
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Scalable Analysis of Distributed Workflow Traces

Permalink
https://escholarship.org/uc/item/5670x6xs

Authors
Gunter, Daniel K.
Tierney, Brian L.
Bailey, Stephen J.

Publication Date
2005-06-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5670x6xs
https://escholarship.org
http://www.cdlib.org/


Scalable Analysis of Distributed Workflow Traces

Daniel K. Gunter, Brian L. Tierney and Stephen J. Bailey
Lawrence Berkeley National Laboratory

Berkeley, CA, USA

Abstract

Large-scaleworkflows are becoming increasingly im-
portant in both the scientific research and business do-
mains. Science and commerce have both experienced an ex-
plosion in the sheer amount of data that must be analyzed.
An important tool for analyzing these huge data sets is a
compute “cluster” of hundreds or thousands of machines.
However, debugging and tuning clusters requires special-
ized tools. Current cluster performance tools are more ori-
ented towards tightly coupled parallel applications. We de-
scribe how the NetLogger Toolkit methodology is more ap-
propriate for this class of cluster computing, and describe
our new automatic workflow anomaly detection component.
We also describe how this methodology is being used in the
Nearby Supernova Factory (SNfactory) project at Lawrence
Berkeley National Laboratory.

Keywords: cluster performance, troubleshooting, paral-
lel debugging1

1 Introduction

An important class of parallel processing jobs on clusters
today areworkflow-based applications that process large
amounts of data in parallel (e.g.: searching for supernovae
or Higgs particles). In this context we defineworkflowas
the processing steps required to analyze a unit of data. In
these types of applications, each node of the compute clus-
ter or farm is autonomous, with no communication or syn-
chronization between nodes. Often this type of computing
is I/O or database bound, not CPU bound. This means that
the performance analysis requires system-wide analysis of
competition for resources such as disk arrays and database
tables, which is very different from traditional parallel pro-
cessing analysis of CPU usage and explicitly synchronized
communications.

1Published in the Proceedings of the 2005 International Confer-
ence on Parallel and Distributed Processing Techniques and Applications
(PDPTA’05), Las Vegas, USA

In this paper, we classify cluster applications as “tightly
coupled”, “loosely coupled” and “uncoupled”. Tightly cou-
pled applications have a large amount of communication be-
tween nodes, using specialized interfaces such as the Mes-
sage Passing Interface (MPI). Loosely coupled jobs have
occasional synchronization points, but are largely indepen-
dent. Uncoupled jobs have no communication or synchro-
nization points. There are a number of performance anal-
ysis tools which focus on tightly coupled applications. In
this paper we focus on uncoupled and loosely coupled ap-
plications.

For example, consider an astrophysics application where
telescopic images are stored on a large RAID-based file
server connected to each cluster node. An application that
is searching for supernovae starts with a new image, does a
database query to locate all related data from previous sur-
veys of that part of the sky, then loads and processes those
images. The performance bottleneck might be the database
query, reading from the RAID disk, or the image process-
ing. There are many possible ways to tune this application:
should the application copy the images to local disk, or per-
form NFS reads directly from the RAID array? What is the
optimal number of nodes to use? Does more effort need to
be put into optimizing the database query?

The traditional focus of parallel performance analysis
tools such as such as TAU [13], Paraver [11], FPMPI [4]
or the Intel Trace Collector [8] has been onprofiling and
tracing the code sections of a single (parallel) application.
Little support exists for combining the performance charac-
teristics of multiple application components or distributed
resources, such as databases and wide-area networks. But
in a loosely coupled workflow, the bottleneck often lies in
these interactions rather than in the core algorithms of the
application code itself. Therefore, we must use experimen-
tal techniques to understand the performance of the entire
system, including dynamic probes of all the major systems
used by the workflow.

Performance tools have distinct classes of consumers.
Application developers need to verify that their code is as
efficient as possible, and to pipeline activities whenever
possible. For example, to keep the pipeline full, one may be

1



able to load the next set of images while processing the cur-
rent set. Performance analysis tools can be used to help de-
termine if and where the pipeline can be optimized. These
tools must be simple and intuitive; unless compelled by cir-
cumstances, most programmers are reluctant to invest much
time and effort to learn new performance tools.

Cluster administrators need performance tools to deter-
mine when performance problems are due to overloaded re-
sources, and when they are due to poorly designed appli-
cations. Most cluster administrators have experienced the
problem of a user complaining about a performance prob-
lem such as access to the shared cluster disk is too slow,
but monitoring of the disk server shows no reason for the
performance problems experienced by the user. A “finger-
pointing tool” is needed to determine conclusively if the
problem is in the disk server, compute node, or the appli-
cation code.

We have developed NetLogger methodology and toolkit
to help both application developers and cluster administra-
tors understand the performance of their respective systems
[14]. NetLogger was originally developed to analyze dis-
tributed applications. However we have found it to be ex-
tremely useful to help understand loosely coupled cluster
applications as well.

Previous papers on NetLogger have focused on overhead
issues and dynamic activation [6], and use in a grid envi-
ronment [7]. In this paper we focus on how NetLogger can
be used in a cluster environment with loosely coupled par-
allel jobs. In particular we will show how the NetLogger
“lifeline” provides an intuitive visualization for this class
of application, and how the combination of application and
system monitoring is critical for understanding the bottle-
necks. We will also demonstrate the importance of auto-
matic anomaly detection tools for scaling the analysis and
visualization techniques to the large volume of workflow
event traces generated by cluster applications.

2 Sample Cosmology Application

An example of an uncoupled cluster application is the
Nearby Supernova Factory (SNfactory) project at Lawrence
Berkeley National Laboratory (http://snfactory.lbl.gov/) [1],
whose mission is to find and analyze nearby “Type Ia” su-
pernovae. Type Ia supernovae are important celestial bodies
because they are used as “standard candles” for gauging the
expansion of the universe.

Supernovae are found by comparing recently acquired
telescope images with older reference images. If there is a
source of light in the new image that did not exist in the old
image, it could be a supernova. Subtracting the new image
from the reference image identifies new light sources. This
process is quite delicate: aligning the images, matching the
point-spread functions, and matching the photometry and

bias all require precise calibration.
Around 25,000 new images are captured each day, and

the goal is to complete all processing before the next day’s
images arrive. Image data is copied in “real time” from the
Palomar observatory to a mass storage system at NERSC
[10]. Then the image data is copied to a large shared disk
array on a 344-node cluster called the Parallel Distributed
Systems Facility (PDSF) [12]. Each image is 8 MB (un-
compressed), and the processing of each image requires be-
tween 5 and 25 reference images, for a total disk space re-
quirement of about .5 TB each day.

For each new image, a database query is performed to
locate all related reference images. These reference images
are then fetched from the mass storage system if they are
not currently on the cluster file server. Then the images are
processed and resulting new images are copied to the mass
storage system, to be used again around a year later when
the same part of the sky will be imaged again.

In this paper we describe how NetLogger is being used
to analyze and troubleshoot SNfactory processing on the
PDSF cluster.

3 NetLogger Overview

For over 10 years we have been developing a toolkit
for instrumenting distributed applications called NetLogger
[14]. Using NetLogger, distributed application components
are modified to produce timestamped traces of “interesting”
events at all the critical points of the distributed system.
Events from each component are correlated, allowing one
to characterize the performance of all aspects of the system
and network in detail.

All tools in the NetLogger Toolkit share a common mon-
itoring event format, and assume the existence of accurate
and synchronized system clocks. The NetLogger Toolkit
itself consists of four components: an API and library of
functions to simplify the generation of application-level
event logs, a service to collect and merge monitoring from
multiple remote sources, a monitoring event archive system,
and a tool for visualization and analysis of the log files. In
order to instrument an application to produce event logs, the
application developer inserts calls to the NetLogger API at
all the critical points in the code, then links the application
with the NetLogger library.

The NetLogger Toolkit also includes a data analysis
component. One of the major contributions of NetLogger
was the concept of linking a set of events representing a
workflow together and representing them visually as a “life-
line”, as shown in Figure 1. Visualizing event traces in this
manner makes it easy to see where the most time is be-
ing spent, and when a workflow does not complete. The
NetLogger Visualization tool,nlv, provides an interactive
graphical representation of system-level and application-

2



Figure 1. NetLogger Lifelines.

level events. NetLogger’s ability to correlate detailed ap-
plication instrumentation data with host and network moni-
toring data has proven to be a useful tuning and debugging
technique for distributed application developers.

4 Related Work

As mentioned above, performance analysis tools such
as TAU and Paraver are designed to analyze a tightly cou-
pled parallel applications, and are not as relevant for loosely
coupled workflows. On the other hand, a number of other
projects that started out as mainly for tightly coupled appli-
cations have extended or adapted their tracing facilities to
work in a more distributed setting. These include SvPablo
[3], Prophesy [15], and Paradyn [9].

SvPablo is a graphical environment for instrumenting ap-
plication source code and browsing dynamic performance
data. SvPablo supports performance data capture, analysis,
and visualization for application written is a variety of lan-
guages and executing on both sequential and parallel sys-
tems. SvPablo relies on a single user interface for perfor-
mance instrumentation and visualization. During the execu-
tion of the instrumented code, the SvPablo library captures
data and computes performance metrics based on the execu-
tion of each instrumented component. To capture dynamic
performance data, calls to the SvPablo performance instru-
mentation library are generated. During execution of the
instrumented code, the SvPablo library maintains statistics
on the execution of each instrumented event on each pro-
cessor and maps these statistics to constructs in the original
source code.

The Prophesy data collection component performs auto-
matic instrumentation of codes at the level of basic blocks,
procedures, or functions. The default mode consists of in-
strumenting the entire code at the level of basic loops and
procedures. A user can specify that the code be instru-
mented at a finer granularity than that of loops or identify
the particular events to be instrumented. The resulting per-

formance data is automatically placed in the performance
database and is used by the data analysis component to pro-
duce an analytical performance model, at the granularity
specified by the user.

Both SvPablo and Prophesy instrument source code au-
tomatically, this approach provides maximum portability of
source code, but requires tools for each source language.
These tools also provide a way to capture summary perfor-
mance data (rather than event logs) from grid applications
to be used for data analysis.

Paradyn is a performance measurement tool for paral-
lel and distributed programs. It can provide precise per-
formance data down to the procedure and statement level.
Paradyn is primarily designed for identifying bottlenecks
in parallel programs written using message passing or
pthreads. Paradyn is based on a dynamic notion of perfor-
mance instrumentation and measurement. Unmodified exe-
cutable files are placed into execution and then performance
instrumentation is inserted into the application program and
modified during execution. Paradyn controls its instrumen-
tation overhead by monitoring the cost of its data collec-
tion, limiting its instrumentation to a (user controllable)
threshold. The instrumentation in Paradyn can be config-
ured to accept new operating system, hardware, and appli-
cation specific performance data. Paradyn is designed to
gather and present performance data in terms of high-level
parallel languages (such as data parallel Fortran) and can
measure programs on massively parallel computers, work-
station clusters, and heterogeneous combinations of these
systems.

Our toolkit, NetLogger, is quite different from these
tools. NetLogger does not perform automatic instrumen-
tation like the above tools, and it has fewer pre-configured
analysis components. Paradyn, SvPablo, and Prophesy all
focus on timings for individual code sections and compar-
ing these timings across nodes and runs. In contrast, Net-
Logger’s concept of a “lifeline” is particularly well-suited
to user-defined sequences of actions, like workflows. It
should not be surprising, then, that NetLogger is the only
one of these tools to provide workflow analysis and work-
flow anomaly detection. NetLogger is also the only of these
tools that facilitates the collection of logged events from
multiple locations.

5 Using NetLogger in a Cluster Environment

Until recently, NetLogger has mostly been used in a dis-
tributed computing environment where there are tens of sys-
tems involved in a particular distributed application. In this
paper we explore how NetLogger can be used with hun-
dreds of systems in a large cluster or farm.

3



5.1 Collecting NetLogger Events

Even though clusters have shared disk space, which typi-
cally uses the Network File System (NFS), logging in paral-
lel to NFS from multiple independent jobs results in a pro-
fusion of log files, and is not practical or efficient. The al-
ternative of logging to local disk and collecting the log files
by hand is equally impractical. To solve this problem, Net-
Logger makes it easy log across the network (TCP or UDP)
to a collection daemon, callednetlogd. To reduce perturba-
tion from fine-grained instrumentation, NetLogger events
can also be written to local disk, and then forwarded by the
a forwarding agent callednlforward.

NetLogger also includes a “debug level” mechanism that
makes it easy to change what instrumentation or debugging
data is being collected. The user communicates the new de-
bug level by modifying a simple text file, whose location is
determined by an environment variable. The NetLogger li-
brary automatically checks this file periodically and updates
its debug level accordingly. For example, if a server process
is running slower than normal, one can increase the debug
level without having to restart the server.

5.2 Scalable Troubleshooting Tools

Once the basic framework for collecting logs is in place,
the primary challenge for application instrumentation on
large clusters is sifting through the volume of data that even
a modest amount of instrumentation can generate. For ex-
ample, if a 24 hour application run produces 50MB of ap-
plication and host monitoring data per node, then while a
32-node cluster might be manageable (50 MB x 32 nodes =
1.6 GB), when scaled to a 512-node cluster the amount of
data starts to become quite unwieldy (50 x 512 = 25.6 GB).

Our approach to this is twofold. First, we make it easier
to selectively delete and analyze the raw data using a con-
figurable tool callednldemuxthat can split and “roll over”
the input data according to the contents of the event records
themselves. The second part of the approach is an analy-
sis tool callednlfindmissingthat filters out everything ex-
cept the anomalous workflows from the input data, greatly
reducing data volume. These are both described in more
detail below.

The results ofnlfindmissingcan then be viewed graphi-
cally, as shown in the result section below, or they can be
passed to a report generation program. Reports can be pe-
riodically generated and emailed to the scientist monitoring
the jobs.

5.3 NetLogger File Management

As described above, NetLogger applications send instru-
mentation data tonetlogd, the NetLogger collection dae-

mon. In normal use,netlogdthen writes the events to a disk
file.

For large clusters, the size of the output file of netlogd
quickly becomes hard to manage. To address this we added
the ability to filter incoming events into different files based
on any NetLogger field. For example, if each instrumenta-
tion event contained a workflow ID, then a separate file per
workflow could be generated. Another example might be to
create a new file for each day, or hour of the day, based on
the “DATE” field. A third example would be to generate a
separate file per cluster node. This mechanism is very flex-
ible, and any portion of any field can be used. For example,
if one assigned hierarchal workflow IDs to the job, such as
“A.B.C.D”, then one could bin the instrumentation data into
files where the workflow ID started with “A.B”.

In addition, files or entire directories of files can be pe-
riodically “rolled over”. This mechanism can be combined
with the output splitting function described above. For ex-
ample, system monitoring information can be split into a di-
rectory, further split by the monitored host name, and then
the whole directory can be rolled over once every 24 hours.

Files and directories can even be rolled over remotely. If
a special field, calledNL.ACTION, is present in a NetLog-
ger event record, then thenldemuxprogram will either flush
its open files to disk, close/rollover open files, or close and
re-read its configuration file, depending on the value of the
field. Only demultiplexed streams which “match” this event
record, using the same criteria as for any other event record,
are affected. This RPC-like feature has proven invaluable in
isolating the results from a short test run without perturbing
the overall system.

Storing all this monitoring data directly into a relational
database is another possible solution to this problem. The
NetLogger archiver,netarchd, provides this functionality.
However this violates the “low entry barrier” principle for
performance monitoring tools. In other words, in our expe-
rience developers are not likely to use a tool that requires
installing and configuring (and maintaining) a database, so
this alternate solution was found.

5.4 NetLogger Automatic Anomalous Workflow
Detection Tool

Running a large number of workflows on a large cluster
will generate far too much monitoring data to be able to use
the standard NetLogger lifeline visualization techniques to
spot anomalies. For even a small set of nodes, these plots
can be very difficult to read, as shown in Figure 2.2 (See
section 6 for a detailed explanation of this figure).

To address this problem, we designed and developed a
new NetLogger automatic anomaly detection tool, called

2This figure is much more readable in color. If possible, try to find a
color printer or view this on your screen.

4



Figure 2. SNfactory Job Workflows on 5
Nodes

nlfindmissing. The basic idea is to identify lifelines that are
“missing” events. Using a configuration file, one defines the
events that make up an important linear sequence within the
workflow, as a lifeline. The tool then extracts lifelines from
the raw data, and any time a workflow is missing an event,
it outputs that lifeline.

To be scalable and intuitive, the tool needed to resolve
two issues. The first is how, given an open-ended dataset
that is too large to fit in memory, to determine when to give
up waiting for a lifeline to complete. The second is how to
output the right amount of context for the anomalous work-
flow with nearby “normal” workflows.

The first problem boils down to calculating a timeout for
a given grouping of lifelines. Our approach was to approx-
imate the density function of the lifeline latencies by main-
taining a histogram with a relatively large, e.g. O(1000),
bins. Then the timeout becomes a user-selected section of
the tail of that histogram, e.g. the 99-th percentile. This
works well, runs in a fixed memory footprint, is computa-
tionally cheap, and does not rely on any assumptions about
the distribution of the data. Some additional parameters,
such as a minimum and maximum timeout value, and how
many lifelines to use as a “baseline” for dynamic calcula-
tions, make the method more robust to messy real-world
data.

We also implemented alternative approach, which may
be applicable to some data sets. Instead of a histogram, we
calculate a running mean and standard deviation for com-
pleted lifelines, and dynamically update the timeout value
to some user-specified multiple, 3 by default, of standard
deviations above the mean. With proper algorithms, as de-
scribed in [2], the computation itself is fast and accurate.
But this approach has the major weakness that it assumes a

Figure 3. Distribution of SNFactory Lifeline
Completion Times

statistically “normal” distribution for its input data, in this
case lifeline (workflow) latencies. For the SNFactory data,
and probably most real-world data, the distribution is not at
all normal. For example, Figure 3 shows a sample distribu-
tion (density plot) of lifeline completion times for SNFac-
tory workflows, which has little resemblance to the bell-
curve of a normal distribution.

Once the timeout is available, it is straightforward to
identify unfinished lifelines, and mark them as anomalies.
The same basic method is used to identify extreme val-
ues for host monitoring data such as CPU load or available
memory. The only difference is that a value contained in the
event, instead of the time between events, is used as input
to the computation. Also, timeouts are only concerned with
defining upper limits, whereas system parameters may be
interesting when values are high, low, or both.

Just examining the lifelines of anomalous workflows
without some context of “normal” behaviour is not very use-
ful, sonlfindmissingalso outputs all other events that occur
on that host during the lifeline, along with some lifelines on
either side of the anomalous one.

If a high proportion of the workflows are anomalous,
then providing context with normal lifelines is not very
helpful, and could lead to no data reduction at all. There-
fore nlfindmissinghas on option to just flag the anomalous
events.

Sample results fromnlfindmissingare shown in the re-
sults section below.

6 Results

In this section we describe how NetLogger is being used
by the Nearby Supernova Factory (SNfactory) project at
Lawrence Berkeley National Laboratory for both fault de-
tection and performance tuning.

SNfactory jobs are submitted to PDSF cluster at NERSC,

5



Figure 4. NetLogger Deployment for SNfac-
tory.

Figure 5. SNfactory Workflow shown with Net-
Logger Lifelines

and typically run on 40 nodes. Figure 4 shows how NetLog-
ger is deployed for SNfactory analysis. SNfactory jobs were
instrumented using NetLogger at each step in the workflow.
On average, SNfactory jobs produce about one event per
second on each node, for a total of roughly up to 1.1 mil-
lion events per day. NetLogger instrumentation data is all
sent to a singlenetlogdprocess, which is running on one of
the cluster “front-end” nodes. Ganglia host monitoring [5]
data is also collected using the NetLogger ganglia collec-
tor (nlganglia), which periodically polls the ganglia server
(gmetad) for current host monitoring data from all cluster
nodes, and forwards the data tonetlogd. Thenldemuxtool is
then used to group monitoring data into manageable pieces.
The ganglia data is placed in its own directory, and data
from each node is written to a separate file; the entire direc-
tory is rolled over once per day. The workflows are placed in
files named for the observation date at the telescope, which
is information carried in each event record.

Figure 5 shows a typical workflow for the SNfactory ap-

plication on a single cluster node. CPU and network data
from Ganglia is shown at the bottom. The SNfactory appli-
cation processes a group of images together, starting with
uncompressing the images, and then doing image calibra-
tion and subtraction. The next step is to generate askyflat
image, which is a calibration image that is formed from a
median combine of several of other images. Theskyflatis
used to correct other images to adjust for the sky brightness
on a given night, which can vary due to humidity, cloud
cover, and so on. The skyflat calibration image is then ap-
plied to all images within the job.

This figure actually demonstrates a bug in the SNFactory
processing that went undetected for several months before
NetLogger analysis. Under some conditions it was deter-
mined erroneously that the skyflat calibration was not nec-
essary. All lifelines except the two nearly vertical ones near
the beginning should have converged at thesetskyflatevent.

The two nearly vertical lines near the beginning are, in
fact, correct. Part of the processing is to generate a ”dark
image” that requires no further processing afterbiasover-
scan.end, but is used in other calculations.

The first problem the SNFactory scientists asked us to
solve was to figure out why some of their workflows where
failing without any error messages as to the cause. Even
when error messages were generated, the SNfactory appli-
cation produced thousands of log files, and it was very dif-
ficult to locate the log messages related to failed workflows.
NetLogger was very useful for easily characterizing where
the failures were occurring so they would know where to
focus debugging efforts. The new NetLogger anomaly de-
tection tool was also applied to this problem.

One complication for SNFactory workflows was that the
“dark” calibration images, as explained above, do not exe-
cute the latter portion of the workflow. Because the anomaly
detection algorithm is based on whether a workflow exe-
cutes its last event, this caused all the “darks” to get flagged
as anomalies. This problem was avoided by the introduc-
tion of an artifical event that all workflows could write as
they came to the end of their normal processing. This event
appears with the keyword “done”.

Figure 2 actually contains three workflows that did not
complete, but this is not at all obvious in the graph. In com-
parison, Figure 6 shows clearly how the anomaly detection
tool is able to highlight the incompleted lines. It also illus-
trates the large data reduction with a moderate (6%) rate of
anomalies.

Note that highlighting the anomaly results in the Net-
Logger Visualization toolnlv was trivial because the
anomaly detection tool adds an attribute to the NetLogger
event indicating whether or not the record is part of an
anomalous workflow. Thenlv tool can color the lifeline
based on this attribute.

6



Figure 6. Anomaly Detection Results.

7 Conclusion

We have shown how the NetLogger “lifeline” method-
ology can be very useful for analyzing and troubleshoot
workflow-based cluster applications. For example, the Net-
Logger Toolkit analysis of the Nearby Supernovae Factory
workflow has already discovered some important bugs. The
results from analyzing this application have also demon-
strated the importance of the anomaly detection tool, both
for reducing the volume of the data and for helping the vi-
sualization tools to scale to large numbers of workflows.

In future work, we would like to enhance the types of
anomalies that can be automatically recognized, for exam-
ple anomalies that combine the behavior of more than one
lifeline. We would also like to explore database integration.

But in all our future enhancements, we will continue the
basic philosophy of simplicity first, in order to keep the “en-
try barrier” for new applications as low as possible. When
dealing with large shared resources such as clusters, it is
important to be able to deploy a useful subset of the tools
with no special privileges or resource-consuming processes.
This philosophy is essential to NetLogger’s usefulness in
grid environments, but in our experience is also quite ap-
propriate to large cluster environments.

Acknowledgment

This work was supported by the Director, Office of Sci-
ence. Office of Advanced Scientific Computing Research.
Mathematical, Information, and Computational Sciences
Division under U.S. Department of Energy Contract No.
DE-AC03-76SF00098. This is report no. LBNL-57060.

References

[1] G. Aldering and all. Overview of the nearby supernova fac-
tory. InProceedings of SPIE, Volume 4836, pp. 61-72, 2002.

[2] T. F. Chan and J. G. Lewis. Computing Standard Devia-
tions: Accuracy.Communications of the ACM, 22(9):526–
531, 1979.

[3] L. deRose and D. Reed. Svpablo: A multi-language
architecture-independent performance analysis system. In
International Conference on Parallel Processing. 1999.
Wakamatsu, Japan, 1999.

[4] fpmpi. http://www-unix.mcs.anl.gov/fpmpi/
WWW/.

[5] Ganglia.http://ganglia.sourceforge.net/ .
[6] D. Gunter, B. Tierney, K. Jackson, J. Lee, and M. Stoufer.

Dynamic monitoring of high-performance distributed appli-
cations. In11th IEEE Symposium on High Performance Dis-
tributed Computing. 2002., 2002.

[7] D. Gunter, B. Tierney, C. E. Tull, and V. Virmani. On-
demand grid application tuning and debugging with the net-
logger activation service. In4th International Workshop on
Grid Computing (Grid2003), 2003.

[8] Intel Trace Collector. http://www.intel.com/
software/products/cluster/tcollector/ .

[9] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kunchitha-
padam, and T. Newhall. The paradyn parallel performance
measurement tool.IEEE Computer, 28(11):37–46, 1995.

[10] NERSC.http://www.nersc.gov/ .
[11] Paraver. http://www.cepba.upc.edu/paraver/

overview.htm .
[12] PDSF. http://www.nersc.gov/nusers/

resources/PDSF/ .
[13] S. Shende, A. D. Malony, J. Cuny, K. Lindlan, P. Beck-

man, and S. Karmesin. Portable profiling and tracing for
parallel scientific applications using c++. InProceedings of
SPDT’98: ACM SIGMETRICS Symposium on Parallel and
Distributed Tools, pp. 134-145, Aug. 1998, 1998.

[14] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks,
and D. Gunter. The netlogger methodology for high per-
formance distributed systems performance analysis. InPro-
ceedings of the Seventh IEEE International Symposium on
High Performance Distributed Computing (HPDC 7), pages
260–267, 1998.

[15] X. Wu and V. Taylor. Design and development of prophesy
performance database for distributed scientific applications.
In Proc. the 10th SIAM Conference on Parallel Processing
for Scientific Computing. 2001. Virginia, 2001.

7




