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Abstract. We examine the size of stable coalitions in a participation game that has been
used to model international environmental agreements, cartel formation, R&D spillovers,
and monetary policy. The literature to date has relied on parametric examples; based on
these examples, a consensus has emerged that in this kind of game, the equilibrium coalition
size is small, except possibly when the potential benefits of cooperation are also small. In
this paper, we develop a non-parametric approach to the problem, and demonstrate that the
conventional wisdom is not robust. In a general setting, we identify conditions under which
the equilibrium coalition size can be large even when potential gains are large. Contrary to
previously examined leading special cases, we show that reductions in marginal abatement
costs in an international environmental game can increase equilibrium membership, and we
provide a measure of the smallest reduction in costs needed to support a coalition of arbi-
trary size.
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1. Introduction

There is a rapidly expanding literature on the prospects for international environmental

agreements (IEAs) to combat trans-boundary pollution problems such as the depletion of

the ozone layer, the proliferation of greenhouse gases and, more generally, climate change.

Much of this literature is based on a particular participation game. Due to the difficulty

of analyzing this game, virtually all research on the topic specifies particular functional

forms for the costs and benefits of abatement. Based on this research, the unchallenged

consensus opinion among researchers in this field is that IEAs are ineffective precisely when

the potential gains from cooperation are large (Ioannidis et al. (2000), Finus (2001),Finus

(2003), Barrett (2003)). Moreover, in leading special cases, an innovation—for example, a

reduction in abatement costs—that increases the potential gains from cooperation will leave

unchanged or reduce equilibrium participation. In these cases, a cost reduction that one

would expect to be welfare enhancing has no effect on, or even reduces the fraction of the

welfare gains from cooperation that could potentially be realized through the formation of

an IEA. The existing theory on IEAs is thus pessimistic: sovereign nations cannot easily

be induced to provide public goods; voluntary, self-enforcing agreements are not effective in

providing public goods, and plausible remedies, such as investments that reduce abatement

costs, will not help and might even be counterproductive. This pessimism spills into policy

advice: it has been suggested that efforts devoted to promoting a climate agreement requiring

signatories to reduce greenhouse gas emissions are bound to be unsuccessful. A corollary,

discussed by Barrett (2003, Ch. 15) and Stiglitz (2006), is that an IEA cannot be successful

in the absence of some kind of external punishment.

We show that the basis for this pessimism is fragile, in that it relies on specific functional

forms. All of the forms considered in the IEA literature share a common property: the
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marginal abatement cost function is convex at positive levels of abatement. This property

is not required by classical micro-theory, which assumes only that the cost function itself

is convex. Indeed, as we illlustrate below in §3.2, when the marginal cost encompass more

than one abatement technology, it is typically not convex. When this excessively stringent

condition is relaxed, the pessimistic results in the literature can easily be overturned. In

this paper, we avoid the straightjacket of specific functional forms, focusing instead on a

nonparametric expression for the function—we call it the joiner’s gain function—that deter-

mines the equilibrium level of participation. When the marginal benefits from abatement are

linear, there is a simple decomposition of this function that leads to a quite general theory

of IEAs, and provides intuition that helps in analyzing the case where marginal benefits of

abatement are concave. We begin by showing that if marginal abatement costs are weakly

convex and benefits are linear, then the equilibrium size of the IEA never exceeds three coun-

tries. To this extent, the basis for the literature’s pessimism is more general than previously

thought. However, when the restriction that marginal abatement costs be convex is relaxed

(maintaining the classical assumption that total costs are convex) the equilibrium IEA can

be arbitrarily large. Thus, for some classically admissible cost functions—although not the

ones previously analyzed in the literature—the pessimistic conclusion is overturned.

When marginal benefits are linear, our decomposition of the joiner’s gain function is a

powerful analytic tool. We use it to determine, for any integer up to the total number of

potential IEA signatories, the type and minimal size of the cost reduction needed to support

an equilibrium with at least this many members, in circumstances where under the original

cost function an IEA of this size would not be stable. It is thus possible to capture up

to 100% of the potential gains from cooperation that are available under the appropriately
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specified, reduced cost function. We then show that arbitrarily large coalitions can also be

sustained when the benefit of abatement is concave.

In most of this paper—except for §3.2—we restrict attention to cost reductions that globally

weakly decrease marginal abatement costs. Such reductions necessarily increase the equilib-

rium level of abatement by an IEA with a given number of members. This restriction limits

the number of special cases that we need to address, allowing us to focus on the most famil-

iar scenario. By contrast, some recent papers have considered technological innovations that

reduce total abatement costs, while increasing marginal abatement costs over some range of

abatement levels. (See for example Enderes & Ohl (2003), Bauman, Lee & Seeley (2008),

Baker & Adu-Bonnah (2008), Baker, Clarke & Shittu (2008).) Under these conditions, a

cost reduction may reduce the equilibrium level of abatement for an IEA of a given size.

Our results are policy-relevant for two reasons. First, as noted above, our results show that

the theoretical basis for pessimism about self-enforcing IEAs may have been exaggerated.

In particular, our work challenges those who would advise policymakers that a successful

IEA requires a punishment device. Second, using the techniques that we develop, it is rela-

tively straightforward to determine the effect on participation incentives of a cost reducing

technological innovation.

The literature on IEAs to which we contribute is based on a two-stage game developed in

D’Aspremont et al. (1983).1 In the first stage agents have a binary decision, whether to

join or stay out of the coalition; in the second stage, agents take an action (abatement,

1An alternative to the participation game that we use is based on games of coalition formation, such as
Chwe (1994), Ecchia & Mariotti (1998), Xue (1998) and Ray & Vohra (2001). These models invoke a more
sophisticated interpretation of rationality, in which agents understand how their provisional decision to join
or leave a coalition would affect other agents’ participation decisions; nations are “farsighted”. Diamantoudi
& Sartzetakis (2002), Eyckmans (2001), de Zeeuw (2008) and Osmani & Tol (2009) apply this notion to IEA
models. An entirely distinct line of research models climate policy using a cooperative game.
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sales, etc.). Members of the coalition internalize the effect of their actions on other coalition

members. The outcome at the participation stage is a noncooperative Nash equilibrium, and

the outcome at the second (“abatement”) stage is either a Nash or Stackelberg equilibrium.

While our research was motivated by the difficulty of sustaining IEAs, this two-stage game

has been used to study a variety of problems. Because the essential features of the model arise

in several fields, the relevance of our results extends well beyond the setting of this paper. In

an IO setting, Donsimoni et al. (1986) provide conditions under which the size of the stable

coalition is uniquely determined. Katz (1986) and De Bondt (1997) use the D’Aspremont

et al. (1983) definition of coalition stability to study collusion in R&D games with spillovers.

Thoron (1998) shows that stable coalitions and Nash equilibrium outcomes to the binary

action participation game are equivalent. Kohler (2002) uses the definition of stability to

study cooperation in monetary policy. Escrihuela-Villar (2009) and Bos & Harrington Jr

(2010) use the same definition of stability in a setting where the post-participation outcome

is a non-cooperative equilibrium to a repeated game, rather than the result of optimization

by the coalition. Bloch & Dutta (2008) explain the relation between the particular definition

of coalition stability used in these papers, and other prominent definitions.

Early applications of this model to IEA formation include Hoel (1992), Carraro & Siniscalco

(1993), and Barrett (1994). Barrett (2002) and Finus & Maus (2008) show that coalitions

with modest ambitions may be more successful than those that try to fully internalize dam-

ages. Using functional forms that are standard for this literature, Barrett (2006) presents a

model in which cost-reducing investments can improve the outcome under a stable coalition

if there are increasing returns to scale (IRTS) to the adoption decision. With IRTS, the

participation game becomes a coordination game, and there may exist a non-cooperative
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equilibrium in which all nations participate. As Heal & Kunreuther (2011) suggest, a coor-

dination game can also be induced by technological spillovers or trade policy. They provide

conditions unders which there is a tipping point in the participation game: if a sufficient

number of countries join, it is individually rational for all countries to join. Hoel & De Zeeuw

(2010) show that cost-reducing investments (without IRTS) can improve the performance of

an IEA if investment can reduce abatement costs sufficiently that a dominant strategy for

countries is to abate at the socially optimal level. These examples of coordination games or

dominant strategies constrast sharply with the examples cited above in which cost reductions

weaken incentives to participate. Taken together, the two sets of examples may suggest that

only special kinds of cost reductions, e.g. those associated with IRTS or dominant strategies,

promote participation. We show that unless marginal costs are required to be convex, this

conjecture is false. Dixit & Olson (2000) and Hong & Karp (2010) study the game when

agents use mixed strategies at the participation stage. Ulph (2004), Kolstad (2007), Kolstad

& Ulph (2008) and Karp (2012) examine the effect on participation and welfare when agents

anticipate learning about costs or damages after the participation stage, before they choose

abatement. Kosfeld, Okada & Riedl (2009), Burger & Kolstad (2009) and Dannenberg,

Lange & Sturm (2009) find moderate support in laboratory settings for the prediction of low

participation in the simplest game; they also examine extensions of that game.

Section 2 introduces some terminology relating to our joiner’s gain function and its decom-

position. Section 3 focuses on three parametric examples designed to introduce the main

themes of the paper. In Section 4, we consider arbitrary convex abatement costs, but re-

quire that marginal benefits from abatement are linear. In Section 5, we assume that the

abatement benefit function is strictly concave. Section 6 concludes. The Appendix contains

the proofs of all Remarks and Propositions.
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2. Preliminaries

We use “s” (for signatories) subscripts to denote signatories to the agreement and “f” (for

freeloaders) subscripts to denote non-signatories. Superscripts indicate the number of sig-

natories in the agreement. Signatories delegate their abatement decisions to the coalition,

which chooses abatement to maximize coalition welfare. Each non-signatory ignores the

public good nature of abatement and maximizes its individual welfare. Each of the N

countries is identical, so the model predicts equilibrium participation and abatement, but

not the identity of participants. There are two variants of the second stage, a Cournot vari-

ant in which signatories and non-signatories choose abatement levels simultaneously, and a

Stackelberg variant in which the signatories choose first. This paper considers the Cournot

equilibrium. An online addendum studies the Stackelberg case.

Abatement is a public good. Each country derives a benefit B(Q) from the global level of

abatement, Q, and incurs a cost based on its individual abatement level, q. The individual

abatement cost function is convex, denoted by C (q). Because B′(0) = 1, non-signatories

choose an abatement level of zero whenever C ′(0) > 1; we examine simple examples of this

case in 3.1 and 3.2. In the remainder of this paper, we assume that C ′(0) ≤ 1.

Although the number of signatories, n, has a natural interpretation only when n is an integer,

all of the variables in the paper are mathematically well-defined for any nonnegative real

value of n. Accordingly, we define all functions below on the non-negative reals. For r ∈ R+,

we denote by ⌈r⌉ the smallest integer weakly greater than r and by ⌊r⌋ the greatest integer

weakly less than r.

Suppose that in the first stage of the participation game, r ∈ R+ countries choose to partici-

pate in an IEA. Let qr
s and qr

f denote the abatement levels of signatories and non-signatories
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respectively, and let Qr = rqr
s + (N − r)qr

f denote aggregate abatement. The objective

functions for signatories and non-signatories are, respectively,

U s = rB(Qr) − C(qr
s ) (1a)

U f = B(Qr) − C(qr
f ) (1b)

In an interior equilibrium of the Cournot variant of the abatement stage, the abatement levels

qr
s and qr

f for signatories and non-signatories respectively are simultaneously determined as

the solutions to the first order conditions (2a) and (2b) below:

0 = r
∂B(Qr)

∂qr
s

− C ′(qr
s ) (2a)

0 =
∂B(Qr)

∂qr
f

− C ′(qr
f ). (2b)

For r ∈ R+, we let g(r) denote the “joiner’s gain” function, representing the increment to a

non-signatory’s payoff if it becomes the r’th member of an IEA:

g(r) =

{
[B(Qr) − C (qr

s )] −
[
B (Qr−1) − C

(
qr−1
f

)]
if r ≤ N

−1 if r > N
. (3)

For r ≤ N , the first term in square brackets is the net (private) benefit obtained by a

signatory to an r-member IEA; the second term is the net benefit to not joining: if it did

not join, the non-signatory would benefit from aggregate abatement Qr−1 and incur a cost

C(qr−1
f ). Therefore, the difference between the two terms in square brackets is indeed the net

gain to a potential signatory of becoming the r’th member of an IEA. We assume that a

country indifferent between joining an IEA or not chooses to join. Breaking ties in this way,

an IEA with an integer n ≥ 2 members2 is a stable equilibrium iff

g (n) ≥ 0 > g(n+1). (4)

2For many specifications of the model, (4) can be satisfied for n = 1. Because in this case there is no
distinction between signatories and non-signatories, such solutions are clearly uninteresting; we ignore them
throughout the paper.



-8-

The first inequality is known as the “internal stability condition”—a member of an IEA

with n members has no incentive to leave—while the second is called the “external stability

condition”—a non-member strictly prefers not to join an IEA that has n members. Note

that the external stability condition is vacuously satisfied if n = N because in this case there

are no non-members; for this reason we have set g(n) = −1 for n > N .

To solve the model, the natural approach is to compute the real-valued roots of the equation

g(·) = 0, and then check each root to see if the integers on either side of it satisfy (4). For a

non-integer value3 of r ∈ R+ s.t. g(r) = 0, we say that r is a stable root of g if

g (⌊r⌋) ≥ 0 > g (⌈r⌉) . (4′)

Having made this point, we shall for the remainder of the paper focus on integer-valued

solutions to the model, and index solutions with n rather than r.

In sections 2-4, we assume that benefits are linear in abatement, and choose units so that each

country’s benefit B(Q) is equal to Q. Linearity simplifies the analysis considerably, because

each non-signatory has a dominant abatement strategy: in particular, its abatement choice

is independent of both the size of, and the collective abatement decision made by the IEA;

hence under this assumption the Cournot and Stackelberg variants are equivalent. In §5, we

generalize the model to allow for benefits that are concave in Q.

When there are n signatories and B(Q) = Q, each signatory in an interior equilibrium abates

at the level qn
s > 0, where qn

s solves n = C ′(q), while each non-signatory abates at qf > 0,

where qf solves 1 = C ′ (q), i.e., qf is independent of n. In this case, we can rewrite the joiner’s

3Because ⌊r⌋ = ⌈r⌉ for any integer n, (4′) will be violated whenever the root of g is an integer. A necessary
and sufficient condition for any real-valued root r to be stable is that g (⌊r⌋) ≥ 0 > g (⌈r + ε⌉) for sufficiently
small ε > 0.
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gain function (3) as:

g(n) = nqn
s + (N − n) qf − C (qn

s ) −
[
(n − 1) qn−1

s + (N − n + 1) qf − C (qf)
]

= n
(
qn
s − qn−1

s

)
+
(
qn−1
s − qf

)
−
[
C (qn

s ) − C
(
qn−1
s

)
+ C

(
qn−1
s

)
− C (qf)

]
(5)

For heuristic reasons, it is helpful to write

g(n) = CR (n) − UA (n) , where in the linear case (6a)

UA (n) = C
(
qn−1
s

)
− C (qf) −

(
qn−1
s − qf

)
> 0; (6b)

CR (n) = n
(
qn
s − qn−1

s

)
−
[
C (qn

s ) − C
(
qn−1
s

)]
> 0. (6c)

UA (unilateral action) is the utility loss to a non-signatory if it increases its abatement

from qf to the level qn−1
s produced by the signatories to an (n− 1)-member IEA, while other

countries maintain the same abatement levels; because the non-signatory’s abatement level

qf is individually optimal, the cost increment of this unilateral step is greater than the benefit

increment. CR (collective response) is the utility gain to the signatory when all signatories to

the augmented coalition respond to the additional member by increasing abatement from qn−1
s

to qn
s ; because qn

s is collectively optimal for the augmented coalition, this second increment

in aggregate abatement is greater than the second increment in cost.

3. Some special cases

To motivate the research orientation of this paper, we present in this section three parametric

special cases. These serve as a tutorial for readers unfamiliar with the topic, and illustrate

some of the broad conclusions of the literature reviewed above, as well as showing that these

conclusions are not robust.

Our first example, drawn from Barrett (2003), has been widely discussed in the literature

cited above. It illustrates the pessimistic conventional wisdom that technical innovations
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that reduce abatement costs tend to reduce, rather than increase equilibrium participation.

The second example, based on one in Baker & Adu-Bonnah (2008), generalizes the first

but yields quite different conclusions. In particular, it illustrates how non-convexities in the

marginal cost function can arise in a natural way through technological innovation, and how

these non-convexities can induce stable IEAs with arbitrarily many members. The themes

of our third special case, based on Barrett (1994), mimic those of our second, but in a

piecewise linear setting. In both the second and third cases, we illustrate the usefulness of

our decomposition (6) of the joiner’s gain function.

3.1. Constant marginal costs with capacity constraints. In our first example, bene-

fits are linear in aggregrate abatement, while marginal costs are constant up to a capacity

constraint, normalized to 1. A country’s cost of abatement level q is

C (q) =

{
cq for 0 ≤ q ≤ 1

∞ for q > 1
. (7)

We choose units so that each country’s benefit equal to the level of aggregate abatement, Q.

As the marginal benefit of abatement is constant at 1, this model is interesting only when

c > 1, so that no country, acting individually, has an incentive to abate.

In this model, signatories to an IEA of size n will abate to the capacity level of 1 iff n ≥ ⌈c⌉;

if n < ⌈c⌉, signatories abate zero. Non-signatories always abate zero. To obtain the joiner’s

gain function if this model, we substitute these properties into (5):

g(n) =





0 if n < ⌈c⌉

n − c if n = ⌈c⌉

1 − c if n > ⌈c⌉

. (8)

An IEA with n > ⌈c⌉ is not internally stable, because if one member were to leave, the

remaining IEA would continue to abate at capacity. Our tie-breaking assumption (see p. 7
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and eq. (4)) implies that IEAs wtih n < ⌈c⌉ are not externally stable. The unique stable

equilibrium, n = ⌈c⌉, results in a positive level of abatement.

A striking property of this specification is that equilibrium coalition size weakly increases

with abatement costs. Moreover, equilibrium global welfare equals4 (N − c) ⌈c⌉, which is a

“saw-toothed” function of c: when c reaches any integer n, participation increases discon-

tinuously while costs increase continuously, leading to a jump in equilibrium welfare; as c

increases through the interval (n, n+1), participation remains unchanged but costs increase,

so that global welfare declines.

One might expect technological innovations that reduce the cost of abatement to increase

global welfare, but the model with cost specification (7) delivers the opposite result: it implies

that IEAs with large numbers of signatories are sustainable only if abatement is very costly,

and that efforts to increase abatement efficiency may be counter-productive. We focus on

cost-reducing technological enhancements that can increase both equilibrium participation

and aggregate welfare.

3.2. Piecewise Constant marginal costs. Our second example, based on Baker & Adu-

Bonnah (2008), generalizes our first and illustrates that a cost-reducing innovation might

either reduce equilibrium membership (as in §3.1) or increase it. We assume that the only

source of emissions is electricity generation, and that countries can produce electricity using

any combination of coal, gas or solar technologies. By choice of units, a country that uses

all coal produces one unit of emissions. A country that uses all solar produces no emissions;

one that uses all gas produces 1− x units, with x < 1. The marginal cost of switching from

coal to solar is c > 1 and the marginal cost of switching from coal to gas is a > x. These

4In equilibrium, ⌈c⌉ countries each abate one unit at a cost of c, so that each of N countries benefit from
Q = ⌈c⌉ units of abatement. Hence, global welfare is N ⌈c⌉ − ⌈c⌉ c = (N − c) ⌈c⌉.
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inequalities imply that it is not individually rational for a country to use either solar or gas.

Gas will be an efficient means of reducing emissions iff a/x < c; if a/x ≥ c the model below is

in effect no different from the one in §3.1, in which the unique equilibrium is ⌈c⌉.

Now consider a technological innovation which reduces a/x to below c, moving gas onto the

efficiency frontier. To avoid dealing with some distracting special cases, we assume that

a < 1 and ⌈c−a/1−x⌉ > ⌈a/x⌉ + 1. (9)

Figure 1 graphs the marginal cost of abatement both when a/x ≥ c (the heavy solid line)

and when a/x < c (the dashed step function). To verify its shape, note that α < x units of

abatement can be achieved by converting a fraction α/x of the coal generators to gas, at a

constant marginal cost of a/x; to abate α ≥ x, some fraction y(α) of the coal plants must be

converted to solar; the minimum fraction required solves y(α) + x(1 − y(α)) = α, implying

that5 the marginal cost of increasing α beyond x is c−a/1−x.

An n-member IEA uses whichever generation technology is most profitable; it is straightfor-

ward to verify that this method is

{coal if n < ⌈a/x⌉
gas if ⌈a/x⌉ ≤ n < ⌈c−a/1−x⌉
solar if ⌈c−a/1−x⌉ ≤ n

. Taking as given the

IEA’s technology decision rule, we can now define g : N → R, the joiner’s gain function:

g(n) =





0 if n < ⌈a/x⌉

nx − a if n = ⌈a/x⌉

x − a if n ∈
(
⌈a/x⌉ + 1, ⌈c−a/1−x⌉ − 1

]

n − (n − 1)x − c if n = ⌈c−a/1−x⌉

1 − c if n > ⌈c−a/1−x⌉

. (10)

The only two candidates for stable equilibrium are ⌈a/x⌉ and ⌈c−a/1−x⌉, the two sizes at which

switching to a new technology first becomes profitable. At all other values of n exceeding

⌈a/x⌉, g(·) < 0; values of n < ⌈a/x⌉ are not externally stable because of our tie-breaking

assumption. For n ∈
(
⌈a/x⌉ + 1, ⌈c−a/1−x⌉ − 1

]
, gas technology is profitable even with n − 1

5From the equation defining y(α, dy(α)
dα

= 1/1−x. Letting C(α) = a(1 − y(α)) + by(α) denote the total cost

of abating α, we have dC(α)
dα

= (c − a)dy(α)
dα

= c−a/1−x.

karp
Highlight
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Figure 1. An example with piecewise constant marginal cost

members; hence the addition of an additional member would increase abatement by only

x units, while costing the joiner a > x units. (Inequality (9) ensures that the interval

(
⌈a/x⌉+ 1, ⌈c−a/1−x⌉− 1

]
is non-empty.) Moreover, g(⌈a/x⌉) is unambiguously positive, so an

IEA with ⌈a/x⌉ members is always a stable equilibrium. The sign of g(⌈c−a/1−x⌉) is ambiguous;

ns := ⌈c−a/1−x⌉ satisfies (4) iff

g
(
ns
)

= ns −
(
ns − 1

)
x − c ≥ 0 (11)

An important characteristic of the post-innovation marginal cost function is that it is concave

over the interval [x, 1). Without this property, it would not be the case that for n ≥ 3,

CR (n) could be arbitrarily large relative to UA (n). The role that locally concavity plays in

supporting large agreements is discussed heuristically in §3.3 and proved formally in Prop. 1.

We now decompose g(ns). Using the notation introduced on p. 6

qf = 0, qns−1
s = x and qns

s = 1, while C(qns−1
s ) = a and C(qns

s ) = c (12a)
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From (6), the internal stability condition (11) can be written as CR (ns) − UA (ns), where

UA (ns) = a − x (12b)

CR (ns) =

⌈
c − a

1 − x

⌉
(1 − x) − (c − a) =

(⌈
c − a

1 − x

⌉
−

c − a

1 − x

)
(1 − x) < (1 − x) (12c)

Equations (12b) and (12c) imply that g(ns) < 1−a, so a necessary condition for g(⌈c−a/1−x⌉) ≥

0 (stability of ns) is that a < 1. If this propery holds—we assume it in (9)—there exists

x < 1 < a/x < c such that g(⌈c−a/1−x⌉) ≥ 0 so that a solar IEA is stable. Whether or not this

inequality is satisfied, however, depends in a fragile way on parameter values. To analyze

this dependence, we fix a ∈ (0, 1) and define CX(a) to be the set of (c, x) values which,

paired with a, support a solar IEA.

CX(a) = {(c, x) ∈ R2 : x < 1 < a/x < c and g(⌈c−a/1−x⌉) ≥ 0} (13)

Define AX(c) and AC(x) analogously to CX(a). Heuristically, if CX(a) $ CX(a′), for all

0 < a′ < a < 1, then the likelihood of a stable solar IEA is strictly monotone decreasing in

the average cost of gas generation. On the other hand, if there exists c 6= c′ such that AX(c)

and AX(c′) are not nested 6 then the likelihood of a stable solar IEA is not monotonically

related to c.

Remark 1.

(a) For all x < a′ < a < 1, CX(a) $ CX(a′);

(b) For all 1 < c′, there exists c ≈ c′ s.t. AX(c′) and AX(c) are not nested.

(c) For all 0 < x′ < 1, there exists x ≈ x′ s.t. AC(x′) and AC(x) are not nested.

Part (a) is at first sight paradoxical. Its implication is that when the gas technology is

less efficient it is more rather than less difficult to sustain a solar IEA. Upon reflection,

however, the paradox is easily resolved: the difficulty of sustaining a solar IEA depends

6Sets A and B are said to be not nested if A * B and B * A.
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on the incremental benefit that a non-signatory obtains from participating in it, relative to

free-riding on the gas IEA that would prevail if she did not participate. This incremental

benefit is weakly lower, the less efficient is the gas technology. The reason is that the non-

signatory does not care about the cost of abatement under the gas IEA, while the benefit

she obtains from free-riding on the gas IEA weakly increases with its cost. To see this,

recall first our observation on p. 10 that in the example presented in §3.1, global abatement

increases weakly with abatement costs; the same is true for the gas IEA: the more expensive

is gas, the more members are required in order to sustain a gas IEA, and hence the more

abatement results from the agreement; true, the cost per IEA member is greater also, but

as noted above, the non-signatory contemplating joining the solar IEA does not take this

cost into account. Finally, the greater is the level of abatement under the gas IEA, the

smaller is the incremental benefit of switching to a solar IEA. To summarize, the higher is

the cost of abatement under the gas technology, the smaller is the incremental benefit to

a non-signatory—the difference between total abatement under solar and total abatement

under gas—of joining the solar IEA.

Why does not the same monotonicity argument above apply also to a decrease in x? Clearly, a

decrease in x also weakly increases the number of members—ng := ⌈a/x⌉—needed in order to

sustain a gas IEA. Unlike an increase in a, however, a decrease in x affects in a nonmonotonic

way the benefit to a free-rider of the gas IEA. Indeed, as x decreases holding other parameters

constant, the average benefit to a non-signatory of a gas IEA declines so long as ⌈a/x⌉ remains

constant, but jumps up discontinuously once the integer threshold is crossed. To summarize,

the impact of a small change in x on the incremental benefit to a non-signatory of joining a

solar IEA may be positive or negative, depending on initial conditions.
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The parameter c plays has a quite different impact than either a or x on the sustainability of a

solar IEA. Just as the cost to signatories of abatement in the gas IEA increases monotonically

in a, so the cost of a solar IEA increases monotonically in c. But a non-signatory considering

joining such an agreement weighs the net benefit of solar against the gross benefit of gas. This

tradeoff depend on c in a non-monotonic way: from (11), the difference is (⌈c−a/1−x⌉−c−x/1−x),

which cycles with c in a “saw-tooth” pattern between x−a/1−x < 0 and 1−a/1−x > 0.

The above example illustrates a number of key aspects of this paper. First, it complements

the point we made on p. 2: when an abatement cost function encompasses multiple abatement

technologies, there are good reasons to expect that marginal abatement costs will not be

convex. Second, it demonstrates how easy it is, once this widely adopted but not well-justified

convexity assumption is relaxed, to construct models in which technological innovations

both globally reduce abatement costs and also increase equilibrium participation. Third, it

highlights in a particularly dramatic way a point reiterated in our conclusion: whether or not

high-participation IEAs are stable may depend sensitively on particular parameter values.

3.3. Linear marginal costs. We begin this subsection with a review of the model with

linear marginal costs and benefits. Using a simple diagramatic argument, we confirm Barrett

(1994)’s result that for this specification, the unique stable equilibrium is n = 3, regardless of

the slope of the marginal cost function. A change in the slope of the marginal cost function

changes the equilibrium level of abatement, leaving unchanged both the equilibrium number

of signatories and the fraction of potential global welfare gains realized in the game. We

then show that by introducing a kink in the marginal cost function, flattening it north-

east of the kink so that marginal costs are now concave, we can support any integer 3 <

n ≤ N as a second stable equilibrium; n = 3 remains as an equilibrium. Thus we show

in this second context that technological innovations that reduce costs are compatible with
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increased, indeed even 100%, participation. In Fig. 2, we again decompose the joiner’s gain

function g(n) into two components, CR (n) and UA (n) (see (5)-(6c)). The cost function is

C(q) = q2

2M
, for some M ∈ R, so that C ′(q) = q/M . The upward sloping curve represents

both the marginal cost curve MC ′(q) and its inverse, S(p). Recall that qn
s solves n = C ′(q),

while qf solves 1 = C ′ (q). From (6b), UA(n) is the area under the marginal cost curve

between qf and qn−1
s , minus the area of the rectangle with boundaries qf and qn−1

s and height

1. The difference is the area of the cross-hatched triangle labeled UA(n). From (6c), CR(n)

is the area of the rectangle with boundaries qf and qn−1
s and height n minus the area under the

marginal cost curve between qn−1
s and qn

s . The difference is the area of the hatched triangle

labeled CR(n). This second triangle has unit height, regardless of n; the height of the first

triangle is n − 2. Because the two triangles are similar, the area CR(n) ≥ UA(n) iff n ≤ 3.

The equilibrium condition (4) is that CR(n) ≥ UA(n) while CR(n+1) < UA(n+1). We

have thus established
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Figure 2. Linear benefits and linear marginal costs.
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Remark 2. When marginal benefit and marginal cost are both linear, the unique stable
equilibium size is n = 3.

Moreover:

Remark 3. When three countries form an IEA, the equilibrium global gain is 6M (N − 2);

this is a fraction 12(N−2)
N(N2−2N+1)

of the total potential gain that could be achieved if all N countries

joined the agreement. This fraction is independent of the cost parameter M and decreases
with N for N > 3.

Although an increase in M lowers total and marginal costs and increases global welfare,

technology enhancements that reduce M have no effect on the fraction of the potential

welfare gain that is achieved in equilibrium. In §4, Prop. 1 establishes that an equilibrium

size exceeding n = 3 cannot be sustained if the marginal cost function is convex, i.e., if

C ′′′(·) ≥ 0. Membership can, however, exceed n = 3 if this restriction is relaxed, allowing the

marginal cost function to be locally concave beyond q = qn̄−1
s . (We reiterate that conventional

economic theory requires only that the cost function is convex; no restrictions are imposed

on marginal costs except that they be non-decreasing.) Indeed, we have

Remark 4. Assume that initially, marginal benefit and marginal cost are both linear. For
any 3 < n̄ ≤ N , a stable equilibrium of size n̄ can be implemented by a cost-reducing
innovation resulting in a piece-wise linear marginal cost curve.

Fig. 3 illustrates Remark 4. In the figure, the modified cost function is C̃(·), whose derivative

is piecewise linear and agrees with C ′(·) for q ≤ qn̄−1
s = (n̄ − 1)M , but is flatter than C ′(·)

for larger values of q. Specifically, let

C̃ ′(q) =

{
q/M if q ≤ (n̄ − 1)M

c0 + q/K if q > (n̄ − 1)
,

where K > M and c0 = (n̄ − 1)(1 − M/K). (c0 is chosen so that C̃ ′(·) is continuous at

q = qn̄−1
s = (n̄ − 1)M .) The new marginal cost curve C̃ ′(·) is depicted in Fig. 3 by a heavy

solid line; the original one by a dashed line. Note that the area of CR(n̄) just exceeds the

area of UA(n̄): the shorter height of the first triangle is now more than offset by its longer

base. The cost reduction from C(·) to C̃(·) leaves individual abatement unchanged at M if

no IEA is implemented; in this case the reduction has no effect on global welfare. The cost
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Figure 3. Linear benefits and kinked marginal costs.

reduction can however increase participation in an IEA. Indeed, if the reduction is sufficiently

great—specifically, if K ≥ M(N − 2)2 (see the proof of Remark 4)—an agreement to which

all N countries are signatories is stable, and all of the potential gains from cooperation under

this cost structure are realized.

4. Convex costs and linear benefits

In this section we generalize the model to incorporate arbitrary convex cost functions, while

maintaining the restriction that benefits are linear in abatement. We begin by showing that

if the marginal cost function is initially strictly convex in abatement, then an IEA with more

than two members is unsustainable. Once this restriction is relaxed (maintaining convexity

of the cost function), an IEA of any size can be sustained. Our approach is to fix n ≤ N and

a given strictly convex cost function for which n is not a stable equilibrium, then lower this

function to the point at which a stable equilibrium of size at least n exists. When benefits are

linear in abatement, there are countless ways of attaining this goal: we identify the “smallest

possible” reduction in the cost function that can accomplish it. This result is formalized in

Prop. 2. Our motivation for this exercise is that cost-reducing technological progress are more
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difficult to achieve, the greater is the extent to which costs must be reduced. Our “smallest

possible” reduction can be interpreted as the least resource-intensive way to implement a

coalition with at least n members.

The cost reduction we construct on p. 28 below (see (28) and (29)) implements a coalition

with exactly n members if and only if g(n+1) ≤ g(n) ≤ 0 under the initial cost function. If

instead g(n+1) ≥ g(n), this reduced cost function will satisfy only the internal, but not the

external stability condition at n (see (4)). In this second case, however, both internal and

external stability will “eventually” be satisfied:

if n is internally stable, there exists n′ ≥ n such that n′ is a stable equilibrium. (14)

To confirm this claim we consider the two cases, first where n is externally stable and then

when it is not. If n is externally stable, then by definition n is stable. If n is not externally

stable, let N = {n′ ∈ (n+1, N ] ∩ N : g̃(n′) < 0}, where g̃(·) is the joiner’s gain function

corresponding to the reduced cost function. If N is non-empty, let n
¯

be its smallest element.

In this case, because g̃(n
¯
− 1) > 0 > g̃(n

¯
), n′ = n

¯
− 1 is both internally and externally

stable. On the other hand, if N is empty, then g̃(N) ≥ 0 and N will be both internally

and externally stable, because the external stability condition is satisfied vacuously at N .

A straightforward extension of the methodology we develop in this section shows that it is

possible to implement a coalition with exactly n members even when g(n+1) > g(n).

For the rest of this section, we fix a differentiable, strictly convex cost function C, and let

S (·) denote the inverse of MC(·). When the benefit function is linear, the functions UA (n)

and CR (n) defined above ((6b) and (6c)) can be rewritten in a particularly convenient form:
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UA (n) = C
(
qn−1
s

)
− C (qf) −

(
qn−1
s − qf

)
= (n − 2) qn−1

s −

∫ n−1

1

S(p)dp (15a)

CR (n) = n
(
qn
s − qn−1

s

)
−
[
C (qn

s ) − C
(
qn−1
s

)]
=

∫ n

n−1

S(p)dp − qn−1
s . (15b)

4.1. A pessimistic result when marginal cost is convex. Figure 2 provides geometric

intuition for why the formulations in (6) and (15) are equivalent provided benefits are linear.

In our discussion of the figure on p. 17, the cross-hatched area UA (n) was identified as the

area under the marginal cost curve between qf and qn−1
s , minus the area of the rectangle with

vertical boundaries qf and qn−1
s and height 1. As Fig 2 illustrates, this area is also equal to the

area of the rectangle bounded vertically by 0 and qn−1
s , and horizontally by 1 and n−1, minus

the trapezoid to the left of S(p) between 1 and n−1. The area of the difference between

the trapezoid and the rectangle is given by the right-hand side of (15a). The hatched area

CR (n) was identified on p. 17 as equal to the area of the rectangle with vertical boundaries

qn−1
s and qn

s and height n minus the area under the marginal cost curve between qn−1
s and qn

s .

It is also equal to the trapezoid to the left of the curve S(p) between n− 1 and n, minus the

area of the rectangle between 0 and qn−1
s with height one. The area of the difference between

this second rectangle and smaller trapezoid is equal to the right-hand side of (15b).

We use (15) to simplify expression (5) for the joiner’s gain function g(n) = CR (n)−UA (n):

g(n) =

∫ n

n−1

S(p)dp − qn−1
in −

[
(n − 1 − 1) qn−1

in −

∫ n−1

1

S(p)dp

]

=

∫ n

1

S(p)dp − (n − 1) qn−1
in =

∫ n

1

S(p)dp − (n − 1) S (n − 1) . (16)

Using expression (16), Prop. 1 establishes that when marginal costs are strictly convex,

there cannot exist a stable equilibrium with more than two signatories.7

Proposition 1. If the marginal cost function is strictly convex, so that S(p) is strictly
concave, then the largest stable equilibrium is less than or equal to 2.

7Using a convex marginal cost function which had previously been used to estimate the costs of greenhouse
gas abatement, Barrett (1994)’s Proposition 4 shows that the equilibrium IEA consists of 2 members.
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Figure 4. Intuition for Prop. 1

Fig. 4 provides intuition for Prop. 1. Because MC ′(·) is strictly convex (i.e., S(·) is strictly

concave), its graph lies everywhere except at p = n−1 strictly to the left of the line that is

tangent to S(·) at p = n−1. Therefore the hatched region CR(n) is strictly contained in the

triangle TCR(n), indicated by dashed lines, which is bounded below by n − 1 and above by

n, and so has height 1. Because TCR(n) is similar to the triangle TUA(n), marked by dotted

lines, with height n − 2, the area of TUA(n) weakly exceeds that of TCR(n) for all n ≥ 3.

Moreover, the cross-hatched region UA(n) strictly contains TUA(n). It follows that for all

n ≥ 3, UA(n) > CR(n), verifying that g(n) < 0, for every integer n > 2. Prop. 1 now follows

from (4).

The intuition underlying Prop. 1 can be extended to provide insight into the relationship

between the internal and external stability conditions. Say that a function f : R+ → R+

is convex beyond x if f(·) is convex on the interval [x,∞]. It will be clear by inspection

of Fig. 4 that if for some n̄, the marginal cost curve is convex beyond MC−1(n̄), then as n

increases beyond n̄, the breadth of CR(n) at its base will either remain constant or decrease.



-23-

Its height, however, will remain constant at 1. On the other hand, both the height and

breadth of UA(n) will increase with n. It follows immediately that

for any n̄ ∈ N, if marginal cost is convex beyond MC−1(n̄), then (17)

the joiner’s gain function g(·) is strictly decreasing beyond n̄.

An immediate consequence of (17) is that if marginal cost is convex beyond MC−1(n̄),

then the external stability requirement is satisfied beyond n̄ whenever the internal stability

requirement is satisfied (i.e., for n ≥ n̄, g(n) ≤ 0 implies g(n + 1) < 0). Summarizing

if MC is convex beyond MC−1(n̄), then n ≥ n̄ is stable if g(n) = 0. (18)

In Prop. 2 below, we reduce a given initial cost function in a way that leaves the original

cost function unchanged beyond n̄, while the joiner’s modified gain function is zero at n̄.

It follows from (18) that if the marginal cost were originally convex, then our construction

is sufficient to ensure that n̄ is stable. This fact is significant because in the literature

on participation games to date, costs are almost invariably parameterized so that marginal

costs are convex. Indeed, we are unaware of any paper in the related literature in which this

property is violated.

4.2. Admissible cost reductions. We now consider the effect on the equilibrium size of

an IEA of a technological improvement that lowers the abatement cost function. We model

this kind of improvement by adding to an initially specified inverse marginal cost function

S(·) a non-negative function that is positive on an open subset of its domain. Observe that

a (weak) increase in S(·), for all p, implies a (weak) decrease in marginal costs, for all q.

Let ε (p) ≥ 0 denote a cost reduction function. The new (lower) inverse marginal cost function

is denoted by S̃ (·) = S(·) + ε (·). In an n-member IEA, the per-member equilibrium level of

abatement is S(n) before the cost reduction, and S̃(n) after it. Thus, ε (n) is the amount by
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which the cost reduction increases per-member abatement for an n-member IEA. Let g̃(·)

denote the joiner’s gain function under the modified cost structure S̃(·).

We say that a cost reduction function ε(·) is admissible if it satisfies certain properties.

To streamline the exposition, we allow ε(·) to be discontinuous, in which case there will

be p-values at which the optimal abatement choice is not uniquely defined.8 To resolve

indeterminacies, we assume:

If multiple abatement levels satisfy the first order condition (2)

each non-signatory chooses the lowest optimal abatement level (19a)

each signatory chooses the highest optimal abatement level. (19b)

From the exposition which follows, it will be clear that we could have restricted ε(·) to be

continuous, and thus eliminated all indeterminacies. This would have required more notation,

increased the complexity of proofs, and made our heuristic explanations more cumbersome,

without changing any of our formal results. We now define the conditions for admissibility:

Definition 1. For given S(·), ε (p) is an admissible cost reduction function if

ε (p) ≥ 0, with strict inequality on some open subset of R (20a)

S(·) + ε (·) is a non-decreasing function of p. (20b)

Inequality (20a) implies that for any given level of membership, the cost reduction never

decreases abatement, and strictly increases it for some levels; inequality (20b) states that

marginal cost after the reduction is nondecreasing, so that costs remain convex after the cost

reduction. For convenience, we add a third restriction:

ε (p) = 0 for all p ∈ (N + 1,∞). (20c)

Because the largest possible IEA has N members, qn
s never exceeds S(N). Hence marginal

8A function ε(p) such that for some p, limδց0 ε(p − δ) = q
¯

< q̄ = limδց0 ε(p + δ) is consistent with a cost
function C(q) which is affine on the interval [q

¯
, q̄], i.e., marginal cost is flat on this interval. In this case, all

of the q’s in [q
¯
, q̄] will be equi-profitable. Strictly, speaking, S(p) + ε(p) is not the inverse of any marginal

cost function, since viewed as a function of q rather than p, S(q) + ε(q) is not one-to-one.
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cost reductions at levels of q > S(N) can have no impact on equilibrium outcomes, so

restriction (20c) is without loss of generality. Replacing S(·) with S̃(·) in (16), we see that

the change in the joiner’s gain function at n due to the cost reduction ε(·) is

∆εg (n) = g̃(n) − g(n) =

∫ n

1

ε(p)dp − (n − 1) ε (n − 1) . (21a)

Similarly, the change in g(·) at n+1 is

∆εg (n+1) =

∫ n+1

1

ε(p)dp − nε (n) (21b)

= ∆εg(n) − nε(n) + (n − 1)ε(n − 1) +

∫ n+1

n

ε (p) dp. (21c)

For any 3 ≤ n ≤ N , we identify in §4.3 the “smallest possible” or “most efficient” reduction

in abatement costs such that an IEA with at least n members is stable. Because we consider

cost reductions over an interval, there are many alternative definitions of “smallest possible.”

We adopt a natural specification, evaluating ε(·)’s that satisfy conditions (20) according to

the following norm:9

||ε|| =

∫ N+1

0

ε (p) dp; (22)

that is, we take the integral over the change in inverse marginal costs from 0 to N + 1. For

ε(·)’s satisfying restriction (20c), this norm is equivalent to one that computes the integral

of marginal costs (cf. inverse marginal costs) over an interval of q’s containing the set on

which the new and the old marginal cost curves (cf. the inverse marginal cost curves) are

permitted to differ.

9Our conditions (20) for admissibility confine us to considering only cost reductions that weakly reduce
marginal costs globally. This is a very strong restriction. For example, the cost reduction we consider in §3.2
involves an increase in marginal costs over some region. If we had imposed a weaker admissibility criterion,
which admitted the possibility that cost reduction could locally increase marginal costs, thus relaxing a
self-imposed constraint, we could have supported a given membership level with a cost reduction that was
much smaller under our metric.
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4.3. Cost decreases that increase equilibrium membership. Fix n̄ > 2 and a marginal

cost function whose inverse is S. The integer n̄ may be unstable under S because it fails the

test either for internal stability—i.e., g(n̄) < 0—or for external stability—i.e., g(n̄+1) ≥ 0.

The pessimistic results in the literature to date are all consequences of the fact that for the

functional forms which that literature considers, it is the internal rather than the external

condition that is violated for large n. Accordingly, to limit the number of cases we need to

consider we assume that under the original cost structure, the internal stability condition

fails at n̄, i.e., g(n̄) is negative.

Our goal, then, is to shift g(·) up at n̄. From (5), g(·)|n̄ decreases with qn̄−1
s ; moreover, qn̄−1

s

increases as MC(·)|qn̄−1
s

shifts down, so that a cost modification which lowers MC(·) on a

neighborhood of qn̄−1
s will, holding all else constant, shift g(·)|n̄ even further down. On the

other hand, equation (5) also reveals that g(·) shifts up at n̄ as the cost of producing qn̄
s

decreases. Accordingly, the cost modification we construct below leaves MC(·) unchanged

at qn̄−1
s itself, while lowering it on an interval to the left of qn̄−1

s , thus lowering the cost of

producing qn̄
s , while qn̄−1

s remains constant. As Fig 4 illustrates and Prop. 1 formalizes, this

reduction must be sufficiently large that the modified marginal cost curve must on some

interval to the left of qn̄−1
s lie below the tangent line to MC(·) at qn̄−1

s —in other words the

modified marginal cost curve must be locally concave on some interval—otherwise g(·) will

necessarily be negative for all n ≥ 3. (As we note on p. 29, we could also increase g(·) at n̄ to

some extent by lowering marginal cost between qn̄−1
s and qn̄

s ; there is, however, no efficiency

gain to this alternative approach.)

Before proceeding with our construction, we note some key inequalities and introduce some

terminology. Given a cost reduction function ε(·), a necessary and sufficient condition for n̄
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to be stable given the reduced cost structure S̃(·) = S(·) + ε(·) is that

g̃(n̄) = g (n̄) + ∆εg (n̄) ≥ 0 > g(n̄+1) + ∆εg (n̄+1) = g̃(n̄+1). (23)

It follows from (23) that n̄ will be stable given a cost reduction ε(·) iff

∆εg (n̄) ≥ −g (n̄) ≥ 0 (24a)

g(n̄+1) + ∆εg (n̄+1) < 0. (24b)

We established at the beginning of §4 that if (24a) is satisfied at n̄, then there exists n′ ≥ n̄

such that n′ is stable. Accordingly we say that

ε(·) implements at least n̄ if ε(·) satisfies (20) and if ∆εg(n̄) satisfies (24a). (25a)

ε(·) implements exactly n̄ if ε(·) satisfies both (24a) and (24b) (25b)

That is, to implement at least n̄, it is necessary only to satisfy internal stability at n̄;

to implement exactly n̄, external stability must be satisfied as well. The cost reduction we

construct below satisfies internal stability with equality, i.e., sets ∆εg (n̄) = −g (n̄). As noted

on p. 22 (see (18)), if the initial cost function belongs to a class that has been considered in

the related literature to date and internal stability is satisfied with equality, then external

stability is satisfied as well. For such cost functions, the distinction between “at least” and

“exactly” is moot.

There are countless admissible cost reductions that implement at least n̄. We identify the

minimal value of ||ε||, taken over the set of all such reductions. When satisfying internal

stability with equality does not imply external stability, there will not exist a minimal value

of ||ε|| that implements exactly n̄. Accordingly, we define the:

minimal cost reduction for at least n̄ as ǫn̄
min = min

{
||ε|| : ε(·) implements at least n̄

}
. (26a)

infimal cost reduction for exactly n̄ as ǫn̄
inf = inf

{
||ε|| : ε(·) implements exactly n̄

}
. (26b)



-28-

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

1

C
′ (
q)

,p
C ′(q) = S(p)

q
qn̄−1
sqf

λ1(S(n̄−1) − S(1))

ελ1(·)

UA(n̄)

CR(n̄)

n̄

n̄−1

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
�������
����
����
����
����
����
����

����
����
����
����
����
����
����

1

C
′ (
q)

,p

C ′(q) = S(p)

q
qn̄−1
sqf

S̃λ1(·) = S(·) + ελ1(·)
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Figure 5. Shrinking UA(n̄) increases g̃(n̄).

Finally, say that

ε(·) is efficient for at least n̄ if ε(·) implements at least n̄ and ||ε|| = ǫn̄
min. (27a)

ε(·) is efficient for exactly n̄ if ε(·) implements exactly n̄ and ||ε|| = ǫn̄
inf. (27b)

A cost reduction that is efficient for exactly n̄ exists only if satisfying internal stability with

equality implies external stability.

The construction below identifies an ε(·) that is efficient for at least n̄. First, for each

λ1 ∈ [0, 1), define

ελ1(p) =

{
λ1(S(n̄−1) − S(p)) if p ∈ [1, n̄−1)

0 otherwise
. (28)

For λ1 ≈ 2/3, the graph of ελ1(·) is depicted in the left panel of Fig. 5 by heavy dashed

lines. It is vertical until p = 1, at which point it jumps horizontally, then slopes negatively

until p = (n̄−1), beyond which it is again vertical. In the right panel of the figure, ελ1(·) is

added to S(·) to form S̃λ1(·), which by construction agrees with S(·) on [0, 1)∪ [n̄−1,∞), is

discontinuous at p = 1, then rises more steeply than S(·) over the interval (1, n̄−1]. Note that

as λ1 approaches 1, limδց0 S̃λ1(1+δ) approaches qn̄−1
s , while Sλ1(·) rises increasingly steeply on

(1, n̄−1]. In the left panel, UA(n̄) is larger than CR(n̄), so that g(n̄) ≡ CR(n̄)−UA(n̄) < 0.
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In the right panel, the modified region ŨAλ1(n̄) (the region above p = 1, below p = n̄−1,

right of S̃λ1(·) and left of qn̄−1
s ) is considerably smaller. The location of qf remains unchanged,

in accordance with our assumption (19a) about how indeterminacies are resolved. It will be

clear from the figure that when λ1 = 0, S̃(·) is identical to S(·), so that the area of ŨAλ1(n̄)

exceeds that of CR(n̄), while as λ1 approaches 1, the area of ŨAλ1(n̄) shrinks to zero and is

hence eventually smaller than that of CR(n̄). Since the area ŨAλ1(n̄) changes continuously

with λ1 it follows from the intermediate value theorem that

there exists λ∗
1 ∈ (0, 1) s.t. the areas of ŨAλ∗

1(n̄) and CR(n̄) are equal. (29)

Hence for the function S̃λ∗

1 , g̃λ∗

1(n̄) = 0. From (21a), ∆λ∗

1g (n̄) = g̃λ∗

1(n̄) − g(n̄), so that

∆λ∗

1g (n̄) = −g(n̄). Moreover, by construction, ελ∗

1(n̄−1) = 0. Hence from (21a) and (22),

||ελ∗

1 || = −g(n̄), so that ǫn̄
min, the minimal cost reduction for at least n̄ is at most −g(n̄).

Part 1 of Prop. 2 establishes that in fact ǫn̄
min = −g(n̄).

A property of the construction (28) is that ελ1(p) = 0, for all p ≥ n̄−1. Hence from

(21c), ∆λ∗

1g(n̄) = ∆λ∗

1g(n̄+1). Since from (23), g̃λ∗

1(n̄+1) = g(n̄+1) + ∆λ∗

1g(n̄+1) while

g̃λ∗

1(n̄) = 0 = g(n̄) + ∆λ∗

1g(n̄), we have that

g̃λ∗

1(n̄+1) = g(n̄+1) − g(n̄). (30)

It now follows from (24b) and (30) that if g(n̄+1) < g(n̄), then n̄ is stable under ελ∗

1 .

The construction above is by no means unique: if the heavy dashed line that bounds ŨAλ1(n̄)

on the left were replaced by any other non-decreasing line such that the area of the corre-

sponding region UA(n̄) were equal to that of ŨA λ1(n̄), then the cost reduction function

associated with that line would also be efficient for at least n̄. There is also a second class

of ε(·)’s that have this property: functions in this class are positive on (n̄−1, n̄) and thus
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increase the area of CR(n̄) rather than simply reducing the area of UA(n̄). There is, how-

ever, a limit in general on how much can be accomplished by increasing CR(n̄) without also

reducing UA(n̄); for example, if S(·) were nearly affine on (n̄−1, n̄), then one could not do

much better than double the area of CR(n̄), which, if the initial difference between UA(n̄)

and CR(n̄) were sufficiently large, would be alone insufficient to equalize the two areas. By

contrast, regardless of the initial relative sizes of UA(n̄) and CR(n̄), the area of UA(n̄) can

always be reduce sufficiently to equalize them.

Prop 2 below summarizes and extends the preceding graphical analysis. The extensions

are proved in the appendix. The result focuses exclusively on conditions under which the

internal stability condition (24a) is satisfied. As we observed on p. 19 (statement (14)), if

the internal stability condition is satisfied at n̄, then both the internal and external stability

conditions will be satisfied for some n′ ≥ n̄. For this reason, the first three parts of Prop 2

relate to properties that hold for “at least n̄.” The fourth part notes that when the external

stability constraint is slack—i.e., when g(n̄+1) < g(n̄)—then a property will hold for at least

n̄ if and only if it holds for exactly n̄.

Proposition 2. Let C be a twice differentiable, strictly convex cost function and let B be a
linear benefit function. For 1 < n̄ ≤ N , assume that g(n̄) < 0 so that n̄ is not stable. Then

(1) the minimal cost reduction for at least n̄ is −g(n̄).
(2) ∃λ∗

1 ∈ (0, 1) s.t. the cost reduction ελ∗

1 defined by (28) is efficient for at least n̄.

(3) ε(·) is efficient for at least n̄ iff
∫ n̄

1
ε(p)dp = −g(n̄) and ε

(
[0, 1)∪{n̄−1}∪[n̄,∞]

)
= 0.

(4) if g(n̄+1) < g(n̄) then ε(·) is efficient for at least n̄ iff ε(·) is efficient for exactly n̄.

An immediate corollary of part (1) of Prop. 2 is the intuitive result that if g(·) is monotone

decreasing in n over an interval, then larger cost reductions are required in order to implement

larger coalitions in that interval. Note from part (3) that efficient cost reductions necessarily

leave unchanged the original cost function beyond n̄. Thus, if the initial marginal cost

function is convex, then from (17) and part (4), ε(·) is efficient for exactly n̄ iff it is efficient
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for at least n̄. As we have emphasized above, marginal costs are indeed convex for the

functions that have been considered in the literature on participation games to date, so that

part (4) applies to these functions.

Now suppose that g(n̄+1) ≥ g(n̄). As we noted on p. 19, cost reductions that are efficient

for at least n̄ will now violate the external stability constraint. It is possible to implement

exactly n̄ in this case, but costs must be reduced still further. The required construction is

similar to our first reduction (28), although the analysis is less “clean” in several respects.

First, we were able to satisfy the internal stability condition at n̄ while holding constant the

abatement levels qf, qn̄−1
s and qn̄

s ; to satisfy external stability, on the other hand, it is now

necessary to increase qn̄
s . (We need a cost reduction ε(·) s.t. ∆εg(n̄+1) < 0. From (21b),

it is now necessary that ε(n̄) > 0, since ∆εg(n̄+1) increases with ε(p) for all other values

of p.) Second, because of the strict inequality in the external stability condition (24b), a

minimal cost reduction no longer exists. Third, while it is possible to identify an infimal

cost reduction, a closed-form expression for this infimum does not exist. For complete-

ness, Prop 3 summarizes most of what can be said when g(n̄+1) ≥ g(n̄) under the original

cost function. The proof, which is rather technical, is included in the online addendum.

Proposition 3. Let C be a twice differentiable, strictly convex cost function and let B be a
linear benefit function. For 1 < n̄ ≤ N , assume that g(n̄) ≤ g(n̄+1) < 0, so that n̄ is not
stable. Then

(1) there exists a cost reduction that implements exactly n̄.
(2) if g(n̄+1) = g(n̄) (resp. g(n̄+1) > g(n̄)), then ǫn̄

inf = −g(n̄) (resp. ǫn̄
inf > −g(n̄)).

Props 2 and 3 highlight the importance of the relative magnitudes of g(n̄) and g(n̄+1), under

the assumption that both are negative. If g(n̄) > g(n̄+1) the external stability constraint is

slack, in the sense that internal stability guarantees external stability. If g(n̄) < g(n̄+1), the

external stability condition is binding. In the latter case, some cost reduction on an open

interval above n̄ is required in order to satisfy the external stability condition.
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5. General costs, concave abatement benefits

In this section we assume that the benefit function B(·) is increasing and strictly concave in

aggregate benefits. We continue to assume, as in §4, that the abatement cost function C is

initially strictly convex. To avoid dealing with nonnegativity constraints (see for example,

Diamantoudi & Sartzetakis (2006), Rubio & Ulph (2006)) we assume

C ′(0) < B′(Nq∗) where q∗ is the socially optimal level of abatement. (31)

Since signatory abatement levels are bounded above by q∗ in any Cournot or Stackelberg

equilibrium, this assumption guarantees that an interior solution to the non-signatory’s first

order condition (2b) exists.

When we relax the assumption of linear marginal benefits, our problem becomes more com-

plex for two related reasons. First, we can no longer normalize a non-signatory’s marginal

benefit function to unity; nor can we normalize a signatory’s marginal benefit function to the

number of members of the IEA. A consequence is that our simplification (5) of expression

(3) for the joiner’s gain function is no longer valid; also invalid is our decomposition (6),

derived from the simplification (5), of the joiner’s gain function into UA and CR. Second, a

non-signatory’s optimization problem is no longer independent of the decisions made by sig-

natories, so that for each n, the abatement choices made by signatories and non-signatories

must be determined simultaneously. Moreover, if an additional member joins an IEA, so

that total abatement by signatories increases, abatement levels by non-signatories will de-

crease in response. (Accordingly, we now denote non-signatory abatement when there are n

signatories by qn
f rather than qf.)

Because of these complexities, the cost-reduction required to implement an IEA with at least

n members is less straightforward than the one we constructed to prove Prop. 2. Moreover,

in this context, it would be difficult to characterize the class of efficient cost reductions.
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s
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n̄ B′(·)

B′(·)

Figure 6. Implementing n̄ with concave benefits

Accordingly the scope of Prop. 4, presented in §5 below, is narrower than its counterpart,

Prop 2, for linear benefits. We have not attempted to identify the further cost-reduction that

would be required to implement exactly n, so we have no counterpart to Prop 3. Another

consequence of the additional complexity is that the Cournot and Stackelberg versions of

our game no longer yield identical results. In the remainder of this section, we restrict our

attention to the Cournot case. In an online appendix, we establish that given a benefit and

initial cost function, a cost-reduction that implements at least n as a Cournot equilibrium

will also implement at least n as a Stackelberg equilibrium.

Fix a strictly increasing marginal cost function C ′, a strictly decreasing marginal benefit

function B′, and 1 < n̄ ≤ N . Fig. 6 illustrates a reduced marginal cost function C̃ ′ which

implements at least n̄ as a stable equilibrium. The original marginal cost curve C ′ is indicated

by a thin solid line and the modified curve C̃ ′ by a heavy dotted line. The two curves overlap
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near the origin, and beyond qn̄−1
s . The region where they differ consists of a segment that is

arbitrarily close to horizontal, followed by one that is arbitrarily close to vertical.

We show that under the modified marginal cost function C̃ ′, the joiner’s gain function g̃(·)

satisfies the internal stability condition (24a). From (14), both internal and external stability

hold for some n′ ≥ n̄. The key to our construction is to ensure that for both n̄−1 and n̄, the

optimal levels of abatement for non-signatories, respectively qn̄−1
f and qn̄

f , are virtually the

same as, but slightly smaller than qn̄−1
s ; we impose this by making modified marginal costs

virtually vertical on the interval (qn̄
f , qn̄−1

s ) which contains qn̄−1
f .

Because qn̄−1
s and qn̄−1

f are arbitrarily close together under this construction, aggregate abate-

ment with n̄−1 signatories is Qn̄−1 ≈ Nqn̄−1
s . Similarly, because qn̄−1

s and qn̄
f are arbitrarily

close together, aggregate abatement with n̄ signatories is Qn̄ ≈ n̄qn̄
s + (N − n̄)qn̄−1

s . Thus,

Qn̄ −Qn̄−1 ≈ n̄(qn̄
s − qn̄−1

s ). This property simplifies our analysis because, by construction, we

have eliminated the complication that non-signatory abatement depend on n̄.

A closely related consequence of our construction is that when there are n̄−1 signatories

under the modified cost structure, it costs a signatory virtually the same to produce qn̄−1
s as

it costs a non-signatory to produce qn̄−1
f . This implies that in the joiner’s gain function g̃(·)

(see expression (3)), the term C̃(qn̄−1
f ) can be replaced by C̃(qn̄−1

s ), so that g̃(n̄) ≈ ∆B −∆C̃ ,

where ∆B is the per-signatory gain from increased abatements, and ∆C̃ is the per-signatory

incremental cost, when the IEA acquires an additional signatory. To establish that g̃(n̄) is

positive, we now only need to show that ∆B exceeds ∆C̃.

The magnitude of ∆C̃ (the tall thin hatched trapezoid in Fig. 6) is strictly less than the area

of the rectangle that encloses it with height n̄B′(Qn̄) and width (qn̄
s − qn̄−1

s ). ∆B is the short

wide cross-hatched trapezoid to the right of the figure, the union of the rectangle ∆B1 and
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triangular-shaped ∆B2. The height of ∆B1 is B′(Qn̄), i.e., 1/n̄ times the height of rectangle

that contains ∆C̃ . The width of ∆B1 is Qn̄−Qn̄−1 ≈ n̄(qn̄
s −qn̄−1

s ) i.e., n̄ times the width of the

rectangle that contains ∆C̃ . Thus the area of ∆B1 strictly exceeds that of ∆C̃ . Moreover,

the trapezoid ∆B also includes ∆B2 which has positive area. Thus g(n̄) = ∆B − ∆C̃ > 0,

verifying that n̄ is internally stable. This informal argument is made precise in Prop 4 below.

Proposition 4. Assume that the benefit function B and initial cost function C are both
twice continuously differentiable, that B is strictly concave and C is strictly convex. Then
for any 1 < n̄ ≤ N , there exists an admissible cost reduction such that under the modified
cost function C̃, an IEA with at least n̄ members is stable.

6. Conclusion

An important strand of the theory of IEAs focuses on the noncooperative Nash equilibria

of the participation game introduced by D’Aspremont et al. (1983). The literature to date,

which has focused exclusively on parametric examples, has been highly pessimistic about the

prospects for international environmental cooperation. Its conclusion is that the equilibrium

size of a stable IEA is small except when the potential gains from cooperation are also small.

Moreover, although reductions in abatement costs necessarily increase the potential gains

from cooperation, analysis of leading special cases has shown that such reductions leave

unchanged or reduce equilibrium membership.

This paper approaches the problem from a non-parametric perspective. We introduce a novel

decomposition of the gains to participation. For linear marginal benefits and general convex

abatement costs, we use this decomposition to show that regardless of the potential gains

from cooperation, if marginal abatement costs are convex then the equilibrium coalition

size cannot exceed three. Maintaining convexity of marginal abatement costs, reductions in

abatement costs cannot increase membership. In this respect, the results obtained in the

previous literature are robust.
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In an important respect, however, these previous results are fragile. When marginal abate-

ment costs can be locally concave over a critical range of abatement levels, there are no

restrictions on the size of the equilibrium coalition. Indeed, the noncooperative Nash equi-

librium can realize up to 100% of the potential gains from cooperation, even when these

potential gains are large. Moreover, we show that cost reductions can increase equilibrium

membership and, when marginal benefits are linear, we derive a lower bound on the mag-

nitude of the cost reduction needed to induce an arbitrary level of cooperation. Finally,

we show that when benefits are strictly concave in abatement, it is still possible to support

agreements among an arbitrarily large fraction of potential member countries.

Our analysis highlights the danger of drawing sweeping conclusions, however plausible, from

parametric examples. In particular, our results undermine the apparently robust basis for

pessimism that has become almost conventional wisdom in the field. On the other hand,

one should not interpret our results as sufficient grounds for optimism about the prospects

for real-world global agreements, since the kinds of cost functions we show to be consistent

with such agreements might be difficult to design in practice.
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Appendix: Proofs

Proof of Remark 1: From (6) and (12), we have, after rearranging

g(⌈c−a/1−x⌉) = CR(⌈c−a/1−x⌉) − UA(⌈c−a/1−x⌉) = (1 − x)
(
⌈c−a/1−x⌉︸ ︷︷ ︸

Term L

− c−x/1−x︸ ︷︷ ︸
Term R

)
(32)

(a) Fix 1 < a′ < a and (c, x) ∈ CX(a). Since Term L is weakly decreasing in a on (x, 1),
⌈c−a′/1−x⌉ ≥ ⌈c−a/1−a⌉ ≥ c−x/1−x, so that (c, x) ∈ CX(a′). To prove that CX(a) is a
strict subset of CX(a′), pick (c, x) such that c−a/1−x = ⌊c−x/1−x⌋ < c−x/1−x < ⌈c−x/1−x⌉.
Clearly ⌈c−a/1−x⌉ = ⌊c−x/1−x⌋ so that (c, x) /∈ CX(a). But since a′ < a, ⌈c−a′/1−x⌉ ≥
⌊c−x/1−x⌋ + 1 > c−x/1−x, so that (c, x) ∈ CX(a′). This proves that CX(a) $ CX(a′).

(b) Fix 1 < c′ < c. Note that Term L is weakly, while Term R is strictly increasing in c.
(i) First pick (a, x) such that c′−a/1−x = ⌊c′−x/1−x⌋ < c′−x/1−x < ⌈c′−x/1−x⌉. Clearly

⌈c′−a/1−x⌉ = ⌊c′−x/1−x⌋ so that (a, x) /∈ AX(c′). Now pick c larger than c′ but
sufficiently close that c−x/1−x < ⌈c−x/1−x⌉ = ⌈c′−x/1−x⌉ and hence ⌈c−a/1−x⌉ ≥
⌊c−x/1−x⌋ + 1 > c−x/1−x, so that (a, x) ∈ AX(c)\AX(c′).

(ii) Now pick (a, x) such that ⌈c′−a/1−x⌉ = c′−x/1−x so that (a, x) ∈ AX(c′). Since a >
x, we can pick c larger than c′ but sufficiently close that ⌈c−a/1−x⌉ = ⌈c′−a/1−x⌉ <
c−x/1−x, so that (a, x) ∈ AX(c′)\AX(c). Hence AX(c′) ⊖ AX(c) 6= ∅.

(c) Since, once again, Term L is weakly, while Term R is strictly increasing in x, we can
prove this part with an argument analogous to that which proved part (b). �

Proof of Remark 2: Let C ′ (q) = q

M
. Because marginal costs are linear, qn̄

s − qn̄−1
s = M

which implies the area of CR(n) = M
2

and n−1−1
qn̄−1
s −qn̄

f

= 1
M

, so qn̄−1
s −qn̄

f = M (n − 2) which implies

that the area of UA(n) = M
2

(n − 2)2 . The root of g(n) = 0 satisfies g (n) = M
2
−M

2
(n − 2)2 =

0 or 1 − (n − 2)2 = 0 so the solutions are 3, 1. Because we have g′ (n) = −M (n − 2) < 0
for n > 2 we know that the root n = 3 is stable, i.e. g (2) > g(3) = 0 > g (4). This confirms
that for linear marginal costs, n = 3 is the unique non-trivial IEA size. �

Proof of Remark 3: The equilibrium level of aggregate abatement with the coalition
is 3 (3M) + (N − 3)M = M (6 + N), so the global benefit of abatement is MN (6 + N).
The aggregate equilibrium cost of abatement is (N − 3) M

2
+ 39M

2
= 1

2
M (N + 24), so global

equilibrium net benefits are MN (6 + N) − 1
2
M (N + 24) = 1

2
M (11N + 2N2 − 24). In the

absence of a coalition, each nation abates at M , so global net benefits are N
(
NM − M

2

)
.

The global gain due to the formation of the coalition is therefore 1
2
M (11N + 2N2 − 24) −

N
(
NM − M

2

)
= 6M (N − 2). If every nation were to join the coalition, aggregate welfare

would be N
(
N2M − N2M

2

)
= 1

2
N3M . The actual gain relative to the potential gain, i.e.
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the fraction of the potential gain from cooperation actually achieved, is

6M (N − 2)
1
2
N3M − N

(
NM − M

2

) = 12
N − 2

N (N2 − 2N + 1)
. �

Proof of Remark 4: We solve for K such that n̄ is a stable equilibrium. As in fn. ,
the area of UA(n̄) = M

2
(n̄ − 2)2, while the area of CR(n̄) is now (qn̄

s − qn̄
f )/2 = K/2.

Hence CR(n̄) = UA(n̄) if K = (n̄ − 2)2M . Moreover, because for n > n̄ − 1, g(n) =
M
2

(
(n̄ − 2)2 − (n − 2)2), q′(·) < 0 on (n̄ − 1,∞). Thus g(n̄) ≥ 0 > g(n̄ + 1), verifying that

condition (4) for n̄ to be a stable equilibrium is satisfied. �

Proof of Proposition 1: Let n = 2 and let the tangent to the marginal cost curve,
evaluated at q2

s , be MC ′(q2
s ) = 1

M
. The area of triangles TCR(3) and TUA(3) both equal M

2
.

Since by strict convexity, MC(q) lies strictly above the tangent line through q2
s , for all q 6= q2

s ,
CR(3) < M

2
< UA(3). Therefore, g(3) = CR(3)−UA(3) < 0. Now assume n > 2. From (16),

dg (n)

dn
= S(n) − S(n − 1) − (n − 1)

dS (n − 1)

dn
.

But since S(·) is strictly concave, S(n) < S(n − 1) + dS(n−1)
dn

. Hence
dg (n)

dn
< S(n − 1) +

dS(n − 1)

dn
− S(n − 1) − (n − 1)

dS (n − 1)

dn

= − (n − 2)
dS (n − 1)

dn
,

which is negative for n > 2. Since g(3) < 0 and g(n) is strictly decreasing for n ≥ 3, there
can be no integer n > 2 such that g(n) ≥ 0. Therefore, there are no stable equilibria with
n greater than 2. �

Proof of Proposition 2: Part (4) has been proved in the text, by the line immedi-
ately following (30). We also proved in the text that ελ∗

1 implements at least n̄ and that
||ελ∗

1 || = −g(n̄). To prove that −g(n̄) is the minimal cost reduction for at least n̄ (part (1)),
it suffices to prove that ||ε|| ≥ −g(n̄), for any admissible cost reduction ε(·) that implements
at least n̄. It will then follow immediately that ελ∗

1 is efficient for at least n̄ (part (2)).

Assume now that ε(·) implements at least n̄. Substituting (21a) into (22), we obtain

||ε|| = ∆εg (n̄) + (n̄−1) ε (n̄−1) +

∫ 1

0

ε(p)dp +

∫ N+1

n̄

ε (p) dp

≥︸︷︷︸
from (24a)

− g(n̄) + (n̄−1) ε (n̄−1) +

∫ 1

0

ε(p)dp +

∫ N+1

n̄

ε (p) dp.

(33)
Since admissibility requires ε(·) ≥ 0, (33) implies that ||ε|| ≥ −g(n̄), which is what we
needed to prove. This completes the proof of parts (1) and hence (2).

To prove part (3), we first establish sufficiency. Assume that
∫ n̄

1
ε(p)dp = −g(n̄) and that

ε
(
[0, 1) ∪ {n̄−1} ∪ [n̄,∞]

)
= 0. Since ε(n̄−1) = 0, (21a) implies ∆εg (n̄) = −g(n̄), so that
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from (24a), ε implements at least n̄. Since ε
(
[0, 1)∪ [n̄,∞]

)
= 0, (22) implies ||ε|| = −g(n̄).

It now follows that ε(·) is efficient for at least n̄.

We now prove necessity. Assume that ε(·) is efficient for at least n̄, so that from part (1) of
the proposition, ||ε|| = −g(n̄). This, together with (33) implies

0 ≥ (n̄−1) ε (n̄−1) +

∫ 1

0

ε(p)dp +

∫ N+1

n̄

ε (p) dp. (34)

But since ε(·) is nonnegative, (34) implies

ε (n̄−1) = ε
(
(0, 1)

)
= ε

(
(n̄, N + 1)

)
= 0. (35)

while

If ε(·) satisfies (20) and ε(p) > 0 then ∃δ > 0 s.t. ε(·) > 0 on (p, p + δ). (36)

(36) restates statement A-4 in the online appendix, where it is proved. (35) and (36) imply

ε (0) = ε (n̄) = 0, verifying that ε
(
[0, 1) ∪ {n̄−1} ∪ [n̄,∞]

)
= 0. Hence −g(n̄) = ||ε|| ≡

∫ N+1

0
ε(p)dp =

∫ n̄

1
ε(p)dp. �

Proof of Proposition 4: Let C be an initial strictly convex cost function. We distinguish
below between “script Q’s” (denoted Q) and regular Q’s: The Qr’s are solutions to certain
equations relating B′ and C ′, while the Qr’s, as usual, denote aggregate abatements, i.e.,
Qr = rqr

s +(N − r)qr
f . Having defined our Qr’s, we will construct a modified cost function C̃

with the property that for each r, aggregate abatement Qr with r signatories equals Qr.

Now fix n̄ ≤ N and δ ≥ 0. Let Qn̄−1(δ) = Nqn̄−1
s (δ) − (N − (n̄−1))δ, and let

Qn̄(δ) = Nqn̄
s (δ) − 2(N − n̄)δ, where

qn̄−1
s (δ) is defined by the condition C ′(qn̄−1

s (δ)) = (n̄−1)B′(Qn̄−1(δ)) (37a)

qn̄
s (δ) is defined by the condition C ′(qn̄

s (δ)) = n̄B′(Qn̄(δ)). (37b)

Thus Qn̄(δ) −Qn̄−1(δ) = N(qn̄
s (δ) − qn̄−1

s (δ)) − δ(N − (n̄−1)). (38)

Note that for some ǫ > 0, qn̄
s (0)−qn̄−1

s (0) ≥ 2ǫ, since otherwise, Qn̄(0)−Qn̄−1(0) ≤ 0, and, since

B is strictly concave, n̄B′(Qn̄(0))
(n̄−1)B′(Qn̄−1(0))

≥ n̄
n̄−1

while, since C is strictly convex, C′(qn̄

s (0))

C′(qn̄−1
s (0))

< 1,

in which case equalities (37a) and (37b) could not be satisfied simultaneously. Hence by
continuity, there exists δ̄ s.t. if δ < δ̄, then qn̄

s (δ) − qn̄−1
s (δ) ≥ ǫ and Qn̄(δ) −Qn̄−1(δ) > 0.

Fig 6 illustrates a modified cost function C̃(·|δ) ≤ C(·), for 0 < δ < δ̄. We first identify two
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intervals on which C and C̃(·|δ) agree, and define C̃(·|δ) at some critical points in between.

C̃ ′(q|δ) =





C ′(q) if q ≤ (C ′)−1(B′(Qn̄(δ)) − δ)

B′(Qn̄(δ)) if q = qn̄−1
s (δ) − 2δ

B′(Qn̄−1(δ)) if q = qn̄−1
s (δ) − δ

C ′(q) if q ≥ qn̄−1
s (δ)

. (39)

For the remainder of the proof we will suppress the argument δ when refering to the functions
that depend on it. It is straightforward to verify that C̃ ′(·) strictly increases with q over the
restricted domain for which it is has so far been defined. For the remaining intervals, define
C̃ ′(·) so that the entire function is strictly increasing and differentiable. Observe also that

since C ′ is strictly increasing, if δ > 0 is sufficiently close to zero, then C̃ ′(·) will lie strictly

below C(·) on the interval
(
(C ′)−1(B′(Qn̄) − δ), qn̄−1

s

)
.

By construction, under the cost function C̃, a signatory to an IEA with n̄−1 members
chooses qn̄−1

s while a non-signatory chooses qn̄−1
f = qn̄−1

s − δ. To verify this, note that

Qn̄−1 ≡ (n̄−1)qn̄−1
s + (N − (n̄−1))qn̄−1

f = Nqn̄−1
s − (N − (n̄−1))δ ≡ Qn̄−1 (40)

so that
C̃ ′(qn̄−1

f ) ≡ C̃ ′(qn̄−1
s − δ) =︸︷︷︸

from (39)

B′(Qn̄−1)

C̃ ′(qn̄−1
s ) =︸︷︷︸

from (39)

C ′(qn̄−1
s ) =︸︷︷︸

from (37a)

(n̄−1)B′(Qn̄−1) =︸︷︷︸
from (40)

(n̄−1)B′(Qn̄−1).

Similarly, a signatory to an IEA with n̄ members chooses qn̄
s while a non-signatory chooses

qn̄
f = qn̄−1

s − 2δ, since

Qn̄ = n̄qn̄
s + (N − n̄)qn̄

f = Nqn̄
s − 2(N − n̄)δ = Qn̄, (41)

so that
C̃ ′(qn̄

f ) ≡ C̃ ′(qn̄−1
s − 2δ) =︸︷︷︸

from (39)

B′(Qn̄)

C̃ ′(qn̄
s ) =︸︷︷︸

from (39)

C ′(qn̄
s ) =︸︷︷︸

from (37b)

(n̄)B′(Qn̄) =︸︷︷︸
from (40)

n̄B′(Qn̄).

We now show that g(n̄) > 0. In the chain of relationships below, we use approximation signs
(≈) to indicate that the difference between the right and left hand sides of the approximation
sign is O(δ).10 Because δ can be chosen to be arbitrarily small, the approximations can be
treated for our purposes as effectively equalities. From (3),

g(n̄) = B(Qn̄) − C̃(qn̄
s ) −

[
B(Qn̄−1) − C̃(qn̄−1

f )
]

= B(Qn̄) −

(
C̃(qn̄−1

s ) +

∫ qn̄

s

qn̄−1
s

C̃ ′(q)dq

)
−
[
B(Qn̄−1) − C̃(qn̄−1

f )
]
.

Because C̃ ′ is strictly increasing

g(n̄) > B(Qn̄) −
(
C̃(qn̄−1

s ) + C̃ ′(qn̄
s )(qn̄

s − qn̄−1
s )
)

−
[
B(Qn̄−1) − C̃(qn̄−1

f )
]
.

10Big O notation: We write x(δ) − y(δ) = O(δ). if there exists α ∈ R such that as δ approaches zero,

|x(δ) − y(δ)| < αδ.
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Since C̃(qn̄−1
f ) ≈ C̃(qn̄−1

s )

g(n̄) ≈ B(Qn̄) − C̃ ′(qn̄
s )(qn̄

s − qn̄−1
s ) − B(Qn̄−1)

=

∫ Qn̄

Qn̄−1

B′(q)dq − C̃ ′(qn̄
s )(qn̄

s − qn̄−1
s ).

Since B′ < 0 and, from (38), Qn̄ − Qn̄−1 = N(qn̄
s − qn̄−1

s ) − δ(N − (n̄−1)) > 0,

g(n̄) > B′(Qn̄)
(
Nqn̄

s − Nqn̄
s − δ(N − (n̄−1))

)
− C̃ ′(qn̄

s )(qn̄
s − qn̄−1

s )

≈ B′(Qn̄)
(
Nqn̄

s − Nqn̄
s

)
− C̃ ′(qn̄

s )(qn̄
s − qn̄−1

s )

=
(
NB′(Qn̄) − C̃ ′(qn̄

s )
)

(qn̄
s − qn̄−1

s )

≥
(
n̄B′(Qn̄) − C̃ ′(qn̄

s )
)

(qn̄
s − qn̄−1

s ) =︸︷︷︸
from (37b)

0. �
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