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Systematic identification of post-
transcriptional regulatory modules

Matvei Khoroshkin1,2,3,4,14, Andrey Buyan 5,14, Martin Dodel 6,7,14,
Albertas Navickas 1,2,3,4,13, Johnny Yu1,2,3,4, Fathima Trejo8, Anthony Doty8,
Rithvik Baratam1,2,3,4, Shaopu Zhou1,2,3,4, Sean B. Lee1,2,3,4, Tanvi Joshi1,2,3,4,
Kristle Garcia1,2,3,4, Benedict Choi1,2,3,4, Sohit Miglani1,2,3,4,
Vishvak Subramanyam1,2,3,4, Hailey Modi9,10,11, Christopher Carpenter1,2,3,4,
Daniel Markett1,2,3,4, M. Ryan Corces 9,10,11, Faraz K. Mardakheh 6,7 ,
Ivan V. Kulakovskiy 5,12 & Hani Goodarzi 1,2,3,4

In our cells, a limitednumberofRNAbindingproteins (RBPs) are responsible for
all aspects of RNA metabolism across the entire transcriptome. To accomplish
this, RBPs form regulatory units that act on specific target regulons. However,
the landscapeofRBP combinatorial interactions remainspoorly explored.Here,
we perform a systematic annotation of RBP combinatorial interactions via
multimodal data integration. We build a large-scale map of RBP protein
neighborhoods by generating in vivo proximity-dependent biotinylation data-
sets of 50 human RBPs. In parallel, we use CRISPR interference with single-cell
readout to capture transcriptomic changes upon RBP knockdowns. By com-
bining thesephysical and functional interaction readouts, alongwith the atlas of
RBP mRNA targets from eCLIP assays, we generate an integrated map of func-
tional RBP interactions. We then use this map to match RBPs to their context-
specific functions and validate the predicted functions biochemically for four
RBPs. This study provides a detailed map of RBP interactions and deconvolves
them into distinct regulatory modules with annotated functions and target
regulons. This multimodal and integrative framework provides a principled
approach for studying post-transcriptional regulatory processes and enriches
our understanding of their underlying mechanisms.

RNA binding proteins (RBPs) are crucial for governing all stages of
post-transcriptional regulation, from RNA splicing and nuclear export
to translation and decay. Despite the limited number of conventional
RBPs encoded in the humangenome (fewer than 1500)1, they shepherd

more than 100,000 transcripts throughout their life cycles. Therefore,
it is unlikely that any given RBP acts on only one specific regulon –

defined as a group of transcripts that are regulated as a unit through
the same regulatory factors2–4 –or performsonly one specific function.
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Instead, RBPs assemble into units of post-transcriptional control in a
combinatorialmanner to cover awide array of functions for thousands
of distinct target regulons5. Similarly, the set of transcripts bound by a
given RBP does not represent a single regulon; instead, these tran-
scripts are part of various independent regulons, each characterized
by the distinct set of RBPs that act on it. This combinatorial RBP
interaction network enables a limited number of RBPs to fulfill diverse
roles in post-transcriptional regulation, governing all aspects of the life
cycle for all RNAs in the cell. This complexity illustrates the need to
systematically understand the regulatory context and consequence of
each RBP in relation to each target transcript and their associated
regulons.

Several recent large-scale projects6, such as the work by the
ENCODE consortium, have focused on mapping the interactions
betweenRBPs and their bindingpartners7. Other studies have explored
the subcellular localization of hundreds of RBPs and RNAs, and the
gene expression changes that result from RBP knockdowns8–10. How-
ever, these transcriptome-widemaps of RBP-RNA interactions have yet
to fully elucidate the specific regulatory consequences of each binding
event. Unlike the clearer picture in transcriptional regulation, where
transcription factor binding at several target loci often implies their co-
regulation, the inherent diversity in post-transcriptional regulatory
processes, from processing to decay, suggests that RBPs interact with
specific RNAs as parts of distinct regulatory networks, leading to a
range of possible functional outcomes11,12. Recognizing this gap, our
study aims to move beyond mapping the RBP interactome13 to define
“functional regulatory modules”: groups of RBPs that closely interact,
either physically or functionally, to regulate specific sets of transcripts
defining each target regulon.

Delineating regulatory modules is challenging due to the multi-
faceted nature of interactions between RBPs, which extend beyond
simple physical associations. RBPs can co-localize, directly interact, or
cooperate by binding to the same RNAs, either simultaneously or
sequentially14. To capture this complexity, here we adopted a multi-
modal approach to develop an Integrated Regulatory Interaction Map
(IRIM) that integrates three types of functional interactions: (i) physical
co-localization, (ii) binding to the same RNA targets at varying times
and locations, and (iii) participation in the same regulatory pathway
leading to similar transcriptomic changes. The latter serves as our
method to capture genetic interactions (GIs), which provide a nuanced
view of gene functions by capturing complex, context-dependent
interplaysbetweengenes15,16. To showcase theutility of our framework,
we further explored several regulatory roles predicted by our
approach for specific RBPs. In particular, we experimentally validated
that two RBPs, ZC3H11A and TAF15, both control independent reg-
ulons through distinct regulatory programs that include regulation of
alternative splicing, RNA translation, or stability, depending on the
regulon. Our findings also highlighted several RBPs, such as ZNF800
and QKI, that are involved in both transcriptional and post-
transcriptional gene expression regulation, emphasizing the com-
plexity of RBP action. Taken together, this study provides a systematic
and principled approach that enhances our understanding of the
complex and multifaceted roles of RBP functional modules in gene
regulation.

Results
Integrated RBP interaction maps to reveal regulatory modules
In order to broadly and systematically annotate regulatory interactions
between RBPs, we combined data from three independent modalities,
namely (i) RBP-RBP physical associations revealed by BioID2-mediated
proximity protein labeling, (ii) RBP-RBP genetic associations identified
through Perturb-seq, and (iii) RBP-RNA interactomes extracted from
the ENCODE eCLIP dataset (Fig. 1 and Supplementary Fig. S1). First, we
fused the BioID2 system to 50 RBPs in K562 cells, validated expression
of each fusion by western blotting, and captured the protein

neighborhood of each RBP using streptavidin pulldown and mass
spectrometry17. Importantly, for each RBP, we also included matched
controls by processing the same lineswithout a biotin pulse, whichwas
crucial for generating a high-confidenceprotein neighborhooddataset
to systematically identify co-localizing RBPs (Supplementary Data
Files 3, 6, 7). Second, we used Perturb-seq, a parallelized loss-of-
function screen with rich single-cell transcriptomic readouts15, to
reveal sets of RBPs whose perturbations similarly impact the gene
expression landscape of the cell (Supplementary Fig. S5). We obtained
transcriptome-wide gene expression measurements following deple-
tion of 68 RBPs representing a variety of regulatory processes (see
“Methods”) (Supplementary Data File 5), and used the resulting high-
dimensional data to systematically delineate genetic interactions
between RBPs15. Finally, we re-analyzed the ENCODE eCLIP dataset to
evaluate the extent to which pairs of RBPs bind to common RNA
targets18.

The abovementioned data modalities capture complementary
aspects of regulatory interactions between RBPs. Therefore, integrat-
ing these sources of information is a critical step toward generating a
more comprehensive and generalizablemap of regulatory interactions
(Fig. 1 and Supplementary Fig. S1). To accomplish this, we first gener-
ated RBP-target interaction maps for each individual modality, where
the ‘target’ can be either neighboring protein (BioID), downstream
gene (Perturb-seq), or target RNA (eCLIP; Supplementary Fig. S2A–C).
In order tomake themeasurements comparable between datasets, we
standardized them across the target features. We posited that RBPs
that fall close to each other in this feature space, which reflects phy-
sical and functional proximity, function as part of the same regulatory
modules. Therefore, for each data modality, we estimated pairwise
cosine distances between RBPs and transformed them into empirical
p-values to achieve a uniform scale for pairwise similarity. Finally, the
three separately calculated p-values for RBP-RBP similarities (i.e., from
BioID, Perturb-seq, and eCLIP, respectively) were combined into a
single unified probability score (Supplementary Fig. S1) expressing the
overall likelihood of functional interactions between pairs of RBPs
(Supplementary Data File 1).

The resulting ‘Integrated Regulatory Interaction Map’ (IRIM)
provides the means to elucidate the combinatorial regulatory logic
underlying RBP-mediated post-transcriptional control of gene
expression (Fig. 2A). Interaction maps are often interpreted by iden-
tifying proteins that cluster together into functional complexes in an
unsupervised manner. As shown in Fig. 2A, IRIM similarly captures a
number of canonical RBPmodules involved in key post-transcriptional
regulatory programs such as ‘cytoplasmic translation’ and ‘splicing’.
However, we also observe many off-diagonal interactions in IRIM that
are indicative of RBPs with multiple functions in different aspects of
RNA regulation. Moreover, IRIM captures 20% more regulatory inter-
actions than an analogousmap built based on the current state-of-the-
art protein-protein interaction database, STRING-DB19, which also
incorporates indirect (functional) associations (Supplementary
Fig. S2D).

Our integrative approach brings together RBPs that form key
regulatory modules – which we define as a set of RBPs that share
significant functional interactions (Supplementary Data 16) – and
broadly recapitulateswhat is known about the functions of theseRBPs.
It also allows us to delineate regulons associated with each regulatory
module, which we define as the set of RNA targets that bind at least 2
RBPs participating in the module according to the eCLIP binding data
(Supplementary Data 18). However, tracking the source of the signal to
the individual input modalities is also often informative, which is
readily doable with our setup. For example, among the group of 15
RBPs that are collectively associated with ribosome biogenesis and
translation-related processes, RBPs such as FXR1, ZNF622, and
ZNF800 bind overlapping RNA targets based on the eCLIP data,
whereas UCHL5 and AGGF1, which have been previously shown to
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inhibit p53 ubiquitination by MDM220,21, are additionally associated
with the regulation of p53-mediated apoptosis based on Perturb-seq
results (Fig. 2A). Another example is the group of RBPs associatedwith
mitochondrial and cytoplasmic RNA metabolism; while eCLIP data
brings together the RBPs that tend to bind the same RNA classes,
proximity labeling clearly distinguishes mitochondrial RBPs (TBRG4,
FASTKD2, and SUPV3L1) from others (Fig. 2A).

Having systematically revealed inter-RBP interactions, encom-
passing both known andpotentially novel associations,we next set out
to confirm that the identified interactions alignwith established, “gold-
standard” databases. For this, we matched our findings, derived from
IRIM, against interactions cataloged in STRING19, OpenCell5, hu.MAP22

and Zanzoni et al.23. Permutation tests revealed a statistically sig-
nificant overlap between our detected interactions and these data-
bases (FDR =0.031 for STRING, 0.00017 for OpenCell, 0.01 for hu.MAP
and 0.0015 for Zanzoni et al. using a 0.25 quantile as the integrated
distance threshold) (Fig. 2F and Supplementary Fig. S3A). At this
threshold, we identified 1001 RBP-RBP pairs, with 776 of these inter-
actions being novel (not reported in the STRING database), and an
average of 22 contacts per RBP, a five-fold increase in interactions
compared to STRING (see Supplementary Data File 14). Moreover, the
newly reported interactions that were not annotated in STRING
showed significant intersection with OpenCell inter-RBP interactions
(p < 10−4), supporting the validity of the newly reported interactions.
IRIM remained robust to the removal of any one data modality,
maintaining a significant intersection with STRING (Supplementary
Fig. S3A, see “Methods”). This alignment with established databases
validates our approach, emphasizing its effectiveness in revealing
novel, meaningful RBP interactions.

To further assess the robustness of IRIM and the resulting RBP
associations, we performed a randomization test, permuting various
percentages (5, 10, 25, 50, 75, and 100%) of the matrix columns, each
column representing the distances from a given RBP to all the other
RBPs (Supplementary Fig. S3B). To ensure that our set of selected RBPs
sufficiently represent annotated RNA-binding proteins, we also com-
pared the resilience of IRIM’s topology to that of STRING-DB, OpenCell
and hu.MAP by systematically introducing noise to these datasets
(Fig. 2E). The similar rates of degradation in IRIM and STRING under
increasing noise regimens highlight the ability of the selected RBPs to
maintain the overall network topology; even at 25% of data randomly
altered, the ranking of RBP neighbors remains largely unchanged. This
persistent stability underscores a resilient modular structure in IRIM,
reinforcing the resilience of our delineated interactions to the addition
or removal of other RBPs.

Combinatorial interactions between RBPs provide a molecular
basis for their multifaceted role in gene regulation
IRIM reveals numerous cases of combinatorial interactions and func-
tionally pleiotropic roles for RBPs, a number of which have been pre-
viously described. Such combinatorial interactions appear as off-
diagonal groupings in IRIM (Fig. 2A). For example, IRIM shows that
both U2AF1 and KHSRP associate with clusters related to splicing
and translation (Fig. 2A); direct roles for these RBPs in regulating
both these processes have been recently reported24,25. In addition,
functionally pleiotropic RBP groups are assigned to multiple clusters
using the fuzzy clustering c-means approach, revealing the inter-
connections between rRNA transcription, splicing, and translational
processes (Supplementary Fig. S3C). Furthermore, we performed a

Fig. 1 | Workflow overview: generating an integrated regulatory interaction
map of RNA-binding proteins. A–C The results of BioID2, Perturb-seq, and pub-
licly available ENCODE eCLIP assayswere independently processed and normalized
across RBPs. D The resulting Z-scores were used to estimate the cosine distance
between all pairs of the tested RBPs and to calculate empirical left-tailed p-values

for RBP-RBP similarities. For each pair of RBPs, the p-values from three assays were
aggregated as in ref. 117 to obtain a single measure of similarity between RBPs
across the feature spaces from the three modalities. The resulting matrix of pair-
wise similarities was defined as the Integrated Regulatory Interaction Map (IRIM)
that simultaneously captures physical and functional interactions between RBPs.
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graph-based visualization of the IRIM interactions to demonstrate the
identified RBP functional clusters (Supplementary Fig. S3D).

To go beyond known examples and to gain insights into pre-
viously unknown functions of RBPs, we implemented a label transfer
approach for each RBP to extrapolate annotated functions of closest
neighbors in IRIM to infer possible functions of the RBP of interest. As
expected, we find that the closest neighbors often capture the known

functions of RBPs (Fig. 2B and Supplementary Fig. S4). For instance,
interactions of the non-homologous end joining effector XRCC6
(Ku70) and key RNA regulatory proteins PUM2 (translational repres-
sion), HNRNPM (mRNA processing), and DDX3X (RNA helicase) hint at
a connection between RNA metabolism and the DNA damage
response, with supporting studies showing PUM2 driving chromoso-
mal instability and DDX3X colocalizing with double strand breaks26,27.
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Indeed, XRCC6 participates in DNA repair pathways while also reg-
ulating rRNA biogenesis28. Interactions involving PPIL4 similarly point
to its role in transcriptional regulation, a finding consistent with PPIL4
being shown to interact with JMJD6, a known actor in transcriptional
control29. The interaction of LIN28B with other proteins also aligns
with its recognized role in mRNA translation30. These examples high-
light known interactions and hint at the potential for this label transfer
approach to reveal previously unknown functions for RBPs, offering a
starting point for further exploration.

As mentioned earlier, the incorporation of multiple data mod-
alities allows IRIM to effectively capture the functional pleiotropy of
RBPs. For illustration, we examined the annotated functions of the
closest neighbors of each RBP across three modalities (Fig. 2C). Spe-
cifically, for ZNF800, its nearest neighbor in the eCLIP
dataset–UCHL5–is identified as a chromatin remodeling protein.
However, proximity labeling data reveals ribosome biogenesis factors
like DDX21 and RPS11 in ZNF800’s vicinity. Consequently, IRIMmerges
thesemodalities, revealing ZNF800’s association with both chromatin
remodeling and ribosome biogenesis factors (Fig. 2C, left panel).
Another example is TAF15; eCLIP data link it to transcriptional reg-
ulators like SAFB2, while proximity labeling highlights its interaction
with the splicing machinery through SMNDC1, GPKOW, and SF3B4.
Perturb-seq data further captures translational regulators PABPC4 and
EIF4G2 among TAF15’s neighbors (Fig. 2C, right panel). Our method
also discernsweak, yet consistent interactions betweenmodalities. For
instance, TAF15 and XRN2 show only distant connections with DGCR8
in individual modalities but are top-5 RBP partners of DGCR8 once the
scores are integrated (Fig. 2D). Experimental evidence supports
DGCR8’s role in chromatin organization and its collaboration with
XRN2 in transcription termination31–33.

Defining functional RBP neighborhoods using BioID-mediated
proximity labeling
Having defined the modules that each RBP participates in, we next
sought to assign regulatory functions to each of these modules. The
proximity labeling data allowed us to go beyond RBP-RBP interactions
(Supplementary Fig. S6A–D) and study the functions of both individual

RBPs and their modules by analyzing the totality of their protein
neighborhoods (Supplementary Fig. S6F). For each RBP, we ranked its
neighbors by their enrichment in the biotinylated fraction, followedby
gene-set enrichment analysis (GSEA) to identify the most over-
represented pathways and protein complexes in each RBP neighbor-
hood (Fig. 3A). This procedure allowed us to systematically estimate
the significanceof the involvement of anRBP in a givenpathway across
all “RBP-pathway” pairs. Conceptually, the resulting GSEA p-values for
the positive enrichments (enrichment scores > 0) reflect the con-
fidence in each annotation, where higher -log(p-values) denote higher
confidence in the proposed association (Supplementary Fig. S6E, G,
see “Methods”).We have visualized the high-confidence annotations in
a heatmap (NES > 2 for at least one RBP) along with the major RNA
classes that our eCLIP analysis nominated as the likely targets of each
RBP module in Fig. 3B.

In many cases, the established functions of RBPs are clearly cap-
tured by this approach (Fig. 3B). For example, we have correctly
annotated SRSF7, NONO, and HNRNPA1 as splicing-related RBPs that
bind predominantly pre-mRNAs. Similarly, we identified RPS11, NPM1,
and DDX52 as RBPs that are involved in ribosome biogenesis and
directly interact with rRNAs. Our BioID-based annotations also iden-
tified RBPs that regulate transcription (HNRNPC, NPM1, QKI)34–36,
initiate and regulate mRNA translation (LARP4, EIF3G, RPS3,
LIN28B)30,37,38, participate in snRNA processing (TAF15, NPM1)39,40 and
mitochondrial metabolism (SUPV3L1, FASTKD2, TBRG4)41, and mod-
ulate centrosome amplification (YWHAG)42.

Our findings also reveal novel and previously unexplored “non-
canonical” functions for human RBPs, highlighting the gaps in our
current knowledge of RBP annotations that can be systematically
addressed with our approach. For example, SRSF7 is primarily known
as a splicing factor; however, we observed an equally strong enrich-
ment of mRNA 3’-end processing and polyadenylation pathways,
which are not yet annotated in GO but are alluded to in recent
publications43,44. Overall, we have annotated 19 RBPs with 1111 BP GO
terms at 5% FDR, of which 736 (66%) are novel (not listed in GO). In the
following sections, we have experimentally verified a number of these
annotations.

Fig. 2 | Unveiling post-transcriptional regulatorymodules through integrative
analysis of RBP-RBP interactions. A Integrated Regulatory Interaction Map
(IRIM): This heatmapdisplays integrated distances betweenRBPs, where each cell’s
color denotes the integrated distance between the corresponding RBPs. Hier-
archical clustering is illustrated by the dendrogram to the left. The colormap sig-
nifies the inclusion of RBPs in three data sources: eCLIP (green), BioID (blue), and
Perturb-seq (brown). Recognized regulatory modules are emphasized in red with
contributing RBPs labeled directly on the plot. Insets present detailed heatmaps for
two exemplary modules, colored respectively for source datasets: BioID (blue),
Perturb-seq (orange), and eCLIP (green). Proteins discussed are highlighted in red,
and examples of module interplay, including U2AF1 and KHSRP, are marked in
orange. Source data are provided as a Source Data file. B Swarm Plots for RBP
Partners of XRCC6, PPIL4, and LIN28B: Swarm plots illustrate the RBP partners for
XRCC6 (top), PPIL4 (middle), and LIN28B (bottom), with each point representing
an individual RBP. The points are organized by the integrated distance from the
specified RBP to the query RBP. Annotations within each plot designate the com-
mon function of the closest interacting partners. The three RBPs with the smallest
distances are specifically labeled; those associated with a common function are
marked in purple, and the others in gray. Source data are provided as a Source Data
file. C Identification of RBP Partners of ZNF800 and TAF15: The swarm plots here
delineate the RBP partners of ZNF800 (left) and TAF15 (right), employing the same
color-coding for datasets as in (A): eCLIP (green), BioID (blue), and Perturb-seq
(brown). The top portion represents the RBP partners as derived from individual
datasets, each annotated with the common function of the nearest interacting
partners. Thebottomportion, analogous to (B), displays theRBPpartners sortedby
the integrated distance, with the top interacting RBPs distinctly labeled according

to the common function in purple and the others in gray. Source data are provided
as a Source Data file. D Examination of RBP Partners of DGCR8: This section pre-
sents swarm plots of the RBP partners of DGCR8. The top plots showcase the
partners based on individual source datasets, similar to (C), with each plot anno-
tated and color-coded according to (A). The bottomplot displays the RBP partners
sortedby integrateddistance, highlighting the top interactingRBPs.Notably, TAF15
and XRN2 are emphasized, illustrating the efficacy of the distance integration
procedure in confirming the known involvement of DGCR8 in the regulation of
transcription. Source data are provided as a Source Data file. E Rearrangements in
RBP matrices: This panel demonstrates the alterations in the structure of the
Integrated Regulatory Interaction Map matrix due to random shuffling, depicting
changes in distance to the closest and farthest partner RBP. Downsampling was
conducted by shuffling distance values of varying fractions of RBPs (0% to 100%).
This procedure was performed 10 times for each of 90 RBP, resulting in 900 esti-
mates for each dataset and shuffling percent. Dots represent themedian, error bars
represent the lower and upper quartiles. Source data are provided as a Source Data
file. F Percent of RBP pairs passing IRIM distance < 25% quantile that intersect
STRING, OpenCell, hu.Map, and Zanzoni et al.23. Violin and boxplots are based on
104 random shuffling iterations; red dots represent the percent of the real IRIM
distances. Right-tailed p-values were obtained for each group by calculating a
fraction of random shuffling iterations with the intersection greater or equal to the
observed value (among 104 + 1 cases). Box plot bounds and center represent the
first, second, and third quartiles, while whiskers representminimum andmaximum
values in the data, excluding outliers that aremore than 1.5 interquartile range from
lower and upper quartiles and are depicted as dots. Source data are provided as a
Source Data file.
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ZC3H11A and TAF15 are pleiotropic post-transcriptional reg-
ulators involved in splicing, translation, and RNA stability
Our approach highlighted ZC3H11A and TAF15 as functionally pleio-
tropic RBPs involved in multiple post-transcriptional processes for
distinct RNA regulons. ZC3H11A is known to be a part of the TREX
complex responsible for mRNA export and was shown to co-localize
with SRSF2 in nuclear speckles that play a role in splicing45,46. TAF15, on

the other hand, has been predominantly studied as part of the TFIID
and RNAPII complexes of the core transcriptional machinery47. TAF15’s
role as an RNA-binding protein in post-transcriptional control, how-
ever, is not as well characterized. Regardless, several studies have
shown TAF15 to be involved in the stability and processing of the
mRNAs encoding FGFR4, GRIN1, and a small subset of other proteins in
neurons, as well as lncRNA LINC0066548–51. In addition, it has been
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shown that TAF15 participates in miRNA-mediated regulation of cell
cycle gene expression, and a role for this protein in mRNA transport
and translation has been suggested based on its pervasive binding to
3’UTRs51,52.

IRIM suggests that both ZC3H11A and TAF15 are involved in a
much wider set of post-transcriptional regulatory processes than have
been previously characterized (Fig. 2). In particular, TAF15 has the
highest interaction scores with FUS, SAFB2, EIF4G2, NONO, and SAFB,
which in addition to transcription are also associated with translation
(EIF4G2) and splicing (NONO). On the other hand, ZC3H11A’s top
interacting partners include GPKOW and DHX30, suggesting putative
splicing-related functions. Consistently, gene-set enrichment analysis
of the proximity-labeling data revealed mRNA export (for ZC3H11A)
and transcription (for TAF15), as the highest-scoring pathways. How-
ever, we also noted multiple additional high-scoring pathways,
including “spliceosomal snRNP assembly” for both RBPs
(GO:0000387, Normalized ES (NES) = 1.5) as well as “mRNA stabiliza-
tion” (GO:0048255, NES = 1.5) and “positive regulation of translation”
(GO:0045727, NES = 1.7) for TAF15 (Fig. 4A).

To verify these putative roles for ZC3H11A and TAF15 in splicing
regulation, we used CRISPRi to knock down these RBPs in K562 cells
(96% and 98% knockdown efficiency when compared to non-targeting
guide RNA, respectively, Supplementary Fig. S7A–F) and performed
paired-end total RNA-seq to evaluate transcriptome changes in
response to RBP depletion. Upon silencing either of these genes, we
observed a number of significant alternative splicing events (ASEs)
(296 and 190 differentially spliced events for ZC3H11A and TAF15
knockdowns, respectively; Fig. 4B, D). We validated several of these
significant ASEs (Supplementary Fig. S7G–I) using quantitative RT-PCR
(Fig. 4C, E); thereby confirming the involvement of ZC3H11A andTAF15
in the regulation of alternative splicing. To confirm whether these
modulations are the result of direct interaction between ZC3H11A or
TAF15 and these target pre-mRNAs in vivo, we performed crosslinking
and immunoprecipitation followed by sequencing (CLIP-seq)53 for
both ZC3H11A and TAF15 in K562 cells. As expected, we detected the
binding of ZC3H11A at sites proximal to 326/353 ASEs (at the distance
of <50 nt) and the binding of TAF15 at sites proximal to 202/218 ASEs
(Fig. 4F and Supplementary Fig. S7J). Taken together, these results
establish ZC3H11A and TAF15 as direct regulators of alternative spli-
cing for their respective regulons.

In addition to RNA processing and splicing, we also observed a
significant and independent association between TAF15 and trans-
lational control machinery. To investigate this, we performed
ribosome footprinting (Ribo-seq54) as well as matched RNA
sequencing in control and TAF15 knockdown cells (Supplementary
Fig. S8A–C). Consistent with a direct role for TAF15 in translational
control, we observed translational repression of 212 mRNAs in
TAF15 knockdown cells (Supplementary Fig. S8C). Notably, these
translationally repressed mRNAs were significantly enriched for
RNAs that directly bind TAF1518 (Fig. 5A). In addition, we generated
and compared protein abundance data in TAF15 KD and control cell
lines using quantitative mass spectrometry. As expected, TAF15
targets showed a significant change in their protein abundance
without a concomitant change in their mRNA levels (Fig. 5A, B).

Taken together, our findings demonstrate that TAF15 plays a role in
promoting mRNA translation for its target regulon.

We also observed a strong association between TAF15 with reg-
ulators of RNA stability including LARP1, SYNCRIP, and RBM10. To
further explore this association, we measured mRNA decay rates by
inhibiting RNAPII-mediated transcription with α-amanitin (Sigma-
Aldrich A2263) and performing RNA-seq in control and TAF15 knock-
down cells (Supplementary Fig. S8D–F)55. Using iPAGE56 andGSEA57, we
found that TAF15-bound RNA targets are enriched among the RNAs
that experience a reduction in half-life when TAF15 is depleted
(Fig. 5C). To independently verify this observation, we used RT-qPCR
to compare mRNA stability of several TAF15 mRNA targets, such as
UBE2J2 and GUK1, in TAF15-KD versus control cells (Fig. 5C, D). For all
tested targets, we observed significantly lower mRNA stability upon
TAF15 knockdown, thus supporting our hypothesis of TAF15 involve-
ment in the regulation of mRNA stability.

Collectively, these results showcase how a single RBP, in this case
TAF15, can play multiple regulatory functions based on the context of
its interactions with each regulon. To further explore this notion, we
asked whether the three sets of TAF15 target RNAs, corresponding to
TAF15’s roles in splicing, translation, and stability, are in fact, distinct,
form independent regulons, and participate in different biological
processes (Fig. 5E and Supplementary Fig. S8G). We observed that the
translation and stability regulons partially but significantly overlap;
this is concordant with the known interdependence of these two bio-
logical processes58. On the other hand, there was only a small number
of overlapping target RNAs present in the translation and splicing
groups, aswell as the splicing and stability groups (18 out of 741 and 40
out of 1890 genes, respectively; Fig. 5E). Overall, in K562 cells, TAF15
controls splicing of 155 RNAs, translation of 919 RNAs, and stability of
2068 RNAs; 320 of these RNAs fall into two regulons and only 13 are
present in all three pathways, underscoring TAF15’s involvement in
three distinct regulatory pathways with largely mutually exclusive
mRNA targets.

RNA-binding proteins QKI and ZNF800 are involved in the reg-
ulation of transcription
While RNA-binding proteins are often thought to strictly regulate post-
transcriptional processes, IRIM highlighted several RNA-binding pro-
teins that are also strongly associated with transcriptional control.
Chief among these, we noted ZNF800 and QKI; both associate with
transcriptional regulators such as TAR DNA-binding Protein 43 (TDP-
43)59, Nucleophosmin 1 (NPM1)60, and Helicase-Like Transcription
Factor (HLTF). ZNF800 is a zinc finger protein whose molecular
functions are poorly studied, yet it is implicated in diseases such as
lung cancer61. In contrast, QKI is a well-studied RBP involved in many
RNA-related processes and is known to play a major part in neuronal
gene regulation and neuron myelination62–66.

Based on our proximity labeling results, ZNF800’s protein
neighborhood functions in DNA methylation, transcription by RNA
polymerase I, rRNA processing, and chromatin remodeling (Fig. 6A).
On the other hand, QKI’s neighborhood is associated with histone
methylation, RNA splicing, transcription by RNA polymerase II, and
chromatin organization. To validate the previously unknown role for

Fig. 3 | BioID-mediated proximity labeling defines RBP neighborhoods and
enables functional annotation of RBPs. A Overview of our pathway annotation
workflow for RBPs. The example provided shows the test for the association of
ZNF800 and GO:0006361 (transcription initiation from RNA polymerase I pro-
moter). Proximity-labeled proteins were ranked by their z-scores in the ZNF800-
BioID dataset, where a higher score implies enrichment relative to control.
Experiments were performed in biological triplicates using unlabeled samples as
controls (three cases vs. three control designs). Gene-set enrichment analyses were
performed on the resulting ranked list across all RBPs. Each enrichment analysis

resulted in a p-value and NES score for a given pair of RBP and a pathway. B A
heatmap showing the associations between RBPs and pathways as inferred from
proximity labeling data. Columns correspond to the RBPs, rows correspond to
individual gene ontology terms (Biological Processes; BP), and the color denotes
theGSEAnormalized enrichment score (NES). The associations showing FDR<0.05
aremarked with a yellow asterisk. The green heatmap in the header shows the RBP
binding preferences to particular RNA types, as determined based on eCLIP RNA
targets. Some known functions of RBPs are highlighted by boxes and zoomed-in on
the right. Source data are provided as a Source Data file.
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ZNF800 in chromatin remodeling and confirm recently discovered
chromatin-associated QKI functions36, we performed ATAC-seq on
control andCRISPRi-generated knockdownK562 cells (Supplementary
Fig. S9A–D) (87% and 76% knockdown efficiency, respectively)67. We
observed a significant and widespread increase in chromatin accessi-
bility across thousands of regions when these RBPs were silenced
(2660 out of 2724 significantly differential regions were upregulated
for QKI knockdown, and 1399 out of 1417 significantly differential

regions were upregulated in ZNF800 knockdown; Fig, 6B). Among the
differentially accessible peaks, the majority were located in close
proximity (< 1 Kb) to gene promoter regions (Fig. 6B).

To further demonstrate that ZNF800 and QKI are chromatin-
associated RBPs, we performed ChIP-qPCR on several of their gene
targets. Namely, we tested the binding of ZNF800 to the promoter
sequences of RPS15 and RPL10A, and the binding of QKI to the pro-
moters of PRC1 and LTBR. As expected, these target sequences were
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significantly enriched in ChIP samples compared to controls, which
demonstrates the localization of ZNF800 andQKI to promoter regions
of these identified target genes (Fig. 6C and Supplementary Fig. S9E,
F). In addition to ChIP-qPCR validation, we have tested an overall
agreement between the differential ATAC-seq peaks changing upon
RBP knockdowns and the published ChIP-exo data68. As expected,
ZNF800 and QKI ChIP-exo signal was significantly enriched in differ-
ential ATAC-seq peaks compared to the rest of the peaks (U test
p-value < 10−16 for ZNF800, Fisher’s exact test odds ratio = 40,
p-value < 10−16 for QKI, see “Methods”).

To test whether the observed changes in chromatin accessibility
lead to changes in mRNA expression, we next performed RNA-seq in
control and QKI- or ZNF800- knockdown cells (Supplementary
Fig. S9A, C). As expected, we observed significantly elevated expres-
sion of the genes with increased chromatin accessibility in the ATAC-
seq data (18X and 4X increase in median RNA-seq LogFC for ZNF800
and QKI ATAC-seq targets, respectively, Fig. 6D). Together, these
observations point to the role of ZNF800 and QKI as transcriptional
repressors.

We also sought to explore whether the role that ZNF800 and QKI
play in transcription inhibition is associated with their binding to RNA.
We tested whether the promoters of genes encoding the RNA binding
targets of ZNF800 and QKI (based on eCLIP data) overlap the ATAC-
seq peaks that become upregulated upon RBP knockdown. We
observed that such overlapped ATAC-seq peaks were significantly
more upregulated than the rest of the peaks (69% and 47% increase in
median ATAC-seq LogFC for ZNF800 and QKI eCLIP targets, respec-
tively, Fig. 6E), supporting the hypothesis that ZNF800 and QKI
achieve their regulatory functions through direct co-transcriptional
binding of chromatin-associated RNA.

Collectively, these results validate a direct and previously
unknown role for QKI and ZNF800 in transcriptional control, as
revealed by IRIM, even though they were previously thought to be
primarily involved in post-transcriptional regulation. Our data suggest
that RBP-RNA interactions can often influence transcriptional activity.
This further highlights the value of the IRIM in identifying under-
appreciated functions of multimodal RBPs.

Discussion
The traditional model of transcriptional control called the “transcrip-
tional regulatory code”69 involves cis-acting elements such as enhan-
cers and transcription factor binding sites (TFBSs) and trans-acting
transcription factors (TFs) that bind to these elements in a combina-
torial and coordinated manner to create complex regulatory circuits.
However, the equivalent conceptual framework for studying the
combinatorial post-transcriptional control of gene expression has not
been established. Given that a few hundred RBPs control all aspects of
the RNA life cycle, from processing and export to translation and

decay, the “one RBP-one function” paradigm does not provide enough
complexity to cover all the post-transcriptional regulatory processes
that occur in a cell. It is not surprising, then, that RBPs are highly
functionally pleiotropic and also exhibit a complex and context-
specific RNA binding grammar.

Many research initiatives have focused on mapping RBP-bound
transcripts as units of post-transcriptional gene expression control.
The ENCODE consortium and other groups have used methods like
eCLIP and RIP-seq for this purpose7,70. While these efforts have pro-
vided valuable insights, they often do not capture the full complexity
of RBP functions, which are multifaceted and context-dependent71,72.
It’s widely recognized that RBPs often bind thousands of RNAs, exhi-
biting regulatory functions that vary acrossdifferent contexts. As such,
considering an RBP regulon as a simple set of RNAs bound by a given
protein is an oversimplification.

In this study, we took a significant step forward by providing
detailed annotations of these combinatorial interactions. We refined
the concept of ‘regulatory modules,’ not as a novel idea, but as a fra-
mework to systematize the complex interplay of RBPs. Our definition
of regulatory modules—collections of RNA-binding proteins that work
together for a specific function and regulate distinct sets of target
RNAs—facilitates a deeper understanding of the many-to-many rela-
tionships between RBPs and their functions. This approach has
enabled us to perform comprehensivemapping of RBP-RBP functional
interactions, leading to the annotation of regulatory modules. Equally
important, we have applied these annotations to deconvolve the
totality of RBP-RNA binding events, often collated into a plan set of
mRNA targets18, into distinct regulons. This methodology not only
enriched our understanding of RBP regulatory networks but also
added specificity to existing datasets, offering amore nuanced view of
post-transcriptional control mechanisms.

To further aid researchers in exploring our data, we have devel-
oped a Shiny app, [RBP Browser] (https://goodarzilab.shinyapps.io/
RBP-Browser/), which offers an interactivemap of humanRNA-binding
protein interactions. This tool allows users to query their RBP of
interest and understand how it fits into the functional network of RNA
regulation in human cells.

Instead of viewing post-transcriptional regulation through the
lens of individual RBPs and their bound target RNAs, we propose that
the field should instead adopt a more precise definition of RBP reg-
ulons that accounts for their context-specificity. To address this issue,
we propose the concept of “regulatory modules” as the foundational
units of post-transcriptional control, i.e., collections of RNA-binding
proteins thatwork together for a specific function and a distinct target
regulon. This approach allows us to capture the many-to-many rela-
tionship betweenRNA-binding proteins and their regulatory functions.
In this work, we performed large-scale mapping of RBP-RBP functional
interactions, which then allowed us to map the regulatory modules,

Fig. 4 | ZC3H11A and TAF15 control multiple independent regulons through
distinct regulatory programs. A Violin plots showing the normalized enrichment
scores (NES) resulting fromgene set enrichment analysis of proximity labeling data.
Left subpanel: NES scores across all the GO-BP terms for ZC3H11A and TAF15 pro-
teins. The five highest-scoring pathways are highlighted with color. Right subpanel:
NES scores across all studied RBPs for the pathways GO:0000387, GO:0045727,
and GO:0048255. ZC3H11A and TAF15 are highlighted with colored triangles.
Dashed lines: quartiles; solid red line: 0.9 quantile. B Scatterplot showing changes
in alternative splicing events (ASE) usage upon ZC3H11A knockdown as estimated
by MISO. Individual subplots cover different classes of alternative splicing events:
SkippedExon (SE), Retained Intron (RI), Alternative 3’ Splice Site (A3SS), Alternative
5’ Splice Site (A5SS), and Mutually Exclusive Exon (MXE). Dashed lines indicate the
following filters: Bayes factor ≥ 10 and the absolute value of isoforms levels dif-
ference ≥0.2. The ASEs passing these filters are shown in red. Source data are
provided as a Source Data file. C Relative levels of two skipped exons from the

transcripts WARS1 (left) and ASPM (right) were measured by RT-qPCR in control
K562 and ZC3H11A-KD cells; n = 3 biological replicates. P-value from a one-sided t
test performed on log-transformed isoform expression ratios, 0.0166 for WARS1
and2.86·10−4 forASPM. Source data are provided as a SourceDatafile.D Scatterplot
showing changes in alternative splicing events in TAF15 knockdown cells, as in (B).
Source data are provided as a Source Data file. E Relative levels of two retained
introns from the transcripts CDC37 (left) and ZWINT (right) were measured by
RT-qPCR in control K562 and ZC3H11A-KD cells; n = 3 biological replicates.
P-value from one-sided t test performed on log-transformed isoform expression
ratios, 8.03·10−5 for CDC37 and 2.883·10−4 for ZWINT. Source data are provided as a
Source Data file. F Left: Sashimi plot illustrating the changes in intron retention
event usage in ZWINT transcript upon TAF15 knockdown. Right: Genomic view of
the ZWINT retained intron, RNA-seq profiles from WT and TAF15-KD cells, and
TAF15 CLIP-seq peaks are shown at the bottom. Y-axis: counts per million (CPM).
The region corresponding to the alternative splicing event is framed.
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and annotate their associated functions. Through this annotation
process, we discovered that multiple proteins govern independent
regulons, each with distinct functions. Among these, TAF15, ZC3H11A,
ZNF800, and QKI were biochemically validated to demonstrate their
roles in governing such regulons. This aspect of our study emphasizes
the functional pleiotropy of individual RBPs and significantly broadens
our understanding of their diverse regulatory roles.

In this study, our use of BioID labeling-based pulldown followed
by mass spectrometry has been instrumental in mapping the protein
neighborhoods of RBPs, providing a deeper insight into their interac-
tions within cellular networks17. The key advancement in our metho-
dologywas the inclusion ofmatched pulldown controls for each of the
50 human RBPs analyzed. This methodological precision, not com-
monly found in similar studies, significantly improved the reliability of
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our data10,73,74. The reliability of our pulldown profiles, evidenced by
their closer resemblance to matched negative controls than to other
pulldown profiles (Supplementary Fig. S6D), was essential for accu-
ratelydissecting the complex interplay of theseproteins. This accuracy
is crucial, particularly as high-throughputmethodologies often lead to
false annotations75. The methodological rigor becomes even more
critical as the field moves towards understanding the dynamic nature
of RBP functions and interactions. Looking ahead, integrating tech-
nologies like live-cell imaging or time-resolved mass spectrometry
could further enrich our understanding, adding a temporal dimension
to RBP regulatory networks. Our rigorous approach lays the ground-
work for future dynamic and integrated studies of gene expression
regulation, offering valuable insights and testable hypotheses to the
scientific community.

The dynamic nature of functions and interactions within cellular
networks, continually evolving in response to various cellular condi-
tions and stimuli, is increasingly recognized as a critical aspect of
genomics research16. Our study’s emphasis on multi-omics integration
aligns with this evolving paradigm, enabling us to capture a wide
spectrumof interactions within the complex RBP regulatory networks.
While our current approach offers a comprehensive snapshot, the next
frontier in thefield involves delving deeper into the dynamicbehaviors
of these interactions. Future research should focus on integrating
methodologies that can track these changes over time, providing
insights into how these interactions fluctuate and respond to different
cellular stimuli. Such advancements will be instrumental in fully deci-
phering the nuanced and ever-changing landscape of RBP-mediated
gene regulation.

The current study encompasses approximately ~ 100 out of the
estimated ~ 1000 RNA-binding proteins. While we have carefully
selected RBPs to cover a variety of functional pathways and subcellular
compartments, expanding this dataset to include a broader spectrum
of RBPs is essential for amore holistic understanding of the regulatory
network.

A key limitation of our proximity labeling methodology is the
transgene expression of fusion proteins, which could potentially alter
protein expression, localization, and, consequently, their function. The
overexpression of fusion proteins could potentially lead to artifacts in
protein interaction data, although our spot checks did not reveal sig-
nificant localization changes. The immunofluorescence assays per-
formed on a subset of five RBPs suggested that transgene expression
did not markedly affect the native behavior of these proteins. More-
over, the RBP interaction data was consistent with the OpenCell
dataset5, whichwas generated using endogenous tagging. Broadly, the
RBP overexpression, the fusion of BioID2 protein to the RBP, and the
focus on a single isoform per protein may introduce biases in the
collected data.

A limitation of the Perturb-seq assay is the limited cell sampling
per perturbation, which might impact the breadth of data repre-
sentation. Despite this, our statistical analyses have shown that the
data is robust even with added noise. Expanding the cell numbers or
sequencing depth in future studies would not only confirm these
findings but also enhance the statistical power and comprehensive
representation of these analyses.

Lastly, the data generated through our high-throughput approach
primarily serves as a foundation for hypothesis generation. While the
IRIM and the mapped regulons provide valuable insights, they repre-
sent a starting point for detailed mechanistic studies. Future research
should focus on experimentally validating and extending these find-
ings to unravel the complex dynamics of RBP-mediated regulation.

IRIM underscores that functionally, pleiotropic RBPs playing dif-
ferent and evendivergent roles dependingon their specific context are
the rule, rather than the exception. The deconvolved RNA regulons
provide a set of readily testable hypotheses for the scientific com-
munity. In addition, the datasets generated in this study serve as a
valuable resource for further exploration of RBP functions. Studying
the role of RBPs in gene expression regulation necessitates a deeper
understanding of complex combinatorial interactions between these
proteins. This study represents a significant step towards building a
comprehensive and integrated framework for examining these intri-
cate regulatory mechanisms.

Methods
Cell lines
All cells were cultured in a 37 °C 5% CO2 humidified incubator. The
293T cells (ATCC CRL-3216) were cultured in DMEM high-glucose
medium supplemented with 10% FBS, glucose (4.5 g/L), L-glutamine
(4mM), sodium pyruvate (1mM), penicillin (100 units/mL), strepto-
mycin (100μg/mL) and amphotericin B (1μg/mL) (Life Technologies
Corporation 15290026). The K562 cell line (ATCC CCL-243) was cul-
tured in RPMI-1640medium supplementedwith 10% FBS, glucose (2 g/
L), L-glutamine (2mM), 25mM HEPES, penicillin (100 units/mL),
streptomycin (100μg/mL) and amphotericin B (1μg/mL) (Life Tech-
nologies Corporation 15290026). All cell lines were routinely screened
for mycoplasma with a PCR-based assay.

BioID2-RBP fusion cell line generation
50 RBPs were selected based on the 3 criteria: (i) ENCODE eCLIP data
availability for a givenRBP, (ii) presenceof a givenRBP in theORFeome
entry clone library76, (iii) representing diverse RNA metabolic pro-
cesses. In order to construct the cell lines stably expressing BioID2-RBP
fusion proteins, we first cloned in an open reading frame of BioID2
enzyme17, followed by a linker (YPAFLYKVVYGGGGSGGGGSGGGGS)
and attR-flanked ccdB counterselection marker for Gateway cloning,

Fig. 5 | TAF15 is directly involved in RNA translation and stability regulation.
A Left: enrichment analysis of TAF15 mRNA targets among the differentially
translated genes (in the TAF15-KD cell line compared to the WT cell line). The
differential ribosome occupancy (RO) measurements in TAF15-KD cells were esti-
mated from Ribo-seq. The genes were sorted based on the RO change (along the x-
axis), and the enrichment of TAF15 mRNA targets, inferred from eCLIP data, was
calculated using iPAGE (top subpanel) and with GSEA (bottom subpanel, ES stands
for the enrichment score). Two example targets, HMGB2 and RPL35, are high-
lighted. Right: levels of HMGB2 and RPL35 weremeasured bymass spectrometry in
control K562 and TAF15-KD cells.N = 5 biological replicates. P-value fromone-sided
Wilcoxon rank sum test, 0.04762 for both HMGB2 and RPL35. Source data are
provided as a Source Data file. B Genomic view of HMGB2 (left) and RPL35 (right).
RNA-seq and Ribo-seq WT and TAF15-KD profiles, as well as TAF15 CLIP-seq peaks,
are shown below. Y-axis: counts per million (CPM). C Left: enrichment analysis of
TAF15 mRNA targets among the differentially stabilized transcripts (in TAF15-KD
cell line compared to WT cell line) measured by α-amanitin treatment. The

transcripts were sorted based on stability change (log2FCs). The enrichment of
TAF15 RNA targets, inferred from eCLIP data, was calculated with iPAGE (top and
middle subpanel) and with GSEA (bottom subpanel). Two example targets, UBE2J2
andGUK1, are highlighted. Right: relative stability ofUBE2J2 andGUK1mRNAswere
measured asmRNA to pre-mRNA abundances ratio using qPCR in control K562 and
TAF15-KD cells. N = 4 biological replicates. P-value from one-sided Wilcoxon rank
sum test, 0.01429 for UBE2J2 and 0.0147 for GUK1. Source data are provided as a
Source Data file.D Genomic view of UBE2J2 (top) and GUK1 (bottom). RNA-seqWT
and TAF15-KD profiles, as well as TAF15 CLIP-seq peaks, are shown below. Y-axis:
counts per million (CPM). E Venn diagram of TAF15 RNA regulons. Shown are the
numbers of genes that exhibit significant changes in splicing (155 genes with Bayes
factor ≥ 10), translation (919 genes with FDR <0.05), or stability (2068 genes with
FDR <0.05) upon TAF15 knockdown, as captured by RNA-seq, Ribo-seq, and RNA-
seq with α-amanitin, respectively. Results of one-sided Fisher’s exact test for each
pairwise intersection were FDR-corrected for multiple testing and are shown next
to the corresponding area. Source data are provided as a Source Data file.
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into the pWPI backbone (Addgene #12254). The resulting backbone is
namedpWPI_GW_BioID2_T2A_Blast (Addgene#135448) and is available
on Addgene (#214831). We then used Gateway LR Clonase II Enzyme
mix (Thermo Fisher 11791020) to clone the open reading frames of the
RBPs of interest (from ORFeome entry clone library76) into the desti-
nation vector. The lentiviral constructs were co-transfected with
pCMV-dR8.91 and pMD2.D plasmids using NanoFect (ALSTEM NF100)
into 293 T cells (ATCC CRL-3216), following the manufacturer’s pro-
tocol. The virus was harvested 48 hours post-transfection and passed
through a 0.45μm filter. K562 cells (ATCC CCL-243) were then trans-
duced for 2 h while centrifuging (800 RPM) with the filtered virus in
the presence of 8μg/mL polybrene (Millipore C788D57). Cells were
selected with 20μg/mL blasticidin (Gibco A1113903) for 5 days. The
expression of the fusion protein was validated by western blotting.

Western blotting
Cell lysates were prepared by lysing cells in ice-cold RIPA buffer
(25mMTris-HCl pH7.6, 0.15MNaCl, 1% IGEPALCA-630 (Sigma-Aldrich
9002-93-1), 1% sodium deoxycholate, 0.1% SDS) (Sigma-Aldrich SIAL-
R0278-50ML) containing 1X protease inhibitors (Thermo Fisher Sci-
entific PI78410). Lysate was cleared by centrifugation at 20,000× g for
10min at 4 °C. Samples were denatured for 10min at 70 °C in 1X LDS
loading buffer (Invitrogen/Fisher Scientific NP0007) and 50mM DTT
(Scientific Laboratory Supplies Ltd NAT1068). Proteins were separated
by SDS-PAGE (Invitrogen/Fisher Scientific P2325) using 4–12% Bis-Tris
NuPAGE gels (Thermo Fisher Scientific NP0321BOX), transferred to
nitrocellulose (Millipore WP2HY315F5), blocked using 5% BSA (VWR
International 97064-340), and probed using target-specific antibodies.
Bound antibodies were detected using dye-conjugated secondary
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antibodies according to the manufacturer’s instructions. Antibodies:
HA (BioLegend 901533), eIF3I (BioLegend 646701), beta-tubulin (Pro-
teintech 10094-1-AP), GAPDH (Proteintech 10494-1-AP). The uncrop-
ped images of western blots are provided in the Source Data File.

Biotin treatment and pulldown
The pulldown was performed as described in ref. 17. Cells were incu-
bated with biotin-depleted media (biotin-free RPMI-1640 medium,
supplemented with 10% dialyzed FBS, glucose (2 g/L), L-glutamine
(2mM), 25mMHEPES, penicillin (100 units/mL), streptomycin (100μg/
mL) and amphotericin B (1μg/mL) for 72 h before analysis. For BioID2
pulldown, 12 × 106 cells per replicate were incubated with 50μM biotin
for 24h. For the negative control samples, 12 × 106 cells per replicate
were incubated with DMSO. After three times of PBS washes, the cells
were lysed in 1ml of lysis buffer containing 50mMTris, pH 7.5, 150mM
NaCl, 1mM EDTA, 1mM EGTA, 1% Triton X-100, 1% Sodium deox-
ycholate, 0.1% SDS, 1 ×Complete protease inhibitor (Halt Phosphatase
Inhibitor Cocktail; Thermo Fisher Scientific 78420), and 250 units
benzonase (EMDMillipore 706643). The lysates were passed through a
25G needle 10 times and cleared 10min at 14,000× g at + 4 °C. The
protein concentration was measured with BCA Protein Assay Kit
(Thermo Scientific A55865); the lysate was diluted to a concentration of
2μg/mL. 500μl of lysate was incubated with 125μl of Dynabeads
(MyOneStreptavidinC1; ThermoFisher Scientific65001) overnightwith
rotation at + 4 °C. Beads were collected using a magnetic stand and
washed twice with 2% (wt/vol) SDS, twice with wash buffer containing
50mMTris, pH 7.5, 500mMNaCl, 1mMEDTA, 1mMEGTA, 1% Triton X-
100, 0.1% SDS, twice with wash buffer containing 50mM Tris, pH 7.5,
150mMNaCl, 1mM EDTA, 1mM EGTA, 1% Triton X-100, 0.1% SDS, then
boiled for 5min in 50μl of elution buffer containing 2% SDS, 100mM
DTT (Scientific Laboratory Supplies Ltd NAT1068), Tris-HCl pH 7.5. The
supernatant was collected and saved for mass spectrometry analysis.

Mass spectrometry analysis
Eluted BioID samples were reduced by the addition of 100mM DTT
(Scientific Laboratory Supplies Ltd NAT1068) and boiling at 95 °C for
10minbefore being subjected to Filter AidedSample Preparation (FASP)
to generate tryptic peptides, as described previously (Dermit et al. Dev
Cell, 2020). Briefly, samples were diluted 7-fold in UA buffer (8M urea,
100mM Tris HCl pH 8.5) (Sigma-Aldrich U1250-5KG), transferred to
Vivacon 500 Hydrosart centrifugal filters with a molecular cut-off of
30 kDa (Sartorius), and concentrated by centrifugation at 14,000× g for
15min. Filters were then washed twice by the addition of 0.2mL of UA
buffer (Sigma-AldrichU1250-5KG) to thefilter tops and re-concentrating.
Reduced cysteine residues were then alkylated by addition of 100 µL of

50mM iodoacetamide (VWR International Ltd 786-228) dissolved in UA
buffer (Sigma-Aldrich U1250-5KG), and incubation at room temperature
in thedark for 30min. The iodoacetamide solutionwas then removedby
centrifugation at 14,000× g for 10min, and samples were washed twice
with 0.2mL of UA buffer (Sigma-Aldrich U1250-5KG)as before. Urea was
then removed from samples by performing three washes with 0.2mL of
ABC buffer (0.04M ammonium bicarbonate) (Sigma-Aldrich A64141-
500G). Filters were then transferred to fresh collection tubes, and pro-
teinsweredigestedby the additionof0.3 µgofMSgradeTrypsin (Sigma-
Aldrich T6567-1MG) dissolved in 50 µL of ABC buffer (Sigma-Aldrich
A64141-500G), and overnight incubation in a thermo-mixer at 37 °Cwith
gentle shaking (600 rpm). The resulting peptides were eluted from the
filters by centrifugation at 14,000× g for 10min. Residual remaining
peptides were further eluted by the addition of 100 µL ABC (Sigma-
Aldrich A64141-500G) to the filter tops and centrifugation. This was
repeated once and the combined eluates were then dried by vacuum
centrifugation (no heating) and reconstitution in 2% Acetonitrile (ACN)
(VWR International Ltd 9012.1000GL), 0.2% Trifluoroacetic acid (TFA)
(Life Technologies Ltd Invitrogen Division 85183), followed by desalting
using C18 StageTips (Rappsilber, et al., Nat Protoc. 2007). The desalted
peptides were dried again by vacuum centrifugation (45 °C) and re-
suspended inA*buffer (2%ACN,0.5%Acetic acid (Fisher ScientificUKLtd
10171460), 0.1% TFA in water) before LC-MS/MS analysis. 1/3rd of each
sample was analyzed on a Q-Exactive Plus Orbitrap mass spectrometer
coupled with a nanoflow ultimate 3000 RSL nano HPLC platform
(Thermo Fisher). Samples were resolved at a flow rate of 250nL/min on
an Easy-Spray 50 cm×75μm RSLC C18 column with 2 µm particle size
(Thermo Fisher), using a 123min gradient of 3% to 35% of buffer-B (0.1%
formic acid in ACN) against buffer-A (0.1% formic acid in water), and the
separated peptides were infused into the mass spectrometer by elec-
trospray (1.95 kV spray voltage, 255 °C capillary temperature). The mass
spectrometer was operated in data-dependent positivemode, with 1MS
scan followed by 15 MS/MS scans (top 15 method). The scans were
acquired in the mass analyzer at 375–1500m/z range, with a resolution
of 70,000 for the MS and 17,500 for the MS/MS scans. A 30-s dynamic
exclusion of fragmented peaks was applied to limit repeated fragmen-
tation of the same ions.

Perturb-seq
68 RBPs were chosen for Perturb-seq analysis based on the clustering
analysis of the ENCODE eCLIP dataset and DeepBind dataset77. Perturb-
seq experiment was performed as previously described78. Briefly, a
library of 205 sgRNAs (5 non-targeting sgRNAs and 200 sgRNAs tar-
geting 100 genes, 2 sgRNAs per gene) was ordered as a pooled oligo-
nucleotide library from Twist Bioscience with the following design:

Fig. 6 | ZNF800 and QKI control gene expression at transcriptional and post-
transcriptional levels independently. A Violin plot showing the normalized
enrichment scores (NES) resulting from gene set enrichment analysis of proximity
labeling data. Left subpanel: NES scores across all the GO-BP terms for ZNF800 and
QKI proteins. The 5 highest scoring pathways are highlighted with color. Right
subpanel: NES scores across all the studied RBPs for GO:0016571, GO:0016575, and
GO:0042254 GO terms. ZNF800 and QKI are highlighted with colored triangles.
Dashed lines: quartiles; solid red line: 0.9 quantile. B Volcano plots showing dif-
ferential chromatin accessibility between WT K562 cells and ZNF800-KD (left) or
QKI-KD (right) cells. Each point denotes a single ATAC-seq peak; peaks passing 0.1
FDR are colored red. The distribution of peaks among various genomic regions is
shown on the right of each volcano plot. Source data are provided as a Source Data
file. C Genomic view of RPS15 (left) and LTBR (right) promoter regions. ATAC-seq
profiles of WT cells along with ZNF800-KD (left) or QKI-KD (right) are shown. The
Binding of ZNF800 to the RPS15 promoter region and the binding of QKI to the
LTBR promoter region were measured by ChIP-qPCR in K562 cells and are illu-
strated on the right of each profile plot. Source data are provided as a Source Data
file. D Box plots showing the distributions of expression fold changes in WT cells
compared to either ZNF800-KD cells (left) or QKI-KD cells (right), as measured by

RNA-seq. The distributions for the genes showing significant promoter accessibility
increase upon the respective knockdown and for the rest of the genes are shown
separately. The topmost highly accessible ATAC-seq peak was considered for each
gene resulting in 21708 genes in both ZNF800-KD and QKI-KD cells, of which 834
(3.8%) and 1476 (6.8%) had their promoters accessibility increased upon ZNF800
and QKI knockdown, respectively. P-value calculated by one-sided Wilcoxon rank
sum test, 8.1·10−14 for ZNF800-KD and 2.64·10−6 for QKI-KD. Box plot bounds and
center represent the first, second, and third quartiles, while whiskers represent
minimum and maximum values in the data, excluding outliers that are more than
1.5 interquartile range from lower and upper quartiles and are depicted as dots.
Source data are provided as a Source Data file. E Box plots depicted as in (D)
showing the distributions of chromatin accessibility fold changes in WT cells
compared to either ZNF800-KD cells (left) or QKI-KD cells (right), as measured by
ATAC-seq. The distributions for ZNF800- or QKI- RNA targets (as defined by eCLIP)
and the rest of the genes are shown separately. In total, there are 23275 ATAC-seq
peaks, with 714 assigned to ZNF800RNA target genes (leaving 22561 as non-target)
and 286 assigned to QKI RNA target genes (leaving 22989 as non-target). P-
value calculated by one-sided Wilcoxon rank sum test, 6.81·10−20 for ZNF800-KD
and 2.3·10−7 for QKI-KD. Source data are provided as a Source Data file.
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[ATCTTGTGGAAAGGACGAAACACCG]-[Protospacer Sequence]-
[GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC]

The library was PCR-amplified using Q5 Hot Start High-Fidelity 2X
Master Mix (NEB VWR International: 102500-140) with the primers
with the following sequences: 5’-ATCTTGTGGAAAGGAC-3’ and 5’-
GCCTTATTTTAACTTGCTA-3’. To clone libraries into CROPseq-Guide-
Puro vector (Addgene #86708), the starting vector was digested with
BsmBI (Fisher Scientific FERER0451) following the protocol outlined in
ref. 79. The library was cloned into the digested backbone using the
Gibson Assembly method80. The reaction product was transformed
into Takara Stellar competent cells according to manufacturer
recommendations, grown overnight in 100mL LB with ampicillin, and
purified using ZymoPURE II Plasmid Midiprep Kit (Zymo Research
D4200). K562 cells (ATCC CCL-243) were infected with the plasmid
library at a low multiplicity of infection to minimize double infection.
The infected cells were selected with 2 µg/mL puromycin (Gibco
A1113802) for 3 days. Live cells were isolated on a flow cytometer
(FACSAria II) by propidium iodide staining (Thermo Fisher Scientific
P1304MP). Approximately 5000 live cells were captured by 10X
Chromium Controller using Chromium Single Cell 3’ Reagent Kits v2.
Sample preparation was performed according to the manufacturer’s
protocol. Samples were sequenced on a NovaSeq 6000 using the fol-
lowing configuration: Read 1: 28, i7 index: 8, i5 index: 0, Read 2: 98.

To facilitate sgRNA assignment, sgRNA-containing transcripts
were additionally amplified by PCR reactions by modifying a pre-
viously published approach81. The following primers were used for
amplification: 5’-AATGATACGGCGACCACCGAGATCTACAC-3’ and 5’-
CAAGCAGAAGACGGCATACGAGATTACGACAGGTGACTGGAGTTCA-
GACGTGTGCTCTTCCGATCTggactatcatatgcttaccgtaacttgaaag-3’. PCR
product was cleaned up by 1.0x SPRI beads (SPRIselect; Beckman
Colter B23317). Samples were sequenced using paired-end 150 bp
sequencing on an Illumina MiSeq sequencer.

CRISPRi-mediated gene knockdown
K562 cells (ATCC CCL-243) expressing dCas9-KRAB fusion protein
were constructed by lentiviral delivery of pMH0006 (Addgene
#135448) and FACS isolation of BFP-positive cells.

The lentiviral constructs were co-transfected with pCMV-dR8.91
(Andwin Scientific NC2092494) and pMD2.D (Addgene #12259) plas-
mids using TransIT-Lenti (Mirus 75814-982) into 293 T cells (ATCC
CCL-3216), following the manufacturer’s protocol. The virus was har-
vested 48 hours post-transfection and passed through a 0.45 µm filter.
Target cells were then transduced overnight with the filtered virus in
the presence of 8 µg/mL polybrene (Millipore C788D57).

Guide RNA sequences for CRISPRi-mediated gene knockdown
were cloned into pCRISPRia-v2 (Addgene #84832) via BstXI-BlpI sites.
After transduction with sgRNA lentivirus, K562 cells (ATCC CCL-243)
were selected with 2 µg/mL puromycin (Gibco A1113802). Knockdown
of target genes was assessed by RT-qPCR using PerfeCTa SYBR Green
SuperMix (QuantaBio 95054-500) per themanufacturer’s instructions.
HPRT1 was used as endogenous control.

RNA isolation
Total RNA for RNA-seq and RT-qPCR was isolated using the Zymo
QuickRNA isolation kit (Zymo Research R1054) with in-column DNase
treatment per the manufacturer’s protocol.

RNA treatment with α-amanitin
K562 (ATCC CCL-243) and K562 TAF15 knockdown cell lines were
seeded at 1M/1mL density in 2 replicates. Cells were infected with
10 μg/mL α-amanitin(Sigma-Aldrich A2263) for 8-9 h prior to total
RNA extractions. Total RNA for downstream RNA-seq was isolated
using a Zymo QuickRNA Microprep isolation kit (Zymo Research
R1050) with in-column DNase treatment per the manufacturer’s
protocol.

RNA-seq
RNA-seq libraries were prepared using SMARTer Stranded Total RNA-
Seq Kit v2 - Pico Input Mammalian (Takara 634411), and sequenced on
Illumina NovaSeq 6000 instrument, in a PE150 (paired end 150 cycles)
setting, at Novogene Corporation.

Ribosome profiling
Ribosome profiling was performed as previously described82. Briefly,
approximately 10 × 106 cells were lysed in ice-cold polysome buffer
(20mM Tris pH 7.6, 150mM NaCl, 5mM MgCl2, 1mM DTT (Scientific
Laboratory Supplies Ltd NAT1068), 100 µg/mL cycloheximide) sup-
plemented with 1% v/v Triton X-100 and 25U/mL Turbo DNase
(Thermo Fisher Scientific AM2238). The lysates were triturated
through a 27G needle and cleared for 10min at 21,000 × g at 4 °C. The
RNA concentration in the lysates was determined with the Qubit RNA
HS kit (Thermo Fisher Q32852). Lysate corresponding to 30 µg RNA
was diluted to 200 µl in polysome buffer and digested with 1.5 µl
RNaseI (Epicenter VWR International 101228-268) for 45min at room
temperature. The RNaseI was then quenched by 10 µl SUPERaseIN
(Thermo Fisher Scientific AM2696).

Monosomes were isolated using MicroSpin S-400 HR (Cytiva)
columns, pre-equilibrated with 3mL polysome buffer per column.
100 µl digested lysate was loaded per column (two columns were used
per 200 µl sample) and centrifuged for 2min at 600× g. The RNA from
the flow-through was isolated using the Zymo RNA Clean and
Concentrator-25 kit (ZymoResearchR1017). In parallel, total RNA from
undigested lysates was isolated using the same kit.

Ribosome-protected footprints (RPFs) were gel-purified from 15%
TBE-Urea gels (Life Technologies EC6875BOX) as 17–35 nt fragments.
RPFs were then end-repaired using T4 PNK (NEB M0201S), and pre-
adenylated barcoded linkers were ligated to the RPFs using T4 Rnl2(tr)
K227Q (NEB M0351S). Unligated linkers were removed from the reac-
tion by yeast 5’-deadenylase (NEB MO0331S) and RecJ nuclease (NEB
M0264S) treatment. RPFs ligated tobarcoded linkerswere pooled, and
rRNA-depletion was performed using riboPOOLs (siTOOLs) as per the
manufacturer’s recommendations. Linker-ligated RPFs were reverse
transcribedwith ProtoScript II RT (NEBM0368S) and gel-purified from
15% TBE-Urea gels. cDNA was then circularized with CircLigase II
(Epicentre) andused for library PCR. First, a small-scale libraryPCRwas
run supplemented with 1X SYBR Green and 1X ROX (Thermo Fisher
Scientific K0221) in a qPCR instrument. Then, a larger scale library PCR
was run in a conventional PCR instrument, performing a number of
cycles that resulted in ½ maximum signal intensity during qPCR.
Library PCR was gel-purified from 8% TBE gels and sequenced on a
SE50 run on an Illumina HiSeq4000 instrument at the UCSF Center for
Advanced Technologies.

ATAC-seq
The assay for transposase-accessible chromatin using sequencing
(ATAC-seq) was performed according to the optimized Omni-ATAC
protocol83,84. Briefly, samples containing 50,000 cells as input were
pelleted, lysed, washed, and re-pelleted using the lysis and wash buf-
fers specified in the Omni-ATAC protocol. A transposition mix con-
taining Tn5 was then added to the samples, and the transposition
reaction was carried out for 30min at 37 °C in a thermomixer with
1000 rpm mixing. After transposition, the transposed DNA was pur-
ified using the DNA Clean & Concentrator-5 Kit (Zymo Research
D4014). The samples underwent two PCR steps. First, a pre-
amplification was performed for 3 cycles to attach unique barcoded
adapters to the transposed DNA sample. The concentration of each
pre-amplified sample was quantified via qPCR using the NEBNext
Library Quant Kit (New England Biolabs E7630). Afterward, samples
underwent a second PCR amplification step to obtain the desired DNA
concentration of 8 nM in 20 µl. DNA cleanup and qPCR quantification
were performed again, and the final libraries were diluted down to
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exactly 8 nM using sterile water. Samples were sequenced using
paired-end 75-bp sequencing on an Illumina NextSeq sequencer.

ChIP-qPCR
ChIP-qPCR was performed as described in ref. 85. Human chronic
myelogenous leukemiaK562 cells (ATCCCCL-243)weregrownat37 °C
and 5% CO2 in RPMI-1640 medium supplemented with 10% FBS, glu-
cose (2 g/L), L-glutamine (2mM), 25mM HEPES, penicillin (100 units/
mL), streptomycin (100μg/mL) and amphotericin B (1μg/mL) (Gibco).
20 million cells per sample were washed with PBS (in duplicate), pel-
leted, and cross-linked with 1% paraformaldehyde (Fisher Scientific
AC416780010) for 10min at room temperature. Glycine (Sigma-
Aldrich 9002-93-1) at a final concentration of 125mMwas added to the
samples and incubated at room temperature for 5min to quench the
paraformaldehyde (Fisher Scientific AC416780010). Samples were
washed with PBS, pelleted, flash-frozen, and stored at − 80. Samples
were thawed, lysed in 200 µl Membrane Lysis Buffer (10mM Tris-HCl
pH 8.0, 10mMNaCl, 0.5% IGEPAL CA-630, 1X protease inhibitors), and
incubated on ice for 10min. Samples were centrifuged at 4 °C at
2500 × g for 5min, resuspended in 200 µl Nuclei Lysis Buffer (50mM
Tris pH 8.0, 10mM EDTA, 0.32% SDS, 1X protease inhibitors), and
incubated on ice for 10min. 120 µl of IP Dilution Buffer (20mM Tris-
HCl pH 8.0, 2mM EDTA, 150mM NaCl, 1% Triton X-100, 1X protease
inhibitors) was added to the samples, and the samples were sonicated
using the Bioruptor UCD-200 sonicator for 7min with 30 s on/off
intervals for a total of 3 times. Samples were centrifuged at 4 °C at
21000 × g for 5min to clear the lysate, and the supernatant containing
the chromatin was stored at − 80.

230 µl IP Dilution Buffer was added to 270 µl chromatin alongwith
3 µg ZNF800 or QKI antibody or same- species IgG, and the samples
were incubated overnight at 4 °C. The next day, the ChIP samples were
spun down at 4 °C at 16000 × g for 5min, and the supernatant was
transferred onto 20 µl of washed Protein A/G beads (Fisher Scientific
88802). Samples were incubated for 2 h at 4 °C.

TheChIPmaterial waswashedoncewith 500 µl of coldFA lysis low
salt buffer (50mM Hepes-KOH pH 7.5, 150mM NaCl, 2mM EDTA, 1%
Triton-X 100, 0.1% sodium deoxycholate), twice with cold NaCl high
salt buffer (50mM Hepes-KOH pH 7.5, 500mM NaCl, 2mM EDTA, 1%
Triton-X 100, 0.1% sodium deoxycholate), once with cold LiCL buffer
(100mMTris-HCl pH 8.0, 500mM LiCl, 1% IGEPAL CA-630, 1% sodium
deoxycholate), and twice with cold 10mM Tris 1mM EDTA pH 8.0.
Samples were eluted in 300 µl of Proteinase K reaction mix (20mM
Tris pH 8, 300mM NaCl, 10mM EDTA, 5mM EGTA, 1% SDS, 60 µg
Proteinase K) and incubated at 65 °C for 1 h. The supernatant was
transferred to phase lock tubes (VWR), purified via phenol-chloroform
extraction, and eluted in 30 µl 10mM Tris pH 8.0.

qPCR was performed using PerfeCTa SYBR Green SuperMix
(QuantaBio) per the manufacturer’s instructions. HPRT1 was used as
endogenous control.

Crosslinking and immunoprecipitation
K562 cells (ATCC CCL-243) were harvested and crosslinked with
ultraviolet radiation (400mJ/cm2). Cell lysates were then treated with
high (1:3000 RNase A and 1:100 RNase I) and low dose (1:15000 RNase
A and 1:500 RNase I) of RNase A (Thermo Fisher Scientific EN0531) and
RNase I (Thermo Fisher Scientific EN0601) separately and combined
after treatment. Antibodies to TAF15 (Thermo MA3-078, dilution
according to manufacturer’s recommendation) or ZC3H11A (Abcam
ab241612, dilution according to manufacturer’s recommendation)
were first conjugated to protein A/G beads (Pierce) and then added to
cell lysates to immunoprecipitate protein-RNA complex. This was fol-
lowed by beads dephosphorylation, polyadenylation, and IRDye®
800CW DBCO Infrared Dye (LI-COR 929-50000) end labeling of the
immunoprecipitated RNA fragments. RNA-protein complex was then
resolved by SDS-PAGE and visualized on nitrocellulose membrane.

Membranes were then cut and treated with proteinase K to release
RNA. We then used Takara smarter small RNA sequencing kit reagents
with a custom UMI-oligo dT primer (CAAGCAGAAGACGGCATACGA
GATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTT
TTTTTTTTTTTT) to synthesize cDNA. Sequencing libraries were then
prepared with SeqAmp DNA Polymerase (Takara 638509) and
sequenced on an Illumina Hiseq 4000 sequencer.

Immunofluorescence assay
K-562 cells were seeded and grown on Poly-D-Lysine (MP Biomedical
0215017550) coated chamber slides (SPL 30108). Cells were fixed with
4%paraformaldehyde (PFA) (Fisher ScientificAC416780010) for 5minat
room temperature, followed by permeabilization with 0.5% PBST for
10min and blocking with 4% BSA for 1 h. Primary antibodies were dilu-
ted according to manufacturers’ recommendation and incubated
overnight at 4C. Cells were then stained with a standard amount of
fluorescent secondary antibody for 1 h at room temperature. Samples
were then mounted in ProLong™ Gold Antifade Mountant with DAPI
(Life Technologies P36941) and imagedwith a (Zeiss LSM 780) confocal
microscope (courtesy of theCardiovascular Research Institute atUCSF).

Computational tools
Reanalysis of enhanced CLIP ENCODE data. To reliably identify RNA
targets of RBPs in K562 cells (ATCC CCL-243), we started with the raw
eCLIP FASTQ files of ‘released’ K562 experiments for 120 RBPs that
were available in the ENCODE database. The analysis was performed as
follows: (1) the reads were preprocessed in the same way as in ref. 18
including adapter trimming with cutadapt (v1.18)86, (2) preprocessed
reads were mapped to the hg38 genome assembly with GENCODE v31
comprehensive annotation usinghisat2 (v.2.1.0)87, (3) the aligned reads
were deduplicated using the barcodecollapsepe.py script (https://
github.com/YeoLab/eclip/tree/master/bin) as in ref. 18, (4) properly
paired and uniquely mapped second reads were extracted using
samtools (v.1.9, with -f 131 -q 60 parameters)88, (5) gene-level read
counts were obtained with plastid (v.0.4.8) by counting 5’ ends of the
reads89, (6) analysis of specific enrichment against size-matched con-
trol experiments was performed with edgeR (v.3.18.1) for each RBP
separately, considering only genes passing 2 cpm in at least 2 of
3 samples90. Reliable RNA targets of each RBP were defined as those
passing 5% FDR and log2(Fold Change) > 0.5, see Supplementary Data
File 8. eCLIP target scores (TSs) used in datasets integration were
estimated as -log10(P)·sign(log2FC) for every “RBP-gene” pair
separately.

MS data analysis (BioID2 mass spectrometry data)
Data were quantified and queried against a Uniprot human database
(January 2013) using MaxQuant MaxLFQ command91. Data normal-
ization was performed in Perseus92 (version 1.6.2.1). For batch correc-
tion, Brent Pedersen’s implementation93 of the ComBat function from
sva package94 was used. The protein abundances in “experiment”
(biotin +) and “control” (biotin −) samples were compared using t test
for each protein individually.

Perturb-seq analysis
Cell Ranger (version 3.0.1, 10X Genomics) with default parameters was
used to align reads and generate digital expression matrices from
single-cell sequencing data. To assign cell genotypes, a bwa ref. 95
database was created containing all guide sequences present in the
library using the bwa index command. The barcode-enrichment
libraries were mapped to this database to establish the guide iden-
tities; to detect the cell barcodes, the barcode correction scheme used
in Cell Ranger was used (the mapping of uncorrected to corrected
barcodes was extracted from Cell Ranger analysis run of the whole
transcriptome libraries; this mapping was then applied to the reads of
barcode-enrichment libraries). UMI correction was performed by
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merging the UMIs within the hamming distance of 1 from each other.
For each UMI, the guide assignment was done by choosing the guide
sequence most represented among the reads containing the given
UMI. Tomake the final assignment of a guide to cell barcodes, we only
considered the barcodes that were represented by at least 5 different
UMIs, with > 80% of UMIs representing the same guide.

Data filtering was performed using scanpy package96. Data were
denoised using a modification of scvi autoencoder97 with loss function
penalizing for the similarity between cells having different RBPs
knocked down. The distance between transcriptome profiles of indi-
vidual RBP knockdowns was calculated by applying the t test to indi-
vidual gene counts across the cells that were assigned the respective
guide sequence.

Dataset integration
The functional similarity of RBPs was estimated by joint analysis of
eCLIP, BioID, and Perturb-seq data (Fig. 1 and Supplementary Fig. S1).
First, TS Z-scores were calculated for every gene across RBPs sepa-
rately for each type of experimental data (eCLIP, BioID, or Perturb-seq)
in the same way as preys of the BioID data, see above and Supple-
mentary Fig. S1(1). Next, cosine distance was computed for all 7140
pairs of different RBPs, followed by ranking and calculation of
empirical p-values defined as a fraction of RBP pairs with the cosine
distance less than the score of the tested pair, see Supplementary
Fig. S1(2). The empirical p-values were aggregated with logitp function
from the metap R package (v.1.4)98, see Supplementary Figs. S1(3, 4),
for 4005 RBP-RBP pairs (90 proteins in total) with at least 2 out of 3
available data types. Heatmap.2 functions of the gplots R package
(v.3.1.1) with cosine distance and Ward’s (ward.D2) clusterization were
used to generate the integration heatmap shown in Fig. 2.

STRING-based RBP interaction heatmap was generated using
protein links’ combined scores (STRING v.11.5) and the same clustering
method as in the dataset integration procedure19. To test the overlap
between the integrated interactionmap and the external databases, we
also downloaded significant protein-protein interactions from
OpenCell5 and hu.MAP22 databases. With these data, we estimated the
fractions of the interactions found in STRINGwith the combined score
over 400 (medium confidence STRING interactions), in OpenCell, in
hu.MAP with a score over 0.02 (medium confidence hu.MAP interac-
tions) and in Zanzoni et al. with at least 150 complexes shared between
RBPs, among the RBP-RBP pairs with the integrated distance passing a
selected quantile threshold (Supplementary Fig. S2E). We also con-
sidered the fractions of OpenCell- and hu.MAP-based interactions
among the pairs not included in STRING medium confidence interac-
tions. To estimate the significance of the intersection, we performed
the same procedure with 104 random shuffles of the IRIM. Finally, the
empirical p-values were estimated and corrected for multiple testing
using Benjamini-Hochberg (FDR) adjustment. To estimate the con-
sistency of the results depending on the datasets used for distance
integration, we additionally performed the procedure described
above using distances integrated from eCLIP and Perturb-seq (2278
RBP-RBP pairs with both datasets available, p-value < 10−4), BioID
and Perturb-seq (378 pairs, p-value = 0.028), BioID and eCLIP (1225
pairs, p-value < 10−4, Supplementary Fig. S2E).

To evaluate the stability of protein-protein interactions within the
IRIM, columns in the 90 × 90matrix were shuffled at varying fractions
of columns (1, 5, 10, 25, and 50%) to observe alterations in inter-RBP
distances and matrix topology. The shuffling involved the calculation
of cosine distances from each of the original 90 RBP’s distance vectors
to the respective vectors in the partially shuffled matrix, focusing on
the minimal, median, and maximal distances to other RBPs. This pro-
cedure was repeated 10 times, generating 900 estimates for each
group and percentage of shuffled columns, ensuring a comprehensive
analysis of distance variations and topological alterations. To compare
the inter-RBPdistances stabilities of the IRIM and STRING,OpenCell or

hu.MAP, the same procedure was applied to the respective binary
interaction matrices 10 times for each shuffling percent. For STRING
and hu.MAP, interactions were considered valid if the STRING com-
bined score was > 400 or hu.MAP score was > 0.02, respectively, and
for RBPs, protein-protein interactions were assumed if the distance
was within the < 25% quantile of the IRIM. Moreover, 90 RBPs were
randomly chosen from the STRING, OpenCell, and hu.MAP interaction
matrices before shuffling to make their sizes comparable to the IRIM.
This procedure was repeated 5 times.

Transcript types enrichment analysis of RBP RNA targets
A joint set of 22471 genes detected at 2 counts per million (cpm) in at
least two samples of one eCLIP experiment was used as the back-
ground for further analysis. RBPs preferences to bind RNAs of a par-
ticular type were assessed using a one-sided Fisher’s exact test. The
following types of RNAswere selected based onGENCODE annotation:
miRNA, lncRNA, protein_coding, snRNA, snoRNA, and rRNA. For each
RBP separately, the p-values were adjusted for multiple testing using
FDR correction for the number of tested RNA types. Visualization of
the eCLIP, RNA-seq, and ATAC-seq profiles generated using bedtools
genomecov (v.2.27.1) was performed with svist4get (v.1.2.24)99,100.

Functional annotation of RBPs
To annotate the RBPs based on prey identified in BioID experiments,
target scores (TSs) were estimated as -log10(P)·sign(log2FoldChange)
for every bait-prey pair separately. Next, for each prey, TSs were
converted to Z-scores by estimating mean and average across baits.
The preys were ranked by Z-scores, and the Fgsea R package (v.1.12.0)
was applied to perform gene set enrichment analysis with 100000
permutations and three GO terms annotation sets (BP, MF, and CC,
each taken separately)57. The annotation sets were generated with the
go.gsets function of gage R package (v.2.36.0)101. Lists of 2865 Entrez
ids of preys were used in fgsea analysis for each RBP of the total set of
fifty. GO termswith NES > 2 for at least one RBPwere considered when
plotting Fig. 3 and Supplementary Fig. S3 (related GO terms were
merged manually), negative NES were zeroed for clarity and easier
interpretability of the consequent clusterization, see complete data in
Supplementary Data File 3). Ward.D2 clusterization along with cosine
distance (1 - cosine similarity) were used to generate the heatmaps
using the heatmap.2 function of the gplots R package (v.3.1.1)102.

To check the consistency between predicted and known RBP
annotations, the same procedure was performed excluding the
Z-scoring step to avoid penalizing common generic GO terms e.g.,
“organelle”, “cell”, etc. The resulting GSEA p-values and NESs were
used to calculate the <RBP, GO term> scores as -log10(P)·
sign(log2FoldChange) for each RBP and GO term separately. RBPs’
“true” annotations were extracted from the same GO BP, CC, or MF
annotation set as used in GSEA. Finally, all data were merged to gen-
erate the ROC curve with PRROC (v.1.3.1) roc.curve function103.

Alternative splicing analysis
WeusedMISO104 for alternative splicing analysis, as this tool is known for
its consistent performance and wide use105. Specifically, RNA-seq data
was processed as follows: (1) to fulfill MISO requirements (see below),
the reads obtained with different sequencing lengths were truncated to
75 bps with cutadapt (v.2.10) -l option, (2) the truncated reads were
mapped to the human hg38 genome assembly with GENCODE v38
comprehensive gene annotation using STAR (v.2.7.9) with options
--outFilterScoreMinOverLread and --outFilterMatchNminOverLread
both set to 0.25106, (3) non-unique alignments were filtered, and the
replicatesweremerged, (4) the insert size distributionwas estimated for
each merged bam file separately using pe_utils –compute-insert-len
from MISO (v.0.5.4), constitutive exons were retrieved using exon_utils
with --get-const-exons and --min-exon-size 1000104, (5) alternative spli-
cing events were identified usingmiso --run with --read-len set to 75 and
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--paired-end set to the previously estimated insert size parameters.
Finally, only cases with non-zero numbers of exclusion and inclusion
read, and the sum of these reads ≥ 10 in at least one sample is left and
shown in Fig. 4.

Ribosome profiling analysis
To process the reads, the Ribo-seq reads were first trimmed using
cutadapt (v2.3) to remove the linker sequence AGATCGGAAGAGCAC.
The fastx_barcode_splitter script from the Fastx toolkit was then used
to split the samples based on their barcodes. Since the reads contain
uniquemolecular identifiers (UMIs), they were collapsed to retain only
unique reads. The UMIs were then removed from the beginning and
end of each read (2 and 5 Ns, respectively) and appended to the name
of each read. Bowtie2 (v2.3.5) was then used to remove reads that map
to ribosomal RNAs and tRNAs, and the retained reads were then
aligned to mRNAs (we used the isoform with the longest coding
sequence for each gene as the representative). Subsequent to align-
ment, umitools (v0.3.3) was used to deduplicate reads.

The quality check and downstream processing of the processed
reads was performed using Ribolog v0.0.0.914. To distinguish stalling
peaks from stochastic sequencing artifacts, we followed a multi-step
procedure. We calculated P-site offsets and identified the codon at the
ribosomalA-site for eachRPF readusing the riboWaltzpackage. A loess
smoother was used to de-noise codon-wise RPF counts. The loess span
parameter varied depending on the transcript length and allowed
borrowing information from ~ 5 codons on either side of the A-site. We
calculated an excess ratio at each codonposition by dividing the loess-
smoothed count by the transcript’s background translation level
(median of no-zero loess-smoothed counts). After median normal-
ization of the corrected counts and removal of transcripts with 0
counts, the ribosome occupancy testing was performed using logistic
regression in Ribolog.

ATAC-seq analysis
ENCODE ATAC-seq pipeline107 with default parameters was used for
sequencing data processing and analysis. The differentially acces-
sible peakswere identifiedwith theDESeq2 package108 and annotated
with the ChIPseeker package109. To perform a comparison against
published ChIP-Seq data, the processed ChIP-exo results were
downloaded fromGEO (GSE151287)68. The data consisted of bed files
containing 33 and 181 QKI peaks (two replicates) and a bigWig file
with ZNF800 ChIP-exo signal (no ChIP-exo peaks were reported for
ZNF800). In total, 234564 and 222350 ATAC-seq peaks for QKI and
ZNF800, respectively, had coverage of at least 10 reads in more than
one replicate and were used in the following tests. For QKI, the bed
files with ChIP-exo peaks were merged, transferred to the hg38
genome assembly with UCSC liftOver and the numbers of differen-
tially accessible (or not differentially accessible) QKI-KD ATAC-seq
peaks that intersect (or do not intersect) ChIP-exo peaks were cal-
culated using bedtools intersect (v.2.26.0)99,110 followed by a one-
sided (‘greater’) Fisher’s exact test on 2 × 2 contingency table. For
ZNF800, bigWig files were converted to bed using UCSC bigWigTo-
Wig (v.377) and wig2bed from BEDOPS (v.2.4.38)111,112, followed by
UCSC liftOver to the hg38 genome assembly. The resulting regions
were intersected with differentially accessible and not differentially
accessible ZNF800-KD ATAC-seq peaks using bedtools intersect,
followed by a comparison of ChIP-exo signal distribution in these two
sets using non-parametric Mann-Whitney U test.

Mass Spectrometry data analysis (TAF15 KD proteomic
quantification)
Quantitative analysis of the TMT experiments was performed simul-
taneously with protein identification using Proteome Discoverer 2.5
software. The precursor and fragment ion mass tolerances were set to

10 ppm, 0.6 Da, respectively), the enzyme was Trypsin with a max-
imumof 2missed cleavages, and the UniProt Human proteome FASTA
file and common contaminant FASTA file was used in SEQUEST sear-
ches. The impurity correction factors obtained from Thermo Fisher
Scientific for each kit were included in the search and quantification.
The following settings were used to search the data; dynamic mod-
ifications; Oxidation / + 15.995Da (M), Deamidated / + 0.984Da (N, Q),
Acetylation /+ 42.011 Da (N-terminus), and static modifications of
TMT6plex / + 229.163Da (N-Terminus, K), MMTS / + 45.988Da (C).

Scaffold Q + (version Scaffold_5.0.1, Proteome Software Inc.,
Portland, OR) was used to quantitate TMT Based Quantitation peptide
and protein identifications. Peptide identifications were accepted if
they could be established at greater than 78.0% probability to achieve
an FDR less than 1.0% by the Percolator posterior error probability
calculation113. Protein identifications were accepted if they could be
established at greater than 5.0%probability to achieve an FDR less than
1.0% and contained at least 1 identified peptide. Protein probabilities
were assigned by the Protein Prophet algorithm114. Proteins that con-
tained similar peptides and could not be differentiated based on MS/
MS analysis alone were grouped to satisfy the principles of parsimony.
Proteins sharing significant peptide evidence were grouped into clus-
ters. Channels were corrected by the matrix [0.000,0.000,0.931,
0.0689,0.000]; [0.000,0.000,0.933,0.0672,0.000]; [0.000,0.00750,
0.931,0.0619,0.000]; [0.000,0.0113,0.929,0.0593,0.000]; [0.000,
0.0121,0.934,0.0532,0.000934]; [0.000,0.0148,0.923,0.0499,
0.0120]; [0.000,0.0251,0.931,0.0438,0.000]; [0.000,0.0206,0.936,
0.0431,0.000]; [0.000,0.0291,0.937,0.0337,0.000]; [0.000,0.0776,
0.892,0.0303,0.000] in all samples according to the algorithm
described in i-Tracker115. Normalization was performed iteratively
(across samples and spectra) on intensities, as described in Statistical
Analysis of Relative Labeled Mass Spectrometry Data from Complex
Samples Using ANOVA116. Means were used for averaging. Spectra data
were log-transformed, pruned of those matched to multiple proteins,
and weighted by an adaptive intensity weighting algorithm. Of
22889 spectra in the experiment at the given thresholds, 20372 (89%)
were included in quantitation. Differentially expressed proteins were
determined by applying t test with an unadjusted significance level of
p-value < 0.05, corrected by Benjamini-Hochberg.

Statistics & reproducibility
Statistical parameters are reported in the figures and figure legends,
including the definitions and experimental measures depicted either
as bar charts representing mean and dot plots representing exact
values or as boxplots representing median, 25th and 75th percentile
(boxes), and 5% and 95% confidence intervals (error bars). For the
BioID-based RBP annotation procedure, statistical significance is indi-
cated by asterisks * if GSEA FDR adjusted p-value < 0.05. Pairwise
comparisons of qPCR results and log-transformed MS intensity ratios
were performed using a one-sided t test (for testing alternative spli-
cing) or Wilcoxon rank sum test (for testing protein levels and mRNA
relative stability). Exactp-values are depicted above the corresponding
bar charts. For TAF15 mRNA target enrichment analysis, GSEA statis-
tics, including p-values and enrichment scores, are depicted in the
figure. To test the intersection of different TAF15 regulons, p-values
were calculated using one-sided Fisher’s exact tests with the statistical
significance indicated by asterisks *, p-value < 0.05, **, p-value < 10−5.
Pairwise comparisons of the QKI and ZNF800 target expression
level and chromatin accessibility were performed using a one-sided
Wilcoxon rank sum test with exact p-values depicted above the
boxplots.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
All the sequencing data has been deposited at Gene Expression
Omnibus ([GSE225809]) and are publicly available as of the date of
publication. The processed data has been deposited to Zenodo
(identifier [11556393]). The list of bona fide BioID protein pairs has
been deposited to IMEx (identifier [IM-30059]). The mass spectro-
metry proteomics data have been deposited to the ProteomeXchange
Consortiumvia the PRIDEpartner repositorywith the dataset identifier
[PXD041608]. Source data are provided in this paper.

Code availability
All the original code has been deposited to [GitHub](https://github.
com/goodarzilab/RBP_modules) and [Zenodo](https://zenodo.org/
records/10498278) and is publicly available as of the date of publica-
tion. The RBP Browser is publicly available at [https://goodarzilab.
shinyapps.io/RBP-Browser/](https://goodarzilab.shinyapps.io/RBP-
Browser/).
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