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ABSTRACT OF THE DISSERTATION .

Software Construction Using Components

by
James Milne Neighbors
Doctor of Philosophy in Information and Computer Science
University of California, Irvine, | 1988

Professor Peter A. Freeman, Chair

It is the thesis of this work than manylcomputer
software systems beihg built today are similar and should be
built out of reusable software components. |

The appropriate use of software componenté is
investigated by analogy to the «classical engineering
question of whether to build an object ‘out of custom-made
parts or standard parts and assembiies. Thé same analogy‘is
used to explain some of the problems with previous work on
reusable software.. The result of reasoning with the
eng ineer ing analogy " is that the reuse of software results

only from the reuse of analysis, defiqn, and code; rather

than just the reuse of code.

The concept of domain analysis 1is introduced to

describe the activity of identifying the objects and

Xv



xvi

operations of a <class of similar systems in a particular

.pfoblem domain. A domain analysis is represented by a-

domaih—specific language, a prettyprinter, source-~to-source
transformations, and software components.

A domain's séftware components map statements from the
domain into other - domains which are used to model the
objects and operations of the domain. Software components
repfesent implementation- c¢hoices. The components are
managed usingAa'module interconnection languagé to insure
ﬁsage constraints.

The source-to-source transformations represent domain-

‘specific optimizations, independent of any implementation,

which are used to optimize statements in the domain. The
Eransformations are useful primarily when the domain is used
as a modeling domain. A method of automatically producing
metarules for a set of transformations is described. The
metarules remove the burden of having to suggest' individual
transformations from the user.

A formal model of the usage cbnstraints and ﬁodeling
possibilities of a set of domains is presented. It is shown
that the reusability question ("Can a particula; domain-
specific program be refined into an executable language
using a given a set of domains?") can be answered using the

formal model.

Experiments using a prototype system, Draco 1l.£, which

embodies the concepts described, are presented and the



xvii
results discussed. The largest example results in.
approximately 20 pages of source code and uses eight
model ing domains. Each object and operation in ﬁhe‘
resulting program may be explained by the system in terms of
the program sﬁecification.

Related work in the areas of automatic _programming,
program generation, programming 1angUa§es, software
engineering, and transformation systems is presented.

Finally, some future work in this area is outlined.




Chapter 1

INTRODUCTION

THE SOFTWARE CRISIS ‘ o

Each year more than $5ﬂ,ﬂﬂz,ﬂﬁﬂ;ﬂﬂﬂ are spent on
software produétion and evolutionl. in the United States
[101]. This huge sum is spent on'somethiﬁg which cannot be
seen, felt, touched, tasted or heard in 'the coﬁventionai
sense. - The intangible nature of software has caused much of
the probleh in its production. There is no séhse feedback-

in the production of software. Over the past years, the

" problem of software production has been growing rapidly with

the increased size of software systems. Today "personal
computers" threaten to be able to hold-thé largest sdftware
systemé built.: Unless techniques to creéte ‘software_
increase dramatically .in productivity, the future "~ of

computing will . be very large softWare systems barely being

able to use a fraction of the computing power of extremely .

large computers.

By "software crisis," we mean that there is a demand

lphe traditional term of "maintenance" for all work on a
software system after it is 1initially constructed is
misleading. We prefer the term "evolution" after
[1#41, 139, 159] to denote the repair, adaptation, and
enhancement of a software system.- ’ .
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for quality software which cannot be met with present
methods of software construction. ‘The judgement as to

whether the software is needed or whether more software is
better is not made here. Some of the points which have

brought about the software crisis are listed below:

- The price/performance ratio of computing hardware
has been decreasing about 20% per year [115].

- The total installed processing capacity is
" increasing at better than 4@¢% per year [115].

- As computers become less expensive, they are used
in more application areas all of which demand
software.

- The cost of software2 as a percentage cost of a
total - computing system has been steadily
increasing [26]. ‘

- The cost of hardwére as a percentage cost of a
total computing system has been steadily .
decreasing [26].

'~ - The lproducti?ity of the software creation process
" .has increased only 3%-8% per year for the last’
twenty years [115]. :

- There is a shortage of qualified personnel to
create software [104].

" - As the size of a software system grows, it becomes
increasingly hard to construct.

All of these factors have. combined to <create a software

crisis.

2gsoftware was 15% of the cost of a total computing
system in 1955, it surpassed the ©percentage cost of
hardware in 1967, and it is expected to be 9¢% by 1985.
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This dissertation. describes a software production
technique based on the concept §f parté and aésemblies. The
concept has been very successful in the production of
standardized objects such as computer hardware. It is the
goal of this work to increase software constructibn

productivity as a partial answer to the software crisis.
TBE SOFTWARE LIFECYCLE

The beginning of the software crisis was heralded by
the failure of some very large software systems to meet
their analysis goals and delivery dates 1in the 1960's.
These éystems failed regardless of the amount of money and.
manpower allocated to the projects. These failures .led to
a conference on the problem of software construction which
marked the beginning of software engineering [33]. Studie§
of the process of software construction have'identified ﬂthe
phases that a software projéct goes through and ;hese rhases
have been combined inté &a model <called the software
lifecycle.

If we view the 1lifetime of a software system as
consisting of the rphases requifements analysis, design,

3

coding, integration and testing, and evolution, then

3rthis early view of the lifecycle serves our purpose here
but it is important to note that more recent views of the
lifecycle [91, 139] are more sensitive to the needs of the
organization requesting the system, the dynamics of the
organization building the system, and the information
processing abilities of the people developing the system.
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typical cosfs of the different phases [28, 26] excluding
requirements analysis aré.shown in figure 1.

9% design
6% coding
15% integration and testing
70% evolution
Figure 1. Cost of Lifecycle Phases

If a tool 1is developed to aid the production of
software, 1its impact depends on the importance of the,
lifecycle phases it affects. Thus, a coding tool has the
least impact while an evolution tool has the most impact.
Previously, evolution was termed "maintenance" and regarded
as an activity after system construction which .only
corrected errors in the system. In reality, it has been
shown that4the evolution time is spent revising the goals of
the syétem and only about 10% of the total evolution effort
;is spent correcting errors [125]. The remaining 9¢% of the
evolution phase 1is a reiteration of the other lifecycle
rhases.’

It is difficult to test high-impact tools for software
production for three reasons. One reason is that the tools
are used in a complex social setting where not all the users
are motivated by a desire for high software production. A
second reason 1is that producing software is very expensive
and the data collection required is an added expense to an

already expensive procéss° The third difficulty in testing

high-impact tools is that there are no - really good system
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quality metrics with thch to judge‘the resulting system
built using the tool. It is difficult to judge the worth pf
the resulting system to the organization which desired it.
Many réquests for "maintenance" 6n,é completed system may
mean either that the system was built. pooriy with many .
errors or that it Qas built well enough that the users see
enhancements whi;ﬁ could make a good system even better.

Thé'software production technique described in this
dissertation 1is, in our Qiew, a high-impact tool which
inherits the difficulties of testing mentioﬁed above. . We
have not attempted to statistically verify an increase in
software productivity of judge the "goodness" of the sYsteﬁs
résulting from the use of the tool. Such a study should be.
a requirement béfore any teéhnique' is - ever 'used in

-production. _ -
THE PARTS-AND-ASSEMBLIES CONCEPT

The idea of using standa;dAparts'and forming them into

assemblies is a very old idea.

Eli. Whitney of New Haven Conn. received an
order for a large number of guns in "1789. Instead
of hiring a large number of individual gunsmiths, he
designed interchangeable parts and made jigs and
fixtures so that relatively unskilled people could
make the parts. He missed his delivery schedule,
but he is credited with having -invented the parts- .

-and-assemblies approach with re-usable parts. The
principles and techniques of the parts-and-.
assemblies approach have since become well known,
and automated support for the documentation exists
throughout industry [54].
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The parts-and-assemblies approach has been used extensively
in engineering and is one of the techniques which has
enabled computer -"hardware ‘engineers.to increase the powef
and capacity of cpmputers ih_ a short ‘time. Henry' Ford
combined the idea of parts and assemblies with the idéa sf
an assembly.line fo make model~-T Fords. It is important
here to understand that the parts—-and-assemblies idea does
not infer the use of assembly lines.

There are two basic approaches to building things. The
craftsman approach relies on a highly skilled craftsman to
build an object from raw materials. The raw materials are
fashioned into custom parts and fitted together to form
custom assemblies. The partsQand-assemblies approach relies
on already built standard parts and standard assemblies of
parts to be combined to form .the object. Each of the

approaches has its good and bad points.

The Craftsman Approach

with the craftsman approach, the custom parts and
assemblies are tailored to the specific problem at hand.
These custom parts represent a very efficient
implementation; probably better than could be built from
standard parts. Given the tiﬁe, a craftsman always builds a
better object than one constructed from standard parts. By

"better" here we mean more responsive to the goals of

construction [3]. The craftsman approach has its drawbacks
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in that craftsmen are expehsiye to employ and hard to find.
Any system built by a craftsman is a custom system and will
require custom maintenance. This means that the mainteﬁance
must be done by a craftsman who must shape new custom parts

to fit with the old custom parts in an object.

" The Parts-and-Assemblies Approach

The parts-and-assemblies .approéch' offers cheaper
construction gosts since the object is buiiﬁ from pre-built
standard parts. An éssembly is a structure of standard
partsAwhiéh'cooperate to perfofm a single function. The use
of standard parts’and assemblies will supply sdme knowledge
‘about the failure modes ana limits of the parts. This
information is unavaiiablé with custom parts. ﬁse of
standard parts also creates a language for diséussion qf
future objects and extensions to objects currently.under
cpnstructibn. The partsfand-assemblies approach has its
drawbacks in that the design of useful standard parts and
assemblies is very expensive wofk and requires craftsman
ekperience. Also, onée a set of-standafd parts is created

it may not suffice to construct all the objects desired.

The Nature of Parts and Assemblies

From a different viewpoint, an assembly is a part.

We understand complex things by systematically
breaking them into successively simpler parts and




understanding how these parts fit together locally.
Thus, we have different levels of understanding, and
each of these levels corresponds to an abstraction
of the detail at the level it is composed from. For
example, at one level of abstraction, we deal with
an integer without considering whether it is
represented in binary notation or two's complement,
etc., while at deeper levels this representation may
be important. At more abstract levels the precise
value of * the integer is not important except as it
relates to other data [95].

Thus, an assembly at a different level of abstraction
becomes a part. This idea will become important later whén
we discuss the problemé encountered by previous work on
software parts. , . .
From the discussion of the pros and cons of the
craftsman and the parts-and-assemblies approaches, it is
apparent that the parts—-and-assemblies approach is
appropriate only to those situations where many similar
objects are to be built., Otherwise, the cost of producing
the standard parts by a craftsman is much greater than the-
cost saved by using standard parts. If an object to be
built is a one-of-a-kind custom object it should be built by
a craftsman; otherwise it should be determined if the parts-

and-assemblies approach could be cost effective.

Parts and Assemblies in Computing

Historically, software construction has taken the
craftsman approach. In the early days of computing, the

software systems were one~of-a-kind and the craftsman
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approach was the natural ‘approach.l Today,'quite a few
software systems being'built by the craﬁtsﬁah' approach are
similar.‘ In particular, the construction of system software
(text editors, assemblers, compilers, etc.),,business déta
processing systems (inventory, accounting, billing, etc.),
_éndv simple process control systems are all areas where‘many
thousands of.similar systems exist. It is not at all clear
that the constructﬁrs ofAthese‘systems are craftsmen. In
faét, with the répidly increasing numbers of anaiysts and
4programmers [195] itA is ‘doubtful that the qonStruchrs of .
these sYstems are craftsmen. In our view, the high cost ofi,
custdm software systems'has never beéh clearly repreéentea
since the use of standard parts.and'assemblies to build low-
cost syétems has not been an alternative.,

) Historically, hardware construction has rtaken, the
parts—-and-assemblies approach. Even though early'computers
were one—of-a—kiﬁd, the parrs—and—assemblieé épprbach was
the natural choice‘ since hardware failures were a major
problem and thelapproa‘ch is an excellent technique for
organizing. maintenance. ' The 'machiﬁes were maintained by
replacing assemblies and studying the failure modes_ ofi the-
parts and assémblies.v This same maintenance technique is
'still in use today. '
In the next chapter we shall diséuss the problems of

- using the parts-and-assemblies concept in the construction

of software. Also, under the assumption that many software




in

systems being constructed today are similar, we shall
outline a method for constructing software using parts and
assemblies and advocate 1its wuse in the construction of

similar systems.




Chapter 2

' SOFTWARE CONSTRUCTION USING PARTS AND ASSEMBLIES

SOFTWARE COMPONENTS

The purpbse of this dissértation'is tovapply.the parts-—
and-assemblies concept to software construction. A software;
component 1is analogous .to a part. From our discussion‘in
Chapter l,ithis méans that a component can be viewed Laé
either a part or an assembly depénding onlthe leVél'of
abstraction of the view. A particular component usually‘
changés from a part to an assembly of subparts és the leQel
'of abstractionAis décreased. The duality.éf a componen£ is
'a very important concept. The'féilure to deal with this
dual view caused some problems with earlier work on feﬁsabie
sbftware.. | ‘ |

The majo; problem with earlier work on reusable
éoftware is the represéntation of the software to be‘reused.
In program libraries_ the programs to be reused are
represented by an external reference name which can be
resolved by a linkage editor. While a functional
deécription of each program is usually givén in a referénce
mangal for the liQfary, the documentation for a library
program seldom gives the .actuai code or discusses the

implementation decisions. The lack of this information

prohibits a potential user of a library program from viewing

11
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it as anything other than a part. 'If the user can treat a
library program as an isolated part'in his déveloéing systen
then the program librafy‘will be successful. Mathematical
fuﬁction libraries fit well into this context. |

Usually, however, a user wishes to change or extend the
function and ihpleméhtation of a program to be'feused;
These modificatiohs require a view of the' program as an
assembly of‘ subparts and a part of many asSemblies. To
decrease the level of abstraction of a librafy program to
view it as an assembly of subparts requifes information
about the . theory of operation of the program and
implementation decisibné made in constructing Ehe program.
To increase the ievel of abstraction of a library program to
view'it as part of  a éollection of assembiiés réquifes
informafion about interconnections between programs-in the
libfary and implementation " decisions defining common
structures. None of this information 1is explicit i‘n‘a
simple program library. The burden ;s placed on the user of
the library to extract this information.

The view df software components as isolated parts also
plagued early work on feusable code modules [45, 44A]. The
software components to be reused in this work are code
modules hundreds of source 1lines lbng. With the code
‘availablg a knoWlédgeable human user could form an
abstraction of a given code module gy examining it, but this

.is difficult work requiring vast amounts of knowledge from
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many dqmains. The problem of understanding a code module is
exacerbated by the large size of the code modules. The
large size is required to help a potential user of a
reusable code module set organize a program using a small
number of module names. If the average code size of a
reusable - code module is small, then there will be too many
code module names for the user to organize. If the average
code size is largé, then the code modules will turn out to
be too inflexible to be used in é wide range of systems
without human examination and tailoring'in each use. As
with program libraries, the burden of organizing a specific
program 1is placed on the user because even though the
strﬁctufe between the reuséble code modules is more easily
discérned than in program libraries, it is not completely
-explicit. |

To avoid the problems encountered with program
libraries and reusable code modules we will use the'c0mputer
to handle a huge number of module namés. Eaéh name
represents a small flé#ible software component‘described at
a level of abstraction above programming language source
code which will allow us .to view the component' as an
assembly of subparts and a part of assemblies.

In general it seems that the key to reusable software

is to reuse analysis and design; not code. In code, the

structure of parts which make up the code has been removed

and it is not divisible back into parts without extra
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knowledge. Thus, code can only be viewed as a part. The
analysis and design representations of a program make the
structure and. definition of @parts used 1in the program
explicit. Thus, analysis and design 1is capable of
representing both the part view and assembly view while code
can oniy represent the part view. In this chapter a method
will be ﬁresented which extends the reusable parts theme-
into all phases of the software lifecycle rather than just

the coding phase.
AN OVERVIEW OF DRACO

It has been a common pragtice - to name new computer
languages .after stars. Since the system described in this
dissertation is a mechanism which manipulates special-
purpose languages it seems only fitting to name it after a
structure of stars, a galaxy. Draco? is a dwarf elliptical
galaxy 1in our local group of galaxies which 'is dominated by
the large spiral galaxies Milky Way and Andromeda. Draco is
a small nearby companion of the Milky Way (1.2X1@° solar
masses and 68 kiloparsecs from Earth). This small size and
close distance to home is well suited to the current system,

Draco 1.#, which is a small prototype.

4praco is Latin for dragon.
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Objectives of this Research

The Draco system addresses ifself to the routine
production of many systems which are similar to each other.
The goal of this work' is to be able to build large,
understandable, maintainabie, documented ‘ sYstems - which:
‘represént én error-free implementation of the uSer's needs
and desires. The particular approaéh the Draco system takes
is the extension of the reusable pérts-and-assemblies theme
into the analysis and design phaseé of  software

construction.

A Brief Description of Draco

Draco is an inﬁeractiVe system which enables a user to

guide the refinement of a probleh stated in-a high—leyel;
problem-domainrspecific language into an ‘efficient, low-
level executable program. As the user guides the refinement
of his  problem he may make individuél model ing and
implementation choices or rely oﬁ tacticé (which he defines)
to give guidelines for semi-automatic refinement. Dfaco
supplies mechanisms - to enable thé' definition of §roblem
- domains ' as - special-purpose, high-level languages and
manipulate statements in these languages into an executable
form. The notations of these languages are the notations of

the problem domain. The user is not asked to learn a new,

all-purpose 1language. When the user interacts with the
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system it uses the language of the domain. The user
specifies his problem in terms of the objects and operations

of the problem domain.

Example of What Draco Does

If an organization were interested in building many
customized systems in a particular application area, say
systems for aiding travel agents, they would gé out to
travel agent offices and study the activities of travel
agerits. A model of the general activity of being a travel
agent would be formed and the objects and operations of tﬂe
activities identified. At this point, the analyst of the
domain of travel agent systems would decide which general
activities of a travel agent are appropriate to be included
in travel agent systems. |

.The 'decision of which activities to include and which
to exclude is crucial and will limit the range of systems .
which can be built from the model later. If the model is
too general it will be harder to specify a particular simple
travel agent system. If the model is too narrow the model
will not cover enough systems to make its construction
worthwhile.

once the analyst has decided on an appropriate model of
travel agent activities, he specifies this model to the
Draco system in terms of a special-purpose language specific

to the domain of travel agents and their notations and
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actiens.

The idea here is not to force all travel agents into
the same mold by expecting them ail to use the same - sYstem.
If the model of the domain of travel agents is not general
enough to cover the pecullarltles which separate one, travel
agent s actions from another, then the model will fail.

, The domain of  travel agent systems is spec1f1ed to
braco by giving its external-form syntax, guidelines‘ for
‘printing‘things in a pleasing nannerS, simplifying reiations
between  the objects and operationsh and semanties in terms
of other domains aiready known to Draco. Initially, .ﬁraco

) , :

contains domains . which represent conventional, executable

computer languages.

once the travel agent” domain has been specified,

systems . analysts: trying to describe a system ter a
partlcular travel agent may use the model language as a
guide. The use of domain- spec1f1c language as a gu1de by a
'SYStems analyst is the reuse of analysis.
Once‘the.specification of a particular travel agent
system is cast in- the high-level languagejspeCific to travel
agent systems, Draco will allow. the user to make‘modeling,

representation,'and control~flow choices for the objeets and

5we shall refer to guidelines for printing things in a
pleasing manner as a prettyprinter. E : o
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operations.specific to the travel ageht system at hand. 4The
selection between implementation possibilities for a domain=-
specific language is the reuse of desién.

Design choices refine the traQel agent‘syStem into
cher model ing domains_ and the simplifying( relations of
these modeling domains may then be applied. At ahy one,timé
in thef refinement, the différeﬁt parts of the developing
program'are usuall& modeled with many different model ing
domains. The. §impliinng relations ‘are source-to—sourée
program'transformafions. The individuai design choices have
‘conditions on their usage and make  assertions about the
resulting program model if they afe used. If the conditions
. and assertions ever_comé into conflict, then the refinement
must be backed up tb a point of no conflict. The " use of
strategies based on a formal model to aid in guiding thg‘
process of refinement is discussed in Chapter 6.

| Eventually, th»e travel agent system is refined into éng
éxecutable, language and it is output by the system. Along
with this final program 1is a refinement history of the
choices made at each point in the refinement. This
refinement history can explain every statement in the final
program at different levels of abstraction all the way back
to the oriéinal statement in the high-level travel agent
domain. The refinehent history is a top-down description éf
the final program. The process which produces this history

is not a top-down process. The refinement history states
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which components were  used in thé construction of a
! particular system. If a component is found to be in error
| ' in one system, then the refinement histories of other
systems may predict failures in those systems which used the

faulty component.

Primary Results of this Work

The primary result of this wofk ié the ability ﬁo build
models of a class of systems and use these models to create
member systems of the class in a reliable and timely way.
New models are built upon old models to minimize the effort
in c¢reating a new model. The programs produced from these
models are very efficient with the major optimizations  done

‘ in the intermediate modeling languages.
Al side-effect of this work 1is that it provides a’
‘ mechanism for specifying computér science algorithms and
representations in such al way that one need not know the
implementation details of an algorithm or representation to

use it.

THE SPECIFIC DRACC APPROACH

To elaborate the brief discussion above, four major
themes dominate the way Draco operates: the analysis of a
complete problem area or domain (domain analysis), the

formulation of a model of the domain into a special-purpose,

. high-level language (domain language), the use of software
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components to implement the domain languages, and the use of
source-to-source program transformations to specialize the
components for their use in a specific system. |
The Draco mechanism is a general mechanism which can
create (from humén analysis): and manipulate (with human
guidance) a library of domains. The domains are separate

from the mechanism.

Domain Analysis

Domain analysis differs from systems analysis in that
it is not concerned with the specific actions in a specific
system. It is 1instead concerned Qith what actions and
objects occur in all systems in an application area (problem
domain) . This may require the development of a general
model of the objects'in the domain, such as a model which
can describe the 1aYout of the documents wused. Domain
analysis describes a range of systems and is very expensiQe
to perform. It is analogous to designing standard parts and
standard assemblies for constructing objects and operations
in a domain. meain analysis requires a craftsman with

experience in the problem domain.

Domain Language

A Draco domain captures an analysis of a problem
domain. The objects in the domain language represent the

objects in the domain and the operations in the domain
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language repfesént the actions in the domain. This approach
follows earlier definitions of a problem domain: .

A model of the éroblem domain mustvbe built and
it must characterize the relevant relationships
between entities in the problem domain and the
actions in that domain [12].
It is our view that all languages used in computin§ capture
the analysis of someApréblem domain. Many people bemoan the
features of FORTRAN; but it is still a good language fof
doing collimated output of calculations, the type of
computing high-energy physics has done for many yeags. This
is not to say that FORTRAN is a good analysis of the domain
of high-energy physics calculation, but it.didlfind its
niche [167]. Domains are tailored to fit into a niche as
- defined by the uses in which man is_interested in usihg
computers. |
Démain languages usually differ radically in form from
standard general-purpose compﬁter languages. Appendix III
presents some examples of domain language statements. - Most
of the examples are tabular forms since these seem to be

eaSy to read. A decision table, document format, and ANOVA

table are all good examples of possible constructs for

domain languages.
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Software Comgonents

As discussed on page 11, software components are
analogous to both parts and assemblies. A software'
component describes the semantics of an objeét or_operation
in a problem domain. There is a software component for each
object and operation in every domain.

Once a software combonent has been used successfully in
many systems, it is usually considered to be reliéble. A
software component's small size and knowledge about various
implementations makes it flexible to use and produces a wide
range of possible implementations of the final program. The
top-down representation (refinemené history) of a particular
program is organized around the software components used to
model the developing program. |

The use of components, which is discussed in Chaptgr.4,
does not always result in a program with a block structure
chart in the form of a tree. Usually, as with progfams
written by human programmers, the block structure chart of
the resulting program is a graph as shown in figure 36. An
example component for a low-level executable domain language

is shown in figure 27.

Source-~-to-Source Program Transformations

The source-to-source program transformations [{23] used

by Draco strip away the generality in the components. This
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makes general 'components practical. The transformations
also smooth together components,'reﬁoving inefficienéies in
the modeling domain. This makes small components practical.
Since single-function, general components aré‘essenﬁial to
the parts—and—assemblies approach, the transformations 'make
component-built systems efficient and practical.

A transformation differs 'from an implementatibn of a

component (a refinement) in that transformations are wvalid

for all implementations of the objects and operations they

manipulate. Refinements can make. implementation deCisions

which are limitations on the possible refinements for other

. components of the -domain. In general, transformations

relate statements in one problem domain to that same problem

domain, while components relate statements in one problem

domain to statements in other problem domains. Some source-
to-source program transformations for a low-level executable

language are shown in figure 11.
A MODEL OF HOW .TO USE DRACO TO CONSTRUCT SOFTWARE SYSTEMS

This section presents an SADT6 model of the use of

- Draco to produce software. SADT (System Analysis and Design.

‘Technique) has been successfully used to model'both‘software

systems and social éystems [43, 134]._'Its ability to model

6SADT (TM) is a registered trademark of SofTech Inc.
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both kinds of systems is important here since'tﬂ; parts-and-
assemblies concept on which Draco is based requires social
modeling to show how a craftsman gains enough experience to
éreate ‘a problem domain for Draco's use. For those readers

unfamiliar with SADT, Appendix I presents a brief

introduction to the techhique.
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A-@vCreate Software Syétems (Context) (Figure 2)

The vpurpose of- the model is to show the use of Draéo
within an organization which creates software systems. The
simple  model 6f an organization used in this discussion
produces a software system (AgOl) for each set of systeﬁ
requirements (A@Il) under the major constraint of the
availability of informatidn about thenproblem (AgC3) .

The viewpoint or emphasis in the model is showing 'how
the proéuctivity of the organization may be increased by
reusing the analysis and design of one system to construcf
another systelﬁ° From our discussion in Chapter 1 this is
only worth-while in problem éreas where there is a demand
for many similar systems (A@C2). In particular we wish to
show héw an organization might acquire the information to
reuse analyéis and design while it produces systems in a

conventional manner.
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Af Create Software Systems (Figure 3)

The strategic planning arm 'of the organization
determines the pfoblem domains of interest to the-
organization (A@.l). These organizational interests control
the fesearch arm of the organization (A@.2). The research
procegs sifts through the available infdrmation about the
domains of interest (Ag.2I1), organizational experience with
the domain (Af.2I2), and previous organizational studieslof
the domain (A@.2I3) to determine if the organization has
énough craftsman experience to attempt domain analysis. The
result of the research process is a set of domain studies
and a set of Draco domains for successfully ahalyzed domains
(A@.3C1).

’Meanwhile, the production arm of the organization
accepts system requirements for new systems (A@.3I1) and
builds working software systems (Af.3) either using Draco or
a conventional method. The result of this éonstruction' of
software systems 1is either craftsman experience building a
custom system in some domain or experience with a Draco
domain (Ag.302). This experience 1is used to help the

organization establish or revise a Draco domain (A@.2I2).
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A2 Research the Domain (Figure 4)

A domain analyst correlates all the available
information about a domain (A2.1) and produces a .report on
the progréss of the analysis. The reports from the domain
analysts are considered to see if they contain enough detail
about the domain to build a successful Draco domain (A2.2).
If there is enough detailed knowledge about the domain, then
an experimental domain is created (A2.201) and tried out on
example problems (A2.3). If the tests are successful, then
the domain is added to the library of domains known to Draco

(A2.4). It should be noﬁed that a new domain is constructed

in terms of the domains already known to Draco (A2.2I1) by a

domain designer.
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A22 Construct a Domain (Figure 5)

This diagram specifies what constitutes a domain
description to Draco. First the syntax of the domain
lénguage is designed and a suitable internal form for the
doﬁain is described (see page 48). This informétion is used
to geﬁerate a barser for the domain language (A22.1).

Next, a prettyprinter 1is created (A22.2) which can
prettyprint the internal form of the domain back into the
external form (domain language).

The third phase in the construction of a domain is the
creation of a transformation library for the domain (A22.3)
'which is prettyprinted into a catalog.of transformations for
the domain.

The fourth and final phase in the <construction of 'a
domain is the creation of a componeht for each object-and
operation‘in the domain (A22.4). Each component contains
many refinements which specify the meaning of the compoﬁeht

in terms of other domains known to Draco (A22.4I1). As each

refinement of a component is put into the domain component
liQrary, it is annotated with transformations of interest
from the transformation library (422.411) of the domain in'
which the reﬁinement is written.

Feedback on problems with the definition of a domain is

given through the use of the domain (A2201).
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A3 Construct a Software System (Figure 6)

When the organization is confronted with a new software
sYstem to construct, it now has two options: construct a
custom system using craftsmen (A3.3) or ”try and construct
the éystem from existing parts and assemblies (a Draco
: domaih) (A3.2). The decision of which of these options to
take (A3.101) is based on the past performance of the Draco
domain (A3.1Cl) and the 'details of the system under
consideration (A3.1I1). With either option, the activity of
software construction results in a software system (A301).
The experience gained from building the system (A302) Iis
either craftsman experience (A3.302) which can be used to
aéfine Draco domains, or experience using 'a Draco domain

(A3.202) which can be used to revise the domain definition.
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‘A32 Construct System Using Draco (Figure 7)

If the decision 1is made to use a Draco domain t§
construct a system (A32.1Cl), then a ‘systems analyst
attempts to form the requirements of the system (A32.1I1)
into.the domain language (A32.1) with the aid of a systems
designer. The PARSE subsystem checks the syntax of the
domain language program and produces the domain internal
form (A32.2). Using the scheme describe&'oh page 55, PARSE
annotates the internal form with transformation suggestions
from the domain transformation library (A32.2Cl).

Once ~-the program has been parsed into the domain
internal form (A32.201), it is transformed and refined by a
system specialist using the TFMREF subsysﬁem into the source
code of an executabie target lahguage (A32.3). The
resulting software system is tested (A32.4) and 1is either

acceptable (A32.401) or unacceptable. The refinement record

(A32.301) of an acceptable system is retained.

The two types of unacceptable systems ére those which
seem to meet the requirements but wuse too much resoﬁrce
(A32.3I2) or those which do not meet their requirements
(A32.112). An iunaéceptable systemn from a resource
standpoin£ may benefit from a new implementation. An
unacceptable system from a requirements standpoint requires

revision of the domain language program.
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A323 Transform and Refine Internal Form (Figure 8)

As -refinement proceeds, the infernal form of a
particular problem may contain internal form fragments from
many domains being used "~ to model the problem. The first
step in refinement is to choose some domain.in which to work
(A323.1)-and then to choose some instance of that domain in
the internal form (A323.2). Now, within the chosen domain
instance ‘a small locale (A323.30l) may be selected to work
on, such as the "inner loop" [95] of the problem. Within
the chosen locale transformations suggested by the domain
transformation library may be applied (A323.4) or
réfinements for the objects and operations may be selected
(A323.5) from the domain comp§nent library. The interaction
with the transformation mechanism is guided by an
application policy (A323.4Cl). The interaction with the
refinement mechanism may be guided bylthe use of tactics
(A323.5Cl) and an application policy (A323.5C2). Chapter 3
discusses the details of defining and using transformations
while Chapter 4 performs the same function for éomponents.'

"Once the problem has been refined into an executable

language, the program (A32302) is prettyprinted to a file.
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From the previous model of the wuse of Draco in an
organization to produce software, four major human roles

with Draco are apparent.

The Human Roles with Draco |
1. the Draco system builders

- the builder of the mechahism.

- the designer of the specification languages
for the different domain parts.

2. the domain builders

- the domain analyst who tries to discover the
objects and operations of a domain.

- a domain designer who describes the possible
implementations of the objects and
operations of a domain.

3. the domain users

- the systems analyst who uses an available
Draco domain as a framework for his analysis
of a specific problem. '

- the systems designer who accepts the
analysis of a specific system from the
systems analyst and uses a domain language
to describe the system.

4, the Draco system specialist
- the Draco system specialist who refines the
specification of a problem into an

executable target 1language by navigating
through the modeling domains of Draco.

The identification of the major human roles with Draco

enables us to partition the actions in producing a system
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between a collection of pedple, each with different

responsibilities.

The Usual Draco Cycle

Fﬁom the model, we can see that the basic cycle of
operation in producing an executable program with Draco is
to cast the problem in a domain language, parse the domain
language into the domain's internal form, optimize the
internal form using transformations, refine the internai
form using software components, and iterate transformation
and refinsmsnt through'layers of modeling domains.

The specification of the objects wused 1in the Draco

cycle of refinement is discussed in the next section.
SPECIFYING A PROBLEM DOMAIN TO DRACO

A problem domain 1is a <collection of objects and
operations, but to specify a problem domain to Draco .a feﬁ
other things must be included. In particular, a domain
language parser, a domain language prettyprinter, source-to-
source transformations for the domain, and components for

the domain must be specified to create a useable Draco

domain.

Domain Language Parser

A domain language parser takes the external form

(syntax) of domain A, ext[A], "and turns this into the




41
internal form of domain A, int[A]. The domain language (the
external form) should, if possible, use the notations and
forms of the problem domain. The internal form of a domain
is a tree with a prefix keyword in each node of the tree to
state the purpose of that node. This is similar but not the
same as a parse tree in that ﬁhe prefix keywords afe not
nonterminal symbols in the giamma#. All the manipulations
of Dréco are performed on this inte#nal form.

In Draco 1.9 the syntax of the domain language is

specified in a BNF style with tree-constructing operations

included as actions. This scheme of parser description |is

taken from the META series of Tetacompilers {141]. The

parser generator generates LL(1l) clrss parsers from these

A domain language prettyprgnter takes int[A] and

descriptions.

Domain Language Prettyprinter

produces ext[A]. This activity 1is| essential since Draco
must communicate its actions and, results in a form people
can understand. AThe external form produced should be
pleasing to the eye ~and produce useful groupings and

indentations.

Source~to-Source Transformations for the Domain

. | _ .
The details of specifying source-to-source

transformations are dealt with in Chapter 3. The source-to-
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source transformations transform parts of the internal form
of one domain into the internal formvof. that same domain,
i.e., int[A] into int[A].

The transformations capture rules of exchange relating
the objects and operations in the domain. These rules of
exchange are independent of the implementations of the
domain objects and operations. Each transformafion is named’
and given a characterizing number which relates the
‘importance of performing this transformation 1in the

estimation of the domain designer.

Components for the Domain

The components for a domain relate the internal form of
the domain to the internal form of other domain domains,
i.e., int[A] to int[A,B,...,Z]. The details of specifying
and using compohents are discussed in Chapter 4.

The compdnents specify the semantics of the objects and
operations in the domain. They do this by relating the
objects and operafions in one domain to the objects and
operations in other (possibly the same) domainé. There is a
component for each object and operation in a domain. . Each
component contains many refiﬂements eéch of which is a
possible refinement for the object or operation in the
domain which the compoﬁent represents. Each refinement
represents an implementation decision which may preclude the

use of other refinements 1in other components. As an
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example, a string manipulation domain may support a string
implementation as a singly-linked list of characters. This
implementation would preclude a move string-pointer
operation refinement which can back up in a string.

The details of domain specification may be found in the
manual for Draco 1.4 [117]. In the following two chapters

we will discuss the specification and use of transformations

and components in more detail.




Chapter 3.

DEFINING AND USING TRANSFORMATIONS

The source-to=-source transformations used ;bf Draco
relate the objects and operations of a,domein by specifying
rules of exchange between statements in the domain. These
rules of exchange are independent of any implementation
decisions whicn may be made for the donain objects and
operations.

Draco uses these transformations to customize the use

of a component to its wuse in a specific system. Once a

component is placed into a system, the transformations use
the surrounding context informatien to smooth the component

into the context and remove any unused generality.
PROGRAM TRANSFORMATIONS

Program transformations are productions with a left-

hand eide (LHS), a right-hand side (RHS), and enabling

‘conditions [148]. The LHS is a pattern which is matched

against the program. The enabling conditions are predicates

on the parts of ;he program'which are matched by the LHS.
If th;f enabling conditions are true then. the RHS is
substituted . for the LHS -~ in the  program. - Sinee
t;ansf@smétions are performed on a representation of the

sourc¢e cbﬁe of a program, they represent eptimiZations

L
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independent of any particular machine.

Source-to-Source Program Transformations

By "source—to—sourcg program transformations" we mean
that the LHS is a pattern on the text, or source code, of
the program and that the RHS is also a pattern of sourée
code. 1In source-to-function transformations, the RHS 1is a
function on the matched part of the program and the result
of that function is substituted for the LHS.

In general, source-to-source transformations are not és
expressively powerful as source-to—function transformatioﬁs
but their wuse is prompted by one important reason, the
ability to understand what the transformations do. To
understand a source-to-source transformation, the user must
understand the language being transformed, the language of

the transformation pattern matcher, and the language of the

enabling conditions. The pattern language and the enabling
condition language are usually very simple. To understand a
source-to-function transformation, the user must further
understand the languagelof the RHS function. This language
is wusually very complex and not at all the kind of thing a
transformation user, who is concerned about the program and
not about the transformation system, cares about learning.

In Draco, the source-to-source transformations’ should

7From now on we shall use transformations to denote Draco
source-to-source transformations.
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be 1intelligible to the domain builders, the domain users,

'and the Draco system specialists whose roles are defined on

page 39.  Transformations are  created by the domain
builders. The simplicity  of ‘source-to-source
transformations seems to increase their accuracy and make

them more attractive to users.

Enabling Conditions

Practically  every transformation  has enabling

conditions if we wish to insure strict semantic equivalence.

Usually the full enabling conditions are not checked. As an
example.the transformétion

?X+0 => ?X

‘'may have “enabling conditions in that the "+" add operator

may change the type of ?X in some languages or normal ize ﬁHe
representation of ?X in some machines. By vﬁhe- same ' token
the transférmation, | |

(2B4+2C) *2A <=> (2B%?A)+ (2C*?A)
Which requires the conventional enabling coﬁdition that ?A
is side-effect free [148], may alter the behavior df_ the
program. All the arithmetic opefatofs on cémputers have

side effects based on their range of number representation.

For any particular machine there are values for ?A, ?B, and

?C which can cause an arithmetic underflow or overflow on

one side of the transformation and not on the other. Thesé

kind of enabling conditions are seldom checked since - they
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would prevent most transformations from operating and afe
not machine independent. In general, the transformations
are "probabilistic," checking for enabling conditions which
are usually violated. These include predicates on the range
and domain ef variables in the program fragments under

consideration [148].
DRACO SOURCE-TO-~-SOQURCE TRANSFORMATIONS

In Draco, transformations are specified as rules of
exchange on the internal form of a domain language which 1is
a tree with a‘keyword in each node to identify its function
(prefix internal form). Thus, the LHS of a transformation
is a statement in a prefix internal-form tree-pattern

language.

Matching the Prefix Internal Form

Since the prefix internal form contains identifying
keywords, a very fast,; simple pattern matcher mey be built
using the keyword as a left-hand enchor in the matching. We
can view the LHS as a tree template which is appliea only to
nodes in the internal form tree with the same prefix keyword
as the root of the LHS pattern. Four types of objects may
appear in the LHS pattern after the prefix keyword.

1. literal objects - either names, numbers, or

strings which must be present in the internal
form.
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2. classes - the name of a set of literal objects or
literal subtrees a = member of which must be
present in the internal form. Class names are

denoted by enclosing them in "<>" brackets. -
'3. pattern variables - the name of a variable to be
- bound to the subtree or 1literal object which
appears -at this' position in the internal form:
tree. Pattern variables are denoted by a "?2"
preceeding the variable name. - o :

4. pattern - another pattern to be applied to the
subtree or literal object which appears at this
position in the internal form tree.

During the pattern matchiﬁg process the consistency of bound
vqfiables (class, pattern variables, and list variables) is
maintained. Once a matching variable is bound, all other
occurrences of it 1in the pattern must be structurally the
same. The enabling conditions are predicates on the objects
bound during matching. The RHS of a transformation is a.
tree which contains references to the bound variables. The
RHS is substituted. once the matching variables within it

have been instantiated with their bindings.
METARULES ON SOURCE-TO-SOURCE TRANSFORMATIONS

Metarules are rules ,which relate one rulélfa‘another’
rule. In the context 6f transformaﬁion$  as produétibn
rules, metarules relate the possible action of one
trénsformatidn to the ppssible' éctions of other
transformations [92]. Since the transfofmations uséd-by‘
Draco are 50urceftoésourcé{ we can éutohatiéally produce

. metarules for these transformations.
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’.xn ﬁhe following discussion,.LHS(t) and RHS (t) denéte
the right-hand and left-hand sides of transformation t, and
aﬁb denotes whether pattern a'métches8 pattern b. Metarules
‘for a set of transformatioﬁs, T, are created by the
.algbfithm in figure 9. For each transformation t, algorithm
9. produces an UPLIST(t) and an AGENDA(t,n) for each nodein
in RHS(t). -

1. For each transformation t in T, do steps 2 and 3.

For each transformation t[i] in T, do step 4.
2. Make UPLIST(t) an ehpty priority queue.

3. For each node n in RHS(t), make AGENDA(t n) an
empty prlorlty queue.

4. For each transformatlon t[{j] in T, do steps 5 and
. 6 L]
5. For each node n[i] in RHS(t[i]), if
' n[i]N\LHS (t[j]) then insert t[j] in
AGENDA (t[i] ,n[i]) with priority .
APPLICATION—CODE(t[j]).

;, 1f

6. For each node n[j] in LHS (t[]j]1)
[j1 in UPLIST(t[l])

n[jINRHES (t[{i]) then insert t
with priority DEPTH(n[j]).
~ Figure 9. Algorithm for METARULES (T)
The AGENDA for a >node in RHS(t) listé all  the
traﬁsformations in TAwhose LHS matches that node in RHS(t).

.Thus if the transformation t were applied, ~the AGENDA

entries for RHS(t) stafe which transformations‘would apply

8The details of the "N\'" metamatching operator are given in
Appendlx II. ,
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at each node of the substituted RHS(t). The APPLiCATION—
CODE number of a transformation which orders the agendas 1is
discuésed on page 52.

The UPLIST for a transforma;ion 't lists all the
transformations whose LHS contains RHSkt). | Thus if ‘the
transformation t were applied, the UPLIST(t) lists which

transformations might apply at some internal f&rm subtree

_which encloses the substituted RHS(t). The "priority,

DEPTH(n[j]l), associated with each transformation given in

"UPLIST states where the transformation should be attempted

as the number of tree levels above the node which was just

transformed.

The Complexity Motivation for Transformation Libraries

From steps 1. and 4 of élgorithm 9, it is easy to see

that the complexity of creating the metarules for n

. transformations - is 0(n2) in terms of the "N" metamatching

operator. Since this operator is expensive, and the number

of transformations for a domain can easily range to 2009

[148]; the transformations for a domain are grouped into .a

library and new transformations are incrementallyvaddedQ

The complexity of adding a new transformation to an existing:

library of n-1 trahsformations is 0(n). All of the existing

metarules still remain, just some new information 1is added

to them.

As will be shown when we discuss the management of the
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transformations, the ability to generate metarules when the

library is formed saves large amounts of searching when the

individual  transformations are used.

The Naming Problem for Transformations

The designers of eafly transformation systems [5]
struggled with the problem of how to name  each

transformation in a large set of transformations so that the

‘user could remember the names. The Draco system deals with

this prbblem in tWo ways. First,lthé class feature in the
definition of transformations allows one transformation Eo
stand for many ttansformations depending on the size of the
classes involved. Secondly, the metarules virtually
eliminate the naming'problem by having the transformations
refer to each other by name;' If a user knows where he
wishes to perfbrm a transformati§n then the metarules wili
have suggested only those tranéformations which could apply
at that locale. |

The number of names the user must recognize, not

remember, 1is reduced to the transformations suggested for

each locale. The metarule suggestions, coupled with the
ability to display ‘the text of a transformation from the
catalog of transformations for each domain, eliminates the

naming problem..
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Transformation Application Codes

1Pl - up procedural transformations
not source~to-source _
don't trace, don't ask user
1 - 12 always do this transformation
- 10 convert to canonical form
operator arrangement
flow statement arrangement’
program segment arrangement
reverse canonical form
2 very seldom done, keys procedures

WM N+
11
N > OV 00

' Figure 1d. Appllcatlon‘Codes Used in the Examples

'Each transformation is glven an application code when -

it is defined. The application code is used to order the

" transformations on the agenda of transformationsfto apply at

a node in the internal form tree. The application code

identifies what the transformation does and how desirable it

usually is to do. The application code guidellgiven in

figure 12 1is used in the examples. . The odd-numbered
transformations have enabling ,cohditions. The numbers
between - ¢ and '1za afe just ouidelines‘ since the
transformation‘ ﬁechanism allows al user to perform ‘a11
transformations within a‘range of application codes, |
The application "codes were des1gned for lookahead in
the transformation process but this turned out to be largely
unnecessary in the spec1allzatlon of components dlscussed on

page 64. They do turn out to be a convenient means for

specifying actions to be ﬁtaken by the"transformatione

mechanism (i.e., convert to canonical form) .
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Some Example Transformations

The example transformations in this section are on an
ALGOL-like language rather than a domain language with which
the reader would be totally unfamiliar.

5/3/79 19:18:18 SIMAL.TLB
<BOP> = -]ASSIGN,EXP,DIV,IDIV,MPY,SUB,ADD,

_ NOTEQ, EQUAL,GTR,LESS,GTREQ, LESSEQ,AND, OR}-
<REL> = -[NOTEQ,EQUAL,GTR,LESS,GTREQ,LESSEQF .
<BOP>EMPX: 12 *EMPTY*<bop>?X  => *UNDEFINED¥*
<BOP>IFELSEX: 4 (IF ?P THEN ?2S1
' ELSE ?282)<bop>?2X =>

(IF ?P THEN (?S1)<bop>?X
ELSE (2S2)<bop>?X)
<BOP>IFX: 4 (IF ?P THEN ?2Sl)<bop>?X =>
- (IF ?P THEN (2S1)<bop>?X) -
<REL>S@: 19 ?A-?B<rel>@d => ?2A<rel>?B
ADDX@: 12 ?2X+8 => 12X
EQUALMAMB: 12 =?A=-?B => ?A=?B
EXPX2: 9 ?2X=2 => ?2X*?X .
FORXX: 11 FOR ?W:=?X STEP ?Y TO ?X DO
22 => [[?W:=?¥;
_ : 2211
IFELSENOT: 12 IF #?p THEN ?S1 :
ELSE ?S2 =>. IF 2P THEN 282

ELSE ?S1
LABELIFX: 18 ?2X:
' IF ?P THEN [[?S;
GOTO 2X]1] =>
X
B WHILE ?P DO ?2S
MINUSSUBAB: 9 -(?A-?B) => (?B-7?A)
PARPAR: 12 ((?2X)) => (?X)
SEMICLXIF: 14 ?2X:
‘ ?S;
IF =2y THEN GOTO ?X => 7?X:
'"REPEAT ?S
UNTIL ?Y

Figure 11. Example Transformations

. The transformations with odd numbered application: codes
have enabling conditions which are not shown in the figure.

The enabling conditions for the example transformations are
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given in [148] which is the source of these transformations.
THE MANAGEMENT OF THE TRANSFORMATIONS

Initial Suggestion of Transformations

wWhéen a domain language. program .is parsed'into‘the
domain's internal form, an agenda is established’ for each
node in the internal form tree. If requested, the PARSE
éubsystem of Draéovl,@ will suggest transformations for_each
node in the program.  Only transformations ‘which will
succeed in ~mapching their LHS's are suggested by placing'

them in . order of application code on the agenda of the node.

The Transformation Mechanism

Thé transformation mechanism allows the_application of
transformations within a'selecfed locale in an instance of é
domain. Currently; the locale is selected by the user, buf
during optimizatioﬁ-it really'shbqld be selected by analysis
tools as discussed on page 149. The locale serves to focus
the -attention of fhe tfanSformation mechanism to a small
pért of the program at a time. Withiﬁ the ldcale the user
may apply individual transfqrmatioﬁs ﬁé specific.points in
the program. The trénsfofmation suggestions'on thel agenda
at 'any partidu;ar point iﬁ the internal form tree_hay be

displayed by the user.

The individual application of transformations is a very
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tedious process,. Alternatively, the user may reguest the
transformation'mechanism to apply transformations 1in the
locale with ”some range of appliéation code under some
application policy with or without wuser apbroval of each
transformation. ‘ Somg transformation applicatiqn policies
- and their meanings are given below. |
- top down - traverse the internal form tree of the

locale in preorder sequence applying all the
transformations at a node in order of application

code until no transformation applies at that node.

- bottom up =~ similar to top down but traverse the
tree in inorder sequence. '

- best transformation in 1locale - 'apply  the
transformation in the 1locale with the highest
application code at the node where it is
suggested. : .

- best transformation bottom up =~ apply the
transformation suggested at the frontier of the
locale with the highest application code. If no
transformation applies at the frontier then  move
towards the root of the locale one tree level at a
time, :

As transformations .are performed; the metarules for
those transformations suggest other transformations. In
particular, the RHS of a transformation already has agendas
" built into its tree form from the metarule creation. When a

. | | :
RHS is instantiated and substituted into the internal form
tree, 1its agendas suggest ,transﬁormations. Also, when a
transformation is applied, its'UPLIST is interpreted to add
transformations on the agendas of nodes higher in the

internal form tree than the node transformed.
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Thus, the initial suggestion of transformations du;ihg
parsing which ESElQ apply. coupled with the transformation
mechanism's interpretation of the metarules, starts a chain-
reaction which keeps all transformations whigh'ggglé apply .
to the program on the agendas of the internal form of the
.proéram. ‘Siﬁce transformations are only put on an agenda if
their LHS's match, LHS patterns are not attempted alllover
the program. This reduction in search'in the application of
a transformation to a locale makes the transformation
mechanism very efficient in operatiop.‘ This hiéh éfficiehcy
will Vbecome'important when "procedural" transformations are

introduced in the next section.
TRANSFORMATION TECHNIQUES

"procedural” Transformations

With the use of metarules and the best-in-locale
transformation application policy, some transformations.
which were previously considered procedural in nature may be
implemented by a Small set | of source-to-source -
transformations in a comfortable waf. These transformations
introduce non-printing semantic markers int04the'iﬁterna1
form and rely on the metarules for their propagaﬁion th;ough ]
the intefnal form. The effect of  the transformations and

. metarules 1is to create a Markov algorithm which runs on the

body of the program being developed.




BEGIN LOCAL A;

GOTO LABRELI;

LABELl: GOTO LABEL2;

IF predicate GOTO LABELI1;

END

Figure 12. A Program Needing GOTO Chain Elimination

As an example, consider the procedural transformation
set for "GOTO chain elimination™ [148] which is triggefed by
a labeled GOTO. Assume we have a language where the labels
are local to a BEGIN-END block and GOTO's (or conditionél
GOTO's) can only appear as statements, not computed or
embeddgd in other constructs. In this ianguage,’a problem
suitable for GOTO chain elimination is shown in figure 12.
A. possible prefix internal form for this program could be

that shown in figure 13.

LABEL1 LABEL1

LABEL2 pred LABELl
agenda: (@ GOTO-CHAIN-ELIM)-—

Figure 13. A Prefix Internal Form of Figure 12
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A preorder‘walk of the internal form tree of figure 13
gives the execution order. BLOCK' denotes the BEGIN-END
scope and SEMIC represents the semicdlbn execution order of
the statéments. Thé figure also shows the 'only agenda of
tranéformatipns " which would be'suggested_at par se time with
réspect to the set. of transformations for- GOTO chain
~elimination given in. figures i4 . through 22.. Notice the
uplists and.agendas-in theiRHS‘s of the transformations in
figures 14 through 22 which were préduced by the metarule
algorithm inAfigure 9. |
(PVARS J N 8§ S1 S2 L V)

(TRANS GOTO—CHAIN-ELIM @ (LABEL J (GOTO N))
(¥GCE1 J N (GOTO N}))

uplist: (2 (185 GCE-SCOPE GCE-UPl GCE-UP2))
Figure 14. GOTO—CHAIN-ELIM Transformation

(TRANS GCE-UP1 1¢5 (SEMIC (%GCE J N S1) §2)
(3GCE J N (SEMIC S1 (3GCE2 J N S2))))

agenda (165 GCE-UP1 ' ‘ ‘ :

agenda: (115 GCE-DOWN GCE-ELIM GCE IFGOTO GCE-LABEL
(119 GCE-DEFAULT)

uplist: (2 (105 GCE-SCOPE GCE-UPl GCE-UP2))

Figure '15. GCE-UPl Transformation
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(TRANS GCE-UP2 1¢5 (SEMIC S1 (%GCEl J N 52))
(3GCE1 J N (SEMIC (%GCE2 J N S1) S2)))

o _ 23 N 2?51 "///// ’
- agenda: (185 GCE-UP2 = '

agenda: (115'GCE-DOWN GCE-ELIM GCE-IFGOTO GCE-LABEL
(112 GCE-DEFAULT)
uplist: (2 (145 GCE-SCOPE GCE-UPl GCE-UP2))

Figure 16. GCE-UP2 Transformation

(TRANS GCE-SCOPE 1¢5 (BLOCK V (%GCEl-J N S))
(BLOCK VvV S))

agenda: (185 GCE-SCOPEY
uplist: empty - '

Figure 17. GCE-SCOPE Transformation

(TRANS GCE-DOWN 115 (%GCE2 J N (SEMIC Sl S2)) ‘
(SEMIC (%GCE2 J N S1) (%GCE2 J N S2)))

agenda: (115 GCE-DOWN GCE-ELIM GCE-IFGOTO GCE-LABEL)
. (119 GCE-DEFAULT) R

agenda: (115 GCE-DOWN GCE-ELIM GCE-IFGOTO GCE-LABEL)

: (119 GCE-DEFAULT) '

uplist: (2 (115 GCE-DOWN))

Figure 18. GCE-DOWN Transformation
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(TRANS GCE-ELIM 115 ($GCE2 J N (GOTO J)). (GOTO N))

uplist: (2 (115 GCE-ELIM) (@ GOTO-CHAIN-ELIM))
Figure 19. GCE-ELIM Transformation

(TRANS GCE-IFGOTO 115 (3GCE J N (IFGOTO P J)) .(IFGOTO P N))

uplist:(2 (115 GCE-IFGOTO))
Figure 20. GCE-IFGOTO Transformation

(TRANS GCE-LABEL 115 ($3GCE2 J N (LABEL L §)) - | ,
(LABEL L (3GCE2 J N S))) -

agenda: (115 GCE-DOWN GCE-ELIM GCE- IFGOTO GCE-LABEL o ‘
(119 GCE-DEFAULT) ' : '
uplist: (2 (115 GCE-LABEL))
Figure 21. GCE-LABEL Transformation - -
(TRANS GCE-DEFAULT 11¢ (%GCE2 J' N S) 8§)
27 2N 2?8
‘uplist: empty

Figure 22. GCE-DEFAULT Transformation

The $GCE semantic markers move through the internal’




form tree looking for GOTO's to LABELl and replace them &ith
GOTO's to LABEL2. The procedural sequence is initiated by
the transfdrmation GOTO~-CHAIN-ELIM :which is the only
“transformation - suggested in figure 23 for the
" transformations given in figuréé 14 through 22. Once i£ is
applied, the hetarules and transformation mechanism take
overlto propagate the seﬁahtié markers. The first few steps

in the example are shown below.

v LABEL2
ag-en‘da‘:_(ra GOTO-CHAIN-ELIM
F;gure 23. Partial Internal Form of Figure :12
Initially we start with that portion of the internai
 form shown in fiéure 23 with transformation suggéstions on
an agenda. The tranéformatidn GOTO-CHAIN-ELIM (figure‘ 14)
‘is éﬁplied-at the LABEL node where it is suggested and it is

successful with pattern variable 23 matching LABEL1 and

|
|

. .pattern variable ?N matching LABEL2. The RHS is

instantiated with these. values and the‘internal form now
becﬁmes thatlshown in figure 24,

. The metaruies on GOTO-CHAIN-ELIM have suggested  new
transform;tidns, to be attempted at a higher level in the

tree. The transformation GCE-SCOPE is attempted, but |{t
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LABEL1 LABEL2

LABEL2

| agenda: (185 GCE-SCOPE GCE-UP1 GCE-up2)’
Figure 24. Figure 23 After GOTO-CHAIN-ELIM Transformation

fails  to match its LHS and is removed from the agenda. The
traneformation‘ GCE-UP1 (figure ‘15) is attempted and

1

succeeds, producing ' the modified intefnai form of figure 25.

LABEL1 . LABEL2

agenda (165 GCE-UPl '

agenda: (115 GCE-DOWN GCE~ELIM GCE IFGOTO GCE- LABEL
(116 GCE-DEFAULT) . ‘

agenda: (1@5 GCE—SCOPE GCE-UPl GCE-UP2)- e J/

Figure 25. Figure 24 After GCE-UPl Transformation

Under the best transformation in the locale policy, the
next transformatlon to be attempted would be GCE-DOWN wh1ch
would be successful and start to move the %GCE2 marker down .
the ' tree. The %GCEZ.merkers move dewn the tree taking all
branches not yet taken (GCE-UPl, GCE- UP2, GCE~DOWN) . ' When
one of the'~%GCE2 markers encounters a GOTO to LABELl it

changes it td a GOTO to LABEL?2 (GCE—ELIM,GCE—IFGOTO). ‘ Tﬁe
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%GCE2 markeré must be able to propagate their information to
GdTO's in the progrém and this'heans they must be able to
pass through ;abeis (GCE-LABEL) . Finally, if none of thé
transformations which . propagate the $GCE2  marker

(application code 115) can do so,‘thén the marker is removed

'(GCEeDEFAULT application code 114).

Because of the application codes, if there are’ %Gcﬁz
markers in the tree tben one of'them is the locus of the
next transformation. If there are no %GCE2 markers, then a
%GCEI marker moves up the ‘tree and producés.a new $GCE2

marker (GCE-UPl, GCE-UP2) or removes the %GCEl marker when

it encounters the scope of the label (GCE-SCOPE). "At any

time there is only one %GCEl marker in the tree.
" To avoid leaving semantic markers in the internal form,
the transformations with application codes greater than 99

enlarge the . locale Iif they are placed on an internal form

. agenda outside the locale. The resulting prdgram is shown

in figure 26.

BEGIN LOCAL A;

GOTO LABEL2;

GOTO LABELZ2;

IF predicate GOTO LABEL2;

END

Figure 25.>Figure 12 After GOTO Chain Elimination
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This same theme can be used to build transformations
which ptopagate thé'type and value of variables and produce
data-flow analysié information. This type of transformation
is expensive to perform and the compilation of these
tgapsformation sets ihto actual procedures would make them
much mofe efficient. |

. These prpcedufél transformation seté are hard to
understand and violate the ease of understanding motivation
for source-to-source tranéformations, but they’do serve to

demonstrate a natural source-to-source = technique for

implementing some procedural transformations without having

to learn an alien language capable of manipulating the

internal form trees and writing RHS procedures.

Lookahead in Program Transformations

Program transformation can be viewed as a game of
per fect information, like chess. The program represents the

current board position while the transformations which apply

represent the legal moves. The goal of the transformation

process is to achieve an optimal program under some

criteria. Assuming we had an evaluation function on the

progrém in terms of the criteria of optimization we coﬁld
use lookahead witﬁ the evaluation functién to suggest the
nextA‘transformationv to apply, much as the chess élayihg
programs do- today. The difficulty is ‘in building vﬁhe

evaluation function which can determine the "goodness" of a
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given program under some general criteria. One approach to

the evaluation function is to assign a "goodness" to each
transformation. The application codes of transformations
represents this approach. The increase in program

‘

"goodness" from applying a series of transformations is a
function of the "goodness" . of the individual
transformations. |

The ability to look ahead with Draco transforﬁations is
"not very important since the transformations are used to
specialize components. The degree of specialization could
be improved by lookahead but the overwhelming majority of
the work in specialization is in removing program fragments
which represent unused generality. The relationship between
components and transformations, discussed in chapter 4,
‘initiates transformation sequences to remove most unuséd
generality withouﬁ lookahead.

An alternative approach for transformation planning is
to specify a goal in terms of the program and £find some
sequence of transformations which achieves the goal. This
approach, currently under investigation by Fickas [59],
avoidé the huge search space of transformations encountered
by lookahead, but it must deal with the problem of
suggesting worth-while goals.

On- pagée 95, the need to perform transformations on the

correct level of abstraction is discussed. The

transformations for a domain should only deal with the
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objects and operations of the domain and not anticipate or
infer knowledge from other domains which map into or out of
the domain.

In this chapter we have discussed how transformations
are defined and used for specialization by Draco. The next
chapter, | which discuéses software components, will
investigate in detail the relationship  between components
and transformations. In particular,_the theme of removing
the responsibility for transformation suggestion will ' be

carried over into components by automatically annotating the

components with transformations to be considered.




Chapter 4

DEFINING AND USING SOFTWARE COMPONENTS

Components provide the semantics for the domains
specified to Draco. @ Each component represents possible
implementatione ‘for an object or 6peration of a domain in -

terms of other domains known to Draco.
GRANULARITY OF THE SEMANTICS OF A COMPONENT

Each»component mcst provide a eemantics for ﬁhe object
or operation it represents which'.is consistent with the
Eransformations of that object or operation in the domain.
If, fof.example; a component represents the insertion.of an
element in a 1ist, then the result of the operation should
be a 1list. ~ The internal actions of the list insertiqcn
component may- break the input list ﬁstructure into e
structure which is not a 1list, but the result of the
operation must be a list.

The concept of "granularlty of meanlng is introduced
here. because earlier work in components attempted to prove
'that a component always upheld the structure of the object
being manipulated. As an example, the properties of a‘list‘
might be a#iomatiéed and used in an.attempﬁ to show that a

list insertion upheld all the axioms of a list For most.

implementations of the insertion operation on. 'a 1list the

67
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axioms are not upheld since ‘the ‘insertiOn requires a
temporary bfeakup of the structure of the  1ist in a way

which violatés the axioms,of'a‘list}" |
In this work we aséﬁme that a well-defined component -
upholds the axibms of its input and'butput types only with
réspect to‘the external-envirqnment of the‘component (i.é;,
statements in the domain language in which the object' or

operation is defined).'

THE CONSTITUENT PARTS OF A COMPONENT

'An example component for exponentiation is shown in
figure.27, The component provides the semantics for EXP
internal form nodes for the language SIMAL which is not a
domain-specific language, bﬁt will be used in examplesl'so
that the - reader will not have to learn a domain-specific
language at‘this point.

 Each comp§neﬁt has a name iand a list of possiBlé
arguments' in the COMPONENT field. The name is the prefix
keyword of the intérnal forﬁ nodes to which the component
applies. The list of possible arguments name the subtrees
of the internal form node. If a node has a variable . nﬁmber
of subtrees, a ﬁame prefaced by a ">" is used to denote the
rest of the subtrees in'the node,

A prose description of what the component does 1is given

by the PURPOSE field. If the component takes objects as

arguments and/or  produces objects, then the type of these
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COMPONENT: EXP (A,B) -
PURPOSE: exponentiation, raise A to the Bth power
IOSPEC: A a number, B a number / a number
DECISION:The binary shift method is 0(1n2(B)) while
the Taylor expansion is an adjustable number
of terms. Note the different conditions for
each method..
REFINEMENT: binary shift method
CONDITIONS: B an integer greater than @
BACKGROUND: see Knuth's Art of ... Vol. 2,
pg. 399, Algorithm A ‘
INSTANTIATION: FUNCTION,iNLINE
RESCURCES: none
CODE: SIMAL.BLOCK .
' [[ POWER:=B ; NUMBER:=A ; ANSWER:=1 ;
WHILE POWER>@ DO
[[ IF POWER.AND.1l # 0
THEN ANSWER: ANSWER*NUMBER ;
POWER:=POWER//2 ;
NUMBER : =NUMBER*NUMBER ]] i
_ RETURN ANSWER ]]
END REFINEMENT
REFINEMENT: Taylor - expansion
CONDITIONS: A greater than #
BACKGROUND: see VNR Math Encyclopedia, pg. 490
INSTANTIATION: FUNCTION, INLINE
ASSERTIONS: none :
ADJUSTMENTS: TERMS[28] - number of terms,
‘ error is approximately (B*1ln(A))ATERMS/TERMS!
CODE: SIMAL.BLOCK :
" [[ SUM:=1 ; TOP:=B*LN(A) ; TERM:=1 ;
FOR I:=1 TO TERMS DO
{[ TERM:=(TOP/I)*TERM ;
SUM:=SUM+TERM ]] ; '
RETURN SUM ]]
END REFINEMENT
END COMPONENT

Figure 27. An Example Component from the SIMAL Domain

objects in terms of the objects in the domain is givén in

the IOSPEC field of the component. The DECISION field
presents a prose description of the possible refinements of
the component and the considerations involved in choosing

between the alternatives.

Finally, there is a set of refinements of the component
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which represént a possible implementation of the component
in terms of the objects and operationé of other domains.

The first REFINEMENT in the set of refinements 1is the
default refinement. In the absence of any oﬁher
information, Draco will attempt to use this refiﬁement
first. Each REFINEMENT has a name and a BACKGROUND which is
a prose‘description of the method the refinement implements
ahd reference to where more informétion about the method may
be found. |

The CONDITIONS field of a refinement 1lists conditions
which must be true before the component may be used. There
are basically two kinds of conditions: conditions on the
domain 'objects on which the component operates and
conditions on previously made implementation decisions. The
conditions on the domain objects are local to the locale
where the component will »be used. The conditions on the
implementation decjsions are global to the  domain instance
being refined. The ASSERTIONS field pf a refinement makes
assertions about the implementation decisions the component
makes if it 1is used. The assertions are the opposites of
the conditions on implementation decisioqs. The managemenﬁ
of éssertions and conditions is discussed in more detail on
page 75.

-The RESOURCES field of a refinement states what other
components will be required to perform initialization if the

refinement 1is <chosen. The resource components are program
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parts'which‘are executed before the resulting program begins
execution (initiaiization phase) and‘they create information
resources for the refinements used in the program.

An example use of a resource is a refinémént for coéine
which interpolates a table of cosines during execution. The
" table musthbe'built during the initialization phase and the
naﬁe~of the table must Be paésed to the interpolation
refinement of the component cosine. This is achieved by
building a refinement which interpolates tables and requires
a reéourée component which builds interpolation tables.

The ADJUSTMENTS field of .a refinement states fine
tuning settings for a refinement, the “meaning of the
adjustment, and a default.settinge An example adjustment

term might adjust_the,accuracy_of a refinement or limit the
amouﬁt of time spent in calculating in the refinement.

The GLOBAL field liéts all names used in the refinement .
which are not to be renamed. The primary use of a GLOBAL
definition‘is fo define variable names which are reserved by
a domain and cannot be renamed. The SNOBOL variable &ANCHOR
is an example global. GLOBAL definitions should seldom be
used and are_always‘suspect. They seem to #tem from .a ‘poor:
analysis of a domain. | .Labels which are defined .in the
refinement are defined in the LABELSA field of the
refinement. | | ' |

The way a refinement,may‘be inserted into the internal

form tree during refinement is governed by the INSTANTIATION
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field of the refinement, The three modes of instantiation

~are INLINE, FUNCTION, and PARTIAL. More than one

instantiation may be given for a refinement wifh the firéf
one listed being,vthe default instantiation.- INLINE
instantiation means"the'refihement is substituted directly
into. the internal form tree with all'variables used in tﬁe
refinement irenamed (including labels). except for the
aréuments and those declared global; FUNCTION instantiation

substitutes a call for the component in the internal form

"tree and defines a function using the refinement for the

body. A new function is defined only if the same function
from the same domain has not already been defined. PARTIAL

instantiation substitutes a call for the component in the

internal form tree with some of +the arguments already

evaluated in the body of the function defined. Limitations

are placed on the partially evaluéted forms allowed. When a

function is defined the defining domain, component name, and

‘a version number are used to differentiate between functions

of the same name in different domains and FUNCTION and

.PARTIAL versions of the same function in the same domain.
| ;

. The final field of a refinement is,ﬁither a DIRECTIVE
to Draco or 'theA‘inﬁetnal form of a domain. The internal
form of a domain may be described either in a parenthesized
tree notation with the INTERNAL:domain directive or it may
be épecified in the external form (domain language) of the

domain with the CODE:domain.nonterminal directive. The CODE
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directive causes the parser for the specified domain to be
read in and started to recognize the given, qontermina;
symbol. A DIRECTIVE to Draco 1is one of the follbwing

-aitérnatives: view the component as a function definition by
the user program, view the,compdnent as a function call,‘
defer from refining this component, and remove the node
which invoked this component from the internal form tree.
The Dracp‘ DIRECTIVEs are used when a,domain‘langUaée is
defined which allowé function definitions, functions 'éalls,’
" and such things. as refinements for commentsiwhich femove
 them from the program‘sinée'they are saved in the_refinemen;-
history. o | | : R

Not all thé componént and féfinement ‘fields - are
required far each component definition. Basiqally the only
required fields are COMPONENT, REFINEMENT, INSTANTIATION and

CODE.
THE MANAGEMENT OF THE COMPONENTS

The Motivation for Libraries of Components

Components are placed iﬁto libraries in mudh"the. same'
way and for much the same reason that traqsformatioh§ are
- placed intd'librafies. The proceésing of a single comp¢nent '
for inclusion-in'thé component 1ibra£y,of a domain  1is very

expensive. For each refinement in the component, the parser -

for the domain(s)vin which the refinement is written must be
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lqaded to parse the external form into internal fbrm. Once
" the code for the refinement is in internal form, the agendas
of the internal form are annotated with transformations of
interes£ from. the transformation 1library of the target
domain. These trensformation suggestions ereemade in much
the same way tha; ;raneformation suggestions are ﬁade when a
domain ianguage program is persed as discussed on page 55.
The transformation suggestions »will' point out . things ef
interest when the refinement is used. Thus, Dracé'supports
a component library cbnstructien facility where a group of
compohents may be replaced or added without disturbing the

other components in the library.

" How a Component is Used

This eection discusses how the fields'eof a component
are -~ used in the‘ ‘refinement process to choose an
implementation fo; the eperation of . object ‘the cémponent
represents. Not all of these actions are aecommodated.in
the current prototype:system‘ Draco 1.8. The differences
between this narration and the prototype are given on page
145. o ) \

First the IOSPEC conditions on the component should be
verified by examining the internal form or refinement:
hietory of the surrouﬁding internal foronf the node to,  be

refined. Restrictions on the legal internal forms e0cepted

by the»domaih laﬂguage parser might make. this step easier.
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Next .a REFI&EMENT is chosen and the refinément
CONDITIONS.are checked. .if an implementation decision
condition is violated then the refinement may not be used.
vacal conditions on the domain objects are formed into
surrouhdinq code for the refinement body. The hope is that
transformations for the domain will-be‘able to remove this
surrounding code by "proving” the.conditions correct and
fembving the code. | |

The user is.then asked about‘any ADJUSTMENTS fof the
refinement. If the user supplies no adjustmenté ;hen the
default adjustments afg'ﬁsed. -

| The .refinement body 1is now inétantiatéd into - the

internal  form according to the users wishes for
INSTANTIATION and the allowed  instantiations for  the
~refinement. The body is instantiated with minimal_renaming
to avoid namingv conflicts. ,"'If the refinémént" is
instantiated as a: function and a function alreadyrexists
then the already defined function is used.

once the réfinément is 'in'lsertt;_ed',. ény _necessa'f:y.
RESOURCES ,are“added, to ‘the-'initialization phase of Ehe
devélopihg‘program. 'These resouréeé ape’uéﬁally highflevéi
program fragmen;s whiéh also have tovbé‘réfined.A |

Finally the ASSERTIONS”for‘the refinémédf are made in
the sbope df.thé domain'insténte. 'The‘asseftidns afeta kind

of lock and key mechanism with the conditions of other

‘refinements. When two domain instances are merged into a
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single instance of a same or other domain, then the
assertions are chécked for consisteﬁcy. This places the

-overly sﬁrong restriction. that all objecfs in a domain of
the same type_havé,the same implementation. More éxperience
with domains could probébly remove this restriction. -If the
asserfed cdnditions‘ conflict, then the refinement of the
program.mﬁst be bécked.up. A médel_for~avoiding conflicting
assertions is given on pagé 122.

The modei for the use of a component is‘very' close to
the actions of a module ihtefconnectibh language (MIL)., 1In
fact it éeeﬁs that a MIL is'a‘natural way to ‘organize fhe
components of a particular domain. This similarity is

discussed on page 131.
THE REFINEMENT MECHANISM

The refinement mechanism of Draco 1.8 applies thé
component iibrary of a domain to a locale within an instanéé
of the domain in the intefnal form tree for the program
being refined. The locaie is bounded by a domain instance

which is a part of the internal form tree in the internal

|

form of a particular domain. Refinements are made in one
domain at a time on an instance of the domain. The locale
vmechanisﬁ is important for fefinements in that the “innér
'Iqop" of the program should be refined first to pick
efficient implementations. These implementation decisions

will affect -the ' choices éUtside of the inner loop through
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the assertion and cond1tlon mechanism of the components.

The Draco 1.0 refinement mechan1sm dpplies the
components to the 1ocale internal  form tree ~ using
aéplication policies similar to transfotmation_application
pol1c1es.' In general, top~down 'application is the best
policy to avoid conflicting condltlons which would requlre a

backup of the refinement.

Tactics for Refinement .

From the previous discussion about the selection of a
refinement for a component and the user interaction
necessary to make a choice, it is evident that the uset
’needs‘some mechanism to keep Draco from asking too many
QUestions. The user needs the ability to specify guidelines
for answering the -questions and these guidelines are called
"tactics."” -_

"The TACTICS.subsystem of Draco 1.0 allows the wuser to
interactively define tactlcs which answer refinement
Questions for the reflnement mechanism. The subsystem also
allows ‘the user to read and write tactics from storage. A
standard set of tactics is already avallable. When the
refinement mechanism requires a user 'response, it first,
applies the tactics to .see if one of them provides an :
answef.

A simple set of tactics for space eff1c1ency is given

in figure 28. Every rule group (HEAD, SPACE, and *CMD¥*)
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DEFINE HEAD.*ENTRY* = COMPONENT,LOC 3;

DEFINE SPACE.*ENTRY*= [ALL<DIRECTIVE>,USE],
. [ALL<AVAILABLE FUNCTION>,
USE FUNCTION],
[ALL<KFUNCTION INSTANTIATION>,
USE FUNCTION],
USE DEFAULT;

EFINE *CMD* ,SUMMARY = "Summary.“,COMPONENT,
PURPOSE, IOSPEC,DECISION,
[ALL,REFINEMENT, CONDITIONS,
BACKGRQUND,ASSERTIONS,
RESQURCES , INSTANTIATION,
ADJUSTMENTS ,DOMAIN] ;
EXIT
Figure 28. Simple Code Space Efficient Tactics
with a *ENTRY* rule 1is run as a tactic. 1In the example
tactics, the HEAD rule prints the component name and
prettyprints the internal form tree to a depth of three from
the node being refined. This rule keeps the user at the
terminal informed about what the tactics are working on and
where the work is taking place.
The SPACE rule checks all refinements to see if one is

a Draco directive and if so, it uses it. Otherwise if there

is a function which already implements the component, then

‘the internal form node 1is replaced with a call to the

- function. Otherwise, if there is a ref;nement which can be .-

instantiated. as a function, then it attempts to use that
refinement as a function. If all else fails, then it
attempts to use the default refinement with the default

instantiation. If none of the tactics 1is successful in~

-producing a refinement, then the refinement user interface
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iss invoked and the‘QSer.may inqdire-as,to the problem and
make a refinement choice. |

The *CMD* rules are rules which may be invoked by the
refinement user interface. Thus, they are user-defined

commands which may 1nqu1re about the state of the program‘

under refinement and attempt to make refinement choices JUSt

_as tactics would. ‘The SUMMARY command prints out the fields

of the component and all its refinements for the user's
information and would be used if the user were required to
specify a refinement. | |

| The refinement user interface could be- used for
applying refinements one at a time but this woold be very
tedious work, similar to applying transformatione one at a
timer In general early versions of a high-level domain-
specific program are refined by the default taotics, which
use the usnally easy and uncomplicated default refinements,
to obtain a first. implementation to see if the system
impiements the user's desires. Onceva good domain-specifiC'
program is settled upon, the more Sophisticated refinements

and transformations may be used to refine the . program  for

efficiency.

As mentioned before, the basic cycle of refinement with

Draco is to transform a domain instance and then refine that

domain ~instance. = A useful model of.the arrangement of

domain instances during the process of refinement is to view

the domain instances as bubbles as shown in figure 29,
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initial -=> modeliﬁg -> merged -> executable

Figure 29. A Conceptual Model of Domain Instances
,Iﬁitially, a domain-specific program. is parsed into the
internal form for the(doﬁain and this internal form is one
big bubble. As the program is refined, otﬁer bubbles appear
which represent instances of other domains which are being
used as modeling domains. Each of these domains contains a
set of assertions about the implementation decisions on the
objects and operations in that instance of the domain. Whén
two domains or.bubbiesiafe merged, the assertions become a
part of the new bubble andifhey are checked for consistency
of implementation for the objects and operationé of model ing
domains whichAoccurred within the bubble and were merged
away; _Thus, the program goes from one bubble representing a
hiéh-level domainQSpecific ~language to one bubble
representing an executable lénguage with assertions about
the implementations of all the objects‘and operations in all
the modeling domains used during the refinement. At any one
time during the refinement, the problem may be in mahy
model ing domains at once. |

In chapter 6, a formal moaél'of the interdependencies

of the domains which represent Draco's knowledge base is
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presented. Strategies based on this model should make it
easier for a user to avoid knowing the details of the

relationships between domains.




Chapter §

EXPERIMENTS USING DRACO -

This' chaptef presents eome results frqm USiné'Draco in
the conetructibn'of4pfograms. | To save the reader from
‘having' to understand a special- purpose domaln language, the
examples in this chapter are in the SIMAL language wh1ch is
a 51mp1e 1nf1x Algol =like language. This language is not a
»domaln language in the sense we have been dlscu551ng and is

used here only for exp051t1on purposes.
THE DOMAIN STRUCTURE OF THE EXAMPLES ‘ S . -7

This chapter .discueses an 1example' which refinee a
quadratic equation.solvef from SIMAL into LISP. The three
domains wused. in this refinement are organlzed as shown in
‘figure 30. The DRACO domain shown in flgure 30 creates
'functione, " creates function calls, -enferces_.component
conditions, and eliminates scoping4rules through #renamihg}.

It is the model of functions which Draco 1.4 uses.

Figure 3¢. Quadratic Example Domain Organization
Appendix_III' presents two larger examples both--

specified in domain-specific languages. One of the examples
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accepts a .description of a dictionary (DIC), an augmented
trangition network (ATN), a relational daﬁabase‘(RDBﬁ, and é
natural language generafor (GEN). These desdriptions are
refingd using a model of‘parailel execution (TASK) into a
natural lahguage database‘(NLP/RBD); The ATN . is ‘based on
 the work "of Woods [172] and Burton [32]. The relational
database is based on the work of Codd [42] and uses the
DEDUCE systems as a quel [36, 37]. The eight domains used
‘ih-the refinement of this larger example are organized. és

shown in figure 31.

“(NLP/RBD

Figure 31. NLP/RDB Domain Organization

A SIMPLE EXAMPLE

In this section we will be discussing the refinement of
the SIMAL program given in figure 32. The program
represénts é simple program for solving fFr the roots of a
quadratic equation. The‘example\is deceﬁtively simple. The

refinement of the SIMAL 'program into its equivalent LISP

form must deal with the following problems:
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— standard LISP? does not include an exponentiation
function. ‘

- gstandard LISP does not include .a square root
function.

- Standard LISP does not perform mixed mode
arithmetic.

.PROGRAM QUADRATIC

$QUADRATIC
[[ LOCAL A,B,C,ROOT1,RO0T2;

LOOP:
PRINT ("QUADRATIC EQUATION SOLVER");
PRINT (" INPUT A,B,C PARBMETERS ");
A:=READNUM;
IF A=§ THEN RETURN;
B :=READNUM;
C : =READNUM;
ROOTL:=(~B+SORT (BA2-4*A*C)) /(2*A)};
ROOT2: = (~B-SQRT (BA2-4*a*C) ) / (2*A)l;
PRINT ("THE ROOTS ARE: " ,ROOT1," AND ",ROOT2);
GOTO LOOP 1] | |

$

. END
Figure 32. SIMAL Quadratic Eéuation Root Finder
We shall <consider four different LISP programs..
resulting from the refinement of the program in figure 32
under different circumstances. Only two factors influenced
the different refinements of the proé:am, whether the uselof
a single transformation was allowed and which of éwo

radically different and simple tactics was used in the

refinement.

9The LISP we refer to here is UCI LISP which does
have the ability to 1load these routines from the
FORTRAN library but they are not part of the LISP
system. : :
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Tactics Used in the Example

The first set of tactics used to refine the exampie'are
the "SS" tactics. These direct the refinement mechanism to
construct a function for each component which can be made
into a fuqction. If a funcfion for a component already
exists then'a call to that function replaces the use of the
component. = These tactics are-aesigned to create "small and
siow" programs and are shown in figure 33.

DEFINE SS.*ENTRY* = LOC 2,
[ALL<DIRECTIVE>,USE],
[ALL<FUNCTION INSTANTIATION),

USE FUNCTION],
: ‘ [ALL<KINLINE INSTANTIATION>, USE INLINE];

Figure 33. Small and Slow (SS) Tactics
The second set of tactics used to refine the example
are the "LF" tactics which direct the refinement mechanism
to instantiate a component inline if possible. Otherwise
the component is made into a function. The "LF" tactics are
designed to <create "large and fast"™ programs and are shown
in figure 34.
DEFINE LF.*ENTRY* = LOC 2,
' [ALLKDIRECTIVE>, USE],
[ALL<INLINE INSTANTIATION) USE INLINE],
[ALL<FUNCTION INSTANTFATION>,
USE FUNCTION];
Figure 34. Large and Fast (LF) Tactics

Both tactics are much simpler than is typically used in.

the refinement of programs. Tactics wusually examine the

assertions, conditions, possible instantiations, and target
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AY

domain in their operation.

Transformation Used in the Example

The second factor influencing the refinement of the

example ©Pprogram was whether or not the use of the

transformation

| ?XA2 => ?X*?X
was allowed in the SIMAL domain. The transformation -
requi;es that ?X be side-effect free [1481. If -the

transformation was allowed, it was automatically suggested
in all the components which could use it and every time the

transformation could be applied it was applied.
THE RESULTS OF THE REFINEMENT

Table 1 . names the programs produced uﬁder the
circ@mstances outlined above. From table 1 we can see that
the . "SS" tactics met part of their objective in that the
 code spacel? fortthe'programs refined uﬁing them is smaller.

The bléck sfructure charts of the resulting programs is
given in figures 36 through 35. Thé structufe charts 1show
that a single t;ansformation‘ cén be' very power ful ‘in

removing the need for the exponentiation routine and Iits

18rhe code. size is the size of the static program for
interpretive UCI LISP measured in 36-bit machine words. All
measures of memory size are of this form.
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transformation used

no “yes
sSs QUADSS - QUADTSS
. o 551 words 451 words
tactics 9 functions .~ 6 functions
used . ‘
LF QUADLF QUADTLF
' 897 words 595 words
2 functions ‘2 functions

Table 1. Resulting Programs and Code Sizes
support routines. The NUMBER routine showh in some of the
structure charts arises from the need to maintain a

consistent model 6f SIMAL numbers in LISP.

|START|
IQUADRATIq

Figure 35. QUADLF and QUADTLF Block -Structure Chart

ISTART[

Figure 36. QUADSS Block Structure Chart .
Note that there are two places where the transformation

was used. The obvious usage is the transformation of BA2

into B*B for both the root equations. A less obvious use is
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ISTARTI

JOUADRATIC

:Figurs 37. QUADTSS Block SrrUCture Chart
the removal of the exponentiatioﬁ in the Newton-Raphson root
algorithm. Very rarely are all the uses of a transformation
Foreseen, even for simple transformations. The'automatic
suggestion of transformations removes thé burdem of stating

where to apply a transformation from the user.

Characteristics of the Resulting Programs

The runtime characteristics of the resulting programs
was investigated by running»twenty test cases of the.‘samé
random data through each program and measuring éPUiand‘
memory‘use.‘”Figare 38 gives the CPU usage of ali' the
programs for each test case whiie'jé gives the_cﬁmulafiVe'
CPU usage for each program as it ran the test cases.
| Similarly, figures 4¢ and 41 give the .memory use -for
each test case and cumulative memory use for”each.teSt case
respectively. The variations in the -‘amount of fimé and
memory needed ‘to run each test case come from the'SQRT and

EXP routines which are 1iterative approximations (Newton—

Raphson' and Binary Shift Method, see fiQure'_27) and
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SEEER

QUADLF

CUMULATIVE MEMORY CELLS "USED

QUADTLF

8
R ' 13 l - 2r
TEST CASE
Figure 41. Test Case vS. Cumulﬁtive Memory Words

dependent on the input data. - 1)

The runﬁime ‘charactéristics qhow thaﬁ  the=programs
refined with the "LF" tactics were 1;rger aﬁd faster Ehan
their counterparts. refined with éhe “sS" tactics. The
differen‘cé in tactics, however, was éomple'tely ‘domirvxated by

1 o ,

whether  or not. the,transformation:Was used.,'Thé‘progfams
thch were transforméd before refinément ‘were lfaster'.and
used less ‘méhory than those which were not fransfdrmed.
"~ This simple example demonstrates  the | importance of
performing transformations at 'thé  cor?eé£ level of

abstraction as discussed on ‘page 95.
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Figure 39 shows that the'QUADTLF implémentation was
‘just'barely the fastest,-beating QUADTSS, even though figure
4@-shows'that it requires twice as much running space as
QUADTSS and its - code space . is lafger. "~ Without
transfofmation, QUADLF is clearly faster than 'QUADSS» énd
requires only éboﬁt 20% mofé running space.‘
| Which'implementation'is the "best" depeﬂds on the time;
' spaée tradeoffs .in each 'specific case. .The ﬁLF" refined
'pgdgrams wefe pfesentéd,ét a disadvantage.here in that the
addition of more transformations would benefit them more.
'since they are embeded inline and the transformations could

make use of the surrounding context.
COMMENTS ON THE EXAMPLE

This chapter has presented a' simple eiample~whi§h
refined a 1@ line Algolélike program into approximately 80
‘lines of 'LISP. This is clearly gggrthe'goal of this work,
but it does serve to demonstrate some of the complex
intefactions vwhich take place between the components, -the
btactiés, and the transférmationsv dur ing refihement. The
simple example ?id' not even touch upon the issue ofvusing
alternate refinements for a cbmponent in that the given
tactics always used the défault refinement;

| only the ideas of transformations, components, and
tactics are presented here. The details of the different

definitions allowable 1in Draco 1.8 are found in the manual
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for the system [117].

The example in appendix III uses many a_omains, more
complex tactics, and large transformation libraries.  There:
may be as many as 100 components for a domain each wiﬁh'twp
or three possible refinements. The transformatibnllibfaries
may include 2068 or more transformationé as the encoding of "’
[148] for lSIMAL does. The tactics may check many féatures
in the conteit of refinement. The resulting programs ﬁay be
19-2¢0 pages long. All of these facts make the
_transformation and refinement process a .very complef
Opératioh. The next chapter jntroduceé a formal model of.

" this complex process which may serve as a basis for

refinement strategies..







Chapter 6

EXPERIENCE WITH DRACO

This éhaptet;présents some mtdelé and ideas which arose
from the wuse of Draco in the construction of p:ograms. In
particular,  the naturé ~of source-to—~-source  program
transformation, a formal model - of the knowledge in Draco

domains, and styles of domain organization are discussed.

EXPERIENCE WITH TRANSFORMATIONS

bExpériencé' Qith sourte—to-source transforﬁétionsf‘as
used by Draco has shown that it is important‘to perform
ttansformations ét the appropriate 1level of refinementi
Continuiﬁg .the example from-chapter 5, we can consider the
interaction between the siMAL transformation |

| EXPX2: ?2X™2 => ?2X*?X |

and the.component for 'exponentiatidn shoﬁn in figure 27
which has two possible refinements, binary shift ﬁethod and
"Taylor ekpansion. Given an exponentiation in. SIMAL'_there‘
‘lare three options:' use the transformation; uée the biﬁary
shift method refinement; or\.use the Téylor " expansion
refinément. " For a specific case, of codrse,-fewet of‘the
options may apply. The possible actions are shown in'figure
42. o |

In the scenarios shown in figure 42 we are attempting

95
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o MPY component—ﬂ(*TIMES Yy Y) [ :
' SIMAL LISP

EXPXZ transformatlon

other SIMAL
transformations

EXP component
' - and components

shift method refinement .
[ [POWER:=2;NUMBER: =y;ANSWER:=1;
WHILE POWER>@ DO
[[ . IF POWER.AND.1l ¢ 0
. THEN ANSWER:=ANSWER*NUMBER;
POWER: =POWER//2; '
NUMBER: =NUMBER*NUMBER]];
RETURN ANSWER]]

SIMAL

Taylor expansion refinement
[[SUM:=1;TOP:=2*LN (y) ; TERM:=1;
FOR I:=1 TO 20 DO
[[TERM'-(TOP/I)*TERM-'
SUM:=SUM+TERM]];
~ RETURN SUM]]

5 IMAL

Figure 42. Refinement Scenarios for EXP

" to refine the  SIMAL fragment y*z into a (*TIMES y y) .in

- LISP. As shown, the application of the EXPXZ transformation

-followed by the straightforward refinement of a SIMAL
multlply into LISP is the simplest approach.

“The reflnement of the exponentlatlon into the hinary
shift method makes.the problem‘harder but still possible.
Thev POWER could be»propagated by transformation, the WHILE
loop "unrolled," the‘ AND functions solved, the ANSWER

propagated through the wunrolled loops, the dead variables

‘allmlnated, and the [[...]] Dblock structure removed.

Sophisticated and powerful transformations could reduce the
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|
|

binary shift method to a simple multipiy.‘

The use of the Téylon expénsibn refinémenﬁ makeé the
pfoblem unsolvablé by general transformations. Of course;'a
éingle transformation specific to this particular problem
could be defined, and one always exists; buf the number of
specialized transformafions which must exist to do even
small problems makes this approach unreasonable. A set of
general transformations cannot - transform the Téylor

expansion into the equivalent multiply because the expansion

is‘an'apprdximation of the multiply. If the tranéformations
are equivalence ‘préserving they shouldn't transform an
approximation of a number into the number.

it is attragtive to build some specialized know;edge
into the system which can deal with problems like the
approximation given above. The speqiali:ed’knowledge would
be used to recognfze that a specific problem exists~and be
used to solve the problem. It is the author’s_o?inion that
this approach is miégnidedo The object of the ;efinemént is
an exponen;iation, not an expansion. 'An expansion is an
implementation detail. The'rnle of knowledge’ équrces in
program understanding is discussed on page 1l11.

Optimizationsvof an dbject or opération must take plaée
on that object or operatinn’.and not a'refinement 0flit. -
This means that‘ for 'proérans 'constructéd»;'by | Dracb,

optimization cannot be regarded as an "after the coding is -

done" operation. It should moét definitely be regarded as
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an. "after the specification is acceptable" operation.
The example of using a 'transformation at the right
'leVel'of-abstraétiOn which was used here is very simple.
Thé same problem, however, is encountered in more complex
séttings. As an example in the Augmehted‘Transition Network
'(AfN) domaiﬁ['there is a_transformatioh Set which removés
unnecessary arcs from :the transition network. A powerful
geperal set of LISP transformations would have little chance
of aghieving the effect of‘this ATN transformation sef on
_the LISP program thch results from an ATN description.
This is because the LISP transformationé. deal 'with LISP
primitives and not the states and arcs of an ATﬁ description
Qith which the ATN transformations.operate;'
| Two conditions can cause an optimization to ;emain
undiscovered.by s§urce;to—source‘transférmation at the wrong
level of abstraction. First, the information necesgéry to
?erform the transformation could have been spread out by
- implementing refinements. Secohd, the transformations are
attempted on- an"implementation (or‘model) of the original
obﬁects and operations which is not exactly equivalent) to

the original objects and operations. -

A FORMAL MODEL OF THE KNOWLEDGE IN DRACO
To understand the capabilities of Draco we must build

and reason with a formal model of the technique.




Uses of the Formal Model

A major goal of the formal model'developed in this
section is to be able to answer the reusability questions
[66] outlined below.

1. Can. Draco refine a glven program in a giveh.
domain language with a given set of domalns°

2. If Draco can ref1ne the program then what is a
~ possible implementation?

3. If Draco can't refine the  program then what
additional information is needed to refine the
program? : |

The farmal model has no detailed knowledge’about the objects
and operations it represeﬁts;, As an example, the third
reusability question may specif§ that a refinement to back
‘qp in a singly-linked list, givan.a‘poin;er into the list,
“ia, required to refine a 'specific problem. ‘No such
refinement can exist, but the'formal model does not know
this. |

The formal model is also of uae in answering the
deadlock gquestion during refinement. Adeadloick auring
refinement occurs when ﬁwo refinement decisions, say the
implementation of a data~stru¢ture‘common to two Separately
refined program parts, are inconsistent. This means that

the refinement of the program must be backed up to a point
where the deadlock did not exist.  The detection of this
deadlock should be possible from the formal model. The 

deadlock problem is a subproblem of the- reusability
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~questions an& weuld be usefui duriné interactive sessions
with Draco. o

Finally, thebformal model'shpuld serve as a besis for
the development‘ of .refinement strategies. It is expected
" that fer all but toy problems the complexity of answer ing
the reusability or deadlock questions would be prohibitively
expensive. ~ The formal model can still serve as a plannihg
spaee'for-refinéﬁent‘sttategies.whose goal is to . produce a
good program under certain eriteria vwith minimal backup
during refinement. The ability to 1look forward during
refinement separates " the refinement strategies from the

~refinement tactics described in Chapter 4.
Petri Nets

The formal model of the knowledge in Draco is based on
a Petri net [123, 124]. 'Foliowinge the definition of
Agerwala (11, a-Petri‘net is a bipartite, directed graph

‘N=(T,P,A) where

T=<t;,t5,...,tp a set of transitions
P=-P},P5,...,Pp 2 set of places

The union "of T and P represent the nodes of the graph N
which are connected by a set of directed arcs.AA. A marked
Petri net C=(T,P,A,M) further specifies‘a mapping

M:P=->1
where the set I assigns the number of tokens in each place

in the net. 1In Petri net diagrams, places are represented
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by circles, transitions by bars, and tokens by black dots.
Typically, places model conditions while transitions model

actions.

Figure 43. Petri Net Model of Mutual Exclusion

Figure 43 gives an example Petri net which models the
mutual exclusion'of the processes represented. by P71 and ps.
To see how this‘is'achieved we must define the simulation
rules or'seméntics‘of Pétri nets. A transition is enabléd
if each of the places which are conneéfed to the transition
by an arc from the place to the transition (inpuﬁl plaCes)‘
contains a token. An enabled transition can fire by
removing a token from each input place and placing a token
in each output place at the end of an arc from the
transition. | | | |

Figure 43 performs mutual exclusion because initially
there is only one token in pj, " Both't; and to are enabled
 but only one may fire since there is ohly one token in P3.
The choice of which transition fires is éémpletely

arbitrary. Thus, after a single transition firing, either

F1 contains a token or P2 contains & token but both cannot
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contain a token. The procedures medeled to be in execution
by tﬁe existence of a token on Py or py never run
simultaneously; they are mutually excluded. This form of
Petri-net model ing has been used extensively in operatiﬁg

systems theory to model the use of resources.

The Formal Model

The kpowledge_ in the domains known to Draco can be
viewed as a Petri net where the’ places represent the
coﬁéohents' in the Draco domains. The transitions represent
the aetion of performing a fefinement or a transformation;
The arcs which eonﬁect the places and transitions represent
the abiiity to perform a refinement or transformation.
Figure 44 represents a part of the net which models the

transformation and refinements discussed in the example of

chapter 5. _.-Z777=~_
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Figure 44. Petri Net Knowledge Model

"The dotted lines 1in figure 44 represent domain
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boundaries for the components of the two domains, SIMAL and
LISP, involved in the example. Note that the transformation
EXPX2 does not cross a domain boundary since it specifiss a
rule of exchange between statements in a single domain.
Similarly, the transitions whish represent individual
refinement possibilities for a component always cross domain
boundaries eveh if some or all of the resulting output
places are in the same domain as the piace pf the component
being refined. A refinement, of course, may refine a
component into more than one domain at once.

The Petri net model discussed above provides a model of
the interconnections between components known to Draco
through the transformations and the different refinement
alternatives for each component. It does not model the
information in a particular high-level domain-specific
program. The information specific to'a particular problem
is modeled by a marking of the Petri net. For each node
represented in the internal form of the domain-specific
high-level program a token 1is placed on the Petri net
represenfing the knowledge in Draco which represents that
node's semantics. The concept is illustrated in figure 45
for the simple SIMAL statement XA2+5.

Each node in.the internal form tree has a pointer to
the ‘token in the marked net which represents the use of a
particular component. When a node is refined. it uses the'

knowledge in the associated component. Tokens which
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XA2+45
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binary
shift \ )
method ‘,
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Figu;e 45. A Marked Petri Net Knowledge Model
represeht nodes in other locations of the internal form tree
are not ‘disturbed. Only a transformation applied at a.
particular node méy change the tokén representation of a
_subtree of the internal form. Refinements only refine é

sipgle~node.

Definitions with the Formal Model

‘A formal definition of level of refinement and level of

abstraction may be given with respect to jhe Petri net model

of knowledge in Draco.

] The level of refinement of a component in a specific

l ° .
- problem 1is the number of refinement transitions which the

token which represents that component has traversed since it

was initially placed on the net.

i
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The level of abstraction of a component in a specific
problem with respect to a target domain 1is the minimum
number of refihement transitions.the token which represents
thet component meet traverse in order to eccupy a place _in

the target domain.

Results with The Formal Model

‘In thie section we will show that the fifst two.
reusability questions and the refinement deadlock qﬁestion
are decidable, and thus can be answered. 'We will_also show
ﬁhat the edmputational complexity of answer ing these
questions for any practical case is extreﬁely high. 1It is
unknown if the third feusability question is decidable. |

The discussion of this section will use a version of
the formal model which models only the use of componenfs
. during ‘refinement and ignofes the existence | of
transfofmations; Figure 46 presents a parf‘qf‘the}fo:mal
model which represents the existence of a refinemeﬁt with

modeling conditions and modeling assertions.

model ing

conditions ' component usage

refinement

model in new component. usage
g :

assertions

Figure 46. Model of e Refinement
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The places in figure 46 represent the existence of some
condition, either the use bf some componént in the prograﬁ
under 'development dr .Ehel assertion of some model ing
condition. -Thus, each possible modéling condition, like the

use of singly-linked lists as a representation for strings,

is modeled by the existence of a place in the formal model.’

For a refinement to be used (i.e. the transition to

fire) .all the conditions must be indicated by the presence

"of aAtoken and-the,cpmponent;must be used in the develqping

progfam,_ indicated by the presence of a token in the

component's'place. When a refinement is used it pléces a

token back on each of the condition places which enabled its

use, 1indicating that each ﬁodeling ‘decision is siili;in.
effeét. Furthermore a token is placed on '‘the placés
representing any mddeiing'assertions made by the refinementf
0f course tokens érevalso placed on fhevplaces repfésehtiné_
the components used inithe refinement. o ‘ '

To answer the reusability questions ffor a specific

"problem (Petri net marking) with respect to a spécifié

target domain some modification of the net must be

performed. First, the places which represent any modeling

decisions from all refinement assertions are individually

| connected through a single-input, single-output transition -

to a newly defined place we shall call the distinguished

place. Second, all the places representing the use of a

component in the target domain are also connected to the
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distinguished place through a single-input, single-output
transition. The distinguished place has the structure shown

in 47.

Figure 47. Distinguished Place Structure
Once we have modified the knowledge model net as
described above, the first reusability question can be cast

as the Petri net reachability problem. The reachébility

problem for' Petri nets is as follows: given an initial
marking of the net, 'is‘ there a possible sequence of
transitions which will produce a second specified marking of
the net. The first reusability questioh‘is as_foliows:
given the marking 6f the knowledge net model from some
domain-specific, high-level program and a tafget domain, is
theré a sequence of transitions (refinements) such that only
oﬁe token exists in the distinguished place and _ali other
places are ,empty. ' Thé' seCopd .reusability question is
_answered by the sequence of transitiéns specified to answer
thé first question. j |
The Petri net reachability probleh has been'shownvfoAbe
decidable [137] and has been given lower bounds in time énd

space complexity [106]. Lipton has shown that - the




178

reachability problem will require at least an exponential

' (2€N). amount of storage space and an exponential - amount of

time. The. exponent (n) is the number of places and their

interconnections to transitions. For the reusability

_questions, the number of places and interconnections is

'related.to the number of components and modeling decisions

and could give rise to exponents well ovér 16¢ for a sihgle

domain. : The genérél reaéhébility algorithm will not be

-practically applicable. The first two reusability questions

are decidable, however.

Some hope still remains for an algofithm which can
automatically'refine a given domaiﬁ—specific program in that
general Petri nets may be a far too general model”’ where a
specific model of less power as discussed by Hack [76] may
have lower complexity bognds.

| The inclusion of the general transfofmation meéhahism
aiscussed in chapter 3 into the formal model would render
the reusability questions undecidable.  The t;ansformation
mechanisﬁ allows the definition of Markov algorithms which
are equivalent to Turing machines in 'computation power.
Answering the reusability questions for an arbitrary set of
transformations becomeé equivalent to .answering .the ‘halting

problem for Tur ing machines, which is undecidable.
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STYLES OF DOMAIN ORGANIZATION .

In describing the domains wused 1in the examples of

chapter 5 it was useful to show the relationships between

the domains using a directed graph as shown in figures 30
and 31. These graphs point out important considerations for
someone interested in developing a set of domains to

generate a particular kind of system.

Base Domain Qrganizations

Some domains, such as the TASK domain which provides
parallel execution and the Draco domain which provides a
model of functions, are domains close to computer science
and‘exist'mainly to be built upon. Other domains, such as
the ATN domain, are more specialized and used as models by
fewer domains. This suggests that one model of domain
oréanization is to have a base domain which specifies a
model of the.resulting programs. All domains eventually map
into thi§ base domain. Computer science modeling domains
surround this base domain supplying such things as data
structures, control structures, énd mathematical routines.
on top of the modeling doﬁains would rest the ‘more
appllcatlon orlented domains. One would expect the reuse of

the conponents in a domain to increase the closer the domaln

is to the base domain.

There are several attractive candidates for _the base
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domain including languages and computer architecture modéls.
ADA, COBOL, LISP, and the UCSD Pascal P—méchine are all
_ignguages which would be attractive base domains. -

A model of machine architecture for a von Neumanh
machine is presented by. Frazer [63] in his work on code
generators. Given an ISP description [18] of a machine
Frazer's system automatiéally builds a code generator for a
- simple von Neumann méchihe model dependent language for the
described machine. ‘The use of tﬁis languégevas the base
domain could bé one approach to the . portability of high-
level domain-specific programs betweeh'von Neumann machines.
A model of a parallel dataflow machine is represented by the
ID language [6]. 1In both caseg, the deséription languages
model the gross architecture of a particular. class of
machine. It is our contention that a program refinéd for a

particular class of machine cannot simply be _ﬁoved to a
different class of machine.

The use of  machine models as a base domain'is a very
old idea as‘demonéfrated by the UNCOL project [15¢] which
" attempted to..build a universal computer—priented language.
- The idea was that any program written in UﬁCOL could be
automatically translated  to any existing machine and take
advantage of any special features of that machine. The
UNCOL project failed because it attempted to form a model of

the union of all features of all machines rather than their

intersection. The motivation for this model was efficiency.
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In the end, UNCOL turned into a pattern recognition problem

w1th patterns spec1f1c to a particular machine being used to

recognize features of an UNCOL program which could" take.

advantage of special target machine features.

The Draco approach to the UNCOL problem would have been

to form a model of the 1ntersectlon of the features of all

machines in a specific c¢lass and use this as the base\

domain. The special features of a particular machine might
only be used if they were .directly stated‘ias possible
refinements in the model ing domains. A problem related to
domain and knowiedge organization is discussed in the ‘next

section.

The Language'Translation Problem

The problem of translating a program in one general-
purpose language into an equivalent program in - another

general-purpose language is related to the UNCOL problem.

In terms of capability, of course, it can be done in that

general-=purpose languages are as powerful as Turing machines

and a Turing machine can 51mulate any other Turlng machine.

A complete 51mu1atlon of one language by another language is

not a practical solutlon to the 1anguage translation
problem.
To actually translate a program from one language to

another and take advantage of the target 1anguage features,

the translation ‘mechanism must understand why each,action
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exists in the original program. This information is not in

just the program code. To understand a simple program in a

restricted domain would require many knowledge sources. The

dénger with research in automatic program understanding . is

ﬁ that any - partlcular example problem may be solved by

specifying the appropriate knoWledge sources. In.generel,
however, the knowledge sources to understand an existing
system are hard to construct. This paints ‘a dismal view for

anyone attempting to move systems which are only represented

by source code, - but the alternative is to build knowledge

”sources which would be very much larger than the source

code.

The Draco approach to the language translatlon problem
would be to save the refinement hlstory for a part1cular.
program and re-refine a high-level description of the
problem for a'partioular target language or machine. model.
The refinement history of a probllem is very much larger than
the resulting . source ' code | since it represents the
interdependeneies of the parts which make up the source
code. ‘ |

In terms of»domain orgahization, programming language
features should only be used in an appropriate domain.
Special language feetures, such as SNOBOL string matchlng,
are not appropriate to avdomain which represents a model of
gemeral—purpose languages for von Neumann machines.

However, SNOBOL string matching could be used as a model for
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matching in a string handling domain and SNOBOL primitives
could be useéd as a possible refinement for the string

matching components in the domain.

Generalizations ‘About Domain Orgahization'

Most domains use more than one domain for modeling.
The refinement process is noﬁ the strict translation of the
entire program from one modeling domain to andther until a
suitabie target domain is reached. Many refinements. refine
a component into two or three domains. At any one time, the
developing. prbgram consists of program fragments in many
model ing domains.

Thg organization. of the domains is not a strict
hierarchy; it 1is instead a cyclic directed graph. The
implementation of arrays as lists and 1lists ,as arrays
demonstrates a cycle. Another instance of a cycle is a
cosine routine which intérpolates a table which is built
with a cosine routine. The cycles are not frivolous and
many common representations rely upon them.

Finally, a problem domain is the same as a model ing
domain to some degree. The ATN domain can be either a
problem domain, if the problem is to buildl'an ATN, or a

modeling domain, if the problem 1is to build a natural
language database which uses the ATN model of natural

language parsing. As mentioned before, the closer in the

domain organization a domain . is to a base domain, the more
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likely its major use is as a modeling domain.
THE COMPLEXITY OF INTERMEDIATE PROGRAM MODELS

Two general trends seem to be apparent from the use of
component parts by Draco. Figure 48 presents the general
increase of the number of parts used with the development

stage.

High

Number
of
Constituent

Low

Development Stage
Requirements ‘ Code

Fidure 48. Development Stage vs. Number of Parfs

The éurve in figure 48 'is analogous to the number of
tokens on the Petri net model of knowledge for Draco. IfVWe
assume that most component refinement alternatives are of
about the same size, then the curve also represents the
volume of the program in.the measurement scheme of Halstead
[77]. Relating Halstead's program volume| by language level
function to Ehe Petri net model of knowledge in Draco could
be an interestiné topic of investigation.

Another trend in the use of component parts is shown in
figure 49 which plots the average level of abstraction of

the constituent parts (defined on page 1#4) versus the
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Eigufe 49, Dévelopment Stage vs. Abst;action Level
development stége. | |

The .cﬁrve shown in ‘figure 49 is analogous fo_the
average pathllength of a tokeﬁ to the target Idoﬁain. | It
must be remembered that cycies"in the - graph 6f domain
orgahizatioﬁ can'cauge infinite ?ath lengths and;an infinite
number of péths. Thus, figure 49 represents observed
béhavio:”in the-e#ampléS'aé opposed to possible behavior.

If we combine the figures 48 “and 49 wé obtéin an
estimate of the nuﬁber of refinement decisions ‘pending' as

shown in figure 50.

High

Number of.
Refinement
Decisions

Pending

Low

Development Stage
Requirements . Code

Figure 50. Development Stage vs. Decisions Pending

- The number of refinement decisions pending at a given
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deveiopﬁent staée is roughly the number of parts (figure 48)
times the average level of abstractién of a part (figure
49) . The increase in the modeling éwell depicts the choice
. of possible modeling structures in many modeling domains for
the’ deveioping program. The decrease in the modeling swell
depicts the constraint of .modeling choices already made.
fhe model ing swell represents the largest barrier to
refinement. o | o

In cﬁapter 7 we shall discuss the origins of many of
the ideas used by Draco andvhow the wo;k on Draco miéht

influence these ideas.



Chapter 7

RELATED WORK

The inherent incomﬁleteness of any survey of software
pfoduction techniques is concisely stated in 158].

Almost anything in.computer science.can be made
relevant_to the problem of helping to automate
programming. _

An excellent overall discussion of the trends in software
production research can be found in.[168] which is outlined
and motivated in [166].

The organization of this survey forces recent work on
software productidn into the categories of | autométic
programming; progfam generation, programming langhages,
software engineering, transformation systems} and
.philosophies of system structure. Each section is by no
means: a complete survey, .but rather a represehtative
'sampling of current techniques.. The discussion of eaéh
abproach is very brief with references  for the interested

reader.
AUTCMATIC PROGRAMMING

’AutOMatic programming,‘which attempts to automate more
of the system lifecycle than any other software production

technique, can be divided into the knowledge-based approéch

117
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and the formal-model-based approach. The knowledge~based
approach relies on a'knowled;e representation scheme such as
[25] - while the formal model approach uses a .mathematicél
language such as predi;afe calculﬁs.

| These th approaéhes can be contrasted by comparing two
works whichA synthesize sorting routines. Thé knowledge-

based approach is character ized by {751 while [4e]

represents the formal model approach.

Knowledge-Based Automatic Programming

knowledge-based automatic programming ofiginated with
experiments with compiling techniques [144]. After a 1long
dormancy, it was revived by work on robot planning such as
[151] where the emphgsis was on the knowiedge in the system
rather than the theorem proving Qbidh related it.

The Skill Acquisition From ‘Experts system (SAFE) by
Robert Balzer at USC/Information Sciences Institute [11]
accepts a problem specification in _natural languége.
Through examination of the specification, rules about well-.
defined procedures, and question-answering, it attempts to
discover the necessary facts to build a mohel of the problem
domain [8, 13, 174]. The model of tge .problem‘ domain

characterizes the relevant relationships and . constraints

~between entities in the problem domain and the actions in

that domain. Once the problem is in the form of a high-

level ©procedure free of implementation details, it 1is
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refined using program transformations into an exécutable
program [12]. |

The PSI program synthesis system by Cordell Green at
Stanford [74] 1is a system of "cooperafing experts” as
described in [1#2, 83]. An expert system is a group of
programs which communicate tbgether to solve a'problem. The
.PSI system consists of a trace expert [125], a program model
building expert [112], a domain e#pert, a discourée expert
andA user model, a coding expert (17, 15, 16], and an
efficiency expert [98, 89]. The program probiem'to be
solved by‘the PSI system is specified in natural language
and execution traces for a predefined problem domain as
understood by the domain expert. The program model building
expert interacts with the trace, domain, and discourse
experts to extract the information to build a.high;level
‘procedure which is well-formed. The coding expert takes the
well-formed (i.e., complete) high-level procedure and
refines it to an executable program by proposing possible
implementations to the efficiency expert and choosing an
implementation based on the efficiency expert's anal?sise
The interaction between the coding expert and the efficiency
expert has been closely stuaied in [14]. Kndwledge about
the problem domain in the PSI system is isolated in‘the_
domain expert. This means that, in théory, only the }domainJ

expert need be changed to apply the PSI system to a new

problem domain.
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The OWL system [152] is a 'project whose aim is ﬁo
accept.the-Qescriptibn of the problem domain in ‘natdral
1an§uagé and represent this domain knowledge as a network
[88]. One'moﬁivation for this representation is that the
System should be able to explain its actions in natural

language. The natural language concept definition is still

under development; but Protosystem I [135], which takes in a

complete high—level description of a problem in a domain and
refines this into.a program, has beén completed. The input
to Protosyétem I is the bperaﬁions to be -performed, how
often to perform them, on what data to perform them, and
where the results of the operations are to be stored. ‘The
system analyzes vthe .input, disambiguates ‘the order of
execption (sometimes by questioning . the user), 'aggregatés

the data files on secondary storage, and, given the

. frequency of the different operations, generates the PL/1

and JCL necessary to create the system. The domain is
restricted to business document processing.

An alternative refinement approach wusing the OWL

knowledge representation is presented in [1¢8]. This

approach views all programs as a collection of a small
number of model activities which are réfined.by stepwise
refinement into an executable tafget language;

As  will be discussed later in  the section on

programming languages, the reusability'of & problem domain

model to solve many problems in a domain will be a crucial
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problem in knowledge-based automatic programming.

Formal-Model-Based Automatic Programming

Formal-model-based automatic programming started with
work on deriving programs from proofs [168, 161, 73, 1£2].
The st;ict proof system approach was modified to use some
knowledge-based reasoning [29] in the construction of
programs, but a formal model is still the driving force of
this work.

The DEDALUS system by Zohar Manna and Richard Waldinger
_af Stanford [110] synthesizes recursive programs and Ehen
translates them 1into iterative ' programs. The problem is
specified in a formal language and operations on formal
forms, usually sets and predicates on sets. The programming
substitutions for each of the operations is pre-specified in
a knowledge base. Using a goal system,'DEDALUS expands its
input specification by sourcé—to-source transformation to
try to achieve its output specification.- If the systém
observes that the current subgoal, is -aﬁ instance .of a
previéus goal, then it forms a recursive prdcedure. The
system can form mutually recursive procedures, recursive
procedhres " with initialization procedures, and iterative
procedures' from recursive procedures. The recursive
prbcedures it forms are checked for proper terfninatibn° The
work of Burstall and Darlington [31], Wegbreit [165], and.

Follett [61, 62] 1is similar to the DEDALUS system in
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‘approach.

J.R. Eobbs [84] descrlbes a system for the translatlon
of some of the algorlthms spec1f1ed in [94]. The . knowledge
about the prlmltlves- in the domain, in this case binary
trees, is spec1f1ed as predlcate calculus equations related
to English words. The system builds the program based on
the structure of the English Qescrlptlon. 1£ferent groups

of English forms in the description are associated with

different program forms. ]The system‘ relles on the

primitives. of the domain to have been already deflned as

_programs.

A final formal model appfoach under investigation is
the synthesis of programs from input-output examples which
is really aimed at solving subproblems in automatic

programming. An example of: the synthesis-of programs form

_input—output pairs is found in [142, 20]. This |is related

to the synthesis of progrems from execution traces and

simulated execution which were investigated in [21, 39].

An Overview of Automatic Programming

Many excellent surveys of the general field of
automatic programming exist [9, 58, 18, 20, 56]. A survey
of the use of natural languaée in automatic programming is
given in [82]. |

Automatic programming  systems have recently shifted

from very powerful generel problem solving techniques such

|
I
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as theorem proving [161] to knowledge-based systems with
very little problem solving ability. ,Virtually all of the
automatic programming systéms unde; development today are
knowledge-based rule systems, where the control mechanism is
a production system. and the rules are procedures, Or
patterns and procedures as described in [49]. The shift
away from general problem solvers should not be interpreted
as the failure of general problem solving techniques to aid
in software development. Rather, the investigatioﬁ of these
techniques has better defined the constraints on = the
problems which are best solved by general problem solvers.

Most of the automatic programming systems mentioned are
still wvery much in the research phase of their devélopment.
The few operational systems afe constrained to producing one
to four page programs. In general, the -design and. coding

phases of the systems are capable of producing large

programs; but the specification and analysis phases are not.

PROGRAM GENERATION *

Program generation work can be divided into two
categories, model-based systéms and - paramétric—based
systems.

The model-based systems usually take statements in a
special language as the specification. These statements are
formed into a model of the program to be generated.

Solution of a programming problem is attempted only if the



124
input model is well formed under some model-building
criteria.

Parametric-based systems could be called "programming
by gquestionnaire" in that the user selects and restricts
some feétures of a general.system to create a system for his
ﬁeedso_ Anvoperating system SYSGEN procedure is the oldest

\example of this type of program generation.

»It'is hard té distingﬁish automatic programming systems
from program generation systems. Both_types‘of systems use
many similar parts. In general, automatic programming
gystems interact with the user to acquire knowledge about
the problem dohain in order to write programs in that
domain. ' Program generation systems do not really have a
model of the problem domain as much as a model of a well-
formed pfocedure. Usually the executable program is built

directly from pre-existing source code parts.

Model-Based Program Generation

The MOdule bescription Language (MODEL) system of Noah
Prywes [126, 128] from the University of Pennsylvania
accepts the problem in a nonprocedural l%nguage where the
order of the stétements is irrelevant. Through data-flow
analysis the statements are formed into a graph. The gragh
is checked for inconsistencies and ambiguities. Any
problems with the specification are resolved by heuristics

and user interaction. The well-formedness of the procedure
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represented by the graph 1is checked by examining the
relationships between parent and successor nodes (program
fragments) in the graph and checking certain rules on these
relationships. .An example rule might be "if a datuﬁ is
produced, then some other part of the procedure should
consume it." A clever matrix notation and matrix operations
are used to perform these rule checks. From a well-formed
gragh the data fileé on secondary storage are aggregated for
efficient access by the procedure. Finally the graph is
directly translated into PL/1. The MODEL system operates in
the domain of business data processing and is similar to
Protosystem I [135] in 1its input language and external
operations.

Within the restricted domain of producing simulation.
programs for queueing problems_having servers and things to
be served, Heidorn [81] describes a system which
incrementally accepts a natural language description of the
problem, checks the completeness of - the description,
produces a GPSS program to do the simulation, and produces a
natural language description of the completed problem; |

The AGE system [119,-2] is a program generation system
with a model oof what it _méans to describe é complete
knowledge-based system. The system interacts with a user
who selects knowledge-based system "chunks" which afe parts
used in the construction bf the final system.

fimilar to the AGE system 1is the Programmer's
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Apprentice project [13¢] which éttempts to generalize ahd
modify a set of standard program plans under user direction
to ‘create a system, In this activity the programmer's
apprentice is a knowledge-based system which performs the
modifiéatiéns and attempts to understand the construction

goals of the programme:.

Parametric Program Generation

Parametric program geheration trims and customizes a
large model of a class of systems for a specific
application. The parameters to the parametric prograﬁ
generation process remove unnecessary options of the general
model and f£fill 1in some application-specific detail. The
agent of program generation is wusually a linking loader
(linkage editor) or a conditional assembly scheme such as
that used in assemblers. Most commercially aveailable
program generation systems are parametric program generators
for a specific domain of application, such as business data
processing.

Parametric generation of prograls is, by far,
the most powerful technique known to date, if you
.measure power by the amount of information needed to
specify a program in relation to the size of the
program produced. If one wants to produce programs
in a narrow envelop that are members of a <closely
related class, parametric generation is probably the

best technique...Much of the automatic programming
of the future will likely be done this way [149].

An example of program construction by questionnaire is given
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by Warren [162].

An Qverview of Program Generation

A . survey of the techniques of automatic  program
generation is given in [127].

One Eechnique is clearly not the final answer to the
software crisis. The entire range of software generation
techniques must be included in a program producing system.

The people who work in this area (automatic
programming)  fully realize that for practical
solutions, their ideas will have to be combined with
those of the first type (program generation),

incorporating specific knowledge of the domain being
.treated [58]. '

PROGRAMMING LANGUAGES

Recent: work in pfogramming language design can be
-divided into the three areas of abstraction languages,

extensible lanquages, and domain-specific languages.

Abstraction Languages

. ‘Abstraction ' languages ‘supply a mechanism for defining
an abstract object and operatiqns ion. that 'objeét while
isolating the implementation detailé of the objéét and itsA
operations. A new abstractibn is built out of ?rim&ti?e 
types aﬁd preQiously defined abstractions. New abstfactiéhs'

are formed for each new application'program, and abstraction

.libraries are advocated, but large-scale libraries have
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never been built,
The abstraction languages were motivated by the
software engineering <concept of hiding information in

modules [121]. Early abstraction mechanisms were the SIMULA

~class concept [23] and Early's relational data structures
. [53]. Some examples of current abstraction .languages are

' CLU [1@7], ALPHARD ([143], and SMALLTALK [70].

The abstraction concept has given a handle to program
verification work in that abstraction can be verified and
their formal semantics be used in verifying programs which

use the abstraction {68].

Extensible Languages

The goal of extensible languages is to start with a
small set of primitive functions which will allow the
extension of the language into a comfortable environment for
the construction of an application program. The use of a
small kernel of starting functions is advocated in [118] and
used extensively in many languages such as FORTH [129] and
LISP [111]]. Some of the problems with extensible 1languages
had in meeting their goals are outlined oy Standish [147].

An extensible language has been advocated‘as a medium
of automatic programming [38]. Usually the extensions of a
language were redone for each application program, but

recent work by Cheatham [4¢] has advocated the reuse of

extension alternatives as an aid in program production.




Domain~Specific Languages

Domain-specific 1languages have objects and operations

which model the objects and actions of 'a problem domain.

It is a frequent misunderstanding that there is
a separate category of languages called application-
oriented. In reality, all languages are
application-oriented, but some are for larger or
smaller application areas than others. For example,
FORTRAN is primarily useful for numeric scientific
problems, whereas CCBOL is best suited for business
data processing [138].

It is' the thesis of this work that a domain—spécific
language'is actually an analyéis of a class of problems in a
specifiéAproblem domain.

An .example domain-specific language 1is the Business
Definition Language (BDL) [78, 86] for the domain of

business data processing. Quite a bit of effort went into

the definition of this language, as shown by its constituent

parts [85, 96, 97]. The BDL project also produced some
tools for manipulating and using domain-specific languagés
-[98, 99].

Many areas seem ripe for the development of a domain-
specific language and possibie objects and'operations are
discussed in many overview papers éuch as [3@, 42, 172].

An active area in domain-specific .lahguage work has
been in the languages suitable for describing software
systems, specification languages, whichi are motivated in

[114] and described in [153]. Modern automatic programming
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éystems usualiy model their programming problem and problem
domain in a speéification language [71]; The vspecificatipn
languages are not "executed" but "analyzed," as described in
[154, 129]. Blosser [24] describes the process of analysis
and stfaightforward code generation from the design
specification 1language given in [154]. These languages are

'used as models of a program to be derived.

An Overview of Programming Languages

The abstraction 1languages and extensible languageé
supply mechanisms for extending the language té suit the
needs of a specific problem domain and encapsulating the
implementation of domain objects and operations; The
psychological set of this work is that i£ is easy to extend
a language 1into a comfortable medium for discussing a
particular problem in a problem domain. The author agrees
with sStandish [147] that this view is mistaken. It is the
lesson of the developers'of' domain-specific 1languages and
systems analysis techniqﬁes that the development of a good
model of the objects and operations of a domain is only the
result of long and intense analysis ‘of the domain. As
discussed in chapter 2, a simple 1library of abstractions
with strong abstraction definition schemes will not helrp

very much with this problem.
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SOFTWARE ENGINEERING

Many of the techniques that Draco uses in constructing

programs are directly related to software engineering

research areas. In particular, the areas of module’

specification, module interconnection, software components,

and program-feature analysis are of special interest.
Modules

Much of the work in software engineering has been
concerned with how to build systems out .of individual
moaules. The concept of modules is attractive because it
represents a division of the work of producing a system into
separate pieces which presumably can be built by separate
peorle. Crite;ia to be considered in the divisibn of a
system into - modules have been investigated by Parnas
(121, 122]. Basically, a module should perform only one
function and hide the implementation details of how it
performs 1its function. The concept 1is very similar to

abstraction.

Module Interconnection Languages

Once a system is divided into modules, module
interconnection languages (MILs) are used to indicated how

the modules fit togéther to form the system. This concerpt

is advocated and most wuseful in the construction of very



large systems [50].

Typically a module interconnection language specifies
the interfaces between modules by the type (abstract type),
range and access allowed to the data béing passed. Module
intercqnnection languages have been advécated in many

different 'settings [34, 35, 72, 155, 156]. Primarily of

interest here is the use of a module interconnection

language to represent families of software systems as
described in [44, 157}. This work used a MIL to coordinate

the construction of similar software systehs with different

features for different target languages. : The

interconnection language that Draco uses for components is

similar to these module connection languages.

Software Components

The construction of software from components is a very
0old idea, perhaps known to Babbage; The recent interest in
software components stems from their advocation by MéIlroy
[113] at the 1968 NATO conference on software engineering.
This same article also pfesents a paneT discussion with
ar@uments for and against the idea.

Some early work on software components [45, 46]
attempted to define general reusable components which were
completely specified, fairly iarge programs of approximately

10¢ source lines. These systems strictly followed the

hardware analogy of [19] using port connections between
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components to create whole systems. In these experiments
the components evolved to build a certain type of system
were too specific to that class of system to be used in
construcfing other kinds of systems. Some later work [1@3]
managed to introduce some degree of flexibility by strictly
following the module definition criteria of Parnas [121].

The work of Goodenough [72] sug§ested that the smaller
the component, the more flexible it is to use. Reducing the
size of the components used by Draco (typically 5-1¢ source
lines) énd allowing components to bel written in terms of
other components has allowed the construction of general
components flexible enough to apply to a large range of
applications.

The management of software components and systems built

with softﬁare components 1s discussed in [54, 55]. An

empirical study [57] found that most of a system consists of
the repeated usage-of small software components.

The concept of software components used by 'Draco is
modeled after the abstract strategies and program schema of
145, 146]. This same work also suggested the 1idea of
having different strategies for the implementation of a
component. The concepts and goals of ‘reusability uéed by

Draco were outlined in [66].
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Analysis Techniques

By "analysis techniques" here we mean techniques for
discovering properties about the developing program. These
techniques would be useful to Draco in gathering information
‘about the developing.prograﬁ which can be used to guide its
further refinement. Some example techniques are module
coupling and cohesion measu;es'[51], incremental data-flow
analysis [7], program complexity measures [77], space - and
‘time use <characteristics [164], and execution monitoring
[871.

The use of these techniques by Draco 1is discussed on

page 149,

An Overview of Software Engineering

A collection of papers covering the major topics in

software engineering is presénted in [67].

It is interesting to compare the _program
representations used by automatic programming, program
generation, and software engineerihg. Most of the

representations are data flow diagramé as described in
t132, 1331. This representation was investigated by
Goldberg [69] and was found to be a more natural
specification of a procedure than the conventional control
flow reﬁresentation typically used in computer science.

A recent shift in software engineering has been towards
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integrated ©packages of tools for building large systems.
These systems typically use special-purpose languages for
describing. the developing system, its environmental needs,
and its current stage of development. Examples of such
systems are ISDOS t154], the Software Factory [27], DREAM
[131, 16%9], Programmer's wérkbench [88], the Unified Design
‘Specification System [22], and the Hughes design system

[171].
TRANSFORMATION SYSTEMS

Program transformation systems manigulate a
representafion of the source code of a program. The
.mechaniém uséd by.most transformation systems is that of a
production system [49] where a single production representé
a single transformation. .Each production rule cohsists of a
left-hand side (LHE) and a right-hand side (RHS). .The LHS
is matched against the program representation and, if fdund,
‘is replaced by the RHS.

The work on transformation systems can be separated
into those systems concerned primarily with optimization and
thése concérned primarily with the refinement of a ﬁrogram

representation into an executable program.

Optimization Oriented Transformation Systems

Some early work on optimizing transformation systems

stems from the desire to make the optimization process
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visible to ‘the wuser [l144]. :These systems would like to
perform the standard optimizations done by a compiler [4]

"and exploit standard rules of exchange for the operators of
general-purpose languages [148]. |

" Recent interest in optimizing transformations was
renewed by Loveman [129] in his attempt to défine source=-to-
source transformations which group FORTRAN program features
for execution on a parallel machine. ﬁutter [136] describes
a source-to-source transformation system for LISP prograﬁs
and examines the problems of controlling such a system. A
transformation system designed to specialize a ‘program 6n
the basis of external knowledge about the data is described
" by Kibler [93]. o

Haraldsson [79] has investigated the use of partial
evaluation of functions coupled with program transformationé
as a mechanism for optimizing programs. ‘Partial evaluation
is a process where - all or some of the arguments to a
function are instantiated in a special version of the
function. These instantiations wusually allow optimizing
transformations to smooth the instantfations into their
éurr&unding program context. |

The use of source-to-source transformations in the
conversion of programs back and forth from iterative and

recursive methods is discussed by Darlington & Burstall

[47], Arsec [5], and Manna & Waldinger [11@].

The possible wuse of metarules for transformation
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systems and an implementation scheme for transformation

systems 1is discussed in.[92]°

Refinement Oriented Transformation Systems

Program transformations can be used for refinement if
the LHS of a transformation is a statement in a higher-level
language "~ than the RHS of the transformation. In this way
transformations can be used to fill in generel plans of
programs as shown in [31, 118, 165, 158j. The plans range
from recursive program schemes to loop generators for
iterative programs.

The method of program synthesis from a tree and graph
model of a progfam through tree transformations  was
investigated by Chesson [4lj° This work discusses the kinds
of operations useful in the manipulation and traversal of
formally defined structures which represent programs.

The use of program transformation as a refinement
mechanism useful in automatic programming has been suggeeted

by Balzer, Goldman, and Wile [12].

An Overviéw of Program Transformation Systems

The correctness of program transformations is of great
concern and a few techniques have arisen to verify . the

correctness of a transformation [68, 116]. The general

power of transformation systems and their 1limitations was

~investigated¢ by Kibler [93].
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A criticism of the naive view of developing programs
from a simple specification of the problem, as used in [48],

and refining the simple specification into an efficient

implementation is made by Dijkstra [52]. The criticism is

made from the author's view that programs vbuilt on an
underlying mathematical theory are not amenable to the
transformation approach unless quite a bit of mathematical
knowledge is supplied. This author would disagree that most
programs are based on a mathematical theory, but we
wholeheartedly agree that a transformation system must
incorporate some domain-specific knowledge to be effective
in transforming a program in a specific domain. Mathematics

is but one of many possible domains in use today.

PHILOSOPHIES

Many of the ideas that Draco incorporates have come
from the rphilosophies of the researchers in software
technology.

The use of domain-specific languages was motivated by
software engineering and J.A. Feldman.

There are many large groups oi computer users
who would be willing to use an artificial 1language
if it met their needs [58].
The wuse of abstraction, hierarchy, and components was

influenced by Knuth [95], Standish, and Freeman [65].
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More generally, programming skills afppear to
consist of a rather rich inventory of methods
applied at various times and at various levels of
abstraction. These methods appear to span a cascade
of knowledge systems from the problem domain to the
programming domain, and to employ knowledge and
representations from various appropriate modeling
domains [145]. ' ’

The model of a domain description as a collection of
objects and operations in the domain was influenced by’

_Balzer.

A model of the problem domain must be built and
it must characterize the relevant relationships
between entities in the problem and the actions in
that domain [16].

The concept of performing optimizations at the correct

level of abstraction was motivated by Darlington and Ruth.

We are able to make full use of the algebraic
laws appropriate to this higher level. For example, y
once calls to set operations have been replaced by
their 1list processing bodies many possibilities for
rearrangement and optimization will have been 1lost
[(47]. ‘ ' '

Optimizations are most effectively performed at
their corresponding level of translation, where
exactly the sort of information and visibility
needed is present [135].

The concept of keeping a refinement record »forl

maintenance purposes was motivated by Knuth.

~ The original gprogram P should be retained along
with the transformation specifications, so that it
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can be properly understood and maintained as time
passes [95]. '

The use of software components was motivated by Edwards

[54], McIlroy [113], and Waters.

‘A pre-written module can be as simple as a
.multiplication routine or as complex as a data base
management system. A module can be wused as a
subroutine or expanded inline as a macro. It can be
partially evaluated or transformed after
instantiation to increase efficiency. In any case,
modules reduce the effort required to write a -
program because they can be used without having to
be rewritten. They reduce the effort to verify a
program because they can be used as lemmas in the
verification without having to be reverified [163].




Chapter 8

CONCLUSIONS AND FUTURE WCRK

ACHIEVEMENTS

This section presents a summary of the fesults of the
dissertation. Each point is discussed in more detail in the

body of the dissertation.

Domain Analysis

The concept of domain analysis was introduced and
compared to conventional systems analysis. Systems analysis
states what is done for a specific problem in a domain while

domain analysis states what can be done in a range of

problems in a domain. Systems analysis describes a single-

system while domain analysis describes a class of systems.
Since domain analysis describes a collection of possible

systems, it 1s difficult to create a good domain analysis.

If only one system is to be built, then classical systems

analysis should be used. A domain analysis is only useful

if many similar systems are to be built so that the cost of
' ' |

the domain analysis can be amortized Pver all the systems.

The key to reusable software is captured in domain

|
analysis in that it stresses the reusability of analysis and

design, not code. _ |
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Domain Languages

The ideé of a language as the mediqm for capturing a
domain analysis was presented and'it was hypothesized that
languages in the past have reaily been the analysis of a
domain'of problems. This uée of language as the medium for
capturing a domain analysis 1is much different from the
notion of extensible languages. A user trying to build a
particular system does ‘not extend the domain analysis; he

contracts it for his particular problem.

Reusable Software Components

A method was shown for producing variable
implementations of a program 'through the use of reusable
software components. These different implementations were
equivalent in their actions and different in their structure
and execution characteristics. The different
implementations were optimized through the use of source-to-

source transformations.

Program Transformation Techniques

A scheme based upon Markov algorithms was presented for

performing some "rrocedural” transformations  without
sacrificing all the advantages of source-to-source
transformations. This scheme relies on the use of

transformation metarules which relate transformations to one
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another. An algorithm for automatic metarule creation was

presented.

- Formal Model of Refinement Knowledge

A formal model of the knowledge in a 'éet of problem
domains which were defined in terms of each other was
presented. A formal definition of the nations of level of
refinement and level of abstraction were given in
relationship to this Petri-net-based ﬁodel. The,quesfion of
whether or not the system has enough knowledge to refine a
high~level description of a program to an executable program
(ﬁhe "reusability questions) was discussed in terms of the
model. 1In particular, the reusability questions are shown

to be decidable and given a lower complexity bound.

Unification of Concepts °

The work succeeded in providing a context &here the
concepts of sbftware components, module interconnection
languages, and sou;ée-_to—source program transformaAtions work
together to produce software. Previous to this work these

concepts had existed as separate ideas.

Draco as an Educational Tool

The prototype system not only produces medium-sized
efficient programs, but it can also be viewed as an

educational tool. The components provide references to the
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computer science 1literature and present actuél code for
algorithms. To a small degree, the structure of the domains
related to computerv science relates the knowledge of
computer science.‘ A concept, such as ‘random number
generation, may be investigated by writing a program whiéh
uses ' random numbers'énd examiningvthe knowledge sources the
system uses to refine the program. |
" The concept of the system also might provide a
framework for system analysis training in learniﬁg to
‘discern the relevant objects and ‘operations' of a problém

domain to construct a Draco domain.

Technology Transfer

Finally, "the method of.software producfion"discussed
presents an  app1ication’ oriented approach to .te¢hnology)
transfer. If new algorithms are added to the systeﬁlas théy
are"developed, then the pe;iodic remapping of ekisfing
syétems from high-level, domain-depehdent speéifiqation to
executable program might be able to take aanntage of some
of the new information. The burden of importing the
algqfithm is removed from all the users and piaced on the

algorithm developer. This seems to be a stronger method of

technology transfer.
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THE PROTOTYPE SYSTEM DRACO 1.4

The profdtype system Draco 1.0 is available_under‘thé
TOPS-1@ operating system on the DEC PDP1@ and its
operational details are described in a manual [117]. Small
-progfams may be created in 70K words of memory and the
system ‘has a 20-17¢# page program limitation since the
developing program is not kept on secoﬁdary memory.

The prototype system helped to build itself in tﬁat all
the input forms. for parser descriptions, prettyprinter
descriptions) component descriptions, and tact{cs are
domain-specific high=-level 1anguéges.. ~ While ‘these
'descriptions don't go through the uéer directed refinement
érocess as a user defined domain language Qould, they are
procéssed by much the same mechanism. To chaﬂge thé form of
these languages, their specifications are cﬁanged and 
remapped. Some semantic changes may be achieved the same

way, while others may require a custom piece of code.
FUTURE WORK

Refinement Strategies

Muéh more‘ work needs to be " done on st;ategies‘for
refinement which prevent the user frdﬁ investing va large
amount of time refining detailé which will have. to be
removed because the réfinemeﬁt deadlocks and must be backed

up. This work.should proceed along two lines.
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one line of investigation deals wifh techniques for
chécking the validity of the refinement at a given ©point
from the formal model of ‘the knowledge in' the system
presented in chapter 6.

The second liné.of investigation should deal with plans
which are derived from thé formal model, Because of the
size and complexit?lof the formal model, thensecond lineybf
investigation seems most promising in the development of
strategies"for refinement. The formal model may be viewed
as a huge planning space which requires local hegristics fbr
refinement. These heuristics would be. refinemeﬁt

strategies.

Minimal Refinement Backup

" Another areév of investigation 1is the "unwinding" of
decisiqns when backup in the refinement must occur. | Wheh
backup occurs, it is because some knowledge is missing or
some inconsistency appears in the implgmentation decisions.
In theory; only 'the decisions which lead to the need to
backup should be undone. The idea of minimal backup should
be ihvestigated, all the data for this process.seems to be
included in the refinement history. Along this same line,
the reimplementation or modification of a éystem with few
changes in implementation decisions should be able to take

advantage of all the old ‘decisions not changed or

influenced. It seems important to develop a model of the
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interdependency of the decisidns.

Stronger Component Interconnection Language

As they exist now,-the assertioﬁs and conditions are a
kind of lock and key mechanism. No effort is made to derive
néw information from either one. It would seem that the
ability to establish relétions for conditions and assertions
would. enable the refinement mechanism to deduce more
information about the déveloping program. This work might
directly influence _the minimal bacﬁup_and strategies work

mentioned above.

Portability

The software production teéhniqué presented ﬁight be
able to aid the work in software portability. The lowes£
level language kndwn to Draéo can be regafdéd asla model of
the machine on which the resulting programs are to be run.
This lowest levelllanguage would appear quite different for
.a von Neumann machine and a parallel machine, such as a -
dataflow machine. 1If the loweét level doesn't match _the
machine the program is to be executed on, then the use of
that program is doomed to failure. A suitable level for the .
description of a machine's architecture can be found in the
work on the autométic generatioﬁ of dode generatbrs from a

machine description‘[63, 64]. In this work, a system which

knows about the general architecture of a von Neumann
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machine (i.e., has a program counter, registers, and a
memory) scans an ISP Qescription of @ particular machine to
build a code generator for a specific machine for that
language.

If the iowest levelllanguage known to Draco wére one bf
these architecturally-oriented languages then it would' seém
that Draco coupled with a code generator generator and the
ISP for a specific machine could produce code for that
machine from a domain-specific high-level 1language to

machine code. This is the goal of portability.

Error Handling

Virtually no work has been done on the handling of
errors. in the Draco system. The only work which applies.is
the protection of local conditions of interconnection whiéh
are turned into code and surround a component when it is
used. The notation of error messages should be in terms of
the problem domain in which the program was initially
stated. ©Some of this information could be obtained from the .
refinement history but, in general, a notion of what each
bit of code produced does in terms of the problem stated in
the domain-specific high-level language needs to be carried
along with the refinement process. Once refinement begins
Draco currently has no notion of the domain in wﬁich the
problem was originally stated other than the refinement

history.
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Program Analysis Techniques

"Draco incorporates no analysis techniques, such &s
data-flow analysis. Some analysis information can be
obtained from special purpose "procedurai“ transfofmations,
but this does not seem to be a good approach in . that these
transformation sets -are expensive to run and hard~ to
understand. Custom>ana1ysis tools would ‘be better.

In general, differeht‘analysis techniques seem to exist
‘for different 1levels of abstraction. As an example,
execution mqnitoring, data-flow analYéis,. complexity
measures, cost estimation fechniques, and design quality
metrics all apply to different- levels of abstraction.
Execution monitoring requires an executable éroqfam, while
data-flow analysis requires a prégram with explicit data-
flow, which excludes machine languages and non-procedural
languages; ‘ The information from the analYSis techniques
pervades.the program iike the transformation suggestiohs
(agendas) .and the implementatidn decisions (aséertions).
The analysis information should in some way be incorporated
inté thé_internal form of the program. |

If a domain analysis of analysis tools could be created
it would be helpful in integrating the analysis information
into the program internal form and for building new analysis

tools for domain-specific 1languages at higher levels of

abstraction.
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More Domain Analyses

Fihally, Amuch more domain analysis. work is needed.
This is very hard work which should only be attempted by a
craftsman in a domain with some ideé of the difficulty
involved. It is. an enlightening experience Ato -try and
define the objects and operations in a familiar'problém
domain.A A good domain analysis requires many iteratioﬁs of
experimént énd analysis. | |
| 'Existing ,computer science knowlédge-needs to be formed
into interlocking problem domains and this wofk is as hard
as doing a domain analysis of a non-computer science doméin;
What are the objects- and ‘operatiohs of data structures,
compilers, paréllel computation, or artificial intelligenqe
problem solving? These domains héve a lot written aboﬁt
them but their knowledge does not seem to ekisf ih the fo}m

of a domain analysis. Very few domain analyses have been

published in computer science, but when they are published,
they wusually are in the form of domain-specific high-level
 1anguages with specific objects and operations. An example
of a domain énalysis 'is the Business Definition Language
_ (BDL) [78]. |
Perhaps the publishing of domain analyses has been
slowed by  the recent. lack of interest ih new programming

languages. 1In the author's opinion, this lack of ~interest

stems not from the new languages, but from the purpose-aof
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most of the new languages. Most of the new 1anguageé are
general purpose-languages which ‘contain no domain
information from outsidel of computer science. The phrase

| "yet another ALGOL-like language" bemoans the definition of |
still more general-purpose languages. A research group |
which has done a domain anaiysis may be timid about
publishing their results in the form of a language only to
be met with the "another language" syndrome. A domain
lobject in BDL is a document and it has a precise deﬁinition;

this is not the same as the number, string, and list of

general purpose languages.
A WARNING

Any tool, 1like Draco, which incfeases software
productivify can bé a blessing or a éurse. The increase in
productivity allows massive changes to be made in a large
software system with relative ease. These changes must be
ser iously considered; not just from a technical' viewpoint,
but in the way they influence the users of the system [139].
An increase in productivity should go hand in hand with
stronger configurationlmanagement,: Uncontrolled change in
large software systems will lead to chaos regardless of the
software toois used in the construction and maintenance of

the systems.

;——'____‘—_
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Appendix I

AN INTRODUCTION TO SADT

In chapter 2 an SADT actigram model of the Draco

', approach to software production is presented. SADT (System

Analysis and Design Technique) has been used successfully to
model both software systems and social systems. Its ability
to model both types of systems is impértant hefe since Draco
advocates the wuse of a software system within a soéiél

' system.

| A complete SADT model conéisté» of tﬁo kinds of
diagréms: activity diagraﬁs (éalled ‘actigrams) and data
diagrams (called datagrams). The view. of éh. actigram. is
thaﬁ ldata objécts‘flpw.between activities while the view of
‘a datagramlis that activities during their operation access
data objects." The only difference ié the center of
attention. Only actigram models will be discussed ‘in this

appendix.
THE ELEMENTS OF AN ACTIGRAM

-An actigram vdepicts three to six activities whiéh,aré
representéd_as boxes. The limit on the number of activities
depicted helps to limit the amount of information a feadeg.
of an actigram must deal with. The boxes.of'an‘actigram‘are

connected by arrows which represent data objects. Actigrams

175
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are data-flow diagrams. This means that the activity of a
box takes p'. “e only when the data objects represeﬁted by
incoming ar 3 to a box are present.

control

input ———{ activity *—»ouﬁput

pPg. no.

mechanism
.Figure 51: An SADT Actigram Rox

The positions of the arrows on the box determines what
type of dafa an arrow represents as shown in figure 51.
When the input, control, and mechanism objects are present,
the activity uses the mechanism as an agent to transform the
input data objects into the output data objects under the
‘guidance and constraints of the «control data objects.
Activity names should be verbs, while data object names
should be. nouns. Each activity must have at least one
control and output.

A double headed dotted arrow may be used as a shorfhand
in SADT to denote data relations between activities as shown

in figure 52.



177

. l.‘ - .
‘ . denotes - ' l

and

aeno tes

Figure 52. SADT Dotted Arrow Shorthand
THE ‘STRUCTURE. OF AN SADT MODEL

Each acéiérém is'an-elaboratioh,of an activity box in a
higher-level diaéram called the parént diag:am. If a page
number appears'in parentheses just outéide_the lower . right-
‘hand corner 'of.aﬁ activity box, then this number spepifies
the page oﬁ the ‘actigram which eléborates the box.  The
inputé, outputs}‘ controls, and meéhaniéms uéed' in an
actigram aré.the_same as those on the corresponding éctiQity
box in the parent diagram. Each actigram' should include
‘from three to six activity boxes.

‘The highest-level actigram of a model is'the only
eXception to the three to six activity rule and it presents:

Y
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only one activity, the one being modeled. The inputs,
outputs, coritols, and mechanisms which are used in the rest
of the mode. re specified on this highest-level actigram
called a-p. The - A-f# actigram represents the context in
which the system being modeled operates. As a part of the
context the A-f actigram explicitly states in prose the
purpose of the model and from what viewpoint the model was
made.

The external inputs, outputs, controls, and mechanisms
used in an actigram are labeled with the position of the
corresponding arrow on the cofresponding box in the parent
diagram. Inputs and outputs are numbered top to bottom
~while controls and mechanisms are numbered left to right.
Thus, A2.3I2 (on actigram A2, box three, second ar?ow from
top on left of box) would be shown as an external input
labeled I2 on actigram A23. The numbering of the data
objects with I ,C ,0 , and M are called ICOM 'cc-ades. If an
external data object appears in an actigram and not on the
corresponding box in the parent diagram then rather than
being denoted by an ICOM code it is "tunneled." This means
that the start or finish of the arrow is surrounded by
parentheses to denote that the data object does not appear
on the parent diagram.

The above discussion 1is a very brief introductiﬁn to
SADT. More infgrmation about SADT can be found in

[43, 134, 132, 133].




READING AN SADT MODEL
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There are three major . stages -in reading an SADT

actigram model. At each stage the reader should ask

‘questions listed below.

1. Is the model syntéctically correct?

2. Do

3. Do

I

I

All lines are commented with nouns. Each
section of a split line is commented.

All boxes are labeled with verb phréses.

There are three to six boxes on each

actigram (except the A-@ context diagram).

ICOM codes are accurate. All data produced
is used. : All data used is produced.

Each box has at least one control ‘and one
output. '

understand what‘the model says?

agree with what the model says?

the

Usually comments written on the diagrams are returned

to the author of the model. The author then responds to

these’ comments and returns them to the feade:. This cycle

of written comments between a reader and an . author is called

the author—reader'cyclé.'



Appendix IT

THE METAMATCHING OPERATCR

In figufe 9 of chapter 3 an algorithm fqr-producing
metarulés for a set of transformations was éiVen ﬁsing the-
metamatching opérator e which' matches patterns against
patterns. The metamatching algorithm is presented in detail
in figure 53 of this appendix.

The four different types of objects which could appear
in "a Draco source—to ~-source transformation pattern were
defined in chapter 3 on page 47. They are literal objects,
class variables,.pattern variables, and éattefns;

ALGORITHM Metamatch(a b)
INPUT: transformation tree patterns a and b
OUTPUT: boolean indicating whether a and b could match

1. Make a[1] ~the root node of a. Make b[i] the root
node of b. IF lalil] is not equal  |[b[i]] THEN

" match - fails. FOREACH j in a(i] and b[i] WHKILE
match hasn't failed DO the action in table 2 for

alij] and b[ij]. IF match hasn't failed THEN
match succeeds. : :

2. IF b[ij] is not equal to a[ij] THEN match fails.‘

3. With the same bindings for pattern and class
variables IF ~Metamatch(a[ij],b[ij]) THEN match
fails. _ ' :

4. The binding of a literal object or pattern is
" always itself. The binding of a class variable
with no binding is a set which contains all the
elements of the class. Make a[bind] the current
binding of aflij}. Make b[bind] the current
binding of b[ij]. DO the action indicated in
table. 3 for a[bind] and b[bind]. ’

18¢
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5. Make the binding of b[ij] and a[ij] a shared cell
indicat'ng "no binding".

6. Chang- the "no binding" cell to point to the
‘liter ‘bject. .

7. Change cthe "no binding" cell to point to the set.

8. Change the "no binding" cell to point to the
pattern. .

9. IF a[bind] is not equal to b[bind] THEN match
" fail. o

1@. IF the literal object is a member of the set THEN
change the set binding cell to point to the
literal object ELSE match fail.

11. IF the intersection of the two sets is empty THEN
match fail ELSE change the binding cells of both
sets to share the set intersection.

12. With the same bindings for pattern and class
variables IF #Metamatch(a[bind] ,b[bind]) THEN
match fails.

Figufe 53. Aigorithm for the Metarule Matching Operator

The algorithm simulates the pattern matching of the
transformation mechanism. It matches two patterns without
binding the pattern variables to literal objects but to the
minimal set of literal objects indicating the restrictions
on the match. As the matching proceeds more restrictions
are put on the possible values of the pattefn and class
variables. The bindings of the two patterns share data so
that if a restriction of a pattern or class variable occurs
during its use in the pattern, then this restriction also

applies to everything which has matched that variable in the

past. If a new restriction 1is 1inconsistent with the
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@revious use of the variaBle, then the match fails. As an
examgle, the-transformation pattern
IF ?w THEN ?x<0P>?y ELSE ?2z<O0OP>?y

with internal form

would not match the pattern
IF ?a THEN ?b+?c ELSE ?d-?c

with internal form

because the binding of the <OP> class variable is not
consisteht. The ADD in the second pattern restricts the
matching'of all <OP>'s to only the ADD even though SUB is " a

member of the class <OP>.
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literal class pattern pattern
object variable wvariable
lite, do do do match
objec. step 2 step 4 step 4 fail
type class do do do match
of variable | step 4 step 4 step 4 fail
afij]
pattern do do do do
variable | step 4 step 4 step 4 step 4
pattern match match do do
: fail fail step 4 step 3
Table 2. Pattern Type versus Pattern Type
type of b[bind]
no literal set pattern
binding object
no do do do do
binding step 5 step 6 step 7 step 8
type literal do do do match
of object step 6 step 9 step 1¢ fail
a[bind]
set do do do match
: . step 7 step 190 step 11 fail
pattern “do match match do
step 8 fail fail step 12

Table 3. BRinding

Type versus Binding Type



Appendix III

EXAMPLE DOMAIN LANGUAGE PROGRAMS

This appendix p;eSents two . exampleA domain ianguage
progfams_and sahp1es:§£ their execution. The first example
implements a nathral '1angQage parser and natufal language
generator for a réstricted-domain»of discoﬁ:se. Théj second
example usés-the'same domain qsed to copstruct the parser of
the first examplé‘to couple a natural language parser to a
relational databasé. All of the examples shown here  afe
actual input to Dféco'l.ﬂvand were ;efineajby the prototype

system. 
NATURAL LANGUAGE PARSER-GENERATOR

This :seétidﬁ demdnstrates‘ example doﬁainfspecific
languages “for specifying natural ' language parsers.'and
generétors for a ;iestricted domain '0f discourse. . The
example consists_of-fhréé pa;ts: a‘dictionary, an augmented
transition network (ATN), and a generator. fhe specific ATN
used in the‘example'was originally specified by Woods [1721.

The dictionéry_Speéifiés the allowable W§rds; tbéir
éart of speech (class), and spe?ial» word features. A
particular word‘may be a member of m%re‘than_dné class (sdéh

as ."was’) and as a class member have more than one

intérpretation or feature"list. An example dictionary is
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shown below.

DICTIONARY DWUQODS

Dictionar* for the examples in Woods and Burton
Abbreviat:

w8 %o we

NP = noun. phrase NPR = nomitive pronoun
; PPRT = past participle ADJ = adjective
¢ ITRANS = intransitive AGNTFLG = agent possible
: TRANS = transitive DET = determiner -
; PREP = preposition S-TRANS = sentence object
: PRO = pronoun AUXVERB = auxiliary verb
’
; word | class | features
4
John | NPR |
was | VERB | ROOT:be TENSE:PAST
|AUXVERB| ROOT:be TENSE:PAST
believed| VERB | ROOT:believe PPRT TENSE:PAST
to | PREP |
have | VERB | ROOT:have UNTENSED TRANS
been | VERB | ROOT:be PPRT
shot | VERB | ROCT:shoot TENSE:PAST PPRT
by - | PREP |
Harry . | NPR |
; the following words are root word entries
believe'| VERB | TRANS ITRANS S~TRANS
ROOT:believe PPRT:believed PAST:believed
be | VERB | ITRANS ROOT:be PAST:was '
shoot | VERB | TRANS ROOT:shoot PPRT:shot PAST:shot
- END :
The particular natural language parsing scheme used in
the example 1is an augmented transition network (ATN)
{172, 32]. "The ATN states how the words in the dictionary

may be combined into well-formed sentences. The input to an
ATN is a dictionary and a sentence. The output of an ATN is
a set of syntax trees. If the sentence is ambiguous with
respect to the’dictionary and the ATN then the set of syntax
‘trees contains all interpretations.

An ATN 1is based on a finite state méchine with

conditions and action augmentations on the arcs. In the
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example ATNo given below the staté_names (soch as SE&TENCE
oand=Ql) appear against tke left margin. :Thé'<examp1e showso
two arcs emonating'frOm-the SENTENCE state, one to state Cl
‘which odvances the inout’to.the next word and ohe ‘to state

Qz; o A ‘ N

An arc'may be traversed only after‘thé'tests on the arc
hove been passed and the actions on the afo performed.
Thus, in the example the arc from SENTENCE to Q1 may only be .
traversed if the.currént word is an AUXVERBA'andj the given.
actions have been -perforﬁed; As "mentiooed before, the
.detalls of ATNs arel éiveh-,inv’[172]. _ Tﬁe~ paral;elism
- inherent ' in f1nd1ng a117 parsés' isf_implicit"in the ATN
description._ ' ; o '
'ATN WOODS

NETWORK SENTENCE :
see example in both Woods and Burton

I
1 Abbrev1atlons y
; NP = noun phrase ~ NPR = nomitive pronoun:
; PPRT = . ‘past participle ADJ = adjective
; . ITRANS = intransitive AGNTFLG = agent possible
; TRANS = . transitive - DET = determiner
; PREP = ) preposition S-TRANS = sentence object
; PRO = . _pronoun ~AUXVERB = auxiliary verb
: , _
; from to | tests . ] actions -
SENTENCE . ’ - )

+Q1 | class AUXVERB? ‘ |- VERB:=word[ROOT]

| - | TENSE:=word[TENSE]
] , : 1 TYPE:—'QUESTION

e

02 | none.: - ‘ | SUBJ<=NOUN-PHRASE
| o ~ - | TYPE:='DECLARE
: ; ----—---—------—---—-—-—-----------‘--- ----------------------
Q1 03 | none | SUBJ<=NOUN-PHRASE
e e e e e e e e e e e e e e s s e

02  +03 | class VERB? | VERB:=word[ROOT]
SRR T | TENSE:=word[TENSE]



03 +03 | class VERB? | .put SUBJ on hold as NP
| is word PPRT ? | SUBJ:=('NP
('PRC 'someone))
| VERB='be | AGNTFLG:='TRUE :
| VERB:=word[ROOT]
" +Q3 | class VERB? | TENSE:=TENSE+'PERFECT
. | is word PPRT ? | VERB :=word [ROOT]
| VERB='have |
;e e e e e e e e e
Q4 | is VERB TRANS ? | OBJ<=NOUN-PHRASE
; ——————————————————————————————————————————————————————
04 | holding NP? |OBJ::=remove NP from hold

| is VERB TRANS ? |
exit | is VERB ITRANS ? | <=('S ('TYPE TYPE)
("SUBJ SURJ)
('"VP ('TNS TENSE)

“s

('V VERB)))
; ———————————————————————————————————————————————————————————
Q4 +Q7 | word="by | AGNTFLG:='FALSE
| "AGNTFLG="'TRUE |
; ———————————————————————————————————————————————————————
+05 | word="'to | none
| is VERB S-TRANS ? [
;L e e e e e
exit | none | <=('S ('TYPE TYPE)

('"SUBJ SUBJ)

('VP ('TNS TENSE)
('V VERB)
("OBJ 0BJ)))

| SUBJ|:=0BJ
| TENSE]:=TENSE
| TEMP:='DECLARE
| TYPE|:=TEMP
| OBJ<=VERBR-PHRASE
06 +Q7 | word='by : | AGNTFLG:='FALSE
| AGNTFLG='TRUE ]
exit | none | <=('S ('TYPE TYPE)
' ('"SUBJ SURBRJ)
(VP ('TNS TENSE)
('V VERB)
('OBJ ORJ)))

Q7 Q6 | none | SUBJ<=NOUN-PHRASE
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VERB—PHRASE .
+Q3- | ¢lass VERB? | VERB:=word[ROOT]
| is word UNTENSED ? |

NOUN-PHRASE - ‘
+NPl | class DET? | DET:=word[ROOT]
| none ‘ . | -
H - - - - -ttt e b = e o 1 -
+NP3 | class NPR? | NPR:=word
; U : ————————= ~ s
NP1 +NP1 | class ADJ? : | ADJS:=#ADJS+word{ROOT]
+NP2 | class NOUN? !’NOUN:=word[ROOT]
NP2 'exit | none : | <=('NP ('DET DET)
‘ . ('ADJ #ADJS)
('"NOUN NOUN))
NP3 exit | none | <=('NP ('NPR NPR))
.END |

The natural ianquage generator fof‘the]examplg shown
below is also baséd' on é"fiﬁite state machine.  The
generator pérforms the inverse function of the ATN by taking
in a syntax tree and a dictibnary to produce a sentence.
GENERATOR GWOODS |

NETWORK STREE
; This is the generator for the examples in. wOods and Burton

-from to |. tests v | -actions

STREE . S1 I';one T | gen SUBJ at SUBJECT
' | ~ " | gen VP at VERB-PHRASE

s1 -;xitl TYPE="'QUESTION ) | ou;-:;" ------

; exit| TYPE='DECLARE | out-:.“ ---------

SUBJECT exit] none | gen NP at NOUN—PHRASE




_ ex1tl PRQO? | out PRO
; ————————————————————————————————————————————————————————
exit] NPR? | out NPR
; e e e e e
exitj DET? | out DET
| | list ADJS
| ' | out NOUN

VPl | TNS='PAST+'PERFECT| out "had"
| | out V[PPRT]

VPl | TNS='PAST | out V[PAST]
VPl exitl 083z | gen o83 at omzmer
OBJECT exitl NP2 | gen NP at NOUN-PHRASE
’ exit| 52 | gen § at OBI-CLAGSE
oBa-ciavsE T
exit| none - | out "that"

[ | gen SUBJ at SUBJECT
| | gen VP at VERR-PHRASE

s

«.END

The example executions of the parser-generator pair are
shown below. The testing program reads in a sentence,

passes it to the ATN, and passes each syntax tree in the
resulting set to the generator. The "*" prompt marks the
input sSentence which is followed immediately by the
generator output and the syntax tree which produced the
generator output. As far as the example is concerned, the
input and, generated sentences are equivalent. Only one of
the sentences shown is ambiquous.

[DSKLOG started: 5-2¢-8¢ 3:25 AM]

* (TESTER)



*was John shot

someone shot John?
(S (TYPE QUESTION)

(SUBJ (NP (PRO
(VP (TNS PAST)

*John shot Harry
John shot Harry .
(S (TYPE DECLARE)
(SUBJ (NP (NPR
(VP (TNS PAST)

*John was shot

someone shot John

(S (TYPE DECLARE)
(SUBJ (NP (PRO
(VP (TNS PAST)

*John was shot by
Harry shot John .
(S (TYPE DECLARE)
"(SUBJ (NP (NPR
(Ve (TNS PAST)
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someone))) C
(v shoot) (OBJ (NP (NPR John}))))

John)))
(Vv shoot) (OBJ (NP (NPR Harry)))))

‘someone)))

(V shoot) (OBJ (NP (NPR John)))))

Harry

Harry)))
(V shoot) (OBJ (NP (NPR John)))))

#John was believed to have been shot
someone believed that someone had shot John .

(S (TYPE DECLARE)

(SUBJ (NP (PRO someone)))

(VP (TNS PAST)

(V believe)

(OBJ (S (TYPE DECLARE)
(SUBJ (NP (PRO someone)))
(VP (TNS (PAST PERFECT))

(V shoot)
(OBJ (NP (NPR John))))))))
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*John was believed to have been shot by Harry
Harry believed that someone had shot John .
(S (TYPE DEC:. iE)

(SUBJ (NP PR Harry)))

(VP (TNS °T)
(V be ra)
(CBJ . TYPE DECLARE)

(SUBJ (NP (PRO someone)))
(VP (TNS (PAST PERFECT))
(V shoot)
(OBJ (NP (NPR John))))))))
someone believed that Harry had shot John .
(S (TYPE DECLARE)
(SUBJ (NP (PRO someone)))
(VP (TNS PAST)
(V believe)
(OBJ (S (TYPE DECLARE)
(SUBJ (NP (NPR Harry)))
(VP (TNS (PAST PERFECT))
(V shoot)
(OBJ (NP (NPR John))))))))

*was Harry believed to have shot John
someone believed that Harry had shot John?
(S (TYPE QUESTION)
(SUBJ (NP (PRO someone)))
(VP (TNS PAST)
(V believe)
(OBJ (S (TYPE DECLARE)
(SUBJ (NP (NPR Harry)))
(VP (TNS (PAST PERFECT))
(V shoot)
(OBJ (NP (NPR John))))))))

*Jim shot John o
I don't know what 'Jim' means.
[DSKLOG finished: 5-28-88 3:29 aAM]

NATURAL LANGUAGE RELATIONAL DATABASE

The example precsented in this section couples the ATN
domain with a relational database domain (RDB)._ The
structure of the domains used to model the domain of natural

language relational databases is given in figure 31. The
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_modelr for the database is the DEDUCE database system
(36, 37].

The ATN can‘build fact and query transactions for nouns
and the relationships between nouns. Thé dictionary
~specifies .the specific domain in which the database
operates. If the dictiohary were changed to contain parts,
part suppliers, pafﬁ numbers, parts in assemblies,.énd”part
~descriptions, fhen the. same ATN and rélational database
could be used to transact about parts. " Only the new
dictionary would havelfo be_fefined._ If a database  which
could. deal with transactions other than relationships
between‘nouné were_desired, then the ATN would have to be
modifiedf The relatibﬁai database mechanism would only need
to be re-refined if a different implementation were desired;
DICTIONARY BLOCKS | |
This is the dictionary for the blocks world RDB
NOUN = nohn.may imply a restriction -

'NPR indicates nomitive pronoun

NUM number of the noun

TYPE = indicates a restriction

: ROOT = gives the type restriction
Fred | NOUN | NPR NUM:SINGULAR

we ™e Ws %o W we W

Ethel | NOUN | NPR NUM:SINGULAR
Ricky | NOUN | NPR NUM:SINGULAR
Lucy | NOUN | NPR NUM:SINGULAR
'LilRick | NOUN | NPR NUM:SINGULAR
object | NOUN | NUM:SINGULAR ROOT:OBJECT
objects | NOUN | NUM:PLURAL ROOT:OBJECT
block | NOUN | NUM:SINGULAR TYPE ROOT:BLOCK
_blocks | NOUN | NUM:PLURAL TYPE ROOT:BLOCK
pyremid | NOUN | NUM:SINGULAR TYPE ROOT: PYRAMID
pyramids| NOUN | NUM:PLURAL TYPE ROOT:PYRAMID
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VERB = verb implies a relation
NUM = number of the verb

’

?

; REL - verb relation name

; SDO: - subject domain in relation

: ODO. : object domain in relation

is - v | NUM:SINGULAR SDOM:0BJ ODOM:TYPE REL: IS
are | Veeo | NUM:PLURAL SDOM:0BJ ODOM:TYPE REL:IS
support | VERB : NUM:PLURAL SDOM:BOT ODOM:TOP REL:SUPPORTS

supports| VERB NUM:SINGULAR SDOM:BOT ODOM:TOP
REL: SUPPORTS _
DET = determiner implies a predicate

DEFINITE or INDEFINITE

~o e

a | DET | INDEFINITE

an -] DET | INDEFINITE

the | DET | DEFINITE

; ADJ = adjective implies a relation restriction
red | ADJ | DOM:COLOR

blue | ADJ | DOM:COLOR

green | ADJ | DOM:COLOR

; NUMBER = the numerals used as determiners
; VALUE = the numerical value

two | NUMBER| VALUE:2

three | NUMBER| VALUE:3

four | NUMBER| VALUE:4

;: ATN Commands '

find | CMD

what | CMD

how | CMD

many | CMD

|

I

|

|

: ATN Quantifiers
exactly | QUANT |
I

|

I

I

at | QUANT
most | QUANT
no | QUANT
which | QUANT
.END

Instead of building syntax trees, the ATN shown below
builds nested tfansactions ‘for the relational database
system. The representation of the transactions must be the
same for the two domains. The meaning of the transactions

is given in [36].



ATN NOUN-QUERY
- NETWCRK RELATIONAE—DATA—BASE

ATN for questions about nouns and
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their relations

RELATIONAL—DATA—BASE
+FACT | is -word NPR ? | S:=word
; ———————————— — — — . . e D - —— = WS . . — — — —— —
QUERY | none | JVAR:="'ANS
| | JVAR|:=JVAR
; - P - R — . - T —— WD — — . D D G S Gl S T G G S WD = - —
FACT +F1 | class VERB? | REL:=word[REL]
| word[NUM]='SINGULAR | :=('FACT REL
(word[SDOM] S))
[ | OD'=word[ODOM] '
F1  +FOUT | is word NPR ? | <=4+ ((OD word))
; —-— — — — -— - -— — S G G D N IS i GNP SN S D S YD D D D S = - -— — -—— e
+FOUT | class ADJ? | #F+((word[DOM] word))
© | REL='IS I
; ——————————————————————— -— - — — — - PP R D = S - - D S S = ———
+F2 | class DET? | none
| is word INDEFINITE ?|
; ———————————————————————————————————————————————————————————
F2 +F2 | class ADJ? | F: F+((word[DOM] word))
H s i o S e o S e S S ot e e e S D A R e e D A S D S e s S 0 S ] s S S P S i e e
F3 .| eclass NOUN? | none
| word[NUM]='SINGULAR |
| REL='IS |
; ———————————————————————————————————————————————————————————
F3 +FOUT | is word TYEE ? |< #F+( (! TYPE word[ROOT]))
; ——————————————————————————————————————— — -y
+FouT | word[ROOT]-'OBJECT | <=F
; ———————————————————— — —— — — — S D — — D P G TR D e S O DGR S S S D W SN MM S
FOUT exit | none | none
QUERY +FQ | word='find | none
H e e e e e e e e e ——— e e e e e e e e e e o e e e o e e
+WQ | word="'what | none
: e e e e e e e e . T Y et S e o D S e AP o e e el S B s e Yot o S S . S
“+HQ | word-'how | none
; — ——— — Y " T S S G S S D S S S S T S A S D A D D e D MED D D TED TE D GED GED = D S S T SR GRS G S G G S . S S D T S AN G S =
FC .FQl | none | D<=DET .
l | JVARI|:=JVAR

N<=NOUN-PHRASE




FQl exit | N[INUM]=D[NUM] | <=('QUERY
. ("RESULT 'ANS)
(" SUBQUERY
('RESULT ‘'ANS))
+N [FORMS]
(" PREDICATE
(D[OP]
('COUNT 'ANS)
D[OPN])))
; ,
WQ exit | none ‘ | Q<=NPVP
| | <=('QUERY
('RESULT 'ANS))

HQ1l exit | none | Q<=NPVP
| ) | <= ('QUERY

(*RESULT "COUNT)

(' SUBQUERY
('"RESULT 'ANS))
+Q

('COMPUTE 'COUNT
('COUNT 'ANS)))

NPVP NV1 | none | JVAR|:=JVAR
| .| N<=NOUN-PHRASE
f | JVAR|:=JVAR
I | V<=VERB-PHRASE
NV1 exit | N[NUM]=V[NUM] [ <=#N[FORMS]+V [FORMS]
P e
NOUN-~PHRASE
NP1 | none | REL:=("RELATION 'IS
('BIND 'OBJ
JVAR))
;““"‘"'"‘““"'“““““‘“T ----------------------------
NP1 +NP1 | class. ADJ? | RS:=RS+ (('RESTRICT
' ' word [DOM]
word))

NP2 | class NOUN? | A[NUM]:=word[NUM]



NP2  +NP3 | is word TYPE ? | RS:=RS+ (("RESTRICT 'TYPE
word[ROOT]))
+NP3 I.is word NPR ? | RS:=RS+ (('RESTRICT 'OBJ
word))
; e e e e e e s
+NP3 | word[ROOT]='OBJECT | none
; —— ——— D S~ —— T P = = = A S S S S D W P YD s M D S S D S S G A - D S P e S WS W S SN S I S - G M S e e
NP3 +NP4 | word='which | none
; - -— —— — g — - — S S — — A S e =
exit | none | A[FORMS]:=(REL+RS)
| | <=A :
e e e e e e e e e e e e S e
NP4 NP5 | none } JVAR|:=JVAR
I | V<=VERB-PHRASE
; ———————.——_— ———————————————— .——_ —————————————————————————————
NP5 exit | VINUM]=A[NUM] | A[FORMS]:= (REL+RS)
i ) +V [FORMS]
| | <=A
; ———————————————————————————————————————————————————————————
VERB~PHRASE :
+VPl1 | class VERB? | A[NUM]:=word[NUM]
' I | REL:=word[REL]
I | SD:=word[SDOM]
t _-1 ODs=word[ODOM]
; —— D - — N —— YD D w— G WD = S S A TS D S e Smp D Y SN ST D TED D GED GER GEp A G W D GNP WD S S SN Gwp S
VP1 VP2 | none | D<=DET
[ | NVAR:=symbol
I | JVAR|:=NVAR
| | N<=NOUN-PHRASE

VP2 exit | D[NUM]=N[NUM] | SQ:=('SUBQUERY
L : ' ('"RELATION REL
('BIND SD JVAR)
(*REPORT OD
: ) _ NVAR) ) )+N [FORMS]
| | PRED:=('PREDICATE
(D[OP] -
~ ("COUNT NVAR)
: D[OPN]))
I : | A[FORMS]:=(S0 PRED)
| | <=A



DET +D3 | class DET? | D[NUM]:='SINCULAR
| is word INDEFINITE ?| D[OP]:='GE
i | D[OPN]:=0
; ————————————————————————————————————————————————————————
+D3 - ~lass DET? | DI[NUM]:='SINGULAR
35 word DEFINITE ? | D[OP]:='EQ
| ‘ | D[OPN]:=1
;e e e
+D3 ‘| class NUMRER? | DINUM]:='PLURAL
| | D[OP]:="GE
[ | D[OPN]:=word[VALUE]
;e e e e
+D3 | word='‘no _ | D[NUM]:='PLURAL
: I | D[OP]:='EQ
| . | D[OPN]:=0
+D2 | word='exactly | D[OP]:="EQ
; ———————————————————————————————————————————————————————
+D1 | word='at | none
§ e e e e e e e e e e e e .
D1 +D2 | word=‘most | D{OP]:='LE
D2 +D3 | class NUMBER? | D[NUM]:='PLURAL
| | DIOPN] : =word [VALUE]
; e e T . vy D D s 3 T bt = S — —— " . D - —— — — T S — D e . P = — A . —p — — . — T —— ~—— — — =
D3 exit | none | <=D
. END

The sample executions below take in a sentence and show
the database transaction formed. The database response is a

set of sets denoted by parentheses.
[DSKLOG started: 5-20~80 3:36 AM]

* (TESTER)

RDB input : *Fred is a red block
(FACT IS (OBJ Fred) (COLOR red) (TYPE BLOCK))
OK

RPB input : *Ethel is a green block
(FACT IS (OBJ Ethel) (COLOR green) (TYPE BLOCK))
OK ‘



RDBR input : *Ricky is a red pyramid
(FACT IS (OBJ Ricky) (COLOR red) (TYPE PYRAMID))
OK ‘

RDR input : *Lucy is a green pyramid
(FACT IS (OBJ Lucy) (COLOR green) (TYPE PYRAMID))
OK :

RDB input : *Fred supports Ethel
(FACT SUPPORTS (BOT Fred) (TCP Ethel))
OK’ ’

RDB input : *Ricky supports Lucy
(FACT SUPPORTS (BOT Ricky) (TOP Lucy))
OK ‘

RDB input : *Ricky supports Ethel
(FACT SUPPORTS (BOT Ricky) (TOP Ethel))
OK :

RDB input : *find a pyramid
(QUERY (RESULT ANS)
(SUBQUERY (RESULT ANS)
(RELATION IS
: (BIND OBJ ANS)
(RESTRICT TYPE PYRAMID)))
(PREDICATE (GE (COUNT ANS) 4)))
response =
(((Lucy Ricky)))

RDB input : *find a red pyramid
(QUERY - (RESULT ANS)
(SUBQUERY (RESULT ANS)
(RELATION IS ,
(BIND OBJ ANS)
(RESTRICT COLOR red)
. (RESTRICT TYPE PYRAMID)))
(PREDICATE (GE (COUNT ANS) 0)))
response =
(((Ricky)))

198
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RDB input : *find a pyramid which supports a block
(QUERY (RESULT ANS)
(SUBQU'RY (RESULT ANS)
(RELATION IS

(BEIND OBJ ANS)
: (RESTRICT TYPE PYRAMID))
(SUBQUERY (RELATION SUPPORTS
(BIND BOT ANS)
(REPORT TOP G@158))
(RELATION IS
(BIND OBJ G@158)

(RESTRICT TYPE BLOCK))
)

(PREDICATE (GE (COUNT G@158) 2)))
(PREDICATE (GE (COUNT ANS) 2)))
resronse =

(((Ricky)))

RDB input : *find the block which supports a block
(QUERY (RESULT ANS)
(SUBQUERY (RESULT ANS)
(RELATION IS

(BIND OBJ ANS)
(RESTRICT TYPE BLOCK))
(SUBQUERY (RELATION SUPPORTS
(BIND BOT ANS)
(REPORT TOP G@159))
(RELATION IS
(BIND OBJ G@159)

(RESTRICT TYPE BLOCK))
)
(PREDICATE (GE (COUNT G@159) @)))
(PREDICATE (EQ (COUNT ANS) 1)))
response =

(((Fred)))
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RDE input : *how many blocks support a pyramid
(QUERY (RESULT COUNT)
(SUBQUERY (RESULT ANS)
(RELATION IS
(BIND OBJ ANS)
(RESTRICT TYPE BLOCK))
(SUBQUERY (RELATION SUPPORTS
(BIND BOT ANS)
(REPORT TOP G@160))
(RELATION IS
(BIND OBJ GgZ16¢)
(RESTRICT TYPE PYRAMID
))
(PREDICATE (GE (COUNT G@l62) ﬂ)))
(COMPUTE COUNT (COUNT ANS)))
response =
NONE

RDB input : *how many pyramids support a block
(QUERY (RESULT COUNT)
(SUBQUERY (RESULT ANS)
(RELATION IS .
(RIND OBJ ANS)
(RESTRICT TYPE PYRAMID))
(SUBQUERY (RELATION SUPPORTS =
- (BIND BOT ANS)
(REPORT TOP Gal6l))
(RELATION IS
(BIND OBJ G@gl61)
(RESTRICT TYPE BLOCK))
" (PREDICATE (GE (COUNT G@161) 9)))
(COMPUTE COUNT (COUNT ANS))) . .
response =

((1))
RDB input : *find a pyramid which is green
I do not understand

* (LOGOUT)

[DSKLOG_finished: 5—26—8@ 3:44 AM]





