UC Berkeley
Working Papers

Title
Ultrasonic Ranging Control Board Documentation

Permalink
https://escholarship.org/uc/item/5659448j

Authors

Chen, Jennie
Foreman, Bret
Mostov, Kirill

Publication Date
1994-06-01

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5659448j
https://escholarship.org
http://www.cdlib.org/

This paper has been mechanically scanned. Some
errors may have been inadvertently introduced.

CALIFORNIAPATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Ultrasonic Ranging Control Board
Documentation

Jennie Chen
Bret Foreman
Kirill Mostov

California PATH Working Paper
UCB-ITS-PWP-94-09

This work was performed as part of the CaliforniaPATH Program of
the University of California, in cooperation with the State of California
Business, Transportation,and Housing Agency, Department of Trans-
portation; and the United States Department Transportation, Federal
Highway Administration.

The contents of this report reflect the views of the authors who are
responsible for the facts and the accuracy of the data presented herein.
The contents do not necessarily reflect the official views or policies of
the State of California. This report does not constitute a standard,
specification, or regulation.

June 1994
Revised July 1994

ISSN 1055-1417

TABLE OF CONTENTS

Abstract
10 Introduction
2.0 System Overview
2.1 Modes of Operation
2.2 Window Mode
3.0 Hardware Documentation
3.1 Summary of Signal Names
3.1.1 PC Interface Signals
3.1.2 Address Decode Signals
3.1.3 Sonar Related Signals
3.2 Functional Block Diagram
3.2.1 PC Interface
3.2.2 Address Decode for Control Registers and Counters
3.2.3 Return Echo Processing and Xducer Control
3.2.4 Xducer Counters
3.2.5 Master Timer and Window Control Counters
3.2.6 Control Signal Latches and Readback 3-state Buffers
3.2.7 Crystal and Div. 10
3.2.8 IRQ7 Generator
3.3 Paddle Board
4.0 Software Documentation
4.1 Theory of Operation
4.1.1 Ping
4.1.2 Phased Array Ping
4.1.3 Calibrate
4.1.4 Diagnostic
4.1.5 Interrupts
4.2 Operation with a Real Time Operating System
5.0 Ultrasonic Transducer Modifications
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E

MOOQOWP ROROMNNNN R B R B e e
—— P, PP O0OO0OO0CO MmO~ o U U

Ultrasonic Ranging Control Board Documentation

Jennie Chen,
Bret Foreman

Abstract

This document specifies the theory of operation of version B of the PATH
ultrasonic range control board for the IBM PC. Two modes are discussed in detail.
The first is the ping mode, which uses a single transducer both to send an
ultrasonic pulse and receive its echo. The second, called the phased-array mode,
uses a single transducer to send the pulse and two other transducers to receive
echoes and perform path-length matching in order to reduce the effects of muiti-
path echoes. Both the hardware and the software used to perform these functions
are examined.

1. Introduction

Current work on PATH uses radar to perform distance measurements between
cars in a platoon. However, using many radars in a limited area can result in
interference and radar also has problems measuring distance accurately when targets
have a small relative velocity.

Ultrasonic sonar avoids these two problems and is highly accurate in shortto
medium range (up to 10m) applications. An experimental board has been designed and
built to run various tests to determine the performance of ultrasonics in a platoon
situation. Test results are reported in Appendix A.

2. System Overview

The ultrasonic control board is an IBM-PC add-in board, part number PATH-001.
It is designed to manipulate up to four Polaroid ultrasonic ranging boards from the
Polaroid OEM kit, part number 606783 (1). Each Polaroid board can be used as an
independent ranging system or, with the addition of special receiver-transducers, one
Polaroid board can be a transmitter and the rest can be receivers in a phased array
system. A small paddle board is attached to the Polaroid ranging board to buffer
signals over the long cable lengths necessary between the computer and the bumper
of a car. Figure 1 shows a system level block diagram.

Figure 1 - System Level Block Diagram

ingBoard |

- Paddie Polaroid
Board Ranging Board
Part #615077
Paddle Polaroid
Board Rangin,
Part #615077
][,,
i PATH
i Ultrasonic | [
Board
]
E%ﬂe Po[aroigmp‘l
Part #615077
Paddle Polaroid
L—— Board Ranging Board
Part #615077

)

Polaroid Ultrasonic

Transducer Part #604142

)

—
Polaroid Ultrasonic
Transducer Pmt#604142

—

)

-

Polaroid Ultrasonic
Transducer Part #604142

)

v

Polaroid Ultrasonic
Transducer Part #604142

2.1. Modes of Operation

There are two modes of ranging: ping and phased-array. Ping mode is the simpler
of the two. It uses one transducer to send out an ultrasonic pulse of sound, or chirp.
Then it uses the same transducer to detect the first echo that comes back. The time
elay between the chirp and the echo (time-of-flight) is used to compute the distance to
the object that returned the echo. The distance is simply the time-of-flight divided by 2
and multipied by the speed of sound. (The speed of sound in air is 330mvs.)

The system is designed to report only the first echo returned. Subsequent echoes
are ignored. A single transducer system may receive an early echo from an off-axis
target. To eliminate this incorrect early echo, a multiple or phased array transducer
system may be used. If all echoes received at all receivers are required to be
simultaneous, then off-axis echoes will be ignored. This occurs because the path
length from the target to each receiver must be the same. We assume the receivers are
positioned equidistantfrom the transmitter.

2.2. Window Mode

Both the ping and phased-array modes may take advantage of the window
mode. In the window mode, the master timer is started by a ping and stopped by the
detection of an echo. If an echo is detected within a given time frame, the master timer
records the echo's time-of-flight and from that time a distance is computed (based on
the speed of sound). If an echo is not detected, the master timer is reset to zero.

3. Hardware Documentation

3.1. Summary of Signal Names
(Note: a '/ after a name indicates a signal is active low)

3.1.1 PC Interface Signals

Name Function

DATAI0..7] Databus lines O through 7
ADDR]J0..19] Address lines 0 through 19
IOR/ I/O card read enable.
BIOR/ Buffered version of IOR/
I0W/ I/O card write enable.
BIOW/ Buffered version of IOW/
AEN DMA status
PWRUP_RST power-up reset signal from the PC
PC CLK clock from the PC

IRQ7 interrupt line 7

VCC +5V power

GND ground

3.1.2 Address Decode Signals

Name Function

IODECODE active high when ADDR([6..19] match board's
address

IODECODE/ active low version of IODECODE

DLY_IO IODECODE delayed by 100ns The DLY_IO

signal is necessary to match the PC-bus's timing
to the 8254 counter's timing.

READI0..1¥/ read enable of xducer module counters 0 and 1

WRITETO0..1V/ write enable of xducer module counters 0 and 1

RD MSTR/ read enable of master counter

WR MSTR/ write enable of master counter

| RD_REG][0..2)/_|_read enable of control registers O through 2
WR REGI0..2)/| write enable of control registers 0 through 2

3.1.3 Sonar Related Signals

Name Function

FASTCLK 1 MHz clock
SLOWCLK 100 kHz clock
ENABLE_INT enable interrupt mode
EN_CHRP[0..3] enable chirp
EN_ECHOI0..3] enable echo receive
CHRP_INH[0..3) chirp inhibit

CHRP_INH_RBJ0..3]

chirp inhibit readback from paddle board

STARTI0..3] begin countdown to chirp

INIT]0..3] chirp when active

BILNK]O0..3] reset echo latch on paddle board
ECHOJ0..3] echo received from paddle board

GO active during entire measurement cycle
RETURN active when valid echo is returned
ZERO_CNT active when master counter times out
WNDW_MODE active when in window mode
WINDOW active when window is open

3.2. Functional Block Diagram

Figure 2 illustrates the major functional blocks and their related signals. The

modules are described on the following page.

S —— - < DATAD-7 >
4{8
1.DIR —
YATA BUS 3 RD_REGO-
DataBus * _
DATAO-7 JUFFER ——Jmm’%—b ﬁ/——»
CONTROL 13 READBACK
SIGNAL __74__» TRISTATE | 3]
LATCHES BUFFERS
R ENABLE M <
». . ADDR :
AD' s Dl Ro.?]“' |z - lgr[;l:zol}‘ | ADDRO-4__y, A \
READO.1/ 4 N
18 ADDRESS RD_MSTR/ 3
- DECODE WRITED- 1/
e FOR WR_MSTR/
i |___JODECO RROISTRRS | RGO 24 "
D WR_REGH)-
2 omiy| coutrms =
rC pir g I JECODE |IODECODE/
INTERFACE HEADER 1 BIOW/y, 2
et = ZERO_ CNT é
i e
| MS DELAY| DLY 10 2)
‘ SLOWCLK. e E
RD_MSTR/ ,
: BIOR/ 9 WR_MSTR/ MASTER TIMER
] BIWW/ 74_ADDRL WINDOW CONTROL | WINDOW 3, E
PWRUP_RST WNDM_MO| COUNTERS
10R/ 7 BPC_CIK RETURN (]
10W/ SIGNAL qgo ,(:
SMEMR/ BUFFER | B JODBCODR e
SMEMW/ (SMEMR/ & SMEMW/
AEN | ARENOTUSED)
WRUP_RST
PC_CLK
DATAQ 11 4 g
ENABLE_INT 474
PWRUP_RST
RQ? RETURN EN_CHIRPO-3 1 | XDUCHER
IRQ7 g IRQT > EN_ECHO0-3 RETURN ECHO COUNTERS
CHENERATOR PASTCLK PROCESSING ADDR1
WINDOW & JODBCO! 3
GO XDUCER CONTROL FASTCLK
L (4 BLOCKS)
] | RETURNp, 4
4 Y
vee | Voo | PASTCLX(1MBZ) 3 RANGING
RYSTAL 4 BOARD
& CONNECTOR
. V. 10
GND | SLOWCLK(100KHZ) _j
- | US_B BLOCK DIAGRAM __ DOCUMENT #: PATH-004 _]_ ¢
- GET 1 OR 1 voC©

WweJBer 209 [euonaund - ainbi4

3.2.1. PC Interface

The IBM-PC bus has a 20-bit address space for /O devices. It is commonly
divided into 32 byte sections for each /O device. For that reason, the top 15 bits are
compared against a set of jumpers on the ultrasonic board and this address comparison
determines which 32 byte segment is used to address the board.

3.2.2. Address Decode for Control Registers & Counters

When the top 15address bits match then the IODECODE signal is asserted. The
bottom 5 address bits determine which of the 32 bytes in the segment will be
addressed. This enables the demultiplexers that demux the bottom 5 bits. Fart of the
demux happens inside the 8254 counter chips - they take two (LSB) bits of addressing
each.

The following table shows the binary and hex addresses corresponding to the
various components:

Binary Hex | Component

XDUCER COUNTER 1

0 0000 00 | STARTOQ delay counter

00001 01 | START! delay counter

00010 02 | START2delay counter

00011 03 | STARTY0..2] counters' control word

XDUCER COUNTER 2

0 0100 | 04 | START3delav counter

0 0101 | 05 |PULSE-MATCH window counter

00110 06 | unused counter

0011D 07 | control word for START3 and
PULSE-MATCH counters

CONTROL REGISTERS

10000 10 | control register 1

10001 11 | control register 2

10010 12 | control register 3

MASTER TIMER |

10100 [14 | master counter

1 0101 15 | close window counter

10110 16 | open window counter

[10111 | 17 | master timer control byte

3.2.3. Return Echo Processing & Xducer Control

Bits and registers set by software:
Note that these steps can be done in any order.

Step 1: EN_CHRPI[0-3] is asserted to enable transmission.

Step2: EN_ECHOI0..3] is asserted to enable reception.

Step 3: Window times are programmed into the open window and close window
counters. Each count is 10uS or about 1.6 mm of distance at the speed of sound. If no
specific window is desired then the WNDW_MODE bit may be asserted and then de-
asserted. This will open the window and prevent it from ever closing.

Step 4: Load initial count into master timer. The master timer counts down in 10uS
steps. The initial count determines the timeout because the timeout is defined as a zero
count. Multiply the initial count by 10uS to find the actual timeout time.

Step 5: Load the delay counter values. These values are used to delay a chirpin 1 uS
steps. This feature is not currently used - all the counters are loaded with a count of 1.
In the future this feature may be used to create a stearable beam.

Step 6: Load pulse match counter. This value determines how close two echos must
be to be considered simultaneous. One count of this counter is 10uS. A typical value
for this counter might be 500 to match echoes to 0.5 mS. That corresponds to about
16 cm distance. If only one transducer is being used (ping mode), then this counter
can be set to any non-zero value.

Signal Timing Diagram For Transducer O Ping

Name
Go ° AN
STARTO __/° S13
INITO K2t ss S5\

T3 }
WINDOW = 758 ST2\
ECHOO Kzl ss \sis
BLNKO @/ST \su
PRC_ECHOO et /57 \sto
RETURN s |

Signal Timing Diagram for Phased Array

Name

GO /s

N

STARTO ﬁj/q

S13

STARTI *_@s—

S1I3

STARTzh_vl/@
INITO }‘ﬁ’ /S3 515

S13

INIT1 ’*TT’ /3 515

INIT?2 FTI»: S3 SIS\

EN CHRPI __/

EN_ECHOO __~

EN ECHO2 __/

ECHOO s sk

ECHQO2 T7>/55 %m

WINDOW

BLNKO fer] \su
BLNK?2 s /56 \s11

Signal Timing Diagram for Phased Array
Name

PRC_ECHO0 % \s1o0
PRC_ECHO2 <5 \sio

MATCHO T 5\ sis

MATCH? s s

PULSE, MATCH Ly N
RETURN s —

11

Signal Timing Diagram for Full Duplex Ping
Name

GO /=i N
STARTOTa)/s: SII___
STARTI /5 "\
INITO t‘ﬁ/“’ B\

N T >\

EN CHRPO __/

EN_ECHO!I __/

ECHOI TS\

WINDOW WV};‘ - jj\—
BLNKO T\

BLNK]1 TS\
PRC_ECHO1 Rt

MATCH] AU
PULSE_MATCH F‘rﬂm
RETURN—__)‘Tﬂ/ SR 9V

12

Transition (Sn)| Explanation |
or Time(Tn)
TO Gate delay of U21A
S2 STARTO asserted if EN-CHRPO bit is set
T1 Delay timer count ™ 1uS
S1 GO signal asserted by CPU
s3 INITO asserted at end of delay count
T2 Window open count * 10u$S
A Window opens
T3 (window close count - window open count) * 10uS
S5 Echo signal from transducer
T4 Time of flight of signal = distance/ speed of sound
S6 BLNK signal asserted on next (1 uS) clock tick to
reset latch on analog board
15 1 uS clock tick
s/ PRC_ECHOOQ asserted if EN—ECHOQOO bit is set
T6 Gate delay of U23C
S8 RETURN asserted if PULSE-MATCH and GO
are true
T7 Gate delays
i S9 RETURN de-asserted by S14 (GO 3learing U26A .
| S10 | PRC_ECHOO de-asserted |
Si1 BLNKOde-asserted
s12 WINDOW de-asserted
S13 STARTO de-asserted
S14 INITO de-asserted
S15 ECHOOde-asserted

Each transducer is configured to be either a transmitter, a receiver or both, by
activating the EN_CHRP[0..3] and/or EN_ECHOJ0..3] signalsrespectively. When an
echo is detected, ECHO[0..3] becomes active. In both ping and phased-array mode,
ECHO([0..3] is valid only if WINDOW and RETURN are active. In ping mode, only
one echo is received while in phased-array mode, two or more echoes are received
(depending on the number of receivers). In phased-array mode, if WINDOW is active,
the first echo received activates the count-down counter. RETURN is activated only if
a second echo is received before the counter counts down to zero. In phased-array
mode, after an echo is detected, the echo latch on the Polaroid board is not reset until
another echo is detected within the given time frame or until the count-down counter
reaches zero. This results in PULSE-MATCW resetting the echo latch on the
Polaroid board, enabling the receiver to detect more echoes.

13

3.2.4. Xducer Counters

These counters take START[0..3] and delay them to produce INIT[0..3] which
are used to activate the chirps on the Polaroid ranging boards. The Intel 8254 timer
chips (2) used to implement the counter functions can be programmed with any
delay time.

3.2.5. Master Timer & Window Control Counters

This module also uses the Intel 8254 timer (2) to implement three
programmable counters. One measures the delay time between a chirp and a valid
echo. It is configured in an event-counting mode and counts down from a user
specified number until it reaches zero. If the counter reaches zero, the signal
ZERO-CNT goes active to indicate atimeout. A timeout means that no valid echo
has been detected during the measurement cycle.

The other two counters control the window. One controls the delay from when
GO is active to when the window is opened (WINDOW active). The other controls the
delay from when GO is active to when the window is closed.

3.2.6. Control Signal Latches and Readback 3-state Buffers

There are 3 pairs of control registers and buffers. The user writes into the
registers to control EN_ECHO[0..3], EN_CHRP[0..3], CHRP_INH]O0..3], GO,
WNDW-MODE, and ENABLE-INT. The registers' outputs are always enabled so
the board functions the way the user specifies, making it necessary to put tri-state
buffers between the registers and the data bus.

Not all of the signals written to the registers can be read back. Instead, some of
the read back bits have been changed so it is possible to check the status of
ZERO-CNT, RETURN, and CHRP_INH_RB[0..3]. CHRP_INH_RB is a way to
check for the existence of a Polaroid ranging board. These signals are the same as
CHRP-INH, except they are routed through the paddle board before being read back.
Thus, one can check for the existence of a Polaroid board by writing a value to
CHRP-INH and making sure that CHRP_INH_RB matches.

Control register 1 contains EN_CHRP[0..3] and EN_ECHOI[O0..3].
Control register 2 contains the WNDW-MODE, GO, ZERO-CNT, RETURN,
CHRP_INH_RB[0..3], and CHRP_INHIO0..3] signals. Control register 3 is used only
for the ENABLE-INT signal.

14

3.2.7. Crystal & Div. 10

This module provides the clocks for the entire ultrasonic board. The
FASTCLK is 1 MHz clock signal provided by a crystal oscillator. This is passed
through a decade counter to divide it by 10 to produce a 100 kHz clock called
SLOWCLK.

3.2.8. IROQ7 Generator

In order to work with a real-time operating system, the PATH ultrasonic board
supports IBM-PC hardware interrupts. The IBM-PC hardware interrupt line is
edge-triggered and is active low. To generate an interrupt, the line must be pulsed
low. Both the rising and falling edges are required to produce a valid interrupt.
When the IBM-PC detects the hardware interrupt, it calls an interrupt service routine
pointed to by the appropriate interrupt vector.

This module generates an interrupt on hardware interrupt line 7 whenever
ZERO-CNT or RETURN become active to avoid having to poll the board
continuously. Additional logic disables the interrupt generation during a power-up or
a reboot of the PC. A jumper allows the user to disable the board's interrupt
function.

3.3. Paddle Board

The paddle board buffers signals between the Polaroid ranging board and the
PATH ultrasonic board. The long cable lengths between the boards make the buffering
necessary. All of the active high signals are inverted before being sent over the
cable. This will prevent false signals from appearing if no cable is connected.

The paddle board also taps the raw analog echo signal directly from the
Polaroid ranging board, buffers it with an op-amp, and returns it to a test point on the
PATH ultrasonic board. Further work can use DSP techniques to make use of the
additional information contained in this signal to perform Doppler shift
measurements to calculate speed. A full schematic of the paddle board is in Appendix
B.

15

4. Software Documentation

The ultrasonic board software takes advantage of C++ object oriented
programming and creates objects corresponding to various functional blocks on the
actual board.

The objects and a short description are as follows:
1. Board: board level object that defines the base address and the
various counters and registers on the board
2. Xducer: atransducer object defines its address and its various control
registers.
3. Counter: a counter object defines its address, the actual 8254 chip it
belongs to, and its control word.

The software is split up into modules corresponding to the different objects.
Each module has its own source code and header files. In addition to these modules,
there are also modules for global variables, functions, and type definitions.
Appendix C provides the source code for all of the ultrasonic board software and
includes the following files:

Filename: Description:

board.cpp board level functions

board.h board header file

counter.cpp counter functions

counter.h counter header file

xducer.cpp xducer functions

xducer.h xducer header file

global.cpp global variables and functions
global.h global header file

types.h global type definitions

usb.lib the previous files compiled to form a library
us.h header file used with us_b.lib
main.cpp ultrasonic board main function
main.h theory of operation

Each object is heirarchical. For example, the board object calls its Ping
function which is supposed to measure a distance. The Ping function accesses a
Xducer object function that produces a chirp. The chirp function accesses a
Counter object to delay the chirp and so on. Each object gets closer to the low level
commands that directly manipulate the ultrasonic board hardware. Each object also
includes various methods to control the operation of the hardware or to perform
certain functions.

16

In the latest version of the software, one Board object is declared and named
theBoard. This board object contains 4 counter objects and 4 Xducer objects. Each
Xducer object contains one Counter object -- making a total of 8 Counters on the
board. But because of the object oriented nature of the program, the Xducer's
counter is isolated from the rest of theBoard's functions.

The heirarchy appears as follows:

Board theBoard
Counter masterClock
Counter openwindow
Counter closeWindow
Counter pulseMatch
Xducer{0..3]

Counter chirp

4.1. Theory of Operation

The program is designed to operate from the DOS command line. The user must
provide a parameter to tell the program which function to perform. If a parameter is
not received, the program displays a list of valid parameters.

Available options

p [0-3] Ping -- measures raw distance with specified transducer
1[0-3] Loop -- continuous Ping until key pressed

c Calibrate -- calibrate one transducer

m Measure -- measures calibrated distance

f [0-3] [0-3) Full Duplex Ping -- measures distance with two transducers
ap Phased Array Ping -- does path matched ping

ac Phased Array Calibrate -- calibrate array

am Phased Array Measure -- measures calibrated distance

d Diagnostic -- perform an extensive hardware test

g Log Data -- logs data to disk. Hit any key to toggle

pause and hit "X'to exit
Do /O loop
Testing -- ensure window count working correctly

N =

The first action taken by the program is the declaration of a Board object called
theBoard. During this procedure, all of the lower level objects are declared and all of
the objects are soft initialized by their respective Softlnit function. The soft
initialization sets up all the addresses for the hardware corresponding to the
software object. The address of the actual board must be the same in hardware as

17

well as in the software. All of the offsets of the various components of the board are
already stored in lookup tables in the file called GLOBAL.CPP (3). This procedure
Is automatically performed any time a Board is declared.

Next, all of the hardware must be initialized. The counters need modes and
starting counts, the control registers need to be reset, and so on. This is accomplished
with the HardlInit function (3). This needs to be run once before the first time a
distance measurementis taken.

Currently, the master counter is initialized to 18200. This number counting
down at 100 kHz will timeout after 0.182 seconds which corresponds to about 100
feet of maximum distance. Since the maximum reliable distance measurement is
approximately 35 feet, this timeout is acceptable. The counter to open the
window is set to 250, or 2.5ms, and the window closes after the maximum count of
18200.

The other xducer counters are initialized to the minimum delay time of 1
countat 1MHz, or lus. After initializing the board and using the lookup tables
to set up the addressesfor the objects, the different options are ready to be carried
out.

4.1.1. Ping

Ping sets a single transducer to chirp and to receive echoes by writing the
correct values to the EN-CHRP, EN-ECHO, and CHRP—-INH signals. Then, it sets
the Go signal active to begin the chirp. It also opens the window after a short delay
to keep from considering the chirp as an echo. Once the chirp is finished, the
program polls one of the control registers. Two bits of this register are important.
One goes active when an echo is returned. The other goes active when the device
times out. If the time-out occurs, then the program displays a time-out message and
ends. If the echo return is detected then the Go signal, the transducer, and the
window are disabled and the function calculates the distance using the speed of sound
and the delay time between the chirp and the echo. Then, it resets the board by
calling the initialization function.

4.1.2. Phased Array Ping

This operates basically the same as the normal Ping function because the
actual path matching is implemented on the board itself. However, instead of using
just one transducer, this function uses three -- one to chirp and two to receive
echoes. Since the path length matching is implemented in hardware, the rest of the
function operates similar to the Ping function. The main difference is that this
function has more control bits to set because of the greater number of transducers
used.

18

The path length matching is simple. As soon as one echo is received, a short
window is opened. The other transducer's echo signal must occur while this
window is open for an echo to be considered valid. If it does not, then the window
and echo latch on the Polaroid board are reset and the board waits for the next echo
(See Figure 3).

Figure 3: Phased-Array Path Length Matching

Receiverl
Transmitter Target Target On-Axis
X=Y
Receiver2
Receiverl i 4 X Target T Off-Axis
| g K=y
-
Transmitter
- Y
Receiver2
-

19

4.1.3. Calibrate

This option calibrates a transducer assuming a linear error. It takes two
distance measurements using the Ping function. (NOTE: The user must input the
actual distance measured.) Then the program calculates the gain and the offset of the
transducer and stores the values in a file. Filenames for the transducers are of the
form "bat#.cal", where the # is the transducer number. Each transducer has its own
file. The XDUCER.H source code containsthe definition for the filename. The
file for the phased array is called “phased.cal” and is defined in BOARD.H (3).

The Measure option uses this data along with the Ping function to calculate the
actual distance.

4.1.4. Diagnostic

This function tests all of the hardware on the board. It writes 0x0 to all of the
control registers and then reads from them. If the values in the control registers are
not 0x0, then the component is not operating correctly and an error is reported.

Because of the hardware, it is impossible to test each counter to see if it
counts just using software. However, the program does read/write tests of all the
counters and reports any errors.

Finally, a test Ping using the center transducer and a full Phased Array Ping are
performed.

4.1.5 Interrupts

When the system powers up, interrupts are disabled. Interrupts are generated by
the software after each ping. Because the interrupt line is shared by other hardware, if
another piece of hardware is using the interrupt line, the sonar generated interrupt is
delayed until the interrupt line is available.

4.2. Operation with a Real Time Operating Svstem

Currently, the software still polls the board to see when an echo is received.
This will be changed to work with an interrupt when a final real-time operating
system is selected.

20

5. Ultrasonic Transducer Modifications

Objective:

In order to increase system’s range and minimize reflections of the ultrasonic waves from dust particles in the air,
suggested technique is to reduce the chirp frequency. It is known that the propagation in air is better at lower
frequencies (going from 50 to 25 kHz cuts the attenuation by approx. 15dB). However, since the peak of “Polaroid”
transducer performance is at 50 kHz, it is necessary to increase its effectiveaperture to reach the same performance at
lower frequencies. Using four transducers, positioned next to each other, allows to shift the peak performance down
to 25kHz. Also four transmitting transducers produce a more powerful chirp. This modification theoretically results
in increasing the distance of reliable ranging.

Ranging Circuit Board with four transducers (revised schematics)

Digital Section Il (Clock)

4) Gain, BW
___Control 4
.
Processed GENERAL
Echo Analog VEHICLE
Receive » CONTROL
A Circuit SYSTEM
Power
Interface Echo
Circuit

Transmitted |
Pulse

Reflected :
Echo

21

Ultrasonic Transducer Experiments

Experiment I:

Objective:
To characterize transducer performance as a function of transmitting frequency.

Apparatus:
1 Polaroid Piezo Transducer (Part No. 618906-618907) for receiver
1 Polaroid Electrostatic Transducer (Part NO. 604142) for transmitter

Procedure:
Two sets of measurements were taken with transmitter and receiver separated by two meters and

ten meters.

Attenuation of signal received was measured at transmitting frequencies ranging between 25 and
60 kHz, at 5 kHz increments. (See attached graphs for transfer characteristic)

Explanation:

In order to detect and monitor transmitted and received signals, it was necessary to send signals
at a duty cycle higher than the Polaroid circuits allow (originally, less than one percent). Thus,
two new circuits were designed and built to support the transmitter and receiver at this higher
duty cycle. (See Figure 1and Figure 2 for schematics) Since the electrostatic transducers designed
by Polaroid can transmit as well as receive, it is suggested that a DC bias voltage of 150 volts
is used. However, since we only used the transducer to receive, this condition was ignored. The
suggested AC driving voltage of 400 volts peak-to-peak was not attained for the full range of
the frequencies due to limitations of the power supply and transistor. Therefore, one set of
measurements was taken at 225 volts peak-to-peak (over entire range of frequencies) and another
set at 400 volts peak-to-peak (up to 40 kHz).

Conclusions:

Although we were unable to attain a 400 volts peak-to-peak for the entire range of transmitting
frequencies, the data collected indicates that the performance peak is at 50kHz. This agrees with
the characterisitcs of the transducers provided by Polaroid.

22

Experiment 11:

Objective:
To shift the peak performance of the transmitting and receiving transducers from a higher fre-
quency (50kHz) to a lower frequency (20-25kHz) by doubling the effective aperature.

Apparatus:
4 Polaroid Piezo Transducer (Part No. 618906-618907) for receiver
4 Polaroid Electrostatic Transducer (Part NO. 604142) for transmitter

Procedure:
Use four transducers mounted side by side as one transmitter or receiver.

Characterize this new configuration’s attenuation of signal received versus transmitting frequency
and identify the new peak of performance.

Explanation:

With four transducers on the transmitting side, the total impedance is reduced by a factor of four
because the transducers are in parallel. To account for this lower impedance, the transmitting
circuit used in Experiment | was modidifed. The main transistor was replaced by two power
transistors and the inductive kick protection diode was replaced by a set of parallel power diodes.
In addition, a larger power supply was used. Even with these modifications, we were unable to
achieve reasonable voltages on the transmitters (only 135 volts peak-to-peak at 25kHz before
components burned up). The problem is that increasing the power supply voltage does not
increase the output voltage, but we are unclear why this occurs. Initially, we suspected that a
phase shift was introduced by the reactive elements in the circuit, but after more experiments,
we disproved this theory. Another theory which has not been explored is that the transformer is
limiting the current attainable at each transmitting frequency.

Conclusions:
Changes to the existing circuit must be made in order to attain reasonable peak-to-peak voltages.

23

Appendix A:

The following graphs contain data collected in August 1993 on the California
Highway Patrol’s test track in Sacramento, California. One set of graphs consist of
the raw data while the other set of graphs consist of the filtered data. Software was
written to filter and to format the data into an appropriate form for XGraph. The raw
data is filtered to eliminate noise and to determine how to improve the performance of
the ultrasonic sensor.

The data is filtered using the following steps:

(1) Take the average distance of the first ten data points and use the average to
represent the starting point. This is done to account for the initial time needed to
accelerate up to the designated velocity.

(2) For all other data points, compare it to the last valid data point and determine the
acceleration or deceleration. If the acceleration or decelerationis less than
16ft/sec”2 then the current data point is valid. Otherwise, it is invalid and
ignored. (Itis reasonable to assume the maximum acceleration or deceleration of
acar is 16ft/sec”2.)

(3) Repeat step 2 until there is no more data.

From the data collected, it appears that there is not enough gain in the circuitry of the

receiving transducer to detect the reflection. Currently, the system is being
redesigned to improve the power and sensitivity of the receiving circuit.

Al

Distance (feet)

anann |

75.00

Raw Data: Run#1 30mph

array 1

70.00

|

65.00 -

1
i

60.00 -

55.00

50.00

45.00

40.00

35.00

30.00

25.00 -

20.00 i

15.00 -

10.00 -

5.00 -

0.00 -

102.85

102.90

102.95

A2

103.00

Raw Data: Run#2 40mph

Distance (feet)

90.00 ’ —m— | array2
85.00 ————— ﬂ--n+- —t |

80.00
75.00 {

70.00

65.00
60.00
55.00 |
50.00 '
45.00

40.00 L
35.00 —— i
30.00
25.00 I S—
20.00 E
15.00 - va \ ,
10.00 ,

5.00 \

0.00

! ! ! Timex 103
103.35 103.40 103.45 1083.50

A3

Raw Data: Run#3 4mph

Distance (feet)

array3

90.00
85.00
80.00
75.00
70.00
65.00
60.00
55.00
50.00
45.00 +
40.00
35.00

30.00 —- AN |

200 — (A

20.00 —" .:
15.00 —HHiH 3 \\ :

10.00 ~J

5.00 3 ™~

0.00

“ Time x 10°
104.35 104.36 104.37 104.38 104.39 104.40 104.41

Ad

Distance (feet)

90.00
85.00
80.00
75.00
70.00
65.00
60.00
55.00
50.00
45.00
40.00
35.00
30.00
25.00
20.00
15.00
10.00

5.00

0.00

Raw Data: Run#4 60mph

104.84 104.84

A5

104.85

#
I **
| /
AL S .
| Rl
Vil N\ I\
f\ | A
U HLRYUE
Il |
| " Time x 103

104.85

Raw Data: Run#5 70mph
Distance (feet) _
80.00 ArTay>

75.00 q

70.00
65.00

60.00

55.00

50.00

S RN SN R R |
\

45.00

e

40.00 — (' <

35.00 — \ ; 7

—

30.00

I
L

|
!
i
i
;
25.00 — ; “ ’ //
i

2000 —] I
i

15.00
10.00 V 4}1 g1
d

5.00

0.00

, i | Time x 103
105.50 10551 105.52 105.52 105.53

A6

Raw Data: Run#6 80mph

Distance (feet)
85.00

array6
80.00

75.00 —

70.00 ‘ '-E —_—

65.00 - T——

60.00 | T ——

55.00 J ——
|

50.00 f :
45.00 vr

|

!

I

|

|

|

?

40.00

35.00

30.00

+

25.00

i T
20.00 . ‘ g '
15.00 ’ A \ //\/ M J/)

| / l
10.00 f > /, \ VU)

5.00

0.00
smuwv A LY

|
105.84 1VJ,04 103.8) 105,85

A7

Raw Data: Run#7 35-40mph Target Bumper

Distance (feet)
array’/

90.00
85.00
80.00
75.00)
70.00
65.00
60.00 I
55.00
50.00

45.00
40.00 [
35.00 {

30.00 W

25.00 —fi— z .

20.00 —4H H

15.00 —4 Hih

10.00 HIEH

5.00 - HIEHH

0.00 \ | - , , Ty 107

i
1{0.02 110.04 111).06 110.08 110.10 110.12 110.14

A8

Filtered Data: Run#1 30mph

Distance (feet)

80.00 array1.ftr

75.00

70.00

65.00

60.00

55.00 |

50.00

45.00

\
40.00
|

35.00

30.00

25.00

200 |~ Vava=y /J\ AN

15.00 === \J

10.00

Time
0.00 20.00 40.00 60.00 80.00 100.00

A9

Distance (feet)

60.00

55.00

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

Filtered Data: Run#2 40mph

0.00 ——

- J
L A AL/ __
S Al
— |
0.00 20.00 40.00 60.00 80.00 100.00

A10

array2.for

Time

Distance (feet)

90.00

Filtered Data: Run#3 54mph

85.00 ==

80.00 ==

75.00

70.00

65.00 ==

60.00

55.00

50.00

45.00

40.00

\\7
4

35.00

30.00

N

25.00 ——

20.00 \

15.00

10.00

5.00

0.00

10.00

A1l

15.00

20.00

array3.ftr

Time

Distance (feet)

40.00
38.00
36.00
34.00
32.00
30.00
28.00
26.00
24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00

8.00

6.00

4.00

2.00

0.00

Filtered Data: Run#4 60mph

5.00

10.00

Al12

15.00

array4.ftr

Time

Filtered Data: Run#5 70mph

Distance (feet)
42.00 — —+
40.00 /\
38.00 — / \
36.00 — / / X
3400 — / 7
32.00 /

|

\
30.00 \ ,
28.00 1 A
26.00 \

[\
\)|

22.00 . av \

arrayS.fr

20.00

18.00

16.00

14.00

Time
0.00 5.00 10.00 15.00

A13

Distance (feet)

40.00

Filtered Data: Run#6 80mph

39.00 —>

38.00

37.00

36.00

35.00

34.00

33.00

32.00

3100
30.00

29.00

28.00

27.00
26.00

25.00

24.00

23.00

22.00

21.00

20.00

19.00

18.00

5.00

10.00

Al4

15.00

array6.ftr

Time

Appendix B:

The following are schematics of the ultrasonic board.

B1

4|

XDUCFR PLOCK
US_R2.SCH

LATCHFS
US_R3.SCH

MASTER COUNTER and CLOCK RLOCK

DECODE BLOCK
US_RASCH USR_B4.SCH
1O BRLOCK
US_B6SCH

ULTRASONIC ROARD

~rm

v21A

EN_CHRPO_|

WINDOW | U2A A
GO 12 i
-CHOD [K) 3 _PRC_FCHOO
EN_ECHO0 2)
741510
741500

EN_CHRP|
START]
G0 —
u2A
EN_ECHO! { 2 1 UDA
3 MATCHE
- 2
h 3 ISR
WINI J128A
go_ 45 12 | pBA
| T b 3 PRC_ECHO!
EN_ECHOI 2
71510
T41.500
.
2 Iy L_BLNKI
Fastax 3 f o
8 ¢ -
TALST4

M’

F
EN_CHRP2 ua v
:j) 3 START PRCECHOO | UISA
GO 2 PRC. FCHOT b] vee
TALSOR FRC_ECHO? 4 RiD R3F
UDA 'RC_FCHOY 3 o
)
741532 U2A El
uzmA 3
WINDOW 1
0 12 | Uz 3
LR ::1), 3 PRC_ECHO? PULSE MATCH 2
EN_EC!
74110 Er bchor 2 a8
741500
2
FASTCLK_ 3
)
71
Fism CDATAlL ——
TAIS74
ul w
DATAC] DATAD
DATA x DA o
AT m crio {9 FASRELK A m Lk {3 FASTCLK —
ATA o @ ——Tm o % oM
EN CHRPO DATAS et ouTe ATAS ot oum)
START3 TATAG 1S FASTCLK ATA 15_FASTCLK
6o N [DAt pod ax 3TA ATA o axiu *
TN i)
ALKNI ADY 2 | pr outl EADI/ ™ oum
5 w rastox WA 1
AT WR O t—r—T2RTS - —a0hke 15— VR CLK2 ¢—j— c
ADIDRO A0 G2 STAl Al 0 A0 61
LIEL oury [TNIZ —ADRRE 7] 4 our2 1L
10DECODE! 3| o IODECODE, 1|
75 <)
L]
HMLSI0 EN_PCHO3 2 vee
ALS60
B
U26A
3 _PULSE MATCH
b -
2
ULTRASONIC BOARD - XDUCER RLOCK
A
T Neaber Teviron
» PATH.001

f —ch\ -J—r,u

dIUE Q4VF

-

IV

oL, I 1

UE

DIVF

41504

U3
DATAG
DATA :)XI)
DATAZ m
DATA] m
JATA4 »
ATAS 1 s
DATAG™ 3 s
DATAT 1

ADbRo—_ 5] WR
AR /] A0

Fo T & Lo L

CiKo
Gn
OouTo
QIXt
Gl
ourt
Clkz
G2

&
[
SLOWCIK
9
T
1 —CZERO cNp >
15
2]
k)
18
3 U
i OPEN
— FRE
— S ax
closk o
SNTAISTIA

TALSOR
41508
WNDW_MODE

Dmd: FAS'ICLKhy 1010 produce

0sC

7415160

mA

vee

9 ___WiNnow
&

ef|
4T0UF

UMD was not connected due © layoot error.
We wired un sinesls and Bower,

ULTRASONIC BOARD - MASTER CNTRCLOCK Rtock

a)l)RI() 4

15 REAIMY
4 READI/

k]

Al

Al

FODECODE 4

54

vee
Reo
fee
. uioA
Usa 3 3
8 o
] Vi BPC_CLK |
6
s [HLSU
| rarsme
Usa
1 ; U
2
2
ULBDA '41.508
BPWR_RST
LS04

-

ULTRASONIC ROARD - DECODE BL.ock

94

RIA RIC RIE RIG RIH RiF RID RIB

X K K 1K K K X I
o . o .
3 = 3 2 = !
i 4 P 4 4 4 4 4
Ul of [=] [&) o [o
i3 (A e 1t DATA —DAIADT)
1A1 i
CDATAT I =RALAL AT LIl 1A Il
TATA ooQ I TRTD 1A% s I DATA
DATA m | Y] 14
m Q1 .
DAT L —rtoiia e LAY 7y
B Qs : a2 m
DATA [N HO 3 5 ATAL
TATAT e g6 g TN FCHOK A a4l) ATAD
m Qg N FC 24 24 [
U2A
1 1
WR_RFGYY_1 l >c 2 i 9 :-f _h—Eam) REG, 9, ;g
EXFEY 741.5244
Ta1.504 741537,
unz st
—RATAR) DATA - —wow pope W m DATx
DATA(m QI i —1 (A2 12
JATAS m THRP 1IN0 : 1A3 17 DATAS
DATA4 m » CIIRP_INHT P_IN [™ Iv" JATA4
DATAT » CHRP_INIT2
"o S (LU
ATAZ —CHRE NI CHRP_INH_RR211 DATA;
HATAL O f = [§ 1 By ALY
DATAD m 8: 9 0 C 3 pyes 23 DATA =
S “REITURN__ h
. ‘ LIURN "~ o DATA
o RD_REGU |
2 i g 2
TS L
741.504 15344
1t
uw o
«wmmRAIARL DAtz 3 I e tusiro ™ " paTA |
nooqQ a1 1a2 2
ATAY — 71— D! ! —UNURFD2 1A3 i LAY
DATA n & ISH 1A4 1v4 2ATA:
DATAI I‘. 3‘ INUSEIM
A ~UNUSHR DATA
DATAL l': g; NUSEDG I g:; ;;; JATA2
LI [\ S ¥ B 2 J — 24 w3 JATA
vea ENABLE_INT by e 3 " TATA
—lo o8 B
WR_RFGY 4
LE RD_REGY ;s
TSI Sk
TaLS4 T
NOTE: ENABLE INT bit riched in LS4 on page
4.
This is bit 0 of byte 2.
The 1574 provides a powerson reset
ULTRASONIC BOARD - | ATCHES
A
ECB Number
B

s
A9 DATA RIT) JATA_BITO 2 I, L] JATAD LDATA0.7)
piol e e— Y 1t 73 i S 1Y g s G 77 T
an [TA7 TATA BITT ATA_BI o o TATAZ
e ATARITY ATA_RT ~ b TATAT
.QIM AS JATARIT4 ATA A B DATAA
-Q,)ﬁ M TA RITS ATA_H! AS BS JATA
‘““ Ald DATA RITE ATA_HTT A6 P M YATAR
;§|)7 A DATA HTT7 ATA_RI A7 R? 1 JATAT
salg | A2 ADDR
.ﬁAll ALY ADDRIR 19 4
sary AR ADDR [
< A ADDR
SAl6 [—
SALS A : : . 741.5245
SAl4 ADDRIT
SAIY 9 AVDRIT
Saz b3S ADDRI]
AT ADURIT yas
oAy AT ADIRS 1R/ ™ 1 18 __miors
SAg ______W_m ADDRE Ll — VNI 21 1a2 w2 |t
sa7 [AH A SPARE s 1 [L uzp
sA6 L AB__ADDRG ST 3 [P 158 mavi 4 VI
P o — 11 1 s— & wovag
Az ATORA oW/ BIOW/ 5 3
Sar AR ADDR —ADDR D] R ADDRG Ty IODECODE 3
sa? | AZ A _ADDR m v ADDRI - b
p A ADDRT DOR_7 ’ ADDR2 -
SAl 2 HR— 284 2¥4
A0 A ATDRD
ony [BT —— 1 d s
1. T —
SMIMRY |~ — e
SMEMW/ o i N W/ - T41.5244
AN -—r—__ -
$3UDC =B — Ve Ve
*WDC O ADDR_3 ADDR3
o :Fg LI —er— t — a2 "2 ADDRY
GND |1ty ™R ——— 1A wy ftf
SVIC b—pr—— O PR I va
o O PWRUP RST BPWRUP RST
s 8™y <l n TR aR
] LD W omE e
1RQS ™9 M va i o =1
mas (38— QT , oo NN P
'50; —@——85" - ;g A 7 ;; 55 b
RFQPI!M?V FWRUP_RST AD! P3
i 5 2y Al n
osc ; ™29 :) ks Ps
ows : ™ TR Ps
DRQI ™ m
DRQ2 P4
DRQ3 f—P1 ™ +d oo oA
DACKU/ ™5 Qi . wazA
DACKY P25 Q2
DACKY T ™I [+3)
REFRESH/ —pray—Q TPIS Qo
1€ [—p———O TPI4 1
BALE |22 O 7Py 6
JocHCHK [—A ™6 Q7
10CHRDY | ™ »
{ -
RMPCIT vee
R RMH) RIGY RIFY RIEY R RICD RBS RS ’at & wd Rog R2F) RZED RID
Add silkscreen text for K QKD IK DKk) K PRPALD KK D KD X)) QKD K uls
1Pt - s ADDR Y 3 | :‘, ab-tel
1
3 D P Kop-l.
5 [ADI P3 UM add extra trace dise to lavout error. We cut i,
; : A by D06 16
9 10 5 ADDR ps
noon : Ps
LI 2 ”
816 3 -
7. A
9 2 S o
pil 2 = [+2]
5 ; kY Ultrasonic Board - IO Block
7 3] P
) » SETS i N ,Re
PATH.001]
HEADFR 30 Q7 [}
N7 additkoeroen e for LSB J-.._: TaLSc84 D =1 ShesEare

Appendix C:

The following is the source code for the ultrasonic software.

1

40

//it**i*tti**ii**i**t***it***Qi**t**t**ft*it*******i*-ki************ﬁ*i*t**ti*
;7 Abstract: Ultrasonic Board Software Version B

//

// Author:

I/ L B

// Revision History

// When Rev Who What
i

// 5/26/92 1 M. King Creation

// 8/10/93 2 J. Chen Add functions for logging data

IPALEE AR R R A]

tinclude *typedets.h”
#include *counter.n*
tinclude *xducer.n*
Winclude “global .h"
Xinclude *board.h*
finclude <conio, h>
tinclude <ctype.h>
Xinclude <stdio, h>
Xinclude <stdlib. b
#include <dos.h>
#include <time.n>
Winclude <sys\timeb.h>

//Define delay times

tdefine SHORT-DELAY 25
tdefine LONG-DELAY 500
td=tine OPEN-DELAY 10

//Definenumber of measurements to take for the average during calibration
tdefine AVERAGE 10

/* Structure provided by Borland C ¢/
/t
struct timeb {
long time;
short miilitm;
short timezone;
short dstflag;
)

struct tm ¢
int
int
int
int
int
int
int
int
int

tm_sac ;
tm_min;
tm_hour;
tm_mday;
tm_mon:;
tm_year:
tm_wday;
tm_yday;
rm_isdst;
}

*/

Board::B8card(Int1s aBasedddress)
{

int i;

FILE *fp;

//basedddress is the base address of the board
//masterRegaddr IS the address of the master control register
//controlR=ag2Addr s the address of control register 2
//(used to enable interrupt function)

board.cpp

/linitialize counters and transducers
/* basedddress = aBasedddress;
mastarRegAddr = aBasedddress + Ox11l;
cont rolRag2addr = aBaseAddress t 0Xx12;
masterClock.SoftInit (basedddress , MCLOCK_CNTR_NUM) ;
openWindow.SoftInit {baseAddress , OWIN_CNTR_NUM);
closaWindow.Soft Init (baseAddress , CWIN_CNTR_NUM)
pulseMatch.SoftInit {baseAddrass , PULSE_CNTR_NUM) ;
for(i - 0 ; (i <« BAT-CNT); itt)

bat[1). .Softtlnit (baseAddress, 1)

//Get phased array calibration parameters

tp = fopen (CALFILE}c*);

if(fp)

{
tscant (fp, *3g*, &myGain);
Escanf (fp, *3g*, &myOffsat) ;
fcloss (fp):

)

else

{
myGain = 1;
myOffset = 0;

) ox/

return;

roid Board::CheckVersion (void)

Byte check - 0x0;
char version;

//\irite ox0 to control register 2, which only exists on
//version B of the ultrasonic board. If oxff is returned,
//then the board in the machine is version A. If oxo is
//returned then the version is B. If the version of the
//board does not match the version of the software, the
//programwill terminate with an error message.
outportb(controlReg2addr, 0x0);

check = inportb(controlReg2addr);
if (check ! = 0x0)

version = "A";
else

version = ‘87;

if (version 1: Thisversion)

{
printf(*This software is for use with only version®);
printf(* %c of the ultrasonic board.\n*, Thisversion);
exit(0);

}

return;

roid Board::HardInlit (void)

int i:
Int16 address;
Byte check = 0x0;

address = baseaddress t 0x10;
outportb{address, 0x9) ;

check : inportp{address);

L E {check 0)

=

€

board.cpp

print £ (*8oard not responding at address 0x%x\n*,baseAddress) ; Byte tester;
exit(0); int index;
} float distance;
/* CheckVersion(): */
//Check all registers
//Need to set Go signal inactive //Test master control register
SetGo(OFF) ; outport (masterRegAddr, Ox0);
tester - inport (masterRegAddr) ;
//Need to write control words to all counters it (tester !'= 0)
//Countersin board are : masterclock, openwindow, closeWindow printf(*Master Register not responding. Possible problem with paddle boar
//Need to set all initial counts else
//Set master clock to MaxCount and all other counters to the printf ("Master Register okay\n"};
f/mininum delay of 1
//For indefinite window, use mode 0 for openwindow, and mode 4 //Test transducer control register
7/ For closewindow bat (0) .DlagnoseRegister();
//Because of faulty internal blanking, always use window mode to //Test control register 2
//avoid confusing a chirp with an echo. Open the window after outport (cont rolReg2addr, 0x0);
//3ms (300° 10us). Close the window after the maximum count tester : inport (contrelRegladar) ;
/1 (MaxCount) if(tester '= 0)
WindowStart (OPEN_DELAY, MaxCount); printf{*Control Register 2 not respoading\n*);
masterClock, HardInit (EventCount , MaxCount); else
pulsedatch.HardInit (SoftwaresStrobe, Pulselength); printf{*Control Register 2 okay\n*):
WindowEnd() ; //Check all counters
for(I = O ; (i « BAT-CNT); i++) print £ (*Checking master clock... *);
bat (i} . HardInit(): masterclock.Diagnose(} ;
return; print{(*checking open window clock... *);
} openWindow.Dlagnose() ;
print€(*checking close window clock... *);
//Used to reinitialize counters and transducers after performing closaWindow. Diagnose () ;
//full duplex ping. printf(*Checking pulse match clock... *);
//Similar to 8oard::HardInit but HardInit is initializationwhen starting pulseMatech.Dlagnosa();
//trom scratch while FullDuplexHardlnit is re-initialization after for(index=0; index<d; lndex++) {
//a full duplex ping has already occurred and before the occurrence of the print€(*Checking bat #3d... ",index):
//next full duplex ping. bat [index] .DiagnosaCountar () ;
//See that it also uses a different initialization for the transducers than)
//1n 8oard: :Hardiait. //Re-initialize and test ping
void 8oard::fullpuplexHardinit (vold) HardInit(;
{ printf ("Test ping: *):
masterClock,HardInit (EventCount, MaxCount); distance = Ping{CENTER) ;
pulseMatch . HardInit (SoftwarsStrobe, Pulselength): printf(*Distance IS %.4g\n*, distance);
for(int 1 = O; 1 < BAT-CNT; i++) //Re-initializeand test full duplex ping
bat(i] . FullbDuplaxHardlnit{); //For full duplex ping, assumes receiver is 0 and sender is 1.
return;
) printf (*Test full duplex ping\n*);
fullbuplexInit (CENTER, LEFT);
void Board::phasedarrayHardinit {(void) distance = FullbuplexPing(PING_OPEN, CENTER, LEFT):
{ printf(*Distance is %.4g\n*, distance);
// tempPulselength Endicates maximum time frame for detecting
// matching echoes //Re-initialize and test phased array ping
/7 pulse length of 150 corresponds to maximum t/- 0.8 ft error HardInit() ;
print £ (*Test phased array ping\n*);
Int16 tempPulselength = 150; PhasedArrayInit (LEFT, RIGHT, CENTER) ;
distance - PhasedArrayPing (LEFT RIGHT ,CENTER, PING—OPEN);
WindowStart (OPEN_DELAY, MaxCount); print{{*0Oistance is %.4g\n*, distance);
masterClock . HardInit (EventCount, MaxCount); return;
pulseMatch.HardInit (SoftwaraStrobe, tempfulsalength);
WindowEnd() ;
for(int ¥ = 0: i < BAT—CNT; i++) iolean Board: :Go(void)
bat(i).fullbuplexHardlnit ()
return; union masterReg master;

}
//Read in go bit from the register
void Board: :Diagnostic(void) master.data = inportb(masterRegaddr);

| board.cpp

printf(*The master register is 0xix\n*, master,data): for{index = 0; (index < AVERAGE); iIndextt)
return (Boolean] master.bits.go; {
} temporary = Ping(batNum)
delay (SHORT_DELAY) ;
void 8oard::SatGo(Boolean go] sum := temporary:
{)
union masterReg master; measuredl = sum/AVERAGE;:
printf(*Enter actual distance of target : *);
//Read the register, change the go bit, write the register scanf (*2g*, &actuall);
master . data : inportb{masterRegdddr); printf(*\nPlace target at a far distance (approx 9ft.)\n*);:
master.bits,go = go; printf (*Hit enter when ready for measurement\n*};
outportb(masterlRegAddr, master.data); while('kbhit ()}
return; (
) gotoxy (1,12);
printf(“approx. distance: %.4g\n*, Ping(batNum));
void B8oard::SatWindowModa (8oolean theMode) delay (LONG—DELAY ;
(i
union masterRey master: geteh(l;
sum = O;
master.data = ilnportb(masterRegdddr); for(index = O; Index < AVERAGE; index++)
master.blits wndw_node = the¥ode; (
outportb(masterReghddr, master.data); temporary = Ping(batdum) ;
return: delay (SHORT—DELAY}
} sum += temporary;
)
Boolean Board: :WindowMode (void) measured2 = sum/AVERAGE;
{ printf(*Enter actual distance of target : -);
union masterReg master; scanf{*3g”, %actuall);
//Caleculate gain and offset according to the formula:
mastar.data : inportb(masterRegAddr) : //actual distance . gain*raw_distance t Offset
return (Boolean) master.bits,wndw_mode; gain - (actual2 - actuall) / (measured2- measuredl);
h) offset = ({actuall-(gain*measuradl}} t (actual2-(gain*measuredl})})/2;
pat (batNum}.gain = gain;
Boolean Board::&choRaturn({void) bat (batNum] .of fset = offset;
{
union masterReg master; printf(*Gain is 3.4g and the offset is 3.4g\n*, gain, offset];
int rasterCount, openiindowCount, clossWindowCount, pulsedatchCount; //\Write information to File
Boolean type; bat [batNum) . WriteCalibration();
return;

master.data = inportb(masterRegaddr):
return (Boolean)master.bits.achoReturn;

) loat Board::Pingd=asure (Intlé batium)
void Board::Calibrate(Int1é batNum) float calibrated, raw;
(
float measuredl, msasured?; raw = Ping{batdum) ;
float actuall, actual?; calibrated = (raw*bat(batNum] .gain) t bat(batNum| .offset:
float gain, offset; print€(*Raw distance : %.d4g Calibrated distance : 3.4g\n*, raw,calibrated);
float sum = O; return calibrated;
float temporary;
int index;
clrscr() ; loat Board::Ping(Intl1s batNum)
//Ping many times so the user can set up the target
printf("Place target at a close distance (approx3ft.)\n*) : Int1é timeOfFlight = O3
printf(*Hit any key when ready for mesasursmenti\n’); float distance;
while(ikbhit{))
{ bat (batNum] .SetPing(80TH, ON);
gotoxy (1,3} ; S2tGo(ON) ;
printt(*Approx. distance: %.4g\n*, Ping (batNum)): Windowstart (PING-OPEN, MaxCount); // 300 * 10us - 3ms
delay (LONG_DELAY) ; while(!EchoReturn{)) //Wait until echo is detected
} {
getch(}; if(Timaout {))

//Take AVERAGE number of measurements for an average figure I

O

printf {*Timeout! 11!\n");
break;

}

}
SetGo (OFF) ;
WindowEnd () :
bat (batium) . SetPing (BOTH, OFF);
timeOfFlight = MaxCount - masterClock.Count {};
distance = (((float)timeotFlight * ClockRate) * SpeedOfSound) ;/ 2:
HardInit() ;
return distance;
}

void Board::FullDuplexInit (Int16 sender, Intl1$ receiver)

{
bat (receiver] SetEcho_Inhibit (ECHO_ONLY, ON);
bat [sender) . SetEcho_Inhibit (CHIRP_ONLY, ON);
return;

)

float goard: :FullDuplexPing(Int1s windewDelay, Int16 sender, Intlé receiver)
{

Int16 timeOfFlight = 0;

float distance;

bat (recelver) SetChirp_Inhibit (ECHO_ONLY, ON);
bat [sender] .SetChirp_Inhibit (CHIRP_ONLY, ON);
SetGo({ON) ;

Windowstart (windowDalay, MaxCount);
while(!EchoReturn())
{

// 300 * 10us = 3ms
//Wait until echo is detected

if{Timeout {))
{
printf(*Timeout! 11!\n");
break;
}
)
SatGo(QFF) ;
WindowEnd() ;
bat [recaiver) .8atChirp_Inhiblt (80TH, OFF);
bat {gander).SetChirp_Inhiblt (BOTH, OFF);
timeOfFlight - MaxCount - masterClock,Count():
distance = (((float) tims0fFlignt * ClockRate) * SpeedOfSound) / 2;
FullDuplexHardInit() ;
return distance;
}

void Board::pPhasedarrayInit(Intié receiverl, Int1é receiver?,
Int16 sender)

{
bak[recelvarl) .Set&cho_Inhibit (ECHO_ONLY, ON);
bat (receivar?) .Set8cho_Innibir (ECHO—ONLY, ON):
bat (sender) . SatEcho_Inhibit (CHIRP_ONLY, ON);
return;

)

float Board: :PhasedarrayPing{Int1é receiverl, Int1é receiver2,

Int16 sender, Int1s windowDelay

{
Int16 timeOfFlight - ©o;
float distance;

bat {recelvert) . SetChirp_Inhibit (ECHO_ONMLY, ON);:
bat [receiver2] .SetChirp_Inhibit (ECHO_ONLY, ON):

board.cpp

bat (sender] . SetChirp_Inhibit (CHIRP_ONLY, ON);

SetGo (ON) ;

//Set Intarrupt (ON);

WindowStart {(windowbelay, MaxCount); // 300 ® 10us = 3ms
while(!Echoreturn()) //Waituntil echo is detected

if(Timeout (})
{
printf (*Timeout!tti\n*);
break;
)
)
8etGo (OFF) :
WindowEnd() ;
bat (receiverl] . .SetChirp_Inhibit (80TH, OFF):
bat [receiver2) .Setchirp—Inhibit(BOTH, OFF):
bat [sender)] . gatChirp_Inhibit (BOTH, OFF);
timeOfFlight = MaxCount - masterClock,Count():
distance = (((float) time0fflight * ClockRate) * SpeedOfSound) / 2;
PhasedarrayHardlinit (};
return distance;

+The Following is the original fPhasadarrayfing,
‘loat Board::PhasedArrayPing(Int16 receiverl, [nt1é raceiver?
Int16 sender, Intlé windowDelay)

[nt16 timaOfFflight = O;
float distance;

bat [recalverl}.setPing (ECHO_ONLY, ON);
bat [receiver2] .SetPing (ECHO_ONLY, ON);
bat [sendar] .SetPing (CHIRP_OMLY, ON);
SatGo (ON) ;
WindowStart (windowbalay, MaxCount); // 300 * 1dus = 3ms
wnile{EchoRaturn()) //Waituntil echo is detected
{

if (TimeOut())

{

printf("Timeout ! 11 {\n"),;
break;

)
}
SetGo (OFF) ¢
WindowEnd () ;
bat (receiverl}.Setping(80TH, OFF);
bat [receiver2] .SetPing (BOTH, OFF);
bat [sander] . .SetPing (BOTH, OFF);:
timeOfFlight = MaxCount - masterClock.Count();
distance - (((float) tim=0{Flight * ClockRate) * SpeedOfSound) ; 2;
HardInit() :
return distance;

t/

roid Board::ArrayCalibrat=(Int1é receiverl, Int16 receiver?,
Int16 sender, Int1é windowdD=lay)

float measuredl, measured?;
float actuall, actual?2;
float gain, offset:

float sum = O;

float temporary;

9D

int index;
FILE *fp;

clrscr();
// Ping many times so the user can set up the target
printf{*Place target at a close distance ({approx 3ft.)\n"):
printf(*Hit any key when ready for measurement\n*);
PhasedArraylInit (LEFT, RIGHT, CENTER);
while('kbhit (}}
{

gotoxy (1,3}

printf(*Approximate distance: %.4g\n", PhasedArrayPing(ARRAY_ARGS)); }

. delav (LONG DELAY}) :

getch(); i
Fr o smnT avonaLL IUMDEr O medsurements an average figure
for{index = 0; index < AVERAGE; index++)
{
temporary = PhasedArrayPing{ARRAY_ARGS):
delay (SHORT_DELAY) -
sum = temporary;
1
measuredl = sum/AYVERAGE;
printf(*Enter actual distance of target : »);
scanf('3g*, &actuall);)
printf(*\nPlace target at a far distance (approx 9tt.)\n");
printfF("Hit enter when ready for measurement\n*):
whille(!kbnit ())

{
gotoxy(1,12);

printf (*Approximate distance: %.4g\n°®,
delay (LONG_DELAY) ;

}

getch{);

sum = 0;

for(index = 0: index < AVERAGE; index++)

{
temporary = PhasedArrayPing(ARRAY_ARGS):
delay (SHORT_DELAY) ;
sum += temporary;

%easuredz = sum/AYERAGE;

printf(*Enter actual distance of target : *);

scanf(’3g*, &actuall);

// Calculate gain and offset according to the formula

// actual distance : gain*raw_distance t offset

gain = (actual2 - actuall) ;s (measured2 - measuredl):

offset - ((actuall-(gain*measursdl)) +« (actuall-(gain*measured2)})/2:
bal (CENTER] .gain = gain:

bat (CENTER] .of fset = Offset:

printf("Gain is %,4g and the offset is 8.4g\n*, gain, offset);
// Write information to disk

fp = fopen{CALFILE, *w*);

fprint€(fp, '%.4g9\n%.4g\n*, gain, offset):

return;

}
tloat Board::ArrayMeasure(Intié receiverl, Intl6 receiverz,

{

Int16 sender, Int1é windowDelay)
float calibrated, raw:
raw_= PhasedArrayPing(receiverl, receiverl, sender, windowbDelay) ;

calibrated : (raw*bat [CENTER|.gain) t bat {CENTER).offset;
printf(*Raw distance . 3.4g Calibrated distance

PhasedArrayPing (ARRAY_ARGS)) ;

$.4g\n", raw,calibrated)’

Tannsad

{

{

e

Boolean

return calibrated;

float Board: iArrayMeasure(Int16 receiverl, Int15 receiver2,

Int16 sender, Int1lé windowDelay, FILE *fileptr, Float "raw)
float calibrated;

*raw = PhasadArrayPing(raceiverl, receiver2, sender, windowDelay):
calibrated = ((*raw) *bat [CENTER].gain) t bat(cENTER) .offset;
return calibrated;

Board: :Timeout (void]

union masterReg master;

int masterCount, openWindowCount, closeWindowCount, pulsedatchCount;
Boolean type;

master.data = lnportb(masterRegaddr):
return (Boolean) master.bits.zero_cnt;

oid Board::WindowStart (Intls openDalay, Int16 closeDelay)

openWindow.HardInit (SoftwareStrobe, openpalay)
SetiWindowMode (ON) ;

closeWindow.HardInit (EventCount, closeDelay); // Make sure to reset window latch
closeWindow.HardInit {SoftwareStrobe, closeDelay); // Close window after MaxCount
openWindow.HardInit (SoftwareStrobe, openDelay) ;

return;

i

2id Board::¥WindoweEnd(void)

>id Board::

olean

closeWindow.HardInit (EventCount, MaxCount); // Make sure to reset window latchfl
SetWindowMode (QFF) ;
return;

SetInterrupt (Boolean value)

union controlReg?2 theReg;

theReg.data = inportb(controlRegaddr);
theReg.bits.enable_int = value;
outportb(controlReg2addr, theReg.data);
return:

Board: :Get Interrupt (vold)

union controlReg? thaRag;

theReg.data = inporth{controlReg2addr);
return theReg. bits.enable_int;

id 8oard::PingStart (Intl6 batNum)

bat [batNum] .SetPing (BOTH, ON);
SatGo (0N) ;

WindowStart (PING_OPEN, MaxCount],
delay (500);

// 300 * 10us = 3ms

)

/* Generate the interrupt after doing the chirp so
* the interrupt handler finishes reading the master
* counter and does the calculation of distance *,
geninterrupt (INTERRUPT) ;
return:

void Board::Echolnterrupt (void interrupt {(*oldfunc) {(...})

(

O

)

float. distance;
int batNum, timeOEFlight;

printf{"Echo interrupt handler runningi\n*);

if(Timeout {})
{
printf ("Timeout !t i\p");
return;
}
else if(Echoreturn())
{
SetGo (OFF) ;
WindowEnd() ;
for (batNum=0; batNum < 4; batNum++)
bat [batdum] .SetPing (80TH, OFF);
timeOfFlight = MaxCount - masterclock.Count();

distance = (((float) tim=0tFlight * ClockRate) * SpeedOfSound) / 2;

HardInit() ;
printf(*Distance 1S 3.4g ft\n*,distance);

else

/* Call the original interrupt handler because
* none of our conditions were met, so it must
* be for the other function «/
oldfunc() :

}

return;

void Board::fhaseddrraylnitand®ing()

(

Int16 receiverl = O;
Int16 receiver2 = 2:
Int1é sender = 1;

bat(recelverl] SetPing (ECHO_ONLY, ON) ;:
bat (receiver2) .Set Ping (ECHO_ONLY, ON);
bat (sender) . SetPing(CHIRP_ONLY, ON);

board.cpp

ovat {receiverz].SetPing (BOTH, OFF):
bat (sender] . SetPing (80TH, OFF):

PhasedArrayHardInit () ;
return distance;
}

//Functions for logging data
int Board::LogDatalnit ()
(

timeOfFlight = MaxCount - mastercClock.Count();
distance = (((float)timeOfrlight * ClockRate) * SpeedOfSound) / 2;

}

{

char tilename{l3};

//Change the environment variable Ti

//Set the time variable for Pacific Standard Time
putenv{tzstr);

tzset() :

delaytime = 0O;

//1nitialize delay time

//Determinethe delay between each pulse transmitted
delaytime - O;

do ¢

printf(*Enter delay time between measurements in milliseconds (50 - 1000)

scanf (*3d*, &delaytime);
) while ((delaytime< 50) (| (delaytime> 1000));

printf{*gnter Filename to store data to: *);
scant(*3s*, Filename);
filePtr = fopen(filenams, "w") ;
if (tileptr == NULL)
{
printf ("Error opening tile\n*):
return ERROR;

//Clear the current text window
//Determinethe time and fill fields of parameter
//Convert date and time to a structure
clrscr();
frima(&t)
tblock = localtime(&(t .time)) ;
return TRUE;

void 8oard::PingLogbatal()

float distance;

SetGo (ON) ; char ¢imestring(30);
SetIntervupt (ON); char c;
return;
} if (LogDatalInit() == TRUE)
(
float Board::PhasedArrvayFinishPing() fprint f(filePtr, *Ultrasonic Ranging PIng patatile\n*);
(i fprint £(EilePtr, "Test start time: is\n*, asctime(tblock))
Int1lé receiverl - 0; fprint £(filePtr, "Time stamp : Distance(ft)\n*);
Int16 receiver2 = 2; printf(*Hit X o quit.\n*);
Intlé sender = 1; do {
int time0fflight; do {
float distance; gotoxy (1,2);
printz (* \n") ;
SatGo (OFF) : gotoxy({l,2);
wWindowEnd () ; distance = (float)Ping((Int16)CENTER) ;

bat [receiverl]. setfing (BOTH, OFF) ; ttima{at);

}
return;

}

tblock = localtime(&(t time)):
stritime(timestring, 80, *%H:3M:%8" tblock);
if(distance < 90)

board.cpp

: Agan®, timestring, t.mi)

{
fprintf(filePtr, "%s.%-3d
printf(*"Distance s %.4g.\n",distance):
)
else
fprintf(filePtr, *%s.%-3d : Timeout\n",timestring,
delay (delaytime) ;
) while(tkbhit());
C = getch(};
if(tolower(c) == 'x')
break ;

iprintf(flle?tr,“******* User Pause k**t*xt\nﬂ);
gotoxy{1l,2):
printf(rrrrexexr User Pause ***xsxxxx\nn) .
while({kbhit()):
C = getch();
) while (tolower(c) 1= ‘x');
forint E(filepty, *tr¥texxr User EXIT **¥xxxxt3\nr),
fclose(filepPrr),

void Board::PhasadarrayLogData ()

float calibrated, raw;
char timestring(80];

char c;

8D

(

if (Logbatalnit{) == TRUE)

fporint £(filebtr, "Ultrasonic Ranging Phased Array patatile\n*):

forint £(filePtr, *Test start time: %s\n",asctime(tblock));

fprint£(filePtr, *Time stamp : Calibrated(ft) Raw(Lt)\n");

printf{*Hit x €O quit.\n");

/* PhassdArrayInit (LE®T, RIGHT, CENTER); */

do {

do {

gotoxy(1,2);
printf(*
gotoxy (1,2):
//calibrated -
calibrated - 100;
Etima(&t):
tblock - localtime(&(t _time) ;
strétime(timastring, 80, *3H:3M:38%, tblock)
{f{calibrated < 90)

\n");

{
fprint£(filePtr, *33.3-3d : 4g $g\n*,
printf(*Calibrated distance : 3.4g

}

else

fprint£(filePty, "$5.%-3d
delay (delaytime) ;
) whila{ !'kbhit() }:
C = getch() ;
if(tolower(e) == ")
break;
fprintf(filePtr,’*******’ User Pause ***t**t\nl);
gotoxy (1,2);

: Timeout\n*, t

(float) arcayMeasur=(LE®T, RIGHT, CENTER,

timestring
Raw distan

imastring

~—

}
return;

printf('***tk*t* USer PaUSe t***t*i**\nl):
while(lkbhit ())
C = getch();
} while (tolower{c) != 'x’};
fprint f(filePtr, “x¥ixtaxy User Exit AR ERE AV B
fclose(filePtr);

http://g\n",titnestring,t.mil

JRERRERE R A A A R R KRR AR R R R XA E AR R R I kA KT H XA R A E X

s/ avstract: Ultrasonic Board Software Version B
/1

7/ Author:

/7 o B

// Revision History:

// When rRevision

// 5128192 1 M. King Creation

//ttu*i********titr*t*t&***t**w*t****t*ﬁt**r***t*t!*********t**t**tt*ﬂ***t***

Xinclude
Winclude
Rinclude
Rinclude
Winclude
Yinclude <conio, h>
Xinclude <stdlib.h>
#include <stdio. h»

*typadefs.n”
global.n
Ycountar.h'
*typedefs.h”
<math.h>

void Counter::SoftInif (Int16 theAddress, Intlé theCounterMNum)
(
//Create addresses.
//nyaddress is the Counter®s address.
//myNumber is the Counter®s reference number.
//myControladdress is the address of the Counter®™s control word.
//myControlbata is holds the data for restoring the control word.

thedddress + counterdapitheCounterdum) [CNTR_MAP_ADD} ;
countarMap(thaCountardum) [REF—NUMBER];
thedddrass +

myAddress =

mydMumber =

myCopt rolAddrass =
{counterMap [theCounterNum] [CNTR_MAP_ADD)

myControlfata = 0;

return;

void Counter::HardInit (Byte thettode, Int1s thecount)
//38et the counter®s mode and initial count.
SatMode (thaMode) ;
SetCount (thecount)
return;

}

void Counter::Diagnose(vold)
{
HardInlit (EventCount, MaxCount);

L ({Mode() = EventCount) ([(Count() != MaxCount))
printf{*Counter 34 not reasponding\n*, mydlumber):
else
printf(*Countar 3d okay\n*, myNumbar);
return;

)
Byte Counter::Mode (void)
{

//Create the proper readback control word.

//select = 3 for readback command

readBack.bits.select = 3;

readBack .bits.countlLow = 1;

readBack .bitg.statustow = 0;

//zero is ALWAYS equal to zero

read8ack,bits.zero = 0;

//The counterNum bits are as indicated on pg. 3-69 of the 8254 datashest.

counter.cpp

3);

//mytNumber is a number from 0 to 2 that identifies the counter number
//tobe used. So given a 1, we can left shift the bits by mytumber
//to access the desired counter.

readBack .bits.counterMum = 1 << myNumber;

//\Write the readback control word.
outportb(myControlAddress, readBack,data);

//Read the status byte of the counter.
statusReg.data = inportbh{myAddress)
//Restore orignal control word.
outportb{myControlAddress, myControlData);
return (Byte) statusReg.bits.mode;

)

void Counter::Sattode{Byte thelode)

{
//Create the proper control word to switch the mode.
controlWord.bits.select = myNumber:

//readWrite = 3 to default to 16-bit counters.
controlWord.bits.readWrite = 3;
controlWord.bits . mode = thaMode;
controlWord,.bits.8¢CD = O3
//\irite the control word to the counter.
outportb (myControlAddress, controlWord data)
myControlData = controlWord.data;
return;

H

vold Counter::SetCount (Int1s thecount)
{

Byte Isb, msb; //Least and most significant byte

//Get the least significant byte by AND"ing with OxFF
Isb = thecount & OXxFF;

//Get the most significant byte by AND"ing with OxFF and
//dividing the result by 256 to shift the bits over.
msb : (thecount & 0x&££00) / 256;

//Always write the least significant byte first.

outportb{myAddress, lsb);
outportd (mydddress, msb) ;
return:

|
int16 Counter: :Count(void)

Byte Isb, msb;
intls total;

//Read the counter least significant byte first.
Isb = inportb(myaddress);
msb = inportb(myaAddress);

//Create the 16-bit integer count value.
total = (msb * 256) t Isb;
return total;

t

3oolean Counter::Output {(void)

//Create the proper readback control word.

oLd

)

readBack .bits.select = 3;
readBack.bits.countLow = 1;
readBack . bits.statuslow = O
readBack.bits.zero = 0;
readBack.bits.countartum = myNumber;

//\Write the readback control word.
outportb (myControladdress, readBack.data);

//Read the status byte of the counter.
statusReg.data = inportb{myAddress):

//Restore the original control word.
outportb (myControlAddrass, myControlData);:
return (Boolean) statusReg.bits.output;

Byte Counter::Status(void

{

)

printf ("mynumber - 3d myControl = %x\n*,myNumber,myControlAddress) ;
//Create the proper readback control word

//select - 3 for readback command

readBack .bits,select = 3:

readBack .bits,countlow = 1;

readB8ack .bits,.statusbow = O:

//zero is ALWAYS equal to zero

readBack .bits.zero = 0;

//The counterdum bits are as indicated on pg. 3-69 of the 8254 datasheet. myNumbe
//identifies the counter number to be used. So given a 1, we can left
//shift the bits by nytumber to access the desired counter.
readBack.bits.counterNum = 1 << mydNumber:;

printf(*readback command word Ox%x\n*, readBack.data);

//\rite the readback control word
outportd(myControldddress, readBack.data);

//Read the status byte of the counter
statusReg.data = [nportb(nyAddrass);
printf(*Read In word Ox3x\n*,statusReg.data);

//Restore the original control word
outportb (myControladdress, myControlData);
printf(*restoring 0x3x\n", nyControlbData) ;
return (Byte) statisReg.data;

Boolean counter::ZeroCount (void)

{
}

return Output(} ;

counter.cpp

LLD

tinclude *board.h”
tinclude <stdio.h>
tinclude <dos,h»

#define SAFETY 256
/* define interrupt vector to use */

void interrupt handler(-CPPARGS);
void interrupt (*oldfunc) (_CPPARGS) ;

/* Reduce heaplength and stacklength to make a smaller program in memory ¢,
// extern unsigned _heaplan - 1024;
// extern unsigned _stklen = 512:

Board theBoard(0x320);

int main (void)
(
theBoard.Hardlnit (),
/* Save original interrupt handler */
oldfunc = getvect (INTERRUPT) ;
/* Install Echo Interrupt handler */
setvect (INTERRUPT, handler);
/* Terminate and Stay Resident Command */
/7 xeap (0, (_8S t ((_SP t SAFETY)/16) - _psp));
keep {0, (unsigned)8000) :;
/* For testing purposes, call pingstart which generates
* the correct interrupt after a chirp #/

7/ printf{*pause...\n");

// delay(500);

7/ theBoard, ?ingStart (0)
return 0;

~

void interrupt handler(—CPPARGS)
{

printf{*Entering handler \n*®}:
theBoard.Echolnterrupt (oldfunc);

echoint. cpp

4 %)

//kt*'i*l’ﬁ*i’**t**tt**i****t***t**t*****l*tiﬂ**ilt***Q*****’i**’(ii*i*******t*t
// Abstract:

7/

// Author:

/7

// Revision History:

// When Revision Who What

/7 2/10/92 1 M.King Creation

VaAA AR AR AR AR S AR R AR R R R Y

tinclude *typedefs.h"
#include "giobal.h*
tinclude <stdio.h>
#include <dos.h>

//Declare global union variables
union cntrlReg controlWord;
union rdBack readBack:

union statReg statusReg;

//This is a mapping from counter number to actual address and control
//registers for a counter. Each entry is referenced by the global
//counter number. The first number is the address of the counter. The
//second number is the address of its control register. The third number
//is the counter number internal to the 8254.
Int16 counterMap [MAX—COUNTERS1 (CNTR_MAP_SIZE] = (

(oxo , 0x10, O
{ ox1 , Ox10,
{ ox2 , Ox10,
{ 0x4 , 0x10,
{ 0x5 , 0Ox10,
(0x6 , 0x10,
(0x14, 0Ox11,
{ 0x15, Ox11,
{ 0x16, Oxi1,

NRO MR ON R

)
)
)
}
) s
}
)
)
)

}i

//This is a mapping from a bat number to its counter global reference number.
int batMap{ BAT—CNT][BAT_MAP_SIZE] = {

global.cpp

€L

//***t*t**i****ltkﬂi\'*t*iti****i**iﬁ*t**ﬂli**t***i***t*!****i*t******i*i****t
s, Abstract: Ultrasonic Board Software Version B

//

7, Author:

// }

/s Revision History:

// When Revision Who What

/7 2/10/92 1 M. King Creation

172 A0 AR SRS ARERS AR AR SRR SRR e e e R e e

finclude *us.h”
tinclude <stdlib.h>
tinclude <conio.n>
#include <stdio. h>
#include <dos . h>
tinclude <ctype. h>
finclude <time.h>
tinclude <sys\timeb. h>

¥defina BASEADDRESS 0x320

void PrintOptions()
{

printf(*Usage : usb [eption)\n*):

printf(*available options :\n*);

printf(*p {0-3} Ping -- measures raw distance with specified transducer\n*
printf(*} [0-31 Loop -- continuous Pings until key pressed\n*);

printi{'c Calibrate -- calibrate one transducer\n*);

printf(m Measure -- measures calibrated distance\n*);

printf(*t (0-3) (0-3} Full Duplex Ping -- measures distance with two transducers

printf(*ap Phased Array Ping -- does path matched ping\a*):

printt (*ac Phased Array Calibrate -- calibrate the array\n*);

printf(*al Phased Array Loop -- phased ping until key pressad\n®);

printf(«am Phased Array Measure -- measure calibrated distance\n*);

printf(*d Diagnostic -- performs extensive hardware test\n”’);

printc (*g Log Data -- logs data to disk. Hit any key to toggle pause.
Hit "X to =xit.\n*):

printf(*i Do 1/0 lcop\n*);

printf(*z Testing Window Count\n*) ;

return;

}

void main(int args,char targvi])
{

float distance;
Int16 number;
Board theBoard(BASEADDRESS) ;

ifCargc < 2)

{
PrintOpt Tons() ;
exit(o);

}

//Tha 1/0 loop option.
if(argv(1](0) == 1")
{
while(ftkbhit())
outportob(BASEADDRESS , 0):
}

//the8oard . HardInit ()

malin.cpp

switch (argvit] (0]
{
case ‘'p’
number - atoi{ argvi2)):
printf(*Distance IS %.4g\n*, (float)theBoard.Ping{(Int16) number))

break;
case "1°
clrscr{) ;
number = atoi(argvi2} };
do (
gotoxy(1l,2)
distance = (float)th=8oard.Ping((Int16} number);
gotoxy (1,1);:
printf(*Distance 1S %.4g ft.\n*, distance);
delay (250);
gotoxy (1,2} ;
printf{* \n");
) while (tkbhit());
break;
case C" :
theBoard.ArrayCalibrate(LEFT, RIGHT, CENTER, PING—OPEN);
break ;
case 'm’ :
theBoard ArrvayMeasure(LEFT, RIGHT, CENTER, PING—OPEN);
break;
case 'g'
switen{argv (1] (11) (
case 'a’:
theBoard.PhasedArraylogData();
break;
case "p":
theBoard.PingLogbata() ;
break;
}
break;
case 'f':

Int16 sender;
Int16 receiver;

sender = (Intlé) atol(argviz)):

receiver = (Intl16) atoi {argvi3));

theBoard, FullDuplexInit (sender, receiver);

do (
distance = (float)theBoard.FullbDuplaxPing(PING_0PEN, send
printf(*Distance IS %.4g ft.\n*, distance);

} while (tkbhit()):

break;

case "a"
switenh(argv(l]) (1)) (
case "p"
theBoard, PhasedArrayInit (LEFT, RIGHT, CENTER);
distance = (float)theBoard,PhasedArrayPing (LEFT,
printf(”Distance IS %.4g ft,\n*, distance);
break;

case ‘c" :
theBoard . ArrayCalibrate (LEFT, RIGHT, CENTER, PING

main.cpp
break; l
case ‘m’ :
theBoard.PhasedArrayInit (LEFT, RIGHT, CENTER);
theBoard.ArrayMeasure(LEFT, RIGHT, CENTER, pINnc

break;
case "1°
clrscr(};
theBoard.PhasedArrayInit (LEFT, RIGHT, CENTER);
do (
gotoxy (1,2);
distance = (float)theBoard.PhasedArrayP
gotoxy (1,1)
printf("Distance is %.4g ft.\n", distan
delay(250) ;
gotoxy (1,2):;
printf(* \n*);
} while (!kbhit()};
break ;
)
break;
case "d"
theBoard.Diagnostic() ;
break:

default : theBoard.HardInit();

1 4]

PREE

s+ Abstract: Ultrasonic Board software Version B
*

e Author:

« Revision History:

« When Revision Who What

* 5/28 /92 1
*/

finclude *typsdefs.h”
#include "global .h*
#include "counter. h*
#include *xducer .h*
Xinclude <conio. h>
tinclude <stdlib.h>
Xinclude «stdio.h>
#include <string.h»

void Kducer::Softlnit (Intlé theAddress, INt myNumber)
(

char numbar [MAXLENGTH) ;

FILE *¢tp;

/* myRegAddr is the address of the xducer®s control register */
/* mastarRegAddr IS the address of the master register */
/* xducerdtum IS the transducer number */

chirp.SoftInit (theAddress, batMap{myMumber) [CHIRP_CNTR}) ;
myRegAddr = theAddress + counterMap(batMap{myMumbzsr] [CHIRP—CNTR] }
(CNTR_MAP_REG] ¢

mastarlRegAddr = thedddress t 0xll;
zducerNum = mydumber;

/% Convert xducerdum tO a string then create calibration filename

¢ example: xducertum=0, then mycCalfile = *batd.cal* */
sprintf(myCalfile, "$s3dss*, NaME, number, EXTENSION);

/* read calibration file. If unable to read it, then set defaults */
fp = topen(mycalfile,*r*);

/* Same as board level mazterlsgiddr

SLD

if(fp)

{
fscant (fp, *%g", &gain);
fscanf(tp, *3g*, &offset);
tclose (fp);

}

else

{
gain - 1;
offset = 0;

}

return;

}

void Xducer::WriteCalibration(void)
{
FILE #¢p;

fp = fopan(myCalfile, “"w"};
fprintf(fp, "%.4g\n%.4g\n", gain, offset);
ftclosa(fp)
return;
}

void Xducer::HardInit (void)
{

xducer.cpp

SetChlrp (OFF) ;

SetEcho{OFF) ;

chirp.HardInit (EventCount, INITIAL_COUNT) ;
return;

/Used for full duplex ping in reinitializing the counter for chirps.
/Similar to Xducer::Hardinit but HardInit is used when starting from
/scratch whiel FullDuplexHardInit used for reinitialization, after a full
/duplex ping to set up for the next full duplex ping.

oid Xducer: :FullDuplexHardInit (void)

chirp.HardInit (Event count, INITIAL—COUNT)
return;

oid Xducer::DiagnoseCounter(vold)

chirp.Diagnose() ;
return;

oid Xducer::DiagnoseRegister(void)
Byte tester;

outport {(myRegaddr, 0x0);
tester - inport (myRegdddr);
if{tester !s 0)
printf (*%ducar Control Register not responding\n*):
else
printf(*Xducer Control Register okay\n”);
return:

ioolean Kducer::GatEcho{vold)
union xreg theReg;

theReg.data = lnportb(myRegaddr):
/* Select the correct bitmask according to bat number */
switch {xducearium)
{
case 0O:
return (Boolean) theReg,blts.en_schod;

case 1:
return (Boolean) theReg.bits.en_achol;

case 2:
return (Boolean) thafeq.bits.en_echol;

case 3:
return (Boolean) thasReg.bits.an_echod;

default:
return FALSE;
)
return FALSE;

oid Xducer::SetEcho(Bool=an value)

union xreg theReq;

thaReg.data = inportb(myRegAddr);

switch (xducertium)

{
case 0O:
theReg.bits.en_echon = value;
break;

case 1:
theReg.blts.en_echol = value;
break;

case 2:
LheReg.bits.en_acho2 = value;
break;

case 3:
theReg.blts,en_achol value;
break;

default:
break ;

}
outportb (myRegdddr, theReg . data);
return;

)

Boolean Xducer ::Getchirp (void)
{
union xreg theReg;

theReg.data = lnportb(myRegadddr);

switch (xduceritum)
{

91D

case 0:
return (Boolean) thaReg.bits.en chrpl;

case 1:
return (Boolean) thaReg.bits,en_chrpl;

case 2:
return (Boolean) thaReg.bits.en_chrp?;

case 3:
return (Boolean) theReg.bits.en_chrpl;

default:
return FALSE;
)
return FALSE;
}

void Xducer: :SetChlrp(Boolean value)
{
union xreg theReg;

thaRag.data = inportb(myRegAddr):

switch (xducerium)
(
case O:
theReg.bits.en_chrpd - value;

xduc r.cpp

break ;

case 1:
theReg.bits.en_chrpl = value:
break:;

case 2:
theReg.bits.en_chrp2 = value;
break;

case 3:
theReg.bits.en_chrp3 = value;
break;

default:
break;

)
outportb (myRegdddr
return;

o

teR

[}
©

g.dataj;

joolean Xducer::Gatinhibit (void)
union mastarReg LheReg;
theReg.data = lnportb(masterRegaddr):

switch (xducerium)
{
case O:
return (Boolean) theReg.blts.chrp_innd;

case 1:
return (Boolean) theReg.bits.chrp_inhl;

case 2:
return (Boolean) theReg.bits.chrp_{nh2;

case 3:
return (Boolean) theReg.bits.chrp_inh3;

default:
return FALSE;
)
return FALSE;

roid Xducer::Sstlnhibit (8colean value)
union masterfag theReg;
theReg.data = Inportb{masterflRegaddr)

switch {xducertum)

{
case O:
theReg.bits.chrp_inn0 = value;
break;

case 1:
theReg.bits.chro_innl = value;
break;

case 2:
theReg.bits.chrp_inh2 - value;
break;

case 3:
theReg . bits.chrp_inh3 - value;
break;

default:
break;

!
outportb (masterRegdddr, theReg.data}:
return;

}

void Xducer::Setping(int select, Boolean on)
{
switch(select)
{
case BOTH:
SetEcholon] ;
SetChirp{on) ;
SetInhibit(!on);
break;

case CHIRP—ONLY:
SetEcho (OFF) ;
SetChirp(on);
SetInhibit(!on);
break;

case ECHO—ONLY:

SetEcho(on};

SetChirp (/*OFF*/ ON); s+ gatchirp(on) for init signal */
SetInnibic (OFF});

break;

1D

}
return;

/t
if ((select-= BOTH) (1 (select == CHIRP—ONLY)) {
SetChirp(on) ;
Satinhibit{ Ton);:
}
else ¢
SetCalep(OFF)
SatInhibit { OFF);

}

if ((select -- BOTH) It (select == ECHO-ONLY)) {
SetEcho{ oOn);

)

else {
SatBcho (OFF) ;

)
if (select == ECHO-ONLY) ¢
// changed to OFF for testing
Satinhibit (OFF);
)
*/
}

vold Xducer::SetEcho_Inniblit (int select, Boolean on)

xducer.cpp

}
return;

}
return;

case BOTH:
SetEcho(on)
SetInhibit('onk
break;

case CHIRP—ONLY:
SetEcho (OFF);
Setlnhibit(ton) :
break ;

case ECHO—ONLY :
SetEcho{on) ;
Setlnhibit (OFF)
break;

switch(select) {

case BOTH:
SatChirp(on) ;
SetInhibit(!on);
break;

case CHIRP—ONLY:
SetChirplon);
Setlnhibit(!on);
break;

case ECHO—ONLY:
SetChirp (/*OFF¢/ ON);
SetInhibit (OFF) ;
break;

oid Xducer::SetcChirp_Inhibit (int select, Boolean on!

/* SetChirp{on)

for init

signal */

board.h

//t***ttt**i***tt*iitt*ti***t**ktl**t!*****ttt*i***tt*ﬂl******t*****t*k*i***** |

s+ Abstract: Ultrasonic Board Software Version B //Measuredistance using one transducer to chirp and one to receive.

7 float fullbuplexPing(Int1é windowDelay, Intié sender, Intl1é receiver);

7/ Author:

/7 //Measure calibrated distance using the array

/7 Revision History: float ArrayMeasure(Int16 receiverl, Intl§ receiver2, Intlé sender,

// When Revision Who What tnt16 windowDelay) ;

e float ArrayMeasure(Int16 receiverl, Int1é receiver2, Intlé sender,

// 5/28/92 1 M. King Creation Int16 windowDelay, FILE *filePtr, floa

// 8/10/93 2 J. Chen Add prototype for logging

/7 //Measuredistance using 1 xducer to chirp and 2 to receive using

//t***t***ii*t*it****t*ti******t**************ﬁi**i’***t***i***it***t***i***ﬂ* //path length matChing. Open window after w‘mdowDelay clock ticks.
float PhasedarrayPing{Intlé receiverl, Int1é receiver?, Intlé sender,

#i fndef BOARD-H Int16 windowDelay);

fdefine BOARD-H
//INTERRUPT FUNCTIONS (not implemented because of iRMx)

//Define macros for the counter to counter number mapping //1nterrupt handler

tdefine MCLOCK_CNTR_NUM 6 //master clock void gcholnterrupt (void interrupt (Foldfunc) (...)):

tdefine OWIN_CNTR_NUM 8 //open window

tdefine CHIN_CNTR_NUM 7 //close window //Start of a Ping then generate interrupt for handler to finish
tdefine PULSE_CNTR_MUM 4 //pulse matching //calculating distance and disabling hardware.

void PlngsStart (Intlé batNum) ;
//Define arguments for phased array functions

tdefine ARRAY—ARGS receiverl, receivaer2, sender, windowDelay //SONAR PATHO FUNCTIONS
//1nitialize for phased array mode and ping
//Define calibration filename for the phased array void PhasedArrayInitandPing();

tdefine CALFILE *phased.cal”
//Calculatethe distance and reset transducers

tinclude <stdio.h» float PhasedarrayFinishPing(};
tinclude <time,.n>
tlnclude <sys\timeb,.h> //Read the time out status.

Boolean TimeOut (void):
class Board

{ //Read the status of the returned echo bit.

0 public: T . Boolean Echofsturn(void);

—

©® Board(Intlé aBaseAddyess); //1nitializes the statistics for time stamps used in logging
void HardInlk{void); //data.
void fullbuplexHardIinit (void); int Logbatalnit (void)

void FullbuplexInit(Int1é sender, Intlé receiver);
void PingLogData (void)
//Tne Following two functions are tests to implement

//PhasedArrayPing void PhasedArrayLogData(void);
void PhasadArrayHardInit (void)
void PhasadArraylinit (Intl1s receiverl, Intlé receiver2, Int1s sender): private:

//Board Level addresses
//BLAGHOTIC FUNCTIONS Int1é basedddress;
//Perform hardware test and report any errors. Int1lé masterRegdddr;
void Diagnostic(void); Intis controlRegladdr;
//CALIBRATIONS FUNCTIONS //Array calibration parameters
//Calibratel xducer (findgain and offset) float myGain:
void Calibrate(Intls batdum); float myottseat;
//Calibrate phased array //Board Level Objects
void ArrayCalibrate(Intts receiverl, Intl6 receiver2, Intlé sender, Counter mastarClock;

Int16 windowDelay) ; Counter openwindow;

Counter closaindow;
//MEASURING DISTANCE FUNCTIONS Counter pulsedatch;
//Do a Ping and use gain and offset to calculate real distance Xducer bat [BAT-CNTI;

float PingMeasure(Intlé batdum);
//Nembers for statistics for time stamping when logging data
//Ping measures distance using one xducer. struct timeb t;

float 2ing{Int1s xducer); struct tm *tblock;

board.h

FILE *filebtr;
int delaytime:

//Detect which version of the board is installed and exit if
//it is not the correct one.
void CheckVersion(void);

//Read the Go signal. The Go signal is active during a distance
//measurement . Se=tGo controls this signal.

Boolean Go (void)

void SetGo(Boolean (0);

//Turn the windowing system on or off.
void SetWindowtods (Boolean mode):

//Read the current status of the window system.
Boolean windowMode (void) ;

//0pen and close window functions.
void WindowStart (Int16 openDelay, Intlé closeDelay):
void WindowEnd (void) ;

//Set interrupt mode on or off.
void SatInterrupt (Bool=an value): |

//Read interrupt mode status.
Boolean GetInterrupt (void)

61D

}i

//Bit map for control register #2. See US-B schematic page 5 of 6
union controlRag2 (

struct (
Byte enable—int H ¥
Byte unused2 H W)
Byte unused3 -1
Byte unused4 - 1
Byte unused5 - 1;
Byte unused6 - L
Byte unused7 E
Byte unused8 c 1

) bits;

Byte data:

}i

$endlif

counter.h

//********i***!‘l***tt*****i*ti**t*i*t*li*i*******ﬁ*t**i**i******i**t**i**til*
s/ Abstract: Ultrasonic Software Version s

//

s, Author:

/7 L R

// Revision History:

// when Revision Who What

sl e e e .

/i 5/28/92 1 M. King Creation *,

//*it*****t**l***&*******&t**ﬂi**t**iit**tf*i****i*********t*i***‘lt*******i**

#1 fndef COUNTER-H
Udefine COUNTER-H

class Counter
{

020

public:
//Set addresses
void softInit (Intlé theAddress , Intl6 theCounterdum);
//Set the mode and initial count
void HardInit (B8yte thedode, Int1é thecount):
//Diagnostic €or a counter
void Diagnose(void);
//Reads the current count
Intl8 Count(void);:
//Reads the status of the mastercClock output to check if there has
//been a time out. This is obsolete now that there is a direct
é/madback function called 8oard:: Timaout .
oolean ZeroCount {void) ;
private:

Int18 myAddress;

Intlsé mydamber;

Intls myControladdress;
Byte myControlData;

//Read the current mode of the counter. SetMode selects the mode.
Byte dods (void) ;
void setiode (Byte thedods) ;

//rites an intial count to the counter.
void SstCount (Int1s thecount):

//Reads the output of the counter.
Boolean Output (void);

//Read the status byte of the counter
Byte status(void);

)i

tendif

//****i******i**ii****t*i**ii****t*tQ*****tt**i****tt**ﬂt**ﬁt**********t**ti*

// Abstract:

/il

// Author:

/7

// Revision History:

// When Revision ¥ho What

/7 2/10/92 1 M.King Creation

R R L

#ifndef Dglobal
#define Dglobal

#ifndef TRUE
#define TRUE 1
#define FALSE 0
#define ERROR -1
#endif

//Number of transducers per board
#define BAT-CNT 4

//INumber of counters on the board
tdefine MAX-OOUNTERS 9

//Dimensions of lookup tables
tdefine CNTR-MAP-SIZE 3
tdefine BAT-MAP-SIZE 1

/llndex macros €or lookup tables
() #define CNTR_MAP_ADD 0
N tdefine cNTR_MAP_REG 1

tdefine REF-NUMBER 2

tdefine CHIRP-CNTR 0

tdefine ECHO-CNTR 1

tdefine UNUSED-CNTR 2

//IDefine ON and OFF boolean values
tdefine ON 1
tdefine OFF 0

//Macros for the GetByte function
#define LSB 1
Xdefine MB 2

//Macros for Xducer::SetPing to select functionality of the transducer
tdefine BOTH 0

#define CHIRP-ONLY 1

Xdefine ECHO—ONLY 2

//IDefine xducer numbers €or phased array ping
tdefine CENTER 1

Xdefine LEFT 0

g$define RIGHT 2

/IDefine delay time before window opens
tdefine PING_OPEN 250

//Define interrupt function arguments

#define INTERRUPT-ARGS void interrupt (*faddr) ()
#define INTERRUPT 0x33

¥define _CPPARGS

global.h

//ILookup table definitions
extern Intl6é counterMap[MAX_COUNTERS] {CNTR_MAP_SIZE];
extern int batMap({ BAT-CNT }[BAT-MAP-SIZE) ;

//Union definitions €or bit-field to byte conversion
//Used with the 8254 counters only.

/7cntrolReg is used €or the Control Word

anion cntrlReg

(

struct
Byte BCD - 1
Byte mode 3:
Byte readWrite : 2;
Byte select - 2;

} bits:

Byte data:

)

//rdBack is used for the Read Back control byte.

//Bits are from the least to most significant. Order is specified
/lin the 8254 data sheet.

union rdBack

{

struct
{
Byte zero - 1;
Byte counterNum 3:
Byte statusLow 1:
Byte countlLow 1;
Byte select :2;
} bits:
Byte data;

}i

//statReg is used for decoding the Status Byte.
//Status byte is defined in the 8254 data sheet.
union statReg

{

struct
{
Byte bcd - 1;
Byte mode - 3;
Byte readWrite : 2;
Byte nullCount - 1;
Byte output - 1;
} bits:
Byte data:

}i

//masterReg is the master control register on the ultrasonic board.
//See the schematics for US-B, page 5 of 6.

//echoReturn goes active when a valid echo is received.

//zero_cnt goes active when the master counter reaches zero. This is
//a timeout.

//chrp_inh 3-0 stop a transducer from Chirping.

//go is active during a distance measurement.

[448)

//wndw_mode IS active when the window mode is activated
union masterReg
(
struct
(
Byte echoRsturn
Byte zero-cnt
Byte chrp_inh3 :
Byte chrp_inh2 :
Byte chrp_inht
Byte chrp_inh0
Byte go
Byte wndw_mode
) bits:

o Y e N Ty Y

Byte data:
bi

//Declare global union variables
extern union cntrlReg controlWord;
extern union rdBack readBack;
extern union statReg statusReg;

//Define global constants
const float SpeedOfSound - 1100.0; //units = tt/sec
const float ClockRate = 1,0e-5; //10us -> 1MHx

//1f this const is TRUE then debugging messages are
//printed to standart out.
const Boolean debug = TRUE;

//The longest possible count before the master counter returns a zero-count.
//The figure corresponds to the number of slow clock cycles needed to measure
/7100 fTeet multiplied by 2 (for a round trip).

//Thiswas found by 2 ¢ 100kHz * [100(ft)/1100(ft/sec))

¢onst Int1s MaxCount = 18200:

//These are the 8254 counter modes.
const Int EventCount = 0;

const Int HdwareOneshot = 1;

const INt RateGenerator = 2;

const Int squareWave = 3:
const Int softwaresStrobe
const Int HdwareStrobe =

= 4;

5;

//Dbefine pulse matching window length
const int PulselLength - 1000;

//Defineversion of the software
const char Thisversion = ’'3’;

//Used to set the statistics for time stamping
statlc char *tzstr = *TZ=PSTSPDT*:

tendi f

global.h

/******'Iltr*tt*t****il’t**i****t*l!***!{****tt*t*'ﬁ*l***i**i*****ti*f*ti-ﬁ*tt**ii

//Abstract: Ultrasonic Board Software Version B

/7
// Author: M.King

/7

// Revision History:

// When Revision Who What

F e e

// 5128192 1 M. King Creation

AL AAAEE AR AR R A AR AR R SRS AR LRSS Rt AR ARttt Rttt At

/* Software Documentation
I. Program Structure

The ultrasonic board software takes advantage of Ctt object
oriented programming and creates objects corresponding to the
various functional blocks on the actual board.

The objects and a short description are as follows:
1. Board : board level object that defines
the base address and the various
counters and registers on the board

2. Xducer : a transducer object defines its address
and its various control registers.
3. Counter : a counter object defines its address,

the actual 8254 chip it belongs to, and
its control word.

Each object is heirarchical. For example, the board object
calls its Ping function which measures a distance. The

Ping function accesses an Xducer object which accesses a
Counter object and so on. Each object gets closer to the
low level commands that directly manipulate the ultrasonic
board hardware.

gZ0

Each object also includes various methods to control the
operation of the hardware or to perform functions.

11. Declared Objects

This is a heirarchical list of all the objects specifically
declared:

Board theBoard
Counter mastarClock
Counter openwindow
Counter closaiindow
Counter pulsapatch
Xducer bat [0.. 3]
Counter chirp

This means that one Board object is declared and named theBoard.
This board object contains 4 counter objects and 4 Xducer objects.
Each Xducer object contains one Counter object -- making a total
of 8 Counters on the board. But because of the object oriented
nature of the program, the Xducer"s counter is isolated from
board level functions.

III. Theory of Operation

The program is designed to operate from the pos command line.

main.h

It must receive a parameter to tell it which function to perform.
IT a parameter is not received, then the program will display
a list of valid parameters.

Available options :
p Ping -- measures raw_distance

1 Loop -- continuous Ping until key pressed
c Calibrate -- calibrate one transducer
m Measure -- measures calibrated distance
f Full Duplex ping -- measure distance using one xducer to send
and one to receive
ap Phased Array Ping -- does path matched ping
ac Phased Array calivbrate -- calibrate array
am Phased Array Measure -- uses array to measure calibrated distance
d Diagnostic -- does an extensive hardware test

The first action taken by the program is the declaration of

a Board object called theBoard. During this procedure all

of the lower level objects are also declared and all of the
objects are soft initialized by their respective Softlnit
function. The soft initialization sets up all the addresses
for the hardware corresponding the software object.

The address of the actual board must be the same in hardware
as well as in the software. All of the offsets of the various
components of the board are already stored in lookup tables
in the Ffile called GLosaL.cPp, This procedure is automatically
performed anytime a Board is declared.

Next, all of the hardware must be initialized. The counters
need modes and starting counts, the control registers need

to be reset, and so on. This is accomplished with the HardInit
function. This needs to be run once before the first time

a distance measurement is taken. Each distance measurement
automatically performs a hardware re-initialization after it
is finished.

After initializing the board and using the lookup tables to
set up the addresses for the objects, the different options
operate as follows:

Ping
Sets a single transducer to chirp and receive echoes,
Then it sets the Go signal active to begin the chirp.
It also opens the window after a short delay to keep
from considering the chirp as an echo. Once the chirp
is Finished, the program polls one of the control registers.
Two bits of this register are important. One goes active
when an echo is returned. The other goes active when
the device times out. If the time out occurs, then the
program displays a time out message and ends. If the
echo return is detected then the Go signal, the transducer,
and the window are disabled. Then the function calculates
the distance using the speed of sound and the delay time
between the chirp and the echo. Then it resets the board
by calling the initialization function.

Full Duplex Ping:
This operates the same as the normal Ping function except that
it used one transducer to chirp and one to receive the echoes.

Phased Array Ping
This operates basically the same as the normal Ping
function because the actual path matching is implemented
on the board itself. However instead of using just one

¥Zo

transducer, this function uses three -- one to chirp and
two to receive echoes. Since the path length matching is
implemented in hardware, the rest of the function operates
similar to the Ping function. The main difference is that
this function has more control bits to set because of the
greater number of transducers used.

The path length matching is simple. As soon as one echo
is received, then a short window is opened. The other
transducer®s echo signal must occur while this window is
open for an echo to be considered valid. If it does not,
then the window is reset and the board waits for the next
echo.

Calibrate :
This option calibrates a transducer assuming a
linear error. It takes two distance measurements
using the Ping function. Then the user must input
the actual distance measured. Then the program will
calculate the gain and the offset of the transducer
and store it in a file. File names for the transducers
are of the form *bhatt.cal*, where the ¢ is the
transducer number. Each transducer has its owmn file.
The XDUCER.H source code contains the definition for
the filename. The Ffile for the phased array is called
*phasad,.cal® and is defined iIn 80ARD.H.

The Measure option uses this data along with the Ping
function to calculate the actual distance.

Diagnostic :
This function tests all of the hardware on the board.
First it writes 0x0 to all of the control registers.
Then it reads them back. If they are still 0x0, then
the component is operating correctly, if not oxo, then
an error 1is reported.
Because of the hardware, it is impossible to test each
counter to see if it counts using just software. However,
the program does read/write tests of all the counters
and reports any errors.
Finally, a test Ping using the center transducer, and
a full Phased Array Ping are performed.

IV. Operation with iR¥X Real Time Operating System

As of 6/3/92 the software still polls the board to see when an
echo is received. This will be changed to work with an interrupt
later. The iRMX version of the softwarewill initiate a Ping

or other distance measurement and then sleep until an interrupt
from the board occurs. Then it will determine whether a valid
echo or a time out occured. If a valid echo is detected, then
the program will send the data to an ig&H¥ mailbox for processing.

v. Differences Between Version A and Version B

The Us_a and US-B boards are significantly different in design,
so two versions of the software exist. There is an automatic
version checking function so that the software will not operate
if the hardware is mismatched.

There are many differences in the hardware. USA has fewer control
registers and more 8254 counters than US—B. US-B is a more recent
design that incorporates path-length matching of the echoes

to eliminate multi-path errors in the distance measurements. So

main.h

the software takes this into account. The lookup tables for the
addresses of the objects change drastically from US-A to US-B.
Also, Us_a does not have a phased array ping function implemented.

End Documentation */,

//it***lﬁ*t***i**t*tt***i*i**ti*tt*t***t*ttt************i***f******ti****t**

// Abstract: Ultrasonic Board Software Version B

/7

/+ Author:

1/ o B

// Revision History:

7/ When Pevision ¥Who What

Py e e e
// 5128132 1 M. King Creation

SR E R E KKK H KK KA F KA K A KA KA K I F R I AR I FF AR KX A R A AR KT R A A kK IR Kk X R KK Tk H %

#itndet Dxducer
#define Dxducer

//WAXLENGTH IS max Filename length plus NULL terminator
#define MAXLENGTH 13

//Define the parts of the calibration filename
#define NAME "bat”
$define EXTENSION *.cal®

//Define initial chirp counter value
tdatine INITIAL—COUNT 2

class Xducer
{

pupl iC:

//Variables €or calibration
float gain;
float oftsat;

0

P //Set up addresses

n void softinit(Intis theBoardBase, INt anXducardum);
//Turn Ooff xducer and set initial delay.
void HardInit (vaid);
void FullbuplexHardInit (void);
//CALIBRATION FUNCTIONS
//Write gain and offset calibration info to a file.
void WritecCalibration(void);
//DIAGNOSTIC FUNCTIONS
//Register diagnostic
void biagReg{int value);
//Test the xducer®s control register and counter.
void DiagnosaRagister{vold);
void DiagnoseCounter (void)
//Sets control registers properly €or a distance measurement
void setPing(int select, Boolean on);
//Set the EN-ECHO and inhibit signals accordingly.
void Setfcho_Inhibit {int select, Boolean on);
//Set the chirp and inhibit signals accordingly.
//Same as xducer::Setfing except doesn"t reset the echo.
void setChirp_Inhibit (int select, Boolean on);

private:

Counter chirp;

xducer.h

Intlé myRegAddr;

Intlé masterBegAddr;

int xducertum:

char mycalFile (MAXLENGTH) ; //Calibration filename

//Echo functions to set or read the xducer"s echo enable bit.
Boolean GetEcho(void)
void SetEcho(Boolean value);

//Chirp functions to set or read the xducer®s chirp enable bit.
//The Inhibit functions set or read the chirp inhibit bit.

void SetcChirp(Boolean value):

Boolean GetChirp(void):

Boolean GetInhibit (void)

void SetInhibit (Boolean value);

i

//Xducer control register. Bits from LSB to MSB.
//822 US-B schematics page 5 of 6.
inion Xreg

struct

{
Byte en—echoO
Byte en—echol
Byte en—echo2
Byte en—echo3
Byte en_chrpo
Byte en—chrpl
Byte en—chrp2
Byte 2n_chrp3l

) bits; yt

PRRREERR

Byte data;

tendif

Appendix D:

The following are schematics of the transmitting and receiving circuits, made of discrete
components.

DI

[4¢

Polaro
Trans

d Piez ﬂ@ Amplifier

Figure 1l: Recpiwspr Circuilt

OSCILLISCOPE
Ul

v
}_\
Sl

€d

Figure 2: Transmitter Circuit
VCC
L
T
o0
s D2
D :L m Polaroid]
Electrostatic
Transducer .
Signal Transformer
Generator /Mﬁ/ D3
QL
: :

Ccl

Appendix E:

The following graphs contain data from the ultrasonic transducer Experiment I. The attenuation

of signal received was measured at transmitting frequenciesranging between 25 and 60 kHz, at 5
kHz increments.

El

Attenuation (dB)

-8.00

-9.00
-10.00
-11.00
-12.00
-13.00
-14.00
-15.00
-16.00
-17.00
-18.00
-19.00
-20.00
-21.00
-22.00
-23.00
-24.00
-25.00

|

Experiment | (2 meters)

25.00

30.00

35.00

40.00

E2

45.00

50.00

test.2meters

Frequency (kHz)

Attenuation (dB)

Experiment | (10 meters, 225 kHz)

-34.00

-35.00

-36.00

-37.00

-38.00

-39.00

-40.00

-41.00

-42.00

-43.00

-44.00 /
-45.00

-46.00

-47.00

\\\

-48.00

30.00

40.00

E3

50.00

60.00

test. 10meters.225

Frequency (kHz)

Attenuation (dB)

-34.00

Experiment | (10 meters, 400kHz)

-35.00

-36.00

-37.00

-38.00

-39.00

-40.00

-41.00

-42.00

-43.00 /
-44.00

-45.00

-46.00

-47.00

-48.00

25.00

30.00

40.00

45.00

test. 10meters.400

Frequency (kHz)

	Abstract
	1 O Introduction
	2.0 System Overview
	2.1 Modes of Operation
	2.2 Window Mode

	3.0 Hardware Documentation
	3.1 Summary of Signal Names
	3.1.1 PC Interface Signals
	3.1.2 Address Decode Signals
	3.1.3 Sonar Related Signals

	3.2 Functional Block Diagram
	3.2.1 PC Interface
	3.2.2 Address Decode for Control Registers and Counters
	3.2.3 Return Echo Processing and Xducer Control
	3.2.4 Xducer Counters
	3.2.5 Master Timer and Window Control Counters
	3.2.6 Control Signal Latches and Readback 3-state Buffers
	3.2.7 Crystal and Div
	3.2.8 IRQ7 Generator

	3.3 Paddle Board

	4.0 Software Documentation
	4.1 Theory of Operation
	4.1.1 Ping
	4.1.2 Phased Array Ping
	4.1.3 Calibrate
	4.1.4 Diagnostic
	4.1.5 Interrupts

	4.2 Operation with a Real Time Operating System

	5.0 Ultrasonic Transducer Modifications

