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Francisco, CA, USA.

2Dep. of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.

Abstract

Kinetic modeling of the in vivo pyruvate-to-lactate conversion is crucial to investigating aberrant 

cancer metabolism that demonstrates Warburg effect modifications. Non-invasive detection of 

alterations to metabolic flux might offer prognostic value and improve the monitoring of response 

to treatment. In this clinical research project, hyperpolarized [1-13C] pyruvate was intravenously 

injected in 10 brain tumor patients to measure its rate of conversion to lactate (kPL) and 

bicarbonate (kPB) via echo-planar imaging. Our aim was to investigate new methods to provide 

kPL and kPB maps with whole-brain coverage. The approach was data-driven and addressed two 

main issues: selecting the optimal model for fitting our data and determining an appropriate 

goodness-of-fit metric. The statistical analysis suggested that an input-less model had the best 

agreement with the data. It was also found that selecting voxels based on post-fitting error criteria 

provided improved precision and wider spatial coverage compared to using signal-to-noise cutoffs 

alone.
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I. INTRODUCTION

Dissolution Dynamic Nuclear Polarization (dDNP)1,2 is a powerful technique that enhances 

nuclear polarization by up to 5 orders of magnitude.

Its chemical3–5, biological6–9, physical10–14, pre-clinical15–21 and clinical22–28 potentials 

have been investigated in the last two decades. The use of hyperpolarized (HP) substrates 

has provided important insights into cancer metabolism6,22,29–31 and cardiac 

imaging23,32–36. Thus far, HP pyruvate is the most common substrate for in-vivo 
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applications of dDNP because of both its relatively long T1(13C), high biological relevance, 

and rapid uptake and conversion.

The first phase I clinical trial of HP [1-13C]pyruvate was reported in 201322 on patients with 

prostate cancer and it demonstrated feasibility and safety for this approach to monitoring 

cancer progression and treatment response by quantifying the Warburg effect37 that is 

expressed through increased lactate dehydrogenase (LDH) activity. Several institutions 

around the globe are now performing clinical cancer research of HP pyruvate in prostate, 

breast38, liver39 and brain28, in order to investigate the clinical value of dDNP HP MRI and 

its advantages over current molecular imaging methods including Fludeoxyglucose Positron 

Emission Tomography (FDG-PET)40,41.

FDG-PET is an imaging technique used for the diagnosis of cancer based on the uptake and 

trapping of the radioactive substrate, but it does not track its kinetic conversion into 

downstream metabolites. Furthermore, it is of limited use in brain tumors since high glucose 

uptake is observed not only in cancerous tissues, but also in healthy cortical gray matter42,43, 

confounding the discrimination of brain tumors. There is an unmet clinical need for a more 

precise diagnosis of brain tumors which might be overcome by the capability of dDNP to 

track the pyruvate-to-lactate conversion and the Warburg effect, provided that a robust and 

reproducible kinetic modeling of the conversion of pyruvate is achieved44–51.

The goal of this work is to develop, implement and test methods for calculating precise kPL 

and kPB maps describing the enzymatic conversion of [1-13C]pyruvate to lactate and 

bicarbonate in the human brain. We acquired 22 datasets though a dynamic 2D multislice 

Echo Planar Imaging (EPI)52 sequence. Dynamic acquisition of MR images has the 

advantage to provide robust quantification of kinetic processes53, regardless of differences in 

bolus delivery, which influences, for instance, area-under-curve (AUC) ratios. EPI 

acquisition of HP substrates offers improved temporal resolution and greater spatial 

coverage than Echo Planar Spectroscopic Imaging (EPSI) techniques. We present and 

compare several models and two approaches to cut off voxels with improper fitting, in order 

to provide precise and spatially-resolved kinetic maps.

II. METHODS

Sample preparation

The sample preparation was carried out in collaboration with UCSF Radiopharmacy. Each 

sample consisted of a mixture of Good Manufacturing Practices (GMP) [1-13C]pyruvic acid 

(14.2 M; MilliporeSigma Isotec) and 15 mM Electron Paramagnetic Agent (EPA), 

(AH111501, GE Healthcare).

Samples were prepared the same morning of each study and they were inserted, under 

aseptic conditions, into pharmacy kits from GE Healthcare.

Polarization

A SPINlab54 polarizer (GE Healthcare) was used to polarize [1-13C]pyruvate at 5 T and 

about 0.8 K. The sample was irradiated with microwave at fMW = 140.02 GHz for at least 2 
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hours, boosting the 13C polarization up to 40% in the liquid state back-calculated to the time 

of dissolution.

Pre-injection quality check

After the dissolution, the EPA was filtered mechanically and quality control was carried out 

prior to injection: pH, pyruvate and EPA concentrations, polarization, and temperature were 

measured and compared to ranges of acceptability. Contemporarily, the integrity of the 0.2 

µm sterile filter was tested following manufacturer specifications on its resistance to a 

pressure-stress of 50 psi. Following the release by the pharmacist, ~250 mM pyruvate was 

injected at a dose of 0.43 mL/kg and a rate of 5 mL/s, followed by a 20 mL saline flush. A 

pause of 5 s preceded the acquisition.

Acquisition

All experiments were performed on a 3T clinical MR scanner (MR750, GE Healthcare) with 

multi-nuclear excitation and 32-channel reception capability. Carbon-13 RF excitation was 

achieved with a volume transmit coil and detected with custom 13C RF coils with either 8 or 

32 channels55.

Images of pyruvate, lactate and bicarbonate were acquired through a 2D EPI dynamic 

sequence53, capable of exciting multiple 13C frequencies sequentially, and having the 

following characteristics: 8 slices, 1.5 or 2 cm thick axial slice, TR = 62.5 ms, TE = 21.9 ms, 

20 time-points with a 3 s temporal resolution, in-plane resolutions of 1.2 × 1.2, 1.5 × 1.5 or 2 

× 2 cm2. In order to improve image quality, we applied noise pre-whitening56 in k-space 

prior to sum-of-squares coil combination.

In Fig. 1 we show the temporal trends of the signals of pyruvate, lactate and bicarbonate in a 

single slice.

III. KINETIC MODELING

In the last decade, substantial efforts have been dedicated to developing kinetic models of 

MRI signals of HP metabolites in vivo. Despite several approaches available in literature 
14,25–30, no gold-standard is available because strategies may vary according to specific 

experimental conditions.

Since kinetic modelling might suffer from errors induced by several factors (e.g., variable 

bolus delivery, acquisition sequence, magnitude images with non-zero mean noise etc), 

discarding voxels with poor fitting is critical to provide precise kinetic maps.

In this section, we describe kinetic models and fitting criteria to address these issues and to 

quantify kinetic rate constants in a precise way.

First, suitable models for fitting our data are presented.

Then, we describe two criteria to decide how to discard voxels with suboptimal fitting.
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Models

While studying the human brain, in order to obtain insights into complicated metabolic 

pathways, it is crucial to investigate the kinetics of several metabolites in different cellular 

environments. Although it is an oversimplification, we consider a three-site system (i.e., 

pyruvate, lactate and bicarbonate) in a single compartment. In such a system, the 

magnetization M(t) is exchanged and relaxes according to the following equations (single 

macrons refer to vectors, double macrons to matrixes):

d
dtM(t) = K ⋅ M(t) + Γ(t) [1]

K =
−R1 − kPL − kPB kLP kBP

kPL −R1 − kLP 0
kPB 0 −R1 − kBP

[2]

M(t) =
Mpyr(t)
Mlac(t)
Mbic(t)

[3]

Γ(t) =
Γ(t)

Γ(t) ⋅ clac
Γ(t) ⋅ cbic

wℎere Γ(t) = α ⋅ eβt ⋅ tγ [4]

We defined:

• kPL and kPB as the rates of labelling exchange from pyruvate to lactate and to 

bicarbonate (respectively). Note they are first order apparent rate constants and 

not absolute flux measurements.

• R1 = 1/T1 as spin longitudinal relaxation rate.

• MEXP
pyr  as the experimental temporal trend of the magnetization of pyruvate.

• MEXP(0) as the experimental magnetization vector M(t) at the first time point.

• MEXP(∞) as the experimental magnetization vector M(t) at the last time point.

Overall, 5 approaches were tested:

A. Γ(t) = 0, kLP = kBP = 0, Mpyr(t) = MEXP
pyr (t), M(0) = MEXP(0), 

M(∞) = MEXP(∞).

This is a model with no input-function57: the fitted signal of pyruvate is bounded 

to the experimentally acquired signal. The first and last time points are fixed to 
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the experimental values (for all metabolites). Just forward reactions are 

considered.

Fitted parameters: R1, kPL, kPB.

B. Same as A) except for having now kLP ≠ 0 (back reaction now allowed with a 

different rate). Fitted parameters: R1, kPL, kPB, kLP

C. Same as A) except for having now MT (∞) = M∞
fit[1 1 1] (last time points are 

now estimated from the fitting). Fitted parameters: R1, kPL, kPB, M∞
fit.

D. Same as A) except for having now MT (∞) = M∞
fit[1 1 1] and 

MT (0) = M0
fit[1 1 1] (both first and last time points are estimated from the 

fitting). Fitted parameters: R1, kPL, kPB, M∞
fit, M0

fit.

E. kLP = kBP = 0, M(0) = MEXP(0), M(∞) = MEXP(∞). In this model Γ(t) ≠ 0, 

meaning that there is an input function Γ(t) (defined in Eq. 4) simulating the 

arrival of the bolus in the region of interest. The magnetization of pyruvate is 

also fitted. First and last points are set equal to experimental values. Just forward 

reactions are considered. Fitted parameters: R1, kPL, kPB, α, β, γ, clac, cbic.

The differential equations 1–4 were solved through a discrete model. The transverse 

magnetization, Mxy, and the residual longitudinal component along the z axis, Mres, were 

computed in Eq 5 and 6 at each time step Δt ⋅ N (where Δt = TR and N = 1, 2, …, 20), 

taking into account the excitation flip angles α for each metabolite.

The magnetization at time step N+1 was calculated in Eq. 7 by considering the exchange 

matrix K, Δt and Mres(Δt ⋅ N).

Mres(Δt ⋅ N) = M(Δt ⋅ N) ⋅ cos(α) [5]

Mxy(Δt ⋅ N) = M(Δt ⋅ N) ⋅ sin(α) [6]

M(Δt ⋅ [N + 1]) = eK ⋅ ΔtMres(Δt ⋅ N) [7]

All models were solved via custom MATLAB routines involving minimization of non-linear 

least-square problems (i.e., difference between fitted and experimental magnetization). σkPL 

is half the 95% confidence interval, calculated with MATLAB functions lsqnonlin and 

nlparci. In all cases, boundary conditions were: 1/80 s−1 < R1 < 1 s−1 and 0 < kPL < 1 s−1.

Experimental T1s of lactate and pyruvate vary significantly in solution. However, a recent 

work53 has shown that the input-less model is insensitive to errors in pyruvate T1 and that T1 

values for pyruvate and lactate are similar in vivo (respectively 30 and 25 s, in patient 
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studies at 3 T). We, therefore, chose to have equal T1 values to improve the stability of the 

model.

After fitting to experimental data, models were classified according to 3 indicators, Akaike 

Information Criterion (AIC), nvox
perc and ΔkPL

perc, defined as:

AIC = 2k − 2ln(L) [8]

nvox
perc = 100nvoxi

nvoxA [9]

ΔkPL
perc = 100 1 − kPL

i
kPL

A [10]

where k is the numbers of parameters estimated in the model, L is the maximum value of the 

likelihood function for the model (i.e., chi squared in our case), nvoxi  is the number of voxels, 

in all data sets, that are fitted according to the ith model (with i = A-E), nvoxA  is the nvoxi

corresponding to model A, kPL
i  is the mean kPL, averaged over all data sets, for the ith model 

and kPL
A  is the kPL

i  corresponding to model A.

The AIC is a measure of the statistical significance of several models with a different 

number of parameters to be estimated (i.e., the lower the better statistical significance for the 

model). nvox
perc is informative of how many voxels are fitted if compared to model A (chosen 

arbitrarily as a standard) and ΔkPL
perc is a measure of how much kPL varies with models.

To assess the reproducibility of the pyruvate bolus delivery, we define a “mean pyruvate 

time” tarrmean as the center of mass of the pyruvate signal over time on a voxel-wise basis53:

tarr
mean =

∑nSpyr(n)t(n)
∑n Spyr(n) [11]

Criteria to mask voxels on kPL maps

In this paragraph, we introduce two approaches to mask voxels with improper fitting in order 

to provide “reasonable” kPL maps with an acceptable compromise between precision of the 

fitting in a voxel and the numbers of voxel for which the fitting itself is retained (i.e. the 

coverage). Due to low SNR, kPB maps describing the conversion of pyruvate into 

bicarbonate will not be considered in this analysis. In the “SNR criterion”, prior to fitting 

temporal trends to a model, we create a mask discarding voxels with peak SNR lower than a 

set of two SNR thresholds, one for pyruvate and one for lactate, labeled as [SNRpyr
max, 

SNRlac
max]. In the “error criterion”, prior to fitting temporal trends to a model, we mask voxels 

Mammoli et al. Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



based on [SNRpyr
max, SNRlac

max], as in the SNR criterion, but, after fitting, we discard all the 

voxels where σkPL is bigger than a fraction of kPL itself.

In this way, the global masking procedure depends on both the set of SNRs and on the 

statistical outcome of the fitting.

To compare the outcomes of fitting with the two criteria, we will take into account nvox
perc (as 

in Eq. 9 but now the index refers to the criterion) and R2, defined as:

R2 = 1 −
∑k (yk − fk)2

∑k (yk − y)2 [12]

where yk and fk refer to the experimental and fitted signals at the kth time point and y is the 

average over time of yk. R2 is preferred over AIC or chi squared since these last two vary 

with different SNR (i.e., if data with lower SNR are filtered, the residuals (yk − fk)2 are 

bigger).

IV. RESULTS AND DISCUSSION

The subject population comprised 10 patients with recurrent glioma who had received prior 

surgery and were undergoing standard-of-care treatment, including radiation therapy and 

temozolomide chemotherapy, along with a variety of adjuvant therapies. A subset of these 

patients was imaged serially, and all received a single injection per day. Table 1 includes the 

experimental conditions under which the 22 data sets were acquired (i.e., coil, voxel size, 

excitation flip angles) and estimation of SNRmax (the peak SNR in all voxels and slices in 

the given data set), tarrmean(mean arrival time of pyruvate) and kPL
mean (mean kPL rate).

In Fig. 2, we can see typical temporal trends of the signal-to-noise ratio of pyruvate, lactate 

and bicarbonate in a single voxel, selected from a slice (also shown for all metabolites). The 

SNR did not go to zero at later time-points due to the sum-of-squares coil combination used 

in this work, which results in non-zero mean noise caused by noise rectification of 

magnitude data.

While there has been no comprehensive study on the impact of spatial resolution on the 

measured reaction rate, larger voxels would have a greater risk of partial-volume effects, 

reducing the measured reaction rate because of the strong vascular pyruvate signal58. 

Confounding factors such as Rician bias in magnitude data and variations in bolus delivery 

between patients are global factors that impact quantification. On a voxelwise level, regional 

variations in perfusion, signal loss from susceptibility/B0 inhomogeneities and reduced SNR 

in voxels at the center of the brain, farthest from the multichannel receive array, can also 

impact quantification. The choice of flip angles will also have an impact on the precision of 

rate constant estimates57,59,60. Using a variable (across frequency) flip angle scheme, with a 

higher flip angle for downstream metabolites and a lower flip angle for pyruvate, is 

commonly used to compensate for the lower metabolite concentration and to reduce 

saturation of pyruvate. This leads to more precise fitting in the presence of noise by 
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increasing the metabolite SNR61. While variable (through time) flip angle schemes can 

improve SNR, they are also more sensitive to transmit B1 inhomogeneity59,62.

The SNRmax was excellent for pyruvate and lactate (i.e., greater than 100 and 13, 

respectively, for all datasets) but greatly variable for bicarbonate.

The mean arrival time of the pyruvate bolus, tarrmean, was calculated for every data set via Eq. 

11. While there is variability throughout the brain due to differences in arrival time between 

arterial and venous voxels, the mean pyruvate time ranged from 6 s to 11 s post injection, 

with an average value of 8 ± 2 s across patients. Compared to initial results from the 

prostate63, the mean arrival time in the brain appears fairly reproducible in our initial cohort.

Mean kPL and its standard deviation were also calculated on each data set, with the approach 

described in the next paragraphs.

Let us define σkPL as half the 95% confidence interval from non-linear least-square fitting to 

“model A” with the error criterion with [SNRpyr
max, SNRlac

max] = [20, 5] and σkPL < 0.6·kPL. We 

have applied the error criterion with [SNRpyr
max, SNRlac

max] = [20, 5] and σkPL < 0.6·kPL to 

compare models A to E. Values of AIC, ΔkPL
perc and nvox

perc are reported in Table 2: model A 

was the best model at describing data (highest nvox
perc and lowest AIC) and model B the worst 

(high AIC and negligible nvox
perc). Model E, which is the only one including an input function, 

performed worse than model A (the simplest assumption-less model), due to a poor 

agreement between the input function and our data which may be improved with an earlier 

start of acquisition.

Parameters used in both the SNR and the error criterion should be optimized in order to find 

a compromise between precision and number of voxels fulfilling the statistical requirements 

based on σkPL (i.e., spatial coverage).

The analysis has been carried out on datasets with peak SNR of lactate lower than 25, by 

using model A, since it is the one providing the best fit quality.

In the SNR criterion, we have to choose [SNRpyr
max, SNRlac

max] namely the set of thresholds for 

masking voxels with low SNR (before fitting). We tested 22 sets obtained by all the possible 

combinations between SNRpyr
max = [5, 10, 50, 100] and SNRlac

max = [2, 3, 4, 5, 6, 7].

In the error criterion, the SNR mask was computed based on 6 threshold sets, obtained by 

combining SNRpyr
max = 5 and SNRlac

max = [2, 3, 4, 5, 6, 7]. After fitting, we discarded all the 

voxels with σkPL < c∙kPL where c = [0.4, 0.6, 0.8, 1.0].

Values of nvox
perc and R2 are reported in Tables 3a and 3b (respectively) for both the SNR 

criterion and the error criterion. To produce kinetic maps, it is necessary to find a 

compromise between statistical precision and available number of voxels (or alternatively 

the voxel count within the FOV) and the final decision may vary from one user to the other.
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Tables 3a and 3b provide insight on how to set limits in our case. In Tab. 3a, nvox
perc drops with 

higher SNRpyr
max, higher SNRpyr

max and lower c, showing that any stricter requirement 

diminishes the numbers of accepted voxels. For the SNR criterion (Tab. 3b), R2 increases 

with higher SNRlac
max but not necessarily with higher SNRpyr

max. This suggests that the precision 

of methods based on the SNR alone depends more critically on lactate rather than on 

pyruvate. In Tab. 3b, as for the error criterion, R2 increases with both higher SNRlac
max and 

lower c, meaning that both parameters affect the statistical precision.

In Tab. 3b, let us consider the R2 values corresponding to SNRpyr
max = 5 in both criteria (i.e., 

first column in the SNR criterion and all columns in the error criterion). Values of R2 in case 

of SNRlac
max = 2, 3, 4 in the SNR criterion are smaller than any R2 in the error criterion 

(regardless of c). However, R2 for SNRlac
max = 5, 6, 7 in the SNR criterion are comparable to 

those in the error criterion. This means that at low SNRlac the error criterion performs better 

than the SNR criterion, while they are comparable at higher SNRlac.

By comparing Tab. 3a and 3b, we can see that, at similar precisions, the error criterion gives, 

on average, more voxels with proper fitting (i.e., higher nvox
perc), yielding to a better spatial 

coverage in kPL maps. The trend is particularly evident at low SNRlac
max.

For example, let us consider two cases with R2 = 0.43 in Tab. 3b: those with [SNRpyr
max, 

SNRlac
max] = [100, 2] for the SNR criterion and [SNRpyr

max, SNRlac
max] = [5, 3] with σkPL < 

1.0∙kPL for the error criterion. These two cases exhibit the most dramatic difference since 

their corresponding values of nvox
perc in Tab. 3a would be 6 and 33, meaning that the error 

criterion provided 5 times more voxels despite having similar statistical precision.

Furthermore, if one wanted to base the selection on the SNR alone, removing the check on 

σkPL, in order to choose precise values, it would be necessary to perform many fittings at 

different SNR thresholds in every dataset and to fix a reasonable threshold.

The error criterion is an easier option since it is sufficient to set SNRpyr
max and SNRlac

max to 

reasonably low thresholds (high enough to avoid to retain voxels with noisy trends) and 

leave the main filtering task to the criterion based on σkPL.

We investigated the performances of the error criterion when applied to random noise.

To do so, we generated several sets of lactate signals consisting of Gaussian noise and 

associated them to the experimental signals of pyruvate from data set 3. Then, we applied 

the error criterion with [SNRpyr
max, SNRlac

max] = [5, 3] and σkPL < 0.6∙kPL and calculated the 

number of fitted voxels, namely those where the fitting fulfils the requirements of the error 
criterion. We found that, if compared to experimental signals from data set 3, random noise 

provides, at best, 40 times less fitted voxels.
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This suggests that the improvements introduced by the error criterion on nvox
perc and R2 in 

Tables 3a and 3b are barely influenced by the noise.

All these findings speak in favor of the error criterion, which seems to be more reasonable 

than the SNR approach at masking voxel to be displayed in kPL maps.

The choice of [SNRpyr
max, SNRlac

max] and c is arbitrary and looking at the outcome alone might 

be misleading, as shown in Fig. 3. On the quest to opt for specific values, we started by 

considering the approach which has been often used in our group so far, namely [SNRpyr
max, 

SNRlac
max] = [10, 5]. According to tables 3a and 3b, it has nvox

perc = 17 and R2 = 0.53.

Bearing this in mind, we created kPL and k 64 maps for every data set, by using model A 

combined with the error criterion with [SNRpyr
max, SNRlac

max] = [5, 3] and c = 0.6.

These set of values has nvox
perc = 27 and R2 = 0.53, meaning that, if compared to the former 

approach, it provides about 60% more voxels albeit keeping similar statistical precision.

As for data sets in Table 1, the mean value of the fractional error c = σkPL / kPL in a single 

data set varies between 0.16 and 0.34, giving an idea of how they link to the graphic 

outcomes of fitting in Fig. 3.

In Fig. 4 we show examples of 5 kPL maps superimposed to FLAIR images of a patient 

affected with gliosarcoma (data set 14) and of 5 kPB maps superimposed to T1-weighted 

images of a patient affected with gliosarcoma (data set 16).

All the kPL maps have been computed by using the error criterion with [SNRpyr
max, SNRlac

max] = 

[5, 3] and σkPL < 0.6∙kPL. The patient affected with gliosarcoma has previously received 

radiation and temozolomide chemotherapy, along with adjuvant agent pembrolizumab.

The interpretation of the correspondence between higher or lower kPL values and presence 

of tumor is deferred to future studies since it is beyond the scope of this communication, that 

is mainly focused on methods to compute kinetic maps for our brain data sets.

V. CONCLUSIONS

We conducted preliminary studies of hyperpolarized [1-13C] pyruvate injected in 10 patients 

affected with glioma, demonstrating the feasibility for quantifying kinetic rates kPL and kPB, 

which describe the conversion of pyruvate into lactate and bicarbonate. We compared five 

kinetic models and two approaches for discarding voxels with improper fitting and we 

provided quantitative and spatially resolved maps of kinetic rates. Such hyperpolarized MRI 

experiments enable an unprecedented window into cerebral metabolism, which is not 

provided by other molecular imaging techniques.
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Figure 1. 
Temporal dynamics of the signals of pyruvate, lactate and bicarbonate in a single slice (data 

set 3 in Table 1), acquired with the EPI dynamic sequence (see text for details). For 

anatomic reference, a 1H FLAIR image on the left. Note that data have not been coil 

corrected and reflect the sensitivity profile of the 8-channel receive-array used in this study.
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Figure 2. 
[Top] 1H FLAIR and 13C total signal AUC images (data set 3) from the raw data. [Bottom] 

Temporal dynamics of signals of pyruvate, lactate and bicarbonate in the selected voxel.
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Figure 3. 
Temporal dynamics of the signal of lactate in a voxel (blue crosses) and fitting (red line) 

using model A and the error criterion in 6 cases with different values of the parameter c in 

the condition σkPL < c kPL (see text for details).
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Figure 4. 
[Top] Examples of kPL maps superimposed to FLAIR images of a patient (data set 14) 

affected with glioma (active tumor highlighted in red) [Bottom] Examples of kPB maps 

superimposed to T1-weighted images of a patient (data set 16). Sinc interpolation and the 

error criterion (σkPL < 0.6∙kPL) were used to generate kinetic maps in both cases (see text for 

detail).
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Table 1.

Summary of the experimental conditions of the 22 human brain data sets. We report coil used, voxel size, flip 

angles of excitation for each metabolite, peak SNR (along all voxels and slices in the given data set), mean 

kinetic rate kPL and its standard deviation (calculated with “model A” and the error criterion, described later 

on in the manuscript) and mean and standard deviation of the mean arrival time of pyruvate tarr.

Set Coil Voxel 
(cm3)

αpyr(°) αlac(°) αbic(°) SNRpyr
max SNRlac

max SNRbic
max kPL

mean(s−1) tarrmean(s)

Patient 1 1 8ch 2 × 2 × 2 33.4 33.4 33.4 393 53 15 0.021±0.008 6±2

2 32ch 1.2 × 1.2 × 
2

10 33.4 33.4 120 22 27 0.013±0.006 7±3

3 8ch 2 × 2 × 2 33.4 33.4 33.4 437 79 13 0.05±0.02 7±4

4 32ch 1.2 ×1.2 × 
2

20 30 30 306 22 18 0.010±0.005 6± 3

Patient 2 5 8ch 1.2 ×1.2 × 
2

33.4 33.4 33.4 306 20 n/a 0.024±0.009 11±4

6 8ch 2 × 2 × 2 20 30 30 170 26 11 0.018±0.007 8±5

7 32ch 2 × 2 × 2 20 30 30 504 30 15 0.016±0.007 7±2

8 8ch 1.5 ×1.5 × 
2

20 30 30 403 42 18 0.022±0.009 7±2

Patient 3 9 8ch 2 × 2 × 2 20 30 30 281 41 12 0.018±0.008 7±2

10 32ch 1.2 ×1.2 × 
2

20 30 30 576 21 29 0.009±0.004 9±3

Patient 4 11 8ch 2 × 2 × 2 20 30 30 225 43 13 0.03±0.01 10±2

12 32ch 1 × 1 × 2 20 30 30 492 25 32 0.012±0.006 8±3

13 32ch 1.5 × 1.5 × 
1.5

20 30 30 181 16 12 0.022±0.008 7±3

14 32ch 1.5 × 1.5 × 
1.5

20 30 30 361 24 14 0.02±0.01 7±2

Patient 5 15 8ch 1.2 × 1.2 × 
2

10 33.4 33.4 101 22 26 0.015±0.007 6±3

16 32ch 1.5 × 1.5 × 
2

20 30 30 392 35 15 0.015±0.008 7±2

17 32ch 1.5 × 1.5 × 
2

20 30 30 392 35 15 0.017±0.007 11±3

Patient 6 18 8ch 1.2 × 1.2 × 
2

33.4 33.4 33.4 559 22 12 0.012±0.004 10±3

Patient 7 19 8ch 2 × 2 × 2 20 30 271 41 13 0.03±0.01 9±3

Patient 8 20 8ch 2 × 2 × 2 20 30 568 58 16 0.03±0.01 8±2

Patient 9 21 8ch 1.2 × 1.2 × 
2

10 33.4 128 25 13 0.02±0.01 6±3

Patient 
10

22 32ch 1.5 × 1.5 × 
2

20 30 30 162 13 13 0.009±0.005 7±3
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Table 2.

Comparison of models A-E according to Akaike Information Criterion (AIC) and percentage deviation from 

model A of mean kPL(ΔkPL
perc) and of number total voxel fitted (nvox

perc).

Model AIC ΔkPL
perc nV OX

perc

A: inputless, M(0) and M(∞) bounded, no back reaction 4 0 100

B: inputless, M(0) and M(∞) bounded, no back reaction 11 −363 85

C: inputless, M(0) bounded, no back reaction 6 −5 85

D: inputless, no back reaction 10 −7 86

E: input Γ function, M(0) and M(∞) bounded, no back reaction. 13 −40 55
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Table 3a.

Values of nvox
perc for the SNR criterion and the error criterion using model A as standard. Several combinations 

of SNRpyr
max and SNRlac

max were used for both criteria. In the SNR criterion no conditions are set on σkPL (error of 

kPL), whereas, in the error criterion, fitting is accepted for σkPL < c·kPL and rejected otherwise.

nvox
perc SNR criterion

(no check on σkPL after fitting)

Error criterion:σkPL< c · kPL

c =1.0 c = 0.8 c = 0.6 c = 0.4

SNRlac
max╲SNRpyr

max
5 10 50 100 5 5 5 5

2 100 86 26 6 51 45 34 18

3 50 47 19 5 33 31 27 17

4 30 29 13 3 21 20 19 14

5 17 17 9 3 12 12 12 10

6 11 11 6 3 8 8 8 7

7 6 6 4 2 4 4 4 4
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Table 3b.

Values of R2 for the SNR criterion and the error criterion using model A as standard. Several combinations of 

SNRpyr and SNRlac were used for both criteria. In the SNR criterion no conditions are set on σkPL (error of 

kPL), whereas, in the error criterion, fitting is accepted for σkPL < c·kPL and rejected otherwise.

R2 SNR criterion
(no check on σkPL after fitting)

Error criterion:σkPL< c · kPL

c =1.0 c = 0.8 c = 0.6 c = 0.4

SNRlac
max╲SNRpyr

max
5 10 50 100 5 5 5 5

2 0.27 0.30 0.38 0.43 0.37 0.40 0.47 0.60

3 0.39 0.41 0.44 0.49 0.43 0.50 0.53 0.60

4 0.41 0.42 0.51 0.57 0.42 0.49 0.60 0.65

5 0.53 0.53 0.66 0.58 0.53 0.54 0.64 0.67

6 0.66 0.66 0.67 0.57 0.66 0.66 0.67 0.69

7 0.70 0.70 0.71 0.59 0.70 0.70 0.70 0.72
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