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Abstract

Towards Prediction Optimality in Video Compression and Networking

by

Shunyao Li

In modern video compression and communication systems, prediction is one of the

key schemes to exploit spatial and temporal redundancies. However, current approaches

are suboptimal as they do not fully exploit the spatial and temporal correlations within

signals. This dissertation focuses on the optimal prediction algorithms that fully utilize

the correlations, and the optimal design of predictors that accounts for the rich vari-

ety of video statistics as well as the instability due to quantization error propagation

in the closed-loop video coding system. Complementary to predictive coding, we also

expand the design framework to the general predictive coding system, focusing on the

optimal transform design that spatially de-correlates the residual data, leading to better

compactness and compression performance.

The contributions in this dissertation cover the topics of spatial (intra) prediction,

temporal (inter) prediction, the layered prediction in scalable coding and transform de-

sign. The contributions have been proposed to or accepted in multiple video coding

standardization efforts including the Moving Picture Experts Group (MPEG) and the

Alliance for Open Media (AOM), and have provided significant improvements in the

video compression performance.
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Chapter 1

Introduction

1.1 An Overview of Video Coding

Video applications (storage, streaming, real-time communication, etc.) have long

been an essential part of the modern technology and have been developing rapidly over

the past thirty years. High video quality requirements and limited bandwidth lead to the

growth and standardization of video compression technology. The latest video coding

standard, High Efficiency Video Coding (HEVC) [1], also known as H.265 and MPEG-H

Part 2, was developed by the Joint Collaborative Team on Video Coding (JCT-VC) in

2013. Since then, it has been a benchmark for both the industry and the academia when

new compression algorithms are proposed. Besides the effort of JCT-VC, another joint

development project named the Alliance for Open Media (AOM) was launched in 2015

focusing on delivering the next-generation royalty-free video codecs. Their open-source

video codec AV1 will be supported by major browser vendors, content providers and

hardware manufacturers, and has become a major player in the video compression indus-

try. Its predecessor, VP9 [2], was developed by Google and has been another benchmark

while new algorithms are proposed to AV1.
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Introduction Chapter 1

The basic video compression framework includes four major components: prediction,

transform, quantization and entropy coding. A simplified block diagram is shown in

Fig. 1.1, where the four components are represented as P, T, Q, EC respectively. A video

frame is first divided into blocks. For each block x, the encoder first predicts the block

from available relevant information, and gets the prediction x̃. Then it computes the

prediction error (a.k.a. residual) e = x− x̃, and convert it into the transform domain E.

To make sure the bitstream size matches the bandwidth condition, it uses a quantizer

to compress the values in E to a prescribed set of values, introducing a certain amount

of distortion (a.k.a. quantization error or reconstruction error). The trade-off between

rate (bitstream size) and distortion (quality) is carefully balanced to either minimize the

bitrate maintaining the quality, or minimize the distortion given a target bitrate. To

minimize the bits needed for the quantized values, an entropy coder is used to optimize

the codebook, which is used by both encoder and decoder to convert between the bits

and quantized values. Those quantized values are thus converted to bits and written to

the bitstream.

At the decoder side, it receives the bitstream and decodes it using the same code-

book, then dequantizes it to reconstruct the transform domain residual Ê. An inverse

transform is applied on Ê to convert it back to the pixel domain ê. The reconstructed

residual ê is usually different from the real residual e due to the information loss at the

quantizer. In the exact same way as encoder, the decoder would compute a prediction x̃

based on available reconstructed information. The reconstruction of the block x̂ is then

generated by adding together the reconstructed residual ê and x̃. Since the blocks are

coded sequentially, the reconstruction x̂ is then used to predict future blocks, forming a

predictive loop. In this dissertation, we consistently refer to prediction using notation ,̃

and reconstruction using ,̂ which are commonly used in academic papers in this field.

Each of the four components plays an important role in the system. Prediction

2



Introduction Chapter 1

Figure 1.1: Video codec block diagram

exploits the correlation between pixels (both spatially between neighboring pixels and

temporally between adjacent frames). Transform furthers removes the redundancy within

the residual block, and redistributes the energy more compactly so that the quantizer

can achieve a better rate-distortion (RD) trade-off. Quantizer decides the information

to remove (usually high frequency signals), and optimizes the bit allocation based on

the bitrate requirement. Entropy coding optimizes the codebook based on the prior

probability information to minimize the average number of bits needed. Regardless of

the codec development organization, almost all the modern video codecs follow the similar

basic workflow.

To compromise the trade-off between rate and distortion, a metric named RDcost

is introduced to measure both the deviation from the source data and the number of

3
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bits needed to encode the residual as well as the coding decisions. Mathematically, it is

defined as

RD cost = rate + λdistortion (1.1)

where rate is measured by the number of bits, and distortion is measured as the mean

square error between source and reconstruction. Usually, an encoder tries out all the

possible coding decisions (block sizes, prediction modes, transform modes, quantizer

parameters) and chooses the one that yields the minimum RD cost. The encoder decisions

are sent to the decoder as extra overhead.

To better target at specific applications like video streaming or video conferencing,

several extension have been adopted along with the video compression standards. Scal-

able video coding [3, 4] allows the videos to be encoded progressively at different settings

(quality, resolution or frame rate), thus depending on the network condition, one or more

sets of bitstream can be transmitted to the decoder for reconstruction at different levels.

Other extensions include screen content coding (for video containing rendered graphics,

text, or animation), multi-view extensions (for multiple camera views), range extensions

(for HDR video or content production), etc.

In this dissertation, we will mainly focus on optimizing the prediction module in

regular video coding system as well as the scalable video coding system. We also extend

some of the design to transform coding in general predictive systems. Some of the

contributions in this dissertation have been proposed to AOM and adopted by the AV1

codec. Some other work have gained attentions from major contributors in JCT-VC for

the development of the next generation video codec, H.266.

4
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1.2 Prediction in Video Coding

Prediction is widely used in video coding to remove redundancies by exploiting the

correlation between pixels. For regular 2D video frames, there are two major types of

prediction: intra prediction (a.k.a. spatial prediction) which uses the neighboring pixels

information within the same frame, and inter prediction (a.k.a. temporal prediction)

which uses the information in previous frames. Traditionally in intra prediction, the pixels

on the block boundary are copied along a specific direction to generate the prediction

for the block, wherein the directionality depends on the local texture. Each direction

is considered as an intra mode. The encoder would search for the best intra mode for

prediction, and send the mode index to the decoder. The number of modes varies in

different codecs. AV1’s predecessor, VP9, has 10 directional intra modes (Fig. 1.2a),

while HEVC has 36 directional intra modes (Fig. 1.2b). [5] discussed about the intra

prediction efficiency in HEVC and VP9. In inter prediction, the encoder predicts a block

from a similar reference block in previously reconstructed frames. The reference block is

described by the index of the reference frame and a motion vector between the coordinates

of the two blocks. Usually the codec maintains a list of reference frame candidates based

on the distance to the current frame and the reconstruction quality. In scalable video

coding [3, 4], the reconstruction of the same frame at different quality levels are added

to the candidate lists as well.

In general predictive coding systems, the prediction is used as reference for coding

future blocks or frames, forming a closed prediction loop system. This prediction loop

structure is widely used in all kinds of signal compression system (e.g.: audio, video,

etc.). The design framework proposed in this dissertation widely applies to any predictive

coding system, thus is of significantly broad interests.

5
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(a) Intra prediction modes in VP9 (b) Intra prediction modes in HEVC

Figure 1.2: The intra prediction modes in HEVC and VP9

(From 1051-8215/$31.00 c© 2012 IEEE and 1545-0279/$31.00 c© 2015 IEEE)

1.3 Challenges and Limitations

The challenges of prediction mainly come from two parts. First, the underlying

coupled spatial and temporal correlation is complicated and hard to describe in a simple

prediction model. This leads to a line of research in designing better prediction models

(e.g.: joint spatial-temporal prediction [6, 7, 8], combined intra prediction [9], 3D sub-

band coding [10, 11], multi-tap filtering [12, 13, 14], etc.). Second, the correlation varies

considerably in natural video sequences and it cannot be well described using a single

model. Usually, multiple modes are designed for the encoder to choose from. The encoder

may choose one mode that works the best for the block, frame or sequence (depending

on the flexibility level), and signal the mode index in the bitstream with extra overhead.

Therefore, another line of research is about optimizing the mode design to accurately fit

the statistics.

The approaches often used in the mode design generally fall into two categories:

online adaptation and offline training. Online adaptation updates the model on-the-

fly at both encoder and decoder as the codec proceeds through the frames [15, 16].

6
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However, many applications require the decoding to be performed in real time on low-

cost devices, thus the decoders can not afford to support complicated online adaptation

algorithms. Offline training, on the other hand, can be extensive and comprehensive.

The models are designed offline, based on the extracted statistics from a training set,

and later are applied on the actual real world data. The training algorithms are becoming

more and more accessible and effective recently thanks to the rapidly growing of machine

learning techniques [17, 18, 19]. However, as we will discuss later in Chapter 3, a severe

design instability problem occurs when we optimize for a closed-loop system, where the

reconstructed data will be used to encode future data. In lossy compression, due to the

quantization error, the reconstructed data is not the same as the original data. So any

changes in reconstruction after applying the designed predictor will propagate to the

future through the prediction loops. As the changes accumulate, the statistics become

mismatched with the ones we designed for, which lead to design instability. In the low

bitrate scenario, this issue becomes more severe as more quantization error propagates

through the loop.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. In Chapter 2, we extend the idea

of Transform Domain Temporal Prediction (TDTP) [20] where we decorrelate the spatial

correlation in the transform domain and do an optimal one-to-one temporal prediction

for transform coefficients. We introduce EBTDTP and the joint design of EBTDTP with

interpolation filters to account for its coupled interference with each other.

While training the joint predictors offline, we noticed a prevalent and catastrophic

instability problem that applies to all the offline design for closed-loop systems (like

video coding), which would lead to growing deviation in statistic through the prediction

7
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loop. We address this instability problem in Chapter 3, and tackle it using the two-loop

Asymptotic Closed-loop (ACL) design approach. Further, we incorporate it with the

K-modes clustering approach to optimize the mode design. With this design system, we

achieve significant compression gain over the baseline codec using the joint predictors.

In Chapter 4, we focus on the intra prediction and propose a 2D non-separable Markov

model, where each pixel is predicted using a four-tap filter from its neighboring pixels to

cover all the possible prediction directions. It is the result of a collaboration with Yue

Chen, and has previously appeared in the [21]. It is partly reproduced here with the

permission of Yue Chen. Compared to [21], this chapter focuses more on the individual

contribution of rate-distortion optimization and adaptation of the filter design. Since the

filter design also suffers from the same instability problem, we further incorporate it with

the ACL approach for stable intra predictor design.

In Chapter 5, we improve on the enhancement layer prediction in scalable video

coding, by generalizing the estimation-theoretic (ET) framework [22, 23, 24] to support

the various new coding tools (e.g.: quadtree structured partitioning, hybrid transform

and the RDOQ adjustment). The generalized framework is compatible with all the

existing features in the latest scalable video codec, SHVC, with no additional overhead

and negligible additional complexity.

In addition to all the advances proposed for the prediction module, we also extend

the two-loop ACL approach to other components in the predictive coding system, such as

transform design, proposing an ACL-based KLT design for temporal prediction residual

in Chapter 6. We show that the ACL-designed transforms outperform the non ACL-

designed transforms consistently, proving that the ACL design scheme is not only useful

in predictor design, but also for other components in the video compression system.

Chapter 7 concludes the dissertation and suggests directions for future research.

8



Chapter 2

Transform Domain Temporal

Prediction

Current temporal prediction relies on motion-compensated pixel-to-pixel copying tech-

niques, which is suboptimal since it ignores the underlying spatial correlation between

neighbor pixels. Transform Domain Temporal Prediction (TDTP) was proposed in our

lab to decouple the spatial and temporal correlation by doing an optimal one-to-one

prediction in the transform domain, where little spatial correlation remains. It further

recognizes the variation in the true temporal correlation across frequencies, which is usu-

ally unidentifiable in the pixel domain dominated by low frequencies. In this chapter1,

we focus on the optimal design of TDTP which: i) fully exploits spatial correlations both

inside and outside block boundary, ii) fully accounts for the coupled interference with

sub-pixel interpolation filters, iii) circumvents the challenge of catastrophic design insta-

bility due to quantization error propagation through the prediction loop, and iv) employs

effective mode design to cover a variety of statistics. Experimental results validate the

1This chapter is adapted from 978-1-4799-9988-0/16/$31.00 c© 2016 IEEE and 978-1-5090-4117-
6/17/$31.00 c© 2017 IEEE.
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effectiveness of the designed TDTP system, and can achieve an average of 4.2% reduction

in bitrate over the state-of-the-art HEVC codec.

2.1 Introduction

Modern video coding standards, such as HEVC, exploit the inherent temporal de-

pendencies in a video sequence via inter prediction (or temporal prediction). Instead of

directly encoding the raw pixel values for each block, the encoder predicts them from

a similar reference block in previously reconstructed frames through pixel domain block

matching (a.k.a. motion compensation). The prediction error is then transformed, typi-

cally by the discrete cosine transform (DCT), and the transform coefficients are quantized

and coded.

Over the past decade, a considerable amount of research has been focused on the

optimality of motion compensated prediction. One research direction [25, 26, 27, 28, 29,

30] has focused on effectively describing the motion that objects follow. [28] significantly

improved the motion precision to quarter-pixel level by introducing sub-pixel motion

compensation; [29, 30] extends the motion representation from 2D translational motion

vector to a 3D affine transformation. Another line of the research [31, 32, 33] focuses on

finer block partition by introducing quadtree, variable block sizes and segmentation for

rigid objects.

Despite all the efforts on improving the motion accuracy and granularity, all of the

work described are based on the one-to-one pixel matching criteria in searching for the

most similar reference block. However, this one-to-one pixel matching fails to account

for the underlying spatial correlation between pixels. Ideally, each pixel needs to be

matched with some combination of its neighboring pixels according to its specific spatial

correlation. This is an extremely hard problem for two reasons: i) Given the rich variety
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of the spatial correlations in a natural video sequence, it is almost impossible to capture

them precisely; and ii) the spatial correlations and temporal correlations are mingled

together, resulting in a complicated 3D problem. Prior works on this include: [12, 13, 14]

introduced multi-tap filtering in inter prediction to capture complicated transitions (e.g.:

lighting changes); [10, 11] solves the complicated 3D problem using 3D subband cod-

ing; [6, 7] proposed joint spatial-temporal prediction, but under a much more simplified

assumption. However, these approaches either suffer from high encoder complexity or

over-simplify the problem.

A more effective approach to model complex spatio-temporal correlation is via DCT-

domain temporal prediction, where spatial decorrelation is largely achieved first and

allows for optimality of subsequent one-to-one transform coefficient prediction. The tem-

poral correlation ρ for each transform coefficient varies across frequencies, which is usu-

ally overlooked in the traditional pixel domain motion compensation. For example, in

Fig. 2.1(a), the reference block we find in the pixel domain using the traditional approach

looks very similar to the original block. In the DCT domain, this is also true for lower

frequency components. However, the similarity breaks down for higher frequency coeffi-

cients where more details and noise are. As a result, the temporal correlation ρ is close to

1 at lower frequencies and generally decreasing as frequencies become higher, as shown

in Fig. 2.1(b). This variation in correlation across frequencies is masked in the pixel

domain by the dominant low frequencies, and the resulting ρ ≈ 1 led to the prevalence

of block matching and copying techniques in current coders. Thus, the advantages of

transform domain temporal prediction (TDTP) can be viewed from two perspectives: i)

an effective paradigm to disentangle spatial and temporal correlations allowing for op-

timal prediction, and ii) a means to make explicit, and hence properly account for, the

variation in temporal correlation across frequency, which is otherwise hidden in the pixel

domain.
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(a) Reference block and original block in pixel and DCT domain

(b) Transform prediction coefficients for 8x8 DCT coefficients for Mobile se-
quence at QP=22

Figure 2.1: An illustration of difference in correlations between pixel domain and DCT
domain

The significant potential of TDTP was recognized in an earlier paper from our group

[20] where a TDTP approach was proposed in conjunction with full-pixel motion, with

coefficients trained from original video sequences, which yielded substantial coding gains.

In this chapter, we significantly extend the TDTP approach to solve the challenges of
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the interference of sub-pixel interpolation filters with TDTP. As discussed, the temporal

correlation decays as the frequency gets higher. To account for the decaying correlation

in TDTP, the high frequency components are attenuated more than the low frequency

components. This has a similar effect as the sub-pixel interpolation filter, which is

typically a low pass filter [1]. Therefore, the sub-pixel interpolation filters are interfering

with TDTP and the gains are largely diluted when we move to the sub-pixel motion

compensation.

In this chapter, we will introduce several techniques to solve the challenges above.

First, we will introduce extended blocks based TDTP (EBTDTP) to fully disentangle the

spatial and temporal correlation both inside the block as well as the neighboring pixels

outside the block boundary used by the interpolation filter. Second, we jointly design

the EBTDTP and the sub-pixel interpolation filters to account for the interference to

optimize the overall prediction error. Third, we further investigate different types of

sub-pixel interpolation filters including both separable and non-separable filters with

EBTDTP.

Later in Chapter 3, we also address an instability issue in closed-loop system training,

we employ an iterative open-loop design technique, leveraging inspiration from a prior

work on vector quantizer design named asymptotic closed-loop (ACL) approach. Here

we use a two-loop ACL approach to jointly design the EBTDTP and interpolator to

circumvent the instability problem, and further combine it with a K-modes iterative

design approach to design multiple modes to cover a variety of statistics.

We first validated the initial ideas in a constrained HEVC framework where only

one block size was enabled and multiple coding tools (e.g. multi-hypothesis motion

compensation, SAO) were disabled. The preliminary results of EBTDTP and the joint

optimization of EBTDTP and interpolation filters for the constrained HEVC framework

can be found in [34] and [35]; preliminary results of the ACL design for TDTP can be
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found in [36]. Here, we generalize the overall design approach to support the full HEVC

with all the coding tools enabled, and show the comprehensive experimental results of

the proposed framework.

2.2 Background

Without loss of generality, we assume that the motion compensated reference block

is in the immediate previous frame. The conventional motion-compensated prediction

assumes blocks along a motion trajectory form a first-order auto-regression (AR) process

An = An−1 + Zn (2.1)

where the An and An−1 are the original blocks along the motion trajectory in frame

n and n − 1, and Zn is the innovation. For decoder to mimic the same procedure as

encoder, video codecs are closed-loop systems where each frame is predicted from the

reconstructed version of reference frame. We use ˆ to denote reconstruction, and ˜ to

denote prediction. The AR process becomes

An = Ân−1 +Rn (2.2)

where Ân−1 is the reconstructed reference blocks in frame n − 1 and Rn is the residual

block. The motion compensated prediction Ãn = Ân−1.

Similarly, in TDTP, we assume the DCT coefficients of blocks along a motion trajec-

tory form a first-order auto-regression (AR) process per frequency. We denote by xn a

DCT coefficient at a particular frequency of the original block in frame n, and by x̂n−1

the corresponding DCT coefficient of its reconstructed reference block in frame (n− 1),
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then the AR process is given as,

xn = ρx̂n−1 + rn (2.3)

where the ρ is the temporal correlation at a certain frequency (also referred to as pre-

diction coefficient), and the rn is the residual at the corresponding DCT frequency. The

TDTP prediction at the DCT frequency is

x̃n = ρx̂n−1 (2.4)

Note that the conventional pixel domain block matching and copying is equivalent to

employing ρ = 1 at all frequencies. We estimate ρ to minimize the mean square prediction

error,

J = E((xn − ρx̂n−1)2). (2.5)

The optimal prediction coefficient ρ is

ρ =
E(xnx̂n−1)

E(x̂2n−1)
, (2.6)

which forms the basic TDTP paradigm proposed in [20]. ρ captures the temporal

dependency of DCT coefficients at a given frequency. In this model, ρ is equivalent to

the temporal correlation between the DCT coefficient in the original block xn and the

corresponding DCT coefficients in the reconstructed reference block x̂n−1. One example

of how ρ varies across frequencies for mobile sequence is shown in Fig. 2.1(b). ρ is trained

offline and sent to or stored at the decoder if TDTP is enabled.
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Figure 2.2: An example of spatial correlation within a block and across its boundary

2.3 Optimization for TDTP and Interpolation Fil-

ters

As discussed in Sec I, the sub-pixel interpolation filters interfere with TDTP since

both pass low frequencies and attenuate high frequencies. In this section, we will focus

on the joint design of interpolation filters and TDTP. We first propose the EBTDTP

to fully disentangle the spatial and temporal correlation within the block as well as in

its neighboring pixels. Then we introduce an iterative approach to jointly design the

EBTDTP and interpolation filters. All the design is off-line and the designed EBTDTP

parameters and interpolation filters (collectively described as ”prediction parameters”)

will be stored at both the encoder and decoder or sent to the decoder depending on the

applications.

2.3.1 Extended Block based TDTP (EBTDTP)

To design the TDTP accounting for the interference of sub-pixel interpolation filters,

the first step is to include all the information used in the interpolation filters. While

the traditional TDTP approach only uses information inside the block, the interpola-

tion filter also includes neighboring pixels outside the block boundary. Naturally, the

spatial correlation is never strictly limited within a block (as shown in Fig. 2.2), thus
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(a) TDTP and interpolation in traditional inter prediction

(b) TDTP and interpolation in EBTDTP

Figure 2.3: An illustration to compare the tradition TDTP framework and the EBT-
DTP framework

Figure 2.4: Extended reference block with neighboring pixels

17



Transform Domain Temporal Prediction Chapter 2

Figure 2.5: Block diagram of the proposed TDTP framework employing extended blocks

it is suboptimal if we limit TDTP within the block. From a different perspective, the

interpolation filter projects the block as well as its neighboring pixels to a subspace, as

shown in Fig. 2.3(a). Transforming this interpolated block into frequency domain, can

only achieve spatial decorrelation of information in this subspace, which is suboptimal.

To fully disentangle the spatial and temporal correlation both inside and outside the

block, we propose the extended block based TDTP (EBTDTP), as shown in Fig. 2.3(b),

where we switch the order of TDTP and interpolation filter. We take an extended block

centered around the reference block to cover all the neighboring pixels needed in the

interpolation, and apply TDTP on it. Thus we reach spatial decorrelation of information

in the whole space, and perform an optimal one-to-one temporal prediction for each

transform coefficients. The interpolation filter is applied afterwards to map it to the

original size.

The TDTP coefficient for each frequency is designed to minimize the final prediction

error. To optimize the TDTP coefficients, we denote X as the extended block of size

B2 × B2 and Y as the current block of size B1 × B1 (B2 > B1). Thus Ŷ is the final
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prediction. The prediction error is defined as the mean square error (MSE),

J =
∥∥∥Y − Ỹ

∥∥∥2 . (2.7)

The vertical and horizontal interpolation filters in the matrix form are denoted as F1 and

F2. Specifically, if the b-tap 1D vertical and horizontal interpolation filters are denoted

as f1 and f2 (column vectors), then,

F1 =



0 fT1 0 · · · 0

0 0 fT1 · · · 0

...
...

...
...

...

0 0 0 · · · fT1


(2.8)

F2 =



0 0 · · · 0

f2 0 · · · 0

0 f2 · · · 0

...
... · · · ...

0 0 · · · f2


(2.9)

are at dimension B1×B2 and B2×B1, respectively. Therefore, the interpolated reference

block is F1XF2. The matrix operator of vertical 1D-DCT of size b is denoted as Db. We

also define the operator ◦ as element-by-element multiplication. The traditional temporal

prediction is the same as the interpolated reference block, i.e.,

Ỹ = F1XF2. (2.10)
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The TDTP in the prior work [20] was formulated as,

Ỹ = D′B1
((DB1F1XF2D

′
B1

) ◦PB1)DB1 , (2.11)

where Pb is a b × b matrix with elements as the temporal prediction coefficients, ρ,

corresponding to each frequency.

The block diagram of EBTDTP is shown in Fig. 2.5. First the extended block is

converted to DCT domain to achieve spatial decorrelation, then the prediction coeffi-

cients PB2 are applied to the DCT coefficients using (2.3), and finally the prediction is

converted back to pixel domain for sub-pixel interpolation. Therefore, the EBTDTP can

be formulated as,

Ỹ = F1D
′
B2

((DB2XD′B2
) ◦PB2)DB2F2. (2.12)

To minimize the prediction error J in (2.7), we propose to jointly design the pre-

diction coefficients PB2 and the interpolation filters F1,F2 together. Note that al-

though traditionally in video codecs, the interpolation is performed via separable filters

[37, 28, 38, 39, 40], these filters sometimes cannot perfectly capture the spatial correla-

tion. Alternatively, non-separable filters [41, 42] can be more flexible, but cover smaller

spatial area if we want to maintain the same complexity as separable filters. We use 2D

4x4 non-separable filters, denoted as F, to keep the same number of multiplications as

using two 1D 8-tap filters (the current HEVC interpolation filters), and propose joint

optimization approaches for both of them. In the experiment, the encoder may choose

one based on the statistics of the video sequence, with a sequence-level flag. We use FI

to denote the interpolation filter set in general, which in the following sections can be

{F1,F2} for two 1D separable filters or F for 2D non-separable filters. Next we will show

how to jointly optimize the prediction coefficients PB2 and the interpolation filters FI
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together.

2.3.2 Joint Optimization of EBTDTP and Separable Filters

Our overall objective is to design {PB2 ,F1,F2} to minimize the mean squared predic-

tion error (MSE) J in (2.7). Instead of solving this non-linear multi-variate optimization

problem directly, we propose an iterative approach of optimizing one of {PB2 ,F1,F2},

while fixing the other two. To simplify the cost expression, let us set

H1 = F1D
′
B2
, H2 = DB2F2, (2.13)

XT = DB2XD′B2
, (2.14)

so the cost becomes,

J = ‖Y −H1(XT ◦PB2)H2‖2 . (2.15)

Optimizing PB2 given F1,F2 fixed

The cost J in (2.15) is proportional to

J ∝
B1∑
m=1

B1∑
n=1

[
Y(m,n)−

B2∑
i=1

B2∑
j=1

PB2(i, j)XT (i, j)H1(m, i)H2(j, n)
]2

(2.16)

This is equivalent to the least square estimation problem of minimizing ||ApB2 − b||2,

where pB2 is the vector form (of size B2
2 × 1) of PB2 , A and b (of size of B2

1 × B2
2 and
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B2
1 × 1) are quantities derived from the training data as,

A(k, l) = XT (i, j)H1(m, i)H2(j, n), (2.17)

b(k) = Y(m,n), (2.18)

where, k = mB1 + n (m,n = 0 . . . B1 − 1), and l = iB2 + j (i, j = 0 . . . B2 − 1). The

optimal solution for the prediction coefficients is given as,

pB2 = (ATA)−1ATb, (2.19)

PB2(i, j) = ρi,j = pB2(l). (2.20)

Optimizing F1 or F2 given PB2 fixed

From (2.13) we know, we can optimize F1,F2 by optimizing H1,H2. Since H1 and

H2 are symmetric in (2.15), their optimization approaches are very similar.

First we assume H1 and PB2 are fixed, then H2 only depends on f2, which reduces to

the overall problem to linear optimization. That is, we convert J to ‖Af2 − b‖2, where,

A(v, i)=

B2−1∑
k=0

B2−1∑
l=0

DB2(l, i+ n+ 1)H1(m, k)XT (k, l)PB2(k, l),

(2.21)

b(v)=Y(m,n), (2.22)

v=mB1 + n (m,n = 0...B1 − 1), i = 0...b− 1. (2.23)
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The optimal solution for f2, given f1 and PB2 , is

f2 = (ATA)−1ATb, (2.24)

and H2 can be derived from (2.9) and (2.13). Similarly, we can use the same formula

as (2.24) to optimize f1 (or F1) while fixing F2 and PB2 , where (2.21) and (2.22) would

change to,

A(v, i)=

B2−1∑
k=0

B2−1∑
l=0

DB2(k, i+m+ 1)H2(l, n)XT (k, l)PB2(k, l),

(2.25)

b(v)=Y(m,n). (2.26)

We iteratively optimize F1, F2 and PB2 , in each step the prediction error J decreases

until it converges.

2.3.3 Joint Optimization of EBTDTP and Non-separable Fil-

ters

In the previous sub-section, we presented the joint optimization for prediction co-

efficients and separable filters. As mentioned, we also investigate the performance of

non-separable filters as an alternative for more complex local statistics. The prediction

Ỹ from (2.12) becomes

Ỹ = (D′B2
((DB2XD′B2

) ◦PB2)DB2) ∗ F (2.27)

= (D′B2
(XT ◦PB2)DB2) ∗ F (2.28)
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where ∗ denotes the 2D convolution, which returns Ỹ as the valid B1×B1 region at the

center. The cost function in (2.7) becomes

J =
∥∥Y − (D′B2

(XT ◦PB2)DB2) ∗ F
∥∥2 . (2.29)

We set G = D′B2
(XT ◦ PB2)DB2 , and p as the size of 2D p × p non-separable filter,

then

Ỹ = G ∗ F, (2.30)

Ỹ(m,n) =

p/2−1∑
i=−p/2

p/2−1∑
j=−p/2

F(i+
p

2
, j +

p

2
)G(m+ i+ 1, n+ j + 1), (2.31)

G(s, t) =

B2−1∑
k=0

B2−1∑
l=0

DB2(k, s)XT (k, l)PB2(k, l)DB2(l, t). (2.32)

(m,n = 0...B1 − 1, s, t = 0...B2 − 1)

We again use an iterative approach to jointly optimize F and PB2 . Given PB2 , the

optimal F would be the Wiener filter. Given F, to estimate PB2 , we also convert it to

a least square estimation problem of minimizing ‖ApB2 − b‖2, where pB2 is the vector

form (of size B2
2 × 1) of PB2 , with A and b as,

A(v, u) =

p∑
i=1

p∑
j=1

F(i, j)DB2(k,m−
p

2
+ i)

XT (k, l)DB2(l, n−
p

2
+ j) (2.33)

b(v) = Y(m,n) (2.34)

v = mB1 + n (m,n = 0...B1 − 1) (2.35)

u = kB2 + l (k, l = 0...B2 − 1) (2.36)
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The optimal solution for prediction coefficients PB2 given 2D non-separable interpolation

filter F is

pB2 = (ATA)−1ATb, (2.37)

PB2(k, l) = ρk,l = pB2(u). (2.38)

We iteratively optimize F and PB2 , until the prediction error J converges.

2.4 TDTP Adaptation to HEVC Encoder Decisions

We generalize the TDTP framework to fully support HEVC, which has adopted var-

ious coding features to capture different local statistics in video sequences. Based on the

rate-distortion trade-off, the encoder divides the video frames into different block sizes

to capture the texture and temporal correlation. It chooses to interpolate the reference

blocks at certain sub-pixel locations, which affects the temporal correlation in the fre-

quency domain (from the discussion in Sec. I). The quality (QP) of the reference blocks

also largely influences the correlation between the reference blocks and original blocks.

Therefore, to capture the various temporal correlation model determined by the encoder

decisions, we train different TDTP models in the {PB2 ,FI} set for portions of data that

use the corresponding combinations of block sizes, sub-pixel locations and the reference

block QP. Since those coding features are available at both encoder and decoder, it does

not incur extra overhead or complexity.

HEVC follows the quad-tree partition structure then further decides the PU and TU

sizes. We support TDTP models for blocks of size 4x4, 8x8, 16x16 and 32x32. TDTP for

blocks of size 64x64 is not supported because of its high complexity and its rare occurrence

in the practical encoding. To achieve the best spatial decorrelation via TDTP, we perform
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TDTP on the largest square size possible for each PU (i.e., on the whole PU block if it

is square or sub-divide it into multiple square pieces if it is not square). To account for

the quarter-pel precision sub-pixel interpolation filter in HEVC, we have different TDTP

models for all the 16 sub-pixel locations. Instead of training for each individual QP value

(0-51) in HEVC, we quantize the QP range to a few groups (e.g.: 20-25, 26-30, 31-35,

36-40) and train TDTP models for each QP group. To better capture the variation in

statistics, we also introduce 8 frame-level TDTP modes for the encoder to choose from,

and will design those 8 modes properly in the next chapter. In summary, we have 8

frame-level TDTP modes, each of which contains 256 (4× 16× 4) models accounting for

the various local statistics. All the prediction parameters are trained offline and stored

in both encoder and decoder.

The overall TDTP framework for temporal prediction can be summarized as fol-

lows. The encoder follows the standard quad-tree partition and motion search to get

the reference block (and its neighboring pixels). Depending on the PU size, the QP and

sub-pixel location of the reference block, the encoder applies the corresponding predic-

tion parameters and interpolation filter (as described in Fig. 2.5) to get the prediction

block. Depending on the type of applications, the encoder may choose to use the 1D

8-tap separable or the 2D 4x4 non-separable filters with a sequence-level flag. It may

also choose to use one of the 8 modes for each frame for the best RD performance, with

a frame-level flag.

2.5 Conclusion

In this chapter, we introduced a comprehensive framework to perform temporal pre-

diction in transform domain, where spatial correlation is removed and we can perform

an optimal one-to-one temporal correlation on transform coefficients. We proposed the
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EBTDTP to better exploit spatial correlations, jointly designed the EBTDTP with inter-

polations filters to avoid the coupled interference. We generalized the TDTP framework

to fully support HEVC, and adapted the TDTP model to encoder decisions to better

capture the local statistics.

In the next chapter, we will focus on the effective design for a set of TDTP models to

cover the rich variety of statistics via offline training. Experimental results of the TDTP

framework with the full design scheme will be presented at the end of the next chapter.
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Chapter 3

Asymptotic Closed-loop Design for

Predictive Coding System

In this chapter1, we address a catastrophic yet prevalent instability problem in the offline

design for closed-loop systems. We use the joint predictor model in Chapter 2 as an

example and propose a two-loop Asymptotic Closed-loop (ACL) approach to address

the instability problem. It is further combined with the K-modes clustering approach to

optimize the mode design. Consistent coding gains of the TDTP model using this design

framework are presented. We will also compare the performance of the joint predictor

model trained with and without the ACL framework.

3.1 The Instability Problem in the Closed-loop Sys-

tem Design

Video coding system is a typical closed-loop system as the reconstruction of a frame

will be used as reference for future frames. Usually in the offline training in a closed-loop

1This chapter is adapted from 978-1-4799-8339-1/15/$31.00 c© 2015 IEEE.
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system, the reconstruction, a predictor is designed based on a series of reconstructed

frames. However, when the designed predictor is applied in a closed-loop system, it

changes the reconstruction, therefore the statistics become incompatible with those it is

designed for. Such deviation in statistics potentially growing in magnitude as the coder

advances through the sequence, as the quality of actual prediction impacts the quality of

reconstruction and thereby the next frame’s prediction, and so on. This problem is critical

in low-bitrate encoding where the residual is not well encoded and the reconstruction is

more reliant on the prediction.

To better formulate the problem, we take the joint predictor model in Chapter 2 as

example. We denote a sequence of DCT coefficients at a certain frequency for blocks

along the motion trajectory as, x1, x2, . . . , xN . The first frame is intra coded so the

reconstruction of the DCT coefficients in the first frame x̂1 does not depend on other

frames. As discussed earlier, (2.2) is also true in the DCT domain, xn = x̃n + rn. In

traditional motion compensation, x̃n = x̂n−1, thus the reconstruction is

x̂n = x̂n−1 + r̂n (3.1)

where r̂n is the reconstruction of residual rn.

In the joint predictor framework, the prediction x̃n is defined as (2.12) or (2.28)

(depending on the type of interpolation filters). We use {PB2 ,FI}(x̂n−1) to denote the

joint prediction for frame n, where the {PB2 ,FI} are the predictors designed based

on the statistics of {x̂n−1, xn}. On using this prediction coefficient in the coder, first

reconstructed coefficient, x̂1 is unaltered as it is intra coded. For frame 2, we have a

different reconstruction x̂′2 = {PB2 ,FI}(x̂1) + r̂′2. This is then used to generate frame 3,
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(a) Frame 1 (b) Frame 3 (c) Frame 5 (d) Frame 7 (e) Frame 9

Figure 3.1: The deviation between frames used in training and actual frames when
applying the predictor in closed loop

x̂′3 = {PB2 ,FI}(x̂′2) + r̂′3, so we have

x̂′n = {PB2 ,FI}(x̂′n−1) + r̂′n (3.2)

However, {PB2 ,FI} were designed for {x̂n−1, xn}, which is different from the real statistics

{x̂′n−1, xn} here. In Fig. 3.1, we show the difference between the frames used in training

x̂n and the real statistics x̂′n when applying the predictor in closed loop at n = 1, 3, 5, 7, 9.

The deviation builds up as we proceed to future frames. In low-bitrate encoding, this

deviation is especially catastrophic, because the residual is not well encoded and the

reconstruction is more dependent of the prediction.

This instability in offline design for closed-loop systems is very common and it also

applies to the design of other types of predictors or codec components. In the intra

predictor design in Chapter 4, the predictor is trained based on the reconstruction of

the boundary pixels, which is dependent on the predictor itself, thus the change in re-

construction propagates spatially. In Chapter 6, we design KLTs for different types of

residual statistics. Similarly, the residual depends on the reconstruction, which in return

depends on the designed KLT. In the rest of this chapter, we will show a general way to

solve this instability problem and apply it to the design of different codec components.
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3.2 A Two-loop Asymptotic Closed-loop Approach

Inspired by the early asymptotic closed-loop (ACL) work in [36], we propose a two-

loop ACL design which accounts for the encoder decisions to solve this instability problem

effectively. The basic idea of ACL is to employ open-loop prediction to avoid the insta-

bility problem, while updating the prediction parameters in each iteration. Once the

parameters converge, it becomes equivalent to the closed-loop operation. Here again, we

use the joint predictor as an example to explain the two-loop ACL approach.

We use double subscripts, e.g., xn,t to indicate variables from frame n and iteration

t. Given a set of reconstructed coefficients along a motion trajectory for a frequency at

iteration t−1, x̂1,t−1, x̂2,t−1, . . . , x̂N,t−1, we estimate the prediction parameters for iteration

t as {PB2,t,FI,t}, which is based on the statistics of {x̂n−1,t−1, xn}. This prediction

parameter set is then employed in open-loop to predict coefficients in frame n of iteration

t, x̃n,t = {PB2,t,FI,t}(x̂n−1,t−1). So instead of (3.1) and (3.2) where all the samples are

of the same iteration, the reconstruction in this open-loop scheme is given as,

x̂n,t = {PB2,t,FI,t}(x̂n−1,t−1) + r̂n,t (3.3)

where rn,t is the residual of frame n and iteration t, rn,t = xn − x̃n,t, and r̂n,t is its

reconstruction. Different from the closed-loop system, the change in reconstruction in

the iteration t does not propagate to the future frames, since each frame is referenced

from the previous iteration t− 1, as shown in Fig. 3.2. Therefore, there is no instability

problem in this open-loop system.

Next, we will show that this series of open-loop processes will converge to the tar-

get closed-loop system asymptotically. Consider the statistics from the first iteration

{x̂n−1,1, xn}, we design {PB2,2,FI,2} and run the second iteration. Since {PB2,2,FI,2} is
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Figure 3.2: Asymptotic Closed-Loop (ACL) training approach

specifically designed to optimize the prediction error for {x̂n−1,1, xn}, the prediction x̃n,2

is guaranteed to improve. Better prediction often leads to better reconstruction, thus

x̂n,2 is generally better than x̂n,1. In the third iteration, each frame is referencing from a

better reconstruction, which generally leads to better prediction. So the x̃n,3 is generally

better than x̃n,2, and following the same logic, x̂n,3 is generally better than x̂n,2. The

reconstruction error is generally decreasing and would approach convergence. On con-

vergence, the reconstruction error remains the same, i.e., x̂n−1,t−1 = x̂n−1,t, which makes

it equivalent to the closed-loop system, i.e.,

x̂n,t = {PB2,t,FI,t}(x̂n−1,t) + r̂n,t (3.4)

and the prediction coefficients converge as well, i.e., {PB2,t,FI,t} = {PB2,t−1,FI,t−1}.

The basic ACL idea was proposed in [36] to optimize vector quantizer design in

differential pulse-code modulation (DPCM) system. The modern video codec, however,

is much more complicated. First, as mentioned in Section 1, the encoder would choose

the best coding decisions (block sizes, motion vectors, prediction modes, QP, etc.) to

optimize the RD cost. The encoder decisions are dependent on the prediction parameters,

while the prediction parameters are also dependent on the encoder decisions. Second, the

joint predictors are designed to minimize prediction error, which mismatches with the
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ultimate metric, RD cost. Here, we propose a two-loop design scheme. In the inner loop,

we estimate prediction parameters {PB2 ,FI} via ACL while fixing the encoder decisions.

In the outer loop, we update the encoder decisions while fixing the prediction parameters

designed from the inner loops.

The basic assumption for convergence that better prediction and better reconstruc-

tion are mutually supportive is not always guaranteed. For real world sequences we

observe that the prediction error cost decreases initially and then hits a limit cycle. Thus

we simply stop the inner loop iterations when this cost stops decreasing. Moreover, the

mismatch of the optimization criteria in the two loops also does not ensure full conver-

gence in the outer loop. In practical implementation, we notice that after 5-8 iterations

in the outer loop, the performance stops improving significantly and hits a limit cycle.

Thus in our experiments, we stop the outer loop after 8 iterations and pick the predictors

with the minimum RD cost.

3.3 Mode Design with the Two-loop ACL

It is well known that rich video contents contain various motion patterns (scaling,

rotation, translation, etc.), leading to a variety of temporal correlation pattern in trans-

form domain, which is impossible to be described in a single joint predictor model. To

accommodate the variety in statistics of natural video sequences, we introduce multiple

modes with different prediction parameters for encoder to choose from. In our experi-

ment, the encoder will choose one mode per frame and write the mode decision in the

bitstream with a negligible overhead.

This specific mode design problem can be viewed as a hard clustering problem. Among

the typical clustering algorithms, K-means is known to be the most efficient in terms of

execution time and good for large dataset [43]. A variation of K-means, named K-modes,
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extends the approach to non-numerical data points. We can define the distance as the

prediction error using the prediction parameters in a certain mode j, according to (2.15)

and (2.29), based on the type of the interpolation filters, we have

Jj = ‖Y −H1,j(XT ◦PB2,j)H2,j‖2 . (3.5)

or

Jj =
∥∥Y − (D′B2

(XT ◦PB2,j)DB2) ∗ Fj

∥∥2 . (3.6)

Following the two-loop ACL approach, where we update encoder decision in the

outer loop to minimize the RD cost and update prediction parameters in the inner loop

to minimize the prediction error, we update a set of K modes of prediction parameters

in the inner loop. To initialize the K modes, we randomly select some sequences and

train one mode for each sequence, and use those per-sequence-trained modes as the initial

modes. In each ACL iteration, it runs the two-step iterations:

• Re-design the prediction parameters for each mode based on the approaches in Sec.

III.

• Re-cluster all the block pairs in the training set to the best mode that yields the

minimum prediction error.

At each step, the prediction error decreases monotonically through the process until

convergence. We incorporate this K-modes training step to the innermost core of the

two-loop ACL training. After ACL converges, we have the optimal K modes designed

for the closed loop process given the fixed encoder decisions. Then we update the encoder

decisions in the outer loop. The whole training algorithm is shown in Algorithm 1.
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Algorithm 1: Joint design algorithm for EBTDTP and interpolation filters

Input : A set of training sequences, the number of TDTP modes K
Output: The prediction coefficients set {PB2 ,FI} of size K

Initialize {PB2 ,FI};
Run the codec in closed-loop, store the encoder decision d, mode assignment a and
reconstructed video file rec;
while iter < max iter do

while MSE decreases do
Run the codec in open-loop using the same encoder decision d, but with
rec as the motion compensation reference;
Extract the reference and original blocks;
while MSE decreases do

Optimize PB2 and FI for each cluster;
Assign the block pairs into the best mode to minimize MSE;
Update a, update MSE;

end
Run the codec in open-loop again, using the same d, rec, and the
optimized a, {PB2} and {FI}; Update rec as the newly reconstructed video
file; Update MSE;

end
Run the codec in closed-loop, update the encoder decision d and reconstructed
video file rec, store the RD-cost into array {cost}. iter = iter + 1;

end
Find the minimum RD cost in {cost}, set the corresponding {PB2} and {FI} as
the final trained predictors;
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3.4 Experimental Results of the TDTP framework

designed via ACL approach

3.4.1 Results for Off-line Encoding Applications

We first examine the full potential of the TDTP framework by designing a specific

set of coefficients for each sequence using the off-line training method described above.

This is targeting video storage applications where encoding is performed off-line (e.g.

Youtube, Netflix, cloud video storage, etc.) so that designing for each individual sequence

is possible. The proposed framework is implemented in HM 14.0, under the lowdelay P

configuration with all default features enabled. Each sequence is tested at various bitrates

with QP ranging from 22 to 37. We compare the coding gain of different approaches

over the baseline HEVC in Table 3.1. The average bitrate reduction over HEVC for

TDTP, EBTDTP, jointly optimized EBTDTP with separable and non-separable filters

are 3.18%, 3.76%, 4.50%, 6.96%. As we can see, some sequences benefit more from

the separable filters while others benefit more from the non-separable filters. For video

storage applications, since the encoding is only performed once and the bitstreams are

stored, we can introduce a separable/non-separable filter switch per sequence at the

encoder for the best RD performance (EBTDTP + Interpl) with an average coding gain

of 7.14%.

To show the importance of ACL, we also run the training algorithm without ACL in

the same settings. The RD curves of sequence Stefan are shown in Fig. 3.3 with per-

formance comparison to employing prediction coefficients trained without the ACL tech-

nique. As discussed earlier, the instability problem is significantly critical in low-bitrate

encoding where the reconstruction relies more on the prediction. Therefore, training

without ACL suffers more at low bitrate cases, resulting in worse performance than the

36



Asymptotic Closed-loop Design for Predictive Coding System Chapter 3

Figure 3.3: Coding performance comparison for sequence Stefan at CIF resolution

standard HEVC.

3.4.2 Results for Live Communication Applications

For the other type of applications where the encoding time is limited (e.g.: live video,

real-time communication, etc.), per-sequence training is impractical. Here we provide a

choice of fixed 8 sets of prediction parameters for the encoder to choose at each frame,

with a negligible overhead of 3 bits per frame. In the preliminary experiments from our

earlier work [36, 34, 35], we simply chose the 8 most distinct sets of prediction parameters

from the training set (referred to as the naive approach), while in this work we optimize

those modes by combining the K-modes training approach with the ACL framework

(referred to as the K-modes approach). We noticed that the non-separable filters generally

outperform the separable filters, so introducing a separable/non-separable filter switch

at the encoder would help little but double the complexity. Therefore, for this type of
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Sequences TDTP EBTDTP
EBTDTP

+sep
EBTDTP
+nonsep

EBTDTP
+interpl

Coastguard (CIF) 9.47 9.45 9.90 10.71 10.71
Bridge-far (CIF) 4.83 5.75 7.66 5.25 7.66

Mobile (CIF) 2.55 3.53 3.83 7.90 7.90
Highway (CIF) 2.46 3.31 4.29 8.64 8.64
Stefan (CIF) 2.41 3.69 4.20 6.00 6.00

BlowingBubbles (240p) 0.33 0.09 0.10 0.76 0.76
BQMall (480p) 1.57 1.41 2.76 5.47 5.47

PartyScene (480p) 1.06 1.43 4.38 3.92 4.38
Keiba (480p) 2.52 2.16 2.16 5.35 5.35

Parkrun ter (720p) 4.46 4.90 4.97 5.85 5.85
Mobcal ter (720p) 2.41 3.68 9.37 18.23 18.23
Shields ter (720p) 6.57 8.70 6.21 11.59 11.59
ParkScene (1080p) 0.65 0.74 0.78 1.44 1.44
BQTerrace (1080p) 5.78 7.19 7.70 13.29 13.29

Pedestrain area (1080p) 2.80 2.96 2.75 4.66 4.66
Tennis (1080p) 0.94 1.12 0.97 2.35 2.35

Average 3.18 3.76 4.50 6.96 7.14

Table 3.1: Comparison of reduction in bitrate over HEVC for training set

encoding time sensitive applications, we only use the EBTDTP+nonsep approach.

To make sure the statistics of training set can represent the statistics of test set, we

set the training set as a collection of short clips (referred to as the Training Clip) of

different sequences, and set the test set as a collection of another short clips (referred to

as the Testing Clip). We examine the efficacy of K-modes training by comparing the gain

in the testing clips by using modes generated in the naive approach and in the K-modes

approach, and present them in Table 3.2. By using the K-modes approach, the gain of

jointly designed EBTDTP and non-separable filters increases from 2.91% to 4.28%.

3.4.3 Complexity Analysis and Future Work

Although we have jointly designed the EBTDTP and interpolation filters, tackled

the instability problem and optimized the mode design, we mainly focus on optimizing
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Sequences Naive approach K-modes approach
Football (CIF) 4.81 6.41

News (CIF) 0.82 1.47
Silent (CIF) 0.05 0.19

Bridge-close (CIF) 0.35 1.06
BasketballDrive (1080p) 3.68 4.99

Kimono (1080p) 4.15 4.68
Cactus (1080p) 1.27 2.81
Station (1080p) 0.17 0.38

Sunflower (1080p) 9.96 13.86
Tractor (1080p) 0.56 3.12

Ducks take off (1080p) 6.19 8.08
Average 2.91 4.28

Table 3.2: Reduction in bitrate over HEVC for test set

the prediction error rather than the rate-distortion cost (which explains why the joint

approach is not guaranteed to be better than the others). How to approximate the global

optimum in terms of rate-distortion cost would be an interesting topic for future research.

Compared to the standard HEVC, the TDTP framework has an additional pair of

DCT and inverse DCT, and the extra multiplication during the scaling of transform

coefficients. Under our preliminary implementation in HM 14.0, adding those extra

operations doubles the encoding and decoding time. Note that fast implementation and

hardware acceleration for DCT have been well-studied, leaving a lot of room for speed

optimization. If we have K sets of prediction parameters for the encoder to choose from

for each frame, the encoding time would increase by K times. Helping encoder make fast

mode decisions adaptively would be another part of the future work.

3.5 Conclusion

In this chapter, we introduced a two-loop ACL approach to circumvent the challenge

of catastrophic design instability due to quantization error propagation through the pre-
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diction loop. It is further combined with the K-modes clustering approach for effective

mode design. We show the compression gain of using the TDTP model designed us-

ing the proposed training framework for different applications, with an average of 4.3%

reduction in bitrate over the state-of-the-art HEVC codec.
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Chapter 4

Recursive Extrapolation Filter based

Spatial Prediction

The conventional “pixel copying” intra prediction used in current video standards is sub-

optimal because it ignores the varying non-separable spatial correlation. In this chap-

ter1, a recursive extrapolation filter based intra prediction is proposed, which captures

the decaying non-separable correlation based on a 2D non-separable Markov model. The

proposed system employs four-tap recursive extrapolation filters that can predict from

all standard directions. Those filter coefficients are designed to adapt to relevant lo-

cal information such block sizes and target bitrate. We design the filter to account for

the overall rate-distortion cost in conjunction with the codec decisions, and combine it

with the ACL design approach to avoid the instability problem in the offline design for

closed-loop systems. Experimental evidence is provided for substantial coding gains over

conventional intra prediction. The proposed approach has been adopted by the latest

AV1 codec.

1This chapter is adapted from 978-1-4799-5751-4/14/$31.00 c© 2014 IEEE.
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4.1 Introduction

Intra prediction is critical for image and video coders to exploit spatial correlations

within a image/frame. In current block based video coders [1, 2], reconstructed boundary

pixels (or their linear combination) are copied along a specific direction to generate

prediction for the current block, wherein the directionality depends on local texture.

This technique assumes a separable Markov model with correlation coefficient of 1 along

the selected direction and 0 along the perpendicular direction. This simplistic approach is

sub-optimal because of the following two reasons. First, the spatial correlation in natural

videos is not perfectly separable. Second, the correlation usually varies within a blocks,

for example, the correlation with boundary pixels usually decay with distance.

Many approaches have been proposed to overcome these limitations. Predicting ev-

ery pixel as a linear combination of all the boundary pixels was proposed in [44], and

predicting blocks using weighted average of multiple decoded blocks was proposed in

[45]. However, both these approaches suffer from considerable increase in computational

complexity. Recursive extrapolation based on a separable Markov model was proposed

in [46], however, this approach neglects the possibility that correlation is not perfectly

separable. An early version of this work was published in [47], where a non-separable

Markov model based recursive extrapolation approach with three-tap filters was pro-

posed. However, challenges arise in the following aspects. First, the three-tap filters

cannot capture prediction modes with top-right and bottom-left directions. Second, to

improve the overall performance, the intra predictor needs to be designed to optimize the

ultimate RD cost. Last, the design of the intra predictor also suffers from the instability

problem similar to Chapter 3, as when we apply the designed predictor, the change in

reconstruction would propagate spatially and lead to mismatched statistics.

In this chapter, we propose a stable, RD optimized, adaptive four-tap recursive filter
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based intra prediction. The four-tap filter can cover all the intra prediction directions,

with the fourth tap points at either the top-right pixel or the bottom-left pixel, depending

on the directions. A two-phase filter optimization is proposed, with optimization on

prediction error in the first phase, and optimization on RD cost in the second phase. The

gradient descent approach is used in both phases with different optimization criteria. The

filter design is also incorporated into the ACL framework to avoid the instability problem

due to quantization error propagation. As the encoder decisions might imply some certain

pattern of the statistics, we make the filters adaptive to local information of target bitrate

and block size. We demonstrate the efficacy of the approach by implementing it within

the VP9 framework. Evaluation results provide evidence of substantial coding gains over

conventional intra coding.

4.2 Recursive Extrapolation Filtering

The basic building block of this proposal is the non-separable Markov model based

recursive extrapolation filter to tackle the underutilization of available boundary infor-

mation in the conventional “pixel copying” based intra prediction. In [47], the image

signals were modeled by a three-tap Markov process with evolution recursion given as:

X = cvV + chH + cdD + ε (4.1)

This three tap structure has a critical limitation of not being able to represent directions

arising from top-right and bottom-left. Hence, to cover all directions we add a fourth

tap of, top-right pixel with left-to-right prediction scan order, or, bottom-left pixel with

top-to-bottom prediction scan order.This modification requires previously reconstructed

boundary pixels to be available at top-right of the current block, or at bottom-left of the
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current block. While the availability of the top-right reconstructed boundary pixels is

almost always ensured, newly introduced coding tools employing smaller prediction blocks

(or prediction units, PU) within large coding blocks (or coding units, CU), also provide

bottom-left reconstructed boundary pixels for some blocks. In case these additional

boundary pixels are unavailable, the existing boundary pixel is copied to the unavailable

pixel positions. The extended Markov process with four taps for directions originating

from top-right is given as:

X = cvV + chH + cdD + cuU + ε (4.2)

where V , H, D, U are neighboring pixels of X, as illustrated in Fig. 4.1(a). The four

coefficients, cv, ch, cd, and cu, together capture the texture directionality. For medium

to high bitrates, the reference pixels can be approximated by their reconstructions, to

obtain the optimal predictor for X as

X̃ = cvV̂ + chĤ + cdD̂ + cuÛ . (4.3)

The recursive prediction order is enumerated from 1 to 22 in Fig. 4.1(b) and (d) for

a 4 × 4 block. For prediction directions originating from the top-right, as illustrated in

Fig. 4.1(a) and (b), the fourth tap locates to the top-right of the pixel; for prediction

directions originating from the bottom-left, as illustrated in Fig. 4.1(c) and (d), the fourth

tap locates to the bottom-left of the pixel, which is considered as the transposed version

of the Markov process. A temporary triangular region is estimated to provide auxiliary

reference to the right or bottom boundary pixels of the block. Without loss of generality,

the discussion hereafter focuses mainly on the four-tap filters for directions originating

from the top-right.
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(a) 2-D Markov Process
for top-right directions

(b) Prediction order
for top-right directions

(c) 2-D Markov Process
for bottom-left directions

(d) Prediction order
for bottom-left directions

Figure 4.1: Four-tap recursive extrapolation filter
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4.3 Filter Design

In this section we propose an offline filter design framework towards the ultimate

goal of minimizing the rate-distortion cost in the actual compression for test sequences.

We break it down into two phases, prediction error optimization and rate-distortion cost

optimization. Gradient descent is applied at each phase, with different criteria and target

function for the gradient calculation. This two-phase method is then combined into the

ACL framework along with the K-modes clustering approach, to account for the flexibility

in switching among modes and the quantization error propagation through the prediction

loop.

4.3.1 Phase 1: optimization on prediction error

The overall prediction error to be minimized for the initial filter design is,

J =
∑
k

Jk =
∑
k

∑
∀ blocks
in Mode k

∑
i,j

(x̃i,j − xi,j)2. (4.4)

To start the design, all the blocks are first classified into the original “pixel copying”

modes based on the prediction error, then filters for each of these block subsets are

initialized with the optimal linear predictor coefficients calculated as below, using the

open-loop statistics of the 2-D non-separable Markov model of (4.2),



cv

ch

cd

cu


=



RV VRV HRV DRV U

RV HRHHRHDRHU

RV DRHDRDDRDU

RV URHURDURUU



−1 

RXV

RXH

RXD

RXU


, (4.5)
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where RXV denotes the cross correlation between pixel X and its upper pixel V , and so

forth. Since the cross correlation is calculated using the original values rather than the

predicted values in the actual recursive operation, a gradient descent approach is then

employed to properly re-estimate filter coefficients for each cluster, with the gradient

analytically calculated by taking a partial derivative of the per-mode cost Jk with respect

to each of its coefficients, similar to [48]. For example, partial derivative with respect to

cv,k is,

∂Jk
∂cv,k

=
∑
∀ blocks
in Mode k

∑
i,j

2(x̃i,j − xi,j)
∂x̃i,j
∂cv,k

(4.6)

where
∂x̃i,j
∂cv,k

, derived using (4.3), has the following recursive relationship,

∂x̃i,j
∂cv,k

= x̃i−1,j + cv,k
∂x̃i−1,j
∂cv,k

+ ch,k
∂x̃i,j−1
∂cv,k

+cd,k
∂x̃i−1,j−1
∂cv,k

+ cu,k
∂x̃i−1,j+1

∂cv,k
.

(4.7)

Other partial derivatives can be derived similarly to calculate the required gradient.

4.3.2 Phase 2: optimization on RD cost

Designing filter coefficients to minimize prediction error is mismatched with the ulti-

mate RD cost that coders optimize. In other words, the resulting prediction error reduc-

tion will not necessarily or fully translate into RD performance improvement. Therefore,

we propose recursive extrapolation filters that are designed by direct optimization of the

RD cost.

In the RD optimization phase, we use the gradient descent approach again with a new

optimization criteria, RD cost. The RD cost [49, 50] is defined based on the Lagrange

cost function as

RDcost = D + λR (4.8)
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where the λ is the Lagrange multiplier which can be expressed as a function of quanti-

zation parameter (QP)

λ = 0.85× 2(QP−12)/3 (4.9)

QP is determined by the encoder settings or chosen adaptively according to the target

bitrate requirement. Here we treat the codec as a black box with the filter coefficients

as input, and the RD cost as the output. We then can use a similar gradient descent

approach where the RD cost is reduced at each step until we reach a local optima.

The partial derivatives required for the gradient are calculated empirically, e.g., partial

derivative with respect to the vertical coefficient of the kth mode is calculated as,

∂RDcost(cv,k)

∂cv,k
=
RDcost(cv,k + ∆)−RDcost(cv,k −∆)

2∆
. (4.10)

4.3.3 ACL based filter mode design

Similar to the traditional intra prediction which has multiple intra modes predicting

from various directions, we also introduce multiple modes for the extrapolation filter

based intra prediction (referred to as “filter-intra modes”), with different filter coefficients.

In our experiments in the VP9 codec, to provide the encoder with more flexibility, we

retain the 10 original intra prediction modes in addition to 10 designed filter-intra modes.

From (4.3), we know that under special conditions of the filter coefficients, the four-tap

filter model reduces to the original “pixel-copying” intra modes (e.g.: when cv = 1, ch =

cd = cu = 0 is equivalent to the vertical intra prediction mode). Therefore, we initialize

the 10 filter-intra modes by setting the filter coefficients as ones in those special cases

corresponding to the original intra modes.

After initialization, we use a K-modes clustering approach by employing the following

two steps iteratively: redesigning the filter coefficients using the two-phase optimization
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approach and reclustering the blocks into the modes that yield the minimum RD cost

defined in (4.8). To reach a convergence, it should be guaranteed that the RD cost is

reduced at each step. Note that there is slight chance that the prediction error optimized

coefficients might increase the RD cost due to the mismatch in the optimization criteria.

Therefore, to make sure the RD cost is reduced monotonically, after phase one (prediction

error optimization), we test the new coefficients and retrace back if the new ones lead to

a worse RD cost.

We have presented the approach to design the RD optimal extrapolation filters given

the original blocks and its top and left reconstructed boundaries. However, similar to

Chapter 3, an instability problem also occurs in this intra prediction scenario, where the

intra predictors depend on the reconstructed boundaries, and the reconstructed bound-

aries depend on the predictor itself. The reconstructed boundaries change as the new

intra predictors are applied, so does the statistics. If the whole frame is an intra frame,

this change in statistics would propagate through the whole frame. Therefore, to avoid

this instability in the filter design, we incorporate the ACL and mode design framework

into the filter design.

In the outer loop, we run the codec in closed-loop (i.e., the reconstructed boundaries

are used to predict new blocks) at constant bitrate and store the encoder decisions (in-

cluding block sizes, skip flags, etc.). While fixing the encoder decisions in the inner loop,

we run the codec in open-loop (i.e., the reconstructed boundaries in the previous iteration

are used to predict new blocks), and collect blocks of different sizes and modes and their

corresponding boundaries. Those extracted blocks and their boundaries are then used

to design the RD optimal filter coefficients using the K-modes approach. The new filter

coefficients are applied to generate a new reconstruction with a smaller RD cost. Since

the codec is running at the constant bitrate mode, a smaller RD cost is equivalent to

smaller distortion in the reconstruction. This new and better reconstruction is then used
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as reference in the new iteration of open-loop prediction, until the open-loop operations

converge to the closed-loop operation. On convergence, we have the optimized filter co-

efficients given the fixed encoder decisions, when we go back to the outer loop to update

the encoder decisions based on the RD cost.

We also make the filter coefficients adaptive to different encoder decisions (block sizes

and target bitrate): blocks of different size may have different decaying patterns in spatial

correlations and target bitrate determines the Lagrange multiplier λ in the rate-distortion

tradeoff (4.8), which should be accounted for in the filter design. We design different

sets of filter coefficients for block sizes of 4 × 4, 8 × 8, 16 × 16 and 32 × 32, and choose

the filter set based on the encoder decision on block sizes. We also normalize the target

bitrate that the encoder performs at to the spatial resolution of the sequence, and design

filter coefficients for different normalized target bitrates. All the possible normalized

target bitrates are divided into a few regions, and the filter coefficients for each region

are designed by having the encoder perform at the centroid bitrate of the given region.

As normalized target bitrate information is not available to the decoder, we add that as

an additional side information per sequence.

We denote the filter coefficients set as

cm,n = {cv,m,n, ch,m,n, cd,m,n, cu,m,n} (m = 1...4, n = 1...10) (4.11)

where m corresponds to the index of block size and n corresponds to the index of filter-

intra mode. The overall design algorithm is shown in Algorithm 2.
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Algorithm 2: ACL based filter-intra mode design

Input : A set of training sequences, the number of intra modes K, the
normalized target bitrate Rn

Output: The optimized intra filter coefficients set {cm,n}
Initialize the filter set {cm,n};
Calculate the target bitrate for the training sequences resolution,
R = Rn × width× height;
Run the codec in closed-loop at the target bitrate R, store the encoder decision d,
mode assignment a, and reconstructed video file rec;
while iter < max iter do

while RDcost decreases do
Run the codec in open-loop using the same encoder decision d, but with
rec as the motion compensation reference;
Extract the original pixel values of blocks of different sizes and modes, and
their reconstructed boundaries;
while RDcost decreases do

Redesign the filter coefficients;
{cm,n,old}={cm,n};
Run the codec in open-loop, using the same d, a, rec, and the
{cm,n,old}, get the RD cost RDcostold;
For each mode and block size, optimize {cm,n} in terms of prediction
error;
Run the codec in open-loop, using the same d, a, rec, and the new
{cm,n}, get the RD cost RDcostnew;
if RDcostnew > RDcostold then
{cm,n} = {cm,n,old}

end
For each mode and block size, optimize {cm,n} in terms of RD cost;
Recluster the blocks;
Run the codec in open-loop, using the same d, rec, and the new {cm,n},
update mode assignment a to minimize RDcost;

end
Run the codec in open-loop again, using the same d, rec, and new {cm,n};
Update rec as the newly reconstructed video file; Update RDcost;

end
Run the codec in closed-loop, update the encoder decision d and reconstructed
video file rec, store the RDcost into array {RDcost}. iter = iter + 1;

end
Find the minimum RDcost in {RDcost}, set the corresponding {cm,n} as the final
filter-intra modes;
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Table 4.1: Bitrate reduction using the 4-tap intra extrapolation filter designed with
and without ACL (low resolution)

Low-res Filterintra Filterintra+ACL
Tempete (CIF) 3.61 3.88
Flower (CIF) 1.82 1.97
Mobile (CIF) 1.97 1.81

Coastguard (CIF) 2.54 2.59
Bus (CIF) 3.33 3.29

BasketballPass (240p) 3.42 3.86
BlowingBubbles (240p) 2.22 2.36

BQSquare (240p) 1.11 0.99
Average (Low-res) 2.50 2.59

Table 4.2: Bitrate reduction using the 4-tap intra extrapolation filter designed with
and without ACL (middle resolution)

Mid-res Filterintra Filterintra+ACL
BQMall (480p) 3.24 3.43
Keiba (480p) 4.29 4.11

Flowervase (480p) 3.14 3.24
PartyScene (480p) 1.69 1.62
Racehorse (480p) 2.31 2.34
FourPeople (720p) 4.48 4.61

Johnny (720p) 3.39 3.89
KristenAndSara (720p) 3.50 3.61
Average (Mid-res) 3.25 3.36

Table 4.3: Bitrate reduction using the 4-tap intra extrapolation filter designed with
and without ACL (high resolution)

High-res Filterintra Filterintra+ACL
BQTerrace (1080p) 1.24 1.51

BasketBallDrive (1080p) 3.85 4.39
Cactus (1080p) 3.76 3.98

Kimono (1080p) 3.88 3.88
Tennis (1080p) 2.03 2.31

Pedestrain Area (1080p) 4.03 4.42
Sunflower (1080p) 4.28 4.43

Tractor (1080p) 3.47 3.77
Average (High-res) 3.32 3.59
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4.4 Experimental Results

We implement the proposed technique within the VP9 framework to demonstrate its

efficacy. 10 filter-intra modes are added in addition to the 10 original intra modes. For

each original intra mode, the corresponding filter-intra mode being active is indicated

with one additional bit, which is encoded using the arithmetic coding framework of VP9,

and the probability table required is estimated using the training data. Note that in all

our experiments training data is excluded from the test data. Various clips from the derf

dataset were encoded in intra-only settings.

We compare the following three coders in the experiments:

• The standard reference VP9 codec

• VP9 codec with the proposed RD optimized filter-intra modes designed with no

ACL approach

• VP9 codec with the proposed RD optimized filter-intra modes designed with the

ACL approach

The bitrate reduction over the standard reference VP9 codec for sequences at low,

middle and high resolutions are shown in Table 4.1, Table 4.2 and Table 4.3 respectively.

Note that in the intra prediction scenario, the quantization error propagation is only

limited within a frame, thus the instability problem is not as severe as it is in the temporal

prediction case. However, the larger the frame resolution is, the more propagation there

is, the more severe the instability problem is, and the more helpful the ACL frame can be.

As shown in the following tables, the additional gain of using ACL is about 0.09%, 0.11%

and 0.27% for low, mid and high resolution videos. Overall, the average compression gains

of sequences at low, middle and high resolution are 2.59%, 3.36% and 3.59%.
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4.5 Conclusion

The chapter proposes the four-tap recursive extrapolation filter based intra prediction,

which captures the non-separable decaying spatial correlation within a block. Compared

to prior work, the proposed technique effectively covers all the prediction directions, and

adapts the filter coefficients to various local statistics, and aligns the filter design to the

ultimate RD cost of the encoder. An ACL based design framework is used to avoid the

instability problem due to quantization error propagation. Experimental results on the

VP9 codec show consistent gains on sequences at all resolutions.
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Chapter 5

Generalized Estimation-theoretic

Framework for Scalable Video

Coding

Scalable video coding suffers from the under-utilization of base layer information, where

usually only the reconstruction in the base layer is used for enhancement layer predic-

tion. Prior work from our lab proposed an optimal estimation-theoretic (ET) approach for

quality scalable coding, wherein the estimates are obtained by utilizing all the available

information from base layer quantization interval and enhancement layer distribution for

transform coefficients. While this approach was proposed for fixed block size encoding,

modern codecs employ variable block size quadtree structured partitioning, which results

in different partitions at base layer and enhancement layer based on the rate-distortion

trade-off, thus makes the base layer information not directly usable in the enhancement

layer. Other new tools such as hybrid transform and the rate-distortion optimized quan-

tizer (RDOQ) also have an impact on the information available for optimal estimation.
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In this chapter1, we generalize the ET framework for quality scalable video coding to

account for the quadtree structured partitioning, hybrid transform and the RDOQ ad-

justment. Experimental evidence is provided for consistent coding gains over standard

SHVC.

5.1 Introduction

Modern video applications (streaming, broadcasting, etc.) operate on RTP/IP [51]

networks for real-time services, which is characterized by a broad range of connection

qualities and receiving devices. To adapt to the differences in the end-user devices’ capa-

bilities and network conditions, scalable video coding (SVC) was proposed and adopted

as extensions to video coding standards of H.264 [4] and HEVC (SHVC) [3]. SVC allows

the video sequences to be encoded “progressively”, i.e., a video sequence encoded at one

quality can be enhanced to a higher quality by adding a refinement bitstream, succes-

sively any number of times. In this hierarchical structure, even if the top refinement

bitstreams are lost due to temporary constraints in the network, the rest would still be

a valid decodable bitstream. Specifically, bitstream at the lowest quality is referred to as

the base layer (BL), while bitstreams at higher qualities are referred to as the enhance-

ment layers (EL). In addition to quality scalability, there is also spatial and temporal

scalability where the resolution and frame rate varies between layers.

A critical challenge that limits the practical use for SVC is how to exploit the BL

information effectively in the ELs, especially in the EL prediction. In the SVC standards

[4, 3], the BL reconstruction can be used as an additional reference frame for EL motion

compensation, and the BL motion vectors can be used to predict EL motion vectors.

In [52], a pyramid approach is proposed where the interpolated BL residual is used to

1This chapter is adapted from 978-1-5090-2175-8/17/$31.00 c© 2017 IEEE.
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BL partition EL partition

Figure 5.1: An example of different partitions at base and enhancement layer.

predict the EL residual. In [53, 54], a subband coding approach is proposed where

the different resolutions of subband data are obtained from different layers. A linear

combination of EL and BL with three additional weighting types is introduced in [55].

A rate-distortion (RD) optimized selection between the above approaches is proposed

in [56, 57]. While all the prior approaches try to exploit the BL reconstruction for EL

prediction, none of them utilize the BL quantizer information in the transform domain,

which gives the exact region that the original value lies in. Prior work from our lab

[22] exploits this quantization interval information and combines it with the transform

coefficients distribution information in EL from an estimation-theoretic (ET) viewpoint,

which provides the theoretically optimal EL prediction. A follow-up work on this [23, 24]

significantly extended it to the spatially scalable video coding with considerable coding

gains.

However, as more advanced tools are being developed for video coding, the ET ap-

proach has not been updated to account for them. One critical new tool to be supported is

the quadtree block partition [1], which provides significant flexibility and hence commonly

used in modern video coders. With this tool, the BL and ELs are generally partitioned
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differently due to their different rate-distortion trade-offs, as shown in Fig. 5.1. This

mismatch in partitions obviously carries over to the transform domain, and thus the BL

interval information cannot be directly combined with the EL distribution information

as proposed in ET prediction. The hybrid transform adopted by HEVC [1] and proposed

for the next generation video codec JVET [58] greatly expand the family of transform

kernels and leads to more variations in the distribution of transform coefficients, which

needs to be accounted for properly. The rate-distortion optimized quantizer (RDOQ)

[1], where the quantized index is adjusted to achieve better rate-distortion performance,

results in erroneous interval information, i.e., the quantization interval does not always

contain the true value of the coefficients, which also needs to be taken into account.

In this chapter, we generalize the ET framework to account for the advanced tools

of quadtree partitioning, hybrid transform, and RDOQ for quality scalable video coding.

To account for partitioning mismatch, we first use EL prediction parameters to generate

transform coefficients distribution at BL transform unit size, then combine this with BL

quantization interval information as in the standard ET approach, and finally transform

this to generate final ET prediction in the EL prediction unit size. To account for the

various types of transform, we train the distribution parameters for DCT, ADST and

transform skip (TS) at different target bitrates separately, and apply them in tandem

for hybrid transform. We adjust the quantizer interval information accounting for the

RDOQ to avoid inaccurate interval information. The proposed approach is implemented

in SHVC and compatible with all the existing features with no additional overhead and

negligible additional complexity. Consistent gains across video sequences at different

resolutions are presented to prove the efficacy of the approach.
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5.2 Background: ET Prediction

The ET approach for EL prediction is formulated as an estimation problem of the

current sample given all the available information. Without loss of generality, we assume

there are only two layers, which are coded in a quality scalable encoder. For each sample

in the EL, there are two sources of information available: EL reconstruction of prior sam-

ples, and the parameters (reconstruction, prediction, compressed residual, quantization

parameters, etc.) associated with the BL coder for the same sample.

In a single-layer coder where only one information source is available, the prediction,

x̃, can be derived via motion compensation or intra prediction. The residual, x − x̃,

is then transformed, quantized, and sent to the decoder. It has been shown in prior

work [59, 60, 61] that the DCT coefficients of the residual, ε, can be approximated by

a Laplacian distribution centered at zero, λ
2
exp(−λ|ε|). Therefore, the DCT coefficients,

xT , of the actual pixel value, x, would follow the same Laplacian distribution centered

at the prediction in the transform domain x̃T , i.e.,

f(xT | x̃T ) =
λ

2
exp(−λ|xT − x̃T |). (5.1)

The modern quantizer is hence designed as an uniform dead-zone quantizer based on the

distribution and the quantization parameters (QP).

In a two-layer SNR scalable coder where two sources of information are available

from BL and EL, the BL reconstruction is usually used as an additional reference and

combined with EL prediction, either linearly as in the standard [3], or via other subop-

timal approaches [52, 53, 54]. However there is more information available from the BL

prediction and QP. Given quantized residual index ib and QP, we know the exact interval
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Figure 5.2: The distribution for transform coefficients (the centroid of the shaded
region is its optimal ET prediction)

(a, b) associated with ib. If x̃bT is the BL prediction in the transform domain, we have

εb = xT − x̃bT ∈ (a, b), (5.2)

xT ∈ (x̃bT + a, x̃bT + b). (5.3)

Similar to (5.1), the EL prediction, x̃eT , provides the distribution information, f(xT |

x̃eT ) = λ/2 exp(−λ|xT − x̃eT |), and (5.3) provides the interval information from BL

that indicates the region the original value would fall in. Together we have a truncated

Laplacian distribution, as shown in Fig. 5.2, the centroid of which would be the best

estimation for xT (also referred to as ET prediction in the rest of the chapter),

x̃eTET = E(xT | xT ∈ (x̃bT + a, x̃bT + b), x̃eT )

=

∫ x̃bT+b

x̃bT+a
xTf(xT | x̃eT )d(xT )∫ x̃bT+b

x̃bT+a
f(xT | x̃eT )d(xT )

. (5.4)
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5.3 ET prediction with partitioning mismatch be-

tween layers

In modern video codecs such as HEVC [1], each video frame is divided into 64 × 64

blocks (referred to as CTU), then each of them can be further splitted recursively into

different sizes of coding units (CU) in a quadtree structure. At each leaf node of the

quadtree, a CU can be further partitioned (rectangularly) into different prediction unit

(PU), each associated with a motion vector or intra prediction mode. After the prediction,

each CU is further split recursively in a similar quadtree method to different sizes of

transform units (TU). In general, finer partition leads to better coding quality (less

distortion) but at a higher bitrate. Depending on the target bitrate (or target quality)

requirement, the encoder makes the partition decision based on the rate-distortion cost,

which is a Lagrangian formula defined for the rate-distortion trade-off. ELs and BL are

coded at different qualities, thus usually have different partition decisions across layers

(as an example shown in Fig. 5.1).

As described in Section 5.2, in the ET approach, the BL interval information lies in

the transform domain thus is determined by the BL TU sizes. However, if the BL TU

is not aligned with EL PU, this interval information cannot be directly used with the

transform domain distributions for EL prediction. Although, as a naive approach, we can

make them compatible by performing a linear transform (from one size to another) either

on the interval information or on the distribution information, it is neither effective or

practical. Performing a linear transform on the interval information means finding the

overall support region of a linear objective function, y = cTx, with xi ∈ (ai, bi]. This

overall region would be, y ∈
⋃
Ri, where Ri = (ciai, cibi] if ci ≥ 0, and Ri = [cibi, ciai)

if ci < 0. This would result in a much larger interval for y, and sometimes lead to

meaningless information of (−∞,∞) whenever any of the variables in x has no interval
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information available (e.g., due to RDOQ as explained later). Performing the linear

transform on the distribution involves a set of convolution operations, which are too

complicated to be practical.

Instead, we propose an elegant and optimal solution, where we exploit the linearity

property of expectations. From Section 5.2, we know the ET prediction for the EL, as

in (5.4), is the centroid (a.k.a. the expectation) of the distribution for each transform

coefficient, which by linearity property follows,

E(Y) = E(ATXA) = ATE(X)A. (5.5)

Therefore, instead of performing the linear transform on the interval information or

the distribution information, we directly work on the expectations, which retains the

optimality of ET prediction even after any linear operation. To preserve flexibility for

further TU partitioning after the prediction, we transform the ET prediction back to the

pixel domain. Hence for our framework, X represents the transform domain coefficients

in BL TU size, Y represents its corresponding pixels, and A corresponds to the inverse

transform kernel. Specifically, we first transform the EL prediction in the same size as

X to obtain x̃eT , then calculate the optimal ET prediction E(X) via (5.4), and finally

calculate E(Y) using (5.5). Transforming the EL prediction (in a PU) in the size of the

BL TU involves blocks merging, extending and cropping. Depending on the mismatch

of partitions, we consider the following three different cases:

• Case 1: The BL TUs are inside the EL PU (see Fig. 5.3(a)). The EL PU is

divided into small blocks that are aligned with BL TU. For each small block, the

EL prediction is converted into transform domain to compute the optimal ET

prediction using (5.4). Then we get the corresponding pixel domain ET prediction

for each small block using (5.5), and finally merge them together to get the optimal
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ET predicted EL PU.

• Case 2: Part of the BL TU is outside the EL PUs (see Fig. 5.3(b)). We could

simply merge the EL predictions in different PUs, but this would introduce delay

since the prediction of all the required PUs might not be available at the same

instant. Instead, for each EL PU, we extend the EL prediction to the BL TU size

using the same motion vector, and transform it to get the optimal ET prediction

using (5.4). Then we get the corresponding pixel domain ET prediction using (5.5),

and copy the corresponding prediction to the EL PU region. Also in this case, if

it is intra predicted in the EL, we skip ET prediction due to lack of boundary

information for extending beyond EL PU region.

• Case 3: An EL PU covers multiple BL TUs, some of which are fully inside the EL

PU and some extend outside (see Fig. 5.3(c)). We transform such an EL PU using

the same size as BL TUs via both division and extension. For the BL TUs fully

inside an EL PU, we divide the EL PU into the same sizes as the BL TUs as we

do in case 1; for those partly outside an EL PU, we extend the prediction to the

size of BL TU as we do in case 2. The optimal ET prediction in pixel domain for

all the divisions and extensions are merged together as the overall prediction.

The full block diagram of the EL prediction framework with ET scheme in scalable

video coding with quadtree structured partitioning is shown in Fig. 5.4. In the traditional

EL prediction without the ET scheme (the red block), the only information exploited from

the BL is the motion vector and the reconstruction, while with the ET scheme we are

also using the partition and quantization interval information from the BL. For each

effective EL prediction via motion compensation or intra direction, we enhance it using

the ET approach, and compare it with the BL reconstruction and use the best one as

prediction. Note that although in principle the BL reconstruction is contained within
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(a) Case 1 (b) Case 2 (c) Case 3

Figure 5.3: Three cases of the partition mismatch between the EL PU (black line)
and BL TU (blue dotted line)

Figure 5.4: The EL framework block diagram in SHVC with ET prediction
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the interval information, we noticed that directly referencing from base layer sometimes

yields better rate-distortion performance due to savings in side information. The residual

is then transformed and quantized using the most optimal TU quadtree structure. One of

the future research directions will be to further exploit and account for the BL partition

information while optimizing the CU/TU partition in EL.

It has been shown that DCT is not always the best separable transform to approxi-

mate KLT. Hence, modern video coders, such as HEVC, employ hybrid transform (DCT,

ADST) for better decorrelation under certain conditions, and transform skip (TS), where

quantization is done directly in pixel domain. Though the Laplacian distribution assump-

tion for transform coefficients is usually only valid for DCT, we extend it to ADST and

TS, and train the λ for the three different transform types, following the maximum-

likelihood estimation, with N number of samples as,

λ =
N∑N−1

i=0 |xTi − x̃eTi |
. (5.6)

Since statistics of prediction, x̃eT , also depend on QP and transform block size, we train

separate λ for different range of QPs and for each block size. We then employ these λ

adaptively according to the QP and block size chosen by the encoder.

To improve the overall performance, rate-distortion optimized quantizer (RDOQ) was

introduced in recent video coding standards. For each residual transform coefficient, in

addition to its correct quantizer magnitude L, the encoder also considers two additional

magnitudes L − 1 and 0, and chooses the one with the lowest RD cost. Similarly, the

encoder also has the option to eliminate a whole coefficient group (which is usually 4 ×

4) if it is cost effective. The skip mode (where the residual of the whole block is set to 0)

is also used quite often when the bitrate budget is low. All of these techniques contribute

significantly in improving the RD performance, but they also result in inaccurate interval
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information if derived solely from the quantization index. [23] dealt with a simpler

variation of RDOQ in H.264 by disabling the ET prediction for a certain corner case.

But in SHVC, we need a more robust approach to address the problem. Let’s denote

the quantizer interval associated with index ib as Iib = (aib , bib ]. Since we employ regular

quantizers, the intervals of neighboring indices are consecutive, i.e., ai+1 = bi. We propose

a more robust rule to account for RDOQ by expanding the BL interval information in

the following way:

• If ib = 0, set the interval as I−1
⋃
I0
⋃
I1 = (a−1, b1]

• If ib > 0, set the interval as Iib+1

⋃
Iib = (aib , bib+1]

• If ib < 0, set the interval as Iib
⋃
Iib−1 = (aib−1, bib ]

• If ib = 0 for all the transform coefficients in the block, then this block is very

likely to be coded in skip mode, where no interval information is available, i.e.,

the interval is (−∞,∞), and thus the ET prediction x̃eTET is the same as the EL

prediction x̃eT .

5.4 Experimental Results

To evaluate the performance, the proposed ET framework is implemented in SHM

8.0, and is compared to standard SHVC with two-layer quality scalability. Eleven test

sequences were tested in the lowdelay P configuration, each with four bitrate points: BL

QPs (25, 30, 35, 40) combined with an EL QP offset of -3 (which results in a BL bitrate

of about half of the total bitrate). Similar to [23], we use a look-up table to store the

centroid offset within the interval, which significantly reduces the complexity of the ET

framework.
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Table 5.1: Prediction gains for blocks with valid ET prediction in EL

Prediction Gain
BQMall (480p) 2.67 dB

BasketballDrill (480p) 1.69 dB
Keiba (480p) 3.00 dB

FourPeople (720p) 2.07 dB
Johnny (720p) 0.75 dB
Vidyo1 (720p) 1.29 dB
Cactus (1080p) 2.77 dB

BasketballDrive (1080p) 2.89 dB
BQTerrace (1080p) 1.78 dB

Kimono (1080p) 5.05 dB
ParkScene (1080p) 3.20 dB

Average 2.47 dB

Table 5.2: Overall bitrate reduction of the ET framework

Standard
ET-SHVC

Constrained
ET-SHVC

BQMall (480p) 3.43% 3.99%
BasketballDrill (480p) 4.21% 2.43%

Keiba (480p) 2.13% 0.29%
FourPeople (720p) 3.88% 4.83%

Johnny (720p) 2.92% 3.64%
Vidyo1 (720p) 3.23% 4.43%
Cactus (1080p) 4.41% 3.92%

BasketballDrive (1080p) 2.84% 1.41%
BQTerrace (1080p) 2.45% 4.13%

Kimono (1080p) 3.12% 1.12%
ParkScene (1080p) 3.94% 4.78%

Average 3.32% 3.18%
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We conducted three sets of experiments to show the effectiveness of the proposed

ET framework. In our first experiment, we evaluate the prediction gain purely from

the blocks that have valid ET prediction in EL (i.e., these blocks have valid base layer

interval information available). As shown in Table 5.1, the ET prediction framework

provides an average 2.47dB gain in prediction (equivalent to 45% reduction in prediction

error). However, in practice, only 3% to 15% of the blocks (depending on the bitrate)

have a valid interval information from base layer, which largely dilutes the overall gain.

In our second experiment, we compare the overall RD performance of the SHVC with ET

framework and the standard SHVC, and get an average of 3.3% reduction in bdrate [62],

as shown in the “Standard ET-SHVC” column of Table 5.2. This dilution also suggests

a future research direction of jointly optimizing BL and EL, where interval information

is introduced in BL so as to benefit the ET prediction in EL.

To show that we have effectively tackled the challenges due to the quadtree structured

partitioning, hybrid transform, and RDOQ, we conducted a third experiment where ET

framework is applied on a constrained SHVC where none of the above tools are enabled.

In this third experiment, all the block sizes are forced to be 8 × 8, DCT is used as the

only transform and RDOQ is disabled. The performance of the original ET framework in

this limited version of SHVC over the baseline is shown in the “Constrained ET-SHVC”

column of Table 5.2, with an average of 3.18% reduction in bdrate. We achieve a similar

and consistent gain in our proposed framework with all the tools enabled, which proves

its effectiveness in practice.

5.5 Conclusion

This chapter generalizes the ET framework to manage the mismatch in quadtree

structured partitioning at different layers, by exploiting the linearity property of estima-
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tions to convert information between different partitions. The parameter of the transform

coefficient distribution is separately trained for different types of transform, block sizes

and QPs. And a more robust way of exploiting the BL quantization interval information

is proposed to avoid erroneous information due to the RDOQ adjustment. Experimental

results demonstrate the effectiveness of the proposed technique with consistent gains over

standard SHVC. Future research directions include the joint optimization of BL and EL,

and further exploitation of BL partition information.
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Chapter 6

Asymptotic Closed-loop Based

Transform Design

Data-dependent transforms can achieve better energy compaction than regular trans-

forms (like DCT, ADST) if designed properly. In this chapter, we extend the ACL idea

to the transform module in the predictive coding system, designing a set of separable

KLT to cover the various temporal residual block statistics. The designed transforms

are tested in the VP9 codec, where the encoder chooses one from the transform set

per inter coded block. We show that the transform set designed with ACL consistently

outperforms those designed without ACL.

6.1 Introduction

Transform coding is widely adopted in image and video compression. It decorrelates

the spatial correlation and redistributes the energy within the residual blocks, so that the

transformed signals have little redundancy and better energy compaction. The Karhunen-

Loeve transform (KLT) has been proven to be the optimal transform. But its dependence
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on data as well as the high complexity makes it impractical for many applications. The

discrete cosine transform (DCT) has long been a popular substitute for KLT due to its

fast implementation and the good energy compaction property.

However, DCT is not always a good approximation of KLT (unless the signal is a first-

order Markov process [63]). In natural video sequences, the residual usually depends on

the prediction. For example, the residual of an intra block might have stronger correlation

along the direction of the prediction mode; the residual of an inter block might have

stronger correlation at block boundaries or object boundaries based on its prediction

model.

There have been lots of research on designing transforms that better describe the resid-

ual statistics. Han et. al. proposed the Asymmetric Discrete Sine Transform (ADST) in

[64] to describe intra residual blocks where only partial boundary information is available.

Directional DCTs for inter and intra are proposed respectively in [65] and [66] to cover

directional correlations more than horizontal and vertical directions. Compared to KLT,

separable KLT is much faster with great energy compaction on the rows and columns.

A mode-dependent separable KLT approximation for intra residual blocks is proposed in

[67]. [68] learnt the separable KLT by applying SVD on the row and column directions,

while [69] and [70] learnt it by approximating the inverse covariance matrix.

More advanced transform structures were proposed to approximate non-separable fil-

ters with less complexity. Row-column transform (RCT) [71] defines 2D non-separable

transforms with the aid of a set of 1D linear transforms and a basis ordering permutation,

while Layered-givens transforms (LGT) [72] approximates them using layers of permu-

tations and rotations. A more generic and algebraic approach called Sparse Orthogonal

transform (SOT) was proposed in [73], which enforces sparsity on transform coefficients

and reduces to KLT on Gaussian signals.

Despite the comprehensive research on the transform models, there is a catastrophic

71



Asymptotic Closed-loop Based Transform Design Chapter 6

instability problem (as described in Chapter 3) in the training of the transform models.

The transforms are trained based on the statistics of the residual blocks, which is changed

after applying the designed transforms. The transforms determine the residual signals

to be quantized and reconstructed, and in a closed-loop system like video coding, the

reconstruction would in return be used to predict future frames. Thus any changes

from applying the designed transforms would propagate to future frames, leading to

mismatched statistics with the statistics we designed for. In this chapter, we will use the

two-loop asymptotic closed-loop design approach which we earlier proposed for predictor

design to design transforms that correctly represent the residual statistics.

Compared to intra residual data, inter residual has less structured pattern and is

more prone to the instability problem. Therefore, we chose to design a set of separable

KLTs for different classes of residual data using the two-loop ACL based mode design

approach. It also provides a generic transform design framework free of the instability

problem, which can be used to train any arbitrary transforms.

6.2 Background

6.2.1 KLT

If we denote x as a signal vector, and y is the signal vector in the transform domain.

KLT is defined as

y = TTx (6.1)

with the KLT transform matrix T defined by

Kx = TΛTT (6.2)
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where the Kx is the covariance matrix of x, and Λ is a diagonal matrix. In other

words, each column of the KLT matrix is the eigenvector of the covariance matrix. The

covariance matrix of the transformed signal y is the diagonal matrix Λ, thus any element

in y has zero correlation with any other elements. Therefore, KLT can fully de-correlate

x.

It can be shown that the transform coding gain is related to energy compaction, and

can be measured by the ratio between the arithmetic mean and the geometric mean of

the variances of all the elements in the transformed vector [74].

GT =
DQ

DT

=
1/k

∑
i σ

2
yi

(
∏

i σ
2
yi

)1/k
(6.3)

where DT and DQ are the distortion in reconstruction with and without the transform,

and GT is referred to as the transform coding gain given a fixed average bitrate.

As both KLT and DCT are orthogonal transforms, they do not change the arithmetic

mean of the variances. Therefore, the smaller the geometric mean is, the larger the coding

gain is. KLT is also proved to be the optimal transform for minimizing the geometric

mean. In the experiments, we also use this metric to measure the energy compaction of

the designed transforms.

6.2.2 Separable KLT

For a 2D signal X, if we can assume all the columns have the same covariance matrix

Kc, and all the rows have the same covariance matrix Kr. We can write the KLT in a

separable form [75]

Y = TT
c XTr (6.4)
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where Y is the 2D transform coefficients, and Tc, Tr are the KLT matrix corresponding

to Kc, Kr respectively, i.e.,

Kc = TcΛcT
T
c (6.5)

Kr = TrΛrT
T
r (6.6)

It can be shown that,

Kx = Kr ⊗Kc (6.7)

= (Tr ⊗Tc)(Λr ⊗ Λc)(Tr ⊗Tc)
T (6.8)

Therefore, the KLT for x can be written in the form of the two KLTs for the row vectors

and column vectors, T = Tr ⊗Tc

6.2.3 Transform tools in AV1

In the latest development of AV1 [76], a set of 16 transforms are introduced for inter

and intra residual blocks. For each block, the codec can choose to use one of up to 16

different transforms as follows:

{DCT, ADST, FlipADST, IDTX}horizontal × {DCT, ADST, FlipADST, IDTX}vertical

(6.9)

where FlipADST is the flipped version the ADST, and IDTX is an identity transform

(same as transform skip (cite)) which is good for screen content video sequences. A

reduced set of transforms is used for 16 × 16, 32 × 32, 64 × 64 as some of the transforms

act similarly for larger blocks.

In this chapter, we start from the default transforms in AV1, divide the blocks into
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several classes, and optimize the separable KLT for each class. Clustering techniques are

used to optimize the mode assignment and mode design. ACL techniques are used to

ensure the design is stable for the closed-loop system.

6.3 ACL Based Transform Design

Algorithm 3: ACL based transform design algorithm

Input : A set of training sequences, the number of transforms K
Output: A set of separable KLT kernels of size K

Initialize the separable KLTs using the default transform set Run the codec in
closed-loop, store the encoder decision d, mode assignment a and reconstructed
video file rec;
while iter < max iter do

while RDcost decreases do
Run the codec in open-loop using the same encoder decision d, but with
rec as the motion compensation reference;
Extract the residual blocks;
while RDcost decreases do

Design the separable KLT for each cluster;
Assign the residual blocks into the best mode to minimize RDcost;
Update a, update RDcost;

end
Run the codec in open-loop again, using the same d, rec, and the
optimized a and transform sets; Update rec as the newly reconstructed
video file; Update RDcost;

end
Run the codec in closed-loop, update the encoder decision d and reconstructed
video file rec, store the RDcost into array {cost}. iter = iter + 1;

end
Find the minimum RDcost in {cost}, set the corresponding transform sets as the
final trained transforms;

Although the separable KLTs can achieve better energy compaction than the default

transform sets, they are designed based on the residual statistics, which depend on the

reconstruction of the reference frames in a closed-loop system. As the designed separable
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KLTs are applied to the residual blocks, we may get a different reconstruction based

on how the new transform coefficients fall in the quantizer intervals. This change in

reconstruction is passed on to future frames through the prediction loops, leading to

different statistics in residual blocks. In a word, the instability problem we discussed

in Chapter 3 not only applies to prediction module, but also to other components as

well, such as the transform module. Therefore, we use a similar ACL framework in the

transform design.

Given a fixed bitrate, the designed transforms can reduced the reconstruction distor-

tion by GT times, with the transform coding gain GT defined in (6.3). While running

the codec in open loop, the reconstruction is guaranteed to be improved, and with a

better reconstruction as reference, the reconstruction of the next iteration is generally

improving too. The distortion of reconstruction decreases until convergence, when the

open loop is equivalent to closed loop.

Similar to the framework in Chapter 3, the overall training algorithm is shown in

Algorithm 3. Since the codec is running at constant bitrate, minimizing RD cost is

equivalent to minimizing the overall distortion in reconstruction. With this example, we

show that this ACL framework can be generally used in optimizing various modules in

the offline training for video coding.

6.4 Experimental Results

We tested the designed transforms in the VP9 codec, where the set of 16 transforms

{DCT, ADST, FlipADST, IDTX}horizontal×{DCT, ADST, FlipADST, IDTX}vertical is one

of the experimental features. Instead of 16 transforms, we only focus on the 9 of them in

this experiment, {DCT, ADST, FlipADST}horizontal × {DCT, ADST, FlipADST}vertical,

since the identity transform (IDTX) is mostly intended for screen content sequences,
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Table 6.1: The transform coding gain (dB) for sequence paris at different bitrate using
different transform set

Target bitrate Default
non-ACL designed

separable KLTs
ACL designed

separable KLTs
100 5.60 5.44 5.77
200 3.60 3.80 3.84
300 3.20 3.43 3.71
500 2.93 3.08 3.31
700 2.79 2.93 2.97

Table 6.2: Bitrate reduction over reference VP9 using the transform sets for inter
residual blocks

Sequences Default
non-ACL designed

separable KLTs
ACL designed

separable KLTs
Akiyo 3.80 4.37 6.33
City 1.21 1.80 3.00

Coastguard 3.90 5.47 9.68
Container 0.58 0.89 2.12

Crew 2.24 1.56 4.48
Harbour 2.37 3.42 4.75

News 1.09 5.92 9.60
Paris 2.03 2.21 3.51
Silent 3.32 4.32 5.53
Stefan 2.25 3.37 4.11

Waterfall 0.13 0.63 1.37
Mobile 1.71 2.14 3.16

Tempete 0.64 2.48 3.41
Flower 3.74 4.64 5.95
Husky 2.92 3.47 3.79

Hall moniitor 7.40 11.01 12.64
Bridge-close 5.22 5.18 5.87

Football -3.10 -3.93 -2.77
Average 2.31 3.28 4.8
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Figure 6.1: Coding performance comparison for sequence Hall monitor at CIF resolution

78



Asymptotic Closed-loop Based Transform Design Chapter 6

which are not in the test sequences here. To simply the experiments, the transform block

size is restricted to 8 × 8. The encoder can choose one of the 9 transforms for each inter

residual block, and indicate the choice in the bitstream as extra overhead.

We first evaluate the transform coding gain that measured by the ratio between the

arithmetic mean and the geometric mean of the variances of the transform coefficients.

In Table 6.1, we show the transform coding gain at different bitrate using the default

transform set, the separable KLTs designed without the ACL framework and the separa-

ble KTLs designed with the ACL framework. We can see that for transform set designed

without ACL, the transform gain is better than the default transform set at middle and

high bitrate, yet gets worse at low bitrate. As mentioned in Chapter 3, the instability

problem becomes especially severe at low bitrate encoding case, since there is more quan-

tization error propagating through the prediction loop, thus leads to worse performance

in the non-ACL design. For transform set designed with ACL, the transform gain is

consistently better than the default transform set and the non-ACL designed transform

set at all bitrates.

Compared to the baseline results (where only DCT is used for inter residuals), we

present the bitrate reduction of using the default 9 transforms, the separable KLTs

designed without ACL, the separable KLTs designed with ACL in Table 6.2. On average,

we can get an extra 0.97% in bitrate reduction by using separable KLTs over the default

transforms, and an extra 2.49% by designing separable KLTs with the ACL approach.

The RD curve of sequence Hall monitor is shown in Fig. 6.1, showing the performance of

baseline VP9 and VP9 using the default transforms and the designed transforms. Very

rarely, the overhead to encode the transform mode outweighs the gain of using multiple

transforms (e.g.: sequence Football). This problem can be solved by finding the optimal

number of modes, which would be one of the future research directions.
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6.5 Conclusion

The instability problem widely exists in the predictive coding system. In this chapter,

we extended the ACL idea to the transform module and designed a set of separable

KLTs to cover the various temporal residual block statistics. We compared the designed

transforms with the default transforms in VP9, and got an extra 2.5% in bitrate reduction.

We also compared the ACL-designed transforms with non-ACL designed transforms.

While the non-ACL designed transforms would lead to worse performance at low bitrate

case, the ACL-designed transforms outperform the default transforms at all bitrates.
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Chapter 7

Conclusions and Future Work

In this dissertation, we addressed the sub-optimality of the traditional prediction ap-

proach in video coding, and proposed effective yet manageable models for temporal,

spatial and scalable video coding prediction. We also proposed a two-loop ACL frame-

work for offline training to avoid the design instability in closed-loop systems. This

two-loop ACL framework was furthered proved to be useful in not only predictor de-

sign, but also in other video compression modules such as transform design. In most of

the approaches we proposed in this dissertation, the ACL framework is used along with

clustering approaches for effective mode design.

In Chapter 2, we proposed the extended block transform domain temporal prediction,

to fully decouple the spatial and temporal correlation for an optimal temporal prediction

in the transform domain. The proposed approach also allows us to better exploit the

temporal correlation in the high frequency components, which is usually neglected in the

traditional pixel domain temporal prediction. We further recognized that the proposed

predictors interferes with the sub-pixel interpolation filters in the high frequency com-

ponents, and as a result, we proposed a joint design approach to optimize the predictors

and interpolators together. To make the predictors better adapt to local statistics, we
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trained different predictors for different combinations of encoder decisions (block sizes,

QP, etc.). The proposed approach was implemented in HEVC, and showed significant

coding gain over standard HEVC.

In Chapter 3, we explained the design instability in the closed-loop systems, and pro-

posed an iterative open-loop design technique that asymptotically optimizes the system

for closed-loop operations, called an asymptotic-closed loop (ACL) approach. To further

stabilize it for video coding system, we extend it to a two-loop ACL framework where

the encoder decisions are optimized in terms of rate-distortion cost in the outer loop,

and predictors are optimized in terms of prediction error in the inner loop. Clustering

approach like K-modes approach is incorporated into the innermost loop to optimize the

mode design. We compared the performance gain using TDTP predictors designed with

and without ACL approach, and showed that in low bitrate cases the instability problem

is so severe that designing without ACL approach would result in worse performance

than the baseline.

In Chapter 4, we designed a recursive extrapolation filter based intra prediction ap-

proach that effectively captures the non-separable spatial correlation and its variation

within blocks without incurring much extra complexity. This predictor is optimized via

a two-phase approach where it is first optimized to minimize prediction error, and then

optimized to minimize the rate-distortion cost. Gradient descent is applied in both phases

with gradients calculated either analytically or empirically. The ACL framework is also

applied to avoid the design instability problem, although the quantization error propaga-

tion in this scenario is only limited within a frame. Consistent gains over standard VP9

on sequences at various resolutions are presented, and the proposed intra predictor was

adopted by the latest video codec AV1.

In Chapter 5, we generalized the estimation-theoretic (ET) approach in scalable video

coding enhancement prediction to account for modern coding tools, such as quadtree par-
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tition, hybrid transform and rate-distortion optimized quantizer (RDOQ). The original

ET approach relies on the alignment of the block partition in enhancement layers and

base layer, so that the base layer quantizer interval information can be aligned with

the enhancement layer distribution information to generate a better prediction. We ad-

dressed this mis-alignment problems in the quadtree structure by exploiting the linearity

property of expectations. The RDOQ, which would generate erroneous interval infor-

mation, and the hybrid transform, which leads to more variation in the distribution of

transform coefficients, are also taken in account properly. The generalized approach fully

supports the latest scalable video coding codec, SHVC, and leads to substantial coding

gains.

In Chapter 6, we applied the ACL framework in designing transforms, another im-

portant component in video compression other than the prediction module, and proved

that this framework is not only crucial in the predictor design, but also in the design of

other modules in the predictive coding system. Using the ACL framework, we designed a

set of separable KLTs for temporal residual blocks of different statistics, and incorporate

them into the VP9 codec for the encoder to choose one per block. The performance gain

over the standard VP9 using transform set designed with ACL consistently outperforms

those designed without ACL.

The work in this dissertation also leads to some interesting directions for future

research. In the inner loop of the ACL framework where the optimization is mostly

based on mean square error, it is not guaranteed that the reconstruction error would

decrease monotonically since the quantizer works intrinsically based on rate-distortion

theory. Despite the workaround of fixing the bitrate, improving the ACL framework so

that it is RD optimal would be an interesting topic to research on. In the mode design, we

pre-determine the number of modes empirically, K, and then use the K-modes clustering

approach to optimize them. However, depending on the models, statistics, and the RD
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trade-off, the optimal number of modes can vary tremendously. Optimizing the number

of modes would be another research topic of very broad interests.
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