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ABSTRACT

The scaling functioﬁ Fé(aﬁ is calculated for the highly
inelastic neutrino and antineufrino reactions from the. nN total
Cr§ss seqfions on the basis of ﬁhe generalized scaling sum rules.
With the optimum values for the parameteré determined in a previous
analysis the integraljidx(FévP(x) + Fé;?(x)) saturates almost
completely the inequality of the parton quark model. The ultra-
ﬁréqocious linear rise of the total croéé sections for the neutrino

and antineutr1n6 reactions is a natural comsequence of the generalized

scaling sum rules.

This work supported in part by the U. S. Atomic Energy commission{
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1. DYNAMICAL PICTURE OF SCALING
It has been pointed out that the scaling function 'Fe(w) may
be smoothly extrapolated from the deep inela;tic,limit to the small
Q2 region with a suitebly modified scaling variable '[1], [2]. We first
review for a pedagogical purpose how this transition from the deep
ihelasticregion to the shallow ipe;astic region takes place dynamically
and what the parametefs involved in suéh én éxtrapolation mean. |

The matrix element we consider is

(n | fJo(Z,t) d¥ Oy 13, : _ (1.1).
where J 5 ) 1is the one-nucleon state with momentum 5 , and v| n) is

an arbitrary state connected through the Fourier component of the

current Jo(z,t). To make the following argument definite and relevant

‘to the calculations we will attempt later, let us choose the isovector

axial vector current for 'Jo(;,t) . We usually go to the infinite
momentum frame so that the dynamical statement may become relativ-
istically invariant. When a=0 or Qe( = ?;'e-) = 0, the transition

metrix element
EEY fJo(Sc’,t) Ox 1) u - @2

is rewritten through the partislly conserved axial vectar current
hypothesis in terms of that between the nucleon and the state [n)
absorbing the pionm,

‘ . . £ T
(12) = (xP 5 (3-3) —5—2R

M -m
n

s _ (1.3)
where be = me, M 1s the invariant mass of the state |n} ,

£ cos QC 1s the pion decay constant defined through BuJui = fﬂmﬂ2¢“i
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(1 =1, 2, and 3) with 0, being the Csbibbo engle, and T, is the
invariant pionic transition matrixw element. The absorption 6f<.the pion
may lead the nucleon to the nucleon, the baryon resonances, and the

2 '

continuum states. summed over n with fixed Mn-2 1is, up to

.lTn_p
the iﬁcident pion energy, prop'ortidnal to the =N total cross sections,
We find from the =N - scattering the shape of 4:: lTn'P l2 a(Mf -s) as
a function of s. ' '

As Q2 ~ increases from zero toanonzero (positive) value, the
‘matrix element (1.1) varies iﬁ such & way that the tfansitions from the
nﬁcleon to the states ln) of small Mn2 decrease to the émmmt that
the axial vector form factors fall off, while th‘é tra.ns.itions.to ﬁhe
continuum states of large Mn2 would increa.se in a way compensatory
to the decrease. - In other words, the transitions are confined meinly
to the lower' excited states at small values of Qa, but as Q,2
increase the transition "leaks" out to the higher cdntinuum states.
How. fast this leakage takes‘ place depends on how fast the axial vector.
form factors to the baryonic states |n) fall off. When the form
faétors bec.cme negligibly small at some large value of Qz, the
transition is almost completely thrown into the higher continuum states.
In the deep inelastic limit Q2 -~ 00, _;all the transitions to the -
states of finite invariant mass Mn. .vanish so that only the states of 7
Mf = O"(QE) = o contribute to theAtrans'itiovn matrix elements.
Constant core terms are not allowed fdr the form fac_térs Af the écaling

functions approach zero as o = 2mv/Q2 -+ 1, for if there were core

terms for a large number of the transition form factors, they would lead _

to Fe(a)_ =1) # 0. The asymptotic behavior of the form factors is

thus closely related to the threshold behavior of the scaling functions

31, (4],

" speaking, the transitions to the band of squared mass Ml2 t 5

when Q2 increases from Q’l
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The generalized scaling means that the scaling function F, (w)

smoothly extrapolated with the variable

= gm_;__+_r_&; o _ @)
_ Q- + s : i
should describe on average the function Vv Wev.(v', Q%) all the way from
Q2 = down to Q,2 =0, AThe parameter a2 determines how fa.sf or
hdw violently the transitions ‘to the lover baryonic states are blbwﬁ t&;
the higher continuum states as Q2 increases.’ .‘I'he sm].lér a._2 is,
the farther the tra,nsitions are blown away. The other parameter Mz
causes the overall shift of the invariant masses of the states |n).
This is significant only for the states of M ¥ M. More quantitatively
1 8t

¥ = q° are brought to the wider band of

2 2 - 2 2
MZts, = u_[ml""tal] 2R ey, ()

2 2

Ql + 8 Ql2+a2

2 to 922 (> Q,la). As ,Qe increases,
the't_ransitions to a narrow band in an -at lower energles get shifted

to & broader bend in Mne' at higher energies (see Fig. 1). The

generalized scaling thus describes appropriately the 'leakage"

phenomenon for the matrix element of the Fourier component of the

current [5]. The same a.rgdment goes through for the vector éurrents -
where the transit.ions to the excited states are completely forbidden at

Q'e = 0 because of the exact conservation of current. »



-5-
2.. ADLER'S NEUTRINO SUM RULE

The neutrino sum rﬁle derived by Adler [6] is based upon the
R gqual-time commu;batérs .of fhev time-components of the currents. It is
= Par more fundamental than '.other' sum rules derived ir_1 specific models [7].
Recently some p'eopl.e'have cast doubt oﬁ the va;lidity of Adler's sum rule
"in the liéht 61‘ the so far amlﬁed data on the neutrino reactioms [8], )
{91, [10]. When one comperes the sum rule with the experimentallyv
observed sgaling functions, the crucial point is how fé.st the sum rule
converges in .. A typical valence quark model [11] says that the
90% saturatioﬁ is obtained only as high as at = 500.~ 500.

We will dispufe this awfully slow convergence of the neutrino
sum rule from the viewi)pint of the generalized scaling. To do so, we
remind you that the Q,2 = Q - limit of Adler's neutrino sum rule is the
'Ad.ler-Weisberger sum rule. It is known from the measured =N total
cross sections that the Adler-Wéis’berger sum rule is saturated up to -
90% around the incideﬁt pion enérgy v =5 GeV., If we relate the =N
scattering and the highly inelastic neutrino reactions through the
g.eneralize‘d scaling, the averaged curves of the =N - total cross sectims
- at ‘the laboratory pion energy Vv 1is equal to theb scaling functions
| F, (») of the neutrino and antineutrino reactions (strictly speaking,
the strangeness-conserving parts only) at o = (2mv + I»‘F)/a.2 apart from
a known proportional constant g_iven by theory. For the neutrino sum -
rule fo be saturated up to 9% at o = 300, the parameter a.2 must bé
as small as 0.0% GeVE; provided ﬁhat M2 = 0.5~ 2 Gevz. We would have
corréspondence between amplitudes with differert @ through the

‘generaiiied scaling variable
oav + M

Q2 + 0.0% GeV

w =

. (2-.1)
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» v .
For @ 2 0.1 GeV" amd v 2 2~ 3GeV, the variable o would

. already be close enough to Emv/Q,2 ; the scaling would be reached as

early as at Q2 0.1 GeVE. In the region of Q,2 where the scaling
is approximately realized, the vector and axial vector form factors -
must be negligibly _small according to the argument in the previous
Sectioﬂ. -In the c;se discussed above the form factors would have t§ be
almost zerobat Q2 2 0.1 GeV". This ‘clearly contradicts with the

experimentally observed form factors (121, [13], [ak]

2. -]-2.
6. =] 1 ) P . )
AN * 0.7L GeV2J ' (2-2)
o f '2 -2
F(€) = L 10+ —& ! : )
AT i 0.85 GeV* - o | @:3)

We conclude that the very slow convergence of the neutrino sum rule is
incompatible with the generalized scaling‘. Turning the argument ‘a.round,
we prediét from the value for a2 ..détermineci .later in this peper and
also through the 1ndepende.nt analysis of the shallow inelastic electro-
rroduction data (2] (a° = 0.2 ~ 0.4 GeV’) that the 90% saturation is

to be reached around ® = 30 ~ 50 corresponding to V= 5 GeV through
(1.4). ' |
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3, SWM RULES FOR Fé(w) AND otot(v)
The generalized scaling makes the strong statement that .Fé(w)
can be smoothly extrapolated by means of (2mv + ME)/(Q? + a2) down to

the small Q2 region in the entire region of w . According to the

analysis based on the Deser-Gilbert-Sudarshan representation (151, [16],

the generalized scaling is likely to hold for the Regge asymptotic

amplitudes at o >> 1 (171, [18]. We assume here that only the

large o region of Fé(qQﬁ may be extrapolated to the small Q2 region

through the replacement of

w - o' =

oy 2 e
Q" +a

This is a much weaker version of thé generalized scaling, since the
earlier version [1], [2] amounts to assuming that-the parameters a2
and M2 are common to all the asymptotic powers. We now derive sum
rules involving Fé(w) and the nN total cross sections.

In the large @ region, we call it the Regge region from now
on, Fe(w) is shown in the analyses of the Bethe-Salpeter equation
{191, the Deser-Gilbert-Sudarshan representation (20], and summation
of a series of perturbation diagrams [21] to behave at « - o 1like

, a, (0)-1 : S '

Fo(w) ~ Z By ; | (3.2)

i
where ai(O) is the intercépt of the ith Regge trajectory and Bi is
related to its residue. The Regge asymptotic expansion with Q2 fixed

of the scattering amplitude W2(V,Q2) is similarly written as
a, (0)-2

Wy(v,67) ~ >— 7 (@@t
-

; : G

8.

ai(o)-l

where 71(Q2) behaves 1like 51(2m/Q?) as Q> - . The

generalized scaling weakened to the higher Regge asymptotic amplitudes

ai(o)-l
only is. therefore that Bi w

may be extrapolated smoothly on
average 0 the small Q2 region by the replacement of w with

o = (v + )/ Q2 + °). The parameter M- does not have much
significance there since M2 _is related to the ratios of the leading
power in ‘v ‘to the Khuri'sétellite terms. The Regge residue )1(Q?)

is related to B; 1in (3.2) through
/0 \gy(0)
. 2 2m
7,Q) = | /= B, » ‘ (3.
i 2 2 1 .
Q +a / :
where &2 is a parameter to be determined from the experimental data.
Although most generally a2 may be different from one trajectory to
another, we will later take a2 dependent only on the height of the
intercept ai(O) for simplicity. In particular, 8 will be set to

the same value for the p and £ trajectories. As was emphasized in

the previous work [22], the ratio of the Pomeron contributions™in

'Fé(w) and VWE(V,Q?) is independent of & and M2;

Um Fy(0) = lim v, (v, @) . - (3.5)
w.~ o v oo ' .

In fact, this relation is true for any correspondence between « and

v solongas w~- o at VvV = oo. For the other trajectories,

‘ai(o)-l .
2
no = s, (3) - (5.6)
from (3.4), and therefore
ai(o)-l -
Fylw') ~ Z By (@) , , (3.7)
) i

and
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.2 - [ 2mv i - '
oo, (v,Q7) ~ Byl 5= S (3.8)
e i{ .2 2 .
C : -y Q +a
» i _ o
If we choose ' = (2mv + MQ)/ (Q, + a ), tl(le )difference
. 4 o, (0)=2 :
F, (a)') - W, (v,'Qz) falls off as fast as Vv . It looks that with

LF chosen to be zero all the Regge asymptotic powers.are exactly

) ca.nceled so that F, (w') becomes the local avere.ge of W, (v,Q, ) in

the entire region of w'. Howeyer, it wou.ld be too optimistic to

2 :
expect that this should happen, for the parameter a may well be

depéndent on the trajectories. It is more pra.ctica.l to shift 2mv

iby M2 .80 as to sbsorb the first Khuri satellite as nmch as possible.

b ai(o)’

On the assumption that 32 should depend only on the intercepts

we a.fe able to write down the sum rules for the crossing

"symmetricb and antisymmetric amplitude;

m .
B2 EAS ST
R y . SRR
A - ol (3.9)
and |
lim j ‘ F2(+')(w) do - 2, v vwe(f)'('i',.Qa)dv =0

wmx-’co ; C : . Q +a I .
v -+ ) : C : VO.(Q) o
e e | (3.10)
M0 = %) t 5P, o)

wnere VO(Q2) 1s to be below the nucleon pole, FQVP(w') and ~Fz"p(w)

refer to the sti'angene_ss conserving axial vector parts of the sca_.ling

functions in the antineutrino and neutrino _reactions.'

In Eq. (3.10)

- also saturated enough at v

«10~

w;mx. .a.nd v . are let to infinity, keeplng the relation

2mvm&x + Me :
Cpax ~ 2 2 ‘ (3.12)

Q +a

‘The first Knuri satellite term of the Pomeron does not contribute to ‘the

absorptive }_nrt, so the left-hand side converges when the leading powers

‘of the Pomeron and the f-meson tra.jectory are canceled out. The sum

rules of higher moments may be written on & stronger assumption. We

B wili discuss them later in connection wi'th the phenomenon feferred'to .

as the ultra-precocious scaling in the neutrino reactions.

The first sum rule (3.9) is nothing mare than the content of .

Adler's sum rule. Dypamics is put in- when we require that the left-

hand side of (5.9) is saturated sufficiently well around v = a few GeV.

By numerical computationrthe 80% saturation is attained at v =2 GeV.

for the Adler-Weisberger sum rule

.GeV

§wé(')(v,o)ay - ;wg(f)(v,o)av x 08 .

0®) v4(0)

(3.13)
It is therefore natural to expect that the left-hand side of (3. 9) is
2 GeV or equivalently at |
o . = [2m x(2cev) + ] /a®. This is a dynamical input based on
our knowledge in the xN  total croes sections. It means that the o
eve'ra.ged or smoothed vwa(')'(v,o) coincides with F, (m)_ through the
correspondence (1.4) semilocally in the resonance region (v S 2 GeV)
separately. . v

and the asymptotic region (v 2 2 GeV)
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4, DETERMINATION OF Fe(w) FROM ctot(v)

The neutrino reactioﬁs involve both the vector and axial vector

caling functions apart from the vector-axial vector interference term.

ince the scaling function of the vector current is the same as that of

he axial vector current in all of the existing models and theories, we
2ke it fﬁr granted in the following numerical analysis. The currents
ontain small mixture of the stréngeness changing components., We
onsider the AS = 0 parts only by either ignoring the small AS = 1
arts or sépargting them out. The Cabibbo angle 8, -is to be factored

(o}
mt. The partially conserved axial vector hypothesis relates as

+ .
2w = % fﬂ-g v W,"P(v,0) , : (4.1)
G = fﬂ-2 v, "P(v,0) , (k.2)

there 2 fTt cos GC = 0.97 m and vwe's are the. A8 = 0 parts

»nly, including both the vector and axial vector currents.
Let us look at. the crossing antisymmetric amplitude first. The
1
-2

legge asymptotic behavior of the amplitude implies & term like w as

: > . Near the threshold w = 1 the scaling functions, especially

:he difference FEVp(w) - FEVP(w) should behave 1ike (o - 1)° provided

chat the isovector electromagnetic form factor of the nucleon fall off

tike (Q,e)-2 as Q2

- oo (3], [4], [23]. We therefore postulate the

1 , ' .
(1-1) : (4.3)
‘'n addition to this term we introduce another term

Bw”k(l-if . ()
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which represents the o! trajectory or the first Khuri satellite and

everything else. The sum of (4.3) and (b4.4)

3

OIS S N S S )

must be subject to the scaling limit of Adler's sum rule

(<) yaw : .
F, (w) ® - 2 . . o (.6)
1
: +
From this Section on,the scaling function Fe(')(m) denotes the sum of

the vector and axial vector terms. Equation (4.6) sets a restriction

“0:45TA + 0.050B = 1 . ' (%.7)

Then we assume that (3.9) is saturated sufficiently well at v = 2 GeV

which is just above the several conspicuous resonmances. The sum rule

reads
,2 GeV
Fe(-)(w) E‘wﬁ > [ vwg(v,o) d;_v
1 “v
0 ’ - +
, kel 2OV [ Ry o Ry
= 2 8A + 2 dv ’
m .
7t
(4.8)
where
Oy = [2mv X (2 GeV) + W l/a® . (4.9)

It has been shown in the previous analysis (22] that the value of a2
around 0.3 GeV® leads to the best fit to the Fe(”’)(w) + Fe(”%)(w) in
the large w region. The amplitude is insensitive to the other

parameter M2 in the Regge region. The fit to the shallow inelastic
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electroproduction data in the small w >region suggests that M? is
somewhere between 0.5 GeV and 1.5 ceV® [11.

By substituting‘the 7N cross sections we have found the right-

*hand side of Bq. (4.8),

r.h.s. of (4.8) = 1.53, ' (4.10)

- which ﬁeans that theiAdler-Weisbérger sum rule 1s saturatéd up to
76.5%. Substituting (4.5) 1nto the left-hand side of (4.8) we obtain
another restrictiqn on A aﬁd -B. thbining this restriction with

(4.7), we are led to a set of values for A and B given iﬁ (4.5) . B
és functions of a2 and M2. For az = 0.3 GeV2 and M? = 1.0 GeV2

which are considered to be optimum, we obtain

A = 0.7 and B = i5.3. (4.11)

By changing M from 0.5 GeV* to 1.5 GeV- we find that A and B
change typically (5~ 10)% for a2 kept between 0.2 GeVE’and
0.4 Ge¥*. A and B are & little more sensitive to Qariétion of a21
As a° &aries by * 0.1 GeV around 0.3 GeV2, ‘A and B are affécted
up to 50% and 30%; respectively. However, the veriations of A and B
a;evlargely>compensatedehen one tekes the sum of the two terms in (L.5).
Ve néxt turn to theicrossing symmetfic amplitude. The func-
tional form of the:symmetric amplitude is suggested again by its Regge

asymptotic behavior and the threshold behavior. We postulate

i

M) - 5P + P
. 3 1
‘c(1-i2) + D_iu-é(l-%u) .

44

i}

(1)

' The first term was proposed phenomenologically in the fit to the

=14

existing data [24]. The coefficient C 1is the Regge residue of the
Pomeron, which is determined independéntly of the values of a? and
W as [22]

be?
Sl

Q
i

{oﬁ-P(w ) + : °ﬂ+P(m )'-%
7 ‘ .

= 1.59 Iv (k.13)

- + . . ‘ .
for & Plw) = ¢" P(w ) = 25 mb. ' The other coefficient D .is going

to be determined through the sum rule (3.10) with Viax = 2 GeV,

2 GeV

+ . om + '
'Fa( )(w) dw a—e v We( )(y,o) dv
1 vo :
. .2 GeV - . + '
em® 8mfn2 " pld® P(v) 4 o~ P(v)]
= -3 sA + 3 . ) dv ,
: na v .
Vo

(4.14)

' _ » /a2 ’ ’
where o = [om % (2 GeV) + M ]/a . The right-hand side of (k.14)

turns out through the substitution of the experimental data to be

r.h.s. of (k.14) = 9.16 ceVP/a? . "(vh.15)

A value of D 1is searched for in the left-hand side of (4.1%) so as to

" achieve the equality with (4.15). Again for a° = 0.3 GeV’ and -

M = 1.0 GeV® we obtain

D = 2.86.

It is interesting and important to evaluate
1

7, () (x)ax o - (4.16)
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where X = w™L. . The CERN neutrino experiment has given [24]

l.
F2(+)(x)dx = 0.8 t 0.4, _ (4.17)
5 v

With our form (4.12) where C = 1.59 and D = 2.86,

B e - 1. | o (518)
0 : _
The agreément with experiment is very good. The right-hand side of

(4.18) is not put in by hand nor derived from any other indirect

information in the deepvinelastic lepton regctions, but 1t has been
' 2

calculated through the =N total cross sections. When we vary a  and.

¥ as a° = (0.3 % O.l)GeV2 and M?_: (1.0 0.5)GeV2, we see

fairly large variation in D. For instance, in the two extreme cases

we find
D = LU  for & =020V and M =1.5CeV,
(4.19)
D = 6.00 for a2 = 0.h Ge¥ and M = 0.5 GeV® .
(4.20)

The dependenée on a? is particulgrly strdng. - We may thereforevcon-"
sider the experimental informétion (4.18) as another restriction
imposed on the parameters a? and- M2. It is eﬁcouraging, however,
that the values for a2 and M2 determined in_the separate’analysis
[22] leads to a very good agreement with (4.17).

To summarize, we have obtained the scaling functions
1

3 . ' . 3
Fg(-)(w)- = 0.7l a % (1 -515 )_ + 13.3 ¢'5/2(1 - }0 ), (4.21)

and

-16-
F2(+)'(m) 1.59(1 - :—2 )3 4 2.8607F (1'-% )3 , O (h22)
where
FP() - Lie, V) FE('.')(m)l , | (4.23)
FEVPkw) - %[F2(+)(@) -_. B . (el

The optimum values fdr the parameters in the generalized scaling

variable are:
82 = 0.3 geV ' : (4.25)
¥ = 106 . . ’ (4.26)

We have plotted in Fig. 2 the curves for FEVP(w) and ngp(w) given

by (4.21) - (4.24) and also tabulated in Table 1 the scaling functions

versus o . -Main differences from the curves obtained in Referemce [10]

are.

1) ~The large « limit (x - 0) 1s approximately 17% smaller

than that in [(10].

(11) Both F.'P(s) end F."P(w) approach their - oo limits
‘ 2 Rl .

& Pryy 3 4
from above, Just as Utot(v) and Utot(v) do.

Ve L b B e A%

b M st T own o w

)
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 we could write down more sum rules of higher moment.

. Although the_}nonsense right signat,ure pole at J

. current algebra to have the Q2
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5. COMMENTS AND DISCUSSION
~The two sum rules (4.8) and (%.14) have been derived, one for
the erossing antisymmet;ic amplitﬁde and one for the symmetric amplitude,
If the generalized scaling veriable o = (Eﬁv + ME)/(Q2 + 32) works
for all the Regge terms in w .with the same values for M? and ag;

For the crossing

» antisymmetrié amplitude

_ ’ / \2n v
lim Fe(—)(w) @B gy - { E?m 5 i venwe(-)(V,Qe)dV =0
@ ' 1 L Q +a (Q )
max = oo \\ / 0
e - (5.1)
max

2 2 '
where Oy = (2mvmax + M2)/(Q +a“) and n 1is zero or any pos}tive

integer. The sum rules ofveVEn moment in- @ depend on whether or not
there exist nonsense wrong signature poles at J = -2; <4, eev in |
the complex J-plane, and whether or not their residues are Q dependent.
=1 is proved in the
independent. residue, the proof does not

apply to the wrong signature poles. The sum rules are written in the

N

caee.of Q2 independent residues as

. T -y | 204l Fmax ]
. Udm FQ(-)(w)wgndm - ( 22m s _ 2n+lw (- ) (v, Q2 )va
LIRS ] b : \S'+a (Q)
v e (5.2)
max .

with (5.1) and (5.2) combined together, the scaling function Fe(')(w)
is really the average of 'vwz(-)(v,Qe) locelly. The local average
suggested in (1] and [2] would hold accurately. The rarallel argument

is made‘for the crossing symmetric amplitude. Carresponding to (5.1),

at Q?

less.

. may be integrated over
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there would exist the sum rules

whax \2n+ ?
lim. (”@b - Emz EM%(”WQ)@'=
@21 | T Vv (Q )
vmx»w . o » : o | (5.3)

The sum rules resulting from -Q2 independent residues of the wrong

signature poles are written as
. o
T max
f F (+)w2n-ldw
. 2 - 2 >
1 ' / vo(Q7) : )\
e | , (5.4)

In the recent analysis of the CERN data [13] the total cross

sections of the neutrino reactions, in particuler of the antineutrino-

nucleus reaction, rise linearly in the incident neutrino (antineutrino)

energy E. It looks as if the scaling were reached ultra-precociously

& 0.4 GeV2 ‘as compared with Q? =2 GeV2 in the deep inelastic
> 0.4 GeV2, however,  the

electroproduction done by SLAC-MIT. At. Q2

vector and axial vector form factors are still about half the values at
2

@ =o0. Therefore, the scaling is not reached at .Q2 ~ 0.4 GeV2 or -

humps due to the'nucleoe and the other baryon resonences. The linear
rise ef the total cross sections is indicative of the fact that the
wiggly cross sections ef tﬁe’antineutrino reaction at lower energies
v and smoothed out into the scaling limit
curve.

We will look into this phenomenon a little more quantitatively.

-The double differentiasl cross sections are written as

_\2n max y
- // = \ Venw2(+)(v;Q2)dV "= 0.
Q?+—a : ’ ‘

The neutrino cross sections look more like a series of peaks and
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=
=

3

Q-y-2Lwu,+—Lzy0-%)2

(5.5)

“where ® = 2mv/Q,2, y=v/E, E is the incident neutrino (antineutrino)

energy, and W, and W, are the two others of the invariant functions’
1 3 > = »

of v and Q2-. By integrating this over v and Q,e, we gef
B 2/1+E : o
¥(e) - (1 - &5 W,,6%)
| g&) W

(VQ) o+ va’ W& s -

,QWE? 2mE

(5.6)

The first term within the square bracket in the righf-hand side may be

rewritten through (5.1) with n = 0 and (5.4) with n=0 as
| 2mE [ az Ao Q@ - ;E-z) Fé(u\)/w ’ ' (5.7)
. % T R o

= [1 - (Q/eE) + (M/2aE))/ (2 + (ae/QmE)]

where
w
max
and the new varisble Z = Q°/2uE has been introduced. In the limit of

E- o (5.7) reduces to :
_ 1 rz7t ' t
omE dz. j : w-zdm Fg(@) =2nE }dy|dx F,(w). (5.8)
0 1 0

This is what we obtain by.first going to the scaling limit. Howeirer,

- enough- to satisfy (5.9).

v 2 L
ﬁ) w5 (V)Q ) .-

20~

the limit E - o really means that « - z7t. It is sufficient to
have

w/2E, (M - o°)/2mE, and a°/2mE << 1 . (5.9)

According to the preceding analysis, IM2 - mal is between O and

0.5 GeV2,_ and . &> . is around 0.3 GeV’. Therefore E =2 ~ 5 GeV is
The first term'is already close enougI; t§ /
its scaling limit at E =2 ~ 3 GeV., The second t‘erm in the i'ight-
hand side of.(5.6) is shown in an analogous way to be close enough to
its scaling limit for \E satisfying (5.9), ngmely 2 ~ 3 GeV, if the
sum rules (5.2) with n = O and (5.3) with n = O hold valid.

The third and fourth terms may be argued in para.ilel if we

"postulate the generalized sceling sum rules far Wl(v, Q2) and

vw (V,Q,e) corresponding to (5.1) to (5.4). We thus come to the -
conclusion that the total cross sections of the neutrino and anti-

neutrino reacticns shou.ld start rising linea.rly in E as early as at

E =2 ~ 3 GeV provided that the wrong-moment sum rules of the lowest

order hold valid as well as. the right-moment dne. The observed linear

rise of _the-total cross sectidﬁs, referred to as the ultra-precocious
scaling, Suppofts strdngly-the ge_heralized séaling sum rules of, at.

least, the lowest arder.
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Table 1: The scaling functions F, and F ) f AS=0. -
e e scaling s Ty () o @ o | FIGURE CAPTIONS
See the formulae (4.21) - (4.24) in the text. The functions are teb-

wlated in the variable x = 1 /w . . Fig. 1: Correspondence under the transform through the generalized
. : mo——— - . scaling. The shaded areas in the top and bottom figures are -

x= l/cu ' F;P(a)) ' . F;p(a)) to be the same.

o v | 0.80 - ' 0.80 ~ Fig. 2: 'FEVP(w) ‘and FQVP(w) of AS =0 given by (4.21) - (k.2h) *

0.05 _ 1.20 . ‘ .0_93 B in the text. }‘I'heyv are piotﬁed-in x =2 l/_u). :

0.0 1.3k 0.86 1

0.15 _ 1.k0 - ‘ 0.76

o;eo : 1.4 o 0.62

0.25 1,38 0.53

0.30 o ©1.31 : 0.43

0.35 : 1.21 _ 0.33

0.40 | 1.08 _ 0.26

0.45 o o.9h ' 0.19

0.50 : . 0.79 : : 0.1k

0.55 0.64 0.096.‘

0.60 ‘ 050 . o.058

0.65 o037 . o.om

0.70 | o2 0.025 -

0.75 1 0.16 v 0.01k4

0.80" ' ' ~0.089 : : 0.008

0.85 . | 0.0k41 0.003

0.96 | 0.013 . , | 0.001

0.% ' ~0.002 - 0.0005

1.00 0 _ 0
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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