodic reports to the RM. At runtime, the AM uses an

RPC interface to request containers from the RM, and to ask the NMs that host its

17

containers to launch a desired program. Returning to Figure 2.5, we see the AM instance

running with allocated containers executing a job-specific task.

To manage heterogeneous computing resources in the datacenter and provide place-

ment control, YARN recently introduced a mechanism called label-based scheduling [yar].

Administrators can specify labels for each server node and expose the label information

to applications. The YARN resource manager then schedules the resource to an appli-

cation only if the node label matches with the application-specified label. Examples of

node labels can be an FPGA or GPU, which indicate that the nodes are equipped with

a special hardware platform.

Different from the centralized resource scheduling frameworks (e.g., YARN), Mesos [HKZ11],

which originated at Berkeley, is a two-level resource scheduling framework. Its central-

ized resource manager makes resource offers to its underlying applications, offering one

piece of resource to one application at a time. Applications make the decision as whether

to accept the resource offer or not. Since Mesos distributes the resource offers without

knowing the resource needs of the applications, applications achieve data locality of the

resource by rejecting the offers without data locality.

In both YARN and Mesos, applications only see the resources that have been allo-

cated or offered. Omega [SKA13] adopts a completely different strategy by introducing

a new share-state resource allocation mechanism and allowing each application to access

a view of the overall cluster resource. A lock-free concurrency control is subsequently

implemented in their resource manager.

Although structurally different, these cluster resource managers share many common

design principles:

• Data Locality. Moving computation is cheaper than moving data. This is partic-

ularly true when the data size is large. Resource managers should respect applica-

tions’ data locality and allocate resources close to where the data is located.

• Multi-Tenancy and High Utilization. The traditional approach which allocates

a physical node to only one tenant at a time results in low cluster utilization.

Resource managers should support fine-grained resource sharing among multiple

tenants.

18

Figure 2.6: Data Sorting and Shuffling in MapReduce. This figure is adopted from

[Whi12].

• Scalability. Resource allocation should be fast and scalable to increasing cluster

sizes. For example, current capacity scheduler in YARN can fill up a decent- sized

cluster in less than 100ms. That being said, resource managers should avoid high-

complexity resource scheduling algorithms.

2.5 Cluster-Level Data Sort and Shuffle

Data sorting and shuffling is, in many ways, the heart of large-scale distributed computing

frameworks, such as MapReduce/Hadoop and Spark. For simplicity, here we use shuffle

to refer to this data sorting and data shuffling stage. In MapReduce, shuffle performs the

data sorting and data transmission from the mappers to the reducers, guaranteeing that

the input to every reducer is sorted by key. It is an area of the codebase where refinement

and improvements are continually being made, and is where the “magic” happens [Whi12].

Spark, whose operators are a strict superset of MapReduce, also supports sorting-based

data shuffle between consecutive computation stages. In fact, at an earlier stage of Spark

development, it adopts a hashing-based shuffle which turns out to be one of the limiting

factors of scaling out Spark. Sorting-based shuffle is thus then introduced to Spark.

Overall, the data shuffle is an expensive but indispensable operation of many distributed

computing frameworks.

Figure. 2.6 provides an illustration of the shuffle stage in MapReduce. At the mapper

side, an in-memory buffer collects the output from each map task. When the buffer is

almost full (80% by default), a new thread starts to sort the data (using quicksort by

19

default) and spills the content to the disk. When map tasks finish, a thread performs a

merge-sort to merge multiple sorted data on the disk to a single sorted sequence of data.

The reducers fetch the data from the mappers and perform a final round of data merging

that merges data from the mappers on different nodes. Multiple rounds of merge-sort are

performed if the number of mappers is large.

20

CHAPTER 3

Chip-Level Resource and Data Management

3.1 Introduction

In this chapter we propose a novel system synthesis approach to tackling the resource and

data management issues. We formulate the module selection, module replication, buffer

size optimization and scheduling simultaneously into one single optimization framework,

considering the trade-offs among system throughput, logic and on-chip memory utiliza-

tion. The proposed framework is shown in Fig. 3.1. It takes the system throughput

requirement, application model, and an implementation library as inputs and outputs

the module selection/replication results, FIFO size and a feasible schedule. Within the

framework, an efficient solving algorithm is presented which achieves both high-quality

design (i.e. low logic/BRAM costs within the throughput constraints) and scalability.

The remainder of this chapter is organized as follows. Section 3.2 gives a motivation

example which shows the benefit of combining computation and communication opti-

mizations in system synthesis. Section 3.3 provides a detailed analytic formulation of

the scheduling constraints and objectives for module selection, module replication and

Proposed�System�Synthesis�Optimization�Framework

System�
Throughput�
Requirement

SDFͲbased�
Application�
Modeling

Implementation�
Library

Selected�
Implementation

Number�of�
Replica

FIFO�Size Scheduling�
Results

input

output

Figure 3.1: The proposed system synthesis framework.

21

Logic�(%) Latency
(cycles)

impl_A_0 3 100

impl_A_1 10 50

impl_B 3 40

Size of�data:�20%�of�total�BRAM

A B

0 50 150100 200

A B

A

0 50 150100 200

A B
A B

impl_A_0�&�impl_B
Logic:�6%
BRAM�needed:�40%

Throughput�requirement:�100�cycles

impl_A_1�&�impl_B
Logic:�13%
BRAM�needed:�20%

Scenario:�1

Scenario:�2

(b)�Implementation�library

(a)

(c)�Scheduling

Figure 3.2: A motivating example. In scenario 1, buffer size is not considered during

module selection. The implementation with minimum logic is selected. In scenario 2,

buffer size is considered together with module selection. In both cases, these are feasible

schedules that can meet the system throughput requirement. However in scenario 2 with

the consideration of buffer size, the selected implementation can reduces BRAM use by

20%.

buffer size optimizations. Section 3.4 proposes an efficient iterative algorithm to find the

solution to the combined optimization problem. Experimental results are shown in Sec-

tion 3.5, where both design quality and run-time complexity are measured with streaming

benchmarks.

3.2 A Motivation Example

Fig. 3.2 gives a motivational example. We show a very simple case in streaming applica-

tions in Fig. 3.2(a), where A is the producer actor and B is the consumer actor. A and

B are executed repeatedly.

The implementation options are listed in Fig. 3.2(b). Actor A has two implemen-

tations, impl A 0 and impl A 1, which show the trade-offs between the logic cost and

execution latency. Actor B has only one fixed implementation. Each of actor A’s exe-

cutions produce a fixed size of data to the communication channel. We assume the size

is 20% of the FPGA on-chip memory. Each of actor B’s executions consume the same

amount of data from the communication channel. The system throughput target is set

to one execution of A and B in every 100 cycles.

22

In Fig. 3.2(c) scenario 1 , we decouple the computation and communication optimiza-

tions by first considering module selection without considering buffer size. The solution

with minimal logic utilization is considered to be the optimal one. Then the scheduling

that has the minimum buffer size requirement is calculated afterwards. Therefore, in

the optimal solution, impl A 0 and impl B are selected. Then in this case, we need to

double the data buffer size which takes 40% BRAM resource, since a second execution

of A has to be overlapped with the first execution of B in order to meet the throughput

constraint. And the second execution of A has already started before the first execution

of B finishes. In Fig. 3.2(c) scenario 2, we consider buffer size optimization together with

module selection. In this case, a slightly large implementation of A is selected which

can significantly improve the performance of actor A (at the cost of 7% logic increase

compared to scenario 1). Then we do not have to execute A and B in parallel. When the

second execution of A starts, the first execution of B has finished and the communication

channel is empty. Thus, the needed buffer size is only 20% of total BRAM.

From the example we see that we cannot take computation optimizations (module

selction/replication) and communication (buffer size) optimizations as two separate steps.

Thus, in this work we propose to combine computation and communication optimizations

together during system synthesis.

3.3 System Mapping

With the modeling of application behavior in the HSDF graph, our system mapping

problem can be defined as the following:

Given application modeling in an HSDF graph consisting of actor firings nji as nodes

and data dependencies between actor firings as edges, the target throughput requirement

Thrtar, and implementation options P s
n for each actor with the logic cost A(P s

n), execution

latency et(P s
n), and pipeline initial interval δ(P s

n), we find the optimized module selection

results P sel
n and replication factors repn for each actor, the total FIFO size, and the

periodic scheduling tji for each actor firing. The BRAM and logic utilization on FPGA is

minimized under the given system throughput constraint.

A list of the denotations used in the following sections of the chapter can be found in

23

Table 3.1: Denotation of variables.

parameters meaning

nji jth firing of actor ni

n′ji jth firing of actor ni in 2nd iteration

Libn implementation library for actor n

P s
n implementation in library Libn

A(P s
n) area cost of P s

n

et(P s
n) execution time of P s

n

δ(P s
n) initiation interval of P s

n

Thrtar throughput target

variables

(unknown) meaning

tji start firing time of nji , scheduling variables

t′ji start firing time of nji in 2nd iteration,

scheduling variables

bsn if implementation P s
n is selected

repn number of replicas for each module

Table. 3.1.

In this section we discuss the problem of mapping HSDFGs onto FPGAs. First, we

generate an FPGA implementation library for each actor which realizes the functionality

of streaming application kernels. Second, given the selected modules, we formulate all

the scheduling constraints and delineate them as new edges on the HSDFG. We refer

to the HSDFG with scheduling constraints as the scheduling graph. Last, we formally

state the whole system synthesis framework, which contains module selection/replication,

buffer size optimization and scheduling. An ILP formulation is presented throughout this

section to capture the optimal solution. We present a scalable and efficient near-optimal

algorithm in Sec. 3.4.

24

1 1
n0

ɷ = 1, et = 10
ɷ = 1, et = 10

ɷ = 1, et = 10

Figure 3.3: An example of module replication. Module throughput can be further im-

proved by duplicating the modules and adding the corresponding split and join logic.

3.3.1 Implementation Library Constraints

In realizing streaming applications onto FPGAs, by setting different optimization config-

urations we can generate a set of “functionally equivalent” implementations that differ

in area and performance. Usually a significant area saving can be achieved by using

slower implementations. In terms of performance, hardware implementations can differ

in initiation interval (δ) and latency (et). Initiation interval specifies to what extent the

hardware module can be pipelined. Latency specifies execution time of the hardware

module. It is the time interval between the time point when an actor starts firing and

the time point when the actor finishes its firing and produces data tokens to its output

channels.

In streaming applications, initiation interval means the number of cycles that the two

consecutive firings, which are mapped to the same module, need to be separated by. An

initiation interval δ = 1 indicates a fully pipelined module with a new firing initiated every

clock cycle. Hardware modules with a smaller δ, and thus with a higher throughput, are

usually achieved at a larger area cost because a smaller δ reduces many resource-sharing

opportunities. For the same reason, hardware modules with a smaller et require more

logic for parallel computing since the logic can not be shared if they are used in parallel.

Module replication techniques can further improve the module throughput even when

δ has decreased to 1. Fig. 3.3 shows an example of module replication. The actor

consumes one data token and produces one data token on each firing. Assume we already

have a module that achieves δ = 1 and et = 10 and we replicate it into two copies. Then

25

from a system point of view, such an implementation consumes and produces two data

tokens on each firing in every clock cycle. Note that additional split and join logic is

needed here to distribute the data to different modules in a round-robin fashion.

Several commercial C-to-FPGA high-level synthesis tools now provide the ability to

synthesize hardware modules with a specified pipeline level and parallelism level. For

example, the initiation interval and loop unrolling factor can both be specified for a loop.

FPGA synthesis tools can also provide an estimation of area usage, initiation interval

and latency of the current synthesized hardware modules. Thus, given a C program for

streaming applications, we can quickly generate different hardware implementations by

altering the design configurations, and build up a library of implementations. In addition,

to save development cost, we can also adopt IPs (e.g. FFT) cores provided by FPGA

vendors into our implementation library. In this work, granularity of a module is defined

by users — it can be a few instructions for the smallest module or multiple loops for a

large module.

The implementation alternatives are formulated as the following: For each actor n,

the implementation library is Libn (P 1
n , P

2
n , ...P

Sn
n), where each implementation P s

n in

Libn can perform the functionality of n with area cost A(P s
n), initiation interval δ(P s

n),

and execution time et(P s
n). Sn denotes the number of implementations we have for actor

n. P sel
n denotes the selected implementation from the library. A binary variable bsn is

introduced to denote if P s
n is selected. Thus, A(P sel

n), δ(P sel
n) and et(P sel

n) (area costs,

initiation interval and latency of the selected modules respectively) can be formulated as

the following:

A(P sel
n) = repn ·

∑
s

bsn · A(P s
n)

δ(P sel
n) =

∑
s

bsn · δ(P s
n)

et(P sel
n) =

∑
s

bsn · et(P s
n)∑

s

bsn = 1,

where repn denotes the number of replicas for the selected implementation.

26

n0
0 n1

0 n2
0

n1
1

n2
1

n2
2

n2
3

n’0
0 n’1

0 n’2
0

n’1
1

n’2
1

n’2
2

n’2
3

et0

et0

et1

et1

et1

et1

et1

et1

et1

ɷ0

ɷ1 ɷ1

ɷ1

ɷ2

ɷ2

ɷ2

ɷ2

ɷ2

ɷ2

et1

et
data dependency edge

module pipeline edgeɷ

nodes (actor firings) in the first iteration nodes (actor firings) in the second iteration

Figure 3.4: Scheduling graph for SDFG in Fig. 2.1. It contains all the actor firings in two

iterations. Detailed explanations of the edges can be found in Sec. 3.3.2.

3.3.2 Scheduling Constraints From Computation Modules

In order to model a periodic scheduling, we proposed to depict the throughput constraint

on two consecutive SDF iterations. Therefore, we unfold the HSDFG twice to include all

the actor firings in two iterations, as shown in Fig. 3.4. We also add edges to delineate

the hardware dependencies and communication buffer constraints. We call this type of

graph a scheduling graph.

Definition 2 A scheduling graph is a graph G(V,E), consisting of a set of actor firings

in two iterations and a set of edges including data dependency edges, module pipeline edges

and buffer-constrained edges(explained in detail below).

In the scheduling graph, node nji denotes the jth firing of the actor ni. We would map

each actor firing to a hardware module. Actor firings that perform the same computation

can share the same hardware implementation. For example, actor firings nj2 and n′j2

(j = 0, 1, 2, 3) are all performing the same computation task, and thus can be mapped to

the same module.

We associate a weight for each edge in the scheduling graph. The weight denotes the

number of cycles that the two firings connected by this edge need to be separated by.

The edges can be divided into three categories:

Data dependency edges: Edge weight equals execution latency (et) of the hardware

27

module that the predecessor1 of this edge is mapped to. These are the edges between

the firings of different actors. They reflect the producer-consumer relations where the

successor cannot start firing until the predecessor has finished its firing. For example, the

weight of the edge between n0
1 and n0

2 is the execution time of the hardware module for

n0
1, since n0

2 cannot start firing until n0
1 produces the data to the communication channel.

We use FIFOs as data communication channels.

Module pipeline edges: Edge weight equals initiation interval (δ) of the hardware

module. These are the edges between the firings that are mapped to the same hardware

module. They need to be separated by δ cycles since a hardware module can only start

to process a new firing every δ cycles. When the number of replicas for an actor is more

than one, we adopt the cyclic scheduling policy to assign firings to the hardware module.

The cyclic scheduling policy works in a round-robin fashion that always assigns a firing to

the first available hardware module. For example, if the number of replicas is two, then

all the even-numbered firings are assigned to the first module and all the odd-numbered

firings are assigned to the second module. In Fig. 3.4, we assume two copies of hardware

modules are selected for actor n2; thus firings n0
2, n

2
2, n

′0
2 and n′22 are mapped to one

module, and the other firings of n2 are mapped to the other module. In Fig. 3.4, the

corresponding edges are added between n0
2, n

2
2, n

′0
2 and n′22 with weight equal to δ2.

The detailed formulations of the module pipeline edges are as follows:

tj2i − t
j1
i ≥

 δ(P sel
ni

), if j2 − j1 = repn

0, otherwise
(3.1)

where tj2i and tj1i denote the j2th and j1th firings of actor ni.

3.3.3 Scheduling Constraints From Communication Channels

The size of communication channels also impose scheduling constraints. For example, a

producer module cannot push new data tokens into an output channel if the channel is

full. Similarly, a consumer module cannot start its computation if there is not enough

data tokens in the input channel. Therefore furthur delineates the scheduling constraints

from the communication channels.

1If there exists a directed edge e from u to v, we call u the predecessor, and v the successor of edge e.

28

n10

n11

n12

n0 n1
1��������1� n00

n01

n02

n10

n11

n12

n00

n01

n02

buffer�size�=�1 buffer�size�=�2

SDFG

.

.

.

.

.

.

Figure 3.5: An example of buffer-constrained edges. An SDFG is shown on the left.

Buffer-constrained edges are shown in the scheduling graph when buffer size is 1 and 2

respectively. The producer rate and consumer rate is 1.

Buffer-constrained edges: Here we model the scheduling constraints imposed by

buffer size as buffer-constrained edges. The edge weight of a buffer-constrained edge

equals the execution latency (et) of the consumer task. Given a buffer size between the

producer actor and consumer actor, we can derive a set of scheduling constraints among

the producer and consumer actor firings. Consumer actors should fire in time to consume

the data tokens so that the data tokens in the communication channel will not increase

in a cumulative manner and exceed the capacity of the buffer. We adopt a conservative

model as in [SGB06] where the buffer space to produce output data token is assumed to

be available at the beginning of the actor firing.

Given produce actor n0 and consumer actor n1, we add an edge from nj1 (jth firing of

n1) to ni0 (ith firing of n0), if the following equation holds:

j = min{k|(i+ 1) ∗ p− (k + 1) ∗ c ≤ buf}, (3.2)

where p is the producer rate and c is the consumer rate. buf is the given buffer size.

(i + 1) ∗ p is the number of produced data tokens, and (k + 1) ∗ c is the consumed data

tokens. (It is not i ∗ p since in our model label i starts from 0.) The intuition is that

enough data tokens should have been consumed before the ith firing of the producer

n0. Fig. 3.5 shows an example. If the buffer size is only 1, then actor n1
0 cannot start

firing until n0
1 finishes, which consumes the data in the FIFO. If the buffer size is 2, then

actor n1
0 can always start firing regardless of actor n0

1. The detailed ILP formulation for

buffer-constrained edges is omitted here due to page limitation.

29

3.3.4 Problem Statement

The design space exploration problem for streaming applications requires selecting imple-

mentations from the library for each actor under throughput constraint while minimizing

the total area cost. To meet the throughput target, the selected hardware implementa-

tions from the libraries can be replicated.

Given a scheduling graph G(V,E) and nji1, n
k
i2 ∈ V , e(nji1 → nki2) ∈ E denotes an edge

between the jth firing of actor ni1 and kth firing of actor ni2. Based on our discussion in

Sec. 3.3.2, weight w(e) of the edge e(nji1 → nki2) can be derived as

w(e) =

et(P sel

ni1
), if e is data dependency edge

δ(P sel
ni1

), if e is module pipeline edge

et(P sel
ni1

), if e is buffer − constrained edge

(3.3)

where P sel
ni1

is the selected implementation from the actor ni1’s library. Although the

formulation of the data dependency edge and the buffer-constrained edge look similar,

the difference is that a buffer-constrained edge is an edge from a consumer node to the

producer node, while a data dependence edge is an edge from a producer node to a

consumer node. Our design space exploration problem can be described as the following:

Input: (1) Scheduling graph G(V,E) of the streaming applications, (2) throughput

target Thrtar, and (3) the implementation libraries.

Output: (1) Selected implementation P sel
n from the library for each actor n, (2) number

of replicas repseln , (3) buffer size for each communication channel, and (4) start firing time

tji for each actor firing nji .

The selected implementations should satisfy the following constraints:

Constraints:

∀e(nji1 → nki2) ∈ E, tki2 − t
j
i1 ≥ w(e), (3.4)

∀ nji ∈ V, t′
j
i − t

j
i = c, (3.5)

c =
1

Thrtar
. (3.6)

Optimization goal:

minimize :
BufSize

TotalBufSize
+

Logic

TotalLogic
(3.7)

30

Constraint (3.4) ensures the precedence of actor firings. Constraints (3.5) and (3.6)

guarantee that the schedule is periodic and should meet the system throughput. Variable

denotations are listed in Table 3.1 for references. Buffers can be implemented as on-chip

block RAM, and hardware modules are implemented using slices. The area metric we

used here is the sum of occupied percentages of buffer and logic. The optimization goal

can be extended to other area metrics as well. Note that we do not consider the BRAM

utilization of the modules. In fact, we assume that modules can always use distributed

RAM instead of BRAM whenever possible. This is easy to achieve in many high-level

synthesis tools where resource types are explicitly defined by users.

In Sec. 3.4, we present an efficient iterative exploration algorithm to solve the overall

problem.

3.4 Proposed Approach: ST-Syn

Algorithm 1 ST-Syn Overall Algorithm

Step 1: Update the scheduling graph with newly selected hardware modules or newly

allocated buffer size (e.g., update the edge weight).

Step 2: Schedulability checking process. Check if there is a feasible schedule that can

satisfy the system throughput given the current setting of modules and buffer size. If

not, go to Step 3. Otherwise terminate.

Step 3: Module/Buffer size improvement. Go to Step 1.

In this section we present our algorithm called ST-Syn (streaming synthesis), as sum-

marized in Algorithm 1. It is an iterative exploration algorithm that contains schedu-

lability checking and efficient implementation improvement techniques. The algorithm

starts from an implementation that utilizes the minimum logic and buffer size. For each

computation kernel, the implementation with the smallest area is selected. Number of

replicas is set as 1. The buffer size is set to the larger value between the producer rate

and the consumer rate, which is the least buffer size required by both the producer actor

and the consumer actor to fire. Given such configurations, we try to schedule all the

actor firings under the performance requirement. If the schedulability check fails, we try

31

to improve the implementation by either selecting a faster implementation or increasing

the buffer size. We repeat the schedulability checking and implementation improvement

process until the system performance can be satisfied.

More specifically, the schedulability checking is formulated as a system of difference

constraints (SDC) problem. Implementation improvement is formulated as a minimum

cut problem in a weighted penalty graph. Both of these problems can be solved in

polynomial time using LP relaxation with integer solution guaranteed.

3.4.1 Schedulability Checking

In this section we show that schedulability checking can be formulated as a system of

difference constraints, and thus can be done in polynomial time. As discussed in Sec-

tion. 3.3.2, given selected hardware modules and buffer size, we can add the data de-

pendency edges, module pipeline edges and buffer-constrained edges in the scheduling

graph, thus finalizing the graph structure as well as the edge weights. The only unknown

variables are the scheduling variables tji . The edges in the scheduling graph represent

the scheduling constraints. We can mathematically model the scheduling constraints as

a set of difference constraints. Using the definition in [CZ06], difference constraints are

defined as follows:

Definition 3 An integer difference constraint is a formula in the form of x− y ≤ w for

integer variables x and y, and constant w.

The schedulability check problem is to determine whether there is a solution satisfying

the constraints (3.4), (3.5) and (3.6). Note that in constraints (3.4), w(e) is now a known

value since we already decided the module implementations and buffer size.

Lemma 1 SDC-based schedulability checking can be solved in polynomial time.

Proof is based on the results in [CZ06]. Although tji and t′ji are integer variables,

schedulability check can be solved in polynomial time using linear programming re-

laxation. This is because the underlying matrix for SDC is a totally unimodular ma-

trix [CZ06]. Thus, if there is a feasible solution under linear programming relaxation, it

is also a feasible integer solution.

32

3.4.2 Iterative Improvement

Algorithm 2 Iterative Improvement

Step 1: Identify ε-critical paths in the scheduling graph.

Step 2: Associate an area penalty with each edge.

Step 3: Perform a min-cut on the graph.

Algorithm 2 shows our iterative improvement algorithm. When the current settings

of hardware modules and buffer size cannot meet the system throughput target, we need

to either find a “better” module (a faster module or a larger number of replicas) which

can contribute to system performance, or increase the buffer size of the communication

channels. We do so by first identifying the bottlenecks in the system. The current system

is delineated as a weighted directed scheduling graph, and scheduling bottlenecks can be

viewed as critical paths in the graph.

Definition 4 The critical path of the scheduling graph G(V,E) as the longest path

among all the paths between node nji and node n′ji , ∀i, j, n
j
i ∈ V, n′

j
i ∈ V .

The general idea here is that the newly selected modules or buffer size should be able

to contribute to the system performance in the sense that the length of the critical path

is decreased. For the efficiency of the algorithm, instead of identifying a single critical

path, we adopt the network flow theorem to find all the ε-critical paths ([SWB88]) in

the system.

Definition 5 Denote the length of the critical path of the scheduling graph is L. The

ε-critical paths of the scheduling graph G(V,E) are the set of paths between node nji

and node n′ji whose length is L(1− ε),∀i, j, nji ∈ V, n′
j
i ∈ V .

Then for each edge on the ε-critical paths, we calculate the area penalty needed to

improve this edge. (a) If the edge is a data dependency edge, then we can select a module

with a smaller execution latency from the implementation library. (b) If the edge is a

module pipeline edge, then we can select a module with a smaller initiation interval or

we can increase the number of replicas. (c) If the edge is a buffer-constrained edge, then

33

n00 n10

n11

et0

et0

Figure 3.6: An example of part of an ε-critical path. An improved hardware module of

n0 will contribute to both paths in the graph.

we can increase the buffer size by gcd{p, q} (the greatest common divider between the

producer rate and consumer rate). It is shown in [SGB06] that buffer size should be

a multiple of gcd{p, q} to be used usefully. Area penalty is calculated as the increased

percentages of logic or buffer utilization. To assign a fair penalty to each edge, in both

case (a) and (b), we require that the newly selected module be able to reduce the critical

path by at least ∆. And ∆ can be used to adjust the convergence speed of the algorithm.

The ε-critical paths and the associated weight (area penalty) on the edges form a

weighted directed graph. Denote such a graph as H(V,E). We perform a minimum cut

on the graph so that all the critical paths can be improved and the total area penalty is

minimum.

The minimum cut problem is formulated as follows. Associate each node in the

graph H(V,E) with a variable pi. ps and pt denote the variables for the source and sink

node. Associate each edge (i, j) ∈ E with a binary variable dij to indicate whether this

edge is cut or not. Let cij denote the edge weight. Thus the problem constraints are:

dij − pi + pj ≥ 0, (i, j) ∈ E

ps = 1

pt = 0

pi ≥ 0, i ∈ V

dij ≥ 0, (i, j) ∈ E (3.8)

Note that dij is not explicitly specified as a binary variable in the constraints. Neverthe-

less, we will show later that such relaxation can still guarantee that dij is binary.

The tricky part is how to formulate the optimization goal. It is not simply a summa-

tion of dij ∗ cij. This is because improvement of one hardware module/buffer will have

34

an effect on multiple edges in the ε-critical paths. For example, in Fig. 3.6, assume both

edges from n0
0 to n0

1 and n1
1 are on the ε-critical path; to decrease the edge weight, a faster

module of n0 will be selected. The area penalty would be the same on both edges. Let

us denote it as c. Thus, if a min-cut cuts through both these two edges, then the total

area penalty should be c, rather than 2 ∗ c, since only one module is improved. In this

case, the optimization goal can be formulated as max{d01 ∗ c, d02 ∗ c}, where d01 and d02

are the binary variables to denote whether these two edges are cut or not in the min-cut.

With this max{} formulation, when both edges are considered as cut in the min-cut, the

edges only contribute c to the overall area penalty rather than 2 ∗ c.

Generally, we can divide the edges in H(V,E) into several sets φk. The edges that

require improvement of the same module/buffer are grouped into the same set φk. Thus,

the optimization goal of the min-cut problem is:∑
k

max
(i,j)∈φk

dij ∗ cij. (3.9)

Since the maximum of two convex function is also convex, the above optimization

goal is convex and the underlying matrix is totally unimodular. Thus the problem can be

solved by LP relaxation with integer solution guaranteed [HK10].

Lemma 2 The minimum cut problem (constraints in (3.8) and objective in (3.9)) can

be solved in polynomial time.

3.4.3 Update Scheduling Graph

When a new implementation or number of replicas is selected, or a new buffer size is

allocated, we need to update the scheduling graph: (1) Module pipeline edges are deleted

and new edges are added as the number of replicas changes. For example, assume that

originally the number of replicas is two, then there is a module pipeline edge between

every two actor firings. When the number of replicas changes to 3, there should be such

an edge between every three actor firings. (2) Module pipeline edge weights are changed

to initiation intervals of the newly selected modules. (3) Data dependency edge weights

are changed to the execution time of the newly selected modules of the producer actor. (4)

Buffer-constrained edges are updated as buffer size changes. The edge weight is changed

to the execution time of the newly selected modules of the consumer actor.

35

Note that we will add buffer-constrained edges into the scheduling graph after we add

all the data dependency and module pipeline edges. The reason is that adding buffer-

constrained edges may result in cycles in the scheduling graph. If a cycle is detected,

then no feasible schedule exists. In this case, we continue to increase the buffer size.

Intuitively, if the buffer size is large enough, no buffer-constrained edges will need to be

added into the scheduling graph.

3.4.4 Complexity of ST-Syn

In each iteration we perform a scheduling graph update, schedulability checking, and

module improvement. For each kind of edge (data dependency, module pipeline and

buffer-constrained), the maximum number of edges is O(V 2), where V is the number of

nodes (actor firings in the scheduling graph). Thus, complexity of the scheduling graph

update is polynomial to the number of edges in the system. Together with Theorem 1

and Theorem 2, we can obtain the following theorem:

Theorem 1 Each iteration of ST-Syn takes polynomial time.

To avoid oscillation during the iterative improvement, we adopt a simple heuristic

where a selected hardware candidate will be excluded from the implementation library.

A hardware candidate refers to both the selected hardware module and the number of

replicas. It means that in the current iteration, if implementation P i
n is selected with the

number of its replicas equal to r, then in any following iterations, P i
n can no longer be

selected with the number of replicas equal to r. However, we still allow P i
n to be selected

if the number of replicas is not equal to r. Thus, the algorithm is guaranteed to converge

since there are only limited design points to explore.

3.4.5 Alternative Solution using Integer Linear Programming

We can also formulate the overall problem using an integer linear programming. We

need to introduce a set of binary variables to indicate which kernel implementations are

selected. Therefore we can formulate the area consumption and module latency. We also

need to introduce binary variables to indicate the scheduling order of the modules, based

on which we can formulate the buffer size. Integer linear programming provides us the

36

optimal solution but it is a very time-consuming a process. We will demonstrate more in

the experiments.

3.5 Experiments

In this section we discuss two case studies for evaluating our algorithms. The first case

is a FIFO-based merge-sort. FIFO-based merge sort is shown to be a high-performance

sorting architecture on FPGAs for large sorting problems [KT11]. The design is bounded

by communication resources. Thus it is a BRAM dominate design. The second case is

MPEG-4 where the logic and BRAM utilizations are comparable under different system

performance requirements.

We implement three methods: (1) ILP Separate, the ILP formulation in [CHL12]

which solves the module selection/replication problems without considering buffer size,

and then the required buffer size is minimized according to the system scheduling result of

the computation optimization. (2) ILP Buf, an integrated ILP formulation that combines

module selection, replication and buffer size optimizations. (3) Our proposed ST-Syn

algorithm.

In addition, we compare our iterative exploration with another simple straightfor-

ward heuristics for the MPEG-4 decoder to demonstrate the superiority of our proposed

algorithm.

3.5.1 Settings

The high-level synthesis tool Vivado HLS from Xilinx (version 2013.2) is used to perform

the estimation of performance and resource usage. We argue that detailed logic synthesis

in physical design, although providing us with accurate performance and resource us-

age information for the hardware design, is too time-consuming, and thus not suitable

for use in the early stage of hardware design. To generate different hardware modules

for each actor, we adopt several design techniques, such as (1) loop unrolling, (2) loop

pipelining, (3) array partitioning, and (4) software pipelining. Each implementation has

three attributes: initiation interval, execution time, and area cost. Initiation interval and

execution time can be retrieved from the V ivado HLS synthesis report. The area metric

37

m1

m1

m1

m1

m2

m2

m3

Figure 3.7: An example of merge sort to sort 8 values. m1 takes one value from each

of its two input channels, reorders the two values and then sends them out to m2. m2

takes two values from each of its two input channels, merges them into one sorted stream

that contains 4 values. m3 works in a similar fashion and outputs a sorted stream that

contains 8 values.

we use is a combination of the on-chip resources (i.e., FF and LUT for computation,

and block RAM for data communication). The logic utilization is estimated as the max-

imal value between FF utilization and LUT utilization. The area metric used in the ILP

objective function is the sum of logic utilization and BRAM utilization. Thus the area

cost is reduced whenever BRAM or logic consumption reduces. The target platform in

hardware design is Zynq XC7Z020, and the target FPGA clock cycle is set at 100M Hz.

The ILP solver we use is GLPK [GLP]. If the ILP solver fails to achieve the optimal

results within two hours, we use the suboptimal result returned from the solver, which is

the best solution that it can get in two hours.

3.5.2 FIFO-based Merge Sort

FIFO-based merge sort [KT11] contains a cascaded chain of merge kernels. Each merge

kernel merges two sorted streams of data into a single sorted stream. Fig. 3.7 shows an

example. All the data produced are first streamed into FIFOs before the consumer starts

to process it. Thus the FIFO size increases as the size of sorting problems increases.

Fig. 3.8 shows the area utilization under different throughput settings. Results from

ILP separate, ILP buf and ST-Syn are all shown in the figure. The following are some

resource usage numbers from this set of experiments:

(1) The BRAM utilization (resource for communication channels) is much larger than

the logic utilization. Variation of logic utilization (range: 2% to 8%) under different

38

0

5

10

15

20

25

30

35

170 270 370 470 570 670 770 870 970 1070

U
ti
liz
at
io
n
�(%

)

Throughput�(MB/s)

ILP_separate:BRAM STͲSyn:�BRAM ILP_buf:�BRAM

ILP_separate:�Logic STͲSyn:�Logic ILP_buf:�Logic

SubͲoptimal

SubͲoptimal

Figure 3.8: FIFO-based merge sort: area utilization (logic & BRAM) under different

throughput settings. 16384 values are merged. Runtime of ILP buf is limited to up to 2

hours, and thus ILP buf only generates sub-optimal results.

throughput is much smaller compare to the variation of BRAM utilization (range: 5%

to 30%). Therefore, it is important to consider buffer size optimizations together with

module selection and replication in system synthesis. Moreover, we can see from the gap

between ILP buf:BRAM and ILP separate:BRAM curves that the BRAM usage over-

head of ILP Separate is 62% compared to ILP buf. (BRAM overhead is calculated as:

(BRAM utilization of ILP separate - BRAM utilization of ILP buf)/(BRAM utilization

of ILP buf). Logic overhead is calculated in the same fashion.)

(2) The proposed ST-Syn can achieve near-optimal quality of results. BRAM usage

overhead of ST-Syn is only 12% on average. Runtime of ST-Syn is less than 1 second in

all cases.

(3) In terms of total area cost (logic + BRAM), the overhead of ILP separate and

ST-Syn are 41.3% and 7.9% compared to ILP buf respectively.

Moreover, there are several observations that match our expectations:

(4) Logic utilization does not strictly correlate with the system performance require-

ment. For example, comparing the second point and third point on the ILP buf curve,

we can see that logic utilization actually drops when system throughput increases. This

is not surprising since we are optimizing the sum of logic and BRAM utilization, and in

39

SubͲoptimal

0

5

10

15

20

25

30

35

10 15 20 25 30 35 40

U
ti
liz
at
io
n
�(%

)

Throughput�(fps)

ILP_separate:�BRAM STͲSyn:�BRAM ILP_buf:�BRAM
ILP_separate:�Logic STͲSyn:�Logic ILP_buf:�Logic

Figure 3.9: MPEG4: area utilization under different throughput settings. Runtime of

ILP buf is limited up to 2 hours. ILP buf does not return a feasible integer solution at 2

hours when throughput is 35 fps and 40 fps.

this case, the BRAM utilization has significantly increased from the second point to the

third point.

(5) BRAM utilization does not strictly correlate with the system performance require-

ment. The size of BRAM reflects the data balance between the producer and consumer

kernels. Intuitively, if the producer produces data too early while the consumer consumes

data too late, a large FIFO size is needed. Thus, BRAM size highly depends on the se-

lected implementations, number of replicas and scheduling. And it may not increase as

system throughput requirement increases.

3.5.3 MPEG4

We show the area utilization of MPEG4 under different throughput settings in Fig. 3.9.

In our experiment, throughput varies from 10 fps (frames/second) to 40 fps. In the

case of MPEG4, logic utilization is higher than the BRAM utilization. Compared with

ILP buf (suboptimal results are excluded from the comparison), logic overhead is -8.2%

and BRAM overhead is 61.5% in the case of ILP separate. In the case of ST-Syn, logic

overhead is -0.02% and BRAM overhead is only 12.4%. Runtime of ST-Syn is less than

10 seconds in all cases, while ILP buf takes minutes to hours.

40

ILP_buf STͲSyn speedup ILP_buf STͲSyn� overhead�(%) ILP_buf� STͲSyn overhead�(%)
4096 250MB/s 154 0.05 0.01 5 1.80 1.80 0.0 4.40 4.40 0.0

4096 500�MB/s 154 1.05 0.03 35 3.60 3.60 0.0 5.20 5.60 7.7

8192 500�MB/s 462 177 0.05 3540 3.60 3.60 0.0 6.70 6.70 0.0

8192 1�GB/s 462 422 0.08 5275 6.02 7.20 19.6 9.26 9.30 0.4

10�fps 3058 3 0.02 150 14.00 14.00 0.0 6.70 6.70 0.0

15�fps 3058 72 0.1 720 14.40 14.00 Ͳ2.8 6.70 8.15 21.6

20�fps 3058 46 4.1 11 15.20 16.10 5.9 6.70 8.20 22.4

25�fps 3058 3297 9 366 15.20 16.00 5.3 8.20 8.90 8.5

JPEG 1�fps 878 23 0.05 460 12.64 12.64 0.0 7.41 8.60 16.1

average 1174 3.1 8.5

Logic�Utilization�(%) BRAM�Utilization�(%)

sort

MPEG4

throughͲ
put

Runtime�(s)#�of�
variables

problem

size

Figure 3.10: Overall speedup and area overhead.

3.5.4 Overall Speedup and Area Overhead

Fig. 3.10 shows runtime of FIFO-based merge sort and MPEG4, as well as JPEG. We try

to cover different designs by varying the problem size and the throughput requirement.

In the case of merge sort, two different problem sizes are considered — 4096 and 8192

values are sorted. The number of variables (including intermediate variables) in ILP

formulation is also listed. Note that given the same problem size, when throughput

changes, the runtime of the ILP solver also varies. When throughput is set high, ST-syn

usually runs for more iterations and thus takes a longer time. We compare our ST-Syn

with ILP buf in terms of speedup as well as logic and BRAM overhead. The average

logic overhead is 3.1%, and the average BRAM overhead is 8.5%. However, our ST-Syn

is 1174x faster than ILP buf on average.

3.6 Conclusion

Communication and computation optimizations are two central aspects in system-level

synthesis. System-level synthesis should consider both aspects in a unified framework

rather than decouple them into two processes. In this chapter we investigate an efficient

system-level synthesis algorithm for a combined communication and computation opti-

mization problem. More specifically, we provide a complete formulation and solution to

deal with the throughput-driven module selection/replication and buffer size optimization

problem. We first derive a scheduling graph and then perform an iterative exploration

algorithm by formulating the schedulability checking as a system of difference constraints

problem and the module improvement as a min-cut problem. The proposed algorithm

41

runs in polynomial time with little area overhead.

Currently, the complexity of the algorithm mainly comes from the large scheduling

graph. In the future, we would like to devise design space exploration algorithms where

we can use SDFG directly. Also, our current algorithm relies on the numbers in the

high-level synthesis reports. The reported number (latency, initiation interval and area

usage) is a conservative estimation. For example, worst-case latency of the program is

used in the synthesis report. However, at the run-time, latency of the modules can be

data-dependent. Thus, we would also like to investigate algorithms that can handle such

a data-dependent variance.

42

CHAPTER 4

Node-Level CPU-Accelerator Orchestration

4.1 Introduction

With the current ever-growing volume of data, the problem of efficiently processing such

big data has attracted a lot of attention from both academia and industry [Whi12,ZCD12,

ZCF10]. To fit the data into memory and to leverage multiple cores and servers, today’s

big data applications tend to distribute the datasets into multiple partitions where par-

titions can be processed in parallel [Bor08].

Whereas a data-partition approach can accelerate big data applications on multicore

CPUs, using FPGA accelerators is a more attractive solution since it helps to address

the limited scaling of general-purpose CPUs. Recently, FPGA acceleration for big data

applications have stimulated a lot of researches due to FPGAs’ low power, high per-

formance and energy efficiency [PCC14, BRH15, CDL13]. However, most prior studies

mainly focused on the FPGA accelerator design itself and did not consider efficient CPU

and FPGA co-optimization, which we find can be the key to the performance of such ap-

plications. In this chapter we aim to answer one key question: How should the multicore

CPU and FPGA coordinate together to optimize the performance of big data application?

Through our experiments We find that although we get a high speedup on kernel com-

putation by offloading the computation to FPGAs, the overall application speedup we

can achieve will be much smaller when comparing with multi-threaded CPU implemen-

tation. The major reason is that current application execution model fails to fully utilize

the system resources such as CPU cores and I/O. More specifically, when computation is

offloaded to the FPGA, the CPU threads wait for the accelerator to finish and thus are

idled.

Therefore, we propose a dataflow execution model and an interval-based scheduling

43

algorithm to effectively orchestrate the computation between multiple CPU cores and the

FPGA, which greatly improves the overall system resource utilization. Our experiments

show that for pure CPU execution, the dataflow execution model provides a similar perfor-

mance as the original data-parallel execution model. However dataflow execution model

outperforms data-parallel execution model when FPGA is integrated into the system.

The remainder of this chapter is organized as follows. Section 4.2 presents our dataflow

execution model and its corresponding runtime. A case study on an in-memory sorting

routine is presented in Section 4.3 to validate our approach. A few more case studies

are presented in Section 4.4. We leave the hardware design details used throughout this

chapter in Section 4.5. Finally we conclude in Section 4.6.

4.2 CPU-FPGA Co-Scheduling

4.2.1 Dataflow Execution Model

Since data is partitioned in big data applications, a common approach to accelerate the

application is through data parallel execution where multiple tasks of the same kernel are

launched in parallel. However such a execution model often fails exploit all the system

resource (CPU, FPGA and IO) since the running tasks are of the same kind and the

performance may be bounded by a single resource while other resource is less used or

idled.

To make use of the CPU cycles that are saved from the FPGA acceleration and to

better utilize IO, we propose to use a dataflow execution model. Each application is

divided into several stages. Each stage can have multiple tasks that leverage data-level

parallelism and all the stages are connected through in-memory data queues and work

in a pipelined fashion. The dataflow execution model here is similar to the actor-based

streaming execution model discussed in Chapter 3, where each stage corresponds to each

actor in the synchronous dataflow and can process streams of data.

To execute a dataflow program, the number of threads allocated to each stage needs to

be decided. Slower stages deserve more CPU threads, while faster stages need fewer CPU

threads. Besides the computation complexity of the stage, factors like disk bandwidth

44

and data format play important roles in determining a stage’s performance and thus the

efficiency of the entire dataflow. For example, SSDs typically provide a higher bandwidth

than HDDs; therefore, if the input data resides on SSD instead of HDD, the performance

of the read stage will be improved. Finally if computation is offloaded to FPGA, CPU will

be less utilized and thus other CPU-sensitive stages (like sort) may run faster. Therefore,

it is nontrivial to determine the best thread allocation for a dataflow program.

In a summary, the thread allocation problem can be formulated as follows: given

N threads/cores on the compute platform and given m stages in an application, decide

xit, the number of threads allocated for each stage i at any time t, and decide yit, the

number of threads allocated for each stage i that shall use FPGAs, so that yit < xit and∑
i xit = N at any time t and the application can finish in the shortest amount of time.

At the same time, the total resource that is used by all the tasks should not exceed the

system resource. Denote rcik as the amount of the kth resource that is used by a task in

stage i when it is executed on CPU, and denote rfik as the amount of the kth resource

that is used by a task in stage i when it is executed on FPGA. The following constraints

should stay true at any time t for each resource k:
∑

i r
c
ik · (xit − yit) + rfik ∗ yit = Rk,

where Rk is the total resource of type k.

4.2.2 Proposed Runtime Thread Allocation Strategy

At runtime, we profile the CPU utilization (utili) of stage i every small period of time.

It is calculated as the actual thread time spent on each task divided by the total thread

time of all tasks in this stage. Time that is spent on reading data from the input queue

(dequeue) and writing data to the output queue (enqueue) is not counted into the actual

thread time. Therefore, a high util represents that a stage is making high use of its

allotted CPU resource, while a small util represents that a stage might be wasting time

on dequeue/enqueue and thus is not making full use of its allotted CPU resource.

Our runtime adaptive thread allocation algorithm monitors the CPU utilization of

each stage, and makes adjustments in thread allocation every period of time which moves

CPU threads from the stages with a lower util to the stages with a higher util. Empirically

we determine the number of threads that are moved from a faster stage to a slower stage,

45

δ, as follow:

δ = nf − dnf/(
uf + us
2 · uf

)e, (4.1)

where nf represents the current number of threads allocated to the faster stage, and uf

and us represent the CPU utilization of the faster stage and slower stage respectively.

uf is smaller than us since the faster stage should have lower CPU utilization.
uf+us
2·uf

represents the gap between the CPU utilization of the faster stage and the average CPU

utilization of these two stages (
uf+us

2
), based on which we determine the number of

reallocated threads (δ).

The interval of thread re-allocation should be long enough so that the current thread

allocation policy have taken effect. This is due to the fact that when we decrease the

number of threads for a stage, we wait for the allocated threads from the previous iteration

to finish instead of killing them. Therefore the CPU utilization statistic that is collected

right after thread re-allocation may not represent the effectiveness of the new thread

allocation policy. Empirically the interval to sample CPU utilization is approximately

equal to the task time and thread reallocation is executed when tens of tasks have finished

in the slowest stage.

4.3 A Case Study of In-Memory Samtool Sorting

Throughout this section we use an example of the sort routine in Samtools [sam] to

illustrate the common issues in integrating FPGA solutions into multi-threaded CPU

computations, present our observations and experiment results.

4.3.1 Samtool In-Memory Sorting

Samtool sorting takes a genomic sequencing file as an input, sorts read alignment by

leftmost coordinate or by read name, and finally outputs the sorted read alignments to

a compressed file, so that latter processing tools can easily identify the duplicate read

alignments in the genome.

Figure 4.1 presents an overview of the algorithm used in Samtool sorting [sam]. First,

46

…

…

…

…

…

…

On-disk
SAM/BAM file

In-memory records array
Small sorted

on-disk BAM files
Sorted on-disk

BAM file

file read split
in-memory sort,

compression,
file write

external
merge sort

…

Figure 4.1: An overview of the sort routine in Samtools.

it sequentially reads the on-disk file that records sequencing reads in either normal SAM

(Sequence Alignment/Map) text or block-compressed BAM (Binary Alignment/Map) for-

mat. Second, it splits the read alignments into multiple partitions, so that each partition

can be sorted in memory, compressed, and written to a small temporary sorted file in

parallel. Compression is applied at this stage for each data block (e.g., 64KB size) within

the partition before writing to the disk so as to save storage space and bandwidth. In

addition, a cyclic redundancy check (CRC) code is computed on each original uncom-

pressed data block, which will be used to detect file errors when the compressed file is

read in the future. Third, all temporary sorted files will be merged together into a single

sorted BAM file using external merge sort, which is mainly disk bound. In this paper we

focus on the optimization of the first two stages, sequential read and parallel partition

processing, which occupy around 50% execution time of the entire Samtool sorting. We

call these two stages in-memory Samtool sorting.

4.3.2 Experiment Setup and Initial Profiling

The software in-memory Samtool sorting [sam] runs on a 12-core Intel Xeon CPU E5-

2620 (@2.40GHz) with CentOS 7.2. This server has 128GB memory and 500GB SSD.

The input data samples used in the experiments are the high-coverage exome samples

from the 1000 Genome project.1 For illustration purposes, we use a 27.6 GB SAM

file chopped from the first segment of the third exome sample throughout this paper

1
Data can be downloaded from:

• http://www.internationalgenome.org/data-portal/sample/NA12878

• http://www.internationalgenome.org/data-portal/sample/NA12892

• http://www.internationalgenome.org/data-portal/sample/HG01500

47

http://www.internationalgenome.org/data-portal/sample/NA12878
http://www.internationalgenome.org/data-portal/sample/NA12892
http://www.internationalgenome.org/data-portal/sample/HG01500

unless otherwise specified. To generate the input SAM files for Samtool sorting, we use

bwa-mem [Li13,BWA] to align these input exome samples.

Based on our profiling on the single-thread in-memory Samtool sorting, the compres-

sion and CRC algorithms, which are well suited for FPGA acceleration [FKB15,AHS14,

Wal07, HLW15], occupy around 45% of the execution time. (More profiling results will

be presented in Figure 4.4 in Section 4.3.5.) This motivates us to design an FPGA ac-

celerator for compression and CRC. We design our accelerator with Vivado HLS and

SDAccel (v2016.1). The default FPGA board is Xilinx Kintex UltraScale KU115. We

also synthesized our design on the Alpha-Data ADM-PCIE-KU3 board to demonstrate

portability of our design.

4.3.3 Accelerator Design and Performance

There are already several studies that accelerate compression and CRC on FPGAs [FKB15,

AHS14,Wal07,HLW15]. We implement an FPGA compression and CRC accelerator de-

sign similar to these works. The major difference from these works is that we design our

accelerator in HLS, which is portable and maintainable across Xilinx FPGAs.

Our FPGA accelerator takes a byte array as input. It computes the cyclic redundancy

check (CRC) code of the input array and produces a compressed byte array. The produced

CRC code is the same as the result from Linux crc32() in zlib.h. Our FPGA accelerator

can process 16 bytes/cycle at 200 MHz, achieving a theoretical peak bandwidth of 3.2

GB/s. Table 4.1 shows the FPGA kernel resource utilization on the Xilinx KU115 board

and ADM-PCIE-KU3 board, respectively.

Table 4.1: FPGA resource utilization of compression and cyclic redundancy check accel-

erator.

LUTs FF BRAM DSP frequency

% % % % (MHz)

KU115 12.6 4.9 9.0 0 200

KU3 16.6 7.6 13.2 0 200

The measured performance of our accelerator kernel from Xilinx OpenCL runtime is

2.8 GB/s. The gap between our measured throughput and the theoretical throughput

48

(3.2 GB/s) is because the data transfer between FPGA DRAM and FPGA kernel does

not achieve a perfect pipeline initial interval (II) that equals to 1, since each DRAM burst

read/write includes non-payload data overhead.

We test the compression ratio of our accelerator under the Calgary Corpus dataset

[cal]. We are only able to achieve a compression ratio of 1.73 (geometric mean) across

the dataset, lower than the previous work, but still at a comparable level. The reason of

a lower compression ratio is mainly due to the history string matching loss when there

are hash conflicts to the same dictionary. Unlike RTL designs in [FKB15] where doubled

frequency is used for hash table, in HLS we do not have the flexibility of using different

clocks in a single design.

We compare our compression throughput and ratio to two recent studies [FKB15,

AHS14] and the single-core CPU version in Table 4.2. Although we see room to further

optimize our accelerator design (e.g., replacing some modules with RTL designs with

doubled frequency), we did not pursue along that direction since its performance is already

limited by the CPU-FPGA data transfer bandwidth.

Table 4.2: FPGA accelerator comparison.

Design theoretical compression

and measured ratio

throughput (GB/s)

This work 3.2 / 2.8 1.73

Altera OpenCL [AHS14] 2.8 / - 2.17

Microsoft RTL [FKB15] 5.6 / - 2.09

CPU [FKB15] - / 0.05 2.62

To the best of our knowledge, this is the first compression (with CRC) design using

Xilinx HLS.

4.3.4 FPGA Accelerator Integration with CPU

Before we integrate our FPGA accelerator with the CPU, we first measure the effective

CPU-FPGA communication bandwidth, which is an important aspect in system perfor-

49

mance as observed in [CCF16]. According to our bandwidth tests, we propose a band-

width optimization technique on OpenCL buffer reuse. Then we present our CPU-FPGA

integration and evaluate its performance.

4.3.4.1 CPU-FPGA Communication

Similar to [CCF16], we measure the PCIe read and write bandwidth using OpenCL

APIs clEnqueueReadBuffer() and clEnqueueUnmapMemObject(), respectively.2 All

these APIs include an additional memcpy between the PCIe address space and the user

application address space.

First, we find that the data transfer rate is quite low in the Xilinx SDAccel (v2016.1)

environment, up to 2.2GB/s only. Moreover, we find that in the Xilinx OpenCL runtime,

reusing those memory objects across accelerator invocations improves the PCIe read

and write bandwidth by up to 2x, indicating the need for a buffer reuse mechanism.

Figure 4.2 presents our experiment results on effective data transfer bandwidths. Detailed

explanations and corresponding solutions are presented below.

1. Although the pure PCIe data transfer rate can reach up to 4-5 GB/s in our plat-

form, when we count in the time of memory copy between application threads and

OpenCL runtime which is unavoidable in the application, we are not able to achieve

concurrent read/write data transfer rates that are higher than 2.3 GB/s. Given that

the throughput of our accelerator is already higher (3.2 GB/s) than 2.3 GB/s, any

better accelerator designs will not help performance in the current setup.

2. The original BAM file is in a block-compressed format, where each uncompressed

block has the maximum size of 64 KB. However data transfer rates are below 1.0

GB/s when the data size is 64 KB. To solve this problem, we redefined the maximum

size of uncompressed blocks in BAM format to 32 MB; at this size the data transfer

rates are much higher.

3. At OpenCL runtime, an OpenCL memory object is first created and allotted to the

kernel. Figure 4.2 demonstrates that reusing OpenCL memory objects can increase

2The reason that we do not use clEnqueueMapBuffer() to perform PCIe read is that Xilinx has
confirmed that this API has degraded performance on CentOS 7.2 in SDAccel 2016.1.

50

0.0

1.0

2.0

3.0

4.0

2k 8k 32k 128k 512k 2M 8M 32M 128M 512M

R
e

a
d

 B
a

n
d

w
id

th
 (

G
B

/s
)

Data Size

PCIe + memcpy

[reuse buffer] PCIe + memcpy

0.0

1.0

2.0

3.0

4.0

2k 8k 32k 128k 512k 2M 8M 32M 128M 512M

W
ri

te
 B

a
n

d
w

id
th

 (
G

B
/s

)

Data Size

PCIe + memcpy

[reuse buffer] PCIe + memcpy

(a) Read bandwidth.
0.0

1.0

2.0

3.0

4.0

2k 8k 32k 128k 512k 2M 8M 32M 128M 512M

R
e

a
d

 B
a

n
d

w
id

th
 (

G
B

/s
)

Data Size

PCIe + memcpy

[reuse buffer] PCIe + memcpy

0.0

1.0

2.0

3.0

4.0

2k 8k 32k 128k 512k 2M 8M 32M 128M 512M

W
ri

te
 B

a
n

d
w

id
th

 (
G

B
/s

)

Data Size

PCIe + memcpy

[reuse buffer] PCIe + memcpy

(b) Write bandwidth

0.0

1.0

2.0

3.0

4.0

2k 8k 32k 128k 512k 2M 8M 32M 128M 512M

C
o

n
cu

rr
e

n
t

R
e

a
d

/W
ri

te

B
a

n
d

w
id

th
 (

G
B

/s
)

Data Size

PCIe + memcpy

[reuse buffer] PCIe + memcpy

(c) Concurrent read/write bandwidth

Figure 4.2: Effective data transfer bandwidth between CPU and FPGA through PCIe.

51

the bandwidth between host CPU and FPGAs. We find that the ‘PCIe + memcpy’

can achieve up to 1.2 GB/s read bandwidth and 1.9 GB/s write bandwidth. The

concurrent read and write bandwidth is as slow as 1.1 GB/s. However if we reuse

the OpenCL memory object in the consecutive bandwidth tests instead of allocating

new memory objects, we observe a significant higher bandwidth. The read band-

width and write bandwidth can achieve up to 2.8 GB/s and 3.2 GB/s; concurrent

read/write bandwidth is 2.2 GB/s. Given this observation, we implement a runtime

OpenCL block reuse mechanism, which is presented in Section 4.3.4.2. Note that

concurrent read/write bandwidth is slower than our kernel throughput (2.8 GB/s

as measured), which becomes the limiting factor for us in achieving the expected

kernel performance.

4.3.4.2 FPGA Runtime and Data Management

To handle efficient sharing of the FPGA among multiple application threads, we leverage

the Blaze runtime system [HWY16], which is an open-source project that offers accel-

erator management at node-level and at cluster-level. At node-level, the Blaze runtime

system serves as an abstraction layer between the application threads and the underly-

ing FPGAs. This additional layer maintains all information about tasks, kernels, kernel

arguments, and device data blocks, enabling more sophisticated management (e.g., task

queueing, thread-level fairness, and automatic FPGA reconfiguration) than that of the

default OpenCL runtime. We will discuss more on the cluster-level aspect of the Blaze

system in Chapter 5.

In the original Blaze, each accelerator invocation implicitly creates new OpenCL mem-

ory objects that are used as the input and output of the kernel. In this paper we improve

Blaze by including a data management module that provides a runtime OpenCL block

reusing mechanism, so as to improve the effective CPU-FPGA communication bandwidth.

Our data managment module is explained as follows.

Instead of releasing the OpenCL memory objects from previous runs, we maintain

these objects in a lookup table as long as we do not run out of device memory space.

New memory object allocations will first perform table lookups to see if there are already

allotted objects that are large enough to hold the current ones; failure to find pre-allocated

52

0.05 0.10 0.19
0.35

0.50

0.86

1.26

1.48
1.63 1.66

0.00

0.50

1.00

1.50

2.00

0 2 4 6 8 10 12 14

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of threads

CPU

FPGA

Figure 4.3: Compression and CRC task throughput measured from host CPU side. Mea-

sured FPGA performance includes data transfer time between the CPU and the FPGA.

objects results in new memory objects being allocated, and old memory objects being

released if we run out of space.

4.3.4.3 Integrated CPU-FPGA Performance

Figure 4.3 presents the compression (with CRC) task performance in the multi-threaded

scenario. In this experiment, a total of 553 compression tasks are executed. We can

observe that the CPU performance increases almost linearly with the increasing number

of threads. Task performance on FPGA is measured from the host CPU side, which

includes the data transfer between the host CPU and FPGA DRAM through PCIe.

Therefore, the observed single task performance is only 0.86 GB/s, rather than 3.2 GB/s.

Communication and computation are overlapped when more threads are launched. So the

FPGA task performance increases slightly with the increasing number of threads. The

peak FPGA task performance achieved is 1.7 GB/s; it is limited by PCIe communication

bandwidth rather than the FPGA kernel computation throughput.

Compared to the CPU compression (with CRC) implementation, our FPGA imple-

mentation achieves 17.2x speedup under the single-thread scenario, and achieves 3.3x

speedup in the 12-threaded scenario.

53

0.29 0.29 0.29 0.29

0.19 0.19

0.45

0.03

0.07

0.09

0.11 0.08

0.00

0.25

0.50

0.75

1.00

1.25

1 thread 1 thread
w/ FPGA

12 threads 12 threads
w/FPGA

N
or

m
al

iz
ed

 T
im

e

sort + compression + write write compression sort read

Figure 4.4: Normalized time for in-memory Samtool sorting.

4.3.5 Performance of Samtool Sorting

Finally, Figure 4.4 summarizes the runtime breakdown for in-memory Samtool sorting

with and without FPGA acceleration. During the in-memory sorting phase, data is first

read into memory. Then parallel threads are launched; each thread sorts a chunk of data,

compresses it and writes the data to a file. When multiple threads are used, we do not

add extra synchronization among threads after sorting or compression. Therefore, we

cannot tell the exact time that is spent on sorting, compression or file write; instead, the

total time of these three steps is reported in the figure.

Looking at Figure 4.4, we can see that in the single-thread scenario, we achieve 17.2x

speedup on the compression kernel by using the FPGA accelerator, 2.3x speedup on

‘sort+compress+write’, and 67% overall performance improvement. Note that file write

time increases slightly since our FPGA compression ratio is smaller than that of the CPU

baseline.

However, comparing the two rightmost columns in Figure 4.4 where 12 threads are

used in the CPU baseline, we can only observe 1.4x speedup on ‘sort+compress+write’.

This is because ‘sort’ and ‘compress’ are well-parallelized in this baseline. The application

performance is now limited by the sequential read stage and there is a marginal of 8%

overall performance improvement by integrating the FPGA accelerator into the system.

To better understand the optimization opportunities in the 12-thread Samtools in-

54

0

50

100

0 25 50 75 100 125

iostat when compression tasks run on CPUs

%user %iowait

0

50

100

0 25 50 75 100 125

iostat when compression tasks run on FPGAs

%user iowait

time (s)

time (s)

Figure 4.5: System iostat during 12-thread in-memory sorting.

memory sorting with and without FPGAs, we print out the CPU user utilization and

iowait from the linux ‘iostat’ command in Figure 4.5. During the read phase, the CPU

utilization is low; it stays below 5% in our CPU baseline, and it stays around 12% when

FPGAs are being used. The increased utilization comes from the Blaze runtime system.

Peaks in the CPU utilization graphs represent the sorting+compression phase, followed

by the write phase where there is a spike of iowait. When compression is offloaded

to FPGA, the CPU utilization quickly drops after the sorting phase. Finally, there is

little iowait except in the write phase, which indicates that the IO bandwidth could be

underutilized for the read, sorting, and compression phases.

Looking at Figure 4.5, we also find that although using the FPGA accelerator does

not make a significant improvement on application performance, a large amount of CPU

cycles are saved. However the current execution model cannot make good use of these

saved CPU cycles and CPU is just wasting time waiting for the accelerator to finish. This

motivates us to re-design the Samtool in-memory sorting.

4.3.6 Parallelizing the Read Stage

Following today’s trends in big data processing, we first partition our input SAM files

into multiple smaller files so that file read can be parallelized and IO bandwidth can be

55

80

146

198

221
246 246 242 235

50

100

150

200

250

300

0 2 4 6 8 10 12

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

of threads in the read stage

Figure 4.6: SAM file read throughput on SSD.

0.29 0.29
0.09

0.19

0.45

0.07

0.11
0.11

0.00

0.25

0.50

0.75

1.00

1.25

1 thread read: 1 thread
rest: 12 threads

read: 6 threads
rest: 12 threads

N
or

m
al

iz
ed

 T
im

e

sort + compression + write write compression sort read

Figure 4.7: Normalized execution time for in-memory Samtool sorting using different

number of threads.

better-utilized. Note that in real usage this file splitting process can be easily omitted by

modifying bwa-mem [Li13, BWA], the computation step right before the Samtool sorting

in the genome processing pipeline, to output multiple files instead of one file.

Figure 4.6 presents the parallel SAM file read throughput using different number of

threads. We find that in our system, increasing the read threads up to 6 can improve

SAM file read throughput; using a thread number beyond 6 does not provide any benefit

and can even slow down the overall read throughput, since 6 threads has already reached

the IO bandwidth limit.

Figure 4.7 presents the performance of in-memory Samtool sorting using the best con-

figuration on CPU: using 6 threads for read, and 12 threads for latter stages. Compared

56

…

…

…

…

…

…

On-disk
SAM/BAM file

In-memory records array
Small sorted

on-disk BAM files
Sorted on-disk

BAM file

file read split
in-memory sort,

compression,
file write

external
merge sort

…

read
read

read sort sort

compress
& write

compress
& write

compress
& write

compress
& write

data queue data queue

Figure 4.8: A dataflow model for in-memory sorting. In this example, 3, 2 and 4 threads

are used to execute read, sort and write stages, respectively. Data between stages are

organized using multi-input and multi-output queues.

to the original 12-thread version (the middle column), parallelizing the read stage can

improve the overall performance by 2x.

4.3.7 Dataflow-Samtools

We model Samtool in-memory sorting using the proposed dataflow execution model as

shown in Figure 4.8. We divide the entire application into three stages: read, sort and

compress+write (we denote it as write in the rest of this paper). We name our dataflow

implementation of Samtool sorting as Dataflow-Samtool sorting.

Figure 4.9 presents our design space explorations on thread allocations. It shows the

effect of thread allocation on the performance of Dataflow-Samtool sorting. There are a

total of 12 threads running, and we distribute them to read, sort and write stages. Overall

Figure 4.9b shows a better performance than Figure 4.9a since FPGA accelerators are

used. We found that when FPGAs are not used (Figure 4.9a), the number of threads

in the write stage largely determines the performance. This is because compression

and CRC in the write stage are the most computation-intensive. When FPGAs are in

use (Figure 4.9b), the affinity between the number of threads in the write stage and

application performance is no longer prominent.

In practice, it is not always possible to explore the whole design space to determine

the best thread allocation. It takes over 8 hours to collect the application performances

on all design points in Figure 4.9 using our small input data sample of 27.6 GB. This

motivates us to design a runtime adaptive thread allocation strategy as described below.

57

of threads in write stage

best design point
(3 read threads,

1 sort thread,
8 write threads)

(a) Performance on 12-core CPUs. At the best design point, the

application time takes 145s.

best design points

(b) Performance on 12-core CPUs with FPGA acceleration on com-

pression (and CRC). There are several design points that achieve

similar good performance. The application takes around 100s in

these design points.

Figure 4.9: Design space exploration on thread allocation for Dataflow-Samtool sorting.

The number of threads in sort stage equals to (12 − # of threads in read stage −

of threads in write stage). Since we need to maintain at least one thread for each

stage, the range of x and y axes are [1, 10]. The z axis shows the execution time in

seconds using different colors.

58

0

2

4

6

8

10

12

Time

of read threads

of sort threads

of write threads

Figure 4.10: Runtime adaptive thread distribution on our CPU-FPGA platform.

4.3.7.1 Evaluation on Runtime Thread Allocation

In our experiments, sorting a 200GB SAM file takes about half an hour. The util is

updated every 2 seconds and the thread configurations are updated every 20 seconds.

Note that for our smaller experimental datasets, which only take a few minutes to sort,

the util is updated every 0.5 seconds and the thread configurations are updated every 5

seconds. Note that how to decide these parameters for general applications was discussed

in 4.2.2.

Figure 4.10 presents our adaptive thread distribution during runtime on the CPU-

FPGA co-optimization case. We start the application with an equal distribution of

threads among all stages. After several rounds of tuning, we can see that the thread

allocation algorithm tends to use about 8 read threads, 1 sort thread and 3 write threads.

At the end, when the read stage finishes, all the read threads are allocated to the write

stage.

Table 4.3 presents the effectiveness of our runtime adaptive thread allocation. We

compare the application execution time using adaptive thread allocation to that of the

best and worst static thread allocations. Application execution time using static thread

allocation are shown in Figure 4.9 with all thread configurations explored, where the best

and worst configuration can lead to a performance difference by 5X or 2.2X on CPU-only

and CPU-FPGA platforms, respectively. Compared to the best static thread allocation,

we found that the runtime adaptive thread allocation can provide a performance very

close (93%) to the best static allocation on the CPU platform. Moreover, it can even

59

outperform the best static allocation on the CPU-FPGA platform. This is because our

runtime thread allocation strategy provides a more flexible thread configuration than

static allocations. For example, when a stage finishes, its threads can be reallocated to

other stages.

Table 4.3: Comparisons between static thread allocation and adaptive thread allocation

on application time (seconds).

Application Static Static Dynamic

time (s) best worst

CPU-only 145 734 155

CPU-FPGA 100 220 97

4.3.8 Overall Performance

4.3.8.1 Comparison on System Utilization

Figure 4.11 presents the overall performance and system metrics comparison on Sam-

tool in-memory sorting using 12-threads. The original Samtool library takes 275s (Fig-

ure 4.11a), while our dataflow-Samtool finishes in 155s (Figure 4.11b) and is further

improved to 97s when the FPGA is utilized (Figure 4.11c). In Figure 4.11a, different

phases such as read and sort, compression and write are obvious; CPU utilization is

extremely low during read phases. Note that multiple iterations are needed to process

the entire dataset. This application does a poor job of making use of the computation

resources.

We rewrite the Samtool library code using a dataflow model, and Figure 4.11b reports

an immediate speedup of 1.9x. Our dataflow-Samtool overlaps read, sort and write stages;

therefore, the CPU utilization constantly stays around 70% to 80% during the execution.

Figure 4.11c shows that by using our FPGA accelerator the application latency ex-

periences further speedup by 1.4x, and in total achieves 2.6x speedup over the original

Samtool library implementation. Note that at this point there is limited room for further

improvement since the I/O has been the bottleneck in our dataflow-Samtool (there is a

lot of iowaits in Figure 4.11c). Adding more SSDs to the system and direct output files

60

0

50

100

0 50 100 150 200 250 300

U
ti

liz
a

ti
o

n
 (

%
)

Time (s)

%user

%iowait

0

50

100

0 50 100 150 200 250 300

U
ti

liz
a

ti
o

n
 (

%
)

Time (s)

%user

%iowait

0

50

100

0 50 100 150 200 250 300

U
tl

iz
a

ti
o

n
 (

%
)

Time (s)

%user

%iowait

(a) Samtool in-memory sorting on the 12-core CPU. Application latency is 275s.

0

50

100

0 50 100 150 200 250 300

U
til

iz
at

io
n

(%
)

Time (s)

%user

%iowait

0

50

100

0 50 100 150 200 250 300

U
til

iz
at

io
n

(%
)

Time (s)

%user

%iowait

(b) Dataflow-Samtool in-memory sorting on the 12-core CPU. Application latency is 155s.

0

50

100

0 50 100 150 200 250 300

U
til

iz
at

io
n

(%
)

Time (s)

%user

%iowait

(c) Dataflow-Samtool in-memory sorting on the 12-core CPUs and FPGA. Application latency

is 97s.

Figure 4.11: System iostat during 12-thread in-memory sorting in Samtool, dataflow-

Samtool, and dataflow-Samtool-FPGA.

61

2.00
2.35

1.90

2.64

0.00

1.00

2.00

3.00

parallel
read

parallel
read

+ FPGA

dataflow dataflow
+ FPGA

Sp
ee

du
p

Figure 4.12: Overall speedup of different optimizations over original 12-thread Samtool

in-memory sorting.

to different SSDs could alleviate this problem.

4.3.8.2 Comparison of Different Optimizations

We compare the performance of different optimizations over the original 12-thread in-

memory Samtool sorting in Figure 4.12:

1. parallel read parallelizes the read stage using 6-threads, and then executes the

sort+compression+write stage using 12 threads;

2. parallel read + FPGA is based on parallel read but uses FPGA to perform

compression;

3. dataflow is the 12-threaded CPU implementation of Dataflow-Samtool;

4. dataflow + FPGA is the 12-threaded CPU implementation of Dataflow-Samtooldatflow-

Samtool with FPGA.

There are several observations. First, dataflow does not out-perform parallel read.

The major reason is that there is additional memory consumption is maintaining data

queues in the dataflow model which slows down the memory system. Thus the dataflow

exeuction model is slightly slower than parallel read.

62

Second, dataflow execution model is more FPGA-friendly than data-parallel execu-

tion model (parallel read). Because it can overlap FPGA execution with other CPU

intensive tasks, dataflow execution model brings more significant speedup when FPGAs

are introduced into the system.

Finally, among all four optimizations, CPU-FPGA co-optimized dataflow-Samtool

achieves the best performance, which is 2.64x faster than the original 12-thread Samtool

sorting.

4.3.8.3 Performance for Different Datasets

Finally, we present the application performance on large datasets in Table 4.4. On average

we achieve 2.6x speedup for genome data in-memory sorting.

Table 4.4: Application execution time for different datasets (minutes).

Data Input size number of records Samtools Dataflow speedup

(GB) to sort CPU Samtools

w/ FPGA

SRR098401 54.5 2.28E+08 10.6 3.8 2.8x

SRR098359 56.7 2.37E+08 10.9 4.2 2.6x

SRR1295423 235.2 4.12E+08 34.3 14.0 2.5x

4.4 More Case Studies

In this section we perform more experiments to evaluate our dataflow execution model.

We still use the Samtool in-memory sorting applications but different data format and

storage are used in different experiments.

4.4.1 Changing Input format

We change the input format from SAM format to BAM format where data is stored as

compressed binary file. This change indicates that input file size is reduced and decom-

pression is needed during read stage. Reading files in BAM format is more computation-

63

1.90
2.10

1.83

2.62

1.68 1.79

2.08

2.35

0.00

1.00

2.00

3.00

parallel

read

parallel

read

+ FPGA

dataflow dataflow

+ FPGA

S
p

e
e

d
u

p

BAM on SSD

BAM on HDD

Figure 4.13: Overall speedup of different optimizations over original 12-thread Samtool

in-memory sorting using different configurations.

intensive than reading files in SAM format. The results are presented in Figure 4.13 as

BAM on SSD. In this case dataflow + FPGA achieve the best performance which is 2.62x

better than the 12-threaded CPU baseline.

4.4.2 Changing Storage Type

We also test the another case where the input reside on HDD rather than SSD. Since

parallel read on HDD is slower than parallel read on SSD, the application is more disk-

bounded. Therefore overall we observe less speedup by using FPGA accelerators. How-

ever among all the execution models, dataflow execution with FPGA accelerator still

performs the best (2.35x speedup) as shown in BAM on HDD in Figure 4.13.

4.5 Accelerator Designs

Finally we briefly review the our compression and CRC accelerator design that are used

throughout this chapter.

There are many studies on accelerating compression on FPGAs due to its importance.

For example, Altera has implemented a portable deflate compression algorithm using

OpenCL and achieved a compression rate of 16 bytes/cycle at 193 MHz [AHS14]. The

best result is achieved in the Microsoft implementation in RTL [FKB15], which achieves

64

a compression rate of 32 bytes/cycle at 175 MHz. Whereas most of our design is similar

to the these designs [AHS14, FKB15] at high level, our work demonstrates that using

Xilinx HLS can achieve a compression throughput similar to that implemented using

Altera OpenCL [AHS14]. Compared to the RTL design [FKB15], it is more portable

and maintainable. Theoretically, if HLS can support multiple asynchronous clocks in the

design, we can use double clock frequency for our hash table design as done in [FKB15],

and then we will achieve the same or similar compression ratio.

CRC is intrinsically binary polynomial division. Traditional CRC circuits are based

on linear feedback shift registers [PZ92, MDM01], where retiming and pipelining have

been studied to improve its performance. There are several recent studies on table-based

algorithms to calculate CRC [HLW15,Wal07]. We apply the design concept in [HLW15]

to our HLS design and achieve the same performance (16 bytes per cycle).

To the best of our knowledge, we are the first to focus on the efficient coordination

between the multicore CPU and FPGA using a dataflow execution model.

4.6 Conclusions

In this chapter we present a dataflow execution model so as to better incorporate FPGA

accelerators into the system. This model coordinate today’s multicore CPU and FPGA

together to optimize the performance of big data applications. It combines data-level

parallelism on multicore CPU, hardware specialization on FPGA, and pipeline paral-

lelism between CPU cores and FPGA. Accordingly, we developed an adaptive runtime to

effectively orchestrate the computation between multiple cores and FPGA.

To validate our approach, we conduct a case study on in-memory Samtool sorting.

We integrate an FPGA accelerator for compression and CRC into the in-memory sorting

routine. We found that a straightforward integration of this FPGA accelerator into the

12-thread Samtool sorting only achieved a marginal 8% system throughput improvement.

With our proposed dataflow execution model, we can achieve an average of 2.6x system

performance speedup over the original 12-thread in-memory Samtool sorting.

65

CHAPTER 5

Cluster-Level Resource Management

5.1 Introduction

Modern big data processing systems, such as Apache Hadoop [had] and Spark [ZCF10],

have evolved to an unprecedented scale. As a consequence, cloud service providers, such

as Amazon, Google and Microsoft, have expanded their datacenter infrastructures to

meet the ever-growing demands for supporting big data applications. However, due to

the problem of dark silicon [EBA11], simple CPU core scaling has come to an end, and

thus CPU performance and energy efficiency has become one of the primary constraints

in scaling such systems. To sustain the continued growth in data and processing meth-

ods, cloud providers are seeking new solutions to improve the performance and energy

efficiency for their big data workloads.

Among various solutions that harness GPU (graphcs processing unit), FPGA (field-

programmable gate array), and ASIC (application-specific integrated circuit) accelerators

in a datacenter, the FPGA-enabled datacenter has gained increased attention and is con-

sidered one of the most promising approaches. This is because FPGAs provide low power,

high energy efficiency and reprogrammability to customize high-performance accelerators.

One breakthrough example is that Microsoft has deployed FPGAs into its datacenters to

accelerate the Bing search engine with almost 2x throughput improvement while consum-

ing only 10% more power per CPU-FPGA server [PCC14]. Another example is IBM’s

deployment of FPGAs in its data engine for large NoSQL data stores [BRH15]. More-

over, Intel, with the $16.7 billion acquisition of Altera, is providing closely integrated

CPU-FPGA platforms for datacenters [int], and is targeting the production of around

30% of the servers with FPGAs in datacenters by 2020 [har].

With the emerging trend of FPGA-enabled datacenters, one key question is: How can

66

we easily and efficiently deploy FPGA accelerators into state-of-the-art big data computing

systems like Apache Spark [ZCF10] and Hadoop YARN [VMD13]? To achieve this goal,

both programming abstractions and runtime support are needed to make these existing

systems programmable to FPGA accelerators. In this work, we mainly focus on runtime

support, particularly resource management. Programming support for FPGA accelerator

deployment can be found in [HWY16].

Managing FPGA accelerator resource at cluster-level is non-trivial. It usually takes

several seconds to reprogram an FPGA into a different accelerator (with a different func-

tionality). A frequent FPGA reprogramming in a multi-accelerator scenario can signif-

icantly degrade the overall system performance. This raises a fundamental question:

Do we manage ”the hardware platform itself” or ”the logical accelerator (functionality)

running on top of the hardware platform” as a resource?

To address this challenge, we propose the following solutions:

1. Policies for managing logical accelerator functionality —instead of the physical

hardware platform itself—as a resource, where better scheduling decisions can be

made to optimize the system throughput and energy efficiency.

2. An efficient runtime to share FPGA accelerators in data-centers, where an FaaS

framework is implemented to support sharing of accelerators among multiple threads

and multiple applications in a single node. Also, an accelerator-centric scheduling

is proposed for the global accelerator management to alleviate the FPGA repro-

gramming overhead for multi-accelerators.

3. A prototype that is compatible with existing ecosystems like Apache Spark with no

code changes and YARN with a lightweight patch.

5.2 System Overview

The Blaze runtime system integrates with Hadoop YARN to manage accelerator sharing

among multiple applications. As illustrated in Figure 5.1, Blaze includes two levels of

accelerator management. A global accelerator manager (GAM) oversees all the accel-

erator resources in the cluster and distributes them to various user applications. Node

67

Client RM
AM

NM

NM

Container	

Container	

Job	submission	
Accelerator	status	
Applica4on	data	
Resource	request	

GAM
NAM

NAM

FPGA	

GPU	

Global Accelerator Manager
accelerator-centric scheduling

Node Accelerator Manager
FaaS, JVM-to-FPGA communication optimization

GAM

NAM

Figure 5.1: Overview of Blaze runtime system.

accelerator managers (NAMs) sit on each cluster node and provide transparent accel-

erator access to a number of heterogeneous threads from multiple applications. After

receiving the accelerator computing resources from GAM, the Spark application begins

to offload computation to the accelerators through NAM. NAM monitors the accelerator

status, handles JVM-to-FPGA data movement and accelerator task scheduling. NAM

also performs a heartbeat protocol with GAM to report the latest accelerator status. In

this chapter, we focus on the design of GAM. Details of NAM can be found in [HWY16].

Blaze execution flow. Figure. 5.2 presents the execution flow of the Blaze system.

During system setup, the system administrator can register accelerators to NAM through

APIs. NAM reports accelerator information to GAM through heartbeat. At runtime, user

applications request containers with accelerators from GAM. Finally during application

execution time, user applications can invoke accelerators and transfer data to and from

accelerators through NAM APIs.

Accelerator-centric scheduling. In order to solve the global application placement

problem considering the overwhelming FPGA reprogramming overhead, we propose to

manage the logical accelerator functionality, instead of the physical hardware itself, as a

resource to reduce such reprogramming overhead. We extend the label-based scheduling

mechanism in YARN to achieve this goal: instead of configuring node labels as ‘FPGA’,

we propose to use accelerator functionality (e.g., ‘KMeans-FPGA’, ‘Compression-FPGA’)

68

Global ACC Manager

Node ACC
Manager

FPGA
GPU
ACC

ACC Info

User Application

ACC Labels Containers

Container Info

ACC Invoke
Input data
Output data

Figure 5.2: Blaze execution flow.

as node labels. This helps us to differentiate applications that are using the FPGA devices

to perform different computations. We can delay the scheduling of accelerators with

different functionalities onto the same FPGA to avoid reprogramming as much as possible.

Different from the current YARN solution, where node labels are configured into YARN’s

configuration files, node labels in Blaze are configured into NAM through command-line.

NAM then reports the accelerator information to GAM through heartbeats, and GAM

configures these labels into YARN.

5.3 Global Accelerator Manager

In order to mitigate the FPGA reprogramming overhead, it is better to group the tasks

that need the same accelerator to the same set of nodes. The ideal situation is that each

cluster node only gets the tasks that are requesting the same accelerator, in which case

FPGA reprogramming is not needed. Figure 5.3 illustrates that grouping accelerator

tasks can reduce FPGA reprogramming overhead.

By managing logical accelerator functionality as a resource, we propose an accelerator-

locality-based delay scheduling policy to dynamically partition the cluster at runtime,

avoiding launching mixed FPGA workloads on the same cluster node as much as possible.

During accelerator allocation in GAM, we consider the nodes in the following order as

69

Node labels
gradient distance sum

App1 container App2 container

Node labels
gradient distance sum

App3 container App4 container

Node labels
gradient distance sum

App1 container App3 container

Node labels
gradient distance sum

App2 container App4 container

(a) Naive allocation: applications on a node use different accelerators which leads to

frequent FPGA reprogramming.

Node labels
gradient distance sum

App1 container App2 container

Node labels
gradient distance sum

App3 container App4 container

Node labels
gradient distance sum

App1 container App3 container

Node labels
gradient distance sum

App2 container App4 container

(b) Ideal allocation: applications on the node use the same accelerator and thus there

is no FPGA reprogramming

Figure 5.3: Different resource allocation policies. In this example, each cluster node

has one FPGA platform and two accelerator implementations, “gradient” and “distance

sum”. Four applications are submitted to the cluster, requesting different accelerators.

scheduling priorities: 1) the idle nodes that do not have any running containers; 2) the

nodes that run similar workloads; 3) the nodes that run a different set of workloads.

Specifically, we define an affinity function to describe ith node’s affinity to an application

as fi = nacc

n
, where nacc is the number of containers on this node that use the same

logical accelerator (or label), and n is the total number of containers on this node. A

node with higher affinity represents a better scheduling candidate. An idle node which

has zero running containers has the highest affinity and is considered the best scheduling

candidate. GAM tries to honor nodes with higher accelerator affinity by using the so-

called delay scheduling.

At runtime, each NAM periodically sends a heartbeat to the GAM, which represents

a scheduling opportunity. The GAM scheduler does not simply use the first scheduling

70

opportunity it receives. Instead, it may skip a few scheduling opportunities and wait a

short amount of time for a scheduling opportunity with a better accelerator affinity. In

our implementation, we maintain a threshold function for each application, which linearly

decreases as the number of missed scheduling opportunities increases. A container is

allocated on a node only if the node’s accelerator affinity is higher than the threshold

function.

5.4 Experiments

5.4.1 Experimental Setup

The experimental platform we use is a local standard CPU cluster with up to 20 nodes,

among which 4 nodesare integrated with FPGA cards using PCI-E slots. Each server

has dual-socket Intel Xeon E5-2620v3 CPUs with 12 cores in total and 64GB of main

memory. The FPGA card is AlphaData ADM-PCIE-7V3, which contains a Xilinx Virtex-

7 XC7VX690T-2 FPGA chip and 16GB of on-board DDR3 memory. The FPGA board

can be powered by PCI-E alone and consumes around 25W, which makes it deployable

into commodity datacenters.

The software framework is based on a community version of Spark 1.5.1 and Hadoop

2.6.0. The accelerator compilation and runtime are provided by the vendor toolkits. For

the AlphaData FPGA cards, we use the OpenCL flow provided by the Xilinx SDAccel

tool-chain, where the OpenCL kernels will be synthesized into bitstreams to program the

FPGA.

We choose two iterative machine learning algorithms, logistic regression and K-means

clustering, from Spark machine learning library.

Logistic regression (LR). The baseline LR is the training application implemented

by Spark MLlib [mll] with the LBFGS algorithm. The software baseline uses netlib

with native BLAS library. The computation kernels we select are the logistic gradients

and the loss function calculation. The kernel computation takes about 80% of the total

application time.

K-Means clustering (KM). The KM application is also implemented using Spark

71

MLlib, which uses netlib with native BLAS library. The computation kernel we select is

the local sum of center distances calculation. The datasets used in KM are the same as

LR, and the percentage of kernel computation time is also similar to LR.

The FPGA accelerators for all applications are designed in-house. The accelerator

specifications for LR and KM can be found in [CHW16]. Table 5.1 presents an overview

of the accelerator speedup compared to the 12-thread CPU software baseline in terms of

throughput improvement. We set --num-executors to 1 and --executor-cores to 12 in

Spark. The input data for LR and KM are based on a variant of the MNIST dataset [mni]

with 8 million records, and is sampled such that on average each node will process 2-4GB

of data.

5.4.2 GAM Analysis

To evaluate the effectiveness of GAM’s resource allocation policy (i.e., accelerator-centric

scheduling), we choose seven sets of workloads on a 4-node CPU-FPGA cluster. Each set

contains LR and KM applications of various input data sizes, and the ratio of these two

applications varies among different sets of workloads.

We compare GAM with two baselines: static-partition and default sharing. In static

partition, we evenly partition the 4 nodes into two sets: 2 nodes only run LR applications

and the other 2 nodes only run KM applications. Therefore, reprogramming never occurs

in the experiments. In default sharing, all the FPGA nodes can run both LR and KM

workloads, and we use the Apache YARN’s default resource allocation policy. Our GAM

has settings similar to default sharing, but uses our accelerator-centric scheduling policy.

We also calculate the offline theoretical optimal scheduling results, in which case we

assume that the submission time of all the sets of workloads are known beforehand and the

submission time are close to each other. GAM can then intentionally delays the workloads

Table 5.1: FPGA accelerator performance profile.

Application Kernel Speedup

LR Gradients 3.4×

KM DistancesSum 4.3×

72

0
.5

2
 0

.7
1

0
.9

6

0
.9

2

0
.9

2

0
.6

1

0
.5

2

1
.0

0

0
.8

3

0
.6

7

0
.5

4
 0

.7
2

0
.7

4

1
.0

0

1
.0

0

0
.9

6

0
.8

6

0
.8

1

0
.9

0

0
.8

6

0
.9

8

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1 0.8 0.6 0.5 0.4 0.2 0

N
o

rm
a

li
ze

d
 S

y
st

e
m

 T
h

ro
u

g
h

p
u

t

to
 T

h
e

o
re

ti
c
a

l
O

p
ti

m
a

l
T

h
ro

u
g

h
p

u
t

Ratio of LR workloads in the mixed LR-KM workloads

static partition default sharing GAM theoretical optimal

(a) System throughput of different workloads. The number is normalized to the offline theoretical

optimal results.

1
3

.3

3
1

.3

4
3

.6

4
5

.7

3
8

.4

3
1

.4

2
3

.4

4
5

.5

2
5

.5

1
7

.7

1
8

.9

1
9

.9

2
4

.6

5
0

.7

4
6

.3

4
2

.7

3
2

.6

3
1

.9

3
6

3
4

.2

4
9

.3

4
6

.3

4
4

.3

4
5

.5

4
5

.7
 5
2

.3

5
1

.6

5
0

.7

1 0.8 0.6 0.5 0.4 0.2 0

A
c
c
e

le
ra

to
r

U
ti

li
za

ti
o

n
 (

%
)

Ratio of LR workloads in the mixed LR-KM workloads

static partition default sharing GAM theoretical optimal

(b) Accelerator utilization of different workloads.

Figure 5.4: Normalized system throughput and accelerator utilization of mixed workloads

on a CPU-FPGA cluster.

that are using different accelerators and swap in the workloads that are submitted at a

later time but use the same accelerators. Therefore, FPGAs are reprogrammed only once

on each node given that the number of different accelerators in our experiments is two. A

more general formulation that allows for arbitrary number of accelerators and arbitrary

submission time can be found in Section 5.5.

Figure 5.4 plots the normalized system throughput to theoretical optimal and accel-

73

erator utilization. Comparing the baseline static partition with default sharing, we find

that static partition performs better when the cluster is partitioned in a way that the

ratio of KM nodes to LR nodes is close to the ratio of KM workloads to LR workloads

(i.e., ratio is 0.5), while default sharing performs better when the workloads only contain

LR or KM applications (i.e., ratio is 1 or 0), since the applications can use all 4 FPGA

nodes. However the advantages of default sharing decline as the workloads become more

heterogeneous due to FPGA reprogramming overhead.

GAM incorporates the best aspects of static partition and default sharing : it poten-

tially allows applications to use all cluster FPGAs (shown as the accelerator utilization

rate in Figure 5.4 (b)). Meanwhile, it reduces FPGA reprogramming overhead by plac-

ing similar workloads on the same set of nodes. On average, static partition and default

sharing are 27% and 22% away from the theoretical optimal results, while GAM is only

9% away from the optimal results.

5.5 Offline Scheduling Formulation

In this section, we present an integer linear programming (ILP) formulations of the offline

resource and task scheduling problem in the context of YARN and a cluster with FPGA

accelerators.

Each application requests a set of containers from YARN and/or global accelerator

manager (GAM), and uses the allocated resources to execute its tasks. The applications

may arrive at different times. We would like to optimize for the overall latency for this set

of applications. Particularly these formulations consider FPGA reprogramming overhead

when measuring performance.

5.5.1 Problem Formulations

Symbol Definition

• Appi: Application i.

• Taskij: jth task of Appi.

74

• Nodek: Cluster node k.

Problem Parameters

• ai: The arriving time of Appi.

• nci: The number of containers requested by Appi.

• tij: Execution time of Taskij on FPGAs.

• rep: Time to reprogram an FPGA.

• eiji′j′ : Dependency exists between Taskij and Taskij′ .

• pii′ = 1, if Appi and Appi′ uses different FPGA bitstreams; otherwise 0.

Decision Variables

• mijkp = 1, if Taskij is scheduled to Nodek and from a global point of view, it is the

pth task executed on Nodek; otherwise 0.

• si: Launch time of Appi.

Intermediate Variables

• fi: The completion time of Appi.

• L: The maximal latency of all applications.

• uij: The start time of Taskij.

• vij: The completion time of Taskij.

• bij = 1, if executing Taskij requires FPGA reprogramming; otherwise 0.

• oiji′j′ = 1, if (1) Taskij and Taski′j′ are executed on the same node, (2) they occupy

consecutive execution slots with Taskij follows Taski′j′ , and (3) Appi and Appi′ uses

different bitstreams; otherwise 0.

• dik = 1, if there exists at least one task from Appi that is executed on Nodek;

otherwise 0.

75

Now we present the problem formulation as follows.

Optimization goal:

minL. (5.1)

Constraints:

• A task in only mapped to one execution slot:

∑
k,p

mijkp = 1, ∀i, j. (5.2)

• Each slot only has one task:

∑
i,j

mijkp = 1, ∀k, p. (5.3)

• Application launches after its arriving time:

si ≥ ai, ∀i. (5.4)

• Tasks start after the application launches:

uij ≥ si, ∀i, j. (5.5)

• Definition of task completion time:

vij = uij + ti,j + rep ∗ bij, ∀i, j (5.6)

• Definition of completion time of Appi:

fi ≥ vij, ∀i, j. (5.7)

• Definition of maximal latency of all applications:

L ≥ fi. ∀i. (5.8)

• Dependency between tasks:

uij ≤ vij′ ,∀eiji′j′ . (5.9)

76

• Definition of whether a task requires reprogramming (bij):

bij =
∑
i′j′

oiji′j′ ,∀i, j, i′ 6= i, j′. (5.10)

• Definition of oiji′j′ :

oiji′j′ =
∑
k,p

mijkp ·mi′j′k(p−1) · pii′ , ∀i, j, i′ 6= i, j′. (5.11)

Transforming the above formula into an linear programming is presented in the

next section.

• Definition of dik:

dik =

1, if

∑
j,pmijkp ≥ 1

0, otherwise

, ∀i, k. (5.12)

Transforming the above formula into an linear programming is presented in the

next section.

• Tasks are executed on the requested containers:

∑
k

dik = nci, ∀i. (5.13)

5.5.2 ILP formulations

All the formulations in the above sections are in the linear form except for formula (5.11)

and (5.12). We continue to discuss how to reformulate these two formulas into a linear

form.

Reformulate formula (5.11) Formula (5.11) can be transformed into an ILP form

by applying the following theorem:

Lemma 3 Given binary variables x, a and b, function x = ab is equivalent to the fol-

lowing set of functions in the linear form:
x ≤ a,

x ≤ b,

a+ b− x ≤ 1.

(5.14)

77

Reformulate formula (5.12) Formula (5.12) can be transformed into an ILP form

by applying the following theorem:

Lemma 4 Given a binary variable x, and a non-negative integer variable y, formulation

x =

1, if y ≥ 1

0, otherwise

(5.15)

is equivalent to the following set of functions in the linear form:
y ≤M · x,

x ≤ y,

(5.16)

where M is a very large positive integer, or the maximum value of y.

Theorem 2 Formula 5.1 to formula 5.13 is an integer linear programming program.

5.5.3 Complexity Analysis

Denote that the total number of tasks as N , the number of cluster nodes as M , and the

number of applications as A. The total number of decision variables is N2M + A. The

total number of intermediate variables is A+ 1 + 3N +N2 +MA.

Denote that the number of task dependency edge e is E. Then the total number of

constraints (from formula 5.1 to formula 5.13) is 4N + 2A+ E +MN + 2N2 +MA.

5.5.4 Discussions

The formulations presented in this write-up aim to show that it is possible to formulate

certain accelerator resource and task scheduling problem into an integer linear program-

ming problem although it is not practical to call an ILP solution at runtime. Now we

further examine some assumptions in our formulations and explain how to extend them

to more general problems.

1. We assume that each node only has one FPGA board and each FPGA board only

supports one execution kernel at a time. This assumption is usually true in to-

day’s server configuration. On the other hand, it is trivial to extend the current

formulation to support multiple FPGA boards on the same node.

78

2. We assume all the tasks are executed on the FPGAs. We intentionally ignore the

non-accelerable tasks in an application and do not consider migrating an accelerable

task onto the CPU. The reason is that it is extremely difficult to formulate the

execution time of a CPU task, which may involve disk and network accesses, in a

multi-tenant scenario on today’s multi-core CPU platforms.

3. We assume all the tasks in an application use the same FPGA bitstream. However

it is trivial to extend the current formulation to support multi-bitstream in an

application. We just need to change the parameter pii′ into piji′j′ and adjust the

formulations correspondingly.

4. We assume the number of tasks is known in advance. This assumption, however, is

not always true. In many iterative applications, such as machine learning applica-

tions, number of iterations depends on the convergence conditions and thus is not

known beforehand.

5. This formulation provides an offline solution. Online resource scheduling and task

scheduling (at YARN level, task scheduler level and node accelerator manager level)

lack the information about future tasks and future applications to achieve a global

optimal solution.

5.5.5 Related Work on Offline Resource and Task Scheduling

In the task and resource scheduling area, the concepts that are similar to FPGA repro-

gramming is context switch and preemption. Context switch is an important mechanism

to share a CPU processor among multiple threads. However only a limited number of

works studied this problem, which might due to the reason that in general-purpose sys-

tems, context switch cost is not significant. [DCC07] shows that average context switch

overheads in Linux on an ARM platform is only 0.17% - 0.25%. Nevertheless in certain

systems, such as real-time systems, tasks exhibit a very high context switch cost due to

the latency time of the I/O devices [ERC95]. An analytic model is presented in [ERC95]

to calculate the number of preemptions in scheduling a set of periodic tasks using ‘Rate

Monotonic (RM)’ policy and ‘Earliest Deadline First (EDF)’ policy. It shows that EDF

generally incur less context switching overhead than RM. [LMK99] proposes a ‘Limited

79

Preemptive Scheduling’ that limits preemptions to execution points with small cache-

related preemption costs. [WS99, SW00] introduces a concept of preemption-threshold

into ‘Rate Monotonic’ scheduling where a task can only be preempted if its preemption-

threshold is lower than the other task’s priority.

The overhead of preemption has also been studied in the dynamic voltage scaling

(DVS) scenario, where voltage and clock frequency are dynamically adjusted to reduce

power and energy consumption of the system. Preemption in DVS is more frequent

and have negatively impact on the system energy consumption. [KSY02] shows that

DVS scheduling algorithms can incur up to 500% task preemption comparing to non-

DVS scheduling algorithms. [KKM04] explains that task preemption may increase the

energy consumption on the memory subsystems and long lifetime of preempted tasks

may increase energy consumption in system devices. A delayed-preemption, which tries

to postpone preemption by delaying the activation of a higher-priority task is proposed

to reduce the negative impact of DVS algorithms.

The works above mainly focuses on task scheduling how to reduce preemption over-

head on embedded system or single node system. While in our problem, we also need

to address the problem as which set of cluster nodes should be used to execute the jobs.

Therefore our work is more general comparing to these prior works.

At cluster level, there are a limited number of works that consider preemption in

resource allocation. [CDD14] considers to reduce the number of resource reallocation

when reserving resource for a job. The problem is described in a MILP problem and

the authors propose to use heuristic algorithm to solve the problem. Different from

their work, we consider particularly FPGA tasks in our formulation and we do not allow

multiple tasks to use the same FPGA at a time. We are able to formulate the problem

into an ILP problem.

5.6 Conclusions

In this chapter we propose to manage the logical accelerator functionality as a resource

instead of the physical hardware platform itself. Using this new concept, we are able

to extend Hadoop YARN with an accelerator-centric scheduling policy that better man-

80

ages global accelerator resources and mitigates the FPGA reprogramming overhead. We

demonstrate that our accelerator-centric scheduling achieves close to optimal system

throughput. In addition, we present an ILP formulation of offline resource and task

scheduling which can be used to evaluate the gap between optimal allocation and online

scheduling algorithms.

81

CHAPTER 6

Cluster-Level Data Shuffling

6.1 Introduction

Data sorting and shuffling is, in many ways, the heart of large-scale distributed computing

frameworks, such as MapReduce/Hadoop and Spark. For simplicity, here we use shuffle

to refer to this data sorting and data shuffling stage. In MapReduce, shuffle performs the

data sorting and data transmission from the mappers to the reducers, guaranteeing that

the input to every reducer is sorted by key. It is an area of the codebase where refinement

and improvements are continually being made and is where the “magic” happens [Whi12].

Spark, whose operators are a strict superset of MapReduce, also supports sorting-

based data shuffle between consecutive computation stages. In fact, at an earlier stage

of Spark development, it adopted a hashing-based shuffle which turns out to be one of

the limiting factors of scaling out Spark. Sorting-based shuffle is thus then introduced

to Spark. Overall, the data shuffle is an expensive but indispensable operation of many

distributed computing frameworks.

In this chapter we use the benchmark Terasort to evaluate the performance of cluster-

level data shuffling. Terasort is a popular benchmark that measures the amount of time it

takes to sort one terabyte of randomly distributed data. In Terasort, each data record has

100 bytes, including a 10-bytes key and 90-bytes of data. The sorting routine reorganizes

the data according to the key value. We perform extensive experiments on different

implementations of Terasort and study whether accelerators can improve the sorting

performance.

82

6.2 Experiment Setup and Initial Profiling

To study the Tersort performance, we set up a local 8-node Xeon (E5-2620 @2.40 GHz)

cluster; each node has 64 GB memory and 24 cores. We leverage the latest software

framework in the community. We use the latest Hadoop 2.7.3 to build our distributed

file system and use the latest Spark 2.0.1 as the computation framework. The Tera-

sort benchmark originates from SparkBench 2.0 [spa]. Nevertheless we made significant

changes to the source code to achieve a better performance. We configure the Spark

local working directory to SSD, which exploits the best I/O performance and leaves more

stress on CPU processing capability. We clear system file cache before each application

starts so as to guarantee that data is fetched from disk instead of the cached in-memory

copy.

6.2.1 Data Shuffling in Spark

The major difference between Spark shuffling and MapReduce shuffling is the time to

start the reduce tasks. In MapReduce, reduce tasks can start after some of the map tasks

have finished; while Spark, as a more general computation framework, chooses to adopt

a stage-by-stage scheduling policy where shuffle operations are considered as boundaries

of the stages. Therefore, reduce tasks do not start until all the map tasks have finished.

We believe that the task scheduling policy in MapReduce is probably more suitable

for Terasort applications. Nevertheless, in this work, we focus on the Spark shuffling

performance since Spark is gaining popularity in recent years (as demonstrated in Fig-

ure 6.1).

6.2.2 Initial Terasort Profiling

Listing 1 shows our Spark Terasort implementation. dataset is the input data that is read

from HDFS. The Spark operator repartitionAndSortWithinPartition first repartitions

the dataset based on the provided partitioner and then sorts by the key. Figure 6.2 shows

the RDD transformation of the code in Listing 1. Table. 6.1 lists the Spark configurations.

In this experiment we sort 64 GB of data on a 8-node Xeon cluster. The application

83

Figure 6.1: Google Trend for Apache Spark and Apache Hadoop. Data was collected

from www.google.com/trends on November 6, 2016.

Terasort 3.6 min

5.7 min

Figure 6.2: RDD computation lineage for the code in Listing 1.

Figure 6.3: System metrics of a node when running 64 GB Spark Terasort on 8-node

cluster.

84

Listing 1 Spark Terasort (scala)

1 val dataset = context.newAPIHadoopFile[

2 Array[Byte], Array[Byte]](inputFile)

3 val sorted = dataset.repartitionAndSortWithinPartitions(

4 new TeraSortPartitioner(dataset.partitions.size))

5 sorted.saveAsNewAPIHadoopFile[TeraOutputFormat](outputFile)

Table 6.1: Spark configurations in Terasort.

spark.executor.memory 60g

spark.serializer org.apache.spark.serializer.KryoSerializer

spark.rdd.compress false

spark.io.compression.codec lzf

SPARK WORKER CORES 24

takes 3.6 minutes to finish. The newAPIHadoopF ile stage and repartitionAndSortWithinPartitions

take 2.3 minutes and 1.3 minutes to finish respectively. Figure 6.3 shows the system met-

rics monitored from Ganglia monitoring tools. The application starts at around 11:08

and ends at around 11:12.

From the figure 6.3 we can easily identify stage 0 and stage 1. Stage 0 has higher

wait IO and thus is more I/O intensive, while stage 1 is more CPU-intensive. In stage 1,

CPU utilization reaches 60%. Therefore, we should focus on using accelerators in stage

1 instead of stage 0 to improve Terasort performance.

6.2.3 Acceleration Opportunities

Shuffle phase can variably stress the CPU, memory, disk and network capabilities. It can

be more CPU-bounded when the latest hardware is used for disk and network.

Generally there are two approaches to accelerate Spark shuffling from the system

perspective, 1) modifying Spark user program, and 2) modifying Spark internal code,

e.g., incorporating customized shuffle code. Modifying Spark user program has the benefit

of not affecting other Spark users while modifying Spark internal code opens up more

optimization flexibility. In this chapter, we will exam the first option, modifying Spark

85

user program, and leave the study on second option as future work.

6.2.4 Sorting TeraFormat Records in C++ and Java

After we profile the Spark Terasort application, we now start to evaluate whether a sort

accelerator can improve the performance. Therefore, we first implement a sorting routine

in C++, which is demonstrated to provide better performance in sorting Teraformat data

than that of Java. We will evaluate if such a sorting routine is beneficial to the Spark

Terasort application in the next section.

Note that although we do not have a GPU-based or an FPGA-based implementation

of sorting routines, many insights obtained from using a C++ sorting routine stay true

when we begin to consider using GPU/FPGA accelerators. This is due to the fact that

accelerators are peripheral devices, and thus, using a GPU/FPGA sorter from JVM and

using a C++ sorter from JVM share the same procedure, i.e., offloading computation

from JVM to native.

The following experiments show the performance of our C++ TeraFormat sorter and

compare it with a Java TeraFormat sorter. Each TeraFormat record includes a 10-byte

key and a 90-byte value. The records are sorted according to their keys. We use the

generic sort function from the C++ standard library and the default sort function from

the java.util.Arrays respectively.

Figure 6.4 shows the execution time to sort TeraFormat records and the speedup of

the C++ sorting routine over the Java sorting routine. This figure demonstrates that the

C++ program consistently outperforms the Java program. When the data size is small,

e.g., 12.5 MB, C++ sorter outperforms the Java sorter by 6.6x. When the data size is

larger, e.g., larger then 400 MB, the C++ sorter still achieves a 1.6x speedup over the

Java sorter.

In the remainder of this chapter, we will use this C++ sorting routine as an sorting

accelerator to evaluate the performance of integrating accelerators into Spark shuffling.

86

6.6

3.8

2.7

2.0
1.7 1.6 1.6 1.6

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0

4000

8000

12000

16000

12.5 25.0 50.0 100.0 200.0 400.0 800.0 1600.0

S
p

e
e

d
u

p
 (

x
)

T
im

e
 t

o
 S

o
rt

 (
m

s)

Data size (MB)

C++ sort (ms) Java sort (ms) Speedup

Figure 6.4: Performance comparison on sorting routines written in C++ and Java.

Speedup of C++ sorting over Java sorting is also measured.

6.3 Using Accelerators in Spark Shuffling

In this section we evaluate the approach of moving the sorting routine from Java virtual

machine (JVM) to native by using a native C++ sorter instead of the default sorter in

JVM. We will demonstrate that although the C++ sorter is 1.6x faster than the Java

sorter, moving the sorting routine from JVM to native incurs significant overhead in

today’s Spark shuffling implementation, canceling out the benefit of the C++ sorting

routine.

6.3.1 Terasort with Customized Java/Scala Sorting Routines

Since the Spark operator repartitionAndSortWithinPartitions (in Listing 1) does not

take a customized sorting routing over a data array, we change the code to incorporate

the user-defined sorting routing. Listing 2 shows the Spark code that can leverage a

user-defined sorting routine. We use the partitionBy operator to first partition the data,

and each partition will use our own sorting routine, Sort , in mapPartitions. Figure 6.5

shows the RDD transformation of the code in Listing 2.

An example of a customized sorting routine is shown in Listing 3. It traverses through

the RDD iterator, transforms it into an array and then sorts the array. We denoted this

set of experiments as Terasort-C0.

87

Listing 2 Spark Terasort using customized sorting routine.

1 val dataset = context.newAPIHadoopFile[

2 Array[Byte], Array[Byte]](inputFile)

3 val partitioned = dataset.partitionBy(new

4 TeraSortPartitioner(dataset.partitions.size))

5 .persist(StorageLevel.MEMORY_ONLY)

6 val sorted = partitioned.mapPartitions(

7 Sort, preservesPartitioning = true)

8 sorted.saveAsNewAPIHadoopFile[TeraOutputFormat](outputFile)

Listing 3 A customized sorter written in Scala.

1 def Sort (iter: Iterator[(Array[Byte], Array[Byte])]) :

2 Iterator[{Array[Byte], Array[Byte]}] = {

3 iter.toArray.sorted.iterator

4 }

Now we present the Terasort performance with the customized Scala sorter (List-

ing 3). The total time of sorting 64 GB on our 8-node cluster is 3.7 minutes, where

stage 0 takes 2.3 minutes and stage 1 takes 1.4 minutes. Comparing Terasort-C0 with

the original Terasort that takes 3.6 minutes to finish, this 0.1 minute overhead comes

from the data copying from Iterator to Collection. Spark permits the users to access

the RDD partitions through iterator, a utility for traversing over the elements. In order

to sort the data, we have to gather the elements into a collection and sort them therein.

This gathering step consumes additional CPU cycles and incurs memory footprint. The

average memory consumption on each node rises from 32 GB (original Terasort) to 40 GB

(Terasort-C0). Note that if a much larger data (i.e., 100 GB) is sorted and memory is all

used up, the slow down of Terasort-C0 can be more significant due to memory swapping.

6.3.2 Terasort with Customized C++ Sorting Routines

Now we evaluate the performance of integrating the C++ sorter into the Spark Terasort

application. We modify the sorter implementation in Listing 3 to leverage a native C++

88

NativeSort

newAPIHadoopFile 49s
saveAsNewAPIHadoopFile at

Figure 6.5: RDD computation lineage for the code in listing 2.

sorter. Java native interface (JNI) is used to transfer data from JVM to native. Note

that only the keys, rather than both the key and the values, of the key-value pairs need to

be transferred; this helps to reduce the JNI overhead. We denote this set of experiments

that use the C++ sorted as Terasort-C1.

The application now takes 4.5 minutes to finish, which is 1.25x slower than the original

Terasort (3.6 minutes). Memory usage reaches to 64 GB on each cluster node which

indicates a larger memory footprint of using a customized C++ sorting routine. Note

that a large memory footprint leads to higher JVM garbage collection workload and thus

can slow down the application. We observe that in Terasort-C1, the actual time that is

spent on sorter is only 20% to 50% of each MapPartitions task’s lifetime.

6.3.3 Reducing Memory Footprint

Now we study whether using a more space-efficient data storage format can delivery

better performance.

We modify the RDD persist level in Listing 2 line 5 from MEMORY ONLY to MEM-

ORY AND DISK SER. By using MEMORY ONLY, Spark stores the RDD as deserialized

Java objects in JVM, while by using MEMORY AND DISK SER, Spark stores the RDD

as serialized Java objects in memory and disk. Serialized objects are generally more space-

efficient but more CPU-intensive to read and write due to the additional deserialization

overhead.

89

We denote the experiments that adopts the above modification as Terasort-C2 and

Terasort-C3, where Terasort-C2 uses the scala sorter and Terasort-C3 uses the native

C++ sorter. Our experiment results show that using serialized Java objects helps reduce

memory consumption. However, data serialization and deserialization consume more

CPU cycles and thus slow down the program.

Table 6.2 summarizes the performance of all the benchmarks.

6.3.4 Performance Summary

Table 6.2: Performance of sorting 100GB TeraFormat records.

Benchmark persist sorter Total slow down ave. memory

method time w.r.t used on

(minutes) original each node

original deserial. Scala 3.6 - 32 GB

Terasort

Terasort-C0 deserial. customized 3.7 1.03x 40 GB

Scala

(Listing 3)

Terasort-C1 deserial. customized 4.5 1.25x 64 GB

C++

Terasort-C2 serial. customized 7.7 2.14x 34 GB

Scala

(Listing 3)

Terasort-C3 serial. customized 7.9 2.19x 50 GB

C++

There are two major observations:

• JNI overhead. Comparing Terasort-C0 with Terasort-C1, we find that offloading

sorting routine from JVM to native through JNI affects the performance, although

the native sorting routine is faster than the Java sorting routine.

• Data serialization overhead. Data serialization is necessary when a large amount of

90

data needs to be sorted. Comparing Terasort-C0 with Terasort-C2 and comparing

Terasort-C1 with Terasort-C3, we find that although serialized data is more space-

efficient, data serialization and deserialization procedure significantly slow down the

program.

The above analysis on overheads of integrating accelerators into JVM indicates that

using accelerators to improve the sorting routine in Spark Terasort is not promising.

6.4 Conclusions

In this chapter we perform extensive experiments to understand cluster-level data shuf-

fling, and evaluate the opportunities in improving data shuffling using accelerators. We

find that data shuffling is both CPU- and memory-intensive. Thus, we propose to use a

customized sorting routine with the goal of offloading the computation to accelerators to

alleviate CPU workload. However, we find that using a customized sorting routine incurs

significant overhead in data traversing, serialization and deserialization, which slows down

the Terasort application by up to 2.2x. This demonstrates that accelerating shuffling with

a customized sorting routine through application-level coding is not promising.

91

CHAPTER 7

Conclusions and Future Directions

Accelerators are becoming increasingly popular in modern computing, addressing the

demand for high-throughput and low-power computation. This thesis discusses several

important aspects of accelerator-rich architectures, including accelerator resource man-

agement at chip-level, CPU-accelerator orchestration at node-level, resource allocation at

cluster-level, and data shuffling management at cluster level. We believe that as future

computing platforms move towards accelerator-centric solutions, the proposed method-

ologies of resource and data management in this thesis can be used in future systems and

can inspire more innovations. Emerging acceleration-rich architectures open up a num-

ber of rich new research areas in resource and data management. Some of the possible

avenues for future research on this topic are discussed below:

• Job-Level Task Management This thesis covers topics on cluster-level resource

management and node-level resource management. A missing piece is to investigate

job-level task management, where a job gets resources from a cluster resource man-

ager and decides how to allocate its tasks to the allotted resources. A task scheduler

needs to predict a task’s performance on different computation resources so as to

make scheduling decisions. This task allocation is non-trivial in accelerator-rich

clusters since some nodes may be equipped with accelerators and some nodes may

not. Moreover, accelerators are shared by multiple tenants.

• Cluster-Level Data Shuffling We investigate using accelerators to accelerate

in-memory sorting during the data shuffling stage by modifying application code.

Another direction to make use of the accelerator is through modifying Spark in-

ternals and using customized Spark shuffling through the pluggable interface for

shuffles that is provided by Spark. Finally one can make use of the accelerators

during the network transfer stage. Since there is a large amount of data that needs

92

to be transferred during the shuffling stage, compression and decompression accel-

erators should be able to reduce network load.

93

References

[ADC95] Imtiaz Ahmad, Muhammad K Dhodhi, and CYR Chen. “Integrated schedul-
ing, allocation and module selection for design-space exploration in high-level
synthesis.” IEE Proceedings-Computers and Digital Techniques, 142(1):65–71,
1995.

[AHS14] Mohamed S. Abdelfattah, Andrei Hagiescu, and Deshanand Singh. “Gzip
on a Chip: High Performance Lossless Data Compression on FPGAs Using
OpenCL.” In Proceedings of the International Workshop on OpenCL 2013 &
2014. ACM, 2014.

[alt] “Altera.” http://www.altera.com. Accessed: 2014-11-4.

[BFH04] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian,
Mike Houston, and Pat Hanrahan. “Brook for GPUs: stream computing on
graphics hardware.” In ACM Transactions on Graphics (TOG), volume 23,
pp. 777–786. ACM, 2004.

[BML12] Shuvra S Bhattacharyya, Praveen K Murthy, and Edward A Lee. Software
synthesis from dataflow graphs, volume 360. Springer Science & Business Me-
dia, 2012.

[Bor08] Dhruba Borthakur. “HDFS architecture guide.” HADOOP APACHE
PROJECT http://hadoop. apache. org/common/docs/current/hdfs design. pdf,
p. 39, 2008.

[BRH15] Brad Brech, Juan Rubio, and Michael Hollinger. “IBM Data Engine for
NoSQL - Power Systems Edition.” Technical report, IBM Systems Group,
2015.

[BWA] “Burrow-Wheeler Aligner for pairwise alignment between DNA sequences.”
https://github.com/lh3/bwa. Accessed: 2016-09-25.

[cal] “Calgary Corpus Dataset.” http://corpus.canterbury.ac.nz/

descriptions/#calgary. Accessed: 2016-09-25.

[CCF16] Young-kyu Choi, Jason Cong, Zhenman Fang, Yuchen Hao, Glenn Reinman,
and Peng Wei. “A Quantitative Analysis on Microarchitectures of Modern
CPU-FPGA Platforms.” In Proceedings of the 53rd Annual Design Automa-
tion Conference, DAC ’16, pp. 109:1–109:6, New York, NY, USA, 2016. ACM.

[CCX05] Deming Chen, Jason Cong, and Junjuan Xu. “Optimal module and voltage
assignment for low-power.” In Proceedings of the 2005 Asia and South Pacific
Design Automation Conference, pp. 850–855. ACM, 2005.

[CDD14] Carlo Curino, Djellel E. Difallah, Chris Douglas, Subru Krishnan, Raghu Ra-
makrishnan, and Sriram Rao. “Reservation-based Scheduling: If You’Re Late
Don’T Blame Us!” In Proceedings of the ACM Symposium on Cloud Comput-
ing, SOCC ’14, pp. 2:1–2:14, New York, NY, USA, 2014. ACM.

94

http://www.altera.com
https://github.com/lh3/bwa
http://corpus.canterbury.ac.nz/descriptions/#calgary
http://corpus.canterbury.ac.nz/descriptions/#calgary

[CDL13] Eric S Chung, John D Davis, and Jaewon Lee. “Linqits: Big data on little
clients.” In ACM SIGARCH Computer Architecture News. ACM, 2013.

[CGG12] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and
Glenn Reinman. “Architecture Support for Accelerator-rich CMPs.” In Pro-
ceedings of the 49th Annual Design Automation Conference, DAC ’12, pp.
843–849, New York, NY, USA, 2012. ACM.

[CHL12] Jason Cong, Muhuan Huang, Bin Liu, Peng Zhang, and Yi Zou. “Combining
module selection and replication for throughput-driven streaming programs.”
In Proceedings of the Conference on Design, Automation and Test in Europe,
pp. 1018 –1023, march 2012.

[CHW16] Jason Cong, Muhuan Huang, Di Wu, and Cody Hao Yu. “Heterogeneous
Datacenters: Options and Opportunities.” In Proceedings of the 53nd Annual
Design Automation Conference. ACM, 2016.

[CLN11] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers,
and Zhiru Zhang. “High-level synthesis for FPGAs: From prototyping to de-
ployment.” Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 30(4):473–491, 2011.

[CSR11] Jason Cong, Vivek Sarkar, Glenn Reinman, and Alex Bui. “Customizable
domain-specific computing.” IEEE Design and Test of Computers, 28(2):6–
15, 2011.

[CZ06] Jason Cong and Zhiru Zhang. “An efficient and versatile scheduling algo-
rithm based on SDC formulation.” In Proceedings of the 43rd annual Design
Automation Conference, pp. 433–438. ACM, 2006.

[CZ12] Yuankai Chen and Hai Zhou. “Buffer minimization in pipelined SDF schedul-
ing on multi-core platforms.” In 17th Asia and South Pacific Design Automa-
tion Conference, pp. 127–132. IEEE, 2012.

[DCC07] Francis M. David, Jeffrey C. Carlyle, and Roy H. Campbell. “Context Switch
Overheads for Linux on ARM Platforms.” In Proceedings of the 2007 Work-
shop on Experimental Computer Science, ExpCS ’07, New York, NY, USA,
2007. ACM.

[DG08] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing
on Large Clusters.” Commun. ACM, 51(1):107–113, January 2008.

[EBA11] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankar-
alingam, and Doug Burger. “Dark silicon and the end of multicore scaling.”
In Computer Architecture (ISCA), 2011 38th Annual International Symposium
on, pp. 365–376. IEEE, 2011.

[ERC95] Juan Echague, Ismael Ripoll, and Alfons Crespo. “Hard real-time preemp-
tively scheduling with high context switch cost.” In Real-Time Systems, 1995.
Proceedings., Seventh Euromicro Workshop on, pp. 184–190. IEEE, 1995.

95

[FKB15] Jeremy Fowers, Joo-Young Kim, Doug Burger, and Scott Hauck. “A scal-
able high-bandwidth architecture for lossless compression on fpgas.” In Field-
Programmable Custom Computing Machines (FCCM), 2015 IEEE 23rd An-
nual International Symposium on, pp. 52–59. IEEE, 2015.

[GBS05] Marc Geilen, Twan Basten, and Sander Stuijk. “Minimising buffer require-
ments of synchronous dataflow graphs with model checking.” In Proceedings
of the 42nd annual Design Automation Conference, pp. 819–824. ACM, 2005.

[GGD02] Ramaswamy Govindarajan, Guang R Gao, and Palash Desai. “Minimizing
buffer requirements under rate-optimal schedule in regular dataflow networks.”
Journal of VLSI signal processing systems for signal, image and video technol-
ogy, 31(3):207–229, 2002.

[GLP] “GNU Linear Programming Kit.” http://www.gnu.org/
software/glpk.

[GTA06] Michael I Gordon, William Thies, and Saman Amarasinghe. “Exploiting
coarse-grained task, data, and pipeline parallelism in stream programs.” ACM
SIGOPS Operating Systems Review, 40(5):151–162, 2006.

[GTK02] Michael I Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S Meli,
Andrew A Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze,
et al. “A stream compiler for communication-exposed architectures.” In ACM
SIGPLAN Notices, volume 37, pp. 291–303. ACM, 2002.

[had] “Apache Hadoop.” https://hadoop.apache.org. Accessed: 2016-05-24.

[har] “Intel to Start Shipping Xeons With FPGAs in
Early 2016.” http://www.eweek.com/servers/

intel-to-start-shipping-xeons-with-fpgas-in-early-2016.html.
Accessed: 2016-05-17.

[HCK09] Amir H Hormati, Yoonseo Choi, Manjunath Kudlur, Rodric Rabbah, Trevor
Mudge, and Scott Mahlke. “Flextream: Adaptive compilation of streaming
applications for heterogeneous architectures.” In Parallel Architectures and
Compilation Techniques, 2009. PACT’09. 18th International Conference on,
pp. 214–223. IEEE, 2009.

[HK10] Alan J Hoffman and Joseph B Kruskal. “Integral boundary points of con-
vex polyhedra.” In 50 Years of Integer Programming 1958-2008, pp. 49–76.
Springer, 2010.

[HKZ11] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. “Mesos: A Platform
for Fine-Grained Resource Sharing in the Data Center.” In NSDI, volume 11,
pp. 295–308, 2011.

[HLW15] Yuanhong Huo, Xiaoyang Li, Wei Wang, and Dake Liu. “High performance
table-based architecture for parallel CRC calculation.” In The 21st IEEE
International Workshop on Local and Metropolitan Area Networks, pp. 1–6.
IEEE, 2015.

96

https://hadoop.apache.org
 http://www.eweek.com/servers/intel-to-start-shipping-xeons-with-fpgas-in-early-2016.html
 http://www.eweek.com/servers/intel-to-start-shipping-xeons-with-fpgas-in-early-2016.html

[HWB09] Andrei Hagiescu, Weng-Fai Wong, David F. Bacon, and Rodric Rabbah. “A
computing origami: Folding streams in FPGAs.” In Proceedings of the 46th
Annual Design Automation Conference, pp. 282 –287, 2009.

[HWY16] Muhuan Huang, Di Wu, Cody Hao Yu, Zhenman Fang, Matteo Interlandi,
Tyson Condie, and Jason Cong. “Programming and Runtime Support to Blaze
FPGA Accelerator Deployment at Datacenter Scale.” In Proceedings of the
Seventh ACM Symposium on Cloud Computing, SoCC ’16, pp. 456–469, New
York, NY, USA, 2016. ACM.

[ID91] Masaki Ishikawa and Giovanni De Micheli. “A module selection algorithm
for high-level synthesis.” In Circuits and Systems, 1991., IEEE International
Sympoisum on, pp. 1777–1780. IEEE, 1991.

[ILP98] Kazuhito Ito, Lori E Lucke, and Keshab K Parhi. “ILP-based cost-optimal
DSP synthesis with module selection and data format conversion.” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 6(4):582–594,
1998.

[int] “Intel Xeon + FPGA Platform for the Data Center.” http:

//reconfigurablecomputing4themasses.net/files/2.2%20PK.pdf. Ac-
cessed: 2016-10-20.

[JHI10] Haris Javaid, Xin He, Aleksander Ignjatovic, and Sri Parameswaran. “Optimal
synthesis of latency and throughput constrained pipelined MPSoCs targeting
streaming applications.” In Hardware/Software Codesign and System Synthe-
sis (CODES+ ISSS), 2010 IEEE/ACM/IFIP International Conference on, pp.
75–84. IEEE, 2010.

[KDT12] Christoph Kessler, Usman Dastgeer, Samuel Thibault, Raymond Namyst, An-
drew Richards, Uwe Dolinsky, Siegfried Benkner, Jesper Larsson Träff, and
Sabri Pllana. “Programmability and performance portability aspects of het-
erogeneous multi-/manycore systems.” In 2012 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1403–1408. IEEE, 2012.

[KDV97] Bart Kienhuis, Ed Deprettere, Kees Vissers, and Pieter Van Der Wolf. “An
approach for quantitative analysis of application-specific dataflow architec-
tures.” In Application-Specific Systems, Architectures and Processors, 1997.
Proceedings., IEEE International Conference on, pp. 338–349. IEEE, 1997.

[KKL11] Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. “Achieving a
single compute device image in OpenCL for multiple GPUs.” ACM SIGPLAN
Notices, 46(8):277–288, 2011.

[KKM04] Woonseok Kim, Jihong Kim, and Sang Lyul Min. “Preemption-aware dynamic
voltage scaling in hard real-time systems.” In Low Power Electronics and
Design, 2004. ISLPED ’04. Proceedings of the 2004 International Symposium
on, pp. 393–398, Aug 2004.

[KM08] Manjunath Kudlur and Scott Mahlke. “Orchestrating the Execution of Stream
Programs on Multicore Platforms.” In PLDI, PLDI ’08. ACM, 2008.

97

http://reconfigurablecomputing4themasses.net/files/2.2%20PK.pdf
http://reconfigurablecomputing4themasses.net/files/2.2%20PK.pdf

[KSY02] Woonseok Kim, Dongkun Shin, Han-Saem Yun, Jihong Kim, and Sang Lyul
Min. “Performance comparison of dynamic voltage scaling algorithms for hard
real-time systems.” In Real-Time and Embedded Technology and Applications
Symposium, 2002. Proceedings. Eighth IEEE, pp. 219–228, 2002.

[KT11] Dirk Koch and Jim Torresen. “FPGASort: a high performance sorting ar-
chitecture exploiting run-time reconfiguration on fpgas for large problem sort-
ing.” In Proceedings of the 19th ACM/SIGDA international symposium on
Field programmable gate arrays, pp. 45–54. ACM, 2011.

[LCM09] Qiang Liu, George A Constantinides, Konstantinos Masselos, and Peter YK
Cheung. “Combining data reuse with data-level parallelization for FPGA-
targeted hardware compilation: a geometric programming framework.” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
28(3):305–315, 2009.

[LDW06] Shih-wei Liao, Zhaohui Du, Gansha Wu, and Guei-Yuan Lueh. “Data and
computation transformations for Brook streaming applications on multipro-
cessors.” In International Symposium on Code Generation and Optimization
(CGO’06), pp. 12–pp. IEEE, 2006.

[LGX09] Weichen Liu, Zonghua Gu, Jiang Xu, Yu Wang, and Mingxuan Yuan. “An
efficient technique for analysis of minimal buffer requirements of synchronous
dataflow graphs with model checking.” In Proceedings of the 7th IEEE/ACM
international conference on Hardware/software codesign and system synthesis,
pp. 61–70. ACM, 2009.

[LHK09] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. “Qilin: exploiting par-
allelism on heterogeneous multiprocessors with adaptive mapping.” In 2009
42nd Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), pp. 45–55. IEEE, 2009.

[Li13] Heng Li. “Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM.” arXiv preprint arXiv:1303.3997, 2013.

[LM87a] Edward A Lee and David G Messerschmitt. “Synchronous data flow.” Pro-
ceedings of the IEEE, 75(9):1235–1245, 1987.

[LM87b] Edward Ashford Lee and David G Messerschmitt. “Static scheduling of syn-
chronous data flow programs for digital signal processing.” IEEE Transactions
on computers, 100(1):24–35, 1987.

[LMK99] Sheayun Lee, Sang Lyul Min, Chong Sang Kim, Chang-Gun Lee, and Minsuk
Lee. “Cache-Conscious Limited Preemptive Scheduling.” Real-Time Syst.,
17(2-3):257–282, December 1999.

[LSP13] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke. “Trans-
parent CPU-GPU collaboration for data-parallel kernels on heterogeneous sys-
tems.” In Proceedings of the 22nd international conference on Parallel archi-
tectures and compilation techniques, pp. 245–256. IEEE Press, 2013.

98

[MDM01] Fabrice Monteiro, Abbas Dandache, A M’sir, and Bernard Lepley. “A fast
CRC implementation on FPGA using a pipelined architecture for the polyno-
mial division.” In Electronics, Circuits and Systems, 2001. ICECS 2001. The
8th IEEE International Conference on, volume 3, pp. 1231–1234. IEEE, 2001.

[MGA03] William R Mark, R Steven Glanville, Kurt Akeley, and Mark J Kilgard. “Cg:
A system for programming graphics hardware in a C-like language.” In ACM
Transactions on Graphics (TOG), volume 22, pp. 896–907. ACM, 2003.

[mll] “Spark MLlib.” http://spark.apache.org/mllib/. Accessed: 2016-05-24.

[mni] “The MNIST database of handwritten digits.” https://www.csie.ntu.edu.

tw/~cjlin/libsvmtools/datasets/multiclass.html#mnist8m. Accessed:
2016-05-24.

[NG93] Qi Ning and Guang R. Gao. “A novel framework of register allocation for
software pipelining.” In Proceedings of the 20th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL, pp. 29–42. ACM,
1993.

[PCC14] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers,
Gopi Prashanth Gopal, Jan Gray, et al. “A reconfigurable fabric for accel-
erating large-scale datacenter services.” In Computer Architecture (ISCA),
2014 ACM/IEEE 41st International Symposium on, pp. 13–24. IEEE, 2014.

[PZ92] T-B Pei and Charles Zukowski. “High-speed parallel CRC circuits in VLSI.”
IEEE Transactions on Communications, 40(4):653–657, 1992.

[sam] “Samtools.” http://www.htslib.org/doc/samtools.html. Accessed: 2016-
09-25.

[SB00] S. Sriram and S. Bhattacharyya. “Embedded Multiprocessors Scheduling and
Synchronoization.” In Marcel Dekker, Inc., New York, 2000.

[SGB06] Sander Stuijk, Marc Geilen, and Twan Basten. “Exploring trade-offs in buffer
requirements and throughput constraints for synchronous dataflow graphs.” In
Proceedings of the 43rd annual Design Automation Conference, pp. 899–904.
ACM, 2006.

[SKA13] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John
Wilkes. “Omega: flexible, scalable schedulers for large compute clusters.”
In Proceedings of the 8th ACM European Conference on Computer Systems,
pp. 351–364. ACM, 2013.

[spa] “Spark Bench.” https://github.com/SparkTC/spark-bench. Accessed:
2016-10-20.

[Str] “StreamIt benchmarks.” http://groups.csail.mit.edu/cag/streamit/

shtml/benchmarks.shtml. Accessed: 2014-10-23.

99

http://spark.apache.org/mllib/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#mnist8m
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#mnist8m
http://www.htslib.org/doc/samtools.html
https://github.com/SparkTC/spark-bench
http://groups.csail.mit.edu/cag/streamit/shtml/benchmarks.shtml
http://groups.csail.mit.edu/cag/streamit/shtml/benchmarks.shtml

[SW00] Manas Saksena and Yun Wang. “Scalable real-time system design using pre-
emption thresholds.” In Real-Time Systems Symposium, 2000. Proceedings.
The 21st IEEE, pp. 25–34. IEEE, 2000.

[SWB88] Kanwar Jit Singh, Albert R Wang, Robert K Brayton, and Alberto
Sangiovanni-Vincentelli. “Timing optimization of combinational logic.” In
Computer-Aided Design, 1988. ICCAD-88. Digest of Technical Papers., IEEE
International Conference on, pp. 282–285. IEEE, 1988.

[SWN07] Welson Sun, Michael J Wirthlin, and Stephen Neuendorffer. “FPGA pipeline
synthesis design exploration using module selection and resource sharing.”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 26(2):254–265, 2007.

[TKA02] William Thies, Michal Karczmarek, and Saman Amarasinghe. “StreamIt: A
language for streaming applications.” In International Conference on Compiler
Construction, pp. 179–196. Springer, 2002.

[UGT09] Abhishek Udupa, R Govindarajan, and Matthew J Thazhuthaveetil. “Syner-
gistic execution of stream programs on multicores with accelerators.” In ACM
Sigplan Notices, volume 44, pp. 99–108. ACM, 2009.

[viv] “Vivado Design Suite User Guide.” http://www.xilinx.

com/support/documentation/sw_manuals/xilinx2012_2/

ug902-vivado-high-level-synthesis.pdf. Accessed: 2014-11-4.

[VMD13] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal,
Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah,
Siddharth Seth, et al. “Apache Hadoop YARN: Yet another resource negotia-
tor.” In Proceedings of the 4th annual Symposium on Cloud Computing, p. 5.
ACM, 2013.

[Wal07] Mathys Walma. “Pipelined cyclic redundancy check (CRC) calculation.” In
Computer Communications and Networks, 2007. ICCCN 2007. Proceedings of
16th International Conference on, pp. 365–370. IEEE, 2007.

[Whi12] Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

[WS99] Yun Wang and Manas Saksena. “Scheduling Fixed-Priority Tasks with Pre-
emption Threshold.” In Proceedings of the Sixth International Conference on
Real-Time Computing Systems and Applications, RTCSA ’99, pp. 328–, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[xil] “Xilinx.” http://www.xilinx.com. Accessed: 2016-10-30.

[yar] “Allow for (admin) labels on nodes and resource-requests.” https://issues.

apache.org/jira/browse/YARN-796. Accessed: 2016-10-20.

[ZBS13] Jiali Teddy Zhai, Mohamed A Bamakhrama, and Todor Stefanov. “Exploiting
just-enough parallelism when mapping streaming applications in hard real-time
systems.” In Proceedings of the 50th Annual Design Automation Conference,
p. 170. ACM, 2013.

100

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com
https://issues.apache.org/jira/browse/YARN-796
https://issues.apache.org/jira/browse/YARN-796

[ZCD12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica.
“Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory
Cluster Computing.” In Proceedings of the 9th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’12, pp. 2–2, Berkeley, CA,
USA, 2012. USENIX Association.

[ZCF10] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and
Ion Stoica. “Spark: Cluster Computing with Working Sets.” In Proceedings
of the 2nd USENIX conference on Hot topics in cloud computing, pp. 10–10,
2010.

[ZFJ08] Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han, Changqi Yang, and Jason
Cong. “AutoPilot: A platform-based ESL synthesis system.” In High-Level
Synthesis. Springer, 2008.

[zyn] “Zynq-7000 All Programmable SoC.” http://www.xilinx.com/products/

silicon-devices/soc/zynq-7000.html. Accessed: 2016-10-30.

101

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

	Introduction
	Chip-Level Resource and Data Management Challenges
	Node-Level Resource Management Challenges
	Cluster-Level Resource and Data Management Challenges
	Dissertation Statement
	Organization

	Background
	Chip-Level Programming Model
	Synchronous Data Flow Graph
	Homogeneous Synchronous Data Flow Graph
	Throughput Definition

	Chip-Level Design Space Exploration with High Level Synthesis
	Design Space Exploration
	High Level Synthesis

	Node-Level CPU-Accelerator Orchestration
	Dataflow/Streaming Execution Model
	CPU and GPU Coordination

	Cluster-Level Programming Model and Resource Management
	Cluster-Level Programming Model
	Cluster-Level Resource Management

	Cluster-Level Data Sort and Shuffle

	Chip-Level Resource and Data Management
	Introduction
	A Motivation Example
	System Mapping
	Implementation Library Constraints
	Scheduling Constraints From Computation Modules
	Scheduling Constraints From Communication Channels
	Problem Statement

	Proposed Approach: ST-Syn
	Schedulability Checking
	Iterative Improvement
	Update Scheduling Graph
	Complexity of ST-Syn
	Alternative Solution using Integer Linear Programming

	Experiments
	Settings
	FIFO-based Merge Sort
	MPEG4
	Overall Speedup and Area Overhead

	Conclusion

	Node-Level CPU-Accelerator Orchestration
	Introduction
	CPU-FPGA Co-Scheduling
	Dataflow Execution Model
	Proposed Runtime Thread Allocation Strategy

	A Case Study of In-Memory Samtool Sorting
	Samtool In-Memory Sorting
	Experiment Setup and Initial Profiling
	Accelerator Design and Performance
	FPGA Accelerator Integration with CPU
	Performance of Samtool Sorting
	Parallelizing the Read Stage
	Dataflow-Samtools
	Overall Performance

	More Case Studies
	Changing Input format
	Changing Storage Type

	Accelerator Designs
	Conclusions

	Cluster-Level Resource Management
	Introduction
	System Overview
	Global Accelerator Manager
	Experiments
	Experimental Setup
	GAM Analysis

	Offline Scheduling Formulation
	Problem Formulations
	ILP formulations
	Complexity Analysis
	Discussions
	Related Work on Offline Resource and Task Scheduling

	Conclusions

	Cluster-Level Data Shuffling
	Introduction
	Experiment Setup and Initial Profiling
	Data Shuffling in Spark
	Initial Terasort Profiling
	Acceleration Opportunities
	Sorting TeraFormat Records in C++ and Java

	Using Accelerators in Spark Shuffling
	Terasort with Customized Java/Scala Sorting Routines
	Terasort with Customized C++ Sorting Routines
	Reducing Memory Footprint
	Performance Summary

	Conclusions

	Conclusions and Future Directions
	References

