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ABSTRACT OF THE THESIS 

 

The immune contexture and genomic landscape of lung adenomatous premalignancy 

 

by 

 

Brandon Scott Grimes 

 

Master of Science in Clinical Research 

University of California, Los Angeles, 2017 

Professor Robert M. Elashoff, Chair 

 
Rationale/Objective: A better understanding of genomic alterations and the tumor 

microenvironment along the spectrum of early disease could lead to identification of targetable 

neoantigens that may form the basis of future interceptive therapies.  

Methods: From 41 lobectomy specimens for early stage lung adenocarcinoma, laser capture 

microdissection was utilized to obtain areas of atypical adenomatous hyperplasia (AAH), 

adenocarcinoma in situ (AIS), normal epithelium and the associated ADC for WES. Quantitative 

IHC assessed the immune microenvironment. Putative neoantigens were identified from 

somatic mutations by prediction of avid binding to patients’ HLA. 

Results: Non-synonymous (ns) somatic mutations were termed progression-associated 

mutations (PAMs), located in both premalignant lesions and ADC. Neoepitopes derived from 

PAMs, referred to as progression-associated neoepitopes (PAN), are associated with the 

highest levels of CD8+ T cell infiltration and PD-L1 expression. Immune-effector cell infiltration 

and accompanying adaptive immune suppression suggest specific immune antigen recognition.  
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Introduction 

Lung cancer is the world’s leading cause of cancer death with adenocarcinoma (ADC) as the 

leading subtype1. One of the major driving forces of carcinogenesis is somatic mutagenesis. 

Over 75% of lung cancers bear driver mutations that are causally implicated in cancer 

development, while the remainder of lung cancers does not bear mutations in known oncogenes 

or tumor suppressors2. Despite advances in new targeted therapies, the overall 5 year survival 

for lung cancer has improved by less than 5% in the past thirty years. It has been suggested 

that a profound impact in survival could be achieved through early diagnosis and intervention 

before premalignant lesions advance to invasive lung cancer. Studies indicate that lung cancer 

develops through progressive pathologic changes evident as premalignant lesions. 

Understanding pulmonary premalignancy and the determinants of progression to invasive 

disease can facilitate those detection and prevention strategies that could reduce lung cancer 

mortality. 

 

Atypical adenomatous hyperplasias (AAH), small focal proliferative lesions that can be found in 

the distal airways of patients with lung cancer as well as those at risk, are thought to be the 

earliest premalignant lesion in the progression from normal airway epithelium to ADC3,4. Despite 

knowledge regarding the histology of these lesions, highly effective lung cancer early detection 

and chemoprevention await definition of molecular targets and elucidation of disease 

pathogenesis. 

 

Early attempts to evaluate somatic mutations in premalignant pulmonary lesions revealed 

mutations in known driver genes, such as KRAS5, EGFR6,7 and TP538. AAH lesions are also 

known to harbor additional alterations seen in ADC including loss of heterozygosity at 9q and 

16p9. In accord with the recent revisions in the histological classification for ADC, 

adenocarcinoma in situ (AIS), previously referred to as bronchiolooalveolar carcinoma, are non-
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invasive, localized small (<3 cm) adenocarcinomas with growth restricted to neoplastic cells 

along preexisting alveolar structures10. Clonal analysis in previous investigations demonstrated 

identical monoclonal patterns in adjacent AAH and AIS lesions, strengthening the notion that 

AAH is a preneoplastic lesion rather than reactive hyperplasia3. Recent studies utilizing targeted 

sequencing of AAH lesions and associated cancers from the same surgical specimens, 

identified mutations in other cancer-related genes as well as clonality between premalignant 

lesions and cancer11. While the importance of the mutational landscape variations in 

progression from premalignancy to cancer have been highlighted, the genomic and 

microenvironmental determinants of progression have not yet been elucidated. 

 

Next–generation sequencing of lung adenocarcinoma has provided insights in disease 

pathogenesis that informs new treatment strategies. While the majority of lung cancers bearing 

driver mutations that are causally implicated in lung cancer development2, passenger mutations 

may also play roles in disease pathogenesis. Often carcinogen-induced, lung adenocarcinoma 

has among the highest mutational loads compared to other malignancies. Non-synonymous 

(n.s.) mutations can give rise to mutant proteins that, when processed, may result in 

immunogenic peptides, defined as neoepitopes, that avidly bind and are presented in the 

context of autologous MHC molecules. The recently documented clinical efficacy of checkpoint 

blockade immunotherapies in non-small cell lung cancer and other malignancies indicates that 

tumor-specific T cells can recognize neoantigens, resulting in tumor cell death. Could this also 

be consistent with the theory of immunosurveillance? The concept, as first proposed by 

Burnet12, suggests that the host immune response is able to recognize and prevent the 

outgrowth of invasive cancer cells at the earliest point of development and thus before clinical 

recognition. While extensive data exists in laboratory models, the clinical evidence for the 

relevance of immunosurveillance in human lung cancer has not yet been defined; nor is it yet 

know when an individual’s immune system begins to engage in the defense against the disease. 
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Here, to begin to understand the relationships among the genomic landscape of pulmonary 

adenomatous premalignancy and associated invasive ADC, we evaluated WES and immune 

cell infiltration in a cohort of patients following surgical resection. We report on evidence for 

mutational heterogeneity, pathway dysregulation and apparent immune recognition in 

pulmonary adenomatous premalignancy. 

 

Results 

Cell-mediated immunity and adaptive responses in pulmonary premalignancy. 

To evaluate the presence of the early adaptive immune response against pulmonary 

premalignancy, we first assessed the degree of lymphocyte infiltration in premalignant (n = 328) 

and malignant lesions (n = 15 AIS and 50 ADC), along with adjacent histologically normal areas 

(n = 50) in lobectomy specimens from 41 patients who had undergone surgery for early stage 

ADC. The clinical features for these patients are summarized in Table S1. The median number 

of lesions evaluated per patient was six for AAH, and two for malignant lesions. The degree of 

lymphocyte infiltration was scaled by a 0-to-3 system (for details see Methods). We found that 

lymphocyte infiltration was significantly increased in AAH compared to adjacent normal areas 

(χ2 test p < 10-16), and became highest in AIS and ADC (χ2 test p < 10-14 compared to AAH) 

(Figure 1A). We further assessed the expression of regulators of cell-mediated immunity, 

including CD4, CD8, FOXP3, PD-1 and PD-L1 in premalignant lesions and ADC by 

immunohistochemistry (IHC) (Figure 1B illustrates immunostaining of the markers in an AAH 

lesion with a lymphocyte infiltration score of 2). Markers were quantified utilizing the Halo image 

analysis platform. We found both infiltration of T effector and cytotoxic cells as well as 

expression of the PD-L1 checkpoint in premalignancy. These findings indicate that cell-

mediated immunity and possible recognition of neoepitopes occur within the cellular 

microenvironment of pulmonary premalignancy. 
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Immune-related gene signatures are associated with patient outcome in early stage 

disease in the TCGA lung adenocarcinoma (LUAD) cohort. 

To determine if activation of immune pathways was associated with outcomes in early stage 

LUAD, the expression of immune-related genes in the TCGA LUAD cohort (444 tumors and 58 

normal samples) was analyzed. We derived immune signatures based on expression of genes 

involved in 16 immune-related pathways from the Molecular Signature Database13. Gene Set 

Variation Analysis (GSVA)14 was utilized to estimate the activities of immune-related pathways 

in individual patients, and these were then subjected to unsupervised hierarchical cluster 

analysis to stratify samples. Based on immune-related pathways activity, we identified three 

major groups (Figure 1C). Among them, group 1 (G1, annotated by black) had the highest 

levels of immune-related gene expression and included 51 tumors and the majority of normal 

samples (n = 52), whereas the other two groups included the remainder of the tumor samples 

(χ2 test p < 10-16): G2 (n = 198, blue) with intermediate and G3 (n = 201, red) with lowest 

expression of immune-related genes. The overall survival in G2 was better than in G3 (log-rank 

test (LRT) p = 0.063), however, and tumors in those groups were not significantly associated 

with either tumor stage (χ2 test p = 0.14 for stage I vs. stage II and higher). Remarkably, the 

difference in survival between G2 and G3 was prominent for stage I (LRT p = 0.05, Figure 1D), 

but not evident for stage II and higher patients (LRT p = 0.44, Figure 1E). Together, these 

results suggest that the immune-related responses may play a role in patient outcomes, 

especially at the earliest stage of lung ADC. 

 

Genetic heterogeneity between lesions from the same patients varies over wide range. 

To determine if the immune infiltrates observed in pulmonary premalignancy were associated 

with expression of cognate neoantigens, we performed WES and identified putative neoantigens 

in 89 AAH, 15 AIS, and 55 ADC lesions from 41 lung cancer patients (Table S2). The cells of 

interest were dissected from the following regions of distal airways utilizing Laser Capture 
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Microdissection (LCM): a) normal airway epithelial cells (1-3 regions per patient), b) AAH 

lesions (2-4 regions per patient), c) AIS (1-3 regions per patient where present), and d) ADC (1-

3 regions per patient). WES was conducted with at least 2 x 1010 bases sequenced per exome, 

which has been frequently achieved in WES studies15. The median number of mutations 

identified per individual region was 351. The median total of all mutations in all regions 

sequenced per patient was 1323. The mutational load per patient did not increase significantly 

by the addition of more sequenced regions (Kruskal-Wallis rank sum test p = 0.20) (Figure S1). 

Because multiple regions including normal, premalignant and tumor were sequenced for each 

patient, we first characterized the heterogeneity and then the genomic relationship among 

regions sequenced. We utilized the Jaccard index, which measures the similarity in non-

synonymous (n.s.) somatic mutations between a pair of lesions, and is inversely proportional to 

the level of heterogeneity. We found that lesions obtained from within individual patients had 

significantly higher Jaccard indices and, thus, lower heterogeneity than lesions compared 

between patients (Kruskal-Wallis rank sum test p < 10-16) (Figure 2A). By further examining the 

heterogeneity between regions in individual patients, we found that their indices varied over a 

wide range (Figure 2B). With the exception of the first four patients (P01 — P04, Figure 2B), 

individual patients had higher indices (lower heterogeneity) among regions as compared to 

those from different patients. Thus, in this cohort, each patient most often demonstrated unique 

n.s. somatic mutations not shared among patients. 

 

Phylogenetic trees were constructed to explore the relationship between sequenced regions for 

each individual patient (Figures 2C and S2). AAH lesions are pathologically classified as 

adenomatous premalignancy and AIS as non-invasive malignancy ( ). However, their somatic 

mutations have not been fully examined in the context of the associated ADC to determine the 

relationship of the histological classification to genomic profiles. AAH, AIS and ADC were all 

present in 10 out of 41 patients and their mutational profiles were compared to determine the 
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homology among regions. Phylogenetic trees for these 10 cases are illustrated in Figure 2C. 

Interestingly, in the majority of cases ADC (brown labels) shared common mutations with AIS 

(orange labels), but not with AAH (blue labels) (Figure 2C, top panel). This close relationship 

was not demonstrated in 3 of the 10 patients that revealed the following: a) one case in which 

one of two primary ADCs in the patient was closely related to the AAH lesions, while another 

ADC was clustered to AIS, b) one case in which ADC had its mutational landscape highly 

overlapped with that of AAH but not of AIS, and c) one case in which mutations in AAH and AIS 

lesions were closely related to each other, but not to the ADC (Figure 2C, bottom panel). 

 

Neoantigens elicit immune responses in pulmonary premalignancy. 

We next sought to determine if the immune infiltrates observed in adenomatous premalignancy 

were associated with the expression of putative cognate neoantigens. The pipeline outlined in 

Figure S3 was applied to identify putative neoantigens, which were then classified into three 

distinguishing categories based on their location in various tissues including ADC, 

premalignancy or normal epithelium. To determine how n.s. somatic mutations affect tumor 

development in various stages, we first classified them into three different categories: a) 

premalignant mutations (PrMs) which were observed only in AAH lesions, b) progression-

associated mutations (PAMs) which were located in both AAH and AIS/ADC lesions, and c) 

malignant-specific mutations (MSMs) which were only identified in AIS/ADC lesions. Recent 

studies that have focused on intra-tumoral heterogeneity or cancer evolution have classified 

mutations as trunk (or clonal), branch, and private (subclonal) mutations. 16,17 Here, the 

classification is also based on the type of the lesion in which the mutations are located. 

Therefore, PAMs are comprised of trunk and branch mutations, while MSMs are composed of 

branch and private mutations. The percentage of PAMs varied over a wide range (0.2% to 

44%). The variation in PAM levels due to change in regions number was insignificant (Kruskal-
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Wallis test p = 0.24). The high variation of the PAM percentage reflects the diversity in the 

mutational profiles among patients in our cohort. 

 

Next, the association of neoantigens generated by PAMs with immune cell infiltration was 

investigated.   Putative neoantigens were derived from n.s. somatic mutations to determine their 

association with apparent adaptive immune responses, as reflected by T cell infiltration and 

upregulation of checkpoints in premalignant and malignant tissues. Multiple algorithms were 

applied to predict binding affinity (IC50) between mutant proteins and patient HLAs based on the 

Immune Epitope Database recommendations18. Mutant peptides with predicted IC50 < 500 nM 

were considered neoantigens. In accordance with our mutation classification, the neoantigens 

were also categorized into three groups as premalignant (PrNs), progression-associated (PANs) 

and malignant-specific (MSNs) neoantigens. As expected, the total number of putative 

neoantigens per patient was highly correlated with the corresponding mutational load (Kendall’s 

τ = 0.90). The distribution of neoantigen groups in 41 cases is summarized in Figure 3A, in 

which the cases are ordered based on the percentage of PANs. The percentage of PANs per 

patient varied from 0.2 to 40% with a median of 5%, while that of MSNs fluctuated from 5% to 

92%, and 6% to 90% for PrNs. In addition to the patient level analysis,   neoantigens were 

characterized in each specific region. For example, the percentages of PANs in the individual 

AAH lesions were similar to the associated cancer, whereas the percentage of PANs at the 

patient level demonstrated inter-region homogeneity. Figure 3B illustrates the variation in the 

percentage of PANs in individual AAHs for each case arranged based on the median observed 

level. The percentages of PANs in individual AAH lesions were comparable in most patients, 

with the exception of five cases in which the range exceeded 20%. 

 

In order to evaluate the association of neoantigen load and immune cell infiltration, we assessed 

CD4, CD8, FOXP3, Granzyme B, PD1 and PDL1 by immunostaining a total of 55 regions from 
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nine cases (indicated by arrows in Figure 3A) with distinct levels of PANs (0.5% — 28.4%) and 

MSNs (10.4% — 78.5%). The relationship between neoantigens and observed lymphocyte 

infiltration was evaluated by lesion- and patient-wise comparisons. In the lesion-wise 

comparison, neoantigens and immune infiltrates were limited to the matched premalignant 

lesions, while in the patient-wise analysis these endpoints were aggregated for the 

corresponding patient. We first investigated if there was an association between immune 

response and neoantigen at the patient level. We found that the percentage of PANs detected in 

each patient significantly correlated with the average percentage of CD8+ T-cells infiltrating AAH 

lesions (Kendall’s τ = 0.61, p = 0.02, Figure 3C top panel) but not to those infiltrating AIS/ADC 

(Kendall’s τ = 0.14, p = 0.7, Figure 3C bottom panel). At the lesion level, we found that the 

percentage of CD8+ T-cells infiltrating AAH lesions correlated strongly with the percentage of 

PANs in the respective lesions (Kendall’s τ = 0.56, p = 0.0003) (Figure 3D). Furthermore, AAH 

lesions with greater neoantigen loads had significantly more infiltrating CD4+ T cells (Kendall’s τ 

= 0.32, p = 0.05) (Figure 3E) and PD-L1 expressing cells (Kendall’s τ = 0.44, p = 0.01) (Figure 

3F). These results indicate that the high levels of PANs promote CD8+ T cell infiltration, whereas 

the overall number of neoantigens is associated with CD4+ T cell infiltration and PD-L1 

expression in AAH regions. Together, these findings suggest the presence of an adaptive 

immune response to neoepitopes. 

 

PAMs and MSMs lead to deregulation of distinct cancer-related pathways. 

In addition to investigating the effect of PAMs in generating immune responses in premalignant 

lesions, the potential roles of these mutations in tumor development were explored. In this 

cohort of patients we evaluated the mutational status of 29 driver genes frequently mutated in 

lung ADC2,19. We found that these genes were frequently mutated in ADC, but rarely in AAH. 

These results suggest that the driver mutations were necessary for the progression from AAH to 

cancer. Although driver gene mutations are important for tumor development, they are absent in 
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24-36% of lung ADCs2,20. In the current cohort, n.s. mutations in the above mentioned 29 driver 

genes were not detected in 51% of patients. Therefore, we next investigated the mutations in 

the context of molecular pathways. 

 

For the pathway analysis, enrichment scores (ES) of the mutated genes involved in each 

specific pathway were defined. Briefly, the ES is the ratio between the observed number of 

mutated genes involved in a specific pathway and its estimated value based on the total 

numbers of pathway genes, mutated genes and genes in the genome (for details see Methods 

and Equation S1). Next, it was postulated that a pathway was deregulated by a specific group 

of mutated genes if there were at least two genes overlapping between them and their ES was ≥ 

2 (FDR = 0.03). We determined if the genes mutated in ADC in both the current cohort and 

TCGA caused deregulation of the 1341 well-defined hallmark gene sets and canonical 

pathways from the Molecular Signature Database13. We found that the frequently deregulated 

pathways were commonly shared between the two data sets. However, for a given pathway, the 

probability of being deregulated tended to be higher in our data set compared to TCGA (Figure 

S4B). For instance, a linear regression model comparing probabilities of deregulated pathways 

in the two cohorts suggested the recurrence threshold of 0.39 (16 out of 41 patients) for our 

data set that was equivalent to 0.34 (151 out of 444) for TCGA. Using these thresholds, we 

identified 58 and 24 regularly deregulated pathways for the current cohort and TCGA data sets, 

respectively (Figure S4A). Fourteen of these pathways were shared between the data sets 

(Fisher’s exact test p =3.8e-17) and are involved in tumor proliferation and invasion. These 

results indicate that although patients in both cohorts had different demographic features (such 

as gender and smoking status), and in turn had different driver mutations, they demonstrated 

common affected pathways involved in carcinogenesis. 
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Mutated genes in ADC included those bearing both PAMs and MSMs; therefore, it was essential 

to determine the input of each of the gene groups in the pathway context. The ES of each gene 

group was calculated for all 1341 pathways. Figure 4A shows the recurrence rate of the top 27 

pathways that are frequently deregulated by the genes bearing MSMs. These pathways were 

also affected by the PAM-bearing genes, but predominantly at a lower frequency than the MSM-

bearing genes. The termination of O-glycan biosynthesis pathway was found to be affected by 

the PAM-bearing genes in 85% of patients. This glycoprotein sialylation pathway involves 

several mucin proteins, including MUC4, that have been found to bear PAMs in 90% of the 

patients in the current cohort. Among pathways de-regulated by MSM-bearing genes, the focal 

adhesion pathway was ranked highest based on the recurrence rate. In 30 of 41 patients, this 

pathway was affected by either PAM- (n = 1) or MSM- (n = 17) bearing genes or both (n = 12) 

(Figure 4B). These patients were divided into two groups: Group 1 demonstrated pathways that 

were affected by both PAM and MSM bearing genes, and Group 2 in which pathways were 

affected only by MSM bearing genes. We found that: a) the Group 1 patients had PAM-based 

ES higher than the MSM-based ES (Kruskal-Wallis p = 0.01), and b) in the Group 2 patients the 

MSM-based ES was generally higher than that in Group 1 (Kruskal-Wallis p = 0.0004). As the 

ES is proportional to the percentage of the mutated genes belonging to the pathway of interest, 

these results imply that if a high percentage of PAM-bearing genes is involved in the oncogenic 

pathway, few additional MSMs are required for its de-regulation (Figure 4B, Group 1). In 

contrast, other pathway activities are affected only by the MSM-bearing genes (Figure 4B, 

Group 2). 

 

In the next step, we comprehensively evaluated deregulation of all 1341 pathways based on 

PAM- and MSM-bearing genes to gain insight into tumor initiation and development. 

Deregulation status of all pathways based on two mutation groups (PAM or MSM) was tabulated 

as a one-and-zero binary matrix for all patients. The unsupervised hierarchical cluster analysis 
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based on the pathway status identified three patient groups designated as high (H, n = 12), 

intermediate (I, n = 20), and low (L, n = 9) depending on the number of pathways deregulated 

by PAM- and MSM-bearing genes (Figure 4C). The intermediate group included the majority of 

study patients, in which MSMs (but not PAMs) were the main source of pathway deregulation 

(Figure S4B) and were frequently found in the driver genes. Overall, it appears that in this 

group MSMs in the driver genes were essential for malignant progression. Group L, the smallest 

group, had infrequent pathway deregulation by either PAM- or MSM-bearing genes.  Group H 

had the highest number of deregulated pathways among the three groups (Figure S4B). The 

deregulated pathways in this group were frequently affected by both PAMs and MSMs, as well 

as driver genes (Figure 4C and S4B). Also, based on the deregulation pattern of the focal 

adhesion pathway, the majority of the patients in this group belong to Group 1 shown in Figure 

4B. In this subgroup of patients, PIK3CA, PIK3R3 (catalytic and regulatory subunits of PI3K, 

respectively) and PPP2R1A genes (regulatory subunit of phosphatase PP2A negatively 

regulating AKT kinase) had high frequency of somatic mutations in AAH lesions. However, in all 

patients with PAMs in either or both PIK3CA and PPP2R1A genes, these mutations were 

detected in only one AAH lesion, and thus appeared as branch mutations. Moreover, cluster 

analysis revealed that these patients clustered predominantly in group H, suggesting that the 

PI3K/AKT pathway deregulation required another pathway to be deregulated to induce 

malignant transformation. Similarly, higher numbers of deregulated pathways in group H 

suggest that deregulation of multiple non-critical pathways may synergize with those that are 

critical, leading to malignant transformation. Conversely, in group L there were very few 

pathways deregulated by both PAM- and MSM-bearing genes, suggesting that the 

transformation could be caused by events other than the somatic driver mutations that were not 

readily detectable by WES, such as gene rearrangements, copy number variation, epigenetic 

changes, deregulation of gene expression or alternative splicing. The fact that group L included 

both patients that only had AIS but no ADC, suggests that lesions in this group had a low 
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invasive potential. The majority of study patients had driver genes and pathways affected by 

MSMs, suggesting that the mutation profiles of their AAH lesions were less complex compared 

to the associated ADC. 

 

Discussion 

In this study, we sought to identify somatic mutations in adenomatous premalignancy and 

associated lung adenocarcinoma and to determine the extent of immune cell infiltration of 

premalignant lesions and the associated tumors. Here we find histologic evidence for immune 

recognition of AAH lesions which reveal an immune contexture characterized by lymphocyte 

infiltration and checkpoint molecule upregulation consistent with adaptive immune responses. 

Furthermore, WES reveals putative neoepitopes which correlate with this evidence of adaptive 

immunity. Consistent with the immunoediting concept of Schreiber21, neoepitopes were 

frequently identified that were present only in the premalignant lesions (PrNs), suggesting active 

immune- editing in the progression of adenomatous premalignancy to invasive adenocarcinoma.  

PANs were detected in all patients with 37/41 patients expressing these epitopes at greater than 

1% frequency. The presence of PANs associated with immune cell infiltration suggests ongoing 

immunoediting responses in premalignancy and the associated tumor that have not yet fully 

“edited” neoepitopes. This possibility is supported by the presence of CD8+ T lymphocyte 

infiltration that was found to be significantly (p=0.0004) correlated with the percentage of PANs 

in individual AAH lesions. The correlation of CD4+ T lymphocyte infiltration as well as PD-L1+ 

cells with neoepitope load in AAH lesions further indicates the potential importance of immune 

recognition and adaptive responses in premalignancy. 

 

Our findings indicate that premalignant AAH lesions from within an individual patient may have 

distinct mutational profiles (Figure S3) and bear a range of PAMs (Figure 2). We found that the 

mutational profiles of AIS are distinct from those of AAH and highly overlap with those of ADC in 
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the majority of cases (Figure S3). Previous studies suggest that passenger mutations can 

promote malignant progression in either an additive manner or by modulating the activity of 

oncogenic or tumor suppressor pathways22,23. Therefore, beyond the individual mutations, we 

assessed the effect of premalignant somatic mutations in the context of pathways. Among the 

pathways deregulated in both the UCLA and TCGA cohorts (Figure S4A, upper right quadrant) 

the highest frequency of deregulation was found in the termination of the O-glycan biosynthesis 

pathway that includes mucin proteins which protect epithelial cells from physical and chemical 

damage. Deregulated expression of mucins promotes tumor cell invasion and migration, and 

increases drug resistance in a variety of malignancies24,25. Zhang and colleagues have reported 

that genetic variation of MUC4 increases lung cancer risk26, and here we find that PAMs of 

MUC4 were present in over 90% of our patients. Also, focal adhesion, extracellular matrix-

receptor interaction and calcium signaling pathways were frequently deregulated (Table S3). 

These pathways are affected by KRAS and PI3K activation and have established roles in 

carcinogenesis, including proliferation, invasion and resistance to therapy27,28. 

 

Neoantigens, produced by PAMs, are potential immunotherapy targets, but these neoantigens 

do not necessarily correspond to known driver genes. Consistent with findings in melanoma29 

and colorectal cancer30, our analysis of mutations in lung adenocarcinoma indicates that while 

there are many common driver mutations among tumors from different patients, mutations 

producing PANs are most often unique to individual patients. Due to high genomic plasticity, the 

established cancers have highly heterogeneous mutational landscapes in different areas of the 

tumor due to potential parallel evolution and subclonal expansion31-33. This has been postulated 

to be one of the reasons for tumor resistance to therapies targeting actionable somatic events. 

In contrast to intra-tumor heterogeneity, intra-premalignancy heterogeneity appears to be 

significantly lower34. Consistent with these findings, we found that heterogeneity between 

different AAH lesions from an individual patient is significantly lower than that among lesions 
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from different patients (Figure 2A and B). Thus, it appears that therapies that target PANs in 

cancer interception and prevention strategies will need to be tailored to individual patients. 

 

Cancer interception is a strategy that seeks to block the progression of premalignancy to 

invasive cancer35. However, the scarcity of studies evaluating relevant mutational signatures in 

pulmonary premalignancy limits the development of novel interception and prevention strategies 

for lung cancer. Due to the apparent genomic simplicity of premalignant AAH lesions relative to 

invasive cancer, it has been suggested that these lesions may harbor decipherable interception 

targets that can block the progression to malignancy34. Establishing the Precancer Atlas, similar 

to The Cancer Genome Atlas, will reveal novel findings regarding clonal evolution, diversity, and 

the immunosuppressive microenvironment36. This, in turn, will help identify mechanisms, 

targets, and immunogenic neoepitopes which then will facilitate the design of novel therapies, 

such as vaccines, to prevent progression to invasive disease37. 

 

The concept that genes bearing somatic mutations often encode tumor specific neoantigens 

capable of eliciting immunity and tumor rejection was first described in murine models sixty 

years ago38. In accord with the cancer immunosurveillance theory, our current findings support 

the concept that the immune system is capable of recognizing cancer precursors39,40. Because 

evasion of immune surveillance has been implicated as an emerging hallmark of cancer 

development, future investigations will focus on stimulating specific immune responses41. Thus, 

it has been suggested that unleashing the immune response against pulmonary premalignancy 

may facilitate a blockade of the progression of premalignancy to invasive cancer at the earliest 

stages of disease (37). This will require a more complete understanding of the immune 

microenvironment of pulmonary premalignancy as well as the identification of premalignant 

markers that could be targeted in immunoprevention strategies. 
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Materials and Methods 

Specimen identification and processing.  

FFPE tissue blocks from 41 patients with premalignant lesions and lung adenocarcinoma were 

obtained from the VA Greater Los Angeles Healthcare Center Lung Cancer and UCLA Lung 

Cancer Tissue Repositories, and were subjected to pathology review to identify specific 

histologic areas for Laser Capture Microdissection (LCM). Tissues were first sectioned at 7 μm 

thickness onto specialized membrane slides, and serial sections were stained with hematoxylin 

and eosin. LCM was performed utilizing a Leica LMD7000 in the California NanoSystems 

Institute Advanced Light Microscopy/Spectroscopy (ALMS) Core at UCLA. The following regions 

were dissected from distal airways: a) at least one region of normal airway epithelial cells (type I 

and II pneumocytes) adjacent to but not contiguous with the tumor, b) a minimum of two 

premalignant AAH lesions, c) all AIS regions (if present), and d) at least one ADC region. 

 

Genomic DNA isolation and library preparation for DNA sequencing.  

DNA was extracted from microdissected cells utilizing the HiPure FFPE DNA isolation kit 

(Roche). Sequencing libraries were constructed using NuGen Ovation Ultralow V2 system, 

followed by exome capture using the Roche SeqCap EZ kit as recommended by the 

manufacturers. The quality of every library preparation and exome capture reaction was 

evaluated by utilizing a Bioanalyzer instrument (Agilent), Quant-iT assay and qPCR. 

Sequencing was then performed on an Illumina HiSeq2000 instrument as 100 bp paired-end 

runs with the aim of ~50X per base (based on the Illumina Sequencing Coverage Calculation 

with an assumption of 35% PCR duplication and a minimum of 85% target coverage). Samples 

with an estimated library size < 2x107 based on Picard MarkDuplicates function were re-

sequenced to achieve a higher depth of coverage. 

 

Whole exosome sequencing (WES) analysis and variant calling 
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Sequencing Alignment. Sequence reads were aligned to the human genome based on the NCBI 

human genome reference build 37 (GRCh37) by following the pipeline suggested by Genome 

Analysis Toolkit (GATK)42. In brief, raw reads were first pre-processed to remove adapter 

contamination by scythe adapter trimmer (https://github.com/vsbuffalo/scythe) and low quality 

base calls (Phred score Q <15) and short reads (length < 20) by sickle 

(https://github.com/najoshi/ sickle). Reads were mapped to the reference human genome by 

Burrows-Wheeler Aligner (v 0.7.7)43, and then marked for PCR and optical duplicates with the 

Picard (v 1.77) MarkDuplicates tool. The GATK 2.7 was used for local indel realignment and 

base recalibration. For cases with multiple normal samples, their bam files from the bases 

recalibration step were combined and re-aligned to local indels before being subjected to variant 

calling analysis. In case samples were re-sequenced by multiple runs, raw reads in each run 

were first aligned and base recalibrated independently. Their bam files were then combined and 

re-aligned for indel realignment. Default values were set for the parameters other than those 

mentioned. 

Variant Calling and Annotation. Somatic variants between pairs of abnormal regions (i.e. AAH, 

AIS, and ADC) and matched normal tissue were determined by VarScan244. Tumor and normal 

cells having exomes sequenced were obtained from LCM, so VarScan2 was performed with a) 

tumor purity set to 1, and b) minimum coverage for normal and abnormal exomes set to 4. 

Because multiple exomes from different areas were sequenced per patient, the p-value 

threshold was set to 0.1 in somatic variant calling of individual exomes, and would be adjusted 

further in the next step of mutation calling in which somatic variants from all regions were 

analyzed together to identify mutations for each patient. The remaining VarScan2 parameters 

were set at default values. The output single nucleotide variant (SNV) calls were filtered further 

to remove false positive calls due to sequencing- or alignment-related artifacts by utilizing 

VarScan2’s associated fpfilter.pl script. The resulting somatic SNV and indel calls were then 



 18 

annotated by ANNOVAR45 to identify non-synonymous (n.s.) variants from silent variants and 

common SNPs. 

Mutation calling. For each patient, a n.s. somatic mutation was defined if a n.s. variant was 1) 

supported by at least three reads, and 2) observed in either a) more than one region with p-

value ≤ 0.1, or (b) a single region with p-value ≤ 0.01.  

 

Genetic homogeneity analysis 

The similarity in n.s. somatic mutations between any pair of regions was assessed by Jaccard 

index which was defined as the ratio between the number of shared mutations between the 

regions over the total number of mutations identified in the regions.  

 

Phylogenetic analysis 

Non-synonymous somatic mutations were first converted into the format with 1 being mutated 

and 0 otherwise. For each patient, the analysis only considered n.s. somatic mutations that 

were present in more than one region to determine resemblance among AAH, AIS and ADC 

regions based on their mutation profiles. The analysis was performed in R by using ape and 

phangorn packages46,47. In brief, Unweighted Pair Group Method with Arithmetic Mean 

(UPGMA) approach was utilized to cluster regions based on their mutation-defined binary 

format matrix. Unrooted phylogenetic trees were then drawn with relative branch lengths 

disproportionate to the number of shared mutations among corresponding regions. 

 

Mutational architecture analysis  

For each individual patient, n.s. mutations in all regions were pooled together and categorized 

into three groups: premalignant mutations (PrMs), progression-associated mutations (PAMs) 

and malignant-specific mutations (MSMs) based on their presence in different regions. A PrM 

was defined as n.s. mutation was observed only in AAH lesion(s), while a MSM was only 



 19 

identified in AIS/ADC lesion(s), and finally a PAM was present in both AAH and AIS/ADC 

lesions. For each patient, the number of mutations in each category was then normalized to the 

total number of n.s. mutations observed in the corresponding patient. For each individual region, 

its PAM was normalized to the total number of mutations identified in the respective region. 

 

Identification of patient HLA typing 

The OptiType algorithm48 was applied to deduce a four-digit HLA genotype from WES data. 

Before applying the algorithm, raw reads were first pre-processed to a) remove adapter 

contamination by scythe, and b) remove low quality base calls (Phred score Q <20) by sickle, 

and c) keep reads that mapped on HLA reference regions by bwa and had a length of at least 

50 bp by fastqutils49. For pair-end data, sequences from each end were pre-processed 

independently before subjecting them to the OptiType algorithm. 

 

Identification of putative neoantigens 

For every patient, each n.s. single nucleotide mutation was able to generate a maximum of ten 

10-mer peptides having the mutated amino acid at different locations. Similarly, for each indel 

which did not cause early termination, ten 10-mer peptides were also created that had from 1-9 

amino acids altered from the reference sequence. MHC-I binding prediction tools downloaded 

from Immune Epitope Database (IEDB)18 were utilized to predict the binding affinity of 10-mer 

peptides to the patient’s HLA germline alleles. IEDB protocol recommended using multiple 

algorithms including Artificial Neural Network50,51, b) Stabilized Matrix Method52, and c) 

NetMHCpan53 for predicting binding strength to a given HLA allele due to the allele’s available 

database and preferred algorithms previously proven to have outstanding performance for such 

allele. The smallest IC50 value derived from multiple algorithms was used as the predicted 

binding affinity of each peptide to each HLA allele. Approximately 60 peptide-MHC combinations 

(i.e. 10 peptides x 6 MHC-I) were derived from a single n.s. mutation. The peptide-MHC pair 
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with the lowest predicted IC50 was selected to represent the candidate mutant peptide and its 

binding MHC-I partner. Finally, candidate neoantigens were defined as those with the predicted 

binding strength IC50 < 500nM. Neoantigens were categorized as premalignant neoantigens 

(PrNs), progression-associated neoantigen (PANs) and malignant-specific neoantigen (MSNs) 

according to the groups that their corresponding mutations were classified. 

 

Pathway analysis/Gene enrichment analysis 

In pathway analysis, every affected gene should be counted once for each individual patient 

even though multiple n.s. mutation sites were identified on the same gene. Therefore, n.s. 

mutated sites were first consolidated to their corresponding gene identity. In our study, n.s. 

somatic mutations were categorized into three different groups based on their presence in 

various tissues. Thus, their affected genes should be assigned to the corresponding groups to 

evaluate their effects on molecular pathways, especially on tumor initiation and development. To 

achieve this, for each patient, eligible genes were first labeled based on PAMs, which were then 

removed from the available gene list for next steps labeling MSMs and PrMs. The labeling 

procedure was then repeated for MSMs, followed by PrMs. This meant that each patient had 

three mutually exclusive gene groups representing their PAMs, MSMs, and PrMs. 

For each individual patient, the enrichment of mutated genes in the group i involved in a specific 

the pathway j is measured by an enrichment score, ESij, defined as: 

																																																				𝐸𝑆$% =
0																														𝑖𝑓	𝐻$% < 2
-./

0.∗(3//5)
= 	 -.//0/

3./5
	𝑖𝑓	𝐻$% ≥ 2		                     Equation S1 

where Hij is the number of mutated genes in the group i (e.g. PAM-, MSM-, and PrM-bearing 

genes) involved in the pathway j. Mi , Sj and P are the numbers genes in group i, pathway j, and 

the genome. In other words, the enrichment score ES is the number of mutated genes involved 

in a pathway normalized by the estimated number based on the numbers of genes in the 

interested groups i, pathways j and the genome. Note that a non-zero ES requires a minimum of 
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two mutated genes associated with the pathway of interest. Furthermore, for a given pathway j 

(i.e. denominator is constant in the right most side of Equation S1), the discrepancy in ES 

between two groups of interest is proportional to the difference of the percentage of genes that 

are associated with the pathway in those groups.  

 

The false discovery rate of ES was estimated by the permutation approach in which mutated 

genes in each patient were first randomly sampled from the genome, and then assigned to 

PAM- and MSM-bearing groups. ES were then calculated according to the above equation for a 

total of 123 mutated gene groups (41 patients x 3 groups: PAM-, MSM-, and union of PAM- and 

MSM-bearing genes) based on 1341 canonical and hallmark pathways downloaded from the 

Molecular Signature Database13. A total of 100 permutations were executed.  

Finally, a pathway was defined to be deregulated by a certain mutated gene group if the 

corresponding ES was greater or equal to 2 (FDR = 0.03). In each patient, the deregulation 

states of all pathways based on PAM- and MSM-bearing genes were represented in binary 

format with 1 being deregulated and 0 for otherwise. The pathway-based binary data from all 

patients was then combined into the matrix form and subjected to unsupervised clustering 

analysis to stratify patients into subgroups. The cluster analysis was performed in R by utilizing 

Ward’s clustering method (i.e. ward.D2). 

 

Analyses using TCGA data sets (DNASeq, RNAseq and survival analysis) 

Processed data sets from whole exome DNA and mRNA sequencing, as well as clinical 

information for lung adenocarcinoma (LUAD) samples were downloaded from the Cancer 

Genome Atlas (TCGA) data portal. The information of mutated genes in samples was extracted 

from somatic mutation calls (level 2 maf file), and organized into a table in which one was 

employed to indicate if the gene of interest had at least one non-silent mutation call located on 
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its coding regions, and zero for otherwise in the specific sample. The frequency of how often a 

gene was mutated in the cohort was then calculated from the table.  

 

In gene expression analysis, RSEM normalized gene expression (level 3 text files) files were 

utilized to build a data matrix of all samples. The expression data was processed by removing a) 

genes with low abundance (i.e. < 1 CPM in >30% samples), and b) tumor samples without WES 

data. Pathway activities per individual sample were derived from its gene expression by using 

Gene Set Variation Analysis (GSVA)14. The information of gene sets involved in the immune 

regulated pathways was obtained from the Molecular Signature Database13. To eliminate the 

effect of genes commonly shared among pathways, the original gene sets were modified such 

that the overlapping genes were kept in the “child” and removed from the “parent” set. A “child” 

set was defined as the one having more than 90% of members overlapping with the parent set.  

 

The GSVA scores of the interested pathways were then subjected to the unsupervised 

hierarchical cluster analysis to stratify samples into subgroups. The cluster analysis, which was 

performed in R, used Ward’s clustering method (i.e. ward.D2) and Spearman correlation 

coefficient as the metric measuring similarity between sample pairs. Finally, patient survival 

among the subgroups was compared by log-rank test. 

 

Evaluation of Lymphocytic infiltration 

For each lesion, a section stained with hematoxylin and eosin underwent an initial qualitative 

evaluation by a board-certified pathologist to assess the overall degree of lymphocytic 

infiltration. This assessment utilized a simple graded scale: 0 (absent), 1 (focal with <3 clusters 

of 3 lymphocytes), 2 (multifocal with 3 or more clusters) and 3 (diffuse). χ2 test was used to 

compared distributions of scores in different histological lesions (normal, AAH, AIS and ADC). 
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Immunohistochemistry analyses 

For nine cases, additional serial sections of 5 μm thickness were obtained from FFPE tissue 

blocks. Single-color immunostaining was performed on the Leica Bond III autostainer using 

Bond Low (H1) and High (H2) heat retrieval solutions, wash buffer, and Refine Polymer 

Detection system. Heat-induced epitope retrieval was performed in the autostainer, except for 

PD1 and PD-L1, which were treated in a pressure cooker. Antibodies used for detection of a 

single marker per slide included: CD8 (Dako #M7103), CD4 (Cell Marque #104R-16), Granzyme 

B (Dako #M7236), PD1 (Cell Marque #315M), PD-L1 (Spring Bio M4420), and FOXP3 (Bio SB 

#BSB676). 

 

All slides were scanned at an absolute magnification of 3200 (resolution of 0.5 mm per pixel). 

Brightfield image analysis was performed using the Indica Labs Halo platform. With the 

assistance of a board-certified pathologist, each region of interest (AAH, AIS and ADC) was 

identified and outlined on the hematoxylin and eosin guide slide. The guide slide was aligned 

and synced with the corresponding serial sections immunostained for each marker. Existing 

Halo algorithms developed for detection of positive staining were accepted or modified based on 

the positive control slide for each marker. The final algorithm was then used to analyze the 

density (cells/mm2) and percentage cellularity (% positive cells/all nucleated cells) for each 

marker on each region of interest. This raw data was then exported for statistical analysis. 

 

Statistical analyses 

All analyses were performed utilizing R 3.2. Appropriate rank-based statistical tests were 

applied according to the nature of variables. For instance, Kendal’s τ coefficient was used to 

assess association between the pairs of variables, such as percentage of PAMs, percentage of 

positively stained cells and log transformed neoantigen numbers, while the Kruskal-Wallis rank 

sum was applied to compare variables of interest between groups. 
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FIGURE 1

 

Cell-mediated immunity and adaptive responses in lung cancer continuum 
A) Local lymphocyte infiltration index (0 — lowest, 3 — highest) in adjacent normal tissue, AAH, 
AIS and ADC (**c2 test p < 10-10). B) A representative IHC staining of lymphocytic markers in an 
AAH lesion with local lymphocyte infiltration score = 2. C) Heatmap of gene expression scores 
of 16 immune-related pathways in TCGA LUAD and normal lung samples. Serial sections 
stained for the indicated markers shown at 10x and 20x magnification. D) Kaplan-Meier survival 
curves of stage I, and E) stage II and higher patients from the groups identified in Figure 1C. 
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FIGURE 2 

 

 

 

Intra- and inter-patient genetic heterogeneity of lung lesions. 
A) Distribution of Jaccard indices comparing n.s. somatic mutation heterogeneity between AAH 
lesions from the same (intra-) or different (inter-) patients. Inter-patient Jaccard indices have the 
zero-median which cannot be displayed on the log-scale y-axis, so the distribution starts at 54 
percentiles. B) Distribution of intra-patient Jaccard indices in 41 individual patients. The subjects 
are displayed in the low-to-high order based on their median values. In A and B, the side 
triangles represent the heterogeneity levels inversely proportional to Jaccard indices, and the 
dashed line marks the 90-percentile level of inter-subject Jaccard index. C) Phylogenic trees for 
10 patients with AAH (blue), AIS (orange) and ADC (brown). Phylogenic trees for the entire 
cohort are shown in Figure S2. 
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FIGURE 3 

 

 

Neoantigens and the immune response in pulmonary premalignancy. 
A) Distribution of PANs and MSMs in 41 study patients. The patients are displayed in the low-to-
high order based on their percentages of PANs. Red arrows in A and in B indicate nine patients 
whose cellular immune response was evaluated. B) Percentage of PANs in individual AAH 
regions from 41 patients. The subjects are displayed in the low-to-high order based on their 
median levels, and not in the same order as those in A. C) Average percentages of infiltrating 
CD8+ T cells observed in AAH (upper panel) and ADC (lower panel) plotted against percentage 
of patient-wise PANs. Each patient is represented by a data point indicated by a unique symbol. 
ADC in one patient was not evaluated. D) Correlation between the percentage of infiltrating 
CD8+ T cells and the percentage of PANs in corresponding AAH lesions. E-F) Correlation 
between the percentage of infiltrating CD4+ T cells (E) and PD-L1+ cells (F) plotted against the 
corresponding log-transformed neoantigen number identified in AAHs. In D-F each region is 
represented by a point, while each patient is marked by the symbol identical to those in B. P-
values in B, D-F are based on Kendall rank. The trend line (dashed line) indicates the linear 
association between variables. Other pair-wise comparisons between immune marker levels 
and neoantigen-related variables were insignificant, and were not shown.  
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FIGURE 4 

 

 

 

Analysis of pathway deregulation by PAM and MSM. 
A) The top 27 pathways frequently affected by MSM- (red) and PAM- (blue) bearing genes. B) 
Enrichment score of MSM- (red) and PAM- (blue) bearing genes involved in the KEGG-based 
focal adhesion pathway, which is the most deregulated pathway by MSM-bearing genes, plotted 
for each patient. Patients having less than two pathway genes (i.e. ES = 0) mutated in ADC are 
not included in the analysis. The gray dashed line indicates the significant ES threshold (= 2) to 
determine if the genes involved in pathway were significantly enriched by the mutated genes in 
the specific group. Two patient groups were defined based on their PAM-based ES ≥ 2. C) 
Heatmap of the pathways affected (red) by PAM- (top) and MSM- (bottom) bearing genes. The 
mutations in the 29 drive genes (listed in Figure S3A) observed in PAM and MSM are indicated 
by orange bars above the heatmap.  
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FIGURE S1 

 

The of number of lesions sequenced per patient does not significantly alter the 
mutational load. 
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FIGURE S2 

 

Phylogenetic trees. 
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FIGURE S3 

 

 

 

Outline of the experimental approach. 

 

 

 

 

 

 

 

 

 

 

 

6

Normal raw reads Premalignant raw reads Cancer raw reads

Alignment by BWA and GATK

Normal aligned reads Premalignant aligned reads Cancer aligned reads

Mutations in 
Premalignance Mutations in Cancer

Variant Call & Annotation

Progression Associated 
Mutations (PAMs)

Malignant Specific 
Mutations (MSMs)

Premalignant Mutations 
(PrMs)

HLA 
genotype

MHC-I binding prediction

HLA identification

Malignant Specific 
Neoantigens (MSNs)

Progression Associated 
Neoantigens (PANs)

Variant Call & Annotation

Premalignant Neoantigens
(PrNs)



 31 

FIGURE S4 

 

Pathways, frequently deregulated by the mutated genes in TCGA LUAD and UCLA 
cohorts. 
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TABLE S1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Demographics of UCLA cohort 

Characteristic 
Study Population  

(N = 41) 

Age – year (mean) 66.8 

Female sex – no. (%) 32 (78.0) 

Ethnicity – no. (%) 

Caucasian 33 (80.4) 

East Asian 4 (9.8) 

Other  4 (9.8) 

Smoking Status – no. (%) 

Current 7 (17.1) 

Former 28 (68.3) 

Never 6 (14.6) 

Pathologic Stage – no. (%) 

0  3 (7.3) 

1 29 (70.7) 

2 9 (22.0) 
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FIGURE 2S 

Patient ID AAH AIS ADC 

P01 2 1 3 

P02 2 0 1 

P03 2 1 2 

P04 3 0 3 

P05 4 0 4 

P06 3 0 1 

P07 1 2 1 

P08 3 0 1 

P09 2 0 1 

P10 2 1 2 

P11 2 0 1 

P12 3 0 4 

P13 3 0 2 

P14 2 1 1 

P15 2 0 1 

P16 2 0 1 

P17 1 1 0 

P18 4 0 1 

P19 1 0 1 

P20 3 0 1 

P21 2 0 1 

P22 2 0 1 
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P23 2 0 1 

P24 2 0 3 

P25 2 0 1 

P26 2 1 1 

P27 2 1 2 

P28 2 0 1 

P29 2 0 1 

P30 2 1 2 

P31 3 0 1 

P32 2 2 0 

P33 2 0 1 

P34 1 1 1 

P35 2 0 1 

P36 2 1 1 

P37 2 0 1 

P38 2 0 1 

P39 2 1 0 

P40 2 0 1 

P41 2 0 1 

 

Summary of regions sequenced in each patient 
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STATISTICAL APPENDIX 

 

 

Section I: Extended Analysis of Lymphocyte Infiltration Score (LIS) Data 

 

Cohort Summary Statistics 

In total, 41 patients with a total of 453 regions were assigned an LIS. There were 3-68 regions 

per patient (Figure A1). AAH lesions totaled 337, making up 74% of all regions undergoing 

scoring. The primary adenocarcinoma tumor stage for each subject ranged from 0 (AIS only) to 

3A. A total of 29 patients (70%) had stage IA or 1B disease at resection. 9 patients (21%) had 

stage IIA or higher disease. Interestingly, 3 patients had stage 0 disease, defined as 

adenocarcinoma in-situ (AIS) only. 

 

Figure 1A 
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Effect of Staging and Patient Effects on LIS 

Given that immunosurveillance is thought to weaken with tumor progression, we hypothesized 

that the LIS may be affected by the stage of the primary resected lung adenocarcinoma. We 

approached this question with 2 methods. 

 

Method I: Linear mixed effects model 

In the “naïve” model, we treated the lymphocyte infiltration score as continuous. Included in the 

model was tissue type (Normal, AAH or AIS/ADC), stage (0-1 vs. 2-3), an interaction term and 

the subject random effect. We found that while tissue type had a significant effect on LIS (p < 

0.001), the tumor stage did not (p = 0.78). These values did not change significantly after 

removal of the non-significant interaction term. 

 

Method II: Ordinal logistic mixed effects model 

In this model, LIS was treated as an ordinal value. The model included the same terms as used 

in the linear mixed effects model. Not significantly different from the prior model, we again found 

that tissue type had a significant effect on LIS (p<0.001). The stage of the primary tumor did not 

significantly affect the LIS (p=0.85) These results are shown in Figure 2A. 

 

Figure 2A 
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Section II: Extended Analysis of Quantitative Immunohistochemistry (IHC) Data  

Summary Statistics 

As noted previously, a total subset of 9 patients were selected to undergo quantitative IHC 

analysis using the HALO platform. In total, these patients 65 regions analyzed, which ranged 

from 5-12 per patient. Of the 9 patients, 6 had stage 0 or 1 disease. The remaining 3 patients 

had stage 2A or 2B disease. 

 

Inter-correlation of IHC marker intensity 

Given the known relationships between some of these markers from a biologic standpoint, we 

evaluated their inter-correlation using the Pearson correlation coefficient. We also calculated 

their average percentage of positive cells per marker. These findings are shown in Table A1.  

 

Table A1 
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Effect of Staging and Patient Effects on IHC marker intensity 

Similar to our prior analysis of the LIS, we were interested in the effect of primary tumor stage 

upon the quantitative IHC scores for CD8+ and CD4+. We utilized a linear mixed effects model. 

Included in the model was tissue type (Normal, AAH or AIS/ADC), stage (0-1 vs. 2-3), an 

interaction term and the subject random effect. For CD8+ staining, we found that tissue type 

had a significant effect (p < 0.02), but staging did not (p = 0.45). Similarly, for CD4+ staining, 

tissue type had a significant effect (p<0.04), but tumor stage did not (0.34). 

 

Discussion 

In conclusion, both methods to quantifying intra-lesional lymphocyte infiltration, LIS and 

quantitative IHC, were significantly affected by tissue type. Both AAH and ADC lesions had 

significantly higher lymphocyte infiltration than normal regions. The stage of the primary tumor 

did not significantly affect the lymphocyte infiltration observed using either method. While this 

suggests that tumor stage may truly not influence the immune cell infiltrate seen across lesions, 

it is limited by the small sample size of patients with stage II or higher disease in the cohort. As 

expected, a strong correlation between CD8+ and PD-1 staining was observed.  

 

 

CD4 CD8 FOXP3 Granzyme PD1 PDL1
CD4 1.00
CD8 0.27 1.00
FOXP3 0.19 0.02 1.00
Granzyme 0.25 0.32 0.14 1.00
PD1 0.42 0.64 0.01 0.34 1.00
PDL1 0.41 0.20 0.11 0.14 0.30 1.00
Average Percent 
Positive Cells 
per Area

24.34% 11.43% 4.04% 3.62% 3.59% 22.21%
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