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Interplay between Kinase Domain Autophosphorylation
and F-Actin Binding Domain in Regulating Imatinib
Sensitivity and Nuclear Import of BCR-ABL
Martin Preyer¤a, Paolo Vigneri¤b, Jean Y. J. Wang*

Division of Hematology-Oncology and Moores Cancer Center, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United

States of America

Abstract

Background: The constitutively activated BCR-ABL tyrosine kinase of chronic myeloid leukemia (CML) is localized exclusively
to the cytoplasm despite the three nuclear localization signals (NLS) in the ABL portion of this fusion protein. The NLS
function of BCR-ABL is re-activated by a kinase inhibitor, imatinib, and in a kinase-defective BCR-ABL mutant. The
mechanism of this kinase-dependent inhibition of the NLS function is not understood.

Methodology/Principal Findings: By examining the subcellular localization of mutant BCR-ABL proteins under conditions of
imatinib and/or leptomycin B treatment to inhibit nuclear export, we have found that mutations of three specific tyrosines
(Y232, Y253, Y257, according to ABL-1a numbering) in the kinase domain can inhibit the NLS function of kinase-proficient
and kinase-defective BCR-ABL. Interestingly, binding of imatinib to the kinase-defective tyrosine-mutant restored the NLS
function, suggesting that the kinase domain conformation induced by imatinib-binding is critical to the re-activation of the
NLS function. The C-terminal region of ABL contains an F-actin binding domain (FABD). We examined the subcellular
localization of several FABD-mutants and found that this domain is also required for the activated kinase to inhibit the NLS
function; however, the binding to F-actin per se is not important. Furthermore, we found that some of the C-terminal
deletions reduced the kinase sensitivity to imatinib.

Conclusions/Significance: Results from this study suggest that an autophosphorylation-dependent kinase conformation
together with the C-terminal region including the FABD imposes a blockade of the BCR-ABL NLS function. Conversely,
conformation of the C-terminal region including the FABD can influence the binding affinity of imatinib for the kinase
domain. Elucidating the structural interactions among the kinase domain, the NLS region and the FABD may therefore
provide insights on the design of next generation BCR-ABL inhibitors for the treatment of CML.
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Introduction

Expression of BCR-ABL is a hallmark of chronic myeloid

leukemia (CML), a clonal disease of hematopoietic progenitor

cells. The BCR-ABL fusion protein arises from a reciprocal

translocation between chromosomes 9 and 22, such that a variable

portion of the breakpoint cluster region (BCR) gene replaces the

first exon of the Abelson murine leukemia virus (ABL) proto-

oncogene [1,2]. The kinase activity of the ABL non-receptor

kinase is tightly regulated in normal cells [3,4,5]. When BCR

sequences are fused to ABL, oligomerization through a coiled-coil

domain at the N-terminus of BCR [6,7,8] plus deletion of the ABL

N-terminal CAP region [4,5] constitutively activate the kinase and

unleash its transforming potential [9,10]. The critical role of the

BCR-ABL kinase in CML has been demonstrated by the clinical

efficacy of a small molecule inhibitor imatinib mesylate (STI-571,

the active ingredient in GleevecTM), that binds to the ABL kinase

domain [11,12,13,14]. However, the emergence of imatinib-

resistant BCR-ABL in CML patients has called for the

development of additional inhibitors and alternative strategies to

sustain disease remission [15,16,17,18].

The ABL protein contains three nuclear localization signals

(NLS) and a leucine-rich nuclear export sequence (NES)

[19,20,21]. The normal ABL protein shuttles between the

cytoplasm and the nucleus in proliferating cells, and it accumulates

in the nucleus when cells are treated with leptomycin B (LMB)

[21,22,23,24], an inhibitor of the nuclear export receptor Crm1/

exportin-1 [25,26]. The three NLS and the NES of ABL are

present in the BCR-ABL fusion protein. Nevertheless, BCR-ABL

is localized exclusively to the cytoplasm [19,27,28,29] and it does

not accumulate in the nucleus even after LMB treatment [22].

The inhibition of BCR-ABL kinase with imatinib, however, re-
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activates nuclear import, leading to nuclear accumulation of this

oncoprotein when nuclear export is blocked with LMB [22].

When trapped in the nucleus, BCR-ABL can induce cell death

[22], suggesting that the oncogenic activity of BCR-ABL requires

its exclusion from the nucleus.

To gain further insights into the inhibition of the NLS function

in BCR-ABL, we focused on (a) the inverse correlation between

BCR-ABL kinase activity and its nuclear import, and (b) the

notion that F-actin-binding is required to retain BCR-ABL in the

cytoplasm. We found that the specific mutation of tyrosines 232,

253 and 257 (referring to ABL-1a amino acid numbering), but not

six other tyrosine sites in the ABL kinase domain, including Y226

(Y245 in ABL-1b numbering) or Y393 (Y412 in ABL-1b

numbering), can abolish the nuclear import of even a kinase-

defective BCR-ABL fusion protein. We found that inhibition of

the NLS function also involves the C-terminal region of the ABL

protein, as a subset of mutations in the F-actin binding domain

(FABD) could re-activate the NLS function of kinase-active and

autophosphorylated BCR-ABL. However, we also identified other

FABD mutations that did not re-activate BCR-ABL nuclear

import despite the disruption of their binding to actin filaments.

Thus the data presented here suggest that the kinase domain

conformation, controlled by three specific tyrosines, and the

folding of the C-terminal region, including the FABD, are key

determinants in the regulation of the BCR-ABL NLS function.

Results

Kinase defective BCR-ABL can be retained in the
cytoplasm by kinase-active BCR-ABL

We have previously shown that the BCR-ABL protein can

accumulate in the nucleus after the combined treatment with

imatinib that inhibits its kinase activity and LMB that inhibits

Crm1/exportin-1 to block nuclear export [22]. With a kinase-

defective (KD) BCR-ABL mutant, generated by substitution of the

critical Lysine in the ATP-binding site, nuclear accumulation is

achieved by treatment with LMB alone, suggesting that the NLS is

active in BCR-ABLKD [22] (supplementary Figure S1). We have

examined the contribution of BCR sequences to the inhibition of

BCR-ABL nuclear import, specifically focused on the BCR Tyr177

phosphorylation site and the BCR R91ASASRP97 region that

binds to the adaptor protein 14-3-3-delta, because these BCR

sequences mediate protein-protein interactions that might con-

tribute to the cytoplasmic retention of BCR-ABL. We have found

that BCR-ABL-Y177F and BCR-ABL-D91-97 are localized

exclusively to the cytoplasm even after LMB treatment (supple-

mentary Figure S1), suggesting that pY177 and 14-3-3-binding are

not the major determinants for the cytoplasmic localization of

BCR-ABL. Previously, we have shown that fusion of the N-

terminal 63 amino acids, which contain a coiled-coil oligomeri-

zation domain, is sufficient to activate the BCR-ABL kinase and

cause its nuclear exclusion [6,28]. To investigate how the activated

kinase causes the inhibition of its NLS function, we conducted this

study with a BCR63-ABL fusion protein containing only the N-

terminal BCR oligomerization domain that is necessary and

sufficient for the constitutive activation of the BCR-ABL kinase

activity [6,7] (Figure 1A).

The BCR63-ABL fusion protein is present in the cytoplasm of

COS cells (Figure 1B) and Abl-null 3T3 fibroblasts (not shown), but

accumulates in the nucleus following the combined treatment with

imatinib and LMB (Figure 1B). The subcellular localization of

BCR63-ABL and its response to imatinib and LMB are therefore

similar to that of p210- and p185-BCR-ABL [22]. The nuclear

accumulation of BCR63-ABL was also achieved with the combined

treatment of LMB plus PD166326, which is another ABL kinase

inhibitor (Figure 1B). Binding of PD166326 and imatinib to the

ABL kinase domain requires the ‘‘DFG-Asp out’’ conformation of

the kinase N-lobe [30]. However, the catalytic site conformation,

particularly the activation loop and the helix aC of PD166326-

and imatinib-bound ABL kinase domains are not identical [4,31].

It thus appears that the configuration of the activation loop and

helix aC may not be important to the regulation of the NLS

function. On the other hand, as to be shown below, the ‘‘DFG-Asp

out’’ conformation imposed by binding to imatinib or PD166326,

is likely to be critical to the regulation of the NLS function.

The kinase-defective BCR63-ABLKD, which is catalytically

inactive through Lys271His (Lys290 in ABL-1b numbering)

substitution in the kinase domain [32], was predominantly

cytoplasmic in COS cells (Figure 1C), but became partially

nuclear after 1 hour LMB treatment (Figure 1C) and mostly

nuclear after 6 hours LMB exposure (Figure 1C and 2C). This

demonstrates that BCR63-ABLKD, similar to BCR-ABLKD

[22](supplementary Figure S1), can undergo nucleo-cytoplasmic

shutting, and the continuous nuclear import allows its nuclear

accumulation when export is blocked by LMB.

To determine if autophosphorylation is responsible for inhib-

iting the NLS function, we co-expressed p185-BCR-ABL with

BCR63-ABLKD to allow trans-phosphorylation of the kinase-

defective protein via oligomerization through the BCR coiled-coil

(Figure 2B). When co-expressed with p185-BCR-ABL, the BCR63-

ABLKD protein became tyrosine phosphorylated and did remain

cytoplasmic after LMB treatment, as revealed by immunofluores-

cence against the HA-tag present only in the BCR63-ABLKD

protein (Figure 2C). Inhibition of the co-expressed p185-BCR-

ABL kinase with imatinib re-activated the nuclear import of

BCR63-ABLKD, indicated by its nuclear accumulation in response

to LMB. We then repeated these experiments with b53-BCR63-

ABLKD, which has a b-turn inserted at position 53 to disrupt the

coiled-coil oligomerization domain [6]. Co-expression with p185-

BCR-ABL induced a very low level of phosphotyrosine in the b53-

BCR63-ABLKD (Figure 2B), and correspondingly, it did not inhibit

the nuclear import of b53-BCR63-ABLKD (Figure 2C). We also

found that p185-BCR-ABL did not affect the subcellular

localization of ABL, which does not become tyrosine phosphor-

ylated and showed continuous nuclear-cytoplasmic shuttling

(supplementary Figure S2). These results suggest that tyrosine

phosphorylation of BCR63-ABL, rather than its catalytic activity

per se, can lead to the inhibition of its nuclear import.

Mutation of Y232, Y253 and Y257 in the ABL kinase N-
lobe blocks nuclear import

A total of nine tyrosines within the ABL-portion of BCR-ABL

have been shown to be phosphorylated by tandem mass

spectrometry analysis [33,34]. To further address the role of

autophosphorylation in the regulation of the NLS function, we

mutated those nine tyrosines to phenylalanines creating a mutant

termed BCR63-ABL9Y/F (Figure 3A). Indeed, this 9Y/F-mutant was

poorly autophosphorylated (Figure 3B), and was weakly phosphor-

ylated in trans by p185-BCR-ABL (Figure 3C). Thus, if the

hypothesis that autophosphorylation blocks nuclear import were

correct, the 9Y/F-mutant protein would be expected to undergo

nuclear import. Surprisingly, we found that the BCR63-ABL9Y/F

protein did not accumulate in the nucleus after LMB treatment.

Even more surprising was the observation that imatinib treatment

still induced the nuclear import of this BCR63-ABL9Y/F fusion

protein (Figure 3D). We then created a kinase-defective version

of the 9Y/F-mutant and found that the BCR63-ABL9Y/F-KD fusion

protein also failed to undergo nuclear import (Figure 4B).

Conformational Regulation of BCR-ABL NLS
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Furthermore, imatinib could again override the 9Y/F effect and

induce nuclear import of BCR63-ABL9Y/F-KD (Figure 4B). To

determine whether the stimulatory effect of imatinib on the

nuclear import of the 9Y/F-KD-mutant was indeed caused by

binding of the drug to the mutant protein, we introduced another

amino acid substitution, T315I, which confers imatinib-resistance

through interference with drug binding [18]. Imatinib did not

stimulate the nuclear import of BCR63-ABL9Y/F-KD-T315I

(Figure 4C), showing that the direct binding of this drug to the

kinase domain is required to reactivate the NLS function of the

9Y/F mutant.

To identify which of the nine Y/F mutations was responsible for

the inhibition of nuclear import, we systematically reverted the

nine phenylalanines back to tyrosines. We found that reversion of

three phenylalanines at positions 232 (SPNY232D), and 253, 257

(GGGQY253GEVY257EG) restored nuclear import, i.e., the

BCR63-ABL6Y/F-KD protein could accumulate in the nucleus by

the treatment with LMB alone without imatinib (supplementary

Figure S3). Conversely, mutation of tyrosines 232, 253 and 257 to

phenylalanines was sufficient to block nuclear import, i.e., the

BCR63-ABL3Y/F-KD required the combined treatment with

imatinib and LMB to accumulate in the nucleus (Figure 4D).

Single and double mutants, having either one or two of the three

tyrosines mutated to phenylalanines, also showed some nuclear

import, indicated by weak nuclear accumulation in LMB-treated

cells (supplementary Figure S4). We then mutated the three critical

Figure 1. Kinase activity of BCR-ABL inhibits its nuclear import. A: Domain structure of ABL, the BCR-ABL p210 and p185 fusion proteins, and
the minimal BCR63-ABL used in this study. All numbering used herein refers to amino acid positions in the human ABL-1a isoform. The kinase-
defective (KD) constructs bear a lysine-to-histidine substitution (K271H) in the ATP-binding site, which renders the kinase catalytically inactive.
Abbreviations used are: SH3, src-homology 3; SH2 src-homology 2; FABD, F-actin binding domain; NLS, nuclear localization signal; NES nuclear export
signal; cc, coiled-coil oligomerization domain; KD, kinase-defective. B and C: COS cells ectopically expressing active BCR63-ABL (B) or the kinase-
defective mutant (BCR63-ABLKD) (C) were treated with the CRM1-inhibitor LMB (10 nM) for either 1 or 6 hours, which leads to accumulation in the
nuclei of cells only if the protein is imported. The presence of nuclear staining in LMB-treated cells demonstrates that the protein is imported. Cells
displaying notable nuclear staining (resulting from nuclear import) of BCR-ABL are marked with white arrows. The BCR-ABL kinase activity was also
blocked by treatment with the kinase inhibitors imatinib (10 mM) or PD166326 (10 nM) for 16 hours to enable nuclear import. BCR-ABL localization
was determined by immunofluorescence staining with an anti-ABL antibody (8E9, shown in red). The endogenous ABL was not observed under the
experimental conditions, which were designed to detect only the ectopically expressed proteins that were present at a much higher abundance than
the endogenous ABL protein. DNA is counterstained in blue with Hoechst dye.
doi:10.1371/journal.pone.0017020.g001

Conformational Regulation of BCR-ABL NLS
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tyrosines (Tyr232, 253 or 257) individually to glutamic acid, which

mimics phosphorylation, in the BCR63-ABLKD context and found

that each Y/E substitution alone is sufficient to block the nuclear

import of this kinase-defective BCR63-ABLKD protein (Figure 5B).

Again, treatment with imatinib induced nuclear accumulation of

the phosphomimetic mutants Y232E and Y257E (Figure 5B).

However, imatinib did not stimulate the nuclear import of the

Y253E mutant (Figure 5B), which is consistent with the fact that

BCR-ABLY253H was an imatinib-resistant mutant isolated from

drug-resistant CML cells [35].

Results shown in Figures 3, 4 and 5 suggest that Tyr232,

Tyr253 and Tyr257 play crucial roles in regulating the NLS

function. Because the phosphomimetic mutation of any of these

three tyrosines to glutamic acid is sufficient to inhibit the nuclear

import of a kinase-defective BCR63-ABLKD, phosphorylation of

any of these three tyrosines is likely to block the NLS function. The

unexpected finding that mutations of these three tyrosines to

Figure 2. Trans-phosphorylation of kinase-defective BCR-ABL
blocks its nuclear import. A: Scheme of experimental design. Kinase-
defective BCR63-ABL constructs were co-transfected with kinase active
p185-BCR-ABL to induce tyrosine phosphorylation of the kinase-defective
protein. B: BCR63-ABLKD constructs were immunoprecipitated with an
anti-HA antibody from COS cells that were co-transfected with the
indicated plasmids. Immunoblots from HA-pulldowns (top) and total cell
lysates (bottom) were probed with the indicated antibodies to detect the
tyrosine phosphorylation of BCR63-ABLKD. The previously described b53-
BCR63-ABLKD has a beta-turn inserted at position 53, which disables the
coiled-coil oligomerization domain [6]. C: COS cells were transfected with
the indicated HA-tagged, kinase-defective BCR63-ABLKD constructs either
alone or in co-transfection with a kinase-active p185-BCR-ABL. The
localization of the kinase-defective BCR63-ABL proteins was detected by
immunostaining with an anti-HA antibody (red).
doi:10.1371/journal.pone.0017020.g002

Figure 3. Mutation of nine tyrosines in BCR63-ABL does not
restore nuclear import. A: In the BCR63-ABL9Y/F protein, nine
autophosphorylation sites are mutated to phenylalanines. The position
and amino acid number (according to that of ABL-1a) of the Tyr/Phe (Y/
F) substitutions are indicated in the schematic drawing. B: The BCR63-
ABL9Y/F protein and the BCR63-ABL protein were immunoprecipitated
from transfected cells. The levels of phosphotyrosine and the BCR63-ABL
protein were detected by immunoblotting from immunoprecipitates
(top) and whole cell lysates (bottom) using monoclonal antibodies
4G10 (for phosphotyrosine) and 8E9 (for ABL). C: HA-tagged kinase-
defective BCR63-ABL or a corresponding 9Y/F-mutant were co-
transfected with kinase-active p185-BCR-ABL to allow for trans-
phosphorylation. The kinase-defective proteins were immunoprecipi-
tated using an anti-HA antibody, and immunoblotted as in (B). D: The
phosphorylation site mutant BCR63-ABL9Y/F was transfected in COS cells
and its localization determined by immunofluorescence after treatment
with 10 nM LMB for 6 hours, or 10 mM imatinib and LMB. Nuclear
localization was only observed after treatment with imatinib and LMB,
as indicated by the solid white arrows.
doi:10.1371/journal.pone.0017020.g003

Conformational Regulation of BCR-ABL NLS
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phenylalanines also affected the NLS function lends additional

support to the notion that these three tyrosines in the ABL kinase

domain are involved in the regulation of nuclear import. Tyr253

and Tyr257 are in the P-loop of the kinase N-lobe, and their

hydroxyl side-chain interactions with neighboring amino acids

contribute to the P-loop conformation in the current crystal

structure (Figure 5A). Tyr232 is in the SH2-kinase linker, and the

X-ray structure of the ABL kinase domain shows it to be located

next to the kinase N-lobe with its hydroxyl side-chain being

solvent-exposed (Figure 5A). It is interesting to find that imatinib-

binding, which locks the kinase N-lobe in the ‘‘DFG-Asp out’’

conformation [30], can override the negative effect of these Y/F

mutations on the NLS function. Together, these results suggest

that autophosphorylation occurring at specific tyrosines in the

SH2-kinase linker (Y232) and the kinase P-loop (Y253, 257) can

affect the N-lobe conformation, which controls the NLS function.

Regulation of BCR-ABL nuclear import by the F-actin
binding domain

The oligomerization of BCR-ABL also stimulates its association

with F-actin stress fibers and cortical actins through an F-actin

binding domain (FABD) at the C-terminus of ABL [28,36,37].

The NMR structure of the FABD (aa-998 to aa-1130) shows a

four-helix bundle (Figure 6B), which is also found in several other

F-actin binding proteins such as vinculin and talin [38,39]. It has

previously been proposed that tethering to F-actin is the

predominant mechanism for the cytoplasmic retention of the

ABL protein [38]. Because the BCR63-ABL fusion protein is

localized to actin filaments [36], we made a series of C-terminal

deletions in the BCR63-ABL backbone to disrupt the FABD helix-

4 (D1127, D1121), the FABD helices-3 & 4 (D1080), the entire

FABD (D774), or the FABD plus the second and third NLS (D612)

(Figure 6A). We also mutated F1081 in the FABD helix-3 to

glutamic acid in BCR63-ABL because this single substitution

mutation can also inhibit F-actin binding [38]. The subcellular

distribution of these F-actin binding defective mutants was then

examined in the absence or presence of LMB. In the absence of

drug treatment, the BCR63-ABLD612 (containing only NLS1) and

the BCR63-ABLD774 (containing NLS1, 2 and 3) proteins were

already localized diffusely throughout the cytoplasm and the

nucleus (Figure 6C), a subcellular distribution similar to that of the

full-length ABL protein, which undergoes continuous nuclear

import and export [21] (supplementary Figure S2). These results

suggest that nuclear import of BCR63-ABL can be restored when

the C-terminal region beyond NLS-3 is deleted.

Unlike the D774 deletion, mutations within the FABD (aa-998

to aa-1130) exerted variable effects on the NLS function. The

BCR63-ABLF1081E mutant, which does not associate with F-actin

Figure 4. Mutation of Tyr232, Tyr253, and Tyr257 to phenyl-
alanine blocks nuclear import of kinase-defective BCR63-ABL.
A: Schematic representation of BCR63-ABL9Y/F-KD and BCR63-ABL3Y/F-KD

constructs. The constructs encode catalytically inactive proteins due to
the KD mutation (Lys271His) in the kinase domain. The position and
amino acid number of the 9Y/F and the 3Y/F substitutions are indicated
in the scheme according to the ABL-1a amino acid numbering. B: The
kinase-defective BCR63-ABL9Y/F-KD construct was transfected into COS
cells and the localization of the protein determined by immunofluo-
rescence. Nuclear localization of the kinase-defective protein was only
observed in cells treated with 10 mM imatinib and 10 nM LMB, as

indicated by the white arrows. C: The gatekeeper mutation (T315I),
which prevents imatinib from binding to the ATP binding pocket of
BCR-ABL, was introduced into the BCR63-ABL9Y/F-KD backbone to test
whether imatinib enables the nuclear import of the kinase-defective
protein through direct binding to its kinase domain. The respective
construct (BCR63-ABL9Y/F-KD-T315I) was transfected into COS cells and the
subcellular localization of the ectopically expressed protein examined
by immunofluorescence. No nuclear localization of the protein was
detected in the absence or presence of imatinib and LMB. D: The BCR63-
ABL3Y/F-KD protein, in which the three tyrosines Y232, Y253, and Y257
are mutated to phenylalanines, was expressed in COS cells. The
subcellular localization was again determined by immunofluorescence
in untreated cells, as well as after the treatment with imatinib and LMB.
Dashed arrows indicate minimal nuclear staining in the absence of
imatinib, white arrows point to cells showing predominately nuclear
localization in the presence of imatinib.
doi:10.1371/journal.pone.0017020.g004

Conformational Regulation of BCR-ABL NLS
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(Figure 6F), remains cytoplasmic in the absence of drug treatment

(Figure 6D). However, nuclear localization of a fraction of the

BCR63-ABLF1081E protein was observed following treatment with

LMB alone without the need of kinase inhibition by imatinib

(Figure 6D), suggesting that the NLS function in BCR63-

ABLF1081E is partially restored despite autophosphorylation

(Figure 7A). The BCR63-ABLD1080 mutant behaved similarly to

the F1081E mutant in that its nuclear localization can be

stimulated by treatment with LMB alone (Figure 6E). The

behavior of these two mutant proteins, with defects of helix-3 in

the FABD, suggested that binding to F-actin might be responsible

for the inhibition of nuclear import. At odds with this

interpretation, however, was the behavior of two other FABD

deletion mutants, D1127 and D1121. These two mutant proteins

do not bind F-actin either (Figure 6F, supplementary Figure S5)

due to defects in the highly conserved helix-4, which is essential to

the binding of F-actin [28,36,38,40]. However, D1127 and D1121

did not accumulate in the nucleus when treated with LMB alone

(Figure 6E), showing that the NLS function in these two mutants

remained inhibited despite the loss of F-actin binding.

These results suggest that the C-terminal region beyond NLS-3,

and including helix-3 of the FABD, also plays an important role in

the inhibition of the NLS function. When this C-terminal region is

deleted, or when the FABD helix-3 is mutated, the NLS function

can be restored despite an active kinase and autophosphorylation.

However, the direct binding to F-actin per se is not required for the

inhibition of nuclear import, as indicated by the inability of the

FABD helix-4 mutants (D1121, D1127) to re-activate the NLS

function.

C-terminal truncation affects the sensitivity of BCR-ABL to
imatinib

To rule out the possibility that C-terminal mutations might

affect the levels of autophosphorylation, we measured the

reactivity of total lysates with the monoclonal anti-phosphotyrosine

(pTyr) antibody (4G10) from cells ectopically expressing the

different C-terminal mutants. The major pTyr band in each of the

whole cell lysates was BCR63-ABL itself (Figure 7A). When

normalized to the protein levels, the steady state levels of tyrosine

phosphorylation were not significantly altered by any of the C-

terminal mutations (Figure 7A). Thus, the imatinib-independent

nuclear import of the F1081E and the D1080, D774, D612

mutants occurred despite their kinase activity and autopho-

sphorylation. Since either the binding of imatinib to the kinase N-

lobe or the deletion of the C-terminal region beyond NLS-3 was

sufficient to re-activate the NLS function, these results suggest that

the kinase domain autophosphorylation and the C-terminal region

including the FABD are both required to inhibit the NLS function

in the kinase-active BCR63-ABL protein.

Given the finding that the kinase domain conformation and the

FABD are both involved in the regulation of the NLS function, we

tested whether C-terminal mutations might affect the kinase

sensitivity to imatinib, which only binds to one of three

conformations, i.e., the ‘‘DFG-Asp out’’, of the kinase N-lobe

[30]. We treated cells with a saturating concentration of imatinib

(10 mM, 16 h) and found comparable inhibition of tyrosine

phosphorylation of BCR63-ABL, the F1081E, and the D612

mutants (Figure 7A). By contrast, four other deletion mutants

(D1127, D1121, D1080, D774) were less sensitive to inhibition by

imatinib (Figure 7A). The imatinib dose-response was further

examined with the D1121 mutant, which showed approximately a

10-fold reduced sensitivity to imatinib when expressed at the same

level as BCR63-ABL (Figure 7B). The smallest deletion that caused

increased resistance to imatinib is D1127, which lacks only the last

four amino acids in the helix-4 of the FABD (Figure 6B). Helix-4 of

the FABD is also missing in the other three deletions, D1121,

D1080, D774, that exhibited resistance to imatinib (Figure 7A).

However, the deletion mutant D612, which lacks the FABD, the

NLS-2 and the NLS-3, was sensitive to imatinib at a level

comparable to the un-mutated BCR63-ABL (Figure 7A). Because

the three-dimensional structural information of the full-length

ABL is not available at this time, we could only interpret these

results to suggest that the three different kinase N-lobe

conformations [30] may be subjected to modulation by the ABL

C-terminal region involving the NLS-2, the NLS-3 and the helix-4

of the FABD.

Figure 5. Phosphomimetic mutation of either Tyr232, Tyr253,
or Tyr257 blocks nuclear import of kinase-defective BCR63-
ABL. A: Position of tyrosines 232, 253, and 257 as seen in a crystal
structure of the ABL kinase domain bound to imatinib ([31], PDB code
1IEP). The Tyr253 and Tyr257 are in the P-loop (yellow), and are
engaged in interactions with other P-loop side chains (Gln252 and
Glu255) in this structure. Tyr232 is located in the SH2-kinase linker
region and situated right above the kinase N-lobe in this structure.
B: BCR63-ABLKD, in which either Tyr232, 253 or 257 was mutated to
glutamic acid, was transiently expressed in COS cells. The localization of
each of these three Y/E-mutant proteins after the indicated treatments
with LMB and imatinib was determined by immunofluorescence.
Merged images of BCR-ABL staining (red) and DNA (blue) are shown.
Cells displaying nuclear staining are marked by the white arrows.
doi:10.1371/journal.pone.0017020.g005
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Discussion

The kinase domain conformation regulates BCR-ABL
nuclear import

It is well established that the activated BCR-ABL kinase activity

is responsible for the inhibition of its nuclear import [19,22,28].

Because BCR-ABL kinase phosphorylates itself and many cellular

proteins [33], it is possible to imagine a variety of mechanisms for

the inhibition of its NLS function. Results from this study suggest

that the activated BCR-ABL kinase oligomer inhibits its NLS

function through autophosphorylation and requires an intact C-

terminal region including the FABD, but not the binding to F-

actin, to block nuclear import (Figure 8).

By narrowing the investigation of autophosphorylation sites to

the BCR63-ABL protein, we have identified three tyrosines in the

kinase domain to play a role in the regulation of the NLS function.

Figure 6. The FABD but not binding to actin filaments is required to block import of BCR63-ABL. A: Schematic representation of the
constructs used. BCR63-ABL was either truncated by introducing a stop codon at the indicated amino acid positions or a point mutation (F1081E)
within helix-3 of the actin-binding domain (FABD) to abolish binding to filamentous actin. B: NMR structure of the FABD of ABL ([38], PDB code 1ZZP).
The C-terminal residues that are deleted in the truncation mutants D1080, D1121 and D1127 are highlighted in yellow, orange, and red, respectively.
The phenyl side-chain of F1081 in helix-3 (aIII), which was mutated to glutamic acid, is shown in white. C, D and E: COS cells expressing the indicated
BCR63-ABL mutants were left untreated or treated with LMB as indicated. Merged images of anti-ABL staining show the respective mutant BCR63-ABL
in red and DNA in blue. Cells showing nuclear BCR63-ABL staining are marked by the white arrows. F: COS cells were transfected with BCR63-ABL or
the indicated mutants and processed for immunofluorescence. Images of anti-ABL staining (red) and F-actin counterstained with Alexa-488-
conjugated phalloidin (green) are shown individually, and merged with DNA (blue) images. Co-localization of BCR63-ABL with actin fibers results in
yellow color in the merged images.
doi:10.1371/journal.pone.0017020.g006
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Previous studies have shown that phosphorylation of Tyr226

(Tyr245 in ABL-1b numbering) in the SH2-kinase linker and

Tyr393 (Tyr412 in ABL-1b numbering) in the activation loop can

stimulate ABL kinase activity by disrupting the auto-inhibitory

assembly of the SH3/SH2/kinase domains [41,42,43]. We have

found that mutations of Tyr226, Tyr393 and four other

phosphorylation sites (Tyr115, Tyr185, Tyr264, Tyr469, in

ABL-1a numbering) did not have any detectable effect on the

NLS function. Instead, we found that mutations of three tyrosines

(Tyr232, Tyr253 and Tyr257) in the SH2-kinase linker and the

kinase P-loop cause a dominant inhibition of the NLS function

even in a kinase-defective BCR63-ABL. Phosphomimetic mutation

of any one of those three tyrosines to glutamic acid is sufficient to

inhibit the NLS function. In addition, triple mutations of all three

tyrosines to phenylalanines (3Y/F) also inhibit the NLS function

even in a kinase-defective BCR63-ABL. Interestingly, direct

binding to imatinib can restore the NLS function in the 3Y/F

mutant. These results suggest that the conformation of the kinase

domain, particularly its N-lobe, plays a critical role in the

regulation of the NLS function. Drawing on the X-ray structures

showing that the kinase domain can adopt one of three stable

configurations [30], it appears that the NLS is only active when

the kinase is in the ‘‘DFG-Asp out’’ configuration, which is

stabilized by imatinib binding. Phosphorylation at any of these

three tyrosines may shift the N-lobe away from the ‘‘DFG-Asp

out’’ conformation and thus resulting in the inhibition of the NLS

function. Removal of the hydroxyl side-chains of these three

tyrosines may also alter the N-lobe conformation to inhibit the

NLS function.

Regulation of BCR-ABL nuclear import by the FABD
Because BCR-ABL binds F-actin and co-localizes with actin

filaments in cells [28,36,37], it has been suggested that BCR-ABL

is tethered to F-actin and hence not imported into the nucleus

[38]. Indeed, we show here that C-terminal mutations, including

those that disrupt helix-3 of the FABD, can restore the NLS

function even under conditions when the BCR63-ABL kinase is

active and autophosphorylated. However, we found that deletion

of helix-4 of the FABD (D1127 and D1121) was unable to release

the block on the NLS function. Because helix-4 mutations disrupt

the F-actin binding function of the FABD, these results show that

F-actin binding per se is not required for the inhibition of the NLS

function. Rather, the C-terminal region beyond the NLS-3,

including the integrity of helix-3 of the FABD, is required for the

activated BCR63-ABL kinase conformation to induce a blockade

of the NLS function.

Taken together, our results can be accommodated by a model

where the kinase domain conformation may affect the folding of

the C-terminal region including the FABD to regulate the NLS

function. As illustrated in Figure 8, which represents but one of

several possible scenarios, the activated kinase conformation with

autophosphorylation at one of three specific tyrosine sites can

influence the folding of the C-terminal region to mask the three

NLS through interactions that involve an intact FABD helix-3.

The imatinib-bound kinase conformation causes a change in the

folding of the C-terminal region, leading to the un-masking of the

three NLS.

The interplay between the kinase N-lobe conformation and the

FABD is also supported by the results that FABD mutations can

affect the kinase sensitivity to imatinib. In the absence of three-

dimensional structural data, we can only imagine how the FABD

and the region between aa-612 and aa-774, which contains the

NLS-2 and NLS-3, might influence the kinase N-lobe conforma-

tion. It appears that disruption of the FABD helix-4 can shift the

equilibrium of the kinase N-lobe towards those conformations that

do not bind imatinib and thus causing imatinib resistance through

a mechanism that also requires the sequences surrounding the

NLS2 and the NLS-3 region (aa-612 to aa-774). The precise

understanding of the conformational interactions among the

kinase domain, the NLS region, and the FABD will await the

elucidation of the three-dimensional structure of the BCR-ABL or

the full-length ABL protein.

Experimental Procedures
Cell culture and reagents. The simian kidney cell line

COS1 (American Type Culture Collection) were cultured in

Figure 7. Kinase activity and imatinib-sensitivity of BCR63-ABL mutants. A and B: COS cells were transfected with BCR63-ABL or the
indicated mutant constructs. The cells were left untreated or treated with 10 mM imatinib (A) or different doses of imatinib (B) for 16 hours to inhibit
BCR-ABL kinase activity. Immunoblotting of whole cell lysates with an antibody (4G10) against phophostyrosine (pTyr) was used to indicate the levels
of the BCR-ABL tyrosine kinase activity. The levels of the BCR63-ABL protein were determined by immunoblotting with an anti-ABL antibody (8E9). The
levels of tubulin were shown as a loading control. The positions of the molecular weight markers (in kilodalton) are indicated at the left of the blot.
doi:10.1371/journal.pone.0017020.g007
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DMEM medium supplemented with 10% fetal bovine serum.

Transfection of cells was performed with FuGENE6 (Roche

Biochemical Inc.) according to the manufacturer’s instruction.

BCR-ABL kinase inhibitors imatinib (10 mM) or PD166326

(10 nM) were used for 16–24 hours to inactivate BCR-ABL

kinase. Leptomycin B (LMB, Kosan Bioscience Inc.) was added at

a final concentration of 10 nM for the last 6 hours before fixation

or as indicated.

Plasmid construction. The BCR63-ABL, the BCR63-

ABLD612 [28], and the b53-BCR63-ABL [6] have been

described. C-terminal truncations were made by PCR-based

methods as previously described [40]. Point mutations were

created by two-step PCR-based mutagenesis, and constructs were

sequenced for amplification errors. GFP fusion proteins were

made with peGFP-c1 (Stratagene) by PCR-based methods.

Immunofluorescence. Cells were seeded onto cover slips

and transfected with the specified expression plasmids 24 hours

later. Cells were fixed 24 hours after transfection in 4%

formaldehyde, permeabilized with 0.3% Triton X-100 in

phosphate-buffered saline (PBS), blocked with PBS/10% normal

goat serum, and incubated with monoclonal antibodies HA.11

against the hemagglutinin tag (Covance), or anti-ABL (8E9) at a

concentration of 1 mg/ml in blocking solution for 1 hour at room

temperature. Cells were then incubated with Alexa Fluor 568-

conjugated goat secondary antibodies (Molecular Probes) and

Alexa Fluor 488-conjugated phalloidin (Molecular Probes) for

1 hour. Nuclei were counterstained with Hoechst 33258

(Molecular Probes) and coverslips mounted onto glass slides with

gel mount (Biomeda). Epifluorescence microscopy was performed

with a Nikon microscope and images were digitally acquired with

a 0.60X HRD060-NIK CCD camera (Diagnostic Instruments).

Experiments were performed at least twice for each construct. The

localization of each of the BCR-ABL constructs was evaluated in

50–100 transfected cells across the slide. The NLS function in a

construct was scored as being inactive when no nuclear

localization was observed after the combined treatment with

imatinib and LMB. When nuclear signal was observed with a

construct, either before or after the single or the combined drug

treatments, the nuclear localization was typically seen in the

majority of cells, and representative images were taken and shown

here.

Immunoprecipitation and Immunoblotting. Cell lysates

were prepared in radio-immunoprecipitation assay buffer

(150 mM NaCl, 50 mM Tris pH 7.2, 0.1% SDS, 1.0% NP-40,

0.25% sodium deoxycholate, 1 mM EDTA, 1 mM Na3VO4,

1 mM NaF, 10 mM sodium b-glycerophosphate). For im-

munoprecipitations 250 mg of total protein were incubated with

1 mg antibody (HA.11) for two hours and immune complexes were

captured with 30 ml protein-G Sepharose beads (Amersham

Pharmacia Biotech) for 1 hour at 4uC. Immunoprecipitates were

fractionated by SDS-PAGE and transferred to polyvinylidene

difluoride (PVDF) membranes (Immobilon, Millipore). Im-

munoblotting was performed using monoclonal antibodies 4G10

(Upstate Biotechnology) against phosphotyrosine, HA.11

(Covance) against the HA-tag, B-5-1-2 (Abcam) against tubulin,

and 8E9 against ABL. Immunoblots were visualized with

SuperSignal West Pico (Pierce).

Supporting Information

Figure S1 BCR 14-3-3 binding and tyrosine 177 are not
required to inhibit BCR-ABL nuclear import. The

Figure 8. A model for the regulation of BCR-ABL nuclear import through conformational interplay between the kinase domain, the
FABD and the NLS region. (i) Tyrosine phosphorylation at Y232, Y253 or Y257 causes the kinase domain to adopt a conformation that affects the
folding of the C-terminal region and leading to the inhibition of the NLS function (indicated by the red color of the three nuclear localization signals
depicted as small circles embedded in a proline-rich linker between the kinase domain and the F-actin binding domain, FABD). The kinase domain
autophosphorylation-induced occlusion of the NLS also requires the C-terminal region beyond the third NLS (NLS-3) and including an intact helix-3 of
the FABD. Binding of imatinib reverts the kinase domain back to the ‘‘DFG-Asp out’’ N-lobe conformation that alters the folding of the C-terminal
region to un-mask the NLS (indicated by the green color of the three nuclear localization signals). (ii) Deletion of C-terminal sequences beyond the
NLS-3 unmasks the NLS despite the kinase domain autophosphorylation. (iii) Mutation of Y232, Y253 or Y257 to glutamic acid (E) also alters the kinase
domain conformation to trigger the inhibition of the NLS function. The NLS-inhibitory effect of the tyrosine to glutamic acid substitutions can be
observed in a kinase-defective BCR63-ABL. Binding of imatinib induces the ‘‘DFG-Asp out’’ conformation of the kinase domain [30], and this imatinib-
bound conformation can override the effect of the glutamic acid substitution to re-activate the NLS function.
doi:10.1371/journal.pone.0017020.g008
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indicated constructs of BCR-ABL proteins in the p185-BCR-ABL

backbone were transiently expressed in murine embryo fibroblasts

isolated from Abl-null mice, and their subcellular distribution was

assessed by indirect immunofluorescence using the anti-ABL 8E9

antibody, without or with treatment with LMB (10 nM, 6 hr.).

Detection of nuclear signals indicates re-activation of the NLS

function by the specified mutations. The substitution of BCR

Tyr177 with phenylalanine did not re-activate the NLS function,

nor did the deletion of the BCR 14-3-3-binding site. The NLS

function is re-activated in the kinase-defective p185-BCR-ABL.

OD: oligomerization domain (BCR aa-1 to aa-63); GEF: guanine

nucleotide exchange factor; PH: pleckstrin homology domain; C2:

C2 domain binds calcium and phospholipids; D14-3-3 refers to the

deletion of BCR aa-91 to aa-97, which binds the 14-3-3 adaptor

protein; ND: not determined.

(TIF)

Figure S2 BCR-ABL does not affect the nuclear import
of ABL. COS cells were transfected with HA-tagged BCR-ABL

and GFP-tagged ABL expression constructs and treated without or

with LMB (10 nM, 6 hr.). The anti-HA staining (red) shows the

subcellular distribution of BCR-ABL, and the GFP (green)

fluorescence shows the subcellular localization of ABL. Nuclei

are counterstained with Hoechst dye (blue).

(TIF)

Figure S3 Mutation of tyrosines 115, 185, 226, 264, 393
and 469 does not inhibit the NLS function of kinase-
defective BCR63-ABL. COS cells were transfected with a

kinase-defective BCR63-ABL-6Y/F, in which six tyrosines in the

kinase domain are mutated to phenylalanines as indicated in the

schematic diagram (the amino acid numbering refers to that of

ABL-1a). The phenylalanine substitutions of these six tyrosines did

not inhibit the NLS function as indicated by the nuclear

accumulation of BCR63-ABL-6Y/F after treatment with LMB

(see nuclei marked by arrows). Nuclei were counterstained with

Hoechst dye (blue).

(TIF)

Figure S4 Imatinib binding re-activates the NLS func-
tion in kinase-defective BCR63-ABL with phenylalanine
substitution at tyrosine 232, 253, 257. The indicated

constructs (KD: kinase-defective) were transfected into COS cells

and the cells treated with LMB alone or LMB plus imatinib as

indicated. Subcellular localization of the transiently transfected

proteins was determined by indirect immunofluorescence staining

with anti-ABL (8E9) antibody (red). DNA is counterstained with

Hoechst dye (blue). Nuclear accumulation of the indicated kinase-

defective BCR63-ABL-Y/F mutant protein was marked by white

arrows.

(TIF)

Figure S5 BCR63-ABL-D1121 does not co-localize with
actin fibers. The BCR63-ABL-D1121 protein was transiently

expressed in COS cells. Immunofluorescence images of anti-ABL

(8E9) staining (red) and F-actin stained with Alexa-488-conjugated

phalloidin (green) are shown individually as well as merged (right

most panel) with DNA staining by Hoechst dye (blue).

(TIF)
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