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Abstract

Methods for Optimal Stochastic Control and Optimal Stopping Problems Featuring
Time-Inconsistency

by
Christopher Wells Miller
Doctor of Philosophy in Applied Mathematics
University of California, Berkeley

Professor Lawrence Craig Evans, Chair

This thesis presents novel methods for computing optimal pre-commitment strategies in
time-inconsistent optimal stochastic control and optimal stopping problems. We demonstrate
how a time-inconsistent problem can often be re-written in terms of a sequential optimization
problem involving the value function of a time-consistent optimal control problem in a higher-
dimensional state-space. In particular, we obtain optimal pre-commitment strategies in a
non-linear optimal stopping problem, in an optimal stochastic control problem involving
conditional value-at-risk, and in an optimal stopping problem with a distribution constraint
on the admissible stopping times. In each case, we relate the original problem to auxiliary
time-consistent problems, the value functions of which may be characterized in terms of
viscosity solutions of a Hamilton-Jacobi-Bellman equation.
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1.1 Background

Stochastic analysis and partial differential equations (PDEs) are two broad sub-fields of
mathematics whose interplay has proven fruitful in many financial and engineering applica-
tions. These tools provide a framework and calculus for modeling and understanding random
processes and their related functions of interest with widespread application. In this thesis,
we focus particularly on their use in dynamic optimization under uncertainty.

Optimal stochastic control deals with dynamic selection of inputs to a non-deterministic
system with the goal of optimizing some pre-defined objective function. This is a natural
extension of deterministic optimal control theory, but the introduction of uncertainty im-
mediately opens countless applications in financial mathematics. An important sub-class
of stochastic control is optimal stopping, where the user selects a time to perform a given
action.

Historically, there have been two main approaches to solving optimal stochastic control
problems — variational methods and Bellman’s dynamic programming principle [Bel52]. In
a variational method, we generally obtain necessary conditions for an optimal control by
focusing on small variations from the optimal point. In deterministic control, this leads to a
system of ordinary differential equations via the celebrated Pontryagin maximum principle
[PBGM64]. The stochastic control analogue, which is often referred to as the stochastic
maximum principle, leads to a system of forward-backward stochastic differential equations,
which are often difficult to solve in practice.

While variational methods are simple to apply, their main drawbacks are the assump-
tion that an optimal control exists and the difficulty in obtaining necessary conditions for
global optimality. While these issues can be relaxed in problems with extra structure (e.g.,
convexity), many practical optimal control problems simply do not have an optimal control
(instead, there exist maximizing sequences of controls).

In contrast, when applying Bellman’s dynamic programming principle (DPP) to an op-
timal control problem, we focus instead on the value function, which is defined as the supre-
mum (or infimum) of the objective function over all admissible controls. This function
is well-defined even without assuming existence of optimal controls. The DPP is then a
technique which obtains a functional equation which encodes information about how to re-
cursively compute the value function in terms of simpler sub-problems. In particular, this
procedure assumes neither the existence of optimal controls nor substantial regularity of the
value function.

The study of optimal control overlapped fruitfully with the theory of non-linear PDEs
in the development of the notion of viscosity solutions by Crandall and Lions in the early
1980’s [CL83]. The theory of viscosity solutions provides a weak notion of solution to a PDE,
which requires no assumed differentiability. More importantly, this theory provided a proof
of uniqueness for many practical non-linear elliptic PDEs (see Ishii [Ish89], Jensen [Jen89],
Crandall-Ishii [CI90], and Crandall-Ishii-Lions [CIL92]).

The remarkable connection between optimal stochastic control and PDEs is that the value
function for a stochastic optimal control problem is, in fact, the unique viscosity solution of
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an associated PDE, called the Hamilton-Jacobi-Bellman (HJB) equation (see Lions [Lio83a;
Lio83b; Lio83c|). With this connection, it became possible to define the value function
without any assumptions of existence of optimal controls, obtain a connection to PDEs via
the DPP, obtain further regularity of the value function using PDE techniques, then, in many
cases, use the further regularity to extract optimal controls for the original problem. The
most powerful feature of this procedure is that it assumes essentially no special structure in
the original optimal control problem (e.g., convexity).

1.2 Optimal Control in Mathematical Finance

The earliest applications of stochastic analysis to finance are generally attributed to the use
of Brownian motion as a model of equity prices by Bachelier [Bac00]. It was not until later
in the century that such models became mainstream, most notably through Merton’s work
on optimal portfolio selection [Mer69] and the acclaimed option pricing formulas of Black
and Scholes [BST73].

In the following decades, applications of stochastic control and analysis in mathematical
finance have becoming very wide-reaching. FExamples of application areas include optimal
portfolio selection (see Dumas-Luciano [DLI1], Zhou-Li [ZL00], Li-Zhou-Lim [LZL02], Ou-
Yang [OY03] Zhou-Yin [ZY03], Zhu [Zhul0], and Soner-Touzi [ST13]), option pricing un-
der stochastic volatility models (see Heston [Hes93], Hagan-Kumar-Lesniewski-Woodward
[HKLW02], and Fouque-Papanicolaou-Sircar-Sglna [FPSS11]), robust price bounds under
model uncertainty (see Bonnans-Tan [BT13], Galichon-Henry-Labordere-Touzi [GHLT14],
and Cox-Kallblad [CK15]), models for price impact and illiquidity (see Cetin-Soner-Touzi
[CST10], Gokay-Roch-Soner [GRS11], and Bayraktar-Ludkovski [BL14]), valuation of real
options (see Trigeorgis [Tri95], Barrera-Esteve et al. [BEBDO06], and Thompson-Davison-
Rasmussen [TDR09]), as well as the dynamics and pricing of real-time electricity markets
(see Humphrey-McClain [HM98], Rajagopal et al. [RBWV12], and Yang-Callaway-Tomlin
[YCT14; YCT15]).

There have been two major trends in these applications of stochastic control in mathemat-
ical finance. First, there has been a transition from relying on linear dynamics and explicit
formulas to allowing non-linear equations and the use of numerical methods. Second, we have
seen a shift from simplistic models and objective functions (e.g. geometric Brownian motion
with simple utility functions over terminal wealth) to more robust model specifications (e.g.
stochastic volatility or super-replication problems) with various non-standard risk measures
(e.g. value-at-risk, probability of ruin, et cetera).

As increasingly sophisticated applications of non-linear PDEs and stochastic control have
permeated the mathematical finance literature, it is worth mentioning the parallel develop-
ment of numerical schemes for approximating viscosity solutions. Because the value function
of a stochastic control problem is not generally smooth, convergence results for traditional
finite-difference schemes do not apply. Instead, it was demonstrated in the seminal paper of
Barles and Souganidis [BS91] that so-called monotone schemes can be used to approximate
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the viscosity solution of a PDE. This led the development of an array of numerical schemes
for non-linear PDEs (e.g. Bonnans-Zidani [BZ03], Pooley-Forsyth-Vetzal [PFV03], Ober-
man [Obe08], Fahim-Touzi-Warin [FTW11], and Falcone-Ferretti [FF14]). Nevertheless, all
currently-available general schemes suffer, in some form, from the so-called curse of dimen-
sionality. Nevertheless, a promising literature in types of non-linear Monte Carlo methods
has been making progress in relaxing these constraints (see McKean [McK75], Bouchard-
Touzi [BT04], and Henry-Labordere et al. [HLOTTW16)).

In the spirit of the split between DPP and variational methods, many new models and
applications in mathematical finance can be characterized by the use of Markov versus non-
Markov dynamics. Early extensions of Black-Scholes dynamics included extra state variables
for volatility (e.g., the Heston model, SABR, etcetera) and could still be investigated with
PDE methods. However, as models became more complicated, with more state variables,
the curse of dimensionality increasingly became an issue.

An alternative modeling framework which extends to non-Markov models is the use of
backwards stochastic differential equations (BSDE), which naturally arise in variational ap-
proaches to stochastic control problems via the stochastic maximum principle (see Bismut
[Bis73|, Pardoux-Peng [PP90], and Peng [Pen90]). In principle, these techniques can model
path-dependent payoffs and non-Markov dynamics without the introduction of extra state
variables. Unfortunately, the most effective numerical solution of BSDE relies on the equiv-
alence of certain BSDE to quasi-linear PDE, which reintroduces the curse of dimensionality
(see Ma-Protter-Yong [MPY94]).

Recently, the BSDE modeling framework has been generalized to what are called second-
order backwards stochastic differential equations (2BSDE) (see Cheridito-Soner-Touzi-Victoir
[CSTVO07] and Soner-Touzi-Zhang [STZ12]), which have been fruitfully applied to optimal
stochastic control problems with uncertain volatility (see Nutz-Soner [NS12], Matoussi-
Possamai-Zhou [MPZ15], and Possamai-Tan-Zhou [PTZ15]) and target constraints (see Soner-
Touzi-Zhang [STZ+13] and Touzi [Toul0]), as well as to principal-agent problems (see Cvi-
tani¢-Possamai-Touzi [CPT14; CPT15]). However, these are generally reduced to a corre-
sponding fully non-linear PDE in some form for numerical solutions in practice.

Recently, there has been a push towards obtaining model-independent no-arbitrage price
bounds for exotic derivatives, generally subject to prices of various vanilla derivatives which
are assumed tradeable in the market. In an incomplete market with multiple risk-neutral
measures, we generally define the super- (sub-)replication value of a derivative as the supre-
mum (infimum) of the expected payoff over some collection of admissible pricing measures
(see Avellaneda-Levy-Paras [ALP95] and Lyons [Lyo95]). In many circumstances, this is
equivalent to the dual problem of the cheapest hedging portfolio which has a non-negative
(non-positive) terminal payoff (see Possamai et al. [PRT+13] and Acciaio et al. [ABPS13]).

Remarkably, there are many connections between super-replication value and optimal
stochastic control problems (see Galichon-Henry-Labordere-Touzi [GHLT14] and Henry-
Labordere et al. [HLOST+16]). For many derivatives with payoff depending on the realized-
variance over some time period, the super-replication value can be related to a stopping time
for a Brownian motion (see Bonnans-Tan [BT13] and Bayraktar-Miller [BM16]). There is
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significant value and interest in computing model-free prices and hedging strategies for ex-
otics, as the model-risk introduced by elaborate stochastic volatility models for pricing is in
general large and often under-appreciated.

1.3 Overview of Time-Inconsistency

Time-inconsistent optimal stochastic control (and optimal stopping) problems are charac-
terized by the failure of standard dynamic programming arguments to apply. Early study
on these problems dates back to Strotz [Strb5] and has developed into a sizeable litera-
ture within the economics community (see Tversky-Kahneman [TK85], Hoch-Loewenstein
[HLI91], Loewenstein-Prelec [LP92], Laibson [Lai97], O’Donoghue-Rabin [OR99], and Fred-
erick et al. [FLO02]). From a mathematical perspective, we saw in the previous section that
dynamic programming has been a powerful tool in solving many applied problems, so its
failure and subsequent potential extension is certainly of interest.

Intuitively, time-inconsistency means that an optimal strategy today may not be optimal
in the future. The most common way in which this is broken can be understood by interpret-
ing the DPP as roughly saying “the optimal control does not depend upon the initial state.”
There are three main ways in which time-inconsistency is often introduced in practice: the
use of hyperbolic discounting in inter-temporal choice, an objective function featuring non-
linear functions of an expected payoff, and direct dependence on the initial conditions (e.g.
in endogenous habit formation models). For more detail on these three examples, we refer
the reader to the excellent paper by Bjork-Murgoci [BM14].

There are two common approaches to dealing with time-inconsistency in the literature.
The first is known as solving for a “pre-commitment strategy,” and refers to solving the
problem as stated at some initial time, assuming the optimizing agent has the ability to
commit to a strategy he may later regret. The second is to reformulate the problem in game
theoretic terms. Roughly, a dynamic optimization problem is viewed as a sequential game
between your current self and your future self (who has potentially different preferences).
While the latter has an extensive and interesting literature (see Ekeland-Lazrak [EL10], Hu-
Jin-Jin [HJZ12], Yong [Yon12], and Bjork-Murgoci [BM14] for example), in this thesis, we
primarily take the former point of view as we examine optimization problems which may arise
from specific applications which does not warrant an examination of the more behavioral
aspects of the notion of solution.

From the perspective of applications, time-inconsistency often appears when solving op-
timal portfolio selection problems (see Zhou-Li [Z1.00], Li-Zhou-Lim [LZL02], and Pedersen-
Peskir [PP13]), with a classic example being dynamic mean-variance optimization. This is
in direct contrast to early study of optimal portfolio selection via dynamic programming,
which generally relied on exponential time-preference and specific objective functions based
on terminal wealth. Once we move to objective functions based on realistic risk-measures,
the problems quickly become time-inconsistent.
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1.4 Outline of Results

The unifying theme of this thesis is that we can develop new methods for approaching
time-inconsistent optimal stochastic control and optimal stopping problems be re-writing a
time-inconsistent problem in terms of an iterated optimization problem involving the value
functions of time-consistent problems. Rather than employ a game-theoretic interpretation of
time-inconsistent problems, we aim to compute optimal pre-commitment strategies directly.

In Chapter 2 and Chapter 3, we consider the case of a time-inconsistent stochastic optimal
stopping and optimal stochastic control problem, respectively. In each of these problems we
are able to define an auxiliary value function corresponding to a time-consistent problem
in a higher-dimensional state-space. We then demonstrate that we can obtain an optimal
pre-commitment strategy by first solving an optimization problem over the starting value of
the additional state, then computing an optimal strategy in the time-consistent problem. In
Chapter 4, we consider a type of optimal stopping problem which features a constraint on
the distribution of the stopping time. We demonstrate that this problem may be re-written
as a sequence of iterated time-consistent optimal stochastic control problems.

In the following, we outline the specific results of each chapter.

Chapter 2 is based on Miller [Mil16], which presents a novel method for solving a class
of time-inconsistent optimal stopping problems by reducing them to a family of standard
stochastic optimal control problems.

In particular, we convert an optimal stopping problem with a non-linear function of the
expected stopping time in the objective into optimization over an auxiliary value function for
a standard stochastic control problem with an additional state variable. This approach differs
from the previous literature which primarily employs Lagrange multiplier methods or relies
on exact solutions. In contrast, we characterize the auxiliary value function as the unique
viscosity solution of a non-linear elliptic PDE which satisfies certain growth constraints
and investigate basic regularity properties. We demonstrate a connection between optimal
stopping times for the original problem and optimal controls of the auxiliary control problem.

More broadly within the scope of this thesis, this chapter lays out a way of thinking
about obtaining a pre-commitment solution of time-inconsistent problems by re-writing the
problem as a sequence of optimization in extra state variables.

Chapter 3 is based on Miller-Yang [MY15]. In this chapter, we consider continuous-
time stochastic optimal control problems featuring Conditional Value-at-Risk (CVaR) in the
objective. Again, the major difficulty in these problems arises from time-inconsistency, which
prevents us from directly using dynamic programming. To resolve this challenge, we convert
to an equivalent bilevel optimization problem in which the inner optimization problem is
standard stochastic control.

Furthermore, we provide conditions under which the outer objective function is con-
vex and compute the outer objective’s value via a Hamilton-Jacobi-Bellman equation. The
key observation is that we can then solve the outer optimization problem via a gradient
descent algorithm. The significance of this result is that we provide an efficient dynamic
programming-based algorithm for optimal control of CVaR without lifting the state-space.
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We refer the interested reader to Miller-Yang [MY15] for additional analysis of differentia-
bility of the outer objective function and methods for computing its gradient.

Lastly, Chapter 4 is based Bayraktar-Miller [BM16], which considers optimal stopping
featuring a novel distribution constraint. While there is no reason to expect this problem
to be time-consistent, we convert it to an equivalent sequence of standard stochastic control
problems.

In particular, we solve the problem of optimal stopping of a Brownian motion subject to
the constraint that the stopping time’s distribution is a given measure consisting of finitely-
many atoms. We show that this problem can be converted to a finite sequence of state-
constrained optimal control problems with additional states corresponding to the conditional
probability of stopping at each possible terminal time. The proof of this correspondence relies
on a new variation of the dynamic programming principle for state-constrained problems
which avoids measurable selection. We emphasize that distribution constraints lead to novel
and interesting mathematical problems on their own, but also demonstrate an application
in mathematical finance to model-free superhedging with an outlook on volatility.



Chapter 2

A Time-Inconsistent Optimal
Stopping Problem
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2.1 Introduction

The following chapter is based upon the results in Miller [Mil16]. We present a simple exam-
ple of a time-inconsistent optimal stopping problem which can be solved by converting to a
maximization problem over the value function of a time-consistent optimal stochastic control
problem in an additional state variable. More broadly within the scope of this thesis, we
outline a way of thinking about obtaining a pre-commitment solution to a time-inconsistent
problem by re-writing the problem as a sequence of optimization problems featuring addi-
tional state variables.

2.1.1 Overview of results

In this chapter, we consider a probability space (€2, F,P) which supports a standard Brownian
motion W. We let F := {F; },>¢ denote a filtration, which is assumed to be right-continuous
and have all P-negligible sets contained in Fy. We denote by T the collection of all F-stopping
times such that E [7?] < co. We remind the reader that a random variable 7 : Q — R¥ is a
F-stopping time if {7 < ¢} is F;-measurable for all ¢t > 0.

Let f,g : R — R be fixed continuous functions. In this chapter, we take f to be Lipschitz
continuous, though this is extended to quadratic growth in Miller [Mil16]. For some fixed
o € R, we define the main problem considered in this chapter.

Definition 2.1. The time-inconsistent optimal stopping problem is to compute

P = Sup [E[f (w0 + W(7))] + g (E[7])] (2.1)

and to find a stopping time 7 € T which attains the supremum.

At this point, it is unclear whether p* is finite or 7% exists without making additional
assumptions on f and g. Necessary and sufficient conditions will be made clear throughout
the chapter.

As usual, we define a corresponding value function.

Definition 2.2. We define the value function for the time-inconsistent optimal stopping
problem, v : R — R, as

v(x) = sup [E[f (z+W(r))] + g (E[r])]

for each x € R.

Notice that v(zg) = p*.

Time-inconsistent optimization problems are characterized in general by the failure of
standard dynamic programming arguments to apply to the value function v. In the class
of problems considered in this chapter, the time-inconsistency stems from non-linearity of
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g. The two common approaches to dealing with time-inconsistency in the literature are to
reformulate the problem as a time-consistent problem, while possibly changing the value
function, or to employ a “pre-commitment strategy” which may need to be recomputed for
each new initial condition. The main result of this paper is to show that we can convert
the computation of a pre-commitment strategy to a bi-level optimization problem whose
lower-level consists of a time-consistent stochastic control problem.

In particular, let

A = {a : Q2 x [0,00) — R | «a is progressively-measurable and IE/ aZdt < —I—oo} .
0
For each control oo € A, we consider the controlled stochastic differential equation

{ dXe = dW, (29)

dY,® = —dt + ay dW,.

For any choice of (z,y) € R x [0,00) and a € A, we write {(XZ,Y¥*) | s > 0} to denote the
solution of (2.2) with initial conditions X§ = = and Yj"" = y. Furthermore, we write 7¥* to
denote the stopping time

v =inf{t > 0| Y =0}. (2.3)

Next, we define the value function for an auxiliary control problem.

Definition 2.3. Define the value function of an auziliary stochastic control problem as

w(z, y) = sup E[f (X7,.)] (2.4)

acA
for every (x,y) € R x [0, 00).

The main observation of this chapter is then that

= sup [w(zo,y) +9(y)]- (2.5)

Furthermore, we will show that w can be characterized as the unique viscosity solution
of the following Hamilton-Jacobi-Bellman (HJB) PDE:

acR (26)

Uy — SUp [FUyy + Aty + 3a’u,] =0 in R x (0,00)
u=f onRx {y=0}.

Some amount of work will be put into making sense of (2.6) when the coefficient in front
of the diffusion is unbounded®. The upside to this approach is that one can then compute

'Tn the original paper, we must additionally put particular asymptotic growth constraints on w to pin
down uniqueness because we allow f to have super-linear growth. In this simplified presentation, the analysis
is more straightforward.
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w via standard methods, solve the optimization problem in (2.5), then obtain a solution to
(2.1).

In the remainder of this chapter, we emphasize the following three-step strategy for
dealing with time-inconsistency:

1. Condition on the time-inconsistent feature to obtain a constrained problem,

2. Embed the constrained problem in a time-consistent problem in a higher-dimensional
state-space, and

3. Construct an optimal control of the original problem by starting at an optimal choice
of the new state variables.

This procedure allows us to compute the value function of a pre-commitment strategy, and
construct optimal stopping times under suitable regularity. While the first and last step are
well-understood in the previous literature (See Pedersen-Peskir [PP16a; PP13]), the main
contribution of this chapter is our second step, which is typically replaced by an application
of Lagrange multipliers or an appeal to exact solutions.

2.1.2 Overview of previous literature

The particular type of time-inconsistency featured in this chapter is a non-linear function of
the expected stopping time appearing in the objective function. Following the ideas devel-
oped in Pedersen-Peskir [PP16a], we condition on the expected value of the stopping time
to obtain an expectation-constrained optimal stopping problem. In contrast with the pre-
vious literature, we embed the constrained optimal stopping problem into a time-consistent
control problem with one extra state variable rather than employing the method of La-
grange multipliers. We characterize this auxiliary value function as the viscosity solution of
a degenerate-elliptic Hamilton-Jacobi-Bellman (HJB) PDE subject to certain growth con-
straints.

The overarching idea of our approach is inspired by that reported in Pedersen-Peskir
[PP16a]. In that paper, the authors solve a mean-variance stopping problem with a similar
non-linearity by conditioning on the time-inconsistent feature and solving the resulting con-
strained stopping problem with free-boundary techniques and verification arguments along
the lines of Peskir-Shiryaev [PS06]. In comparison, the reader may view the main contri-
bution of this chapter as a novel solution of the expectation-constrained optimal stopping
problem by embedding in a time-consistent stochastic control problem.

The investigation of constrained optimal stopping problems is not new, but most previ-
ous work focuses on Lagrange multiplier approaches to the constraint (See Kennedy [Ken82],
Lépez-San Miguel-Sanz [LSMS95], Horiguchi [Hor01], and Makasu [Mak09]). In contrast,
we identify the expectation-constrained auxiliary value function as the unique viscosity so-
lution of degenerate-elliptic Hamilton-Jacobi-Bellman equation, subject to certain growth
constraints. The main advantage of our approach is that it depends neither on the specific
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form of non-linearity in the problem, nor on the availability of analytic solutions. When
analytic solutions are not available, a solution via the method of Lagrange multipliers gen-
erally relies on a numerical optimization of the Lagrange dual problem. While effective, this
approach can be unstable in practice since we have no regularity estimates on the dual func-
tion apart from convexity, and computation of the sub-gradient is often subject to truncation
error. In contrast, the non-linear elliptic PDE featured in this chapter has established numer-
ical approximation schemes with guaranteed convergence and, more importantly, stability
(See Oberman [Obe08]).

The ideas developed in this chapter can be extended to deal with other types of time-
inconsistent features in optimal stopping and optimal stochastic control problems. We pri-
marily emphasize the case of optimal stopping due to its relative technical and pedagogical
simplicity. We briefly discuss extensions to diffusion processes and more general types of
time-inconsistencies in the final section, albeit formally. The ideas are related to recent
solutions of mean-variance portfolio optimization, optimal control under certain non-linear
risk-measures, and distribution-constrained optimal stopping (See Pedersen-Peskir [PP13],
Miller-Yang [MY15], and Bayraktar-Miller [BM16]).

Our approach is similar to the dynamic approach of Karnam-Ma-Zhang [KMZ16], wherein
the authors introduce extra state variables to remove time-inconsistency introduced by a
system of controlled backwards stochastic differential equations. Similar to this chapter, the
authors convert a problem without an immediate dynamic nature to a dynamic problem
with additional state variables. There appear to be additional analogies with the formal
generalizations provided in Miller [Mil16]. In terms of a focus on time-inconsistent optimal
stopping problems, this chapter is similar to Xu-Zhou [XZ13], where the authors consider a
non-linear functional of a stopped process as the objective function. However, the method of
solution differs entirely. Whereas these authors relate their problem to optimization over the
distribution of the stopped process using Skorokhod embedding, we convert to a dynamic
problem in a larger state-space. Since the original circulation of Miller [Mill6], the same
elliptic PDE has been obtained independently by Ankirchner-Klein-Kruse [AKK15] in the
direct analysis of a related expectation-constrained optimal stopping problem.

Some other notable works in the literature on time-inconsistent problems include Bjork-
Murgoci [BM14], Hu-Jin-Zhou [HJZ12], Yong [Yonl2], and Ekeland-Lazrak [EL10]. Most
of the previous literature focuses either on specific examples of time-inconsistency (often
arising from non-exponential discounting or mean-variance optimization) or on notions of
equilibrium strategies, which view time-inconsistent problems as a sequential game against
ones future self. In an equilibrium strategy, the optimal equilibrium strategy can be char-
acterized as the solution to an “extended HJB” system. In general, these systems feature
multiple solutions and exhibit values strictly less than the value function of a pre-committed
strategy. The price we must pay in our approach is that the entire value function must be
recomputed if we change the initial conditions. This point is related to the notions of static
and dynamic optimality which are explored in depth by Pedersen-Peskir [PP16a].
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2.2 Equivalent Sequential Time-Consistent Problem

Our goal is to convert this time-inconsistent optimal stopping problem into a sequential
optimization problem involving a time-consistent control problem. Our general approach to
time-inconsistency is the following:

e Step 1: Condition on any time-inconsistent features in the problem to generate a family
of optimal-stopping problems with constraints,

e Step 2: Enlarge the state-space to embed the constrained problems in a time-consistent
problem, and

e Step 3: Construct an optimal stopping time for the time-inconsistent problem by
picking an optimal value of the time-inconsistent feature and generating an optimal
solution to the time-consistent problem starting from that choice.

In our particular problem, this will involve adding a new state variable to track the ex-
pectation of the optimal stopping time. As the system evolves, we expect this variable to
be a super-martingale as the expected time until stopping drifts downward. However, it is
possible to allow this expected stopping time to increase along certain paths so-long as it is
compensated by a decrease along other paths.

2.2.1 Conditioning on time-inconsistent features

For any y € [0, 00), consider the following subset of stopping times:
T, ={reT|E[r]=y} CT.

Furthermore, consider the following family of expectation-constrained optimal stopping
problems.

Definition 2.4. Define the value function corresponding to an expectation-constrained op-
timal stopping problem as

w(x,y) == sup E[f(z+ W(r))] (2.7)

TETy
for each (x,y) € R x [0, 00).

We first claim that we can reformulate the time-inconsistent optimal stopping problem
(2.1) as a sequential optimization problem involving these constrained optimal stopping
problems.

Theorem 2.1 (Pedersen-Peskir [PP16a]). For any = € R, we have

v(r) = sup [W(z,y) + g(y)].
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Proof. The key is to note that since all stopping times in 7 are assumed to have finite
variance, they also have finite expectation. Then

T=UT

y>0

Then it is simple to check that

v(z) = 2QEV@ﬁWWﬂH+9@Pﬂ

= supsup [E[f (x+ W (r))] + g (E[7])]

y>0 7€Ty

= supsup [E[f (z + W ()] + g(y)]

y>0 7€Ty,

= ig%) [w(x,y) + g(y)] .

2.2.2 Equivalence with time-consistent optimal control

Next, we reformulate the constrained optimal stopping problem as a time-consistent stochas-
tic control problem. The benefit of this will be that we can write down an HJB PDE
associated with the time-consistent stochastic control problem. Let A be the set of all real-
valued, progressively-measurable, and square-integrable processes. We state a lemma which
identifies 7 € 7, with a control in A.

Lemma 2.1. Fiz y € [0,00).
1. For any T € Ty, there exists a € A such that T = 7% almost-surely.
2. For any o € A, we have 79 € T,,.

Proof. 1. Because 7 € 7T, is a square-integrable random variable with expectation y, there
exists a € A such that

T=E[7] —|—/ adWs =y +/ asdWs,
0 0
almost-surely, by the Martingale Representation Theorem (See Section 3.4 in Karatzas-

Shreve [KS91]). However, 7 is F,-measurable, so if we take conditonal expectations
and use the martingale property of the Ito integral, we see

T:y—i—E[/ ades\}"T}:y—i-/ o dW, (2.8)
0 0

almost-surely.
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Recall the definition of 7% from (2.3). From (2.8), we immediately deduce Y = 0
almost-surely. This implies that 7¥* < 7 almost-surely.

Next, we take expectations of (2.8) conditional upon F,v.. and using the martingale
property of the Ito integral and note that

NeY

E[T‘ny,a]:y‘F/ OédeS.
0

Subtracting 7¥** from both sides, we see
E [7— - Ty7a | .FTy,oz] - }/,I.ygj,% - 0, (29)

using the definition of 7%.
Taking an unconditional equation of (2.9), we see E [7] = E [r¥¢]. This, together with
7Y < 7 almost-surely, implies that 7¥* = 7 almost-surely.

2. Fix a € A and recall the definition of 7% from (2.3). We first claim that 7% < +o0
almost-surely. To that end, we investigate the random variable Y} for large t.
It is clear that E[Y,**] =y —t and

Var[V] = B [(1" —y+ 1)

- e( /Otasdws)j

¢
= E /agds]
0

by Ito’s Isometry (See Section 3.2 in Karatzas-Shreve [KS91]). But because a € A,
there exists M > 0 such that

t o)
Var[Y;y’a]:E{/ agds} S]E{/ agds} < M.
0 0

The goal is to bound the probability that Y is non-negative. We first compute
P >0] < PV -EN"]| >y —1]
< PV BV 2 (g - MY Var )
However, we can now apply Chebyshev’s Inequality (See Section 1.6 in Durrett [Durl0])

to conclude
PV > 0] < M(t—y)™2

But taking ¢ — oo and noting that Y;** < 0 implies 7% < ¢, this inequality contradicts
the claim that P[7%* = 400] > 0.
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Then because 7% < +o00 almost-surely, we conclude by the definition of 7%* that
TV
y— 1Y%+ / a,dW, =Y5% =0, (2.10)
0

almost-surely. Taking expectations on both sides of (2.10), we see E [¥*] = y. Sim-
ilarly, by re-arranging and squaring both sides of (2.10) then taking expectations, we

see
E [(1%%)?] =y2+EU aidS] §y2+EU Ode] < +o0.
0 0

Then 79 € 7T,,.
O

The key to the main result is to convert between stopping times in 7, and controls in
A via Lemma 2.1 and instead view w as the value function of a stochastic optimal control
problem.

Recall the value function for a stochastic control problem from (2.4).

Theorem 2.2. We have the equivalence
w(z,y) = w(z,y)
for any (z,y) € R x [0, 00).
Proof. Fix any (z,y) € R x [0, 00).
1. Let a € A be an arbitrary control. By Lemma 2.1, we know 7% € 7,. Then
Elf (X5e)] = E[f (z+ Wrwe)]
< w(z,y).
Because a € A was arbitrary, we conclude
w(z,y) < w(z,y).
2. Let 7 € 7, be an arbitrary stopping time. By Lemma 2.1 there exists a control a € A
such that 7¥% = 7 almost-surely. Then
Elf @+ W] = E[f (z 4 W)
E[f (XFva)l
< w(z,y).
Because 7 € 7, was arbitrary, we conclude
w(z,y) < w(z,y).
O

In the remainder of the chapter, we will refer to the auxiliary value function w in terms of
the stochastic control value function (2.4) or the expectation-constrained optimal stopping
value function (2.7) as is convenient.
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2.2.3 Construction of optimal stopping times

We have shown from Theorem 2.1 and Theorem 2.2 that we can recover p* in the time-
inconsistent optimal stopping problem (2.1) by maximizing over choice of y > 0 and control
a € A. However, it remains to be shown that we can construct a corresponding optimal
stopping time for the time-inconsistent problem.

The next theorem relates nearly-optimal choices of (y, @) € [0, 00) X A with nearly-optimal
choices of stopping times 7.

Theorem 2.3. For any e > 0, let y > 0 satisfy
v(wo) < w(w,y) + €

and let o € A satisfy
w(zo,y) SE[f (XTa)] + e
Then 9 € T, C T satisfies

p*—2¢ <E|[f (zg+ Wya)] < p.

Proof. Recall from Definition 2.2 that p* = v(xy). Then by combining this with the two
assumed inequalities and the definition of {X?° | s > 0}, we have

*

p

v(zo)

w(xg,y) + €

E[f (X7a)] + 2¢

E[f (xo + Wrva)] + 2€.

IA A

Because 79 € T, C T, we also have

E [f ($0 + WTy,a)] S p*.

Then we can record the following corollary regarding obtaining an optimal control.
Corollary 2.1. Let y* > 0 satisfy
w(zo,y") = maxw(zo, y)
y=0

and let o* € A satisfy
E [f (sz(/)*,astar)} - W(l'o,y*).
Then 79" € T,» C T is an optimal stopping time for (2.1). That is,
p* e E [f (LUO + WTy*,a*)] .

This is straightforward from Theorem 2.3 with € = 0.
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2.3 Properties of the Auxiliary Value Function

In this section, we investigate various properties of the auxiliary value function w, which is
defined in (2.4). We remind the reader that we can equivalently consider the definition given
by (2.7) as is convenient because of the equivalence given in Theorem 2.2.

The main result of this section will be to characterize w as the unique uniformly contin-
uous viscosity solution of (2.6) which satisfies certain growth conditions to be specified.

2.3.1 Analytical properties of the auxiliary value function

We begin by observing a trivial boundary condition for w.

Proposition 2.1. For each x € R, we have w(z,0) = f(x).

Proof. This follows immediately from the stochastic control interpretation of w in (2.4). [

Next, we prove a more subtle continuity result. In particular, we show that for a fixed
control a € A, we have Holder continuity of the expected payoff when varying the initial
conditions (x,y) € R x [0, 00).

Lemma 2.2. For any (z1,%1), (22,92) € R x [0,00) and a € A, we have
E[f (X5he)] = ELf (X7l | < L (Jon = z2] + g1 — 92]'?)
where L > 0 is the Lipschitz constant of f.

Proof. Without loss of generality, we can assume y; < yo. It is then clear from (2.2) and
(2.3) that 7¥0* < 7¥2* almost-surely. Furthermore, by Lemma 2.1 we see that E [ = y;
and E [7¥>%] = yo. We can then compute

[E[f (XZiho)] = E[f (X750)] | < Llwy — xof + LE[[Wone = Wene|],

where L > 0 is the Lipschitz constant for f.
Using Jensen’s inequality, we have

E [|W~,—y1,a - WTyQ,aH =E |:\/(W~,-y1,a — WTyQ,a)2:| S \/]E [(WTyl,a — WTyQ,a)Z] .

Because 791 < 7¥2:% almost-surely, we can use the Markov property of Brownian motion to
see

E[(Wyno —Wiee)’] = E[E[(Wio — Wose)® | Frnel]
= E[E [ — 799 | Fruyal]
= E[r%°] —E[r"9]
= Y2 —Y1.

Putting these three inequalities together, the claimed result follows. O]
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We next extend this result to Holder continuity of the auxiliary value function.

Proposition 2.2. For any (z1,y1), (z2,y2) € R x [0, 00), we have

Wiz, 1) = w(ws,y2)| < L (Jo1 — wa| + g1 — 92]"?)
where L > 0 is the Lipschitz constant of f.
Proof. Let o € A be an arbitrary control. By Lemma 2.2, we have

E[f (XZho)] < E[f (Xl + L (Jrr — 2] + 1 — 12]'?)
< w(wg, y2) + L (Jor — 2| + |11 — 92|1/2> ;

where L > 0 is the Lipschitz constant for f. Because a € A was arbitrary, we then conclude

w(wy,y2) < w(wa,y2) + L (|21 — 2| + |31 — y2|1/2) :
Reversing the roles of (z1,y1) and (22, y2), the stated result follows. O

An immediate corollary of this result is that w is uniformly continuous and has linear
asymptotic growth in x and sub-linear asymptotic growth in y.

Corollary 2.2. The auziliary value function w is uniformly continuous and there C' > 0,
which depends only on f, such that

jw(z,y)| < C 1+ |z[+ /)
for all (z,y) € R x [0,00).

Proof. The uniform continuity of w follows immediately from the Holder continuity in Propo-
sition 2.2. The claimed growth bound follows from Proposition 2.1 and Proposition 2.2,
because

w(z,y)] < [w(0,0)] + [w(z,y) —w(0,0)]
< [fOf+ Lzl + V).
Then the result holds with C' = |f(0)| + L. O

Lastly, we state an important functional equality for the auxiliary value function — a
Dynamic Programming Principle. We will later pass this equality to smooth test functions
to show that w is a viscosity solution of (2.6).

Proposition 2.3 (Dynamic Programming Principle). Fiz (z,y) € R x [0,00) and let {0}
be any collection of stopping times indexed by o € A. Then we have

w(z,y) = sup [w (XGanrvas Yoansva)] -
ac
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The upside to showing that w is equivalent to a stochastic control problem is that, while
technical, the proof of this proposition is standard. In the following we will provide a formal
sketch of the proof. For full details, see Fleming-Soner [F'S06] or Touzi [Toul3].

Sketch of Proof. Fix a collection of stopping times {#*} and define ¢ : R x [0, 00) — R by

o(x,y) := sup E [w (Xgaprva, Ygunrsa)]

for each (x,y) € R x [0,00). We aim to show that ¢ = w.

1. Fix (z,y) € R x [0,00) and let @ € A be an arbitrary control. For notational con-
venience, in the remainder of this step we denote X{a ., .o by X, Y5 e by Y, and

s a(s+ 7¥) by s — a(s). By the Markov property of solutions of (2.2), we note
that i
XX

V.G

x
= XTy,ay

almost-surely. By the tower property of conditional expectation, we have
E[f (X5a)] = E[EB[f(X3.0) [ Foonre]

s[u (5.9

< @z, y).

IA

But because a € A was arbitrary, we conclude
w(z,y) < o(x,y).

2. To prove the reverse inequality, fix (z,y) € R x [0,00) and let « € A be an arbitrary
control. Again, for notational convenience, in the remainder of this step we denote
Xiapnrva by X and Y20, o by Y. For any € > 0, let o € A be an e-suboptimal control

starting from <)~( , ff) That is, it satisfies

w <X,Y/) — € S E [f (in:,,%) | f@a/\Ty,a] . (211)
But then if we define a new control @ € A as

(s) als) 0<s<O*NTV
T ae(s — 0¥ ATVY) G ATV < 5,

then, again by the Markov property of solutions of (2.2), we deduce that
xX

7Y e

vz
- XT'%H?
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almost-surely. Then taking unconditional expectations of (2.11), we see

E 10 (X V)] =€ = E [w (X.7)]

Bl (x5
= E[f(X]a)]
< w(z,y).

IN

Because a € A and € > 0 were both arbitrary, we conclude
¢(2,y) < w(,y).

]

Remark 2.1. While there are several abuses of notation in the sketch above, the main
difficulty lies in the assumption that we can construct an e-suboptimal control starting from
any point in R x [0,00). In general, it is not obvious that this can be done in a measurable
way. A typical complete proof of this result generally uses an open covering of the state-space
and the Lindelof Covering Theorem to obtain a countable open covering by neighborhoods
which each correspond to a single e-suboptimal control. The fact that a single control can
locally be e-suboptimal requires the use a continuity result like Lemma 2.2. For more details
on how this process proceeds, we refer the interested reader to Touzi [Toul3] or a similar
proof in Chapter 4 of this thesis.

2.3.2 Viscosity solution characterization

We next claim that the auxiliary value function w is the unique uniformly continuous viscosity
solution of (2.6) which satisfies the growth condition from Corollary 2.2. Because of the
unbounded term in front of the diffusion in y, this is not a completely standard task. In the
following we begin by recalling a working definition of viscosity solution for this equation.

Definition 2.5. Let u: R x [0,00) — R be a continuous function.
1. We say that u is a viscosity supersolution of (2.6) if

a) u(xz,0) > f(x) for all x € R, and

b) For any (z9,y0) € R x (0,00), any smooth function ¢ : R x [0,00) — R for which
(u— @) attains a local minimum at (xo,vo), and for each a € R, we have

600 ) — (B ) + v, ) + 0%t ) ) 2 0.

2. We say that u is a viscosity subsolution of (2.6) if
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a) u(z,0) < f(x) for all x € R, and

b) For any (z9,y0) € R x (0,00), any smooth function ¢ : R x [0,00) — R for which
(u — @) attains a local mazimum at (xg,yo), and any € > 0, there exists a € R
such that

1 1
¢y(x07 y0) - <§¢xz(x07 yO) + a¢xy(x07 yO) + §a2¢yy($0> yO)) S €.

3. We say that u is a viscosity solution of (2.6) if it is both a viscosity supersolution and
a viscosity subsolution.

Remark 2.2. The difficulty with (2.6) is that the Hamiltonian is not continuous with respect
to the Hessian D?u because of the unbounded supremum. Following Da Lio-Ley [DLL11],
we have modified the definition of viscosity solution slightly to avoid technical difficulties in
cases where

1 1
SuIIR? E(bmc(an yO) + a¢xy<x07 yO) + §a2¢yy(x0> yO) = +400.
ac

Functionally, however, essentially nothing in the theory has changed. We will still be able

to prove a comparison theorem for uniformly continuous super- and subsolutions, subject to
certain growth assumptions, which provides a uniqueness result.

Proposition 2.4. The auxiliary value function w is a viscosity solution of (2.6).

Again, the upside to showing that w is equivalent to a stochastic control problem is that,
up to some technicalities, the proof of this proposition is standard. In the following we
provide an essentially complete sketch of the proof to emphasize how the modified definition
of viscosity solution is used. For full details, see Fleming-Soner [FS06] or Touzi [Toul3].

Sketch of Proof. In the following we provide a sketch of the proof. By Proposition 2.1, we
have w(x,0) = f(z) for all x € R, so we only need to consider the viscosity solution properties
at interior points of R x (0,00). The idea is to pass the Dynamic Programming Equality
from Proposition 2.3 to smooth test functions via a careful choice of controls and stopping
times.

1. Fix (z9,v0) € R x (0,00) and let ¢ : R x [0,00) — R be a smooth function for which
(w — ¢) has a local minimum at (zg,yo). Without loss of generality, we can assume
w(xo,yo) = ¢(x0, yo). Fix § > 0 small enough that

(w—¢)(w,y) > (w— ¢)(x0,y0) =0

for all (z,y) € R x [0,00) such that |xg — |+ |yo — y| < 9.

For each a € R, associate it with a square-integrable control defined by

a(t) = aexp(—t)
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for all t > 0. Then for small A > 0, define a stopping time
Op :=h Ainf{t >0 | (X[, Y") & [xo — 6,20 + O] X [yo — I, y0 + I]}.
Then by the Dynamic Programming Principle (Proposition 2.3), we have
w(wo,y0) = B [w (X5 v, Yiioa)] -

Then using the previous two inequalities, and applying It0’s change of variable formula
(See Section 3.3 in Karatzas-Shreve [KS91]) to the smooth function ¢, we compute

¢(I0, yo)

U)(xo, yO)
E (1 (X3 V)]

0h /\Tyo &

E [Qb (Xg:/\»ry07a7 }/Veio/y\iyo’a)}

O NTYVO
_ ¢<xo,yo>+1a[ [ wwo e yme o).
0

AVARLY,

where

LYD(u, z,y) = %¢xm($»y) +ae " guy(z,y) + %GQ 6_28¢yy(x7y) — ¢y, y).

Re-arranging the inequality above and examining convergence as h — 07, we see

1 eh/\TyO’a
0 > liminfE {E/ (L2¢) (s, X2, Yo%) ds]
0

h—0t+

v

h—0t

= (£a¢) (07x07y0>
= %éﬁm(%,yo) + a¢xy(x07y0) + %a2¢yy<x07 ZJO) - ¢y($07 yo)-

1 Gh/\T’JOv“
E [hm inf / (L) (s, X2, Yo%) ds}
0

But then we conclude that w is a viscosity supersolution of (2.6).

2. Fix (zo,y0) € R x (0,00) and let ¢ : R x [0,00) — R be a smooth function for which
(w — ¢) has a local maximum at (zo,yo). Without loss of generality, we can assume
w(xo,yo) = P(xo, yo). Fix § > 0 small enough that

(w = ¢)(z,y) < (w = ¢)(x0,50) = 0

for all (x,y) € R x [0,00) such that |zo — x| + |yo — y| < 0.
For each a € A and each h > 0, define a stopping time

0y == hAinf{t > 0] (X{°,Y) & [x0 — 0,20 + 0] X [yo — J, 40 + 0]} .
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Then by the Dynamic Programming Principle (Proposition 2.3), for any € > 0, there
exists a € A such that

w(zo,y0) < E [w (ngowyo’av 1/'9%)/’\%0,&)] + e

Then using the previous two inequalities, and applying 1t6’s change of variable formula
(See Section 3.3 in Karatzas-Shreve [KS91]) to the smooth function ¢, we compute

<Z5(370>Z/0) = w(%,yo)
K [w (Xg;?/\fyo»av Ye?/’\iyo’a)} te€

E [¢ (ng?/wyoﬂv Yezgﬁyoaﬂ e

IN

IN

O ATY0-
= ¢(xo,y0) +E [/ (LY) (5, XJ°,Y0%) ds| +e,
0
where

1 1
Lo, 2,y) = 5Pan(T,Y) + sy (,9) + §a§¢yy(x, y) — oy, y).

Re-arranging the inequality above and examining convergence as h — 07, we see

1 9%/\7'?!0’0‘
—e < limsupE {E/ (LY) (X0, Vo) ds]
0

h—0t

IN

h—0t

= (£a¢) (0, o, ?Jo)

1 1
= §¢mx(I0, yo) + Oéo%y(%, yo) + §a§¢yy(xo,yo) - %(960790)-

1 0%/\7’!070‘
E [lim sup —/ (L) (X5, V) ds]
0

But then we conclude that w is a viscosity subsolution of (2.6).

]

We now aim to show a uniqueness result for viscosity solutions in order to characterize
the auxiliary value function w in terms of (2.6). We begin with a comparison principle.

Theorem 2.4 (Comparison Principle). Let u,u : R X [0,00) — R be a uniformly continuous
viscosity subsolution and viscosity supersolution of (2.6), respectively. Suppose there ezists
C > 0 such that

lu(z, y)| + [ulz, y)| < C A+ |z + V)
Jor all (z,y) € R x [0,00). Then
u(z,y) < u(z,y)
for all (z,y) € R x [0, 00).
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We remind the reader that the key difficulty in this proof is that the Hamiltonian in (2.6)
is not continuous with respect to the Hessian D?u because of the unbounded supremum. The
key to the following proof will how we obtain a bound which is independent of the control
a e R.

Proof. 1. Assume to the contrary that
o= (u—1u)(xg,yo) >0
for some (g, yp) € R x [0,00). Choose €, A > 0 both to be small and define

M:= sup ®(z1,29,y1,%2),
R2 x[0,00)?2

where
(I)(fl?l, T2, 3/1,3/2) = 2(3717 Z/l) - ﬂ<x27y2) - <25(~’L'1, Z2, y17y2)
and

1 1
A1, T2, Y1, 12) = 56_2 (($1 — $2)2 + (y1 — y2)2) + 56 (ﬁ + :Eg) + AMyr + ya2).

Then because of the growth bounds on w and @ (linear in x and sub-linear in y), there
exists (T1, Ta, U1, o) € R? X [0, 00)? such that

M = q)(§17f27y17y2)'

2. We may take €, A > 0 sufficiently small that

ol 9

O (1, T2, Uy, Yo) > P20, 0, Yo, Yo) > (2.12)

In addition, ®(Zy, T2, 7, 75) > ©(0,0,0,0), so we see
_ L 5,0 _ _ I 5 _
AGL+72) + 567 (@ = 22)" + (10— 1)°) + 5¢ (71 +73)
S Q(fla yl) - E(E%EZ) - 2(07 0) + U(Ov O)
<C <4+ %] + [To| + 7,7 +y§/2) .

Noting that

1 1
C (4 + T+ 7| + 7 +y§/2> <C (4 Lo+ §CA—1)+56 (T2 +T2)+A (T + 7).,

we can put these two inequalities, we see

1 1
5€ (@ —m) + (3 - 7)) <C (4 +Cel + 56“‘1) :

From this, we deduce that
71 — Tal, [Ty — ol € O(e"?)
for fixed A > 0 as ¢ — 0.
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3. Because u is uniformly continuous, we can write w(-) to denote its modulus of conti-
nuity; this is,
u(1,91) — wlwe, 1) < w (lor — 2| + |y — v2l)
for all (z1,v1), (z2,92) € R x [0,00) and w(r) — 0 as r — 0. Similarly, we denote the
modulus of continuity of @ by @(-). Then (2.12) implies

S < uELg) -7
< w(7,0) —u(T2,0) + w(@,) +©0(Ys)
< f(@) — [(@2) + w(®) + ©(Ys)
< L7y — T + w(®) +©(7s),

where L > 0 is the Lipschitz constant of f.

Suppose 7, = 0. Then [T} — Ta|, [, — U] € O('/?) implies there exists C' > 0 such
that o
B < CLeY? + w(0) + T(Ce/?).

But taking e — 0, this is a contradiction. Therefore, 7, > 0 for sufficiently small € > 0.
A similar argument shows that 7, > 0 for sufficiently small € > 0.

4. Now (T1,To,U;,Tp) € R? x (0,00)? for sufficiently small ¢ > 0, so we can apply the
Crandall-Ishii Lemma (See Crandall-Ishii-Lions [CIL92]). We state the result in terms
of smooth test functions instead of sub- and super-jets and take p := €2. There exists
smooth ¢, ¢ : R x [0, 00) such that (u— ¢) attains a local maximum at (:El, 7,), (T — @)
attains a local minimum at (Z2,7,),

—2 /(= = p—
Dot = (o).

Da(fm@z) = ( i—gfél__f;j)__efZ ) )

and (for e << 1)

D*¢(71,7,) 0 ) —2
= — < be " Ay + 2€eBy,
( 0 —D?¢(T2,Y,) ) ~ ! !
where

1 0O -1 0 1 0 00

0 1 0 -1 00 00

Av=1_3 g 1 o | B 0010

0O —1 0 1 00 00
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By the matrix inequality above, we mean with respect to the partial order induced
by the positive semi-definite cone. The key property is that, for any a € R, if we
conjugate the matrix inequality by (1, o, —1, —a)T, then we conclude

( ; >TD29(@,?1) ( ; ) < ( ; )TD%(@,@Q) ( ; ) + 2. (2.13)

5. By the viscosity subsolution property, there exists a € R such that

_ L _ 1 _
gby(xhyl) < €+ééxm(xlayl)_}_aéxy(xlayl)—i_§a2?<xlayl)

() (1),

But by the properties of ¢ from the previous step, this implies

g rzers (L) poma (L), (2.14)

Similarly, by the viscosity supersolution property, we have

1-— — 1 -
¢y(§27g2) > §¢mm<f2>y2) + Oé(bzy(f%yQ) + §a2¢<f27y2>

1) ()

By the properties of ¢ from the previous step, this implies

w25 (L) paea (L), 2.15)

« (0%

Putting together (2.13), (2.14), and (2.15), we conclude
3e >\ > 0.

But then taking € > 0 sufficiently small, we obtain a contradiction.
O

We can then immediately state a uniqueness result which characterizes the auxiliary value
function in terms of the HJB PDE (2.6).

Corollary 2.3. The auxiliary value function w is the unique uniformly continuous viscosity
solution of (2.6) for which there exists C' > 0 such that

u(z, y)l < C(1+ |z| + V)
for all (x,y) € R x [0,00).
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Proof. We note that w is uniformly continuous and satisfies the stated growth condition by
Corollary 2.2. Suppose that there u : R x [0, 00) is a different uniformly continuous viscosity
solution of (2.6). Then by Theorem 2.4 we immediately see

w(zr,y) = u(r,y)

for all (z,y) € R x [0, 00). O



Chapter 3

A Time-Inconsistent Optimal
Stochastic Control Problem

29
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3.1 Introduction

The following chapter is based upon the joint work of Miller-Yang [MY15], in which we
consider a class of continuous-time stochastic optimal control problems, including those with
Conditional Value-at-Risk (CVaR) appearing in the objective function. The original paper
generalizes to allow optimal stochastic control when the objective function includes several
other time-inconsistent features, such such as variance and median absolute deviation. In
this chapter, we focus on the specific case where the objective function represents a trade-off
between expectation and CVaR. The emphasis, for the purposes of this thesis, is on how to
convert the time-inconsistent stochastic control problem into an optimization problem over
the value function of a related time-consistent stochastic control problem. We then consider
an application in portfolio selection.

3.1.1 Mathematical setup

In this chapter, we consider a probability space (€2, F,P) which supports a standard Brownian
motion W. For the purposes of this thesis, we take W to be one-dimensional, but this is
extended in Miller-Yang [MY15]. We let F := {F;};>0 denote a filtration, which is assumed
to be right-continuous and have all P-negligible sets contained in Fy. We let A be a compact
and finite-dimensional set of controls, and let

T
A= {a : Q x [0,T] = R | «a is progressively-measurable and E/ aZdt < —1—00} :
0

For each control process o € A, we consider the controlled stochastic differential equation,
dXta =u (Xta,Oét) dt +o0 (Xta,Oét) th (31)

We take i, 0 : R x A — R to be continuous functions such that, for C' > 0 large enough, we
have

(e, a) = p(a', )| + |o(z,a) —o(2'a)] < Clz 2| :
(e, @)l +lo(z,a)] < C(1+|z]) (3:3)

for all z,2” € R and a € A. For any choice of (t,z) € [0,7] x R and a € A, we write
{Xb=e |t < s < T} to denote the solution of (3.1) with initial condition X;** = x. The
conditions above suffice to guarantee this solution is unique (See Section 5.2 in Karatzas-
Shreve [KS91]).

We next recall definitions of value-at-risk (VaR) and conditional value-at-risk (CVaR)
which will be used in this chapter. We choose to view these as functions on a space of
probability measures, rather than functions of random variables, to emphasize that they do
not depend upon the choice of probability space itself and to set up for certain analytical
observations later in the chapter.
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Definition 3.1. Let P(R) be the collection of Radon probability measures on R. For any
p € (0,1) and p € P(R), we define value-at-risk (at probability p) as a function VaR, :
P(R) — R given by

VaR,(p) = inf{y € R | p ((—00,y]) > p}.

Definition 3.2. Let P;(R) C P(R) be the subset of Radon probability measures on R which
have finite first moment. For any p € (0,1) and p € P1(R), we define conditional value-at-
risk (at probability p) as a function CVaR, : P1(R) — R given by

CVaRy() = v = [ (4" =)l (3.4
= | ewan) <y o nie)].

where y* := VaR,(1).

There are many competing definitions of CVaR in the literature, but they all satisfy
the intuitive property that for any X € L'(2,P) such that the pull-back measure P o X!
contains no atoms, we have

CVaR, (Po X ') =E[X | X < VaR, (Po X ')]. (3.5)

The intuition is that VaR,, represents the pth percentile worst-case outcome of a distribution,
while CVaR, represents the expected outcome conditional upon being in one of the pth
percentile worst-case outcomes. For this reason, both VaR and CVaR are popular measures
of tail-risk.

In the case that the distribution of X contains atoms, the more general definition (3.4)
can be re-written as

CVaR, (Po X ") =p~' (B[X | X <" |P[X <y +y" (p—P[X <y])).

The intuition behind this equality is that, if P [X = y*] > 0, then we include only a fraction
of the atom which corresponds to probability up to the pth tail when computing CVaR,,.

In the remainder of this chapter, we will often abuse notation and write VaR, [X] or
CVaR,, [X], which denote applying these operations to the pull-back measure on X induced
by IP. We use this more general definition partially to simplify analysis, but we also show that
(3.4) is the only continuous function (with respect to a Wasserstein metric) which satisfies
an analogue of the intuitive property (3.5) when the measure contains no atoms.

3.1.2 Overview of results

In the remainder of the chapter, we fix some zo € R, A > 0, and p € (0,1). We then define
the main problem considered in this chapter.
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Definition 3.3. The time-inconsistent optimal stochastic control of Mean-CVaR is to com-
pute
p* = sup [E [Xp™°] + A OVaR, [X77°]] (3.6)
acA

and to find o € A for which the supremum is attained.

The intuition is that the Mean-CVaR optimal stochastic control problem represents a
trade-off between maximizing expectation while minimizing tail-risk.
As usual, we define a corresponding value function.

Definition 3.4. We define the value function for the time-inconsistent stochastic control of
Mean-CVaR as
o(t,z) := sup [E [X77°] + X CVaR, [X7%]]

acA

for each (t,z) € [0,T] x R.

Notice that v(0,zq) = p*.

This value function is time-inconsistent due to the CVaR term appearing in the objective
function. The main observation of this chapter is that we can re-write the value function v
as a maximization over the value function for a time-consistent stochastic optimal control
problem.

Definition 3.5. We define the value function for an auxiliary time-consistent stochastic
control problem to be

acA

for each (t,z,y) € [0,T] x R x R.

Then the main observation of this chapter is that

v(z) = sup [w(0, z,y) + Ay] (3.7)
yeR
for all z € R.
The upside of this approach is that w is the value function of a time-consistent stochastic
control problem, so it can be characterized as the unique viscosity solution of the HJB PDE:

a€A (38)

ug + sup [p(z, a)u, + 30 (z,a)?uy,] =0 in [0,7) x R x R
u=x—Ap(y—2)" on{t=T}xRxR.

We can then compute w via standard methods, solve the optimization problem (3.7), then
obtain a solution to (3.6).
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3.1.3 Overview of existing literature

Conditional value-at-risk (CVaR) has received significant attention over the past two decades
as a tool for managing risk. CVaR measures the expected value conditional upon being within
some percentage of the worst-case loss scenarios. While both value-at-risk (VaR) and CVaR
are risk measures, only CVaR is coherent in the sense of Artzner et al. [ADEH99]. One
common criticism of VaR stems from its inability to distinguish based on the magnitude of
losses in the tails of a distribution. In contrast, CVaR takes into account the magnitude of
losses when in values exceeding VaR.

Due to the superior mathematical properties and practical implications, CVaR has gained
popularity in risk management.! In particular, static or single-stage optimization with CVaR
functions can be efficiently performed via convex and linear programming methods (See
Rockafellar-Uryasev [RU00] and Mansini et al. [MOSO07]). With the advances in optimiza-
tion algorithms for CVaR, this risk measure has shown to be useful in various finance and
engineering applications.

Dynamic or sequential optimization of CVaR is often of interest when decisions can be
made at multiple stages. In such an optimal control setting, we can optimize a control action
at a certain time based on the information from observations up to that time. This dynamic
control approach enjoys an effective usage of information gathered in the process of making
decisions under uncertainty. The need for efficient optimal control tools with CVaR is also
motivated by emerging dynamic risk management methods in engineering and finance (See
Qin-Su-Rajagopal [QSR13] and Yang-Callaway-Tomlin [YCT al).

The major challenge in optimal control involving CVaR arises from its time-inconsistency
(See Artzner et al. [ADEHKO07]). Mathematically, this time-inconsistency prevents us from
directly applying dynamic programming, in contrast with problems involving Markov risk
measures (See Ruszczynski [Rus10], Cavus-Ruszezyniski[CR14], and Ruszczynski-Yao [RY15])
or risk-sensitive criteria (See James-Baras-Elliot [JBE94] and Fleming-McEneaney [FM95]).
To overcome this difficulty, several methods have been proposed. A state-space lifting ap-
proach for dynamic programming with a discrete-time and discrete-state Markov decision
process (MDP) setting is first proposed in Béauerle-Ott [BO11].

Another lifting method and relevant algorithms are developed in Pflug-Pichler [PP16b]
and Chow et al. [CTMP15], relying on a so-called CVaR Decomposition Theorem of Pflug-
Pichler [PP16b]. This approach uses a dual representation of CVaR and hence requires
optimization over a space of probability densities when solving an associated Bellman equa-
tion. This optimization problem can be effectively solved in discrete-time and finite discrete-
state MDPs. However, it becomes computationally intractable in (uncountable) continuous-
state optimal control problems as the space of densities is infinite dimensional. In Haskell-
Jain [HJ15], a different approach is developed for risk-aware discrete-time finite-state MDPs,
which is based on occupation measures. Due to the nonconvexity of the resulting infinite-

More detailed comparisons between VaR and CVaR, in terms of stability of statistical estimation and
simplicity of optimization procedures, can be found in Sarykalin et al. [SSU0S].
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dimensional optimization problem, this method uses a successive linear approximation pro-
cedure.

In this chapter, we demonstrate a solution of the continuous-time and continuous-space
optimal control of Mean-CVaR using the so-called eztremal representation of CVaR originally
proposed in Rockafellar-Uryasev [RU00]. We reformulate the optimal control problem as a
bi-level optimization problem in which the outer optimization problem is convex and the
inner optimization problem is standard stochastic optimal control. We note that, while
the auxiliary time-consistent stochastic control problem features an extra state variable, in
practice we can perform gradient descent-based optimization over the value of the extra
state variable rather than computing the auxiliary value function as a function in a higher-
dimensional state space.

In the final section of this chapter, we demonstrate a practical implementation of our
methodology in an optimal investment problem subject to CVaR constraints. To our knowl-
edge, this is the first solution of a dynamic portfolio optimization problem subject to tail-risk
constraints in continuous time. The closest comparisons to our results are given by approx-
imate equilibrium solutions (See Dong-Sircar [DS14]), mean-field control approaches (See
Pfeiffer [Pfel6]), or in mean-variance frameworks (See Pedersen-Peskir [PP16al).

3.2 Equivalent Sequential Time-Consistent Problem

The goal of this section is to demonstrate how we can convert the time-inconsistent optimal
stochastic control problem (3.6) into a sequential optimization problem involving a time-
consistent control problem.

As in the previous chapter, we proceed by re-writing the time-inconsistent feature (CVaR)
in terms of a family of stochastic optimal control problems in an enlarged state-space. We
then show how to construct an optimal control for the time-inconsistent problem by picking
an optimal member of the family of time-consistent problems and generating an optimal
solution of the corresponding time-consistent stochastic control problem.

In the problem considered in this chapter, it will turn out that the extra state variable
represents the value-at-risk (VaR) of the optimal control. The dynamics of this extra state
variable are actually trivial, in contrast with the dynamics of the previous chapter.

3.2.1 Main equivalence result

In this section, we demonstrate the main equivalence between the time-inconsistent value
function v and an optimization problem over the time-consistent auxiliary value function
w. We begin by proving a lemma regarding a representation of CVaR as a maximization
problem.

The following representation of CVaR dates back to Rockafellar-Uryasev [RU00] in the
case of probability measures with no atoms. We provide a complete proof of the more general
version for the sake of completeness.
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Recall the definition of VaR and CVaR given in (3.4) and (3.4).

Lemma 3.1. For any p € P1(R), we have

CVaR,(p) = sup [y —p ! /R (y—a)" u(dw)} :

yeR
Furthermore, the mazimum is achieved at y* := VaR, ().

Proof. Define a function ¢ : R — R as

¢@w=y—p*/ky—xﬁuu@

R

for all y € R. Let y* := VaR,(1). It is obvious that
CVaR, (1) = ¢(y")

by the definition in (3.4). We now aim to show that y* maximizes ¢.

1. Let y € R satisfy y < y*. Then we can compute
o) = o) = v -yt [ (-2 - @ = 0)) o)
R
=y -y+p! / (y — 2)u(dz) —p~* / (y* — z)pu(dx)
(—o0,y) (—o0,y*)

= vyt [ ey [ e

[y,y*)
> (v —y) (1—p 'u((—00,y")) .

But for any n > 1, we have u((—oco,y* —n~!)) < p by the definition of VaR. The
union of these sets is (—oo, y*), so by the continuity properties of measures, we have

p((=00,y")) = lim g ((—00,y" —n™")) <p.
Then these two inequalities imply ¢(y*) > ¢(y).

2. Let y € R satisfy y > y*. By a slight variation on the previous computation, we see
o)~ olw) = v -y [ (w-a) - @ - 0)) ulda)
R
=y -y+p! /( ](y — a)u(dz) —p~ /( }(y* — z)u(dz)
7oo’y —00 y*

= y—y+p! /(_ . (y — y*)u(dz) +p1/( (y — x)p(dx)

* ]
> (v —y) (1—p 'u((—00,y1) .
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But for any n > 1, we have u((—oo,y* +n~!)) > p by the definition of VaR and
sub-additivity of measures. The intersection of these sets is (—oo, y*]), so again by the
continuity properties of measures, we have

2 ((-OO, y*)) = nh_{gOM ((-OO, y* + n_l)) > p-
Combining these two inequalities then implies ¢(y*) > ¢ (y).

]

We this lemma in hand, we can immediately re-write the time-inconsistent value function.
Recall the definitions of v in (3.7) and the time-consistent auxiliary value function w in (3.7).

Theorem 3.1. We have

v(t,z) = sup [w(t, z,y) + Ay].
yeR

for all (t,x) € [0,T] x R.

Proof. Fix (t,z) € [0,T] x R. Let y € R and o € A be arbitrary. Then by Definition 3.4
and Lemma 3.1, we have

v

u(t, z) E [X77] + ACVaR,, [X3"]
E[XF ]+ (y—p B | (y - X55) "))

E [X;w e X%‘”’O‘f] + .

Y]

But because a € A was arbitrary, this implies
v(t, x) 2 w(t,z,y) + Ay.

Because y was arbitrary, the claimed result holds. O]

3.2.2 Construction of optimal pre-commitment strategies

We have shown from Theorem 3.1 that we can recover p* in the time-inconsistent optimal
control problem (3.6) by maximizing over choice of y € R and control o € A. However, it
remains to be shown that we can construct (approximate) optimal pre-commitment controls
for the original time-inconsistent problem.

The next theorem relates nearly-optimal choices of (y,«) € R x A with nearly-optimal
choices of pre-commitment control in the original problem.

Theorem 3.2. For any e > 0, let y € R satisfy

1)(07 LU(]) S 'LU(O, Lo, y) + )\y + €
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and let o € A satisfy
w(0,xg,y) <E [X%mo’a - (y - X%zo’a)q +e.
Then o € A satisfies
p*—2¢ <E [X7"%] + A CVaR, [ X" < p.

Proof. Recall from Definition 3.4 that p* = v(0, o). Then by combining this with the two
assumed inequalities and Lemma 3.1, we have

p* = U(O7 1'0)

w(0, z0,y) + Ay + €

E [X%gco’CY —p ! (y — X%m’a)j + Ay + 2¢

E[XP7] + (y—p B[ (y - xp7°) ]) + 2
E [X77°] + ACVaR,, [X7:7°] + 2e.

| VAN VAN

IN

But, of course, by the definition of p*, we also have

E [X77°] + ACVaR,, [X3:7°] < p*.

Then we can record the following corollary regarding obtaining an optimal control.

Corollary 3.1. Let y* € R satisfy

’LU(O, Zo, y*) + )\y* - meaﬂgi [UJ(O, Zo, y) + Ay]
y
and let o € A satisfy
0,x0,a* —1 * 0,z0,0* + *
E | X7 —Ap (y — X7 ) = w(0, zg,y").
Then o* is an optimal stopping time for (3.6). That is,
p =B | Xp| 4o cvar, [xgo]

This is straightforward from Theorem 3.2 with € = 0.



A Time-Inconsistent Optimal Stochastic Control Problem 38

3.3 Properties of the Auxiliary Value Function

In this section, we investigate various properties of the auxiliary value function w, which is
defined in (3.7). In particular, we demonstrate that w is the unique locally Holder continuous
viscosity solution of (3.8) which satisfies certain growth conditions to be specified.

We also include in this section some additional properties of both practical and theoretical
interest. First, we include some sufficient conditions for the auxiliary value function w to be
concave in y. In these cases, we can optimize over the auxiliary value function via gradient
descent. Furthermore, we include a characterization of the definition of CVaR used in this
chapter in (3.4) as the unique continuous function satisfying certain intuitive properties.

3.3.1 Analytical properties of the auxiliary value function
We begin by observing a trivial boundary condition for w.
Proposition 3.1. For each (z,y) € R x R, we have

w(T,z,y) =z —Ap~ 'y — )"

The proof of this is straightforward from the definition of w.
We next consider a much more subtle regularity result of the auxiliary value function. In
particular, we show that w is Lipschitz in (z,y) but only locally 1/2-Hélder continuous in ¢.

Proposition 3.2. There exists C' > 0, which depends only on p, o, and T, such that for
any (t1,x1,y1), (t2,x2,y2) € [0,T] x R x R we have

w(ty, z1,41) — w(ta, 22, 50)| < C (w1 — w2l + g1 — yol + (1 + Jaa| + |a2|)[tr — t2]?) .

That is, the auzxiliary value function is Lipschitz continuous in (x,y) and locally 1/2-Hélder
continuous in t.

Proof. 1. Fix any y € R and (1, 1), (t2,22) € [0,7] x R. Let a € A be arbitrary. Then
we see

’w<t27 T2, y) > E |:X;,2’12’a _ /\p*1 (y _ X;_?,xQ,a)+:|

> | |:X;1,xg,a . /\p—l (y . X;},xg,a)+:| - (1 + )\p—l) E [|X§3,m2,a . X?,xz,a” )

Our goal is to bound the second term on the right-hand-side independently of a.
By Holder’s Inequality it suffices to consider the squared-expectation. We begin by
assuming that t; < ty. Define ¢ : [t1,t2] — R by

61(s) = E (X2 — 35)°



A Time-Inconsistent Optimal Stochastic Control Problem 39

for each s € [t1,t5]. Using It6’s Lemma and the growth bounds on g and o given in
(3.3), we compute

¢1(s) — (11— 22)* = E/ (2 (X0 = @) (X, ) + 0 (X", @,)?) du
t1

E/ (Xil,m,a—g;2)2du+02E/ (1+ |X51’ml’a|)2du

t1 t1

IN

s

IE/ (X;ma—g;z)QdquC?E/ (14| X020 — | 4 |2o]) du

t1 t1

IA

< (1+ 302)1[«:/ (X0 — 29)* du+ 3C? (1 + |22 ?) (5 — 1)

t1

< (1+3C? /t ¢1(u)du + 3C*(1 + |z9)?|s — t].
But then by Gronwall’s Inequality, we see
d1(t2) < ((z1 — 22)* 4+ 3C* (1 + |22|)*[t1 — t2]) exp (1 4+ 3C*)T) .
Similarly, we can define ¢s : [t2,T] — R by
$a(s) 1= B (Xthober — xlnaner?

for each s € [ty, T]. Using It6’s Lemma and the Lipschitz bounds on p and o given in
(3.2), we compute

Pa(s) — ¢1(ta) = E/ 2 (X — Xpm2 ) (X" ) — (X", an,)) du
t
—i—E/ (J(Xi,wl,a7 ) — o(XLr2e ozu))2 du
¢
< (204 CE / (Xt — xtaea)? gy

t
< 21 +C’2)/ ¢o(u) du.
t
But then by Gronwall’s Inequality, we see

¢2(T)
S ¢1(t2) exp (2(1 + C2)T)

< (143C?) (Jor — za| + (1 + [aa])|tr — ta]'7?) exp (3 + 5C%)T) .

E (X;lml’a o X%IQ,(X)Q

Repeating this argument for the case t5 < t1, we see

1,0 — z1,a\ T el
E [ X" — \p! (y1 — Xy ) } < w(t,xa,y2)+C (|21 — 2| + (L4 |z1] + |22|)|t1 — t2|1/2) ,
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if we take C' := (1+Ap~') (1 + 2C)exp (3(1 + C?)T). Because a € A was arbitrary,
we then conclude

w(ty, z1,y) < w(ty, 2,y) +C (]xl — zo| + (14 |21 + |x2|)|t1 — t2|1/2) .
By reversing the roles of (t1,x1) and (3, x2), we also see
w(ty, x1,y) = w(ts, 2, y)] < C (lxr = | + (1+ 21| + |wa])[tr — ta]'/?) .
2. Fix any (t,z) € [0,7] x R and 3,y € R. Let a € A be arbitrary. Then we see

w(t,z,y2) > E [X;M — A7 (g — X%I,Q)Jr]

v

E [X?m = A~ (g1 — X?”’ay] =y — el
Because a € A was arbitrary, we then conclude

w(t, z,y1) < w(t, z,y2) + A~ |yr — v
By reversing the roles of y; and ys, we also see

w(t, 1) — w(t, z,y2)| < A~ yr = ya-

Of course, then for any (¢1, z1,41), (t2, Z2,92) € [0, T] xR xR, we can put these separate
results together to see

‘w(t17$17y1) - w(t17$17y2)| + |w(t1,x1,y2) - W(tg,l'g,ygﬂ
Ay — gl + C (|21 — 2] + (L4 |21 + |22]) [t — £2]'/?)
C (o1 — o] + ly1 — vol + (1 + || + |22])[t1 — tz\m)) ;

|w(t17 X1, yl) - U)(tg, X2, y2)|

IAIA A

because C' > Ap~'.
]

From this we immediately obtain a weaker (but more easily stated) continuity result and
a linear asymptotic growth bound.

Corollary 3.2. The auxiliary value function w is locally Hélder continuous satisfies
w(t,z,y)| < C(1+ 2|+ Jyl)
for all (t,x,y) € [0,T] x R x R, for C > 0 which depends only upon u, o, and T

We end this section by stating the corresponding Dynamic Programming Principle for
the auxiliary value function w. As in the previous chapter, the purpose is to later pass this
functional equality to smooth test functions to show that w is a viscosity solution of (3.8).
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Proposition 3.3 (Dynamic Programming Principle). Fiz (t,z,y) € [0,T) x R X R and let
{6} be any collection of stopping times valued in [t,T| which are indexed by oo € A. Then
for any h > 0 such that t + h <T', we have

w(t, z,y) = suBE [w ((t + h) A GQ,X(Zi’Z‘)Aea, y)} )
aE

Because the controls are contained in a bounded set and we have shown the auxiliary
value function w is continuous, this is a standard result which may be found, for instance,
in Chapter 5 of Fleming-Soner [FS06].

3.3.2 Viscosity solution characterization

The goal of this section is to characterize the auxiliary value function w as the unique
locally Holder continuous viscosity solution of (3.8) which satisfies the growth condition
from Corollary 3.2. Compared to the results of the previous chapter, this characterization is
very standard.

For the sake of completeness, we recall a working definition of viscosity solution for (3.8).

Definition 3.6. Let u: R x [0,7] x R x R — R be a continuous function.
1. We say that u is a viscosity supersolution of (3.8) if

a) w(T,z,y) >x—Ap~(y— ) for all (z,y) € R xR, and

b) For any (to, xo,yo) € [0,T) x R x R, any smooth function ¢ : [0,T] x Rx R — R
for which (u — @) attains a local minimum at (ty, zo,yo), we have

1
d)t(tOu Zo, yO) + Su}i :U’(x(b a)¢m<t07 Zo, yO) + 50'([[’0, a>2¢mm<t07 o, ?JO) Z 0.
ac

2. We say that u is a viscosity subsolution of (3.8) if

a) w(T,z,y) <z —Ip 'y —x)" for all (z,y) € R X R, and

b) For any (to, xo,yo) € [0,T) x R x R, any smooth function ¢ : [0,T] x Rx R — R
for which (u — @) attains a local maximum at (ty, zo,yo), we have

1
¢e(to, xo, Yo) + SUE (0, a)pz(to, Zo, Yo) + 50(%, a)* ¢z (to, 2o, yo) | < 0.
ac

3. We say that u is a viscosity solution of (3.8) if it is both a viscosity supersolution and
a viscosity subsolution.

Proposition 3.4. The auxiliary value function w is a viscosity solution of (3.8).

This follows by using the Dynamic Programming Principle functional equality from
Proposition 3.3 to smooth test functions exactly as in Proposition 2.4 in the previous chapter.



A Time-Inconsistent Optimal Stochastic Control Problem 42

Theorem 3.3. The auxiliary value function w s the unique locally Hoélder continuous vis-
cosity solution of (3.8) for which there exists C' > 0 such that

u(t, z,y)| < C(1+ |z + |yl)
for all (t,x,y) € [0,T] x R x R.

Again, this follows immediately from standard theory because the control set A is compact
and the viscosity solution w is assumed continuous and of linear asymptotic growth. For a
proof of this statement, see Fleming-Soner [F'S06] or Touzi [Toul3].

3.3.3 Sufficient conditions for concavity in the additional state
variable

Recall that the main result of this chapter in Theorem 3.1 states that we can solve the original
time-inconsistent stochastic control problem by maximizing the auxiliary value function over
choice of the initial condition of an additional state variable y. Therefore, a natural condition
to investigate is when the auxiliary value function w is concave in the additional state
variable.

Recall that the auxiliary value function w is defined in (3.7) as a supremum over concave
functions of y. Then it is not necessarily concave. However, we can demonstrate a sufficient
condition for concavity.

Recall the following definition of a partial order on L?(§2,P).

Definition 3.7. Let D denote the collection of all functions ¢ : R — R which are non-
decreasing, concave, and for which there exists C > 0 such that |¢p(z)| < C(1 + z?) for all
xr € R. We define a partial ordering < on L*(Q,P), called second-order stochastic dominance,
as

XY
if and only iof
E[¢(X)] < E[p(Y)]
for all ¢ € D.

We then state a general result regarding concavity of the auxiliary value function w in
the additional state variable y.

Proposition 3.5. Fiz (t,z) € [0,T] x R. If the map
o X%x’o‘
18 concave with respect to second-order stochastic dominance, =, then the map
y = w(t,z,y)

18 concave.
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Proof. Let y,y' € R and 6 € [0,1]. Let a,a’ € A be arbitrary controls. Note that the
function ¢ : R — R defined as
$(z) i=a+Ap~ Gy + (1= 0)y —2)"

is non-decreasing, concave, and bounded by a quadratic asymptotically. Then by the con-
cavity with respect to <, we see

i ' AT
w(t,z, 0y + (1—0)y) > E|[Xpo0ort0e =t (0y + (1= )y — Xhroetti=te ) }

) :(b <X;r,9a+(1—o9)a’)i|

> E :¢ (QX%W +(1— Q)X;‘m/ﬂ

— E[9X"0r 4 (1 0) x5 |

A+
-\ 'E [<9y +(1—=0)y — X535 — (1 —0) X5 ) } :
We also note that the map

(z,9) = (y — 2)" = max{y — z,0}

is (jointly) convex as the maximum of two affine functions. Then we see
/ t,x,o taa\ T t,z,a\ T / taa\ T

E <0y+(1—9)y XL (1 - 0) XL ) <E|0(y— X5+ (1-0) <y _ XL ) .

Combining these two inequalities, we see
/ AN

w(t,z,0y+(1-0)y) > 6R [X;x’o‘ -~ (y - X%x’af] +(1-0)E {X;x’o‘ —Ap! (y’ — Xpne ) ] .

Because «a, o/ were taken to be arbitrary, this implies
wit,z, 0y + (1= 0)y) > Bu(t, z,y) + (1 — O)w(t, z, ).
O

In general, it is difficult to verify the condition that o — X%x’a is concave with respect
to second order stochastic dominance. However, in the following corollary, we make note of
a special case which shows up in the application at the end of this chapter.

Corollary 3.3. Suppose that i1 : R x A — R is jointly concave in (x,a) and non-decreasing
in x. Suppose also that o : R x A — R is affine in (x,a) and independent of x. Then for
any (t,z) € [0,T] x R, the map

y— w(t,z,y)

18 concave.
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Proof. By Proposition 3.5 it suffices to show that the map
o X%x’“

is concave with respect to second order stochastic dominance. We aim to demonstrate a
stronger statement — that is it concave almost-surely.
Fix o,/ € A and 6 € [0, 1]. For notational convenience, we define

X, = 0X\m 4 (1—0)Xb=
Y. — Xt,m,9a+(1—9)a’

for each s € [t,T]. Then for any s € [t,T| we can compute
X, = z+46 (/S w(XE" ) du + /S o( XL, au)du)
t t
+(1—6) (/S w(XE= o Vds + /8 o(Xboe a;)du)
t t
< ot [ n0, (=0 dut [ 0 (X80, + (1= 0)a) W,
t t
where we used the fact that p is concave and o is affine. We can also compute
X, = v+ /S (X o, 0, + (1 —0)al)du + /8 o (Xu, 0, + (1 —0)a,) dW,
t t
= x+ /S (X, 0o, + (1 —0)al)du + /s o (X,,0c,+ (1—0)d)dW,,
¢ t

where we used the fact that o is independent of x.
But then subtracting these two results, we see

YS—XSZ/ 1 (X, Oay + (1= 0)al,) — p (X, fa, + (1 — 6)a,) du
¢

for each s € [t, T]. Because p is non-decreasing in x and X; = X, = , this implies
Xm0 = X > Xp = 0X5™° 4 (1 - 0) X",

almost-surely.

3.3.4 Some additional properties of conditional value-at-risk

The goal of this section is to examine some analytical properties of CVaR as defined in
(3.4). The purpose of this is to justify our choice of definition for CVaR in terms of natural
properties because there are several competing definitions in the literature.

Recall the following common choice of metric for P;:
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Definition 3.8. We define the 1-Wasserstein metric on Py as follows: For any pi, e €
Pl(R), let

Wi(uy, p2) :=  inf / |z — 29| y(dzy, dxs), (3.9)
RxR

vE (p1,12)

where T'(p1, 12) denotes the collection of all probability measures on R x R with marginals
1 and o on the first and second coordinates respectively.

We then immediately have a continuity result about CVaR as defined in this chapter.

Proposition 3.6. For any i, pe € P1(R), we have
|CVaR, (1) — CVaR,(u2)| < p~ Wilpu, pa)-

Then CVaR, is Lipschitz continuous with respect to the 1-Wasserstein metric.

Proof. Fix any y € R and € > 0. By (3.9), there exists a probability measure v on R x R,
with marginals p; and ps on the first and second coordinates respectively, such that

W (g, o) + € > / |z — 29| y(dxy, dxs).

RxR

But then by Lemma 3.1, we have
virt [0 mdn) = g [ (-m) (e do)
R RxR

< y+pt / (y — 22)Ty(day, dag) +p* / |z — 29| y(dzy, das)
RxR R

xR

IA

v [ (=) elde) + 57 (WG, )+
< CVaR,(p2) + p~ ' Wilp, p2) + p e
Recalling that y € R and € > 0 were both arbitrary, we conclude
CVaR,(p1) < CVaR,(ua) + p~ ' Wi (p1, p2).
Reversing the roles of p; and ps, we obtain the claimed Lipschitz bound. O]

Corollary 3.4. Suppose that F': P1(R) — R is continuous with respect to the 1-Wasserstein
metric and satisfies

F() = p((—00, VaR, ()™ / 2 p(de)

(—o0, VaRy (1))

for any p € P1(R) which has no atoms. Then F = CVaR,.



A Time-Inconsistent Optimal Stochastic Control Problem 46

Proof. 1. We start by verifying that CVaR, satisfies these properties. It is continuous
with respect to the 1-Wasserstein metric by Proposition 3.6. Let pu € Pi(R) be a
measure with no atoms. Then in particular, u({y*}) = 0, where we let y* := VaR,(u).

Then we can compute

CVaRy () = o= [ (4 ) ulde)
= [ ey -l

= [ euldn) 7 (o))

By the same arguments as in the proof of Lemma 3.1, we see that u ((—oo,y*)) < p
and p ((—o0,y*]) > p. But because pu({y*}) = 0, we can check

p < p((=00,y"]) = p((=00,97)) <p.

Putting this together with the computation above, we see

CVaR, (1) = p (o0, [ wp(da)

(7oory*]

2. Suppose that F' : P, — R is any other function which is continuous with respect to
the 1-Wasserstein metric and satisfies the property in the statement. Let p € P;(R)
be any probability measure for which F'(u) # CVaR, ().

For any € > 0, define u. € P; to be distribution of the sum of a draw from p and an

independent draw from a mean-zero normal distribution with variance e. We can write
write e explicitly in terms of a convolution as

pe(A) = / / La(e + ) p(c ) plde) dy

for any A € B(R). It is simple to verify that has finite first moment, so p. € P;(R). It
is also clear from the convolution formula that p. has no atoms.

Taking v € T'(u, p) to the joint distribution of (X, X +Y'), where X is a draw from p
and £ is an independent draw from a mean-zero normal distribution with variance e,
it is clear that the marginals of v are p and p. respectively. Then we can compute

Wi (i 1) < / 1 — 2o 1(da, doa) < VE[VE = 2.

RxR

Then p. — p in the 1-Wasserstein metric as € — 0.

But then F(u.) = CVaR,(j.) for all € > 0 because p. € P1(R), but by the continuous of
each function, F'(ue) — F(p) and CVaR,(u.) — CVaR, (1) as € — 0. The contradicts
the assumption that F'(u) # CVaR,(u).

[
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3.4 Application to Mean-CVaR Portfolio
Optimization

In this section, we illustrate a practical use of our main results in an application to portfolio
optimization under a Mean-CVaR objective. Our goal is to ultimately use this methodology
to compute the efficient frontier representing the trade-off between maximizing expected
log-return and minimizing the CVaR of losses. We emphasize that dynamic optimization
can significantly reduce CVaR while maintaining the same expected return as compared to
optimal static investment strategies.

3.4.1 Problem formulation

Consider a market consisting of n risky assets evolving via the SDE

d S(i) )

?j) = pidt + 37 dw?
for each ¢ € {1,...,n} and j € {1,...,d}. Here p € R™ is a vector of drifts and ¥ is the
covariance matrix of returns. The covariance matrix is assumed positive semi-definite so we
take ¥.1/2 to denote its Cholesky Decomposition. We also assume that there exists a risk-free
asset with drift r.

We assume that we choose a control o, which is a progressively-measurable process lying
in some compact set A, representing the percent of the portfolio exposed to each of the
n risky assets. For example, we might choose A := {a €ER"|a'Ya <1 } for a constant [
corresponding to a hard portfolio risk cap.

With this setup, our portfolio value Z evolves via the SDE

dze
Zi'

=[r+a (u—r1)] dt + o] 212 dw,.

For simplicity, we consider the log value of the portfolio, X;* := log Z;*, which can be seen
to solve the SDE

1
dX? = |r4+o) (u—11) - éatTZat dt 4 o) Y2 dW,. (3.10)

Without loss of generality, we assume Z§ = Sy = 1. Then, X§ = 0 and we can interpret X"
as the log-returns of the portfolio up to time t.
In this section, we consider the problem of maximizing a Mean-CVaR objective,

p* = sup [E [X7:"°] + ACVaR,, [X7:"]] (3.11)
acA

for fixed A > 0 and p € (0, 1). By varying A, we can compute a subset of the efficient frontier
between expected log-return and the CVaR of returns.
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3.4.2 Solution via gradient descent

By Theorem 3.1, the problem (3.11) is equivalent to the bi-level optimization

p* = sup (w(0,0,y) + \y), (3.12)
yeR

where
w(t,r,y) :=supE | X35 — Ap~* (y — X%x’a)q )
acA

By Theorem 3.3, the auxiliary value function w is the unique locally Holder continuous
viscosity solution of the HJB PDE (3.8) satisfying certain growth bounds. In particular, the
PDE is independent of y except in the terminal condition, so in practice we can compute
w(0,0,y) using only a grid in (¢,2) and a fixed value of y € R.

It is simple to check that the dynamics in (3.10) satisfy the conditions of Corollary 3.3.
Then the auxiliary value function w is also concave in y. Therefore, we conclude that it
suffices to obtain a maximum in (3.12) by gradient descent along y because the objective
function is concave in y.

3.4.3 Numerical results

In this section we consider a concrete example involving selection between a single risky
asset, representing a US stock index, and a risk-free asset. We compute an efficient fron-
tier representing the trade-off between expected log-return and CVaR when using optimal
dynamic strategies. For comparison, we compare to an efficient frontier when restricting to
static strategies, i.e. strategies where A is constant over time, representing a fixed leverage
ratio.

For our example, we choose = 11%, o = 20%?, and r = 1% as market parameters.
We take our time horizon as T' = 1 and constrain our leverage ratio to lie within the range
A := [-6,+6].? Finally, we consider CVaR at the a = 95% threshold.

For each fixed A\ > 0, we solve the corresponding dynamic mean-CVaR optimization
problem using the techniques outlined in the previous section. To obtain numerical solutions
of (3.8), we employ finite-difference solvers with upwinding to guarantee a monotone scheme
(See Courant-Isaacson-Rees [CIR52] and Barles-Souganidis [BS91]). For the purposes of this
chapter, we obtain numerical supergradients in y through a finite-difference approximation.
In Miller-Yang [MY15], there is a nuanced discussion of how to obtain a supergradient by
solving a PDE corresponding to the formal linearization of (3.8).

2This choice corresponds, roughly, to the historical arithmetic mean and standard deviation of annual
returns on the S&P 500, including dividend reinvestment, over the period 1928-2014. However, we emphasize
that the exact choice of parameters should not be taken too seriously in this example.

3We choose this range to correspond, roughly, to the maximum leverage a qualifying US investor can
achieve with a portfolio margin policy, as described at http://www.finra.org/industry/portfolio-margin-faq.
In practice, the exact constraints depend upon the type of investor and financial instruments used for
investment. We emphasize that this choice is meant for illustration only.
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Figure 3.1: The efficient frontier of Mean-CVaR portfolio optimization, representing the
possible trade-off between maximizing expected log-returns and minimizing CVaR, computed
by varying A € (0, 1].

We compute points on the efficient frontier between expected log-return and CVaR by
varying A over the interval (0,1]. For the purposes of this chapter, we compute expected
log-return and corresponding CVaR using Monte Carlo simulation of optimal trajectories for
each fixed value of A\. The resulting frontier is shown in Figure 3.1 (solid).

For comparison, we consider the same optimization problem when restricted to a subcol-
lection of static controls, defined as

Astatic = {A € A| there exists a € A such that A(t) =a for all t € [0,7T] a.s.} .

These strategies represent constant leverage portfolios. An important example of these is
the “buy and hold” strategy, e.g. A(t) = 1. Under this class of controls, X4 is normally-
distributed. Therefore, we can directly compute optimal strategies and construct the efficient
frontier.

In Figure 3.1, we illustrate a comparison between the efficient frontier under our dynamic
strategies and under static strategies. We see that by employing strategies with dynamic
leverage, we can significantly reduce CVaR at the 95% quantile while maintaining the same
expected log-return, as compared to a static leverage strategy. Similarly, we can increase ex-
pected log-return while maintaining the same CVaR using a dynamic strategy. For example,
the static buy-and-hold strategy, A(t) = 1, has an expected log-return of 9% and CVaR of
approximately 32%. By employing strategies with dynamic leverage, we can reduce CVaR by
approximately 50% while maintaining the same expected log-return, or alternatively increase
expected log-return by approximately 30% while maintaining the same CVaR.

We next turn our attention to an examination of statistical and qualitative properties of
the optimal dynamic control and resulting returns. In Figure 3.2, we illustrate the cumulative
distribution function (CDF) of X# under the optimal dynamic control corresponding an
expected log-return of 9%. We compare this to the CDF of X# under the buy-and-hold
strategy, which follows a normal distribution. While both of these distributions have the
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Figure 3.2: The cumulative distribution function of X# when following the static buy-and-
hold strategy and the optimal dynamic strategy which achieves the same expected log-return.
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Figure 3.3: (a) A sample path of stock prices and the corresponding portfolio log-return
process (X4"), and (b) the corresponding optimal leverage process (A*).

same expected value, the one corresponding to the optimal dynamic strategy has significantly
fatter (right) tails on the upside and an effective (left) floor on losses on the downside. We
attribute this to a (de-)leveraging effect of the dynamic strategy whereby it increases leverage
significantly once it has “locked in” gains and will de-leverage only as needed to discourage
losses exceeding a certain threshold.

This qualitative tendency of the optimal strategy to increase in leverage once it has
locked in gains is emphasized further by sample paths illustrated in Figure 3.3. Here, we
illustrate a particular sample path of stock prices (quoted as log-return), as well as the
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Figure 3.4: (a) A sample path of stock prices and the corresponding portfolio log-return
process (X4"), and (b) the corresponding optimal leverage process (A*).

corresponding optimal dynamic leverage process, A*, and the resulting portfolio log-return
process, X", Note that the stock price corresponds to the log-return under the static buy-
and-hold strategy, A(t) = 1. We observe that early on in the period, the leverage process
increases or decreases in sync with overall portfolio returns. However, as it becomes later in
the period and the portfolio return is positive, the optimal leverage increases significantly
before being capped at a fixed value. The optimal strategy generally does not appear to
decrease leverage late in the period, even with stock price declines, unless it is risking falling
below the loss threshold seen in the jump in Figure 3.2.

In Figure 3.4, we illustrate an alternative sample path which emphasizes how the increas-
ing leverage can lead to large returns on the upside. In this path, the leverage process, A*,
initially decreases to lower risk as the portfolio takes initial losses. However, in the latter half
of the period, as stock prices rise, the increasing leverage leads to a return on the portfolio
which significantly exceeds that of the buy-and-hold strategy. It is this transition from low
leverage when avoiding tail losses to high leverage when locking in gains which allows the
strategy to maintain a low CVaR while maximizing expected log-return.

The tendency of the optimal dynamic strategy to keep leverage higher than the static
strategy unless it is facing losses also helps explain the skew seen in Figure 3.2. Because
the dynamic strategy has the option to decrease its leverage to stop losses, it can achieve a
significantly lower CVaR while maintaining a preference for high leverage, which contributes
to large returns in positive outcomes. However, there is no such thing as a free lunch;
in neutral outcomes, the positive correlation between log-returns and leverage leads to de-
cay in portfolio value from convexity (See Perold-Sharpe [PS88]). In this sense, the optimal
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dynamic strategy shares many qualitative features with Constant Proportion Portfolio Insur-
ance (CPPI) strategies (See Black-Perold [BP92]). This makes sense as CPPI strategies are
generally employed to limit downside losses, while maintaining upside gains, using dynamic
trading.
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4.1 Introduction

The following chapter is based upon the joint work of Bayraktar-Miller [BM16], in which
we consider the problem of choosing an optimal stopping time for a Brownian motion when
constrained in the choice of distribution for the stopping time. We demonstrate that if the
stopping time is constrained to have a distribution consisting of finitely-many atoms then
this problem can be re-written as a sequence of time-consistent state-constrained optimal
stochastic control problems.

4.1.1 Problem formulation

In this chapter, we consider a probability space (€2, F,P) which supports a standard Brownian
motion W. We let F := {F;};>0 denote filtration, which is assumed to be right-continuous
and have all P-negligible sets contained in Fy. We consider a given pay-off function f : R — R
which is assumed to be Lipschitz continuous. We also use the notation

thZ:fE‘FWt

for any (z,t) € R x [0, 00).

In this chapter, we are also given a target distribution p, which is supported on (0, 00)
and assumed to consist of finitely-many atoms. Without loss of generality, we assume the
following representation:

M et Zpkét]“ (41)
k=1

wherer e N O=ty<t1 <---<t.,,p1+---+p-=1,and p1,...,p. > 0. We also introduce
the convenient notation Aty := t; — t,_y for each k € {1,...,r}. For some fixed zy € R, we
define the main problem considered in this chapter.

Definition 4.1. The distribution-constrained optimal stopping problem is to compute

p" = sup E[f(X7)],
TGT(,LL)
where we take T (p) to be the collection of all finite-valued F-stopping times whose distribution
is equal to p, and to find 7 € T (u) which attains the supremum.

That is, we choose a stopping time 7 whose distribution is equal to x4 in order to maximize
the expected pay-off of a stopped Brownian motion starting at xg.

We note that, for simplicity of notation, we often choose to write the distribution-
constrained optimal stopping problem interchangeably as

p*=sup E[f(X7)]
TET

s.t. T~ Prlty s

where 7 is the collection of all finite-valued F-stopping times.
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4.1.2 Overview of previous literature

While standard optimal stopping theory has focused primarily on unconstrained finite- and
infinite-horizon stopping times (e.g., Peskir-Shiryaev [PS06] and Shiryaev [Shi08]) and very
recently on constraints on the first moment of the stopping time (e.g. Miller [Mill6],
Pedersen-Peskir [PP13], and Ankirchner-Klein-Kruse [AKK15]), the paper on which this
chapter is based was the first on the problem of optimal stopping under distribution con-
straints on the stopping time.

It turns out that distribution-constrained optimal stopping is a difficult problem, with
stopping strategies depending path-wise on the Brownian motion in general. This is to
be expected because a constraint on the stopping time’s distribution forces the stopper
to consider what he would have done along all other paths of the Brownian motion when
deciding whether to stop. The main task at hand is to identify sufficient statistics and then
transform the problem so that it can be analyzed by standard methods.

In this chapter we illustrate a solution in the special case that the target distribution
consists of finitely-many atoms. Our approach consists of an iterative stochastic control-
based solution wherein we introduce controlled processes representing the conditional dis-
tribution of the stopping time. We then characterize the value function of the distribution-
constrained optimal stopping problem in terms of the value functions of a finite number of
state-constrained optimal control problems.

The key mathematical contributions of this chapter lie in our proof of a dynamic pro-
gramming principle relating each of the sequential optimal control problems. We provide
an argument which avoids the use of measurable selections, similar to the proofs of weak
dynamic programming principles in Bouchard-Touzi [BT11], Bouchard-Nutz [BN12], and
Bayraktar-Yao [BY13]. However, we deal with state-constraints in a novel way which relies
on some a priori regularity of the value functions (e.g. continuity and concavity in particular
directions).

While the problem of distribution-constrained optimal stopping is of mathematical inter-
est in its own right, we emphasize that there is room for applications in mathematical finance
and optimal control theory. For instance, we demonstrate an application to model-free su-
perhedging of financial derivatives when one has an outlook on the quadratic variation of an
asset price. Here, the distribution on the quadratic variation corresponds to that of a stop-
ping time by the martingale time-change methods utilized recently in Bonnans-Tan [BT13]
and Galichon-Henry-Labordere-Touzi [GHLT14]. Furthermore, the problem of optimal stop-
ping under moment constraints on the stopping time reduces to the distribution-constrained
optimal stopping problem in cases where there exists a unique atomic representing measure
in the truncated moment problem (e.g., Curto-Fialkow [CF91] and Lasserre [Las10]).



Distribution-Constrained Optimal Stopping 56

4.2 Main Results

In the following section we give an outline of the main results of this chapter. Given the
technical nature of the proofs of Lemmas 4.3-4.5, we relegate the full details to a later
section.

4.2.1 Construction of distribution-constrained stopping times

There are multiple ways to naturally represent a stopping time satisfying a distribution
constraint. In this section, we outline two particular such representations and illustrate how
they immediately lead to constructions of such stopping times.

We first provide a characterization of distribution-constrained stopping times in terms of
a partitioning of path space into regions with specified measure. Later, we make a connection
with controlled processes.

Lemma 4.1. A stopping time T has the distribution p if and only if it is of the following

form:
T = Z tk 1Ak7
k=1

almost-surely, where {Ay,..., A} partition Q@ and, for each k € {1,...,r}, Ay is Fy, -
measurable with P [Ag] = pg.

Proof. 1t is clear from the construction that such a 7 is a F-stopping time and 7 ~ pu.
The converse follows by taking a stopping time 7 such that 7 ~ p and defining the sets
Ay = {7 =ty} for each k € {1,...,r}.

[

With this in mind, we can immediately explicitly construct a stopping time with given
distribution.

Corollary 4.1. There exists a stopping time T such that T ~ p.
Proof. Define a partition {Aq,..., A} of  as

Al = {th - Wy < \/E(I)_l (pl)}
Ay = AW =W, <ty —t,®! L)} A
2 { to t1 = 2 1 (p2++pr \ 1

_ Pk
A, = AW, =W, <ty —tp & ——— AU~ UA,_
= e s vaeae (o 1)

A = Q\ (A U---UA_),
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where ® is the cumulative distribution function of the standard normal distribution. It
is clear that Ay is Fj, -measurable with P[A;] = p; for each £ € {1,...,r}. Then, by
Lemma 4.1, 7 := Zzzl tr 14, defines a stopping time with 7 ~ p. ]

The proof above constructs a stopping time which roughly stops when there are events
in the left-tail of a distribution. However, one could easily modify the construction to stop
in right-tail events, events near the median, or on the image of any Borel set of appropriate
measure under .

While this construction may suggest converting the distribution-constrained optimal
stopping problem into optimization over Borel sets of specified measure, we emphasize
next that there is no reason to expect the stopping times to be measurable with respect to
o(Wy,,...,W;.). In particular, in the next example, we show a construction of a distribution-
constrained stopping time which is entirely path-dependent.

Corollary 4.2. There exists a stopping time T, independent of (Wy,,...,W,), satisfying
T ~ L.

Proof. Define a sequence of random variables (M, ..., M,) as

Wy, — W,
Mk = (tk — tkfl)_1/2 max WS — Wtk71 — (S — tk,1>u

tp—1<s<ty by — tp—1

for each k € {1,...,r}. Then each M} is the absolute maximum of a Brownian bridge over
[tk—1,t], scaled by the length of the time interval. In particular, each M}, is F;, -measurable,
independent of (W; ,...,W; ), and equal in distribution to the absolute maximum of a
standard Brownian bridge on [0, 1], the cumulative distribution function of which we denote
by (0] BB-

Define a partition {A;,..., A} of Q as

Ay = {M < Ppp(p)}

Ay = M, < d L)} A

: { o BB(p2+~~+pr VA

A, = M, < o3 L)} AU U Ay
o= {nseg (2 1)
A = O\ (A U-—-UA,_).

It is clear that Ay is F;, -measurable with P [A;] = py for each k € {1,...,r}. Then, by
Lemma 4.1, 7 := >}t 14, defines a stopping time with 7 ~ g which is independent of
Wiy, oo, W), O



Distribution-Constrained Optimal Stopping 58

Clearly, the stopping time constructed above is an admissible stopping time in the
distribution-constrained optimal stopping problem, but there is no hope to express it in
terms of the value of the Brownian motion at each potential time to stop. While stopping
times involving the Brownian bridge may seem unnatural at first, their use is a key idea in
the proofs of Lemma 4.3 and Lemma 4.4.

It turns out that we can obtain a more manageable representation if we introduce an
extra controlled processes which represent the conditional probability of the stopping time
taking on each possible value. This vector-valued stochastic process is a martingale in a
probability simplex. In the next result, we make clear the connection between this process
and a distribution-constrained stopping time.

It turns out that we can obtain a more manageable representation if we introduce extra
controlled processes which represent the conditional probability of the stopping time taking
on each possible value. This vector-valued stochastic process is a martingale in a probabil-
ity simplex. In the next result, we make clear the connection between this process and a
distribution-constrained stopping time.

In the remainder of the chapter, we define

A= {a : Q% [0,00) = R" | a is progressively-measurable and E/ [lov||?dt < +oo} :
0
For any choice of y € R" and a € A, we denote

t
v :=y+/ asdWs,
0

for all t € [0,00). When needed, we will denote the kth coordinate of this vector-valued
process by Y ®):% We will occasionally abuse notation and leave out subscripts when they
are clearly implied by the context.

We also denote by A the following closed and convex set:

A={y=(,...,y) €0,1] |1+ - +y. =1} CR".

We then can state a lemma regarding a characterization of distribution-constrained stopping
times in terms of a state-constrained controlled martingale.

Lemma 4.2. A stopping time 7 € T has the distribution u if and only if it is of the form

= min {¢ Y(’“)’p’“zl}
r=, min {1 | Yy ’

almost-surely, for some a € A such that
YPt e A,

almost-surely, for allt > 0, and
yPee e fo,1,

almost-surely, for each k € {1,...,r}.
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Proof. 1. Let a € A be a control for which Y/ € A, almost-surely, for all ¢ > 0 and
Ytik)’p’a € {0, 1}, almost-surely, for each k € {1,...,r}. Define 7 as

= i t, | Y,\Pe = 1} .
re= min {n | Yy

It is clear from the properties above that E/tgk)’p’a € {0,1} for every k € {1,...,r} and
Y/ € A, which implies that 7 < ¢,, almost-surely. Then 7 € T, but we must check
that it has p as its distribution.

Fix k € {1,...,r} and note that

Plr =t =P | {17 =0} n {507 =0} ngyiP™ — 1} |

k—1

-~

A B
Note that B C A up to a set of measure zero because in the set B \ A, we have

k770¢ £,7OL
Y;EC)P ©),p

) = 1 for some ¢ < k. Because YP“ is a martingale

= 1 as well as Y,

constrained to A, this implies th)’p “ = 1, almost-surely, which contradicts Y;, € A.
Then we can conclude

Plr =] =P [thfc)’p’a = 1} = Dk

because Y, PP = p. and YV, is a martingale taking values zero and one at t;.

2. Let 7 be a stopping time such that 7 ~ x. Then define the [0, 1]"-valued process Y as
(k)
Yt =K |:1{T:tk} ‘ .Ft] .

Note that Y, = p. By the Martingale Representation Theorem, there exists a control
a € A for which Y =Y, almost-surely, for all ¢ > 0. We can then check that,

YO O =B (L + o+ Ly | ) = 1

so Y"* € A for all t > 0, almost-surely. Finally, for any & € {1,...,7}, we have
Y;tik)’p’a = 1g;=¢,) € {0, 1} because {7 = t;} is F;, -measurable.
Define a stopping time o as

= I 13 Y(k)’p’azl}
o= min {1] Y

and suppose that there exists a set A of non-zero probability on which 7 # ¢. Then
for some k,¢ € {1,...,r} such that k # ¢, the set B := AN{r =t} N {0 = t;} has
non-zero probability.



Distribution-Constrained Optimal Stopping 60

Suppose that ¢ < k. Then Y;g)’p " = 1 on B and because Y is a martingale con-

strained to A, it follows that Y;gf)’p * =1 on B, and consequently, Y;Sf)’p = lir=,y =0,
which contradicts 7 = t; on B. On the other hand, suppose that ¢ > k. Then
Y;ik)’p’a # 1 on B, but because Y;Ef)’p’a = 1{r—, this also contradicts 7 = ¢; on B.
Then we conclude 7 = o, almost-surely.

]

4.2.2 Solution via iterated stochastic control

We begin this section by defining a sequence of iterated distribution-constrained optimal
stopping problems.

It is convenient to define a sequence of sets which will be important in the remainder of
the chapter. For each k € {1,...,r}, define

Ap={(---,y) €Ay =0foreach € {1,....k—1}} CA.

Note that each set is closed and convex and Ay C Ay for each k € {1,...,r — 1}.
We then define a sequence of iterated distribution-constrained optimal stopping problems.

Definition 4.2. For each k € {1,...,r}, define a function vy : R x Ay, — R as

ve(x,y) = Elel’I; E[f(X7)] (4.2)

T
s.t. T~ Zézk yg(stg_tk_l.

Note that p* = vi(xg,p). Also, we emphasize that while each vy, is written as a function
depending on an entire tuple y = (y1,...,9,) € Ay, we have y; = -+ = y,_1 = 0 by the
definition of Aj.

Our goal is to convert these iterated distribution-constrained optimal stopping problems
into iterated state-constrained stochastic control problems.

First, we record a growth and continuity estimate for each wvy.

Proposition 4.1. There exists C' > 0, which depends only on f and pu, for which
oz, )| < C(1+ )
(@, y) — (@’ )] < Clo =2
for each k € {1,...,r} and all (z,y) € R x Ag and 2’ € R.

We emphasize that we do not at this point have any guaranteed continuity in y. Therefore,
the first inequality does not follow from the second. It is important to note that the second
inequality is a Lipschitz continuity estimate which is uniform for all values of y € Ay.
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Proof. Recall that f is assumed to be Lipschitz continuity. Fix k& € {1,...,r} and (z,y) €
R x Ag. Let 7 € T be an arbitrary stopping time such that 7 ~ >, y¢dy,—4, , (such a
stopping time exists by Corollary 4.1). Then we have

EF(X9) < E[fF(X2)]
< [fO)] + L (Ja] + E[W,])
< O] + L (Je] + E (W, ])
< |f<o>|+L<|x|+\/?>.

Because 7 was arbitrary, we conclude

\WWWNS<U®N+L+VEZ>G+M®-

Similarly, for any 2’ € R, we have

v

Fx]
FXD) =Lz —a].

vi(2',y) E
E
Because T was arbitrary, we conclude
vp(z,y) <o y) + L]z — 2'].
Reversing the roles of x and 2/, we see
|vi(z, y) — k(@' y)| < Lo — 2.

Then the result holds for C' > 0 sufficiently large. O

In the remainder of the chapter, it will prove useful to consider a type of perspective map
on the sets Ay. For each k € {1,...,7}, define Py : Ay — Ay as

W, ) if g = 1
P R TRNIES Z ; 4.3
% (Y1, Yr) { (Yra1 + -+ 4) 70, 0, Ypt, -5 yr) iy < 1 (4:3)

We note three key properties of this map.
1. For any y € Ay \ {ex}, we have Py(y) € Ay,
2. For any y € Ay, the kth coordinate of Py(y) is either zero or one, and

3. The map Py is continuous on Ay \ {ex}.
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We now provide a dynamic programming lemma whose proof has the same flavor of the
weak dynamic programming results in Bouchard-Touzi [BT11], Bouchard-Nutz [BN12], and
Bayraktar-Yao [BY13]. Compared to these previous results, we have a priori continuity of
the value functions on the right-hand-side, so we do not need to consider upper- and lower-
semicontinuous envelopes. However, we still need to avoid measurable selection, which is a
non-trivial task in state-constrained problems. We extend the ideas of a countable covering
of the state-space by balls, each associated with a nearly optimal stopping time. To deal with
the state-constraints, we employ an argument that utilizes the compactness and convexity
of A, along with the continuity of v, ;. The proof of this lemma is largely the heart of the
chapter, but is quite involved, so it is relegated to a later section.

Lemma 4.3 (Dynamic Programming). Suppose that for some k € {1,...,r — 1}, the value
function vgy1 : R X Agyy — R is continuous. Then for every (x,y) € R x Ay, we have

k),y,« T k),y,a x NeY
ve(w,y) = 31613 E YA(t,ly f(XAtk) +(1 - YA(tiy JUk+1 (XAtMYAytk)}
s.t. YV e Ay forallt >0 (4.4)

YA(]:i’y’a € {0,1}, almost-surely.

Proof. See Section 4.4.1.
]

Next, we provide an inductive lemma which shows that we may relax the terminal con-
straint. The proof of this idea relies on a careful construction of a perturbed martingale
which satisfies the terminal constraints of the previous problem, but does not significantly
change the expected pay-off. The proof of this result shares many of the key ideas as used in
that of the previous lemma. For the sake of exposition, we provide this proof in the appendix
as well.

Lemma 4.4 (Constraint Relaxation). Suppose that for some k € {1,...,r — 1}, the value
function vg1 : R X Agyg — R is continuous. Then for every (x,y) € R x Ay, we have

k),y,a T k),y,a T ,Q
o(ey) = sup B[YEFXE,) + (1= YA Yonr (X RYVED)]
s.t. Y% e Ay for allt >0, almost-surely,

(4.5)

where Py : Ay — Ay is the perspective map defined in (4.3).

Note, even though Py (ex) € Agi1, the right-hand-side of (4.5) is well-defined because vy 1
is known to be bounded and continuous. Then there is a unique continuous extension of the
map (z,y) — (1 —yx)vgs1(z,y) to from Ay \ {ex} to Ag. That is, taking the right-hand-side
to be zero when y = ey.

Proof. See Section 4.4.2.
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Lastly, we record an inductive lemma which provides basic regularity of the form of
continuity of each value function and concavity with respect to the extra state-variables. We
note that concavity is mainly used as a tool to obtain continuity in the extra state-variables,
which is the key property used in the proof of Lemma 4.3. We provide this proof in the final
appendix of the chapter.

Lemma 4.5 (Regularity). Suppose that for some k € {1,...,r — 1}, we have vy, €
C° (R x Agy1) and the map

Y = Ukt (.1', y)

is concave for each x € R. Then vy, € C° (R x Ay) and the map

y — vg(z,y)
is concave for each x € R.

Proof. See Section 4.4.3.

With these three lemmas in hand, we can now state the main result of this chapter.

Theorem 4.1. The function v, : R x A, — R satisfies

Ur(xa y) =E [f(thrﬂ

for every (x,y) € R x A,.
For each k € {1,...,r — 1}, the function vy : R x Ay — R is the value function of the
following state-constrained stochastic control problem:

x k).y,a T k),y,c T ,Q
ve(z,y) = Slel}?l E*y YA(tZy f(XAtk) +(1— YA(tiy )Vk+1 (XAtk’Pk(YAZ{tk»]
s.t. Y% e Ay for allt >0, almost-surely,

where Py : Ay — Ay is defined as in (4.3).
Of course, we then have
U* = ?]1(370,]91, s 7p7')-

Proof. 1t is clear that v, has the representation above because there is only one admissible
stopping time. The value function v, is continuous by the smoothing properties of the heat
equation (See Evans [Eval0]). For each fixed z € R, the map y +— v,.(z,y) is trivially concave
because A, is a singleton set. The result follows by iteratively applying Lemmas 4.3-4.5.

O
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4.2.3 Time-dependent value functions and an associated HJB
equation

For the purposes of this chapter, we consider the results of Theorem 4.1 as a solution to
the distribution-constrained optimal stopping problem. However, we can perform one more
transformation which will put the problem in a form more amenable to practical solution
via numerical methods.

In particular, we convert to a time-dependent version of the state-constrained problems,
which will have a corresponding parabolic Hamilton-Jacobi-Bellman (HJB) equation.

We need to first introduce some extra notation which is specific to the time-dependent
problem. In the remainder of the chapter, we will denote

X0 o= a4 W, — W,
Yive = gy / a, dW,
t
for any (¢,z,y) € [0,00) x R X R", u € [t,0), and o € A. As before, we will occasionally
denote the kth coordinate of Y4¥* by Y (k) tya

Definition 4.3. Define a function w, : [0, At,] x R x A, = R as

wi(t, 2, y) == E[f(XZ)] -

For each k € {1,...,r — 1}, define a function wy : [0, Aty] x R x Ay — R as

k),ty,a T k),ty,a X Y,
wiltory) = sup B VAN + (L= YA o (X5, PUOGE))|
s.t. YV e Ay for all u > t, almost-surely,

where Py : Ay — Ay is defined as in (4.3).
We note an immediate relationship with the value functions of Section 4.2.2.

Proposition 4.2. For each k € {1,...,r} we have

Uk (.CL’, y) = wk(ou z, y)
for all (x,y) € R x Ay.
Proof. This result is obvious from the definition of wy and Theorem 4.1. O

Before stating a Dynamic Programming Principle for the time-dependent value func-
tions, we first investigate their regularity. In particular, we aim to demonstrate that w is
continuous on [0, At;) X R x Ay and lower semi-continuous on the boundary.
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Proposition 4.3. There exists C' > 0, which depends only on f and p, such that for each
ke{l,...,r—1}, we have

1/2

wk(t7x7y) - wk(tlwrlvy) S C <|t - t/| + |[E - l’/’>

for all (t,x,y) € [0, Atg] x R x Ay and (¥',2") € [0, Atg] X R such that t' < t. Furthermore,

t—t
wk<t/ax/ay) - wk(taxay) S C (Ltk _‘t + ’.Z' - .T/‘)

for all (t,z,y) € [0, Aty) x R x Ay, and (t',2") € [0, Aty) X R such that t' < t.

Proof. 1. Fix k € {1,...,r — 1} as well as (t,z,y) € [0,Atx] x R x A; and (¢',2') €
[0, Aty] x R such that ¢’ < . Let a € A be an arbitrary control for which Y% € A,
for all u > t, almost-surely. Define a new control o/ € A as

I
a, = lpuspa,

for all w > . In particular, we see that Y*:#" € A, for all u € [/, At;] and Yggz’al =
Y, almost-surely. Then

r k), /7 ,O/ /,Z‘/ k), /7 7a/ /71‘/ /7 70/
w(t@'yy) = B[V AT + (1= YA o (XA, YA

[ (k) ty,o ! k),ty,a !z Yo
= B[V X + (= YA o (XK PYAE))]

v

[ (k). t,y,0 T k),ty,o T Y,
E (YA FXEE) + (L= YA o (X5, POVAE))]

20 (B| X5, - Xan |+l =),

where C' > 0 is at least as large as the Lipschitz constants for f and vg,;. But recall
that for Brownian motion we can find C' > 0 such that

T 'z 1/2
E‘thk _XtAtk :]E|Wt/ _Wt| S CY|t_t/| / :

Using this and the fact that a was arbitrary, we then conclude

wi(t',@',y) = wilt 2, y) = 20(C + 1) (|t = ¢

+ |x—a:’|> :
2. Fixke{l,...,r—1} aswell as (¢t,z,y) € [0, Aty) x R x Ap and (¥,2') € [0, Atg) xR

such that t' < t. Define n := ,/% > 1. Let o € A be an arbitrary control for

which Yut/’yva/ € Ay, for all u > t/, almost-surely. Define new control @ € A as

e /
Qy =T O[Tu7
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where
Tu =0 (u—t) +

for all u € [t, Atg]. Note that o, € F;, by definition. Because 7, < u, we then have
o, € F, so it is an adapted control. We can also check by the time-change properties
of the Ito Integral that

(Waey = W Ya2) @ (07 (Wa, = W), YA

Then Y4 € Ay for all u € [t, Aty], almost-surely, by the convexity of Ay and the
martingale property of Y. Then « is an admissible control.

Then we can compute

k), ty,a T k),ty,a X Y,
wi(tzy) = E VARG + (= YA e (XK, PYAL))]
k)t y,0f ' k)t y,of !z !yl
> E YA PO + (= Y o (XA ROKP))]
—2C (Jz —2'| + (1 = n " E |[Way, — Wel).

Now we proceed to bound the final term in this inequality. First, note that by the
convexity of z — /2, we can a bound

t—t O\ V2 t—t
—1
=1 >1— ——.
7 ( " Atk—t> =T (A — 1)
Furthermore, for large enough C' > 0, depending only upon ¢,, we have E |W, | < C for
all u € [0,%,]. Then we can estimate

t—t
1—n HE — Wyl <20 ———.

Putting these together and recalling that o was arbitrary, we conclude

t—1t
el 2y) > w(t' 2 y) — 20(1 + C) (|:c—x’| L=t ) .
Atk —t

Then we can immediately make the following claim:

Corollary 4.3. The function w, : [0,At,] x R x A, — R is continuous. For each k €
{1,...,7 = 1}, the function wy : [0, Aty] x R x Ay — R is lower semi-continuous, concave
iny, and continuous when restricted to [0, Aty) x R x Ay.
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Proof. The continuity of w, is a standard result because there are no controls involved in
the definition and the terminal pay-off is assumed Lipschitz. The remaining claims follow
from the same argument as in the proof of Lemma 4.5 when using the estimates from
Proposition 4.3. O

The upside of this representation is that we can characterize each time-dependent value
function wy, as a viscosity solution of a corresponding HJB equation. At this point, we can
prove a Dynamic Programming Principle for the time-dependent value functions. While
these are state-constrained stochastic control problems, we can directly use the a priori
continuity of wy in y and convexity of A, as in the proof of Lemma 4.3.

For every t > 0, define A; as the sub-collection of controls in A which are independent
of F;. Then we have the following result.

Theorem 4.2. Fix k € {1,...,r — 1}, (t,z,y) € [0,Atx) x R x Ay, and any h > 0 such
that t + h < Aty. Let {7%}aea, be a family of stopping times independent of F; and valued
in [t,t + h]. Then
w(t,z,y) = sup E[w(re, X Y2
ac Ay
s.t. YEve e Ay for all u > t, almost-surely.

Proof. See the Appendix of Bayraktar-Miller [BM16].
]

From this result, we immediately can verify that each time-dependent value function is a
viscosity solution of an HJB. Once we have the Dynamic Programming Principle in hand, this
result becomes reasonably standard, so we direct the interested reader to Katsoulakis [Kat94],

Bouchard-Nutz [BN12|, and Rokhlin [Rok14].

Proposition 4.4. The function w, : [0,At,] x R x A, — R is the unique solution of the
following heat equation (in reversed time):

U+ 3use =0 in [0,Af) X R x A,
u=f on {t = At} x R x A,.

For each k € {1,...,r =1}, if wy : [0, Atg] X R x Ap X R is a lower semi-continuous viscosity
solution of the following HJB equation:

{ us + sup [%um +a-Dyu, + %aTDzu a] =0 in[0,Aty) x R x Ay
a€hi(y)

u=ypf(z)+ (1 — yp)wrs1 (0, 2, Pr(y)) on {t = Atg} x R x Ay,
where Ag(y) :={a € R" | Fe > 0 s.t. y+ a(—€,€) C Ag}.

One would then expect to be able to prove a comparison principle for these HJB equation.
Because the controls are unbounded, the Hamiltonian is potentially discontinuous, so this is
not an immediate result. However, one would expect to be able to show that each w is the
unique lower semi-continuous viscosity solution which has at most linear asymptotic growth
in x. We leave the details of this procedure to future work.
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4.3 Application to Superhedging with a Volatility
Outlook

In this section, we consider a particular example of an application of distribution-constrained
optimal stopping in mathematical finance. In particular, we consider the problem of model-
free superhedging a contingent claim with payoff f(Xr) using only dynamic trading in an
underlying asset X.

We assume that the price process X; is a martingale under some unknown martingale
measure QQ, but do not specify the exact volatility dynamics. However, in this problem
we assume that we have an outlook on the volatility in the form of the distribution of the
quadratic variation, (X)z.!

4.3.1 Model-free super-hedging setup

We follow the model-free setting of Galichon-Henry-Labordere-Touzi [GHLT14] and Bonnans-
Tan [BT13]. Let Q := {w e C([0,T],R) | wo = 0} be the canonical space equipped with

uniform norm ||wl||s = sup |w¢|, B the canonical process, Qy the Weiner measure, F :=
0<t<T

{Fi}Yo<i<r the filtration generated by B, and FT := {F;' }o<i<r the right-limit of F.
Fix some initial value g € R. Then we denote

Xt =Ty + Bt-

For any real-valued, F-progressively measurable process « satisfying fOT a?ds < oo, Qp-a.s.,
we define the probability measure on (€2, F),

Q" :=Qyo (X!,
where

t
X7 = +/ o, dB,.
0

Then X¢ is a Q%local martingale. We denote by Q the collection of all such probability
measures Q on (£2, ) under which X is a Q-uniformly integrable martingale. The quadratic
variation process (X) = (B) is universally defined under any Q € Q, and takes values in the
set of all non-decreasing continuous functions from R, to R.

Let p be a given probability distribution of the form (4.1). Then we consider the problem:

U:= sup EQ[f(X7)]
QeQ
s.t. <X>T ~ I,

"'We note that, while it may seem unlikely that we have an atomic measure representing our volatility
outlook, this is a reasonable starting place for two reasons. It is possible to approximate more general
measures by atomic measures since it is possible to prove continuity of the value function in the Wasserstein
topology (See e.g. Lemma 3.1 in Cox-Kéllblad [CK15]). Second, pricing by allowing only a finite number of
scenarios, as opposed to specifying a full continuous-valued model, is sometimes the standard in industry (e.g.
the specification of rates, default, and prepayment scenarios in standard models for securitized products).
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where Q is a collection of admissible martingale measures. This corresponds to a model-free
superhedging price in a sense made clear by the duality results in, for example, Bonnans-
Tan [BT13].

4.3.2 Equivalence with distribution-constrained optimal stopping

We show that this problem is equivalent to distribution-constrained optimal stopping of
Brownian motion.

Proposition 4.5. We have

U= suwp EO[f(Xr)] — sup E®[f(X,).
QeQ TET (1)
s.t. <X>TNN7

where Qy is the measure under which X, is a Brownian motion.

Proof. This argument can be found in Theorem 2.4 of Bonnans-Tan [BT13]. For complete-
ness, we reproduce it below.

Let Q € Q such that the Q-distribution of (X) is u. It follows by the time-change
martingale theorem that X; = o + W<X>T where W is a standard Brownian motion and

T:=(X >£ is a stopping time with respect to the time-changed filtration with distribution
p. Then U < sup E® [f(X,)].

TU

Let 7 be a stopping time such that 7 ~ u. Define a process X7 as
Xt =x+ BT/\%'

Then X7 is a continuous martingale on [0, 7] with (X7)r = 7. Then X7 induces a probability
measure Q € Q such that (X")7 = 7 ~ u. Then the opposite inequality holds.
O

Then one can obtain a model-free super-hedging price with a volatility outlook by solving
the iterated stochastic control problem in Section 4.2.2.

4.3.3 Numerical example

In this section we obtain approximate numerical solutions of the distribution-constrained
optimal stopping problem using finite-difference schemes.

In particular, we consider two potential outlooks on volatility. In the first, the binary
outlook, we assume equal probability between a high- and low-volatility scenario:

1 1
= =0 —dog.
%) 5 104—2 20
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In the second, we augment the binary outlook with a third extreme volatility scenario which
occurs with small probability:

9 9 1
=—0 —0 —0100-
Hs 2= 55010 + 5002 + 100100
Our goal is to compute the model-free superhedging price of a European call option under
each volatility outlook. Because we do not restrict to models where the price process is
non-negative, we can take the pay-off to be f(z) := 2% without loss of generality.
Then, as before, we define value functions for each outlook as

vo(x) = sup B [f(W,)] and v(e) == sup E*[f(V)].
TET (p2) TET (us)

We solve the problem using the iterated stochastic control approach from Section 4.2.2.
In particular, obtaining a viscosity solution of the corresponding Hamilton-Jacobi-Bellman
equation in Section 4.2.3 using a finite-difference scheme. It is important to emphasize that,
because of potential degeneracy due to the extra state-variables in wy and ws, it is critical
to use a monotone numerical scheme.

In these results, we apply a version of the wide-stencil scheme introduced in Ober-
man [Obe07]. In particular, we approximate the non-linear terms in each equation by
monotone finite-difference approximations of the following form:

.
_9 _ _
<1) (um uxy)(l)w e u(r + h oty + k) — 2u(x, t,y) +u(x — h,t,y — k)

a a ke (t,,y) h2 ’

sup

a€R Ugy Uyy

where the set IC(t,z,y) is a collection such that y £ k lies on nearby grid-points. For a
rigorous analysis of wide-stencil schemes for degenerate elliptic equations, we refer the reader
to Oberman [Obe08; Obe07] and Froese-Oberman [FO11].

For comparison, we consider two main special cases, which we refer to as the “mean
volatility” value and the “support-constrained” value. We define the mean volatility value
as the model-free superhedging price obtained by assuming the quadratic variation will be
equal to the mean of the distribution in the corresponding distribution-constrained problem.
We define their corresponding value functions as v, and v, respectively. On the other hand,
we define the support-constrained value as the model-free superhedging price obtained when
only restricting the quadratic variation to have the same support as that of the distribution
in the corresponding distribution-constrained problem. We define their corresponding value
functions as v, and U3, respectively.

We expect the following ordering;:

and
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Figure 4.1: Comparison of the model-free superhedging values for with distribution con-
straints on quadratic variation, support constraints on quadratic variation, and under aver-
aged quadratic variation. Each of these is in the two-atom (binary) volatility outlook. The
distribution-constrained value corresponds with the value function of an optimal stopping
problem under a two-atom distribution constraint.

Furthermore, we note that we can compute v,, Uy, v, and v3 explicitly in terms of heat
kernels.

We illustrate the value function for the two- and three-atom problem in Figure 4.1 and
Figure 4.2, respectively. As expected, we see a superhedging value which is increasing in
the underlying asset price (or, equivalently, decreasing in the strike price) and respects the
bounds implies by the support-constrained and average-volatility models. As expected, the
bound provided by the support-constrained superhedging problem is particularly poor in the
three-model volatility outlook, where we stipulate that the high volatility (high value) case
Is rare.

It is interesting to note that careful comparison of the two figures illustrates an increase in
superhedging value between the two volatility outlooks which is roughly proportional to the
increase in square-root of expected quadratic variation. For example, there is approximately
a 25% increase in value at x = 0, which is essentially exactly in-line with the 25.2% increase
in square-root of expected quadratic variation between the two outlooks. This matches our
intuition that call option superhedging prices should be proportional to expected volatility
to first order.

In Figure 4.3, we provide a probability density estimate of W7 conditional on 7 = 10 and
7 = 20 for an approximate optimal stopping time for the two-atom volatility outlook model
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Figure 4.2: Comparison of the model-free superhedging values for with distribution con-
straints on quadratic variation, support constraints on quadratic variation, and under aver-
aged quadratic variation. Each of these is in the three-atom (trinary) volatility outlook. The
distribution-constrained value corresponds with the value function of an optimal stopping
problem under a three-atom distribution constraint.

starting from W, = 0. We obtain these estimates by performing Monte Carlo simulations
with controls estimated from a numerical solution of the associated HJB equations. We
use grid spacings dr = 0.1, dy = 0.005, and dt = 0.01. We perform 107 simulations and
verify that relevant statistics from the Monte Carlo simulation match those from the finite-
difference solutions (e.g. expected pay-off, distribution and moments of the stopping time
and stopped process) to within a reasonable margin of error.

The density estimates provide insight into form of an optimal strategy. Recall, the payoff
is locally-affine at all points except x = 0, where it is strictly convex instead. Then we
expect an optimal stopping strategy to be one which maximizes local time accumulated at
the origin. As expected, we find that the density of Wy, conditional upon 7 = 10 is largely
concentrated on points away from z = 0, at which the pay-off process is unlikely to spend
significant time as a sub-martingale if we were to choose not to stop.

It is interesting to note the lack of sharp cut-off between the two density estimates. One
might expect the optimal strategy is of a form where there exists a “stopping region” and a
“continuation region.” On the contrary, the smooth overlap of the two density estimates is
persistent even as we vary the resolution of the finite-difference solver, which suggests that
the true optimal stopping strategy is not of the form {7 = 10} C o(Wj,). The numerics
suggest that optimal stopping strategies may be path-dependent even in simple examples.
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Figure 4.3: Probability density estimates of Wi conditional on 7 = 10 and 7 = 20 for
an optimal stopping time for the two-atom volatility outlook model starting from Wy = 0.
Density estimates were made by Monte Carlo simulations on high-resolution solutions to the
associated HJB equations. Sample size, N = 107.
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4.4 Proof of Lemmas 4.3—4.5

In this section, we provide a full proof of the three main lemmas contained in this chapter.

4.4.1 Proof of Lemma 4.3

This first argument is in the spirit of proofs of the weak dynamic programming which avoid
measurable selection, as in Bouchard-Touzi [BT11], Bouchard-Nutz [BN12], and Bayraktar-
Yao [BY13]. In these arguments, the authors typically use a covering argument to find a
countable selection of e-optimal controls on small balls of the state-space. The main difficulty
here is that, while a control may be admissible for the state-constrained problem at one point
in state-space, there is no reason to expect it to satisfy the state constraints starting from
nearby states.

The new idea in our approach is to cover Ag,; with a finite mesh. We show that we
can replace the process Y by a modified process Y¢, which lies on the mesh points almost-
surely at the terminal time. We construct the new process in a measurable way using the
Martingale Representation Theorem on a carefully constructed random variable. Then we
show that, using the continuity of vy, that the objective function along Y is close to that
along Y for a fine enough grid.

Once we know we can consider a perturbed process Y¢ which lies on a finite number of
points in Ag,q at the terminal time almost-surely, we can construct e-optimal stopping times
using a standard Lindelof covering argument in R.

Proof. Fix (z,y) € R x Ay. For convenience of notation, define 6 := At and

A = swp E VP ) + (= Y o (X5, V)
ac
st. Y% e Apforallt >0

Ye(k)’y’a € {0, 1}, almost-surely.
Let e >0, R > 0,6 >0, and h > 0 be constants to be fixed later.

1. We start by constructing a finite mesh on Ay, ;. By the continuity of v, 1, we can take
0 small enough such that

[orr1 (2, y) — vrga (2, 97)] < e

for every 2’ € R and ¢',y” € Agyq such that |z —2'| < R and |y — ¢"| < 6. Let
P = {y;}}, be a finite subset of Agyy with the property that
e The convex hull of P is Agyq, and

e Any point y € Ag,; can be written as a convex combination of finitely-many
points in P, each contained in a d-neighborhood of y.
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This is possible by compactness and convexity of Ag,1. In particular, we can define a
continuous function T : Ay — [0,1]" with the properties that

e T;(y) =0 for all y € A4y such that |y —y;| > 6
. Zjvzl Ti(y) =1 for all y € Agyq, and
o Sy Ti(y) =y forally € Ay

This corresponds to a continuous map from a point y € Ay to a probability weighting
of points in P such that y is a convex combination of nearby points in P. Such a map
can be obtained by an £2.-minimization problem, for instance.

2. Let L > 0 denote the Lipschitz constant of f. Recall by Proposition 4.1 that L is also
a Lipschitz constant for vgy1 in . Let {4;};>1 be a countable and disjoint covering of
R with an associated set of points {z;} such that the ball of diameter eL ™" centered
at x; contains the set A;.

For each ¢+ > 1 and j € {1,...,N}, let 7;; be a stopping time satisfying 7, ; ~
r 4
> kit yj( )(515[,% such that

E[£(X2)] 2 vnia (ws) —

TZ,]
By the Lipschitz continuity of f and vy, and the definition of the sets A;, we have

Uk (i, Y5) = ka2, y5) — €
E[f(x)] 2 E[rx)] -

for all z € A;.

Putting these inequalities together, we conclude that

E[f(X7,)] = ven () — 3¢
foralli >1,j€{l,...,N}, and x € A;.

3. Let o € A be an arbitrary control for which V,"* € Ay for ¢ > 0 and Ye(k)’y’a e {0,1}
almost-surely. For any 0 < h << 0, define two random variables, M; and M, as

M, = h7YV2 (W, — Wy_y) (4.6)
M, = h*lﬂe max W, = Wo_p — S (s —0+h) (Wy—Wo_p)|.

Then M; and M, are Fyp-measurable and independent of each other. M is equal in
distribution to a standard normal distribution, the cumulative distribution function of
which we denote by ®. Similarly, M, is equal in distribution to the absolute maximum
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of a standard Brownian bridge on [0, 1], the cumulative distribution function of which
we denote by ®pp. Furthermore, if we define G := o (Fp_p, U (Wy)), then M is
G-measurable, while M, is independent of G.

Define a random vector Y, as

(k)
Vo' = Uancags (1))

and
(h+1) Y
F(k+1)r
Yo = 1{M2><1>;;B (v} Zl yjl{cb—l(zgf;f T (Po(Y$)) ) <Mi<@—1 (S0 To(P(Y2 ) b
]:
where we follow the conventions that ®~!(0) = —oo, ®7!(1) = +oco, and that sums

over an empty set are zero. Then Yy € A is Fp-measurable and is constructed to have
the key property that E [Yy | Fo_p| = Yy}, almost-surely.

By the Martingale Representation Theorem, there exists a, € A for which Y, = Y
almost-surely. Then, by construction, Y,;»* € Ay for all t > 0, Ye(k)’y’we € {0,1}, and
Y% € P when Ye(k)’y’ae = 0, almost-surely.

We now perform a key computation. First note that
E [Yi®0 f(X5) + (1= VP Yo (X5, ¥ |
=K [1{?(&)1@):1}]0()(3)} +E [I{Vék):[)}vk_i_l (Xg,Vg)] .

For the first term on the right-hand-side, we simply compute

E [1pw_,,/(X3)| =E [1{M2<q>313(y9<k>,;yvﬂ)}f (%5)

—E [y, r(x3)]

We deal with the second term in a similar way, but the computation is more involved.
Note that by construction we have

1Yo — Pr(Yy5)lle= < 0
almost-surely in the set {74(9]@) = 0}. Recall we also took ¢ small enough such that

\Uk+1($/, y') - Uk+1(93/7y//)‘ <e
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for all 2 € R and v/, y"” € Agy1 such that |z — 2| < R and |y’ — ¢"| < J. But then we
can compute
E [1{1/"“) O}Uk—i-l(XanG)}
—E -1{75976):0}1{|W9|§R}Uk+1(XéB7Y&)] +E 1{75976):0}1{|W9|2R}Uk+1(Xg,Y&)]
> B |1 ipw_gy Lawsl<ryvre (X5, Pe(Yy"5))
+E 1{7(k) 0}1{|W8|>R}Uk+1(Xg7Y9)] —€
>E 1{Y<k> oy Vi1 (X, Be(Yy"5)) | —
E [1wy=n) (|Uk+1 (X5, Yo)[ + [onna (X5, Y5)])] — ¢
> E [Lpor_g e (X5, P2 — /BTl = Bl/20T + 2] -
> E _1{?ék):0}/l]k+1(X9 y Pk(%y (2)) — R_lx/ 00(1 + |$|) — €.

With this in hand, we now complete the analysis of the second term:

E 1{7§k>:0}vk+1(X§,Pk(qu“'ii))] = E 1{M2><I>‘ (Y(’“)ya)}ka(Xe’Pk(Yb h))}

- E|E {1 > agh () | Q} vk+1(X§,Pk(%1“’_"2))}

= B[ =Y o (X5, ROS))]

Using the continuity of f, vky1, and Py, along with the Dominated Convergence The-
orem, we note

hm E Y(k) PERXEY + (1 — Y(,%y’a)vkﬂ (ng Pk(yeyjz))]
=B [¥y " FOG) + (1= Y o (X, P ))|
= E [V F(XG) + (1= Yy o (X3,

Then putting these results together, we see that for large enough R and small enough
h we have

B [Yyr e f(Xg) + (1= YOy (X5, Yp)|
> E [V F(X5) + (1= Yo (X5, Y9 = 3

4. Lastly, we intend to construct an e-optimal stopping time using the covering from the
second step. Define a stopping time 7, as

oo
= 04 Ly D D Tuslixgeat Loy

i=1 j=1
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By construction, we have 7, ~ Zzzk YeOt,—1,_,- We proceed to make a careful compu-
tation. First, note that

E[f(X2)] =B [Lfr=o1 f(X§)] + E [Lirsoy f(X2)] -

We focus on the second term. In particular, we have

oo N
E |:1{7-€>9}f(X$E>:| - Z Z E |:].{Y9(k),y,a5:0}].{XgeAi}1{Y6y’a€:yj}f(X9x+TiJ>i|

i=17=1
co N
= Z:ZM;E [1{Y9(k),y,a€:0}1{xge,4i}l{yey,ae:yj}E [f(Xeme,j) | ]-"QH
co N
Z Z E |:1{Y9(k)’y’a520}1{Xg€Ai}1{Y9y’a6:yj}vk+1(Xg7 }/9:!/7065):| 36

Then we conclude
E[f(X2)] 2 B [V (X5) + (1= "o (X5, Y1) | = 3e

Combining this with the main inequality from the previous step, we obtain

w(ry) = E[F(XD)]
> B Y00 ) 4 (1= ¥ 0 (X5 Y| - 3e
> B[V X5 + (1= 5o (X5, Y9 - 6e.

Because € and « were arbitrary, then we conclude A < vi(x,y).

5. Let 7 € T be an arbitrary stopping time such that 7 ~ »°7_, v;0;,_¢, ,. Define a

martingale as '
Yi(l) =E [1{T:ti*tk—1} ’ }—t}

for all t > 0 and each i € {k,...,r}. We can easily check that Yo(i) = y; for each
i€{k,...,r} and

Y;(k) N Y;(T) —E |:1{T=tk*tk,1} 4+t 1{T=tr*tk71} | E] =1.

Then if we consider Y as an R"-valued martingale with Yt(i) =0foralli € {1,...,k—1},
then we see Y; € Ay for each t > 0. Finally, we have

Y@(k) . ) [1{T:9} | ]—"9] = 1{r—py €{0,1}.
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Then by the Martingale Representation Theorem, there exists o € A for which Y}*'* =
Y, for all t > 0, almost-surely. We can compute

E[f(X])] = E[lg—ayf(X§) + Lirsay f(X7)]
= E YO0 + = YR (F(X) | R
On the set {7 > 6}, we have
Plr—0="t;—ty | Fo) =E [Lprms, s,y | Fo] = Y,
for each i € {k+1,...,7}. For almost every w € {7 > 0}, we have
E[f(X7) | Fol < vpr (X5, Yy")

by the Strong Markov Property of Brownian motion. Then we conclude

E[f(XD)] = B[y f(x5) + (1= VDU E[£(x2) | 5
< E [T + (1= YO (X5, V)|
< A

Because 7 was an arbitrary stopping time, this implies

’Uk(x7y) S A

4.4.2 Proof of Lemma 4.4

The main idea of this argument is that we can take a controlled process Y, which does not
satisfy YA(I:Z € {0,1}, and modify it on an interval [Aty — h, At;] to a perturbed process Y©
with the properties that Yay,—n = YX,, ;, and YAE’t(f) € {0,1}. In particular, we may do this
in a way that does not appreciably change the expected pay-off.

One key idea which we draw the reader’s attention toward is the use of the Brownian
bridge over [Aty — h, At;] in the construction. This construction is in the spirit of Corol-
lary 4.2. While one might initially attempt a construction similar to Corollary 4.1, using a
Brownian bridge instead of Brownian increments allows us to condition on Wx, at a key
point in the argument.

Proof. Fix (x,y) € R x A. For convenience of notation, define 6 := Aty,

A = sup B YOG + (1= Y o (X6, ¥0)
ac
st. VY eApfort >0

Ya(k)’y’a € {0, 1} almost-surely,
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and

B = swp B Y FOG) + (1= Y e (X5, (YD)
ac
st. VP e Ay fort>0.

By Lemma 4.3, we have vg(z,y) = A.

1. Let o € A be an arbitrary control for which Y;* € A, for t > 0 and Ye(k)’y’a e {0,1}
almost-surely. Note that Y;"* = Py(Y;”®) on the set {Y %> = 0} almost-surely.
Then

E [Yi5 F(X) + (1= YO0 u (X, )
=B [V X0 + (1= Y o (X5, PV )
< B.
Because a was arbitrary, we conclude A < B.

2. Let a € A be an arbitrary control for which Y,»'* € A, for t > 0, almost-surely. For
any 0 < h << 6, define a random variable M as

M = h_1/2 max |Ws - Wg_h - (5_1 (S —0 + h) (Wg - Wg_h) |

0—h<s<0

Then M is Fy-measurable and is equal in distribution to the absolute maximum of a
standard Brownian bridge on [0, 1], the cumulative distribution function of which we
denote by ®pp. If we define G := o (Fy_, Ua(Wy)), then Mj is independent of G.

Define a random vector Yy as

v
Yo = Lucagy (vre)

and (kt1)
- r . Y,
Yy = Pk(Yafh)l{beng (Vi)

Let ?S) =0 forany i € {1,...,k —1}. Then Yy is Fp-measurable and has the key
property that E [V | Fo_p] = Y. We also note that E [1{7(k)_1} | g] = y B,
(o) _

By the Martingale Representation Theorem, there exists a, € A such that Y,)'* € A,
for t > 0, Ye(k)’y’ae € {0,1}, and Y}** =Y almost-surely. We can then compute

E (Y30 f(X5) + (1= YiP0 o (X5, Y3))
—E [ g0 FOXE) + 1 go_gy v (X5, 757
=FE _1{7§k>:1}f(X56) + 1{7§k>:0}vk+1 (X(§2> Pk(Yby_ofi))}
—E [E [1po_) F(X5) + Lo vest (X5, PYES) 1G]]
=E[E 15w, 16] FO5) +E [1po_ 1 6] onar (X5, BOVES))]
=B [V, 1) + (L= Y5 o (X5, PV
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But by the continuity and growth bounds of f and vi.1, we can apply the Dominated
Convergence Theorem to see

Tim B V10 F () + (1= Y5 o (X5, ROES) |
= E Y, F(X5) + (1= Y o (X5 PV
So then for any € > 0, we may take 6 > 0 small enough that
E ViU £(X5) + (1= VP Yo (X5, P(Y))]
SE [V FOG) + (0= Y o (X5, PUYS) | + e

= E [0 F(X5) + (1= Y0 o (X5, Y9)| + ¢
< A+e

Because € and a were arbitrary, we conclude B < A.

4.4.3 Proof of Lemma 4.5

Proof. By Lemma 4.4, we can use either representation (4.2) or (4.5) of vy, as is convenient,
in this proof. Recall that there exists C' > 0 large enough such that

ok (7, y) — or(z’, )| < C'lo — 2|
for all (z,y) € R x Ay and 2’ € R.

1. We first aim to demonstrate that the map y — vi(z,y) is concave for any x € R. The
key observation is that the map

A\{er} 2y = (1 —yp)ve (z, Pe(y))

= (Ypa1 + -+ Yr) Va1 (L

(07"'707yk+17"'7y1“))
Y1+ -+ Yr

is concave for every x € R because it is the perspective transformation of the concave
map Agy1 Dy — vk1(x,y) (See Section 3.2.6 in Boyd-Vandenberghe [BV04]).

With this in mind, fix © € R, y1, 92 € Ak, and X € [0,1]. Let oy, a9 € A be arbitrary

controls for which
Y;yl’al,Y;yQ’QQ c Ak,

almost-surely, for all ¢ > 0. Define 5 := Ay; + (1 — X)yo and @y := Aags + (1 — N)agy.
Then @ € A and -
}/ty,a € Ak?
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almost-surely, for all t > 0 by the convexity of the set Ay.

Then using the concavity of the perspective map, we can compute
_ k), 5,8 p k)7,a@ x 7.0
w(e3) = E YOV + (1= YO o (X5, PP

> B [T + M= Y s (G PLOG)
F(1 = N = VP (X, P(YE))]
= AE [V ) + (1= Y o (X5, PG|
(1= NE [V f(X5) + (1= Yo (X5, RU(Y)]
But because aq, ay were arbitrary, we conclude
ur(2,5) = Aok, 1) + (1 = Ave(2, y2).

2. In particular, the concavity result implies that for any x € R, the map A > y —
vg(x,y) is continuous on the relative interior of A, and always lower semi-continuous.
We claim these properties carry over to the function v by the uniform Lipschitz esti-
mate of Proposition 4.1.

Let {(Zn, Yn) fu>1 C R X Ay be a sequence converging to (zo,%0) € R x Ay as n — oo.
Then we can compute

[0k (T, Yn) — Ve(T0, Yn)| + Vi (T0, Yn)

Uk(xnayn) S
< Clxp — xo| + vi(20, Yn)-

But this implies
lim inf vg (2, yn) < vr(To, Yo)

n—oo

by the lower semi-continuity of the map y +— wvi(zo,y0). Then vy is lower semi-
continuous.

If yo € rel int(Ag), then we similarly compute

|Uk(-rn7yn> - Uk($o7yo)| < |Uk($n,yn) - Uk(xm yn)| + |Uk:(x07 yn) - Uk;(ﬁo, y0)|
< Clzy — xo| + |vi(z0,Yn) — vi(z0,90)| = 0

as n — oo by the continuity of y — vi (o, y) at yo. Then vy, is continuous for any point
in the relative interior of R x Ay.

3. Next we show that vy is continuous near vertices of the simplex Ay. Fix (z¢,y0) €
R x Ay where yo, = 1 for some ¢ € {k,...,r}. Denote by Z the subset of indices
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i € {k,...,r} for which i # ¢. Note that there is only a single admissible stopping
time at the point (x¢,yo), S0

Uk(l"o,yo) =K [f(nggO—tk_lﬂ .

Let {(@n, yn)}n>1 C R X Ag be a sequence converging to (zg,yo). For any € > 0, take
n > 1 large enough that ||y, — yolle~ < € and |z, — x| < €. Let 7, be an arbitrary
stopping time such that 7,, ~ Zfzk Yn,i0t,—t,_,- Then we can compute

E [f(Xf:):I S L |$n — ZU()| + ZE |:]-{Tn:ti—tk_1}f(XZ‘07tk,1):|
i=k
< Uk<x07 yo) + Le + ZE |:1{Tn:ti_tk71}f(Xio_tk71)i|
€T

+E [(1 - 1{Tn=t£—tk—1})f(Xéo—tk71)] )

Applying the Cauchy-Schwarz Inequality to the last two terms and using the Lipschitz
assumption on f, we see that

E [£(XZ)] < vilwo, yo) + Le + Ce/?,

for C' > 0 sufficiently large. This implies that vy is also upper semi-continuous (hence
continuous) at the point (xg, yo).

4. Lastly, consider a point (zg,yo) € R x Ay which is not in the relative interior of Ay
and is also not a vertex, as considered in the previous step. Then there exists some
subset of indices Z C {k,...,r} for which yo; = 0 for i € Z and yp,; € (0, 1) otherwise.

Let {(@n, Yn)}n>1 C R X Ag be a sequence converging to (zg,yo). For any € > 0, take
n > 1 large enough that ||y, — yolle~ < € and |z, — x| < €. Let 7, be an arbitrary
stopping time such that 7,, ~ >, yni0t,—t,_,. Define £ :=max{i € {k,...,r} | i ¢TI}
and
0 ifieTU{l,... . k—1}
7 = b i€ (b \ (UL
Yn,e + ZiGI Yn,i otherwise.

2

The point is that ¥,, is a nearby point that is on the “boundary.
stopping time

?n = Z (tl - tk*l) ]‘{Tn:ti—tk,1} + (té - tk*l) Z 1{Tn:ti—tk,1}'

i€{k,...,t\T ieT

Similarly, define a

That is, when 7, stops at t; — t,_; for ¢« € Z, the stopping time 7, instead waits
until ¢, — ty_1 to stop. Then we can check that 7, ~ Z::k Yn.i0t—t,_, and by the
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same computation with the Cauchy-Schwarz Inequality as in the previous step, we can
compute

E[f(X5)] < E[f(X2)] + Le+ Ce'V?
< v(20,7,) + Le + Ce'/?,

for C' > 0 sufficiently large. Because 7,, was arbitrary, we conclude
0k (T, Yn) < Ok(20,7,) + Le + Ce'/2

However, note that by construction each ¥, is contained the convex hull

and yp is in the relative interior of K. The map y — wvg(xo,y) restricted to the convex
hull K is concave and thus continuous at 1yy. Therefore, we conclude

lim inf Uk(xn7 yn) S lim sup Uk(CC(), yn) - Uk(x(b y0>7
n—0o0 n—00

SO v is upper semi-continuous (hence continuous) at the point (o, yo)-



85

Bibliography

[ABPS13]

[ADEH99)

[ADEHKO7]

[AKK15]

[ALPY5]

[BEBDO6]

[BL14]

[BM14]

[BM16]

[BN12]

B. Acciaio, M. Beiglbock, F. Penkner, and W. Schachermayer, “A model-free
version of the fundamental theorem of asset pricing and the super-replication
theorem”, Mathematical Finance, 2013.

P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, “Coherent measures of
risk”, Math. Financ., vol. 9, no. 3, pp. 203-228, 1999.

P. Artzner, F. Delbaen, J.-M. Eber, D. Heath, and H. Ku, “Coherent multi-
period risk adjusted values and Bellman’s principle”, Ann. Oper. Res., vol.
152, pp. 522, 2007.

S. Ankirchner, M. Klein, and T. Kruse, “A verification theorem for optimal
stopping problems with expectation constraints”, working paper or preprint,
Nov. 2015, [Online]. Available: https://hal.archives-ouvertes.fr/hal-
01229024.

M. Avellaneda, A. Levy, and A. Paras, “Pricing and hedging derivative secu-
rities in markets with uncertain volatilities”, Applied Mathematical Finance,
vol. 2, no. 2, pp. 73-88, 1995.

C. Barrera-Esteve, F. Bergeret, and C. Dossal, “Numerical methods for the
pricing of swing options: a stochastic control approach”, Methodology and
computing in applied probability, vol. 8, no. 4, pp. 517-540, 2006.

E. Bayraktar and M. Ludkovski, “Liquidation in limit order books with
controlled intensity”, Mathematical Finance, vol. 24, no. 4, pp. 627-650,
2014.

T. Bjork and A. Murgoci, “A theory of markovian time-inconsistent stochas-
tic control in discrete time”, Finance and Stochastics, vol. 18, no. 3, pp. 545—
592, 2014.

E. Bayraktar and C. W. Miller, “Distribution-Constrained Optimal Stop-
ping”, ArXiv e-prints, Apr. 2016. arXiv: 1604.03042 [math.0C].

B. Bouchard and M. Nutz, “Weak dynamic programming for generalized
state constraints”, SIAM J. Control Optim., vol. 50, no. 6, pp. 3344-3373,
2012, 1SsN: 0363-0129. DOI: 10.1137/110852942. [Online]. Available: http:
//dx.doi.org/10.1137/110852942.



BIBLIOGRAPHY 86

[BO11]

[BPY2]

[BS73]

[BS91]

[BTO4]

[BT11]

[BT13]

[BV04]

[BY13]

[BZ03]

[Bac00]
[Bel52]

[Bis73]

[CF91]

N. Bauerle and J. Ott, “Markov decision processes with average-value-at-
risk criteria”, Math. Meth. Oper. Res., vol. 74, pp. 361-379, 2011.

F. Black and A. Perold, “Theory of constant proportion portfolio insurance”,
Journal of Economic Dynamics and Control, vol. 16, no. 3-4, pp. 403-426,
1992.

F. Black and M. Scholes, “The pricing of options and corporate liabilities”,
The journal of political economy, pp. 637654, 1973.

G. Barles and P. E. Souganidis, “Convergence of approximation schemes
for fully nonlinear second order equations”, Asymptot. Anal., vol. 4, no. 3,
pp. 271-283, 1991, 1SSN: 0921-7134.

B. Bouchard and N. Touzi, “Discrete-time approximation and monte-carlo
simulation of backward stochastic differential equations”, Stochastic Pro-
cesses and their applications, vol. 111, no. 2, pp. 175-206, 2004.

——, “Weak dynamic programming principle for viscosity solutions”, STAM
J. Control Optim., vol. 49, no. 3, pp. 948-962, 2011, 1sSN: 0363-0129. DOTI:
10.1137/090752328. [Online|. Available: http://dx.doi.org/10.1137/
090752328.

J. F. Bonnans and X. Tan, “A model-free no-arbitrage price bound for vari-
ance options”, Applied Mathematics € Optimization, vol. 68, no. 1, pp. 43—
73, 2013.

S. Boyd and L. Vandenberghe, Conver Optimization. Cambridge University
Press, 2004, 1SBN: 0521833787.

E. Bayraktar and S. Yao, “A weak dynamic programming principle for zero-
sum stochastic differential games with unbounded controls”, SIAM Journal
on Control and Optimization, vol. 51, no. 3, pp. 2036-2080, 2013.

J. F. Bonnans and H. Zidani, “Consistency of generalized finite difference
schemes for the stochastic hjb equation”, SIAM Journal on Numerical Anal-
ysts, vol. 41, no. 3, pp. 1008-1021, 2003.

L. Bachelier, Théorie de la spéculation. Gauthier-Villars, 1900.

R. Bellman, “On the theory of dynamic programming”, Proc. Nat. Acad.
Sci. U. S. A., vol. 38, pp. 716-719, 1952, 1SSN: 0027-8424.

J.-M. Bismut, “Conjugate convex functions in optimal stochastic control”,
J. Math. Anal. Appl., vol. 44, pp. 384-404, 1973, 1sSN: 0022-247x.

R. E. Curto and L. A. Fialkow, “Recursiveness, positivity, and truncated
moment problems”, Houston J. Math., vol. 17, no. 4, pp. 603-635, 1991,
ISSN: 0362-1588.



BIBLIOGRAPHY 87

[C190]

[CIL92]

[CIR52]

[CK15]

[CL83]

[CPT14]

[CPT15]

[CR14]

[CST10]

[CSTV07]

[CTMP15]

[DLO1]

M. G. Crandall and H. Ishii, “The maximum principle for semicontinuous
functions”, Differential Integral Equations, vol. 3, no. 6, pp. 1001-1014, 1990,
ISSN: 0893-4983.

M. G. Crandall, H. Ishii, and P.-L. Lions, “Users guide to viscosity solu-
tions of second order partial differential equations”, Bulletin of the American
Mathematical Society, vol. 27, no. 1, pp. 1-67, 1992.

R. Courant, E. [saacson, and M. Rees, “On the solution of nonlinear hyper-
bolic differential equations by finite differences”, Comm. Pure. Appl. Math.,
vol. 5, pp. 243-255, 1952, 1sSN: 0010-3640.

A. M. G. Cox and S. Kéllblad, “Model-independent bounds for Asian op-
tions: a dynamic programming approach”, ArXiv e-prints, Jul. 2015. arXiv:
1507.02651 [q-fin.PR].

M. G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton-Jacobi
equations”, Trans. Amer. Math. Soc., vol. 277, no. 1, pp. 1-42, 1983, ISSN:
0002-9947. pOI: 10.2307/1999343. [Online|. Available: http://dx.doi.
org/10.2307/1999343.

J. Cvitani¢, D. Possamai, and N. Touzi, “Moral hazard in dynamic risk
management” , arXiv preprint arXiv:1406.5852, 2014.

——, “Dynamic programming approach to principal-agent problems”, arXiv
preprint arXiw:1510.07111, 2015.

O. Cavus and A. Ruszczynski, “Risk-averse control of undiscounted tran-
sient markov models”, STAM Journal on Control and Optimization, vol. 52,
no. 6, pp. 3935-3966, 2014.

U. Cetin, H. M. Soner, and N. Touzi, “Option hedging for small investors
under liquidity costs”, Finance and Stochastics, vol. 14, no. 3, pp. 317-341,
2010.

P. Cheridito, H. M. Soner, N. Touzi, and N. Victoir, “Second-order back-
ward stochastic differential equations and fully nonlinear parabolic PDEs”
Comm. Pure Appl. Math., vol. 60, no. 7, pp. 1081-1110, 2007, 1sSN: 0010-
3640. por: 10.1002/cpa.20168. [Online]. Available: http://dx.doi.org/
10.1002/cpa.20168.

Y. Chow, A. Tamar, S. Mannor, and M. Pavone, “Risk-sensitive and robust
decision-making: a CVaR optimization approach”, in NIPS, 2015.

B. Dumas and E. Luciano, “An exact solution to a dynamic portfolio choice
problem under transactions costs”, The Journal of Finance, vol. 46, no. 2,
pp. 577-595, 1991.



BIBLIOGRAPHY 88

[DLL11]

[DS14]

[Dur10]

[EL10]

[Eval0]

[FF14]

[FLOO02]

[FMO5]

[FO11]

[FPSS11]

[FS06]

[FTW11]

F. Da Lio and O. Ley, “Convex Hamilton-Jacobi equations under superlinear
growth conditions on data”, Appl. Math. Optim., vol. 63, no. 3, pp. 309—
339, 2011, 18SN: 0095-4616. DOL: 10.1007/s00245-010-9122-9. [Online].
Available: http://dx.doi.org/10.1007/s00245-010-9122-9.

Y. Dong and R. Sircar, “Time-inconsistent portfolio investment problems”,
in Stochastic Analysis and Applications 2014, Springer, 2014, pp. 239-281.

R. Durrett, Probability: theory and examples. Cambridge university press,
2010.

I. Ekeland and A. Lagzrak, “The golden rule when preferences are time
inconsistent”, Math. Financ. Econ., vol. 4, no. 1, pp. 29-55, 2010, ISSN:
1862-9679. pOI: 10.1007/s11579-010-0034~x. [Online]. Available: http:
//dx.doi.org/10.1007/s11579-010-0034-x.

L. C. Evans, Partial differential equations, Second. American Mathematical
Society, 2010, pp. xxii+749, 1SBN: 978-0-8218-4974-3. po1: 10.1090/gsm/
019. [Online|. Available: http://dx.doi.org/10.1090/gsm/019.

M. Falcone and R. Ferretti, Semi-Lagrangian approrimation schemes for
linear and Hamilton-Jacobi equations. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2014, pp. xii+319, 1SBN: 978-1-
611973-04-4.

S. Frederick, G. Loewenstein, and T. O’Donoghue, “Time discounting and
time preference: a critical review”, Journal of economic literature, vol. 40,
no. 2, pp. 351-401, 2002.

W. H. Fleming and W. M. McEneaney, “Risk-sensitive control on an infinite
time horizon”, SIAM J. Control Optim., vol. 33, no. 6, pp. 1881-1915, 1995.

B. D. Froese and A. M. Oberman, “Convergent finite difference solvers for
viscosity solutions of the elliptic Monge-Ampere equation in dimensions two
and higher”, SIAM J. Numer. Anal., vol. 49, no. 4, pp. 1692-1714, 2011,
1SSN: 0036-1429. DOI: 10.1137/100803092. [Online]. Available: http://dx.
doi.org/10.1137/100803092.

J.-P. Fouque, G. Papanicolaou, R. Sircar, and K. Sglna, Multiscale stochastic
volatility for equity, interest rate, and credit derivatives. Cambridge Univer-
sity Press, 2011.

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity
Solutions. Springer, 2006.

A. Fahim, N. Touzi, and X. Warin, “A probabilistic numerical method
for fully nonlinear parabolic PDEs”, Ann. Appl. Probab., vol. 21, no. 4,
pp. 1322-1364, 2011, 15SN: 1050-5164. DOT: 10.1214/10-AAP723. [Online].
Available: http://dx.doi.org/10.1214/10-AAP723.



BIBLIOGRAPHY 89

[GHLT14]

[GRS11]

[HJ15]

[HJZ12]
[HKLW02

[HLO1]

[HLOST-+16]

[HLOTTW16]

[HMOg]

[Hes93]

[Hor01]

[Ish89)]

A. Galichon, P. Henry-Labordere, and N. Touzi, “A stochastic control ap-
proach to no-arbitrage bounds given marginals, with an application to look-
back options”, Ann. Appl. Probab., vol. 24, no. 1, pp. 312-336, 2014, 1SSN:
1050-5164. pOI: 10.1214/13-AAP925. [Online|. Available: http://dx.doi.
org/10.1214/13-AAP925.

S. Gokay, A. F. Roch, and H. M. Soner, “Liquidity models in continuous
and discrete time”, in Advanced mathematical methods for finance, Springer,
2011, pp. 333-365.

W. B. Haskell and R. Jain, “A convex analytic approach to risk-aware
markov decision processes”, SIAM Journal on Control and Optimization,
vol. 53, no. 3, pp. 1569-1598, 2015.

Y. Hu, H. Jin, and X. Zhou, “Time-inconsistent stochastic linear—quadratic
control”, SIAM J. Control Optim., vol. 50, pp. 1548-1572, 2012.

P. S. Hagan, D. Kumar, A. S. Lesniewski, and D. E. Woodward, “Managing
smile risk”, The Best of Wilmott, p. 249, 2002.

S. J. Hoch and G. F. Loewenstein, “Time-inconsistent preferences and con-
sumer self-control”, Journal of consumer research, vol. 17, no. 4, pp. 492—
507, 1991.

P. Henry-Labordere, J. Obtgj, P. Spoida, N. Touzi, et al., “The maximum
maximum of a martingale with given n marginals”, The Annals of Applied
Probability, vol. 26, no. 1, pp. 1-44, 2016.

P. Henry-Labordere, N. Oudjane, X. Tan, N. Touzi, and X. Warin, “Branch-
ing diffusion representation of semilinear pdes and monte carlo approxima-
tion” | arXiv preprint arXiv:1603.01727, 2016.

H. B. Humphreys and K. T. McClain, “Reducing the impacts of energy
price volatility through dynamic portfolio selection”, The Energy Journal,
pp. 107-131, 1998.

S. L. Heston, “A closed-form solution for options with stochastic volatility
with applications to bond and currency options”, Review of financial studies,
vol. 6, no. 2, pp. 327-343, 1993.

M. Horiguchi, “Markov decision processes with a stopping time constraint”,
Mathematical methods of operations research, vol. 53, no. 2, pp. 279-295,
2001.

H. Ishii, “On uniqueness and existence of viscosity solutions of fully nonlin-
ear second-order elliptic PDEs”, Comm. Pure Appl. Math., vol. 42, no. 1,
pp. 15-45, 1989, 1SSN: 0010-3640. DOI: 10.1002/cpa.3160420103. [Online].
Available: http://dx.doi.org/10.1002/cpa.3160420103.



BIBLIOGRAPHY 90

[JBEY4]

[Jen89]

[KMZ16]

[KS91]

[Kat94]

[Ken82]

[LPY2]

[LSMS95]

[LZL02]

[Laig7]

[Las10]

M. R. James, J. S. Baras, and R. J. Elliott, “Risk-sensitive control and dy-
namic games for partially observed discrete-time nonlinear systems”, IEEE
Trans. Automat. Control, vol. 39, no. 4, pp. 780-792, 1994.

R. Jensen, “Uniqueness criteria for viscosity solutions of fully nonlinear el-
liptic partial differential equations”, Indiana Univ. Math. J., vol. 38, no. 3,
pp. 629-667, 1989, 1sSN: 0022-2518. DOI: 10.1512/iumj . 1989 .38 . 38030.
[Online]. Available: http://dx.doi.org/10.1512/iumj.1989.38.38030.

C. Karnam, J. Ma, and J. Zhang, “Dynamic Approaches for Some Time
Inconsistent Problems”, ArXiv e-prints, Apr. 2016. arXiv: 1604 . 03913
[math.0C].

I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, Sec-
ond, ser. Graduate Texts in Mathematics. Springer-Verlag, New York, 1991,
vol. 113, pp. xxiv+470, 1SBN: 0-387-97655-8. DOI: 10.1007/978-1-4612-
0949-2. [Online]. Available: http://dx.doi.org/10.1007/978-1-4612~
0949-2.

M. A. Katsoulakis, “Viscosity solutions of second order fully nonlinear el-
liptic equations with state constraints”, Indiana Univ. Math. J., vol. 43, no.
2, pp. 493-519, 1994, 18sN: 0022-2518. DOIL: 10.1512/iumj.1994.43.43020.
[Online]. Available: http://dx.doi.org/10.1512/iumj.1994.43.43020.

D. P. Kennedy, “On a constrained optimal stopping problem”, Journal of
Applied Probability, vol. 19, no. 3, pp. 631-641, 1982, 1ssN: 00219002. [On-
line]. Available: http://www.jstor.org/stable/3213520.

G. Loewenstein and D. Prelec, “Anomalies in intertemporal choice: evidence
and an interpretation”, The Quarterly Journal of Economics, pp. 573-597,
1992.

F. Lopez, M San Miguel, and G Sanz, “Lagrangean methods and optimal
stopping”, Optimization, vol. 34, no. 4, pp. 317-327, 1995.

X. Li, X. Y. Zhou, and A. E. Lim, “Dynamic mean-variance portfolio se-
lection with no-shorting constraints”, SIAM Journal on Control and Opti-
mization, vol. 40, no. 5, pp. 15401555, 2002.

D. Laibson, “Golden eggs and hyperbolic discounting”, The Quarterly Jour-
nal of Economics, pp. 443-477, 1997.

J. B. Lasserre, Moments, positive polynomials and their applications, ser.
Imperial College Press Optimization Series. Imperial College Press, London,
2010, vol. 1, pp. xxii+361, 1ISBN: 978-1-84816-445-1; 1-84816-445-9.



BIBLIOGRAPHY 91

[Lio83a) P.-L. Lions, “Optimal control of diffusion processes and Hamilton-Jacobi-
Bellman equations. I. The dynamic programming principle and applica-
tions”, Comm. Partial Differential Fquations, vol. 8, no. 10, pp. 1101-1174,
1983, 18sN: 0360-5302. DOI: 10.1080/03605308308820297. [Online]. Avail-
able: http://dx.doi.org/10.1080/03605308308820297.

[Lio83b] ——, “Optimal control of diffusion processes and Hamilton-Jacobi-Bellman
equations. II. Viscosity solutions and uniqueness”, Comm. Partial Differ-
ential Equations, vol. 8, no. 11, pp. 1229-1276, 1983, 1sSN: 0360-5302. DOTI:
10.1080/03605308308820301. [Online|. Available: http://dx.doi.org/
10.1080/03605308308820301.

[Lio83c] ——, “Optimal control of diffusion processes and Hamilton-Jacobi-Bellman
equations. III. Regularity of the optimal cost function”, Res. Notes in Math.
Vol. 93, pp. 95205, 1983.

[Lyo95] T. J. Lyons, “Uncertain volatility and the risk-free synthesis of derivatives”,
Applied mathematical finance, vol. 2, no. 2, pp. 117-133, 1995.
[MOS07] R. Mansini, W. Ogryczak, and M. G. Speranza, “Conditional value at risk

and related linear programming models for portfolio optimization”, Ann.
Oper. Res., vol. 152, pp. 227-256, 2007.

[IMPY94] J. Ma, P. Protter, and J. Yong, “Solving forward-backward stochastic dif-
ferential equations explicitlya four step scheme”, Probability Theory and
Related Fields, vol. 98, no. 3, pp. 339-359, 1994.

[IMPZ15] A. Matoussi, D. Possamai, and C. Zhou, “Robust utility maximization in
nondominated models with 2bsde: the uncertain volatility model”, Mathe-
matical Finance, vol. 25, no. 2, pp. 258-287, 2015.

IMY15] C. W. Miller and I. Yang, “Optimal control of conditional value-at-risk in
continuous time” | arXw preprint arXiv:1512.05015, 2015.

[Mak09] C. Makasu, “Bounds for a constrained optimal stopping problem”, Opti-
mization Letters, vol. 3, no. 4, pp. 499-505, 2009.
[McK75] H. P. McKean, “Application of Brownian motion to the equation of Kolmogorov-

Petrovskii-Piskunov”, Comm. Pure Appl. Math., vol. 28, no. 3, pp. 323-331,
1975, 18sN: 0010-3640.

[Mer69] R. C. Merton, “Lifetime portfolio selection under uncertainty: the continuous-
time case”, The review of Economics and Statistics, pp. 247-257, 1969.

[Mil16] C. W. Miller, “Non-linear PDE approach to time-inconsistent optimal stop-
ping”, SIAM Journal on Control and Optimization, to appear, 2016.

INS12] M. Nutz and H. M. Soner, “Superhedging and dynamic risk measures under
volatility uncertainty”, SIAM Journal on Control and Optimization, vol. 50,
no. 4, pp. 2065-2089, 2012.



BIBLIOGRAPHY 92

[OR99]

(0Y03]

[Obe07]

[Obe08]

[PBGM64]

[PFV03]

[PP13]

[PP16a]

[PP16b)]

[PP90]

[PRT+13]

[PS06]

T. O’Donoghue and M. Rabin, “Doing it now or later”, American Economic
Review, pp. 103-124, 1999.

H. Ou-Yang, “Optimal contracts in a continuous-time delegated portfolio
management problem”, Rev. Financ. Stud., vol. 16, no. 1, pp. 173-208, 2003.

A. M. Oberman, “The convex envelope is the solution of a nonlinear obstacle
problem”, Proc. Amer. Math. Soc., vol. 135, no. 6, 1689-1694 (electronic),
2007, 1sSN: 0002-9939. pDOI: 10.1090/S0002-9939-07-08887-9. [Online].
Available: http://dx.doi.org/10.1090/30002-9939-07-08887-9.

A. Oberman, “Wide stencil finite difference schemes for the elliptic monge-
ampre equation and functions of the eigenvalues of the hessian”, Discrete
and Continuous Dynamical Systems Series B, vol. 10, pp. 221-238, 2008.

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko,
The mathematical theory of optimal processes, ser. Translated by D. E.
Brown. A Pergamon Press Book. The Macmillan Co., New York, 1964,
pp. Vii+338.

D. M. Pooley, P. A. Forsyth, and K. R. Vetzal, “Numerical convergence
properties of option pricing PDEs with uncertain volatility”, IMA J. Numer.
Anal., vol. 23, no. 2, pp. 241-267, 2003, 1ssN: 0272-4979. po1: 10.1093/
imanum/23.2.241. [Online|. Available: http://dx.doi.org/10.1093/
imanum/23.2.241.

J. L. Pedersen and G. Peskir, “Optimal mean-variance portfolio selection”,
Research Report, Probability and Statistics Group, School of Mathematics,
The University of Manchester, Tech. Rep., 2013.

——, “Optimal mean—variance selling strategies”, Mathematics and Finan-
cial Economics, vol. 10, no. 2, pp. 203—220, 2016.

G. C. Pflug and A. Pichler, “Time-inconsistent multistage stochastic pro-
grams: Martingale bounds”, European J. Oper. Res., vol. 249, no. 1, pp. 155—
163, 2016.

E. Pardoux and S. G. Peng, “Adapted solution of a backward stochastic
differential equation”, Systems Control Lett., vol. 14, no. 1, pp. 55-61, 1990,
ISSN: 0167-6911. DOI: 10.1016/0167-6911(90) 90082-6. [Online]. Avail-
able: http://dx.doi.org/10.1016/0167-6911(90)90082-6.

D. Possamai, G. Royer, N. Touzi, et al., “On the robust superhedging of
measurable claims”, Preprint, 2013.

G. Peskir and A. Shiryaev, Optimal stopping and free-boundary problems,
ser. Lectures in Mathematics ETH Ziirich. Birkhauser Verlag, Basel, 2006,
pp. xxii+500, 1SBN: 978-3-7643-2419-3; 3-7643-2419-8.



BIBLIOGRAPHY 93

[PS88]
[PTZ15]

[Pen90]

[Pfe16]
[QSR13]
[RBWV12]
[RUOO]
[RY15]

[Rok14]

[Rus10]

[SSUOS]

ST13]

[STZ+13]

[STZ12]

A. F. Perold and W. F. Sharpe, “Dynamic strategies for asset allocation”,
Financ. Anal. J., vol. 44, no. 1, pp. 16-27, 1988.

D. Possamai, X. Tan, and C. Zhou, “Stochastic control for a class of non-
linear kernels and applications”, arXiv preprint arXiw:1510.08439, 2015.

S. Peng, “A general stochastic maximum principle for optimal control prob-
lems”, SIAM Journal on control and optimization, vol. 28, no. 4, pp. 966—
979, 1990.

L. Pfeiffer, “Risk-averse merton’s portfolio problem”, in P. [FAC CPDE,
2016, pp. 266-271.

J. Qin, H.-I. Su, and R. Rajagopal, “Storage in risk limiting dispatch: control
and approximation”, in P. Amer. Contr. Conf., 2013, pp. 4202-4208.

R. Rajagopal, E. Bitar, W. Wu, and P. Varaiya, “Risk limiting dispatch of
wind power”, in P. Amer. Contr. Conf., 2012, pp. 4417-4422.

R. T. Rockafellar and S. Uryasev, “Optimization of conditional value-at-
risk”, Journal of Risk, vol. 2, pp. 21-42, 2000.

A. Ruszezynski and J. Yao, “Risk-averse control of diffusion processes”,
arXiw:1508.05316 [math.OC], 2015.

D. B. Rokhlin, “Stochastic Perron’s method for optimal control problems
with state constraints”, FElectron. Commun. Probab., vol. 19, no. 73, 15,
2014, 1SsN: 1083-589X. DOI: 10.1214/ECP.v19-3616. [Online]. Available:
http://dx.doi.org/10.1214/ECP.v19-3616.

A. Ruszczynski, “Risk-averse dynamic programming for markov decision
processes”, Math. Program., vol. 125, pp. 235261, 2010.

S. Sarykalin, G. Serraino, and S. Uryasev, “Value-at-risk vs. conditional
value-at-risk in risk management and optimization”, Tutor. Oper. Res.,
pp. 270-294, 2008.

H. M. Soner and N. Touzi, “Homogenization and asymptotics for small
transaction costs”, SIAM Journal on Control and Optimization, vol. 51, no.
4, pp. 2893-2921, 2013.

H. M. Soner, N. Touzi, J. Zhang, et al., “Dual formulation of second order
target problems”, The Annals of Applied Probability, vol. 23, no. 1, pp. 308—
347, 2013.

H. M. Soner, N. Touzi, and J. Zhang, “Wellposedness of second order back-
ward sdes”, Probability Theory and Related Fields, vol. 153, no. 1-2, pp. 149—
190, 2012.



BIBLIOGRAPHY 94

[Shi08]

[Str55]

[TDROY]

[TK85]

[Toul0]

[Toul3]

[Tri95]

(X713

[YCT al
[YCT14]

[YCT15]

[Yon12]

A. N. Shiryaev, Optimal stopping rules, ser. Stochastic Modelling and Ap-
plied Probability. Springer-Verlag, Berlin, 2008, vol. 8, pp. xii+217, Trans-
lated from the 1976 Russian second edition by A. B. Aries, Reprint of the
1978 translation, 1SBN: 978-3-540-74010-0.

R. H. Strotz, “Myopia and inconsistency in dynamic utility maximization”,
The Review of Economic Studies, vol. 23, no. 3, pp. 165—180, 1955.

M. Thompson, M. Davison, and H. Rasmussen, “Natural gas storage valua-
tion and optimization: a real options application”, Naval Research Logistics
(NRL), vol. 56, no. 3, pp. 226-238, 2009.

A. Tversky and D. Kahneman, “The framing of decisions and the psychology
of choice”, in Environmental Impact Assessment, Technology Assessment,
and Risk Analysis, Springer, 1985, pp. 107-129.

N. Touzi, “Second order backward sdes, fully nonlinear pdes, and applica-
tions in finance”, in Proceedings of the International Congress of Mathe-
maticians, vol. 4, 2010, pp. 3132-3150.

——, Optimal stochastic control, stochastic target problems, and backward
SDE, ser. Fields Institute Monographs. Springer, New York; Fields Insti-
tute for Research in Mathematical Sciences, Toronto, ON, 2013, vol. 29,
pp. x+214, With Chapter 13 by Anges Tourin, ISBN: 978-1-4614-4285-1;
978{L4614f4286—8.DOI:10.1007/978—1—4614—4286—8.K)nhne].Avaﬂabkx
http://dx.doi.org/10.1007/978-1-4614-4286-8.

L. Trigeorgis, Real options in capital investment: Models, strategies, and
applications. Greenwood Publishing Group, 1995.

Z. Q. Xu and X. Y. Zhou, “Optimal stopping under probability distortion”,
Ann. Appl. Probab., vol. 23, no. 1, pp. 251-282, 2013, 1SSN: 1050-5164. DOI:
10.1214/11-AAP838. [Online|. Available: http://dx.doi.org/10.1214/
11-AAP838.

I. Yang, D. S. Callaway, and C. J. Tomlin, “Variance-constrained risk shar-
ing in stochastic systems”, IEEE Trans. Automat. Control, to appear.

——, “Dynamic contracts with partial observations: application to indirect
load control”, in P. Amer. Contr. Conf., 2014, pp. 1224-1230.

——, “Indirect load control for electricity market risk management via risk-
limiting dynamic contracts”, in P. Amer. Contr. Conf., 2015, pp. 3025—
3031.

J. Yong, “Time-inconsistent optimal control problems and equilibrium hjb
equation”, Math. Control Relat. Fields, vol. 2, pp. 271-329, 2012.



BIBLIOGRAPHY 95

[ZL00] X. Y. Zhou and D. Li, “Continuous-time mean-variance portfolio selection:
a stochastic lq framework”, Applied Mathematics and Optimization, vol. 42,
no. 1, pp. 19-33, 2000.

[ZY03] X. Y. Zhou and G. Yin, “Markowitz’s mean-variance portfolio selection with
regime switching: a continuous-time model”, SIAM Journal on Control and
Optimization, vol. 42, no. 4, pp. 1466-1482, 2003.

[Zhu10] Y. Zhu, “Uncertain optimal control with application to a portfolio selection
model”, Cybernetics and Systems: An International Journal, vol. 41, no. 7,
pp. 535-547, 2010.





