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Quasi-Orthogonal Space-Frequency and
Space-Time-Frequency Block Codes for

MIMO OFDM Channels
Fatemeh Fazel, Student Member, IEEE, and Hamid Jafarkhani, Fellow, IEEE

Abstract— In this paper, we propose a novel class of Space-
Frequency and Space-Time-Frequency block codes based on
Quasi-Orthogonal designs, over a frequency selective Rayleigh
fading channel. The proposed Space-Frequency code is able to
achieve rate-one and full space and multipath diversity gains
available in the MIMO-OFDM channel. As simulation results
demonstrate, the code outperforms the existing Space-Frequency
block codes in terms of bit error rate performance. By coding
across the three dimension of space, time and frequency, we
propose a Quasi-Orthogonal Space-Time-Frequency code that is
capable of achieving rate-one and exploiting all of the spatial,
multipath and temporal diversity gains offered by the channel.
In case of a channel which is quasi-static over adjacent OFDM
symbol durations, we propose a Space-Time-Frequency code
that benefits from a reduced maximum likelihood decoding
complexity.

Index Terms— MIMO-OFDM, space-frequency codes, quasi-
orthogonal codes, wireless communication, space-time-frequency
codes.

I. INTRODUCTION

SPATIAL diversity is a popular diversity method for com-
bating the effects of fading without the need to increase

the bandwidth. Space diversity can be implemented in the form
of transmit and/or receive diversity creating Multiple-Input
Multiple-Output (MIMO) channels. Orthogonal Frequency Di-
vision Multiplexing (OFDM) is a technique used in broadband
wireless systems. The idea is to split the high rate data stream
into a number of lower rate streams and modulate them over
a number of subcarriers. This technique creates frequency-
flat subchannels within a frequency selective channel. Thus, a
combination of MIMO and OFDM is a promising technique
for high data rate broadband wireless systems. A frequency
selective channel offers an additional degree of diversity
known as multipath or frequency diversity. In a MIMO-
OFDM system, it is desirable to achieve multipath as well as
spatial diversity gains. Space-Frequency (SF) and Space-Time-
Frequency (STF) codes have been designed to achieve some
levels of space and multipath diversity. Space-Frequency codes
use the two dimensions of space (antenna) and frequency tones
(subcarriers) to code over. It is proved that a MIMO-OFDM
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system can achieve a maximum diversity gain equal to the
product of the number of its transmit antennas, the number
of its receive antennas and the number of multipaths present
in the frequency selective channel as long as the channel
correlation matrix is full rank [1]–[3]. Space-Time-Frequency
codes use the three dimensions of space, frequency and time
to code across, therefore STF codes are capable of achieving
an additional temporal diversity advantage on top of space
and multipath diversity gains offered by the MIMO-OFDM
channel. Authors in [4] and [5] prove that the STF code can
achieve a diversity order equal to the product of the number
of its transmit antennas, the number of its receive antennas,
the number of independent channel taps and the rank of the
temporal correlation matrix of the channel.

Space-time coded OFDM was first introduced in [6] by
using space-time trellis codes over frequency tones. Authors
in [7] introduced a space-frequency-time coding method over
MIMO-OFDM channels. They used trellis coding to code over
space and frequency and Orthogonal Space-Time Block codes
(OSTBC) [8] to code over OFDM blocks. It is noteworthy
that in the case of more than two transmit antennas the
OSTBC can provide a rate of at most 3

4 and we are not able
to have rate-one transmission. In [9], authors point out the
analogy between antennas and frequency tones and based on
capacity calculation, propose a grouping method that reduces
the complexity of code design for MIMO-OFDM systems.
The idea of subcarrier grouping is further pursued in [2]
with precoding and in [10] with bit interleaving. Reference
[11] proposes a repetition mapping technique to transform the
existing space-time codes, designed for quasi-static flat fading
channels, to full-diversity codes in frequency selective fading
channels. Note that their proposed method provides a tradeoff
between diversity and symbol rate. Later on, the authors
proposed a rate-one, full-diversity space-frequency block code
in [12]. Their proposed scheme can obtain a target diversity
gain but the decoding complexity grows exponentially with
the desired diversity. We use their design as a reference to
compare our proposed structure in terms of performance and
complexity.

Quasi-Orthogonal Space-Time Block Code (QOSTBC)
structures for quasi-static channels were first introduced in
[13] and [14]. Original QOSTBC designs provide rate-one
codes and pairwise Maximum Likelihood (ML) decoding
but fail to achieve full-diversity. Later on, improved quasi-
orthogonal codes were proposed through constellation rotation

1536-1276/08$25.00 c© 2008 IEEE
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[15]–[19]. It is worthwhile to mention that rotation-based
constellations to gain diversity were first introduced in [20]
and later on used for multi-antenna systems in [21]. A rotated
QOSTBC provides full diversity, rate one and better perfor-
mance compared to OSTBC. These benefits together with
the simple decoding capabilities of rotated quasi-orthogonal
codes, motivate us to design Space-Frequency codes based on
quasi-orthogonal structures.

In this paper, we provide a systematic method of design-
ing rate-one, full-diversity space-frequency and space-time-
frequency codes for two transmit antennas, using QOSTBCs.
We specifically construct sample SF and STF codes for a
frequency selective channel with two channel taps. As the
simulation results suggest, the proposed codes have a better
performance and under certain conditions, provide reduced
decoding complexity compared to the existing rate-one codes.
Furthermore, assuming that the channel is quasi-static over
two OFDM symbols, we show that the decoding complexity
of the space-time-frequency code can be reduced. Both SF
and STF code structures provide full symbol rate (one symbol
per frequency tone per time slot) and achieve any desired
multipath (frequency) diversity available in the frequency
selective fading channel.

During the review process of this paper, it came to our
attention that in an independent work, reference [22] has
discussed the connection between QOSTBC codes and the
STF scheme published in [2]. Therefore, it is not surprising
that in some cases, our STF codes, which are based on
QOSTBCs, match the STF scheme of [2]. Note that no SF
schemes are presented in [2] or [22].

The rest of the paper is organized as follows. In Section II,
we describe the MIMO-OFDM channel model and the general
structure of a SF code. In Section III, we introduce a general
class of quasi-orthogonal space-time block codes for quasi-
static flat fading channels. We use this class of QOSTBC as
an underlying structure to design rate-one full-diversity space-
frequency codes in Section IV. This class of SF codes is re-
ferred to as Quasi-Orthogonal Space-Frequency (QOSF) code
structure. We continue with the design of Quasi-Orthogonal
Space-Time-Frequency (QOSTF) block codes in Section V.
In Section VI, the decoding of QOSF and QOSTF codes is
discussed. Simulation results are presented in Section VII and
finally some concluding remarks are provided in Section VIII.

Notation: Throughout this paper we use bold letters to
represent matrices and underlined letters to represent vectors.
Superscripts T , ∗ and H stand for transpose, conjugate and
conjugate transpose, respectively; A◦B denotes the Hadamard
product of the matrices A and B, while A ⊗ B denotes their
Kronecker product and ||A||F represents the Frobenius norm
of the matrix A. Also, diag(a1, . . . , an), where ai is a row
vector of size T , denotes a n × nT block diagonal matrix
where the vectors a1, . . . , an are the block diagonal elements.
Note that CM×N is used to represent the set of M×N matrices
over complex numbers.

II. CHANNEL MODEL

In this section, we define the channel model we use
throughout the paper. Consider a MIMO-OFDM system with

MT transmit and MR receive antennas. We assume that the
receiver has perfect channel knowledge while the transmitter
does not know the channel. Throughout this work, we assume
no spatial fading correlation exists in between antennas. Each
channel between transmit antenna i and receive antenna j
is assumed to have L independent channel taps and the
channel impulse response vector in discrete-time is given
as [hij(0), . . . , hij(L − 1)] ∈ C1×L. It is assumed that all
channels have the same power-delay profile. Note that each
hij(l) is a zero mean complex Gaussian random variable with
a variance of σ2

l . For normalization purposes, we assume
that

∑L−1
l=0 σ2

l = 1. Also, assume that we have N frequency
subcarriers. A space-frequency codeword is represented by

CSF =

⎡
⎢⎢⎢⎣

c1(0) c2(0) . . . cMT
(0)

c1(1) c2(1) . . . cMT
(1)

...
...

. . .
...

c1(N − 1) c2(N − 1) . . . cMT
(N − 1)

⎤
⎥⎥⎥⎦∈ CN×MT ,

(1)

where ci(n) is the data transmitted by the ith transmit an-
tenna at the nth frequency subcarrier. A space-time-frequency
codeword has an additional dimension of time added to the
above SF codeword. In general we can express a STF code-
word transmitted during the tth OFDM symbol by Ct

STF =
[ct

i(n)] ∈ CN×MT . The OFDM transmitter performs an N -
point IFFT over the frequency tones. In order to remove
the Inter Symbol Interference (ISI) which is caused by the
multipath delay of the channel, one needs to add a cyclic
prefix to each OFDM symbol. The length of the cyclic prefix
should be equal to or greater than the delay spread of the
multipath channel. Note that the addition of cyclic prefix
comes at the cost of reducing the spectral efficiency. After
removing the cyclic prefix and applying FFT on frequency
tones, the received signal at receive antenna j at the nth

subcarrier during the tth OFDM symbol duration is given by

rt
j(n) =

MT∑
i=1

ct
i(n)Ht

ij(n) + N t
j (n), n = 0, 1 . . . , N − 1, (2)

where Ht
ij(n) is the frequency response of the channel at

the nth frequency subcarrier within the tth OFDM symbol
duration given by

Ht
ij(n) =

L−1∑
l=0

ht
ij(l)e

−j2πl n
N , n = 0, 1 . . . , N − 1. (3)

Also, N t
j (n) is a circularly symmetric zero-mean Gaussian

noise term corresponding to the nth frequency subcarrier and
the tth OFDM symbol duration.

In other words, for the tth OFDM symbol, the receiver
equation can be represented in matrix format by⎡
⎢⎣

rt(0)
...

rt(N − 1)

⎤
⎥⎦ = diag

(
Ct(0), . . . , Ct(N − 1)

)
⎡
⎢⎣

Ht(0)
...

Ht(N − 1)

⎤
⎥⎦

+

⎡
⎢⎣

N t
1(0) . . . N t

MR
(0)

...
. . .

...
N t

1(N − 1) . . . N t
MR

(N − 1)

⎤
⎥⎦ , (4)
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where rt(n) ∈ C1×MR is the vector of received signals,
Ct(n) ∈ C1×MT is the vector of transmitted symbols and
Ht(n) ∈ CMT ×MR is the matrix of channel coefficients in
frequency domain during the corresponding OFDM symbol
duration and subcarrier. For the channel model characterized
in this section, the maximum achievable diversity by using
a SF code, is equal to LMT MR [1]. In order to achieve
such maximum diversity gains, the number of subcarriers, N ,
has to be larger than or equal to the number of independent
delay paths, L. For a STF code the maximum achievable
diversity level is LMT MRτ , where τ is the rank of the channel
temporal correlation matrix [4].

III. GENERALIZED BLOCK-DIAGONAL

QUASI-ORTHOGONAL SPACE-TIME BLOCK CODES

In this section, we introduce a class of space-time block
codes based on quasi-orthogonal designs for any number of
transmit antennas over a quasi-static flat fading channel model.
This class of QOSTBC has a block-diagonal structure that will
be useful later in Section IV to build space-frequency block
codes. Let us denote the Alamouti scheme [23] for the two
indeterminate variables x1 and x2 by

A(x1, x2) =
[

x1 x2

−x∗
2 x∗

1

]
. (5)

The quasi-orthogonal space-time block code for four transmit
antennas has a structure given by [13], [14],

C4 =
[

A(s1, s2) A(s̃3, s̃4)
A(s̃3, s̃4) A(s1, s2)

]
, (6)

where s1 and s2 belong to a constellation A and s̃3 and
s̃4 belong to the rotated constellation ejθA. The code in (6)
provides a full-diversity rate-one transmission scheme for four
transmit antennas over quasi-static channels. Now consider the
following code structure,

C4 =
[

A(s1 + s̃3, s2 + s̃4) 0
0 A(s1 − s̃3, s2 − s̃4)

]
. (7)

It is straightforward to show that the diversity conditions and
the coding gain structure of the codes in Equations (6) and
(7) are the same; therefore their Bit-Error-Rate (BER) vs.
Signal-to-Noise-Ratio (SNR) behavior is the same although
their transmission schemes are different [24, page 121]. We
now extend the above structure to design a QOSTBC for
MT = 2k transmit antennas where k = 2r for some positive
integer r. For a block of 2k symbols, {s1, . . . , s2k}, where
si’s are taken from a constellation A, we define a new set of
combined symbols, {S1, . . . ,S2k}, as follows

[S1 S3 . . . S2k−1]T = Θ[s1 s3 . . . s2k−1]T , (8a)

[S2 S4 . . . S2k]T = Θ[s2 s4 . . . s2k]T . (8b)

where Θ = T × diag{1, ejθ1 , . . . , ejθk−1} and T ∈ Ck×k

is a Hadamard matrix1. Note that the above structure is not
unique and one can use any invertible linear combination of
the si’s to construct the combined symbols Si’s. We now

1An n×n Hadamard matrix is a matrix of +1’s and -1’s such that HHT =
nIn.

present a general class of QOSTBCs for the MT = 2k transmit
antennas, over a quasi-static flat-fading channel as follows

C2k =

⎡
⎢⎢⎢⎣
A(S1,S2) 0 . . . 0

0 A(S3,S4) . . . 0
...

...
. . .

...
0 0 . . . A(S2k−1,S2k)

⎤
⎥⎥⎥⎦∈ C2k×2k.

(9)

As will be discussed later, C2k is capable of achieving full-
diversity. Note that the block diagonal structure of the code in
(9) is desirable in designing space-frequency codes in Section
IV. The code in (9) is designed for MT = 2k = 2r+1

number of transmit antennas. By eliminating the proper rows
and columns of the codeword matrix and the corresponding
symbols from the set of combined symbols, we can design
codes for an arbitrary number of transmit antennas. The
resulting codes achieve full diversity and rate-one. As an
example, suppose we want to design a generalized QOSTBC
code for MT = 6 transmit antennas. First, we select the code
designed for MT = 8 transmit antennas. To come up with a
code for MT = 6, we eliminate the last two rows and the last
two columns of the codeword C8 and omit the symbols s7

and s8 from the combined symbols in (8a) and (8b) as well.
To further design a code for MT = 5 transmit antennas, we
omit the symbol s6 in the combined symbols and eliminate
the last column of the codeword C6. These codes are still
rate-one and achieve full-diversity.

A. Design Criteria

Let us denote two distinct sets of symbols
by {s1, s2, . . . , s2k} and {u1, u2, . . . , u2k}, where
si, ui ∈ A, ∀i ∈ {1, 2, . . . , 2k}. We construct the sets of
combined symbols, {S1,S2, . . . ,S2k} and {U1,U2, . . . ,U2k},
corresponding to si’s and ui’s respectively, by using
the equations (8a) and (8b). Now let us define the
set of differences (pairwise combined-symbol errors)
{D1,D2, . . . , D2k}, where Di = Si−Ui, ∀i ∈ {1, 2, . . . , 2k}.
It is easily seen that,

det{(Ci
2k − Cj

2k)H(Ci
2k − Cj

2k)} =

(|D1|2 + |D2|2)2(|D3|2 + |D4|2)2 . . . (|D2k−1|2 + |D2k|2)2.
(10)

The rotation angles {θ1, θ2, . . . , θk−1} for the QOSTBC
given by (9), are chosen such that for all distinct sets of
{s1, . . . , s2k} and {u1, . . . , u2k}, the following two conditions
are satisfied:

1) Diversity: To guarantee full-diversity, it is necessary to
ensure that the rotation angles are chosen such that for
di = si − ui, ∀si, ui ∈ A,

|D1| = |d1 + ejθ1d2 + · · · + ejθk−1dk| �= 0,

If we switch si and ui for any i ∈ {2, . . . , k}, we get
Dj �= 0,∀j ∈ {1, 3, . . . , 2k − 1} as well.

2) Coding Gain: To maximize the coding gain, the follow-
ing optimization problem needs to be solved,

max
θ1,...,θk−1

min
D1,D3...,D2k−1

|D1D3 . . . D2k−1|.
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Fig. 1. Optimal rotation angles for two transmit antennas.

Note that the minimum coding gain is achieved when
one of the following sets {D1,D3, . . . , D2k−1} or
{D2,D4, . . . , D2k} are zero. Without loss of generality,
we have assumed that {D2,D4, . . . , D2k} is the zero
set.

The decoding of the quasi-orthogonal STBC structure in
(9) is done for k symbols at a time. Thus the decoding
complexity grows exponentially with k. The above class of
QOSTBCs provides rate-one, full-diversity block codes for
any number of transmit antennas at the expense of higher
decoding complexity compared to the orthogonal space-time
block codes. For the case of MT = 2 transmit antennas or
equivalently k = 1, the code in (9) reduces to the well-known
Alamouti code. For the case of MT = 4 transmit antennas
and consequently k = 2, we obtain the quasi-orthogonal code
given by (7).

B. Optimal Rotation Angles

The optimum rotation angles, θi’s, are determined such
that the coding gain is maximized while the code is full-
diversity. The code in Equation (7) has the same performance
as the rotated quasi-orthogonal codes for four transmit anten-
nas discussed in [15]–[17]. It is full-rate and achieves full-
diversity and has a pairwise maximum likelihood decoding.
The minimum coding gain structure of the code in (7) is also
the same as the minimum coding gain of the existing quasi-
orthogonal codes. Therefore, the optimum rotation angles for
this code, for MPSK constellation is π/M (for M even) and
π/2M (for M odd) and for QAM is π/4 [18], [24]–[26].
Notice that the optimal rotation angles are not unique. Fig.
1 depicts the values for the minimum determinant vs. the
rotation angles for MT = 4 transmit antennas. Table I lists
some of the optimal rotation angles for BPSK and QPSK
constellations for 4, 6 and 8 number of antennas. The results
are obtained through exhaustive search.

TABLE I

OPTIMAL ROTATION ANGLES

MT = 4 MT = 6 MT = 8

constellation θ1 θ1, θ2 θ1, θ2, θ3

BPSK π/2 π/4, 3π/4 π/4, π/2, 3π/4

QPSK π/4 0.4638,0.9275 π/8, π/4, 3π/8

IV. QUASI-ORTHOGONAL SPACE-FREQUENCY CODE

STRUCTURE

It has been shown in [1] that by applying the existing
orthogonal space-time block codes to frequency domain, it
is not guaranteed that we achieve the multipath diversity gain
of a frequency selective fading channel. In this section we
provide a guideline for constructing space-frequency block
codes based on quasi-orthogonal designs, that is guaranteed
to exploit any desired level of multipath diversity.

Consider the MIMO-OFDM system described in Section II
where MT = 2 and L ≤ N . In order to design a SF block code
that exploits full spatial diversity and a multipath diversity of
L, we use the QOSTBC designed for 2L transmit antennas in
quasi-static channel model given by Equation (9). A general
SF codeword, based on the aforementioned quasi-orthogonal
design, is expressed as

CSF =
[

G1T G2T
. . . GmT . . .

]T

∈ CN×2, (11)

where,

Gm =

⎡
⎢⎢⎢⎣

A(Sm
1 ,Sm

2 )
A(Sm

3 ,Sm
4 )

...
A(Sm

2L−1,Sm
2L)

⎤
⎥⎥⎥⎦ ∈ C2L×2, (12)

and the superscript m ∈ {1, . . . , � N
2L	} denotes the block

number. Note that if N , the number of subcarriers, is not an
integer multiple of 2L, we need to pad the space-frequency
codeword with zeros. For simplicity, let us assume from now
on that N = 2Lp, for some integer p. The proof of full-
diversity for the QOSF code of (11) is presented in the
Appendix A of the paper.

As an example, consider a multipath channel with L = 2
and MT = 2. We construct the QOSF code as follows,

CSF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1
1 + s̃1

3 s1
2 + s̃1

4

−s1∗
2 − s̃1∗

4 s1∗
1 + s̃1∗

3

s1
1 − s̃1

3 s1
2 − s̃1

4

−s1∗
2 + s̃1∗

4 s1∗
1 − s̃1∗

3

s2
1 + s̃2

3 s2
2 + s̃2

4

−s2∗
2 − s̃2∗

4 s2∗
1 + s̃2∗

3

s2
1 − s̃2

3 s2
2 − s̃2

4

−s2∗
2 + s̃2∗

4 s2∗
1 − s̃2∗

3
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

Note that in general, there is a tradeoff between the amount
of multipath diversity one can achieve and the corresponding
decoding complexity. Also, note that although we designed the
codes for two transmit antennas, the design can be generalized
to more than two transmit antennas by simply using the
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QOSTBC designed for MT L antennas in (9) and applying it
to frequency domain following the same guidelines provided
in this section.

V. QUASI-ORTHOGONAL SPACE-TIME-FREQUENCY CODE

STRUCTURE

Consider a multipath channel described in Section II where
MT = 2 transmit antennas. Assume a temporal diversity of τ
is desired, therefore we spread our codeword across τ OFDM
symbol durations. We choose a generalized QOSTBC code,
given by (9), corresponding to 2Lτ transmit antennas to build
our QOSTF code. The codeword transmitted during the t’th
OFDM symbol duration is given by

Ct
STF =

[
G1

t
T G2

t
T

. . . Gm
t

T . . .
]T

∈ CN×2, (14)

where t ∈ {1, . . . , τ} and for a block index of m ∈
{1, . . . , � N

2L	},

Gm
t =

⎡
⎢⎢⎢⎣

A(Sm
2L(t−1)+1,Sm

2L(t−1)+2)
A(Sm

2L(t−1)+3,Sm
2L(t−1)+4)

...
A(Sm

2Lt−1,Sm
2Lt)

⎤
⎥⎥⎥⎦ ∈ C2L×2. (15)

Note that {Sm
1 , Sm

2 , . . . , Sm
2Lτ} are defined in (8a) and

(8b). The proof that our proposed QOSTF code achieves
full space, frequency and time diversity over independently
changing channels, is provided in Appendix B of the paper.
In general, for larger temporal diversity advantage τ , one can
spread the codewords across an arbitrary number of OFDM
blocks but there is a delay of τ OFDM symbols associated
with the decoding process. If the channel is quasi-static over
the adjacent OFDM blocks, i.e. the channel stays constant for
B time slots, STF coding cannot provide additional temporal
diversity advantage. However, in such a scenario we propose a
QOSTF code that provides reduced ML decoding complexity.
For instance, if B = 2, we select an underlying generalized
QOSTBC that provides a diversity advantage of 2L and spread
the codeword across the B = 2 adjacent OFDM symbols as
follows,

C1 =
[ S1

1 S1
3 . . . S1

2L−1 S2
1 . . .

S1
2 S1

4 . . . S1
2L S2

2 . . .

]T

∈ CN×2,

C2 =
[ −S1∗

2 −S1∗
4 . . . −S1∗

2L −S2∗
2 . . .

S1∗
1 S1∗

3 . . . S1∗
2L−1 S2∗

1 . . .

]T

∈ CN×2.

(16)

Now, as an example, consider a channel with L = 2 that
is quasi-static over B = 2 adjacent OFDM symbols (conse-

quently τ = 1). The proposed QOSTF code is given as,

C1=

⎡
⎢⎢⎢⎢⎢⎣

s1
1 + s̃1

3 s1
2 + s̃1

4

s1
1 − s̃1

3 s1
2 − s̃1

4

s2
1 + s̃2

3 s2
2 + s̃2

4

s2
1 − s̃2

3 s2
2 − s̃2

4
...

...

⎤
⎥⎥⎥⎥⎥⎦
∈ CN×2,

C2=

⎡
⎢⎢⎢⎢⎢⎣

−s1∗
2 − s̃1∗

4 s1∗
1 + s̃1∗

3

−s1∗
3 + s̃1∗

4 s1∗
1 − s̃1∗

2

−s2∗
2 − s̃2∗

4 s2∗
1 + s̃2∗

3

−s2∗
2 + s̃2∗

4 s2∗
1 − s̃2∗

3
...

...

⎤
⎥⎥⎥⎥⎥⎦
∈ CN×2. (17)

The code in (17) has a pairwise ML decoding which is
simplified compared to the existing codes and also the QOSF
code discussed in Section IV. Details of decoding are provided
in Section VI.

VI. DECODING OF QOSF AND QOSTF BLOCK CODES

Assume we have MR = 1 receive antenna and Hi(n)
represents the one tap channel gain between transmit antenna
i and the single-antenna receiver at carrier frequency n. Let
H(n) =

[
H1(n) H2(n)

]T
. Assume that the channel is

quasi-static over adjacent OFDM symbols and consider the
QOSTF code in (16). Due to the independence of different
blocks of data corresponding to different values of m, the
Maximum-Likelihood (ML) decoding is reduced into inde-
pendent ML decoding per block. Assuming perfect channel
information at the receiver, the ML decision rule for the m’th
block is given by

arg min
{Sm

1 ,Sm
2 ,...,Sm

2L}

L−1∑
n=0

||y(n + (m − 1)L) −

A(Sm
2n+1,Sm

2n+2)H(n + (m − 1)L)||2F (18)

where y(n) = [r1(n) r2(n)]T represents a vector contain-
ing the received signals at two consecutive OFDM symbols
over the n’th subcarrier. Furthermore, the Alamouti structure
of the subblocks enables independent decoding per sets of
{Sm

1 , . . . ,Sm
2L−1} and {Sm

2 , . . . ,Sm
2L}. Therefore, the QOSTF

code in (17) has a pairwise ML decoding. Note that there is
a delay of two OFDM symbols associated with the decoding
of the STF code. Based on the discussion above, for the same
level of diversity, our proposed STF code has a decoding
complexity which is a power of 1/2 of the decoding complexity
of the code in Ref. [12].

In most urban communication channel models, the root-
mean-square value of the delay spread is smaller than 2.5μsec.
For a typical sampling frequency of 1 MHz one can assume
that if the number of OFDM tones is larger than 500, two
adjacent frequency tones undergo the same fading [27] and
a block fading model can be adopted. Therefore, one can
separate the decoding formulas for the sample QOSF code
in (13) into two independent functions each containing a
pair of the symbols. Under these assumptions, the decoding
complexity of the QOSF code is considerably reduced and is
similar to the decoding complexity of the QOSTF code. Note
that in general sphere decoding methods can be used to reduce
the decoding complexity for both QOSF and QOSTF codes.
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Fig. 2. BER vs. SNR for a 2-ray channel with delay spreads of 5 μsec and
20 μsec respectively; 1 bit/sec/Hz using BPSK.

VII. SIMULATION RESULTS

The MIMO-OFDM system we use in our simulation model
consists of MT = 2 transmit antennas, MR = 1 receive
antenna and N = 128 subcarriers. We assume that the receiver
has perfect channel state information. Assume that the average
symbol power per transmit antenna is Es = 1

MT
and the

noise variance is 1
SNR . We carry out the simulations for two

different channel models. First we use a 2-ray equal power
channel model with delay spreads of 5 μsec and 20 μsec.
Then we use an exponential decay power profile model where
the root mean square (rms) delay spread of the channel is
5 μsec and the maximum delay spread is set to be 10 times
the rms delay spread. The length of the cyclic prefix is set to
be 20 μsec in all cases. For our QOSF and QOSTF schemes,
the rotation angles are θ = π

2 and θ = π
4 for BPSK and

QPSK constellations, respectively. We compare our proposed
scheme to the space-frequency block codes presented by Su
et al. in [12], which are the best existing SF block codes in
the literature. Note that the decoding for the code in [12] is
performed for four symbols at a time.

Fig. 2 depicts the bit error rate performance of our QOSF
and QOSTF codes given by (13) and (17) compared to the
SF code in [12]. Note that for the code in (17) the channel
is considered to be quasi-static over two adjacent OFDM
symbols. The symbols are chosen from a BPSK constella-
tion, therefore ignoring the cyclic prefix, we have a spectral
efficiency of 1 bit/sec/Hz. It is evident from the figures that
both QOSTF and QOSF schemes outperform the code in [12].
As seen in the figure, in the case of 20μsec delay spread,
even when random subcarrier permutation (interleaving) is
applied to [12] to improve its performance, still the QOSF
and QOSTF schemes are superior. As the delay spread of the
channel increases, the QOSF code dominates the other curves
and outperforms both the code in [12] and the QOSTF over
quasi-static channel. Nevertheless, we have to restate that in
case of the QOSTF code over quasi-static channel, we benefit
from a reduced decoding complexity. In Fig. 2, at a bit error
rate of 10−5 and a delay spread of 20 μsec, QOSF code
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Fig. 3. BER vs. SNR for a 2-ray channel with delay spreads of 5 μsec and
20 μsec respectively; 2 bits/sec/Hz using QPSK.
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Fig. 4. BER vs. SNR of QOSTF code for a 2-ray channel with delay spreads
of 5 μsec and 20 μsec; 1 bit/sec/Hz using BPSK.

outperforms the code in [12] by almost 3 dB. Fig. 3 depicts
the bit error rate vs. signal to noise ratio for the code in [12]
and the QOSF and QOSTF codes at a spectral efficiency of
2 bits/sec/Hz. The superiority of our proposed QOSF scheme
over that of [12] is evident from the figure. In Fig. 3, at a
bit error rate of 10−4 and a delay spread of 20 μsec, again
we observe a performance advantage of about 3 dB over the
scheme in [12]. In Fig. 4 we study the performance of the
QOSTF code of (17) over the following channel scenarios:

1) The channel is quasi-static over two OFDM symbol
durations,

2) The channel changes from one OFDM symbol to the
next in a correlated manner following a Jakes model
[28] with fDT = 0.0025,

3) The channel changes independently from one OFDM
symbol to the next.

We observe that the QOSTF code over independent channel
realizations offers the best bit-error-rate performance. While
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the QOSTF scheme over Jakes channel model falls in between
the quasi-static and independent scenarios. We have to mention
that throughout our simulations, we used the simplified decod-
ing for QOSTF in the case of quasi-static fading scenario.

It is interesting to note that although QOSF, QOSTF and
the code in [12] achieve full spatial and multipath diversity,
the slopes of the performance curves are not equal. We
conjecture that as the concept of diversity of a code is based
on asymptotical analysis for large SNR, the slopes of the
BER-SNR curves will be equal for larger values of SNR not
captured in our simulations.

It is also worthwhile to mention that decreasing the FFT
length while keeping the bandwidth constant, improves the
performance of the QOSF scheme by decreasing the correla-
tion between adjacent subcarriers.

In Fig. 5, the performances of the QOSF and QOSTF codes
are compared with the code of [12] for an exponential decay
channel model for 1 bit/sec/Hz and 2 bits/sec/Hz using BPSK
and QPSK respectively. As the simulation result suggests, even
in more practical channel models, the proposed QOSF code
demonstrates a superior performance over that of [12], which
to the best of our knowledge, is the best available SF block
code in the literature.

VIII. CONCLUSION

In this paper, we introduced a class of space-time block
codes for an arbitrary number of transmit antennas based
on generalizing the quasi-orthogonal space-time block codes.
We then proposed a class of space-frequency block codes
that is capable of achieving rate one and full spatial and
multipath diversity in a frequency selective MIMO-OFDM
channel structure. In general, the decoding complexity of our
SF scheme grows exponentially with the desired diversity
level although sphere decoding can be utilized to reduce the
complexity. We discussed the conditions under which the ML
decoding complexity is reduced.

We also designed a class of quasi-orthogonal space-time-
frequency block codes. Our proposed STF codes, in addition

to the space and frequency diversity gains, are able to exploit
the temporal diversity gains of the channel as well, thus
achieving the maximum possible diversity level. If the channel
is quasi-static over B OFDM symbol durations, there are no
temporal diversity gains offered by the channel. In this case,
we proposed to use the STF structure to reduce the decoding
complexity. Note that in general there is a delay of B OFDM
symbols associated with the decoding of the STF codes while
the SF code does not produce any decoding delays.

APPENDIX

A

In this appendix, we prove that the SF code given by
Equations (11) and (12) provides a diversity of 2L over any
two-antenna frequency selective channel with L independent
channel taps.
Proof: Assuming that N > 2L, the diversity order of
a space-frequency code, for any two distinct codewords C
and E, is determined by the minimum rank of the matrix
F(C,E) ∈ CN×2L given by [1],

F(C,E)=
[
(C − E) Ψ(C − E) . . . ΨL−1(C − E)

]
,

where Ψ = diag{wk}N−1
k=0 and w = e−j 2π

N . For a block index
m ∈ {1, . . . , � N

2L	}, let us denote the difference between the
two symbols sm

i and um
i to be dm

i = sm
i − um

i . Assume that,

∃ m0 such that {dm0
1 , . . . , dm0

L , dm0
L+1, . . . , d

m0
2L } �= 0.

To achieve the minimum rank, we further assume that ∀m �=
m0, {dm

1 , . . . , dm
2L} = 0; because the rank of F(C,E) can not

decrease further if for some m1 �= m0, {dm1
1 , . . . , dm1

2L } �= 0.
Moreover, it is obtained numerically, that for the practical
constellations BPSK, QPSK and 16QAM, the minimum cod-
ing gain is achieved when one of the sets {dm0

1 , . . . , dm0
L }

or {dm0
L+1, . . . , d

m0
2L } is zero. Without loss of generality, let us

assume {d1
1, . . . , d

1
L} is the non-zero set. Thus only the first

2L rows of F(C,E) have non-zero elements. Let us denote
the non-zero part of F(C,E) by F̃(C,E) ∈ C2L×2L given as,⎡
⎢⎢⎢⎢⎢⎢⎣

D1 0 . . . D1 0
0 D∗

1 . . . 0 wL−1D∗
1

D3 0 . . . w2(L−1)D3 0
...

...
. . .

...
...

D2L−1 0 . . . w2(L−1)(L−1)D2L−1 0

0 D∗
2L−1 . . . 0 w(L−1)(2L−1)D∗

2L−1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(19)

Next, we prove that the columns of the above matrix are
linearly independent, resulting in a full-rank F̃(C,E). Due
to the full-diversity criteria of the generalized QOSTBC we
already know that D1 = |d1 + ejθ1d2 + · · · + ejθk−1dL| �= 0,
where di = si − ui, ∀ si, ui ∈ A. Note that if we switch sj

and uj for any j ∈ {2, . . . , L}, we get Dj �= 0 as well.
Therefore any even and any odd column of F̃(C,E) are
already independent. Let us denote the matrix constructed by
the odd rows and odd columns of F̃(C,E) by F̃odd(C,E) ∈
CL×L and similarly the matrix constructed by even rows and
even columns of F̃(C,E) by F̃even(C,E) ∈ CL×L. One can
easily show that,

det(F̃(C,E)) = det(F̃odd(C,E)) det(F̃even(C,E)) (20)
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We now need to show that both F̃odd(C,E) and F̃even(C,E)
are full-rank. F̃odd(C,E) ∈ CL×L can be represented by,⎡
⎢⎢⎢⎢⎢⎣

D1 D1 . . . D1

D3 w2D3 . . . w2(L−1)D3

D5 w4D5 . . . w4(L−1)D5

...
...

. . .
...

D2L−1 w2(L−1)D2L−1 . . . w2(L−1)(L−1)D2L−1

⎤
⎥⎥⎥⎥⎥⎦

.

To show that F̃odd(C,E) is full-rank we prove that its
determinant is non-zero. Using basic determinant properties,
one can write,

det(F̃odd(C,E)) = D1D3D5 . . . D2L−1 det(W), (21)

where,

W =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
1 w2 w4 . . . w2(L−1)

1 w4 w8 . . . w4(L−1)

...
...

...
. . .

...
1 w2(L−1) w4(L−1) . . . w2(L−1)(L−1)

⎤
⎥⎥⎥⎥⎥⎦

. (22)

Noting that W is a Vandermonde matrix [29], one can rewrite
the determinant of F̃odd(C,E) as follows,

det(F̃odd(C,E)) =

(
2L−1∏
i=1
i:odd

Di) det(W) =
2L−1∏
i=1
i:odd

Di

L−2∏
m=0

L−1∏
n=m+1

(w2n − w2m).

(23)

The first term in det(F̃odd(C,E)), which is the prod-
uct of Di’s for odd values of i, is non-zero because of
the full-diversity characteristic of the underlying generalized
QOSTBC. The second term is also non-zero because we
have assumed that N > 2L, therefore e−j 2π

N l < 1, ∀l ∈
{1, . . . , 2(L − 1)} and wi �= wj , ∀i �= j. Thus F̃odd(C,E)
is full-rank. In a similar manner it can be shown that
F̃even(C,E) is full-rank as well,

det(F̃even(C,E)) =
2L−1∏
i=1
i:odd

D∗
i

L−2∏
m=0

L−1∏
n=m+1

w(w2n − w2m).

(24)

Consequently, F(C,E) has a minimum rank of 2L. Thus
we have proved that the code in Equation (11) achieves a
diversity of 2L, where two levels of diversity are due to
transmit diversity and L levels are due to multipath/frequency
diversity

APPENDIX

B

In this appendix, we prove that the STF code, given by
Equations (14) and (15), provides a diversity of 2Lτ over any
two-antenna frequency selective channel with L independent
taps over τ independent OFDM symbols.
Proof: Assuming the channel taps are independent and no
spatial correlation between antennas exists, also assuming that
the second order statistics of the time correlation is the same

for all transmit and receive antenna pairs and all paths, the
diversity criterion is given by [4],

diversity = min
C,E

rank(Δ ◦ R), (25)

where,

Δ =

⎡
⎢⎢⎢⎣

D1
STF

D2
STF
...

Dτ
STF

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

D1
STF

D2
STF
...

Dτ
STF

⎤
⎥⎥⎥⎦

H

, (26)

Di
STF = Ci

STF − Ei
STF ∀i ∈ {1, . . . , τ},

and R = Rτ ⊗ Rf where Rf ∈ CN×N is the frequency
correlation matrix of the channel and Rτ ∈ Cτ×τ is the
temporal correlation matrix. For the sake of simplification,
we further assume that the channel changes independently in
time over adjacent OFDM symbols, therefore, Rτ = Iτ×τ . In
this case, we can write the diversity criterion as follows,

min
C,E

τ∑
i=1

rank(Di
STF Di

STF

H◦ Rf ), (27)

Therefore, to achieve full space, time and frequency diversity
gains of 2Lτ , one needs to show that each of the elements
(Di

STF Di
STF

H)◦Rf is of rank 2L which is equivalent to the
proof of full-diversity for SF codes provided in Appendix A.
Therefore, under independent temporal correlation condition,
the QOSTF in (14) provides full-space, time and frequency
diversity of 2Lτ
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