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Introduction

Lie algebras were introduced by Sophus Lie under the name “infinitesimal
group,” meaning the germ of a finite dimensional, locally transitive Lie algebra
of analytic vector fields in Rn. In his 1880 paper Theorie der Transformations-
gruppen [20, 14] and his later book with F. Engel [21], Lie classified infinitesimal
groups acting in dimensions 1 and 2 up to analytic coordinate changes. This work
stimulated much research, but attention soon shifted to the classification and repre-
sentation of abstract Lie algebras and Lie groups. Later the topology of Lie groups
was studied, with fundamental contributions by Bott.

In 1950 G.D. Mostow [23] completed Lie’s program of classifying effective tran-
sitive surface actions.1 One of his major results is:

2000 Mathematics Subject Classification. Primary 57S20; Secondary 57S25, 22E25.
I thank M. Belliart, K. DeKimpe, W. Goldman, G. Mostow, J. Robbin, D. Stowe, F.-J. Turiel

and J. Wolf for invaluable help.
1For each equivalence class of transitive surface actions, Mostow describes a representative Lie

algebra by formulas for a basis of vector fields. Determining whether one of these representatives is
isomorphic to a given Lie algebra can be nontrivial. Here the succinct summary of the classification
in M. Belliart [4] is useful.
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Theorem 1 (Mostow). A surface M without boundary admits a transitive
Lie group action if and only if M is a plane, sphere, cylinder, torus, projective
plane, Möbius strip or Klein bottle.

By a curious coincidence these are the only surfaces without boundary admitting
nontrivial compact Lie group actions (folk theorem).

The following nontrivial extension of Theorem 1 deserves to be better known:

Theorem 2. Let G be a Lie group and H a closed subgroup such that the
manifold M = G/H is compact. Then χ(M) ≥ 0, and if χ(M) > 0 then M has
finite fundamental group.

This is due to Gorbatsevich et al. [11, Corollary 1, p. 174]. See also Felix et al. [10,
Prop. 32.10], Halperin [12], Mostow [24].

While much is known about the topology of compact group actions, there has
been comparatively little progress on classification of actions of Lie algebras and
noncompact groups, an exception being D. Stowe’s classification [28] of analytic
actions of SL(2,R) on compact surfaces. The present article addresses the easier
tasks of deciding whether a group or algebra acts nontrivially on a given manifold,
determining the possible smoothness of such actions, and investigating their orbit
structure. Most proofs are omitted or merely outlined, with details to appear
elsewhere.

The low state of current knowledge is illustrated by the lack of both counterex-
amples and proofs for the following

Conjectures. Let g denote a real, finite dimensional Lie algebra.
(C1): If g has effective actions on Mn, then g also has smooth effective

actions on Mn.
(C2): If g is semisimple and has effective smooth actions on Mn, n ≥ 2,

then g also has effective analytic actions on Mn.
But however plausible these statements may appear, they can’t both be true:

• (C1) or (C2) is false for g = sl(2,R).
For sl(2,R) has effective actions on every M2 (Theorem 7), but no effective analytic
action if M2 is compact with Euler characteristic χ(M2) < 0 (Corollary 16(b)).

It is unknown whether such a surface can support a smooth effective action β
of sl(2,R). If it does, Theorem 15(ii) implies that the vector fields Xβ are infinitely
flat at the fixed points of so(2,R)β .

The analog of (C2) for nilpotent algebras is false. If n denotes the Lie algebra
of 3× 3 niltriangular real matrices, by Theorem 3 and Example 13:

• On every connected surface n×n has effective C∞ actions, but no effective
analytic actions.

Further conjectures and questions are given below.

Terminology. F stands for the real field R, or the complex field C. The
complex conjugate of λ := a + ıb is λ̄ := a − ıb. The sets of integers, positive
integers and natural numbers are Z, N+ = {1, 2, . . . } and N = 0∪N+ respectively.
i, j, k, l,m, n, r denote natural numbers, assumed positive unless the contrary is
indicated. bsc denotes the largest integer ≤ s.

M or Mn denotes an n-dimensional analytic manifold, perhaps with boundary;
its tangent space at p is TpM . vs(M) denotes the vector space of Cs vector fields
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on M , with the weak Cs topology (1 ≤ s ≤ ∞). The Lie bracket makes v∞ a Lie
algebra, with analytic vector fields forming a subalgebra. The value of Y ∈ v1(M)
at p ∈M is Yp. The derivative of Y at p is a linear operator on dYp on TpM .

Except as otherwise indicated, manifolds, Lie groups and Lie algebras are real
and finite dimensional; manifolds and Lie groups are connected; and maps between
manifolds are C∞.

G denotes a Lie group with Lie algebra g and universal covering group G̃. The
k-fold direct product G× · · · ×G is Gk and similarly for g. SL(m,F) is the group
of m×m matrices over F of determinant 1, and ST (m,F) is the subgroup of upper
triangular matrices. The corresponding identity components and Lie algebras are
denoted by SL◦(m,F), st(m,F) and so forth.

An action α of G on M , indicated by (α,G,M), is a homomorphism g 7→ gα

from G to the group of homeomorphisms of M with a continuous evaluation map
evα : G ×M → M, (g, x) 7→ gα(x). We call α smooth, or analytic, when evα has
the corresponding property.2

Small gothic letters denote linear subspaces of Lie algebras, with g and h re-
served for Lie algebras. Recursively define g(0) = g and g(j+1) = g(j) ′ = [g(j), g(j)]
= commutator ideal of g(j). Recall that g (and also G) is solvable of derived length
l = `(g) = `(G) if l ∈ N+ is the smallest number satisfying g(l) = 0. For example,
`(st(m,F)) = m.

g is nilpotent if there exists k ∈ N such that g(k) = {0}, where g(0) = g and
g(j+1) := [g, g(j)]. It is known that g is solvable if and only g′ is nilpotent.

g is supersoluble if the spectrum of adX is real for all X ∈ g, where ad := adg

denotes the adjoint representation of g on itself defined by (adX)Y = [X,Y ].
Equivalently: g is solvable and faithfully represented by upper triangular real ma-
trices.

An action β of g on M , recorded as (β, g,M), is a continuous homomorphism
X 7→ Xβ from g to v∞(M). An n-action means an action on an n-dimensional
manifold.

A smooth action (α,G,M) determines a smooth action (α̂, g,M). Conversely,
if G is simply connected and (β, g,M) is such that each vector field Xβ is complete
(as when M is compact), then there exists (α,G,M) such that β = α̂.

The orbit of p ∈M under (α,G,M) is {gα(p) : g ∈ G}, and the orbit of p under
a Lie algebra action (β, g,M) is the union over X ∈ g of the integral curves of p for
Xβ . An action is transitive if it has only one orbit.

The fixed point set of (α,G,M) is

Fix(α) = {x ∈M : gα(x) = x, (g ∈ G)},
and that of (β, g,M) is

Fix(β) := {p ∈M : Xβ
p = 0, (X ∈ g)}

The support of any action γ on M is the closure of M \ Fix(γ).
An action is effective if its kernel is trivial, and nondegenerate if the fixed point

set of every nontrivial element has empty interior. Effective analytic actions are
nondegenerate. A group action is almost effective if its kernel is discrete.

2Most of the results here can be adapted to Cr actions and local actions
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Construction of actions

EveryG acts effectively and analytically on itself by translation. Every g admits
a faithful finite dimensional representation R : g → gl(n,R) by Ado’s theorem
(Jacobson [19]). If R(g) has trivial center, it induces effective analytic action by g
on the projective space Pn−1 and the sphere Sn−1.

An action gives rise to actions on other manifolds by blowing up invariant
submanifolds in various ways; this preserves effectiveness and analyticity. Blowing
up fixed points of standard actions of ST◦(3,R) on P2,S2 and D2 yields:

Theorem 3. ST◦(3,R) has effective analytic actions on all compact surfaces.
(F. Turiel [30])

Conjecture. ST◦(3,R) has effective analytic actions on all surfaces.

Analytic approximation theory is used to prove:

Theorem 4. The vector group Rm has effective analytic actions on Mn if
m ≥ 1, n ≥ 2. (M. Hirsch & J. Robbin [16])

On open manifolds it is comparatively easy to produce effective Lie algebra
actions:

Theorem 5. Assume there is an effective action (α, g,Wn). Then a noncom-
pact Mn admits an effective action (β, g,Mn) in the following cases:

(a): Mn is parallelizable
(b): n = 2 and W 2 is nonorientable.

Moreover β can be chosen nondegenerate, analytic, transitive or fixed-point free
provided α has the same property.

Proof. Define β as the pullback of α through an immersion Mn → Wn (for
immersion theory see Hirsch [15], Poenaru [26], Adachi [1]). ¤

Corollary 6. Every noncompact M2 supports effective analytic actions by
sl(3,R) and sl(2,C). Every parallelizable noncompact Mn has effective analytic
actions by sl(n+ 1,R), by sl(n

2 ,C) if n is even, and by sl(bn
2 c+ 1,C) if n is odd.

Actions of G on the circle S1 lift to actions of G̃ on R, and by compactification
to actions on [0, 1]. Such actions can be concatenated to get effective actions of
G̃1 × · · · × G̃m on [0, 1]. Further topological constructions lead to effective actions
on closed n-disks, trivial on the boundary. Embedding such disks disjointly into an
n-manifold leads to:

Theorem 7. S̃L◦(2,R)j×ST◦(2,R)k×Rm acts effectively on every manifold
of positive dimension (j, k,m ≥ 0).

In many cases such actions cannot be analytic and their smoothness is unknown;
but see Theorem 9.

Algebraically contractible groups

The actions constructed above are either analytic or merely continuous. Next
we exhibit a large class of solvable groups having effective actions— often smooth—
on manifolds of moderately low dimensions. In many case these are smooth but
cannot be analytic.
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Let E(G) denote the space of endomorphisms of G, topologized as a subset of
the continuous maps G → G. We call G and g algebraically contractible (AC) if
there is a path φ = {φt} in E(G) joining the the identity endomorphism φ0 of G
to the trivial endomorphism φ1. Equivalently: G is solvable and simply connected,
and the identity and trivial endomorphisms of g are joined by a path ψ = {ψt}
in the affine variety E(g) of Lie algebra endomorphisms of g. Every path ψ comes
from a unique path φ.

The class of AC groups contains the vector group Rn, the matrix groups
ST◦(n,R), S̃T◦(n,C), and many of their subgroups and quotient groups. It is
closed under direct products. If g is AC and an ideal h is mapped into itself by
every endomorphism of g, then h and g/h are AC.

However, some nilpotent Lie algebras are not AC (DeKimpe [7]): The derivation
algebra of an AC Lie algebra cannot be unipotent, but there are 8-dimensional
nilpotent Lie algebras having unipotent derivation algebras (Dixmier & Lister [8],
Ancochea & Campoamor [2]).

Proposition 8. Assume G is algebraically contractible and (α,G,M) is almost
effective. There is an effective action (β,G,M ×R) with the following properties:

(a): gβ(x, 0) = (gα(x), 0)
(b): gβ(x, t) = (x, t) if |t| ≥ 1.
(c): If α is smooth so is β.

Proof. We can choose the path ψ : [0, 1] → E(g) in the definition of AC to be
C∞ and constant in a neighborhood of {0, 1}. The corresponding path φ : [0, 1] →
E(G) has the same properties. Extend φ over R by setting φt = φ1 (= the trivial
endomorphism) for t ≥ 1, and φt = φ−t for t ≤ 0. Now define β by

gβ(x, t) := φt(g)α(x), (g ∈ G, (x, t) ∈M ×R).

¤

Theorem 9. Assume Gi is AC and (αi, G,Sn−1) is almost effective, (i =
1, . . . , k). For every Mn there exists an effective action (δ,G1× · · · ×Gk,M

n) that
is smooth provided the αi are smooth.

Proof. Let (βi, Gi,Sn−1×R) obtained from αi as in Proposition 8. Through
an identification Sn−1 ×R = Dn \ (Sn−1 ∪ 0), extend βi to an action (γi, Gi,Dn)
with compact support in Dn \Sn−1. (Here Dn is the unit n-disk with boundary
Sn−1.) Transfer the γi to actions δi in k disjoint coordinate disks Dn

i ⊂Mn. Define
δ to coincide with δi in Dn

i and to be trivial outside ∪iD
n
i . ¤

Corollary 10. Assume Gi ⊂ GL(n,R) is algebraically contractible and con-
tains no scalar multiple of the identity matrix, (i = 1, . . . , k). Then G1 × · · · ×Gk

has effective smooth actions on all n-manifolds.

Proof. The natural actions of Gi on Pn−1 and Sn−1 are smooth and effective.
Apply Theorems 9 and 5. ¤

The Epstein-Thurston theorem

D.B.A. Epstein and W.P. Thurston [9, Theorem 1.1] discovered fundamental
lower bounds on the dimensions in which solvable Lie algebras can act effectively:
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Theorem 11 (Epstein-Thurston). Assume g is solvable and has an effective
n-action. Then n ≥ `(g)− 1, and n ≥ `(g) if g is nilpotent.

In the critical dimensions there is further information on orbit structure:

Theorem 12. Let α be an effective n-action of a solvable Lie algebra g. As-
sume n = `(g)− 1, or g is nilpotent and n = `(g).

(i): There is an open orbit. If α is nondegenerate the union of the open
orbits is dense.

(ii): Assume g(n−1) ⊂ c = the center of g. Then:
(a): each nontrivial orbit of g(n−1) lies in an open orbit of g and has

dimension 1,
(b): the number of open orbits is ≥ dim g(n−1)

(c): if α is nondegenerate then dim c = 1.

Proof. The union of orbits of dimensions < n is a closed set L in which
g(`(g)−1) acts trivially by Epstein-Thurston. Therefore Mn\L, the union of the
open orbits, is nonempty because α is effective, and dense if α is nondegenerate.
This proves (i). Next we prove (ii).

(a) Let L be a nontrivial orbit of g(n−1) and let O be the orbit of g containing
L. Then O is an open set because dim(O) = n by Epstein-Thurston. This proves
the first assertion of (a). To prove the second we can assume the action is transitive.
Fix a 1-dimensional subspace z ⊂ c having a 1-dimensional orbit L1 ⊂ L. After
replacing O by a suitably small open subset, we can assume the domain of the
action is O = Rn−1 ×R with the slices x ×R being the orbits of z. The induced
action of g on the n-dimensional space of z-orbits kills g(n−1) by Epstein-Thurston.
This implies L1 = L, which implies (a).

(b) Suppose dim g(n−1) = s ≥ 1 and there are exactly r open orbits Oi, i =
1, . . . r. As g acts transitively in Oi and g(n−1) is central, there is a codimension-one
subalgebra ki ⊆ g(n−1) acting trivially in Oi. If 1 ≤ r < s then ∩iki has positive
dimension and acts trivially in each open orbit, and also in all other orbits by
Epstein-Thurston. This implies (b).

(c) Assume α is nondegenerate. By (a) there is an open orbit O, which we can
assume is the only orbit. Let O, L, z be as in the proof of (a). If (c) is false we
choose z so that the central ideal j := g(n−1) + z has dimension ≥ 2. In the proof
of (a) we saw that every nontrivial orbit of j is 1-dimensional, hence every orbit
of j is 1-dimensional because α is transitive and j is central. Therefore for every
p ∈ O there is a maximal nontrivial linear subspace kp ⊂ j annihilated by α. As α
is transitive and j is central, all the kp coincides with an ideal that acts trivially in
O. This contradicts the assumption that α is nondegenerate. ¤

Example 13. The nilpotent algebra n = st(n+ 1,R)′ ×R has derived length
n and 2-dimensional center st(n+1,R)(n−1)×R. Being algebraically contractible,
n acts effectively on all n-manifolds by Corollary 10. On the other hand, Theorem
12 implies:

• Every n-action of n is degenerate and hence nonanalytic.
6



Weight spaces and spectral rank

Let T : g → g be linear. For λ in the spectrum spec (T ) ⊂ C define the
(generalized) weight space w(T, λ) ⊂ g to be the largest T -invariant subspace in
which T has spectrum {λ, λ̄}. The largest subspace of w(T, λ) in which T acts
semisimply is

m(T, λ) :=

{
kernel of T − λI if λ ∈ R
kernel of T 2 − 2(<eλ)T + |λ|2I if λ /∈ R

For any set S ⊂ C let Γ(S) denote the additive free abelian subgroup of C
generated by S. The rank of Γ(spec (T )) is the spectral rank r(T ). The rank of
Γ(spec (T ) \R) is the nonreal spectral rank rNR(T ). For a Lie algebra g define

r(g) = max
X∈g

r(adX), rNR(g) = max
X∈g

rNR(adX)

For example, if X ∈ st(m,R) is a sufficiently irrational diagonal matrix then

r(st(m,R)) = r(adX) = m− 1,

r(st(m,C)) = r(ad ıX) = m− 1,

rNR(st(m,C)) = rNR(ad ıX) = m− 1.

If s is semisimple of rank r with a Cartan decomposition k + p, almost every X in
the Cartan subalgebra k satisfies

r(s) = r(adsX) = r, rNR(s) = rNR(adsX) = r

(see Helgason [13, Prop. III.7.4]).
Y ∈ v∞(M) is flat at p ∈M when its Taylor series vanishes in local coordinates

centered at p. If such a Y is analytic it is trivial. Given (α, g,M) and p ∈M , define
fp(α) ⊂ g as the set of Y ∈ g such that Y α is flat at p. This is an ideal.

Proposition 14. Assume (α, g,Mn) is smooth, X ∈ g and p ∈ Fix(Xα).
Suppose m(adX,λ) ∩ fp(α) = 0 for all λ ∈ spec (adX)\ 0. Then

spec (adX) ⊂ Γ(spec (dXα
p ))

and therefore
n ≥ max{r(X), 2rNR(adX)}.

Proof. We can assume Mn = Rn, p = 0. Write every Z ∈ v∞(Rn) as
the formal sum

∑
r∈N Z(r) where the components of the vector field Z(r) are ho-

mogeneous polynomial functions of degree r. Then Xα
(0) = 0, Xα

(1) = dXα
p .

The order of Z is the smallest r for which Z(r) 6= 0 if Z is not flat at 0, oth-
erwise the order is ∞. Suppose Y ∈ k(adX,λ) is not flat at 0 and has finite
order r. Then (adC⊗gX − λI)Y = 0, implying [Xα

(1), Y
α
(r)] = λY α

(r). Hence λ ∈
spec (adv∞(Rn) dX

α
p ). A calculation shows that spec (adv∞(Rn) Z) ⊂ Γ(spec (Z)) for

every linear vector field Z : Rn → Rn. Apply this to Z := dXα
p . ¤

The following result is derived from Proposition 14:

Theorem 15. Suppose (α, g,Mn) is smooth, X ∈ g and p ∈ Fix(Xα).
(i): Assume r(adX) = n + k > n. Then adX has k different eigenvalues
λ 6= 0 such that w(adX, λ) ⊂ fp(α).

7



(ii): Assume 2rNR(adX) = n, α is effective, and m(adX,λ)∩ fp(α) = 0 for
all λ ∈ spec (adX) \R. Then dXα

p has only nonreal eigenvalues, Xα has
index 1 at p, and if Mn is compact then χ(Mn) > 0.

This has powerful consequences for analytic actions:

Corollary 16. Assume (α, g,Mn) is effective and analytic and X ∈ g.
(a): If Fix(Xα) 6= ∅ then n ≥ max{r(adX), 2rNR(adX)}.
(b): Suppose Mn is compact and n = 2rNR(adX). Then

χ(Mn) = # Fix(Xα) ≥ # Fix(α).

Therefore χ(Mn) ≥ 0, and Fix(α) = ∅ if χ(Mn) = 0.

For surface actions, (b) is due to Turiel [30].

Corollary 17. Assume Mn is compact and χ(Mn) 6= 0. If (α, g,Mn) is
analytic with kernel k, then dim k ≥ max

{
r(g)− n, rNR(g)− ⌊

n
2

⌋}
.

Example 18. Assume s is semisimple of rank r with a Cartan decomposition
k + p where k is a Cartan subalgebra. The set U := {X ∈ k : rNR(adX) = r} is
dense and open in k. Let (α, s,Mn) be effective and analytic, with Fix(Xα) 6= ∅
for some X ∈ U . Then Corollary 16 implies:

• n ≥ 2r. If n = 2r and Mn is compact then χ(Mn) = # Fix(Y α) > 0 for
all Y ∈ k.

Example 19. Assume m,n, k ∈ N+ with m ≤ n. Theorem 9 shows that
every n-manifold supports a smooth effective action of st(m + 1,R)k. Because
r(st(m+ 1,R)k) = mk, Corollary 17 implies:

• Assume Mn is compact and χ(Mn) 6= 0. If (α, st(m + 1,R)k,Mn) is
analytic and effective then k ≤ ⌊

n
m

⌋
.

To take a specific example:
• st(n + 1,R) × st(n + 1,R) does not have an effective analytic action on

any compact n-manifold.

Fixed points

For actions of G on compact surfaces M2 the following results are known:

Proposition 20.
(a): ST◦(2,R) has effective, fixed-point free C∞ actions on all compact

surfaces. (Lima [22], Plante [25], Belliart & Liousse [3], Turiel [29, 31])

(b): If G acts without fixed point and χ(M2) < 0 then ST◦(2,R) is a
quotient group of G. (Belliart [4])

(c): If G acts analytically without fixed point, χ(M2) ≥ 0. (Turiel [30])

(d): If G is nilpotent and acts without fixed point, χ(M2) = 0.
(Lima [22], Plante [25])

(e): If G is supersoluble and acts analytically without fixed point, χ(M2) = 0.
(Hirsch & Weinstein [17])

Careful use of the blowup construction shows that some supersoluble groups
have effective analytic surface actions with arbitrarily large numbers of fixed points:
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Theorem 21. Let M2
g denote a closed surface of genus g ≥ 0. For every k ∈ N

there is an effective analytic action (β, ST◦(3,R),M2
g ) such that

# Fix(β) =

{
2(g + k + 1) if M2

g is orientable,
g + k if M2

g is nonorientable and g ≥ 1.

On the other hand:
• Suppose G is not supersoluble. If M2 is compact and (α,G,M2) is effec-

tive and analytic, then 0 ≤ # Fix(α) ≤ χ(M2) ≤ 2.
This follow from Corollary 16(b), because G is not supersoluble if and only if
rNR(G) ≥ 1 .

Questions. Is the analog of Proposition 20(a) true for ST◦(3,R)? Does this
group have an effective analytic action with a unique fixed point on some orientable
closed surface? Can ST (3,R) act effectively on S2 with a unique fixed point? Can
a smooth effective action of SL(2,R) on S1 × S1 have a fixed point?

For noncompact group actions in higher dimensions the following are known:
• R acts effectively without fixed point on a compact Mn ⇐⇒ χ(Mn) = 0.

(Poincaré [27], Hopf [18])

• An algebraic action of a solvable complex algebraic group on a complete
complex algebraic variety has a fixed point. (Borel [5])

• If Mn is compact, n = 3 or 4, and χ (Mn) 6= 0, then every analytic action
of R2 on Mn has a fixed point. (Bonatti [6])

Spectral rigidity

A1(g,M) denotes the space of C∞ actions of g on M under the the smallest
topology making the maps the map A1(g,M) → v1(M), α 7→ Xα, continuous for
all X ∈ g. An action (α, g,M) is spectrally rigid at (X, p) if X ∈ g, p ∈ Fix(Xα),
and there exist arbitrarily small neighborhoods N ⊂ A1(g,Mn) of α and W ⊂ M
of p such that for all β ∈ N :

(SR1): Fix(Xβ) ∩W 6= ∅
(SR2): q ∈ Fix(Xβ) ∩ W =⇒ dXβ

q and dXα
p have the same nonzero

eigenvalues.
While spectral rigidity is impossible for nontrivial abelian algebras and dubious

for nilpotent algebras, many solvable and semisimple algebras exhibit it:

Theorem 22. Assume (α, g,Mn) is effective and analytic, X ∈ g and r(adX) =
n. Then α is spectrally rigid at (X, p) for all p ∈ Fix(Xα).

The proof is based on Proposition 14.

Conjecture. An analytic action α of a semisimple Lie algebra s is spectrally
rigid at (X, p) for all X ∈ s, p ∈ Fix(α).
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