
UC Irvine
ICS Technical Reports

Title
A survey of clustering methods

Permalink
https://escholarship.org/uc/item/5668705t

Author
Gennari, John H.

Publication Date
1989-10-30

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5668705t
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

A _Survey of Clustering Methods --
John H. Gennari

~-- ~

Department of Information and Computer Science

University of California, Irvine, CA 92717

Oct. 30, 1989

Technical Report 89-38

Z-
fof f
c.,,_j
rwl'f 51

I would like to thank Pat Langley, Doug Fisher, Wayne Iba and Kevin Thompson for their help with this

paper. This research was supported by Contract MDA 903-85-C-0324 from the Army Research Institute.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE {When Data Entered}

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

Technical Report No. 6
2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

A Survey of Clustering Methods

7. AUTHOR{s)

John Gennari

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Department of Information & Computer Science
University of California, Irvine, CA 92717

11. CONTROLLING OFFICE NAME AND ADDRESS
Army Research Institute
5001 Eisenhower A venue
Alexandria, Virginia 22333

5. TYPE OF REPORT &. PERIOD COVERED

Interim Report 7 /88-6/89

6. PERFORMING ORG. REPORT NUMBER

UCI-ICS Technical Report 89-38
8. CONTRACT OR GRANT NUMBER(sJ

MDA 903-85-C-0324

10. PROGRAM ELEMENT, PROJECT, TASK
AREA&. WORK UNIT NUMBERS

12. REPORT DATE

October 30, 1989
13. NUMBER OF PAGES

24
14. MONITORING AGENC:Y NAME&. ADDRESS (if different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

16. DISTRIBUTION STATEMENT (of this Report)

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS {Continue on reverse side if necessary and identify by block number)

machine learning
concept formation

numerical taxonomy
cluster analysis

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

In this paper, I describe a large variety of clustering methods within a single framework. This paper
unifies work across different fields, from biology (numerical taxonomy) to machine learning (concept
formation). An important objective for this paper is to show that one can benefit by a knowledge
of research across different disciplines. After describing the task from a set of different viewpoints or
paradigms, I begin by describing the similarity measures or evaluation functions that form the basis of
any clustering technique. Next, I describe a number of different algorithms that use these measures, and
I close with a brief discussion of ways to evaluate different approaches to clustering.

DD FORM
1JAN73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

1. Introduction

Researchers in a variety of fields have studied the basic task of clustering instances into classes.

Although specific instantiations of this task differ from field to field, a general statement of the

problem is as follows:

• Given: a set of instances, each described by some number of attribute-value pairs;

• Find: a set of classes that group those instances.

For example, suppose one were suddenly placed in a jungle on an unknown planet. As a learn­

ing agent, one would immediately begin creating concepts to classify and organize the instances

observed (plants, animals, or any perceived objects). This example emphasizes the unsupervised

nature of the problem - the learner is trying to impose structure on the environment without any

feedback.

A fundamental difficulty for the clustering task is that it requires some means of evaluating a

set of potential classes. For example, an evaluation function measures the quality of a set of classes

with respect to the data. Creating an evaluation function is closely related to defining some sense

of similarity among instances. In turn, the attributes (and attribute types) that describe instances

affect the similarity measure. In addition, there are a number of different algorithms that create

classes from instances. Although some algorithms require particular evaluation functions, often

the researcher can try a set of different functions with a single algorithm, and vice versa.

In this paper, I will organize a large number of clustering techniques under one framework as a

space of possible methods. My hope is that this will offer more insights than simply listing different

methods from different fields, or trying to define a 'best '_or 'optimal' technique. Although the

framework I develop in this survey may not cover every clustering method, I believe it brings to

light some interesting insights, and that it describes a large range of possible methods.

To some degree, researchers in machine learning, or artificial intelligence in general, have been

unaware of related work outside of their own field. There is a large body of research in statistics

and biology, usually known as cluster analysis, that is applicable to work in machine learning, if one

allows for the different biases of these disciplines. Although a few AI researchers have acknowledged

this area of work (Michalski & Stepp, 1983a; Stepp, 1987; Fisher & Langley, 1986), there has been

no comprehensive survey of cluster analysis for Al. In particular, cluster analysis is very similar to

the study of concept formation in machine learning. One goal of this paper is to emphasize this

similarity and to show how researchers in machine learning can benefit from a knowledge of cluster

analysis.

I begin this survey by presenting overviews of the clustering problem as seen from several

different perspectives, beginning with a machine learning view. In the third section, I describe the

difficulty and importance of choosing a similarity measure or an evaluation function; this section

also includes some of the most common and useful measures. I follow this with a description of

1

concept for these and be able to recognize a new baseball as a member of that class, and not as an

instance of some other class (volleyballs, tennis balls, etc.).

One distinguishing feature of concept formation is that the classes learned should be inten­

sional, rather than extensional. For example, the baseball class should be a "conceptual descrip­

tion" of the baseballs seen, rather than simply a list of all member instances (Michalski & Stepp,

1983b). This emphasis on intensional concept definitions means that evaluation functions that

compare classes are more appropriate for concept formation than similarity measures that com­

pare instances.

A second aspect of concept formation is that the classes learned are usually arranged in a

concept hierarchy. That is, the learned concepts are organized into a hierarchy with more general,

inclusive concepts toward the top, and more specific, exclusive concepts toward the bottom. This

reflects the hierarchical nature of knowledge in typical machine learning domains. For example,

soccer balls and volleyballs are more similar to each other than to baseballs or to lacrosse balls. A

natural hierarchy for these four types of balls would be to put soccer balls and volleyballs together

into a more general "soft, large" class, and lacrosse balls and baseballs into a "hard, small" class.

A third characterizing feature of concept formation is that learning occurs incrementally. As

the robot observes each successive ball, it should add to its knowledge immediately; the concepts

learned are updated by each new experience without reprocessing previous instances. In contrast,

a nonincremental system must receive the entire set of instances before producing a set of classes.

Such a system is incompatible with the goals of concept formation because one may not know the

complete 'set' of instances, and one may need to use the learned concepts at any point in time.

For example, the robot should be able to use its knowledge at any point during learning, and it

should continue learning, no matter how many balls it encounters. These problems are perhaps

more obvious for human learners, who observe a never-ending sequence of instances.

Researchers in machine learning are usually interested in robust algorithms, rather than special­

purpose clustering methods. A researcher will therefore apply his method to a wide variety of

domains, often including large, noisy data sets. Finding a single clustering method that works over

a large number of varied domains is motivated by the psychological evidence that there is at least

one such algorithm: the human clustering system.

Finally, if a system learns, one should be ·able to measure its improvement on some performance

task. This is a task used to test (and quantify) the ability of the system before and after learning.

With this type of numeric measure, the success of a concept formation system can be evaluated

over a number of different domains, or a set of different systems can be compared on given data

set.

As I have described the problem, clustering is unsupervised. However, there is also a large

amount of work in machine learning on supervised concept formation, usually known as "learning

from examples". Although this is a related task, the differences between these two problems are

very important. Supervised concept formation learns to determine which of a known set of classes

3

2 .3 Clustering in Statistics

The statistician has a much more formal view of the clustering problem. In this approach,

researchers are interested in a careful definition of clustering and in exploring theoretical implica­

tions of clustering methods. Although this paradigm has had some success, the heuristic nature of

clustering can be an obstacle to the type of rigorous analysis preferred by statisticians. Likewise,

objectively evaluating the result of a clustering technique (validation) has proven difficult.

For the statistician, one place to begin is a comparison of cluster analysis with other, well­

established statistical methods such as factor analysis, analysis of variance, and discriminant anal­

ysis. For example, statisticians point out that choosing a set of attributes that describe instances

is the general probiem addressed by factor analysis. Howeve~, it appears that performing factor

analysis as a pre-processing step has a detrimental effect on clustering. 2 Similarly, the standard

multivariant practice of normalizing variables can cause problems: normalization can obscure dif­

ferences that may be crucial for clustering (Everitt, 1980).

Statisticians have also analyzed and compared the algorithms and evaluation functions of

clustering methods themselves. Although this effort has shown that some methods and similarity

measures are redundant (Anderberg, 1973), it has not been able to establish any single clustering

method as best. The difficulty is that, unlike most statistical methods, clustering is heuristic. Since

the algorithms use 'rules of thumb' that are not guaranteed to produce correct solutions, they are

difficult to analyze and compare.

Although one cannot measure the subjective goal of finding an 'interesting' set of classes,

statisticians are interested in quantitatively evaluating aspects of a solution. Unlike the biologist's

perspective, the statistician's 'solution' need not be a hierarchy of classes: for some domains, a flat

list of classes is more appropriate; for others, overlapping or probabilistic classes may be preferable.

2.4 Clustering as Decision Theory

An abstraction of the clustering problem has been studied by a few researchers in the field of

decision theory (Jaynes, 1986; Cheeseman, Kelly, Self, Stutz, Taylor, & Freeman, 1988). In this

view, the goal is to correctly predict the probabilities that a new instance xis a member of a class

Wi: P(wilx). This expression can be re-written using Bayes' theorem:

P(·I) = P(xlwi)P(wi)
w, x P(x)

The probability of each class, P(wi), is usually known - it can be computed as the number of

members of Wi divided by the total number of instances. Additionally, since P(x) is the probability

of x independent of class, it can be ignored - when comparing two different classes, w1 and w2, the

2 There is considerable debate on this issue. See Everitt (1979) or Aldenderfer and Blashfield (1984) for
more discussion.

5

that is sometimes used to create a smaller number of more 'appropriate' attributes from the pool

of available attributes.

Unfortunately, this is somewhat circular logic. In spite of its widespread use, Everitt (1979)

argues against using factor analysis or any method which eliminates attributes before clustering.

The purpose of clustering is to discover an unknown set of classes. As it searches for these, it will

establish which attributes are 'relevant', but to decide this beforehand would slant the clustering

process. Factor analysis can have the detrimental effect of hiding those attributes that may be

crucial to finding a hierarchy of classes. Factor analysis assumes a single, known class; hence,

Everitt suggests that it may be used after clustering, but never beforehand. Researchers also

sometimes place weights on the attributes prior to clustering. This has the same effect as using

factor analysis, and is vulnerable to the same criticism.

Any method for measuring similarity depends to some degree on the representation used for

the attributes that describe an instance. Anderberg (1973) points out that there are two ways of

characterizing attributes: the measurement scale used for the attribute, and the number of possible

values an attribute may take on. For this paper, I will describe four main types of attributes:

continuous, ordinal, symbolic, and binary. 3

Continuous attributeS' have an infinite range and are measured along a continuous scale. Ex­

amples of this type of attribute are real-valued measurements of height, weight, and temperature.

An ordinal attribute has a finite range with an ordering on the possible attribute values. Examples

might be number-of-fins, or any continuous attribute that has been rounded, such as age to the

nearest year. A symbolic attribute also has a finite range, but there is no order to its values.

Examples of this may be shape, place of birth, or type of sailboat. Finally, a binary attribute has

only two possible values. Often, these are presence-or-absence attributes such as has-backbone, or

is-hungry.

The similarity measure or evaluation function employed will be dependent upon the attribute

types used to describe instances. In fact, instances may be described by a combination of different

types of attributes. Unfortunately, one of the many unsolved problems in cluster analysis (from a

statistician's point of view) is that there is no 'good' way to combine different attribute types. That

is, despite some attempts, there are no theoretically sound similarity measures that can be applied

to different attribute types, especially if binary and continuous attributes are combined. For this

reason, the measures described below are organized according to whether they are appropriate for

continuous, ordinal, symbolic, or binary attributes.

3.2 Measures for Continuous or Ordinal Attributes

I shall begin by considering similarity measures for continuous attributes: measures comparing

two instances that are described by a set of continuous or ordinal attributes. Let i and j be the

instances, each described by I< attributes, e.g., i = {x1,x2, .. ,xK}· One of the most obvious

3 Note that my terminology is different from Anderberg's, reflecting my machine learning bias.

7

other fields) because there is no justification for the syntactic reversal. The meaning of the equation

is lost: for example, since x is an average across different attributes, it may be averaging 'apples

and oranges', and may not have the semantics expected for that term.

3.3 Measures for Binary or Symbolic Attributes

Neither correlation nor Euclidean distance can be applied to an attribute with binary or

symbolic values. One characteristic of such an attribute is that, given two values, the expression

Xi - Xj does not have any meaning. A similarity measure for symbolic attributes is faced with a

simple comparison: either two values are the same, or they are different. Over a set of attributes,

the simplest way of comparing two instances is to find the percentage of matching attributes:

number of matching attributes
total number of attributes

In artificial intelligence, this is a 'partial match': a score of one indicates that all attributes match,

while a zero says that no attributes match.

TABLE 1. A 2 x 2 association table

1 0

1 a b

0 c d

Since binary attributes are very common, researchers have usually treated this case separately.

If one looks at two instances, i and j, there are four possible relationships for each binary attribute;

these are shown in a 2 x 2 association table, as Table 1. If these are totaled over all attributes, a

and d represent the number of matched attributes, while c and bare mismatches. Therefore, the

simple matching measure described above can be expressed as

a+d
K

where K = a+ b + c + d, or the number of attributes. A distance measure can be defined as

b + c: the more mis-matches, the greater the distance between the instances. This is known as the

Hamming distance (Hamming, 1980). _The distinction between a, the number of positive matches,

and d, the number of negative matches, is made because binary attributes can express the presence

or absence of some observable feature. This is often the case in biology; in such a domain, it may

be more appropriate to use a measure that does not count 'missing' matches:

9

3.4 Evaluation Functions

Evaluation functions are distinct from similarity measures in that they compare sets of classes,

rather than a pair of instances. This difference can be trivial; some evaluation functions are

simple extensions of similarity measures. However, the emphasis on classes rather than instances

is important to machine learning. From this perspective, as the system learns, the evaluation

function controls the search for useful classes by evaluating the quality of a set of concepts with

respect to the data. In contrast to similarity measures, evaluation functions often imply a particular

type of concept definition. As I present different evaluation functions, I will point out their relations

to various similarity measures, as well as their implications for concept representations.

3.4.1 AVERAGE DISTANCE

The most straightforward way to evaluate classes is to evaluate all of the members by using a

si~ilarity function. For example, one common method is to sum the distance from each object to

the class mean; the lower this average distance, the better the class. Although this could be defined

with any metric, the most common function is based on Euclidean distance; over all classes, the

evaluation function is:

trace(W)

where Nj is the number of members in class j, and Xjk is the average over all members of

class j for attribute k. This expression is known as trace(W), because it is the sum along the

diagonal of the within-group covariance matrix. (Also known as a scatter matrix, this is the matrix

of all possible covariances among K attributes.) Note that for a single class and attribute, this

expression corresponds to the variance for that attribute. In fact, this function suggests a concept

representation consisting of a list of means and variances for each attribute, since this information

is needed to compute trace(W).

This evaluation function is one of a set based on the matrix identity, T = W + B, where

T, B and W are the total, between-group, and within-group scatter matrices, respectively.6 In

general, these functions attempt to either minimize W (a measure of within-group differences) or

maximize B (between-group differences). In order to compare matrixes, they must be converted

to a scalar: one can use either the determinant of the matrix, or (more cheaply) the 'trace' of a

matrix. The three most common functions are minimizing trace(W) (defined above), maximizing

trace(W-1B), and minimizing the determinant of W.

It is important to note that trace(W) has the same problem as Euclidean distance; it is

sensitive to normalization of the data, and to linear transformations of attributes. It also prefers

6 See Hand (1981) for a more detailed discussion of this identity, as well as further references to the use of
these functions.

11

the correlation tables, the concept can be easily discovered and represented by Hanson and Bauer's

system. Systems that do not use some form of correlation often have difficulty with this type of

class.

3.4.3 FUNCTIONS BASED ON INFORMATION THEORY

Gluck and Corter (1985) present an 'information theoretic' evaluation function, category util­

ity, for symbolic attributes. This function is based on the probability of an attribute value, P(x kv).

This probability can be expressed as the number of times attribute k has had value v, divided by

the total number of instances. (Note that this probability is closely related to the simple matching

measure.) Category utility measures the information that is gained by partitioning instances into

classes. For a given attribute k,

Category Utility(k) =
- L:~=l P(x kv)2

J

where Vis the number of attribute values for attribute k and J is the number of classes. P(Xkv ICj)
is the probability of the attribute value conditioned by the class Cj, meaning that only those

instances in class Cj are considered. In contrast, P(xkv) is that probability without any class

information; it is the information at the parent class.8 Although category utility is based on

the simple matching measure, the subtraction of the final term allows the function to measure

information gain from parent to children. This gain is then divided by the number of children, so

that different size partitions can be compared.

Both category utility and Hanson and Bauer's evaluation function work only for symbolic

attributes; because they iterate through all possible attribute values, they cannot be applied to

continuous attributes. Classes are defined as a set of probabilities for every possible attribute-value

pair. Gennari, Langley, and Fisher (1989) use category utility as the basis for a related measure

for normally distributed continuous attributes. Because a normal distribution is assumed, this

measure is based on the standard deviation, O'k, for a given attribute, k. The evaluation function

used by the CLASSIT system of Gennari et al. is:

J
2:: P(Cj)/aik
j=l

J

where O'jk is the standard deviation within a given class j, and O'pk is the standard deviation

without any class information.

8 Gluck and Corter (1985) defined category utility for two classes; here, I have shown Fisher's (1987a) gener­
alization to J classes. The information theoretic model also uses logs instead of squared terms (P(x)log(P(x))
instead of P(x) 2). However, the authors claim that this difference will not affect the behavior of the clustering
system.

13

bin 'b' to create a clustering method. Of course, very few researchers have actually tried this, and

not every nut will fit onto every bolt. For each algorithm, I will point out the original similarity

measure proposed, as well as others that could be used.

Although there are several ways to organize algorithms, the most useful is based on their ap­

proach to the clustering problem. I have chosen to divide algorithms into three groups: agglomera­

tive algorithms, iterative optimization algorithms and incremental algorithms. The agglomerative

approach is the oldest, having been proposed by workers in biology and ecology. With the advent

of the computer, iterative optimization methods became popular as a more efficient heuristic ap­

proach to clustering. Finally, incremental algorithms were inspired by human concept formation,

and were created by researchers in machine learning.

In addition to describing some of the most important algorithms, I will consider two char­

acteristics of each method. First, although any algorithm must produce some set of classes as

output, the form and organization of the classes is dictated by the researcher's goals. For example,

the researcher may prefer a simple list of classes or he may need a specific-to-general hierarchy of

classes. Likewise, the researcher may prefer each instance to be assigned to a single class, or to

more than one class, or even to all classes probabilistically. Second, different algorithms have very

different computational and memory costs. The computer cannot be treated as an infinitely pow­

erful machine. Especially from a machine learning point of view, it is important that the algorithm

and the similarity measure be as inexpensive as possible.

4.1 Agglomerative Methods

Historically, the first algorithms for clustering were agglomerative methods. Since they were

developed by biologists, they produced a hierarchy (a taxonomy) of classes, from the most general

class (including all instances) to the most specific classes (covering only one instance). Although

these are still the most widely used algorithms, they are expensive both in space and time require­

ments.

An agglomerative method begins with each instance as a separate class, and repeatedly com­

bines these smaller, specific classes to form larger, more general classes. This process builds up a

hierarchy of classes, :finishing when all instances have been agglomerated into one top-level class.11

In order to determine which instances to 'agglomerate', these algorithms require a similarity ma­

trix that shows how close, according to some similarity measure, every instances is to every other

instance. Given this matrix, a general agglomerative algorithm can be described as follows:

1. Compute and store the similarity matrix.

2. Find the smallest (best) value in the matrix and its associated pair of instances.

3. Merge these two instances (or classes) into a larger class.

11 The reverse of this approach is known as a divisive algorithm. This begins by assuming every instance is in
the same highest-level class, then repeatedly divides this class into some number of children, until each (very
specific) class has only one instance. Although a few such algorithms have been proposed (MacN aughton­
Smith et al. 1964, Fisher 1984), they have been rarely used.

15

not produce hierarchies of classes, they are more efficient than agglomerative methods, and by

transferring instances from class to class they can recover from an initial 'bad' decision.

In general, one can view the clustering problem as a search over the huge space of possible

partitionings of the instances into classes. A simple method would examine every possible partition,

and find the one with the best score according to an evaluation function. Unfortunately, this is

computationally impossible even with a relatively small number of instances; for example, there

are 5.28 x 1028 ways to partition 50 instances into four classes.12 Therefore, instead of a complete

search through this space, iterative optimization methods use hill-climbing techniques to iteratively

improve the evaluation score until an optimum is reached. As with any hill-climbing method, the

starting point for the search may be critical, and the algorithm can converge on a local optimum

instead of the global optimum.

Theoretically, one can use any evaluation function as the criterion to optimize at each iteration.

However, in order to keep the overall clustering system efficient, the researcher should choose a

relatively simple evaluation function, one that that system can compute cheaply as it considers

each re-assignment. For example, one of the simplest and most popular algorithms is the k-means

algorithm:

1. Use the first k instances as seed points.

2. Assign each of the remaining instances to the class represented by the nearest

(Euclidean distance) seed point.

3. Recompute new seed points as the centroids (the average attribute values) of each

class.

4. Iterate between steps 2 and 3 until no re-assignments are made.

Although the number of iterations required before halting is unknown, Anderberg (1973) gives a

proof that such algorithms will eventually converge, and in practice this is usually a reasonably

small number (less than ten). When Euclidean distance is used, Hand (1981) shows that this

algorithm is equivalent to optimizing the trace(W) evaluation function.

One can make a number of modifications to this algorithm. First, since the starting point can

be critical to a hill-climbing searcher, different methods can be used to choose it. For example,

the k seed instances can be chosen randomly, or they can be chosen so that all seeds are at least

some minimum distance apart. Duda and Hart (1973) point out that the entire algorithm can be

repeated with different_seed selections so that the researcher can compare possibilities. In fact,

they even suggest using an agglomerative method to find the initial partition, although this seems

expensive. Anderberg (1973) also describes a number of seed selection techniques.

A second modification can be made by computing new class centroids whenever an instance

is re-assigned to a class. In this case, the algorithm may converge much earlier; for example,

MacQueen's (1967) k-means algorithm uses only two passes through the instances. In the first

12 Duda and Hart (1973) give the exact expression for the number of ways to partition n instances into c
classes; an approximation is c" / c!.

17

human clustering system in mind; it seems unlikely that a human learner would need to first receive

some number of instances, and then stop receiving and perform the computation of the clustering

task.

Even without this bias, these incremental systems are useful for a number of more pragmatic

reasons. They require less computational time than other algorithms, and can therefore process

larger databases. These algorithms also avoid the problem of selecting the number of classes.

Finally, this type of algorithm is almost essential for any application where the class definitions

are dynamic. Schlimmer and Granger (1986) refer to this as concept drift: if new instances reflect

new or different concepts, an incremental algorithm can adjust its concept definitions over time.

A general incremental algorithm for adding each new instance x to a hierarchy of classes can

be described as:

1. Incorporate x to the root node.

2. Either: a) Incorporate x to an existing child class, or

b) create a new child class based on x.
3. Recurse (if desired) on each child class.

Usually these algorithms produce a hierarchy of classes, but step three can be omitted if

one prefers a simple list of classes. Unlike agglomerative methods, incremental algorithms do

not produce binary hierarchies: the branching factor is variable and determined by how often

new classes are created (in step 2b). Determining when to make a new class is critical to these

algorithms - this choice allows incremental algorithms to automatically find an appropriate number

of classes from the data.

EPAM (Feigenbaum, 1963) is one of the first systems in artificial intelligence to approach the

clustering problem. This system applies monothetic decision making to the basic incremental

algorithm. The system associates each level in the hierarchy with a single attribute. In order to

determine which action to take in step two (above), EPAM inspects the value of that attribute, and

creates a new disjunct if that value does not match any of the existing children. Otherwise, the

system sorts the instance to the child class with a matching attribute value.

In contrast, UNIMEM (Lebowitz, 1985, 1986) uses a polythetic strategy. At each level, the

system inspects some subset of the attributes, and then uses these values in conjunction with an

evaluation function to choose a class. This algorithm also goes beyond a strict partitioning to

allow clumping, or sorting instances to more than one class. However, UNIMEM does not allow the

completely probabilistic classification suggested by Cheeseman et al. (1988).

As defined above, the incremental algorithm is a pure hillclimber - it can get trapped in the

same kind of local optima as iterative optimization methods. Fisher's COBWEB system (1987a,

1987b) added some operators to the algorithm that were designed to alleviate this problem. In

addition to options a) and b) at step two, the system considers merging two existing classes, or

splitting a class into its children. These operators permit the system to move away from local

optima, since they allow a form of backtracking through the space of possible concept hierarchies.

19

Finally, the original hierarchy is compared to this base-line hierarchy (for example, by comparing

an analysis of variance within each class). A large difference between hierarchies means that the

algorithm has done a good job of finding classes from the data. Although the score resulting from

this procedure has little absolute meaning, it can be used to compare a set of different methods -

the method with the biggest difference is the 'best' for a given data set.

Rather than comparing hierarchies, there is a more general way of assessing the performance of

a clustering method. Instead of evaluating whether a classification is 'correct', the idea is to judge

how 'useful' that classification may be. Although this may seem difficult to do, one measurement

of 'useful' is to see how well the classes can predict attribute values of a new instance. This

prediction ability can be related to the 'recall' task in cognitive psychology, and has been used in

machine learning (Fisher, 1987; Gennari et al., 1989). The recall task says that given a set of cues

(attributes) from a new instance, the agent should be able to use its memory of past instances to

recall the unspecified attributes of the instance.

To use prediction as a performance task for evaluating a clustering system, a random attribute

is omitted from a test instance. After the system classifies this instance, the chosen class is used to

predict the value of the omitted attribute. In addition to depending on the goodness of the classes,

the accuracy of this prediction depends on the test set instance (how typical that instance is) and

the omitted attribute (how consistent that attribute is). Therefore, once this score is averaged over

instances and attributes, this average predictive accuracy can be used as a general measure of the

utility of the classes created by the clustering system. This performance measure can then be used

to compare different methods with the same data, or the same method over different data sets.

6. Conclusions

The framework delineated in this paper allows for a comparison of clustering methods across

a wide spectrum of research fields. By describing a technique in relation to others proposed by

different fields, one is able to concentrate on distinguishing features. Additionally, an awareness of

these related efforts allows the researcher to avoid duplication of work.

Although 'concept formation' in machine learning offers some new insights to the clustering

problem, there is certainly information to be gained from other clustering methods. Machine learn­

ing can gain simply by-realizing the scope and variety of existing clustering methods. Too often,

the researcher in concept formation proceeds without any awareness of other potential solutions.

This can mean that the researcher may not apply an existing solution to a particular clustering

problem, or worse yet, he may present 'new research' that is identical or very close to an older

solution to the same problem.

At the same time, machine learning certainly offers a new perspective for clustering methods.

The biases it brings from cognitive psychology can be useful if applied to traditional cluster analysis

21

References

Aldenderfer, M. and Blashfield, R. (1984). Cluster analysis. Beverly Hills: Sage Publications.

Anderberg, M. (1973). Cluster analysis for applications. New York: Academic Press.

Anderson, J. R. (1988). The place of cognitive architectures in a rational analysis. Proceedings of
the Tenth Annual Cognitive Science Conference (pp 1-10). Montreal, CA:Lawrence Erlbaum.

Anderson, J. R. (in press). The place of rational analysis in a cognitive architecture. In K.Van
Lehn (Ed.), Architectures for intelligence. Hillsdale, NJ: Lawrence Erlbaum.

Barsalou, L. (1987). The instability of graded structure: implications for the nature of concepts.
In U. Neisser (Ed.), Concepts and conceptual development: Ecological and intellectual factors
in categorization. New York: Cambridge University Press.

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., & Freeman, D. (1988). Autoclass: A
Bayesian classification system. Proceedings of the Fifth International Conference on Machine
Learning (pp 54-64). Ann Arbor, MI: Morgan Kaufmann.

Corter, J., Gluck, M., & Bower, G. (1988). Basic levels in hierarchically structured categories.
Proceedings of the Tenth Annual Cognitive Science Conference (pp 118-124). Montreal,
CA:Lawrence Erlbaum.

Duda, R. & Hart, P. (1973). Pattern classification and scene analysis. New York: John Wiley and
Sons.

Everitt, B. (1979). Unresolved problems in cluster analysis. Biometrics, 35, 169-181.

Everitt, B. (1980). Cluster analysis. London: Heinemann Educational.

Feigenbaum, E. A. (1963). The simulation of verbal learning behavior. In E. A. Feigenbaum & J.

Feldman (Eds.), Computers and thought. New York: McGraw-Hill.

Fisher, D. (1984). A hierarchical conceptual clustering algorithm (Technical Report 85-21). Irvine:
University of California, Department of Information and Computer Science.

Fisher, D. (1987a). Knowledge acquisition via incremental conceptual clus.tering. Machine Learn­
ing, 2, 139-172.

Fisher, D. (1987b). Knowledge acquisition via incre1!1ent~l conceptual clustering. Doctoral disser­
tation, Department of Information & Computer Science, University of California, Irvine.

Fisher, D., & Langley,~., (1986). Methods of conceptual clustering and their relation to numerical
taxonomy. In W. Gale (Ed.), Artificial intelligence and statistics. Reading MA: Addison

Wesley.

Fried, L. S., & Holyoak, K. J. (1984). Induction of category distributions: A framework for classi­
fication learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10,
234-257.

Gennari, J. H., Langley, P., & Fisher, D. (1989). Models of incremental concept formation. Arti­
ficial Intelligence, 40, 11-61.

23

