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Abstract

Motivation: A common objective of microarray experiments is the detection of differential gene

expression between samples obtained under different conditions. The task of identifying differen-

tially expressed genes consists of two aspects: ranking and selection. Numerous statistics have been

proposed to rank genes in order of evidence for differential expression. However, no one statistic is

universally optimal and there is seldom any basis or guidance that can direct toward a particular

statistic of choice.

Results: Our new approach, which addresses both ranking and selection of differentially expressed

genes, integrates differing statistics via a distance synthesis scheme. Using a set of (Affymetrix)

spike-in data sets, in which differentially expressed genes are known, we demonstrate that our

method compares favorably with the best individual statistics, while achieving robustness proper-

ties lacked by the individual statistics. We further evaluate performance on one other microarray

study.

Availability: The approach is implemented in an R package called DEDS, which is available for

download from http://www.biostat.ucsf.edu/jean/DEDS.htm.

Contact: mark@biostat.ucsf.edu

1 Introduction

Microarrays have become increasingly common in biological and medical research. They enable

the simultaneous study of thousands of genes and afford unprecedented ability to provide gene

expression information on a whole genome level. There are several types of microarray technology

including spotted arrays (DeRisi et al. (1996)) and high-density oligonucleotide chips (Lockhart

et al. (1996)). The reader is referred to Schena (2000) and Bowtell and Sambrook (2003) for a

more detailed introduction to the biology and technology underlying microarrays.

Microarray experiments generate large and complex multivariate data sets which present numerous

data analytic challenges. These include, firstly, adjusting for the many sources of variability arising

from probe and target preparation, array fabrication, and imaging; secondly, devising methods that

are geared to the novel data structures – thousands of inter-related variables (genes), small sample

sizes (arrays), and little or no replication; and lastly, where needed, accommodating multiple testing

concerns. These complexities call for robust and integrated analysis tools to enhance reliability and
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efficiency.

A very common data analytic goal is the identification of important genes amongst the many

for which expression measures have been obtained. Importance typically corresponds to associa-

tion with a response of interest. When we are contrasting expression between different groups or

conditions (i.e. the response is polytomous), such important genes are said to be “differentially

expressed” (DE). The task of identifying differentially expressed genes can be divided into two

aspects: ranking and selection. Ranking requires specification of a statistic or measure which cap-

tures evidence for differential expression (DE) on a per gene basis. Selection requires specification

of a procedure (e.g. stipulation of a critical-value) for arbitrating what constitutes “significant”

DE. Ranking is fundamental and, arguably, is easier than selection. The primary importance of

ranking arises from the fact that only a limited number of genes can be biologically validated from

follow-up experiments, these being necessary to affirm DE in view of the present maturity of mi-

croarray measurements. The goals of this paper are to develop and illustrate a novel approach to

ranking and selection that integrates differing measures of DE.

The paper is organized as follows. Section 2 presents a brief overview of some recently proposed

methods for identifying DE genes in multiple-array experiments. Our proposed approach, Differ-

ential Expression via Distance Synthesis (DEDS), is presented in Section 3. We apply the method

to two different data sets and present results in Section 4. Finally, Section 5 discusses our findings,

extensions and open questions.

2 Existing Methods for Detecting DE Genes

The importance of developing new data analytic techniques to effectively identify differentially

expressed genes is illustrated by the appreciable effort and literature dedicated to this area. We

will overview several customized approaches to both aspects of DE detection with an emphasis on

ranking.

2.1 Ranking Genes

For simplicity, and without loss of generality, we focus on a dichotomous response; i.e., deal with

two-group comparisons. We designate the groups as treatment (T ) and control (C). One may
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consider the question of ranking genes in terms of DE in a discriminant analysis framework, i.e.

consider DE genes as “features” or “variables” that best separate groups T and C (Ghosh (2003)).

However, such approaches are focused on class prediction, and the rankings of genes so obtained

are strongly influenced by between gene dependencies and feature selection strategies, so that

individual gene DE is at best a by-product. For this reason, we limit our discussion to more direct

approaches which assess differences between distinct groups on a single-gene basis, and we focus on

those methods that we subsequently apply and describe the classes of statistics that they represent.

For two-channel competitive hybridization experiments, we assume that the comparisons of log-

ratios are all indirect; that is we have nT arrays in which samples from group T are hybridized

against a reference sample R, giving nT log-ratios MTi
= log2(Ti/R); i = 1, . . . nT , and similarly we

get nC log-ratios MCj
= log2(Cj/R); j = 1, . . . nC from group C. For Affymetrix oligonucleotide

array experiments, we have nT chips with gene expression measures from group T and nC chips

with gene expression measures from group C.

Fold Changes and t-Statistics

The simplest gene ranking method is based on the fold change (FC) (i.e., ratio) in expression

means between the two groups. Thus, for each gene, we compute the difference between (log)

means FC = MT − MC , where MT = 1/nT

∑nT

i=1 MTi
and similarly for MC . While use of FC is

conceptually appealing, ranking genes based on fold change alone implicitly assigns equal variance

to every gene.

In contrast, the t-statistic defined as

t =
MT − MC

sp

√

1/nT + 1/nC

,

where sp is the pooled standard deviation, takes into account differing gene-specific variation across

arrays. Use of t-statistics is also widespread in assessing DE (Dudoit et al. (2002)). However, as

indicated next, some care is needed in accommodating variation.

Penalized Statistics

The primary shortcoming of using t-statistics for ranking genes lies in the unstable variance esti-

mates that arise when sample size is small. Such small sample sizes are common occurrences in

micorarray experiments due to high costs and/or resource (RNA) limitations. Relatedly, with tens
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of thousands of t-statistics (corresponding to tens of thousands of genes) there is frequently a num-

ber of large t-statistics driven by very small denominator standard deviations (sp’s), even though

their numerators, measuring expression differences M̄T − M̄C , may also be small. To overcome

these shortcomings a variety of approaches have been proposed to provide a more reliable variance

estimate; they can be categorized into two groups. The first group consists of variance stabilizing

functions, and the second group contains error fudge factors and Bayesian methods. The former

seeks to decouple the mean-variance dependency by modeling the variance of the expression of a

gene as a function of the mean expression of the gene (Rocke and Durbin (2001); Huber et al.

(2002); Jain et al. (2003)).The latter regularizes the t-statistics by inflating their denominators:

ta =
MT − MC

a + sp

√

1/nT + 1/nC

.

There are differing ways of motivating such penalization and, accordingly, of estimating the penalty

parameter a. What unifies these approaches is the (sometimes implicit) desire to utilize between

gene information rather than relying solely on individual (within) gene information as afforded by

t-statistics. What distinguishes them is the formalism invoked in applying information sharing. At

one end are somewhat ad hoc methods that avoid modeling between-gene relationships such as SAM

(Significance Analysis for Microarrays; Tusher et al. (2001)). At the other are Bayesian approaches

(Newton et al. (2001)) with empirical Bayes methods along the way (B-statistics, Lönnstedt and

Speed (2001)). Smyth (2004) extends and resets the hierarchical Bayesian model of Lönnstedt and

Speed (2001) in the context of general linear models, and uses the moderated (penalized) t- (or F)

statistics for inference about contrasts of biological interest.

Mixture Models

These Bayes and empirical Bayes approaches are arrived at via mixture models: it is postulated

that we have a mixture of non-DE and DE genes with the latter group sometimes refined into

up- and down-regulated components. Often mixing of these components is done at the level of

one-dimensional, gene-specific summary statistics (Efron et al. (2001); Lee et al. (2000); Pan et al.

(2002); Allison et al. (2002); Ghosh (2004)). Newton et al. (2004) argue that efficiency and sensi-

tivity gains may be realized by effecting mixing on the gene expression (mean) values themselves,

rather than on derived summaries. They develop so-called semi-parametric hierarchical mixture

models (SHMMs) that have a number of features. Firstly, they are flexible (non-parametric) where
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data are rich (lots of genes) and parametric where data paucity mandates assumption making (few

replicates per gene). Secondly, the provision of per gene posterior probabilities of DE allows a

straightforward approach to calibration in terms of false discovery rates (see below). Arguably,

the main limitation surrounding the SHMM approach is the adequacy of the parametric model.

Recognizing this, Newton et al. (2004) provide graphical diagnostics (stratified Q − Q plots) for

assessment of their chosen (gamma) model with their accompanying software.

Linear (Mixed) Models

In an effort to explicitly accommodate factors systematically impacting microarray gene expression

values, a number of linear model/ANOVA based approaches have been advanced. Kerr et al. (2000)

use fixed effect ANOVA models for logged intensities (single channel measurements) including terms

for dye, array, treatment and gene main effects, as well as select interactions between these factors.

By assuming a common variance across genes, a pooled (over genes) analysis is enabled, with large

attendant increases in degrees of freedom for error variance estimation. However, there will likely be

appreciable erosion of these degrees of freedom in order to accommodate interaction terms needed

to “recover” the adjustments afforded by use of log ratios in two channel settings. To overcome the

(strong) common variance assumption Jin et al. (2001) and Wolfinger et al. (2001) adopt mixed

model ANOVA formulations, performing gene-by-gene analyses treating factors such as dye and

array as random effects.

2.2 Ascribing Significance

Subsequent to gene ranking comes selection – the task of declaring which genes are significantly

differentially expressed. Informal approaches include graphical examination of the ranking statistics

via Q − Q plots, whereas more formal approaches involve testing suitably constructed (joint) null

hypotheses of equal expression (non-DE). Such joint formulations are mandated by the multiple

testing concerns that follow from evaluating thousands of genes. Two main approaches to this

problem have emerged. One seeks to control family-wise type I error rates (see Dudoit et al.

(2002), Ge and Dudoit (2002)), using step-down Bonferroni correction (Westfall and Young (1993)).

The other (Efron et al. (2000),Tusher et al. (2001), Storey (2002)) extends the false discovery rate

(FDR) ideas of Benjamini and Hochberg (1995). Detailed discussion and comparisons of competing

approaches to multiple testing correction are deferred to Dudoit et al. (2003) and Storey et al.

(2002).
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3 Differential Expression via Distance Synthesis

It is immediately apparent from Section 2.1 that there are numerous statistics available for ranking

genes as a prelude to arbitrating DE. Furthermore, selecting the best statistic or ordering statistics

in terms of merit is problematic due to the complexity of the variability structure present in all

microarray data. Performance characteristics (e.g. efficiency, robustness) of two-sample statistics

depend on data attributes such as underlying distribution(s) and nature and extent of outliers

and/or contamination. To date, there has been no delineation of such attributes for microarray data,

making pre-selection of the theoretically “best” statistic problematic. Likewise, no comparisons

across a sufficiently wide range of benchmark data sets have been undertaken. In general, there

has been a lack of microarray experiments specially designed for assessing DE gene identification.

Such experiments often require careful inclusion of spike-in controls. In addition, there is a lack

of a large scale independent validation using quantitative approaches, such as Northern Blotting

or RT-PCR. Hence, investigators must make rather arbitrary choices when deciding which ranking

statistic to use. It is in part to eliminate some of this arbitrariness but primarily to borrow strength

across related measures that we propose synthesizing DE ranking schemes.

A somewhat related approach is that of Pareto Fronts (PF, Fleury et al. (2002)). Briefly, by

regarding the set of measures as defining a multivariate point cloud (points corresponding to a

gene’s vector of measures) and employing a standard (coordinate-wise) partial order, a set of “non-

dominated” (Pareto-optimal) genes is identified. In our context these could include genes ranked

(for DE) very highly by one measure but very lowly by another.

We now sketch our approach to detecting differential expression via distance synthesis (DEDS).

We also begin with the multivariate point cloud with a point corresponding to a gene’s vector

of DE measures. Rather than employing partial order, we exploit the fact that all measures are

attempting to capture DE and synthesize (reduce to a scalar) as follows. Firstly, we define an

“extreme point”. Without loss of generality, assume that large values of all measures indicate

DE. Then the extreme point is a vector of coordinates, each of which is the overall maximum

of both observed and permuted values of that measure. Note that the extreme point may not

correspond to any observed point. Next, the distance from all points to the extreme is computed.

Intuitively, those points closest to the extreme are most likely to correspond to DE genes, but,

we need to calibrate “close”. This is done by generating null referent distributions analogously
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to the methods Tibshirani et al. (2001) devised for calibrating gap statistics. Figure 1 provides a

graphical illustration of the motivation behind DEDS. Specifically, panel (b) represents a common

occurrence where the concordance between two DE measures (M1 and M2 in the plot) is relatively

low (compared to panel (a)). We hope by measuring the distance of spots to the “extreme point”

in the direction of DE and therefore taking both measures into consideration, the rankings of the

genes that show discord between measures (blue spots in Figure 1(b)) will be lowered to a certain

extent. The steps for calculating DEDS and selecting DE genes are detailed in Box 1.

*** Place Figure 1 about here ***
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Box 1: DEDS – Permutation Based Algorithm

Calculating DEDS

1. Apply j = 1, . . . , J appropriate (DE measuring) statistics tj to each of i = 1, . . . , N

genes in the target data set yielding values tij. Without loss of generality, assume larger

values indicate increased DE. Let the (observed) coordinate-wise extreme point be E0 =

(maxi(ti1), . . . ,maxi(tiJ )).

2. Locate the overall (observed, permutation) extreme point E:

(a) Obtain b = 1, . . . , B permuted data sets by randomly assigning nT arrays to class “T”

and nC arrays to class “C”. For each permuted data set recalculate the J DE statistics

for each of the N genes yielding tbij and store the results (see below). Obtain the

corresponding coordinate-wise maximum as above: Eb = (maxi(t
b
i1), . . . ,maxi(t

b
iJ)).

(b) Obtain the coordinate-wise permutation extreme point Ep by maximizing over the B

permutations: Ep = (maxb(Eb1), . . . ,maxb(EbJ)).

(c) Obtain E as the overall maximum: E = max(Ep, E0).

3. Calculate a distance d from each gene to E. For example, one choice for a scaled distance

is

di =
(ti1 − E1)

2

MAD(t1)2
+

(ti2 − E2)
2

MAD(t2)2
+ . . . +

(tiJ − EJ)2

MAD(tJ)2
,

where MAD is the median absolute deviation from the median. Order the distances:

d(1) ≤ d(2) ≤ . . . ≤ d(N).

Assessing DE Significance

1. Using the stored statistics for each permuted data set b, analogously compute distances

for each gene. Order the distances: db
(1) ≤ db

(2) ≤ . . . ≤ db
(N).

2. For the ith gene as ordered by the original d, define “falsely called genes” for each of the B

sets of permutations as those genes, whose db
(j) satistfy: db

(j) ≤ d(i), j = 1, . . . , N . Compute

the median number of falsely called genes among the B sets of permutations.

3. The q value that controls FDR for the ith ordered gene is computed as the median of the

number of falsely called genes divided by the number of genes called significant (i).
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4 Illustrative Examples

We evaluate the performance of our proposed method, DEDS, on two diverse data sets, each featur-

ing a number of sub-studies. Both two-channel spotted arrays and one-channel Affymetrix arrays

are represented, as are situations with minimal and considerable DE anticipated. Furthermore, the

inclusion of a spike-in experiment permits assessment in the rare setting where a gold standard (a

set of known DE genes) is available.

4.1 Study 1: Affymetrix Spike-in Experiment

4.1.1 Data Description

The spike-in experiment represents a portion of the data used by Affymetrix to develop their MAS

5.0 preprocessing algorithm. Here we utilize both MAS 5.0 and RMA (Irizarry et al. (2003)) probe

level summaries in order to showcase a robustness property of DEDS. The data features 14 human

genes spiked-in at a series of 14 known concentrations (0, 2−2, 2−1, . . . , 210 pM) according to a Latin

square design including 12612 null genes. Each “row” of the Latin square (given spike-in gene at a

given concentration) was replicated (typically 3 times, two rows 12 times, 59 arrays in total). Fur-

ther details are available at http://www.affymetrix.com/analysis/download_center2.affx.

We analyze this data set as 91 (=
(14

2

)

) pairs of two-sample comparisons corresponding to all

pairwise comparisons of differing concentrations.

4.1.2 Results

The use of spike-ins allows computation of receiver operating characteristic (ROC) curves since we

know which genes are DE and which are null. For each two-sample comparison, we compute five

different DE measures: FC, t statistic, a moderated t statistic that coincides with the B statistic

(Lönnstedt and Speed (2001)), SAM with the standard deviation penalty a taken as the median

(over all genes) within gene standard deviation, and our synthesized measure (DEDS) based on the

first four statistics.

Thus, we obtain 91 ROC curves for each of the 5 measures. ROC curves are created by plotting

the true positive rates versus false positive rates. The summary ROC curves as presented in

Figure 2 are just averages of the 91 individual curves. The two panels of Figure 2 correspond
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to differing approaches for probe level summarization: panel (a) uses RMA while (b) uses MAS

5.0. Contrasting panels, the ensemble of ROC curves affirms the findings of the RMA developers

(Irizarry et al. (2003)) that RMA summaries improve accuracy without sacrificing precision, relative

to MAS 5.0. However, more important from the present standpoint, is that even though for each

approach to probe level summarization there is one measure that performs relatively poorly (t

statistics for RMA, FC for MAS 5.0), in both settings DEDS performed well. Thus, by utilizing

several DE measures in the analysis of the spike-in experiment, DEDS is able to not only perform

competitively with the best, but is also not adversely affected by the worst. And, of course, in

practice we do not know a priori which measures will be suitable, as the spike-in data exemplifies.

*** Place Figure 2 about here ***

Furthermore, two array groups among the 14 array groups contains 12 replicates. This subset of

data were used to evaluate the ability of DEDS in determining the correct cutoffs for declaration

of differential expression. We apply the permutation procedure described in Box 1 to simulate the

DEDS reference distribution and thereby estimate the number of differentially expressed genes.

Controlling the FDR at 0.01, 16 genes are found to be differentially expressed, 11 out of which are

among the 14 true DE genes. The top 20 DE genes have 13 of the 14 genes selected. The gene

that is not detected is the most “difficult” one, since it is spiked in at the two lowest concentrations

(0 pM, 0.25 pM). This represents an extremely low log-ratio / log-intensity for microarray based

detection. No other DE statistic was able to detect this gene.

4.2 Study 2: Spt Splicing (SPT) Experiment

4.2.1 Data Description

The SPT experiment consists of 22 two-channel spotted oligonucleotide splicing arrays (Clark et al.

(2002)). The primary goal of this experiment is to investigate the roles of eukaryotic chromatin

elongation factors, Spt4-Spt5, in splicing (Hartzog et al. (1998)). We have analyzed a spt4 null

mutation spt4∆, and three partial loss-of-function spt5 mutations, spt5-194, spt5-242 and spt5-4.

In addition, we include analysis of ceg1-250, a temperature-sensitive mutation that causes rapid

inactivation of the capping enzyme at non-permissive temperature (Fresco and Buratowski (1996)).

Two independent mRNA samples are prepared for each mutant and a pair of dye-swap experiments
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are performed for each mRNA sample. Figure 3 shows a graphical representation of the actual

experiment which includes 4 hybridizations between each mutant (mut) and wild-type (wt) and an

additional two self-self hybridizations of the wild-type.

To distinguish between spliced and unspliced transcripts for intron-containing yeast genes, oligonu-

cleotide probes on these arrays were designed to detect splice junctions (SJ), introns (Int) and

second exons (Ex) of spliced genes. After normalization, array measurements are summarized into

two indices that capture splicing alterations (Clark et al. (2002)). The intron accumulation (IA)

index assesses the change (relative to wt) of the intron probe signal in the mutants, normalized by

the change in the corresponding exon. This is defined as

IA index = log
mutInt/wtInt

mutEx/wtEx

.

Similarly, the splice junction (SJ) index, defined as

SJ index = log
mutSJ/wtSJ

mutEx/wtEx

,

measures a similarly normalized gain or loss of the splice junction probe signal in the mutants. A

total of 254 SJ indices and 263 IA indices are formed. Details of this experiment can be found in

Xiao et al. (2004).

*** Place Figure 3 about here ***

4.2.2 Models

To effectively analyze the splicing data, we apply five competing statistical models for evaluating

DE and the synthesized measure DEDS. The nested experimental design of the splice mutant study

illustrated by Figure 4 motivates the use of four different mixed ANOVA models described next.

Furthermore, the limited amount of replication coupled with the small number of genes makes the

semi-parametric mixture model (Newton et al. (2004)) appealing for conceptual reasons. Thus, we

apply five individual statistics separately and identically to the SJ and IA indices and subsequently

investigate their fusion via DEDS.

Distinguished by including wild-type self-hybridizations or not, DE assessment can be pursued by

either one-sample (4 SJ or IA mutant indices per gene corresponding to the 4 replicate hybridiza-
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tions) or two-sample (4 SJ or IA mutant indices vs. 2 SJ or IA wild-type indices) comparisons. A

more detailed discussion of the difference between the direct (one-sample) and indirect (two-sample)

comparisons can be found at Speed and Yang (2002). In addition to the above two approaches,

we also consider another two approaches distinguished by allowing gene-specific variance hetero-

geneity or not. This latter case imposes the assumption that all genes exhibit a similar degree of

variability and so can be jointly analyzed using a common estimate of error variance. This pooling

dramatically increases error degrees of freedom (df ). The former approach, on the other hand, does

not impose the common variance assumption, allowing different variances for different genes. The

resulting model is then fitted gene by gene. So, we have a 2 × 2 factorial of approaches, indicated

by Models I - IV in Table 1).

*** Place Figure 4 about here ***

In addition to these four models, we also employ Newton et al. (2004) semi-parametric hierarchical

mixture model (SHMM) (Model V in Table 1; see Section 2). Further details concerning the fitting

of the five different models and the comparisons are provided in Xiao et al. (2004).

4.2.3 Results

Figure 5 displays a scatter plot matrix of − log10 (p), where p either corresponds to the Model I

through IV unadjusted p-value for tests of DE or to the Model V posterior probability for non-DE

for mutants ceg1-250 (panel (a)) and spt4∆ (panel (b)). Note that by relating Model I through IV

results to Model V results we may seemingly be perpetuating the “severe pedagogical problem of

misinterpreting p-values as posterior probabilities” (Berger et al. (1997)). However, this is not the

case. At no stage do we make probabilistic statements in terms of these quantities. Rather, they

simply constitute a quantification of DE. The large number of DE genes anticipated for mutant

ceg1-250 is evident in Figure 5(a) (note the scales) and we observe high correlations between the

five models. By contrast, minimal DE is anticipated for spt4∆ and results from the different models

show this along with much lower agreement (panel (b)). The fact that Model V conforms more

closely to the homoscedastic models (I and III) than to the heteroscedastic models (II and IV) is

not surprising, since the SHMM utilizes information sharing between genes which is absent for the

gene specific heteroscedastic models.
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*** Place Figure 5 about here ***

Here is a situation where there is no clear advantages of one model over the others. Therefore,

rather than trying to arbitrate between models and pick a single model on which to base DE

rankings and declarations, or informally distilling sets of genes that are DE under two or more

models, we employ DEDS as a robust means for synthesizing results and compare its performance

with individual models.

As the sample sizes are too small (4 vs 2 for the two-sample statistics) to employ an effective

permutation scheme, we elect to use p-values for the calculation of DEDS distances. The observed

distances are then calibrated against expected values under the referent null distribution, which is

simulated by drawing from marginal uniform U(0, 1) variates with correlation structure conforming

to the observed data; see Tibshirani et al. (2001). The algorithm is further motivated analogously

to the mixture model approaches described in Section 2.1 but on the p-value scale, with non-DE

corresponding to uniformity. Figure 6(a) and (c) show histograms of the p-values from Model I

applied on ceg1-250 SJ indices and p-values from the Affymetrix spike-in experiment (see Section

4.1). The dashed lines are the frequency we would expect when all genes were null. As can be seen,

there are many DE genes in (a) but minimal DE genes in (c). Further details of the algorithm are

provided in Supplementary Data A.

*** Place Figure 6 about here ***

Critical to ascribing DE is appropriate specification of cutoffs. Table 1 compares the numbers of

genes achieving significance under FDRs of 0.01 and 0.05 for the five models and DEDS for mutant

ceg1-250. Immediately striking are the differences in numbers of genes declared DE by the different

models. While this can be attributed in part to differing operating characteristics, it serves to

showcase how sensitive results are to statistic choice.

Here, evaluating differences in DE determinations by the different models is problematic since we

have no gold standard and, unlike the spike-in study, we do not know which genes are truly DE.

However, as DEDS synthesizes over individual statistics, we believe its rankings of genes to be more

“robust” than single measures. To examine this, we have defined and compared the characteristics

of the top DE genes for ceg1-250 SJ indices by DEDS and the five individual DE models. As

mentioned, ceg1-250 is known to profoundly affect splicing and accordingly we treat the top 133

genes from each model as ‘significantly” DE. While this number is somewhat arbitrary, the flavor
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of the results below is not overly sensitive to this specification. We then classify genes into three

major groups. Group I consists of DE genes by DEDS; group II contains non-DE genes by all

six models. Group III is comprised of genes that are non-DE by DEDS but DE by one or more

single measures and genes in this groups are further separated into different classes as illustrated

in Figure 7(a). To aid comparisons between genes of different groups, we display three-dimensional

scatter plots between different models. Plotted on all axes are −log10p of the corresponding models.

Group I genes, represented by black spots, illustrate good concordance among DE models; whereas

group III genes, represented as colored numbers, lie mainly off diagonal, indicating that such genes

are ranked higher in one measure than the others. Thus, by ascribing high rankings to genes that

exhibit agreement on DE among different measures and low rankings to genes that demonstrate

discord among related measures, DEDS arguably provides a more robust gene ranking.

*** Place Figure 7 about here ***

5 Discussion

In this paper we have reviewed various statistical methods for the identification of differentially

expressed genes in replicated microarray experiments. Additionally, we have advanced a novel

method (DEDS) for this purpose. The DEDS algorithm synthesizes statistics or methods that

estimate the same quantity of interest. The underlying principle behind DEDS is that genes that

are highly ranked by different measures are more likely to be truly differentially expressed than

genes that rank highly on a single measure.

Consider three widely used measures as an example: FC, t and SAM. The major limitations sur-

rounding FC and t are the “equal denominator” and “small denominator” problems respectively.

Concerns surrounding SAM include criteria for, and accuracy of, estimates for the penalty parame-

ter a. Another problem is that with tens of thousands of statistics calculated, there is frequently a

set of genes possessing large statistics for one measure only, these arising by chance and/or because

of shortcomings associated with the measures. Such genes are likely to be “false positives”. The

advantage offered by DEDS over single measures is that, by combining over measures, such false

positives are ranked lowly and become “true negatives”. Therefore, the set of DE genes obtained

via DEDS tends to be robust against limitations associated with individual measures.
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The intuition behind DEDS simply draws on the concept of intersection, i.e. it attempts to select

genes that are ranked highly on all measures. However, there is a clear distinction between DEDS

and a simple intersection of results from individual measures, which treats the measures as indepen-

dent. To further illustrate such differences, we use an additional data set of 6320 genes for which,

due to the nature of the comparison groups, we anticipate substantial DE. The data derives from a

study of cardiomyopathy in transgenic mice as influenced by overexpression of a G protein-coupled

receptor, Ro1 ; details are provided in (Redfern et al. (2000)), while details on fitting of the various

DE measures is available in Supplementary Data B. Figure 8 displays a volcano plot between two

measures: FC and t statistics for the Ro1 data. The categorization of genes here is similar to

Figure 7. Black points are the top 905 genes selected by DEDS, and the gray ones are those failing

to be among the extremes (top 905) of any measures. The horizontal and vertical reference lines

are the cutoff values estimated using t statistic (|t| ≥ 2.98) and FC (|FC| ≥ 0.66) respectively.

Classes 1 (red), 2 (cyan) and 3 (blue) are genes that are extreme in single measures, FC, t or SAM,

only and their occurrences are possibly due to limitations associated with each measure. A simple

intersection treats all measures as independent; thus, it will select only the genes from areas A and

B. On the other hand, DEDS extends the intersection idea by considering all DE measures simul-

taneously, implicitly taking their correlation into account, thereby giving rise to a less stringent

criteria and possibly a lower false negative rate.

*** Place Figure 8 about here ***

Natural questions that arise in using DEDS are choices of component DE measures and the distance

metric. For the former, we have found that synthesizing t, FC and a penalized statistic, such as

SAM, gives good performance for all data sets we have analyzed using DEDS. To investigate whether

including highly correlated measures increases variation and so erode the efficiency of DEDS, we

applied DEDS on the Affymetrix spike-in RMA data by synthesizing 2, 3 or all 4 measures from t,

FC, SAM and moderated t. We have observed stable performance of DEDS as the obtained ROC

curves for all combinations were largely overlapping. With regard to choice of distance metric, we

recommend using a distance scaled according to variation of the component statistics so that DEDS

results are not dominated by a single measure. In addition, even though we have demonstrated

good performance of DEDS in the assessment of DE, it should be noted that sufficient replication

is still the key in obtaining power and stability in analysis, and DEDS is not a panacea for poorly

replicated experiments.
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Finally, the DEDS method proposed in this paper is implemented in a R package (Ihaka and

Gentleman (1996)) DEDS (Differential expressed via distance synthesis), which may be downloaded

from http://www.biostat.ucsf.edu/jean/DEDS.htm.
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Table 1: A summary of the five competing DE models and the estimated number of DE genes from
each model.

Model No Model Description FDR 0.01 FDR 0.05 FDR 0.05
ceg1-250 ceg1-250 spt5-194

I Mixed ANOVA: one-sample/homoscedastic errors 114 149 6

II Mixed ANOVA: one-sample/heteroscedastic errors 2 20 1

III Mixed ANOVA: two-sample/homoscedastic errors 20 46 3

IV Mixed ANOVA: two-sample/heteroscedastic errors 0 2 0

V Semi-parametric hierarchical mixture model 89 142 33

DEDS Synthesis 133 159 12
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M1 M1

M2M2

Figure 1: A graphical representation of the motivation behind DEDS. Plotted are the multivariate
point cloud with a point corresponding to a gene’s vector of two related DE measures, M1 and
M2. E is the “extreme origin” in the direction of DE. Two scenarios are presented: when M1 and
M2 show strong (panel (a)) or weak (panel (b)) concordance. Red spots are genes that are ranked
highly by both measures and blue spots are genes that are ranked highly by one measure but lowly
but the other.

0.0 0.2 0.4 0.6 0.8 1.0

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Affy Spike−in RMA 91 pairs

FP rate

T
P

 r
at

e

FC
t
SAM
penalized t
DEDS

0.0 0.2 0.4 0.6 0.8 1.0

0.
20

0.
40

0.
60

0.
80

1.
00

Affy Spike−in MAS 91 pairs

FP rate

T
P

 r
at

e

(a) (b)

Figure 2: Comparisons of different DE measures using ROC curve for Affymetrix spike-in experi-
ment. (a) Use RMA probe summary. (b) Use MAS 5.0 probe summary.
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2

Figure 3: Study design of the SPT experiment. In this representation, vertices correspond to
target mRNA samples and edges to hybridizations between two samples. By convention, we place
the green-labeled sample at the tail and the red-labeled sample at the head of the arrow.
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A

Figure 4: Nested study design of the SPT experiment. Each mutant (M) has two samples (S) and
each sample is hybridized to two arrays (A). Therefore, A is nested in S and S is in turn nested in
M.

24



−logP(Model I )

0 1 2 3 4

*

*
*

**
*** *

**
*

**
*
*
**

*
*

*

*

**
***

*

*

*
* *

*
* *
*

*
*

*

*
*

* *
****

*

*
**

*

** * ***

*

*
**

*
*

**

** ** **
* *

*

*
*

*

* **

*

**
*

*
**

*
*

*
* ****

* **

*
*

**
*

*
*

*
**

* ** ****

**
*

*

** ***

**

*

*

* *

*
*****

*
**
*

* ** *
*
**** ***

*
*

*

**
* *

*

*

* * *
*

* *

*

* *
**

*
**

*

*

*

*
*
* *

*** **
* *
**

*

** *****
*

* *

*

*
*

***

*

*

*
**

*
**

* **
*

* **

*

**

*

*
*

* ***

*
* *

*
*

*
*

** *
*

*

*
** ** **

*

*

*
*

**
****

**
*

**
*

*
**

*
*

*

*

**
***

*

*

*
**

*
**

*
*

*
*

*
*

* *
****

*

*
**

*

***
***

*

*
**

*
*

**

******
* *

*

*
*

*

***

*

**
*

*
**

*
*

*
*****

***

*
*

**
*

*
*

*
**

*******

**
*

*

*****

**

*

*

**

*
*** **

*
**
*

** **
*

**** ***

*
*

*

**
**

*

*

** *
*

**

*

**
**

*
**

*

*

*

*
*

* *
***

**
****

*

*******
*

**

*

*
*

***

*

*

*
**

*
**

***
*

***

*

**

*

*
*

* ***

*
**

*
*

*
*

***
*

*

*
**** **

*

0 1 2 3 4

*

*
*

**
** **

**
*

**
*

*
**
*

*

*

*

**
* **

*

*

*
* *

*
* *
*

*
*

*

*
*

* *
****

*

*
**

*

*** ***

*

*
**

*
*

**

** ** **
* *

*

*
*

*

* **

*

**
*

*
**

*
*

*
* ****

* **

*
*

**
*

*
*

*
**

* ** ****

**
*

*

*****

**

*

*

* *

*
*** **

*
**

*
* * **

*
* *** ***

*
*

*

**
* *

*

*

** *
*

**

*

* *
**

*
**

*

*

*

*
*

* *
** *

**
****

*

** *****
*

* *

*

*
*

***

*

*

*
**

*
**

* **
*

***

*

**

*

*
*

* ***

*
* *

*
*

*
*

***
*

*

*
** ** *** 0

5
10

20
30

*

*
*

**
****

**
*

**
*
*

**
*
*

*

*

**
***

*

*

*
* *
*

**
*

*
*
*

*
*

**
****

*

*
**

*

***
***

*

*
**

*
*

**

******
**

*

*
*

*

***

*

**
*

*
**
*
*
*

**** *
***

*
*

**
*
*

*

*
**

*******

**
*

*

*****

**

*

*

**

*
******

* *
*

***
*
*

*******

*
*

*

**
**

*

*

***
*

**

*

**
**
*

**

*

*

*

*
*

**
*****

****

*

*******
*

**

*

*
*

***

*

*

*
**

*
**

***
*

***

*

**

*

*
*

****

*
* *

*
*

*
*

****

*

*
*****
*

*

0
1

2
3

4

0.71 −logP(Model II )

*
*

*
*
*

*
**
*

*
*

*
*

*

* **

*

*

*

*

*

****

*

*

*

*
*

**

*

*

*

*

*
*

*

*

*

*
*

*
**

*

**
*

*
*

*
*

*

*
*

*

*
**

*
*

*
*

*
*

*

*

*

*

*
*

*

*
*

*
*
*
*

*

*

*

*

*
**

**
**

*

***

*

*

*

*

*

*
*

*

*
*

*

*
**

*

*
****

**

*

*

**

*

*
*

**

*

*

*
*

*

*** *

*
*

*

*

*

*

* *

* ***
*

*

*

*
*

** *

*
*

*

*

*

*

*
*

* *
*
*

*

*

*

**
*

*
*

*

*

*

*
**

*

*

**

*
* **** ***
**
**

*
*

*

* *

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

* *
*
*

*

**
*

*

*

*
*
**

*

*
*

*
**

*

*

*
*
*

*

*

*

*
*
*

*

**

*

*
*

*
*

*

*
* *

*

*
*

*
*

*

* **

*

*

*

*

*

*** *

*

*

*

*
*

**

*

*

*

*

*
*

*

*

*

*
*

*
**

*

**
*
*
*

*
*

*

*
*

*

*
**

*
*

*
*

*
*

*

*

*

*

*
*

*

*
*

*
*

*
*

*

*

*

*

*
**

* *
**

*

***

*

*

*

*

*

*
*

*

*
*

*

*
**

*

*
****

**

*

*

**

*

*
*

**

*

*

*
*

*

*** *

*
*

*

*

*

*

* *

* ** *
*

*

*

*
*

* **

*
*

*

*

*

*

*
*

**
*
*

*

*

*

**
*

*
*

*

*

*

*
**

*

*

* *

*
* *******
**

**
*

*

*

**

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

* *
*
*

*

**
*

*

*

*
*

**

*

*
*

*
**

*

*

*
*
*

*

*

*

*
*

*

*

**

*

*
*
*

*
*

*
**
*

*
*

*
*

*

**
*

*

*

*

*

*

****

*

*

*

*
*

**

*

*

*

*

*
*

*

*

*

*
*

*
**

*

**
*
*

*

*
*

*

*
*

*

*
**

*
*

*
*

*
*

*

*

*

*

*
*

*

*
*

*
*
*
*

*

*

*

*

*
**
****

*

** *

*

*

*

*

*

*
*

*

*
*

*

*
**

*

*
****

**

*

*

**

*

*
*

**

*

*

*
*

*

****

*
*

*

*

*

*

**

* ***
*

*

*

*
*

***

*
*

*

*

*

*

*
*

* *
*
*

*

*

*

**
*

*
*

*

*

*

*
**

*

*

**

*
* *******
**
**
*

*

*

* *

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

***
*

*

**
*

*

*

*
*
**

*

*
*

*
**

*

*

*
*
*

*

*

*

*
*
*

*

**

*

0.97 0.7 −logP(Model III )
*

*
*

**
** **

**
***

*
*
**
*

*

*

*

*** *
*

*
*

*
* *

*
* *
*

*

*

*

*
*

*
*

****

*

*
**

*

*** ***

*

*
**

*
*

*
*

** ** ** *
*

*
*

*

*

* **

*

**
*

*
**

* *
*
* ***** **

*
*

**
*

*
*

*
**

* ** ****

**
*

**
*

***

**

*
*

* *
**

**
**

*
**** * **

*
* ***

***

* *

*

**
* *

*

*

** *
*

**

*
* *

**
*

**

*

*

*

*
*

*
*

*

* *
**

**
**

*

** *****
** *

*

*
*

**
*

*

*

*
**

*

**
* **
*

***

*

**

*

*
*

* ***

*
* **

*
*

*
***

*

*

*
** *

* *** 0
2

4
6

8
10

*

*
*

**
******
***
*
*

**
*
*

*

*

****
*

*
*

*
* *

*
**
*

*

*

*

*
*

*
*
****

*

*
**
*

******

*

*
**

*
*

*
*

******
*
*

*
*
*

*

***

*

**
*

*
**
**
*

**** *
***

*
*

**
*
*

*

*
**

*******

**
*

**
*

***

**

*
*

**
**

**
**

*
* ****
**

*
****
***

**

*

**
**

*

*

***
*

**

*
**

**
*

**

*

*

*

*
*

*
*

*

****
**

**

*

*******
***

*

*
*

**
*

*

*

*
**

*

**
***
*

***

*

**

*

*
*

****

*
* ***

*
*

****

*

*
***

**
*

*

0
1

2
3

4

0.67 0.95 0.71 −logP(Model IV )

*
*
**

*

***
*

*
*

**
*
*
**

*

*

*

*

*

***
*

*
*

*

*
*

**

*
*
*

*

*
*

*

*

*
*
**

**

*

*******

*

*
*

*

*

**

**
*

*

*
*
*
*

*

*
*
*

*
*
*

*
*
**

*

*
*
*

***
*
*
***

** *
*
*

*

*

*

*
*

*

*

*

*
*
**

*

*

*
***

**
*

****
*
*

**

*

*

*
*

*

**
**
*

*
* *
*

*
**
*
**

*

*
*

*

**

***
*

*
*

*

*

*

**

* *
**

*
*

*

*
*

*

**

*
*

*

*
**

*

*

**

*
*

**
*****
***
*
*

*
*

* *

*

*

*
*

*

*

*

*

** *
**

*

*

****

*

**
*

*

*

*
*
**

*

**

*

***

*

*
***

*

*

**
*

*

**
*

0 5 10 20 30

0.82 0.56

0 2 4 6 8 10

0.83 0.59

0 5 10 20 30

0
5

10
20

30

−logP(Model V )

−logP(Model I )

0.0 1.0 2.0

*
** ****** *** *

*
*******

*

*** *****
*
****** ******** **

*

*
********* ***** *

*

** **
*** ** **** *

*
*

***

*
****

*

*********

*
*

* ** * ***** *******
**** ******* * ** *****
*
******

*** ****** ****
*

*********
*

**
*

** ** *
**** ** ******* *** ** *******

*
*

** ****** **** * **** ** ** **
*

********** *** * ****** **** *** *
*

********* ***
*

*******

*

* **** ***
*

******* *********

*

*
** *************

*

****
*** *******

*
*
***

*
****

*

**** *****

*
*

**** *** **** *****
** * ******* ** *******
*

** * ***
********** ***

*
* ***** ***

*
**

*
** *********
** ***** ***** *******

*
*

* ****** **** ****** ******
*

* ***************************

0.0 0.5 1.0 1.5

*
** ******* ***

*
****** *

*

* *******
*
** *** ** *** **** **

*

*
** ** ***** ******

*

* ***
*** ** **** *

*
*
***

*
****

*

**** *** **

*
*

* ** * ***** ** *****
** * ******* ** ** *** **
*
** ****
**** ****** ***

*
* ***** ***

*
**

*
** *** **** **** ***** ***** ***** **

*
*
**** *** **** ** *** *** ** ** *
********** **** ****** ***** *** 0

1
2

3
4

5
6

7

*
************

*
*******

*

*** *****
*
****************

*

*
***************

*

****
**********
*
*
***

*
****

*

*********

*
*
****************
*** ******* *********

*
** ****
*************
*
*********

*
**

*
****
*
******
** *****************

*
*

*************
********* **
********** ******************

0.
0

1.
0

2.
0

0.81 −logP(Model II )

**
*
**
****
*
***

*

*******

*

* **
*
* *** *******
* *
******
*
*

*

*

*
* *******

*
*
***
*

*

**
*
*
*

**
*

*
*
***
*

*

*

*

*
*

*
*
***

*

**** ****
*

*
*

*
*
*
*

*
*

* **

*

* *****
*

* * *
****** **

*
*

*

****
**

* * ***
*

********
* **

*

*

* **
***

**
*

*

**
*

**
**
*

****
**
*
* *****
*

**
*
*
*
******

*
*

* *
*
**** *
*** *

*

*

*
**

*
*

*

*
**

*

* *******
*
*

*
**

**
*****

*
***

***
*

**
*
**
****
*

***

*

****** *

*

* **
*

******* *** *
* *
** ****
*

*

*

*

*
* ** *****

*
*
***

*

*

* *
*
*

*
**

*
*

*
***

*

*

*

*

*
*

*
*
***

*

**** *** *
*

*
*

*
*

*
*

*
*

***

*

* *****
*

* * *
****** **
*

*

*

** **
**

* ****
*

*** *****
* **

*

*

* **
***

**
*

*

**
*
**

**
*

****
**

*
* *****

*
**

*
*

*
**** **

*
*
**
*

* *** *
*** *

*

*

*
* *

*
*

*

*
**

*

********
*
*

*
**

* *
*****

*
***

* **
*

**
*
**
****
*
***

*

*******

*

***
*

***********
**
******
*
*

*

*

*
********

*
*
***
*

*

**
*
*
*
**
*
*
*
***
*

*

*

*

*
*

*
*
***

*

******
**
*

*
*

*
*
*
*

*
*

***

*

******
*
** *

****** **
*
*

*

****
**

* ****
*
********
***
*

*

******
**
*

*

**
*

**
**
*

****
**
*
* *****
*
**
*
*
*
******

*
*

**
*
*****
****
*

*

*
**
*
*

*

*
* *

*

********
*
*

*
**
**
*****
*
***
***
*

0.84 0.65 −logP(Model III )
*

** *******
****
****** *

*

* ****
*

**

*
*

* *** **
*

** ****
**

*

* *
*

*
* *

**** ******

*

* ******
*

* **** *
*

****

*

****

*

****
*

** *
*

*

*
* ** *

***
*
* **

*
****

*
* *

*
******

*
*

*
* *

** **
*
**
*
*

**
*

*** ******
***

*

*
*
****

*
**
*

**
* ** *** **** ****

*

****
*

**** **
*** **

*

**
*
** ***

**** ** **
* *

*
* ** ** *

**********
**** ****** ***** *** 0.

0
1.

0
2.

0

*

*********
*** *
*******

*

*** **
*
**

*
*
******
*
******
**

*

***
*
************

*

*******
*
******
*
****

*

****

*

****
*
****

*

*
****
***
*
***
*
****
*
**

*
******

*
*
*
******

*
**

*
*

**
*
*********
***
*

*
*
****

*
**

*
**

*****
********
*

*

****
*
*****
*
*****

*

**
*
*****
*****
***
**
*
**** **
**********

*********
*********

0.
0

0.
5

1.
0

1.
5

0.74 0.82 0.81 −logP(Model IV )
*

*

********
***

*
******
*

*

*** ********
*
**
**
*
*
*
*
***
**

*

*
*

*
**

*

***
*
*
*****

*

*
******

*

*
*
***
*

*

***
*

*

****

*

****
*
**
*
*

*
*

*
*
*
*
*

*
***
*

*

*

****
*
**

*
***

*
**

*
*
*
*

*

**
** **
*

**

**
*
***
******
***

*

*
**
***

*
*
*

*
**

**
*
***
*

***
*
**
*

*

****

*
****

*
***
*
**

*

*****
*
**
***
*
*
*

*
*

*
**
*

*
*

*

*

*

*********
*

*

***
*
****
*
*
*
***
*
**

0 1 2 3 4 5 6 7

0.7 0.47

0.0 1.0 2.0

0.84 0.57

0 2 4 6 8

0
2

4
6

8

−logP(Model V )
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Figure 5: Pairwise scatter plots for the five models from a subset of the SPT experiment, (a) mutant
ceg1-250 and (b) mutant spt4∆. The correlation coefficients of −log10p between corresponding
models are shown in the lower-triangle grids.
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Affy Spike−in: Histogram
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Figure 6: (a) Histograms and (b) Q − Q plot of p-values from the mutant ceg1-250 in the SPT
experiment. (c) Histogram and (d)Q−Q plot of p-values from the Affymetrix spike-in experiment
where all but 14 genes remain unchanged. When no gene is expected to be differentially expression,
the distribution of p-values is uniform, shown as dashed line in all panels.
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Class Model I Model II Model III Model IV Model V No. genes

1 1 0 1 0 1 9
2 0 1 0 1 0 9
3 1 0 0 0 0 3
4 0 1 0 0 0 3
5 0 0 1 0 0 1
6 0 0 0 1 0 5
7 0 0 0 0 1 3
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Figure 7: Relationship among differing DE models for the mutant ceg1-250 (SJ indicies) in the
SPT experiment. Black spots are DE genes by DEDS and gray spots are non-DE genes by all
measures including DEDS. Colored numbers represent non-DE genes by DEDS but are DE genes
by one or more of the five models. (a) Scatter plot of −log10p values from DE models I, III and
IV; (b) Scatter plot of −log10p values from DE models II, III and IV; (c) Coding for the colored
numbers in (a) and (b): 1 and 0 denote DE and non-DE respectively.
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Class FC t SAM No. genes

1 1 0 0 145
2 0 1 0 258
3 0 0 1 9
4 1 1 0 0
5 1 0 1 1
6 0 1 1 34
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Figure 8: Volcano plot between FC and |t| for the Ro1 experiment (C versus T ). Black spots are
DE genes by DEDS and gray spots are non-DE genes by all measures including DEDS. Colored
numbers represent non-DE genes by DEDS but are DE genes by one or more of the three DE
measures. Coding for the colored numbers is provided in the table; 1 and 0 denote DE and non-DE
respectively.
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