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Improving Simulation Efficiency of MCMC for
Inverse Modeling of Hydrologic Systems With
a Kalman-Inspired Proposal Distribution

Jiangjiang Zhang1 , Jasper A. Vrugt2,31 , Xiaoqing Shi4 , Guang Lin5 , Laosheng Wu6 ,
and Lingzao Zeng

1Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources
and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China,
2Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA, 3Department of Earth
System Science, University of California, Irvine, CA, USA, 4Key Laboratory of Surficial Geochemistry of Ministry of
Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China, 5Department of
Mathematics and School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA, 6Department of
Environmental Sciences, University of California, Riverside, CA, USA

Abstract Bayesian analysis is widely used in science and engineering for real-time forecasting,
decision making, and to help unravel the processes that explain the observed data. These data are some
deterministic and/or stochastic transformations of the underlying parameters. A key task is then to
summarize the posterior distribution of these parameters. When models become too difficult to analyze
analytically, Monte Carlo methods can be used to approximate the target distribution. Of these, Markov
chain Monte Carlo (MCMC) methods are particularly powerful. Such methods generate a random walk
through the parameter space and, under strict conditions of reversibility and ergodicity, will successively
visit solutions with frequency proportional to the underlying target density. This requires a proposal
distribution that generates candidate solutions starting from an arbitrary initial state. The speed of the
sampled chains converging to the target distribution deteriorates rapidly, however, with increasing
parameter dimensionality. In this paper, we introduce a new proposal distribution that enhances
significantly the efficiency of MCMC simulation for highly parameterized models. This proposal
distribution exploits the cross covariance of model parameters, measurements, and model outputs and
generates candidate states much alike the analysis step in the Kalman filter. We embed the
Kalman-inspired proposal distribution in the DiffeRential Evolution Adaptive Metropolis algorithm during
burn-in and present several numerical experiments with complex, high-dimensional, or multimodal target
distributions. Results demonstrate that this new proposal distribution can greatly improve simulation
efficiency of MCMC. Specifically, we observe a speedup on the order of 10–30 times for groundwater
models with more than 100 parameters.

1. Introduction and Scope
Mathematical modeling has become an integral part of the scientific method. Computer simulation is par-
ticularly useful for hypothesis testing, decision making, to gain (new) insights and understanding of system
functioning, and to predict system behavior into the space (interpolation) and time (forecasting) domain.
The complexity of hydrologic systems poses significant modeling challenges, in particular how to character-
ize adequately water flow and storage in the presence of (often) incomplete and insufficient observations,
process knowledge, and system characterization. This necessitates a systematic framework for uncertainty
quantification of model simulations. These uncertainties originate from model conceptualization and data
collection and include model structural errors, measurement errors of the initial conditions, forcing data
and model output data, and uncertainty in the model parameters (Kavetski et al., 2006a; 2006b; Refsgaard
et al., 2012; Renard et al., 2011; Vrugt et al., 2005; Wagener & Gupta, 2005; Zheng et al., 2018).

Let us assume that the data-generating process of some arbitrary real-world system can be written as

d̃ = 𝑓 (𝜽) + 𝝐, (1)
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where d̃ = {d̃1, … , d̃n} is an n-vector of measurements, 𝑓 (·) signifies a computer model of the system
of interest, 𝜽 = {𝜃1, … , 𝜃k} denotes a k-vector of model parameters, and 𝝐 = {𝜀1, … , 𝜀n} represents an
n-vector of measurement errors, respectively. The Bayesian paradigm treats the parameters in equation (1)
as random variables with joint probability density function. This multivariate distribution, the so-called
posterior parameter distribution, p(𝜽|d̃), is the consequence of two antecedents, a prior distribution, p(𝜽),
which captures our initial degree of beliefs in the values of the model parameters, and a likelihood function,
L(𝜽|d̃) ≡ p(d̃|𝜽), which quantifies by the rules of probability theory the level of confidence in the parameter
values,𝜽, in light of the observed data, d̃. Bayes's theorem expresses mathematically the relationship between
the prior, conditional, and posterior distribution of the parameters, 𝜽, as follows:

p(𝜽|d̃) = p(𝜽)p(d̃|𝜽)
∫ p(𝜽)p(d̃|𝜽)d𝜽 ∝ p(𝜽)L(𝜽|d̃), (2)

where the denominator, p(d̃) = ∫ p(𝜽)p(d̃|𝜽)d𝜽, is the so-called Bayesian evidence, evidence, marginal like-
lihood, or model likelihood. This normalization constant guarantees that p(𝜽|d̃) integrates to unity, that is,
∫Θp(𝜽|d̃)d𝜽 = 1, where 𝚯 ⊆ R

k signifies the feasible parameter space and p(𝜽|d̃) ≥ 0 for all 𝜽 ∈ 𝚯. The
evidence is of great importance for hypothesis testing via model selection (Cao et al., 2018; Volpi et al., 2017;
Zeng, Ye, et al., 2018) but can be discarded if our interest lies in estimation of the posterior distribution of the
parameters. Henceforth, one often removes the denominator from Bayes's theorem and works instead with
the unnormalized density, that is, the right-hand side of equation (2). When the measurement errors, 𝝐, are
normally distributed with zero mean and n × n covariance matrix, R, that is, 𝝐 ∼ n(𝟎,R), the likelihood
function can be expressed as follows:

L(𝜽|d̃) = 1
(2𝜋)n∕2|R|1∕2 exp

{
−1

2

[
d̃ − 𝑓 (𝜽)

]T
R−1

[
d̃ − 𝑓 (𝜽)

]}
, (3)

where |·| signifies the determinant operator. Nevertheless, in some cases, one has to consider correlated,
heteroscedastic, and non-Gaussian measurement errors. Then other forms of likelihood functions can be
adopted, for example, the formal likelihood function proposed by Schoups and Vrugt (2010).

A key task is now to summarize the posterior parameter distribution, p(𝜽|d̃). In most practical cases, p(𝜽|d̃)
cannot be derived by analytical means nor by analytical approximation, and Monte Carlo methods can be
used to sample the target distribution. Of these, Markov chain Monte Carlo (MCMC) methods have become
increasingly popular in the past decades. Such methods generate a (quasi-)random walk through the param-
eter space and collect the sampled solutions in one or more Markov chains. Under strict conditions of
reversibility and ergodicity, the chain(s) will gradually converge to an equilibrium distribution equivalent
to the target distribution. This means that if one looks at the archived values of 𝜽 in the chain(s) sufficiently
far from the arbitrary initial state(s), that is, after the so-called burn-in period, then these successively gen-
erated states will be distributed according to p(𝜽|d̃), the unknown target distribution of 𝜽. In practice, it
is necessary to monitor convergence of the sampled chain(s) with some diagnostic metrics (Brooks & Gel-
man, 1998). Then one discards the Markov chain states in the burn-in period to minimize the effect of initial
values on the posterior inference and use the remaining states to derive the desired statistics of p(𝜽|d̃).
The earliest MCMC method, that is, the random walk Metropolis (RWM) algorithm, was developed by
Metropolis et al. (1953) and works as follows. First, a candidate, 𝜽p, is sampled from a symmetric proposal
distribution, q(·), which is centered around the current state, 𝜽(t−1), of the Markov chain. Next, the candidate
is accepted with Metropolis probability

pacc(𝜽(t−1) → 𝜽p) = min

[
1,

p(𝜽p)L(𝜽p|d̃)
p(𝜽(t−1))L(𝜽(t−1)|d̃)

]
= min

[
1,

p(𝜽p|d̃)
p(𝜽(t−1)|d̃)

]
. (4)

Finally, if the candidate is accepted, the chain moves to 𝜽p; otherwise, the chain remains at its current state,
𝜽(t−1). Repeated application of these three steps results in a Markov chain with equilibrium distribution,
p(𝜽|d̃). Hastings (1970) generalized the RWM algorithm to asymmetric proposal distributions when the
probability density of the forward jump, q(𝜽p|𝜽(t−1)), does not equal the probability density of the backward
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jump, q(𝜽(t−1)|𝜽p). A simple correction of the acceptance probability will neutralize this imbalance in jump
probabilities

pacc(𝜽(t−1) → 𝜽p) = min

[
1,

p(𝜽p|d̃)
p(𝜽(t−1)|d̃) ·

q(𝜽(t−1)|𝜽p)
q(𝜽p|𝜽(t−1))

]
, (5)

where q(𝜽(t−1)|𝜽p) and q(𝜽p|𝜽(t−1)) signify the conditional probabilities of trail moves from 𝜽p to 𝜽(t−1) and
from 𝜽(t−1) to 𝜽p, respectively. Equation (5) is also known as the Metropolis-Hastings (MH) algorithm and
has enabled the practical application of Bayesian inference to a very large class of models and data. Indeed,
the MH algorithm has revolutionized the field of computational statistics and because of this reason was
elected as one of the top 10 most important algorithms of the twentieth century (Beichl & Sullivan, 2000).

The efficiency of the RWM and MH algorithms depends in large part on the scale and orientation of the
proposal distribution, q(·), used to create trial moves (transitions) in the Markov chain. When the proposal
distribution is too dispersed, a disproportionately large number of candidate states will be rejected, and the
chain will only converge slowly to the target distribution. On the other hand, when the proposal distribution
is too narrow (underdispersed), most candidate states will be accepted, but the chain will also travel slowly
to the target distribution as the update is very small, and MCMC will experience a very long burn-in period.

Much research has been devoted in the past decades to improving the efficiency of MCMC methods (Brooks
et al., 2011; Calderhead, 2014; Gilks & Roberts, 1996). This includes the use of kernel adaptation (Gilks et al.,
1994; Haario et al., 1999, 2001; Kuczera & Parent, 1998; Vrugt et al., 2003), Hamiltonian dynamics (Duane
et al., 1987; Hoffman & Gelman, 2014; Neal, 2011), multitry proposals (Laloy & Vrugt, 2012; Liu et al., 2000),
Langevin dynamics (Girolami & Calderhead, 2011; Roberts & Rosenthal, 1998; Roberts & Stramer, 2002),
parallel marginalization (Weare, 2007), delayed rejection (Haario et al., 2006), bacterial kernels (Yang &
Rodríguez, 2013), kernel coupling and multiple chain simulation (Craiu et al., 2009; ter Braak, 2006; ter
Braak & Vrugt, 2008; Vrugt, ter Braak, et al., 2008; Vrugt et al., 2009), early rejection (Laloy et al., 2013;
Solonen et al., 2012), parallelization (Calderhead, 2014; Neiswanger et al., 2013), and prefetching (Brockwell,
2006; Strid, 2010). These algorithms should, at least in theory, converge asymptotically to the target
distribution. Yet their performance can differ tremendously over a finite number of model evaluations.

Notwithstanding these methodological advances, MCMC methods still remain rather inefficient in explor-
ing high-dimensional parameter spaces. This severely impairs their practical application to complex system
models. The goal of this paper is twofold. First, we introduce a new proposal distribution that enhances
significantly the efficiency of MCMC simulation for highly parameterized system models. This proposal
distribution was suggested in Vrugt et al. (2013) and generates candidate states much alike the analysis
step in the Kalman filter (Kalman, 1960). However, Vrugt et al. (2013) only foresaw the potential of this
new idea and it has never been actually implemented and systematically examined. Second, to turn this
raw idea into a reliable product, we incorporate the Kalman-inspired proposal distribution with a selec-
tion probability, pK ∈ (0, 1), in various MCMC algorithms, especially the DiffeRential Evolution Adaptive
Metropolis (DREAM) algorithm (Vrugt, 2016). The DREAM algorithm has shown to work well in a large
array of inverse problems, involving high-dimensional and/or multimodal target distributions with com-
plex multivariate parameter dependencies (Bikowski et al., 2012; Laloy & Vrugt, 2012; Laloy et al., 2013;
Muleta et al., 2012; Ramin et al., 2014; Shi et al., 2012, 2014; Wöhling & Vrugt, 2011; Zhang et al., 2018).
As the Kalman-inspired proposal can introduce asymmetry to the sampled chains, it is suggested to restrict
its use only during burn-in (recommended) or use the MH algorithm or a randomized move direction to
neutralize the asymmetry. The resulting DREAM(KZS) algorithm incorporates the Kalman-inspired proposal
distribution and is a sibling of the DREAM family (Vrugt, 2016).

The remainder of this paper is organized as follows. In section 2, we introduce elements and theory of
the Kalman-inspired proposal distribution and provide a detailed recipe and discussion of the DREAM(KZS)
algorithm. Section 3 presents the results of the DREAM(KZS) algorithm for several numerical studies with
complex, high-dimensional, or multimodal target distributions. In this section we are especially concerned
with benchmark analysis of the DREAM(KZS) algorithm. Moreover, to demonstrate that the Kalman-inspired
proposal distribution can be conveniently embedded in any adequate MCMC method, we further test its
performance in two plainer MCMC algorithms (Haario et al., 2001, 2006). Finally, we conclude this paper
and provide some further discussion in section 4.
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2. Methods
In this section, we introduce the Kalman-inspired proposal distribution and discuss its implementation in
the DREAM algorithm that adopts a mix of parallel direction and snooker proposal distributions, that is, the
DREAM(ZS) algorithm (Vrugt, 2016).

2.1. MCMC Simulation
The core of the MH algorithm can be written in just a few lines (see Algorithm 1). This algorithm simulates a
single chain trajectory using the proposal distribution, q(·), a random number generator on the (0, 1) interval,
z ∼  (0, 1), and the target density, p(𝜽|d̃) in equation (2).

The user is free to select the proposal distribution as the acceptance probability in equation (5) preserves
the underlying stationary distribution of the Markov chain. A common choice is the multivariate normal
distribution, q = k(·, skΣ), with covariance matrix, Σ, and scaling factor, sk. To enhance search efficiency
and protect against an inadequate selection of the proposal distribution, we can update the scale and ori-
entation of the proposal distribution every m ≫ 1 iterations using all past samples stored in the chain,
Σ = Cov

(
{𝜽(1), … ,𝜽(t−1)}

)
+ 𝜑Ik, where Ik denotes the k × k identity matrix and 𝜑 = 10−6 is a small scalar

that prevents the collapse of the sample covariance matrix to singularity (jumps become zero). This is the
so-called Adaptive Metropolis (AM) algorithm of Haario et al. (2001). As a basic choice, the scaling factor
is often chosen to be sk = 2.382∕k, which has proven optimal for Gaussian target and proposal distributions
(Gelman et al., 1996; Roberts et al., 1997), and should result in an acceptance rate close to 0.44 for k = 1, 0.28
for k = 5, and 0.23 for a large k. It should be evident that the choice of the proposal distribution determines
in large part the sampling efficiency and convergence speed of the Markov chain. What would be desirable
is a proposal distribution that can transit the chain to the target distribution quickly.

2.2. The Kalman-Inspired Proposal Distribution
This section introduces an alternative proposal distribution designed to accelerate the movement of the
chain to the posterior distribution, p(𝜽|d̃). In this section, we present the theory and formulas of the so-called
Kalman-inspired proposal distribution.

This new proposal distribution is inspired by the state analysis step in the Kalman filter (Kalman, 1960).
The Kalman-inspired proposal distribution uses explicitly the distance of the n-vector of simulated model
outputs, d = 𝑓 (𝜽), to the observed data, d̃,

𝜽p = 𝜽(t−1) + C𝜽d(Cdd + R)−1
[
d̃ + 𝝐(t−1) − 𝑓 (𝜽(t−1))

]
= 𝜽(t−1) + Kr(t−1) + K𝝐(t−1)

= 𝜽(t−1) + Δ𝜽(t−1),

(6)

where C𝜽d = Cov(𝜽,d) denotes the k × n cross-covariance matrix of model parameters and model outputs,
Cdd = Cov(d,d) signifies the n × n autocovariance matrix of model outputs, R is the n × n covariance
matrix of measurement errors in equation (3), 𝝐(t−1) is an n-vector of random draw from the distribution of
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measurement errors, 𝝐(t−1) ∼ n(𝟎,R), r(t−1) = d̃ − 𝑓 (𝜽(t−1)) is the residual vector of parameters 𝜽(t−1), and
K constitutes the so-called Kalman gain

K = C𝜽d(Cdd + R)−1. (7)

It is noted here that the Kalman-inspired proposal uses covariances that converge, after burn-in, toward
posterior covariances. Besides, this proposal is only used to generate a candidate point, 𝜽p, from the current
chain state, 𝜽(t−1), not to directly estimate the posterior distribution, p(𝜽|d̃). In other words, the purpose and
implementation of the Kalman-inspired proposal distribution are quite different from the Kalman filter or
its Monte Carlo variants.

The jump vector of the Kalman-inspired proposal, Δ𝜽(t−1), in equation (6) is made up of two different com-
ponents: a deterministic displacement vector, Kr(t−1), which orients the jump toward the “true” parameters,
𝜽
∗, of the data-generating process, and a random displacement vector, K𝝐(t−1), with zero mean normally dis-

tributed variables, which introduce randomness into the sampled candidate states. This latter term of the
jump vector, Δ𝜽(t−1), is of crucial importance as it enables the Kalman-inspired proposal to sample, with
nonzero probability, all possible states of the target distribution. This ensures ergodicity of the sampled
chain. From equation (6), it is clear that the width of the Kalman-inspired proposal distribution, which is
determined by the random displacement part, K𝝐(t−1), should keep relatively stable with time, as the distri-
bution of measurement errors is constant. On the contrary, the deterministic jump distance, Kr(t−1), should
decrease over time (until convergence has been achieved), as the difference between the simulated model
outputs, 𝑓 (𝜽), and measurement data, d̃, is expected to decrease with the evolution of the Markov chain.

As mentioned above, the deterministic component, Kr(t−1), of the jump vector, Δ𝜽(t−1), will guide the can-
didate states to the “true” parameters, 𝜽∗, of the data-generating process. This will help shorten burn-in
yet introduce asymmetry in the sampled candidate states. We must account for this asymmetry of the
Kalman-inspired proposal distribution to preserve the unique stationary distribution of the Markov chain.
Equation (5) will help to remedy the dissimilar forward q(𝜽p|𝜽(t−1)) and backward q(𝜽(t−1)|𝜽p) jump proba-
bilities of equation (6). Alternatively, we can follow the suggestion made by Vrugt et al. (2013) to randomize
the direction of the jump vector, Δ𝜽(t−1), as follows:

𝜽p = 𝜽(t−1) ± (Kr(t−1) + K𝝐(t−1))
= 𝜽(t−1) ± Δ𝜽(t−1).

(8)

This modification enforces symmetry of the Kalman-inspired proposal distribution with equal selection
probability of the direction of the jump vector, Δ𝜽(t−1).

The two approaches described above are easy to implement in practice and will guarantee detailed balance
of the sampled Markov chain. These so-called reversibility patches do have an undesired side effect, that is,
they deteriorate considerably the sampling efficiency of the Kalman-inspired proposal distribution, although
they are theoretically appealing. This is easily demonstrated with numerical experiments. For example, if
we use equation (5) to account for the asymmetry of the Kalman-inspired proposal distribution, then trial
moves from 𝜽(t−1) to 𝜽p will be punished heavily as q(𝜽p|𝜽(t−1)) ≫ q(𝜽(t−1)|𝜽p). The Hastings correction will
therefore decrease the acceptance rate of candidate states. Unfortunately, the symmetric Kalman kernel
of equation (8) provides no solace. Many of the trial moves of this proposal distribution will go to waste
(especially when 𝜽p = 𝜽(t−1) − Δ𝜽(t−1)) as they lead the chain away from the target distribution. Thus, both
reversibility patches may defeat the purpose of the Kalman-inspired proposal distribution. To take optimal
advantage of the Kalman-inspired proposal distribution, we limit its application to only the first TK steps
of the Markov chain. During this prescribed, relatively short burn-in period, the Kalman-inspired proposal
will guide the chain to the target distribution and the resulting samples are discarded. At the end of this
period we will switch the chain to a reversible proposal distribution that uses only information from past
and/or present chain states to generate trial moves.

The Kalman-inspired proposal distribution can be conveniently embedded in any adequate MCMC method.
In the next section, we present the implementation of this proposal distribution in the DREAM(ZS) algorithm
and an algorithmic outline of the resulting DREAM(KZS) algorithm.
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2.3. The DREAM(KZS) Algorithm
The DREAM(KZS) algorithm is an adaptive, multiple chain MCMC method, which exploits information from
past sampled states of model parameters and outputs to rapidly explore the parameter space in pursuit of the
target distribution, p(𝜽|d̃). This method is an extension of the DREAM(ZS) algorithm, which in turn has its
roots within DE-MC(ZS) of ter Braak and Vrugt (2008). The next two subsections introduce the DREAM(KZS)
algorithm and provide an algorithmic recipe of this new MCMC sampler.
2.3.1. DREAM(KZS): In Words
Let Θ(1) = {𝜽1

(1), … ,𝜽N
(1)} be an N × k matrix with the initial states of the N chains. These states are drawn

from the prior distribution. Similarly, let Z = {𝜽1, … ,𝜽m0} be an archive with m0 (m0 ≫ N) draws from
the prior distribution. If  is a subset of k− dimensions of the original parameter space, Rk− ⊆ R

k, then a
candidate, 𝜽i

p, in the ith chain, i = 1, … ,N, at iteration t, t = 2, … ,T, is calculated from the samples in the
archive, Z, using a mix of parallel direction (Price et al., 2006; Storn & Price, 1997; Vrugt, ter Braak, et al.,
2008; Vrugt et al., 2009)

Δ𝜽i
l∈ = 𝛇l + (1 + 𝛌l)𝛾P(𝛿,k−)

𝛿∑
𝑗=1

(
Za𝑗

l − Zb𝑗

l

)
Δ𝜽i

l = 0

if u ∈ [0, pP], (9)

snooker (Laloy & Vrugt, 2012; ter Braak & Vrugt, 2008; Vrugt, 2016)

Δ𝜽i = 𝛇 + (1 + 𝛌)𝛾S(Z
a1
⟂ − Zb1

⟂ ) if u ∈ (pP, pP + pS], (10)

and Kalman trial moves

Δ𝜽i = 𝛾K

[
K(t−1)ri

(t−1) + K(t−1)𝝐
i
(t−1)

]
if u ∈ (pP + pS, 1] and t ≤ TK, (11)

where u is a random draw from a standard uniform distribution, u ∼  (0, 1); pP and 𝛾P = 2.38∕
√

2𝛿k−, pS
and 𝛾S ∼  (1.2, 2.2), and pK = 1 − pP − pS and 𝛾K = 1 signify the selection probabilities and jump rates
of the parallel direction, snooker, and Kalman-inspired proposal distributions, respectively; 𝛿 denotes the
number of chain pairs of the parallel direction proposal; a = {a1, … , a𝛿} and b = {b1, … , b𝛿} are 𝛿-vectors
with integers randomly drawn from {1, … ,m} without replacement; 𝛌 and 𝛇 are sampled independently
from k(−𝜈, 𝜈) and k(0, 𝛽), respectively, with 𝜈 = 0.05 and 𝛽 = 10−12 are small compared to the width
of the target distribution; Za1

⟂ and Zb1
⟂ are orthogonal projection points of the samples Za1 and Zb1 onto the

line going through the current state of the ith chain, 𝜽i
(t−1), and sample Zc of the external archive, where

c is an integer randomly drawn from {1, … ,m} and c ≠ a1 ≠ b1; ri
(t−1) and 𝝐

i
(t−1) are residual vector of

parameters 𝜽i
(t−1) and a random draw from the distribution of measurement errors. Furthermore, to enhance

the probability of a direct jump between disconnected modes of the target distribution, we use 𝛾P = 1 in 20%
of the parallel direction proposals.

The candidate state of chain i at iteration t then becomes

𝜽
i
p = 𝜽

i
(t−1) + Δ𝜽i, (12)

and the Metropolis ratio of equation (4) is used to determine whether to accept this candidate or not. If the
acceptance probability, pacc(𝜽i

(t−1) → 𝜽
i
p), is larger than or equal to a uniform random label, u ∼  (0, 1),

then the candidate state is accepted and the ith chain moves to the new position, that is, 𝜽i
(t) = 𝜽

i
p; otherwise,

𝜽
i
(t) = 𝜽

i
(t−1). The snooker candidates demand a multiplicative, Hastings-type correction, 𝛼(𝜽i

(t−1) → 𝜽
i
p), of

the acceptance probability

𝛼(𝜽i
(t−1) → 𝜽

i
p) =

( ||𝜽i
p − Zc||

||𝜽i
(t−1) − Zc||

)(k−1)

, (13)

where || · || signifies the Euclidean operator. The use of the corrected acceptance probability, 𝛼(𝜽i
(t−1) →

𝜽
i
p)pacc(𝜽i

(t−1) → 𝜽
i
p), will negate bias in the jump direction of the snooker move and guarantee reversibility

of the sampled chains (ter Braak & Vrugt, 2008).

The convergence speed of DREAM(KZS) is largely determined by the samples in the archive Z. In each K gen-
erations (K ≫ 1), we augment this archive of past states with the current states, 𝚯(t) = {𝜽1

(t), … ,𝜽N
(t)}, of the
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N chains. This turns the DREAM(KZS) algorithm into an adaptive MCMC method with scale and orientation
of the proposal that depend on the cumulative search history of the sampled chains. This proposal adapta-
tion violates the Markovian properties, that is, the next state of the chain should depend only on the current
one. Nevertheless, adaptation has been employed in various MCMC algorithms (just name a few Haario
et al., 2001, 2006; Vrugt et al., 2003), to enhance search efficiency and protect against an inadequate selec-
tion of the proposal distribution. These algorithms are in theory not Markovian either. In practice, when the
target distribution is bounded and the adaptation is performed under some regularity conditions, the adap-
tive MCMC algorithms can still retain the desired stationary distribution. In DREAM(KZS), if m denotes the
current number of samples in the archive, then appending N states changes Z by an order of K∕t, which
decreases with iteration t. The three proposal distributions used in DREAM(KZS) thus become invariant as the
length of the thinned past increases without bound. This so-called diminishing adaptation ensures ergodic
chains that converge to the exact target distribution (Roberts & Rosenthal, 2007).

The k− members of the subset are drawn at random from the entries {1, … , k}with the help of a crossover
probability, 𝜂 ∈ (0, 1]. Each time a proposal is generated, we draw a k-vector, u = {u1, … ,uk}, of standard
uniform labels, u ∼ k(0, 1). All entries 𝑗 of u which satisfy u𝑗 ≤ 𝜂 are stored in the subset  and used
to span the search subspace that will be sampled using equation (9).  must at least have one element;
otherwise, the jump vector will have zero length. To enhance search efficiency, we use a geometric series
of n𝜂 crossover values, 𝛈 = {1∕n𝜂, 2∕n𝜂, … , 1}, and sample the value of 𝜂 from a discrete multinomial
distribution, (𝛈,p𝜂), on 𝛈 with selection probabilities p𝜂 . The values of p𝜂 are tuned adaptively during
burn-in by maximizing the traveled distance of the N chains. This adaptation scheme is described in detail
in Vrugt, Diks, et al. (2008) and Vrugt et al. (2009). The use of a vector of crossover probabilities enables
single-site Metropolis ( has one element), Metropolis-within-Gibbs ( has one or more elements), and
regular Metropolis sampling ( has k elements) and enables chains to sample outside the subspace spanned
by their current positions. The default setting of n𝜂 = 3 has shown to work well in practice.

We are now left with a numerical implementation of the Kalman-inspired proposal distribution. We use this
proposal distribution only during the first TK generations, after which pK = 0, and the selection probabilities
of the parallel direction and snooker proposal distributions, pP and pS, respectively, are renormalized so that
their values add up to one. The Kalman gain, K(t−1), in equation (11) is computed from an archive ZK with
mK samples drawn from the chain history, as follows:

K(t−1) = Cov
(
ZK, 𝑓 (ZK)

) [
Cov

(
𝑓 (ZK), 𝑓 (ZK)

)
+ R

]−1
, (14)

where 𝑓 (ZK) is an mK × n matrix with model outputs of the mK samples in the archive ZK.

It should be noted here that although the Kalman filter is based on Gaussian assumption, an MCMC algo-
rithm (e.g., DREAM in this work) that adopts the Kalman-inspired proposal distribution can be used to
explore complex and non-Gaussian (e.g., multimodal) target distributions (see section 3.4). Due to the fact
that they are both based on the Kalman formula, one might confuse the Kalman-inspired proposal distribu-
tion that only generates a candidate at a time, with ensemble Kalman filter (EnKF) and its variants (Evensen,
2009) that use an ensemble of parameter samples updated with the Kalman formula to directly approximate
the posterior. In EnKF and its variants, one should use the prior covariances to calculate the Kalman gain,
then update the prior ensemble with the Kalman formula, and finally use the updated ensemble to approx-
imate the mean and covariance of the posterior. These methods are restricted to problems with Gaussian
parameter distributions. However, in our work, the Kalman-inspired proposal is not designed to directly
approximate the posterior but to suggest where the Markov chain might move at the next step by generating
a candidate. At the very beginning of the MCMC simulation, it is very likely that the candidate states are
far from the posterior mean. Implemented in an AM sampler, the Kalman-inspired proposal actually uses
covariances that undergo adaptation. The covariances can converge, after burn-in, toward posterior covari-
ances. To our best knowledge, proposal distributions used in various popular MCMC algorithms also adopt
Gaussian forms, which does not mean that the MCMC algorithms are restricted to problems with normal
posterior distributions.

Nevertheless, in complicated, multimodal problems, the Kalman-inspired proposal faces the risk of missing
secondary modes. To improve the capability of the Kalman-inspired proposal in multimodal cases, one can
modify the original Kalman-inspired proposal by adopting the local Kalman update strategy proposed by
Zhang, Lin, et al. (2018), which is specifically designed to solve inverse problems with (possible) multimodal
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parameter distributions. The basic idea behind the local Kalman update strategy is simple: Although globally
the parameter distribution might be non-Gaussian, or even multimodal, one can still use a Gaussian distri-
bution to describe the local parameter distribution. For example, when overall the parameter distribution is
multimodal, if one only looks at the neighborhood of a single mode, the local parameter distribution can be
still close to Gaussian. Using an integrated measure of distance proposed by Zhang, Lin, et al. (2018), one
can find the local ensemble of each sample in the archive for the Kalman-inspired proposal. Through updat-
ing all the local ensembles separately, and generating a candidate randomly from the multiple updated local
ensembles, the modified proposal distribution will have a larger chance to sample the secondary modes. As
the original Kalman-inspired proposal distribution already works well in multimodal cases (see section 3.4),
to prevent the length of the paper from being too long, the local Kalman update strategy is not tested here.
We refer the reader to Zhang, Lin, et al. (2018) for a detailed description of the related method. Nevertheless,
in the Kalman-inspired proposal, distribution of measurement errors still needs to be Gaussian. To enable
a proper use of the Kalman-inspired proposal, one can transform (possible) non-Gaussian measurement
errors to Gaussian variables with some transformation method (Chou et al., 1998; Sakia, 1992).
2.3.2. DREAM(KZS): Algorithmic Recipe
This section provides an algorithmic recipe of the DREAM(KZS) algorithm (see Algorithm 2). This recipe
translates the initial population, Θ(1) = {𝜽1

(1), … ,𝜽N
(1)}, into samples from the target distribution.

The parallel direction, snooker, and Kalman-inspired proposal distributions are used interchangeably during
the first TK generations to propose candidate states in the N chains. After this prescribed burn-in period,
the selection probability of the Kalman-inspired proposal distribution is set to zero, that is, pK = 0, and the
selection probabilities of the parallel direction and snooker proposal distributions, pP and pS, are normalized
to sum to unity. Thus, after the relatively short burn-in period, the sampled chains will maintain detailed
balance.

Convergence of the sampled chains of the DREAM(KZS) algorithm can be monitored with a variety of differ-
ent metrics, including within-chain and between-chain statistics. Of these, the univariate, R̂𝑗 , 𝑗 = 1, … , k,
and multivariate, R̂k, scale reduction factors of Gelman and Rubin (1992) and Brooks and Gelman (1998),
respectively, are most widely used to assess convergence for multiple chain methods. These two diagnos-
tics compare for each parameter individually, or for the distribution as a whole, the within-chain and
between-chain variances or covariance matrices, respectively. Values of R̂𝑗 ≤ 1.2,∀𝑗 ∈ {1, … , k} and
R̂k ≤ 1.2 demonstrate convergence of the sampled chains to a stationary distribution.

ZHANG ET AL. 8 of 24



Water Resources Research 10.1029/2019WR025474

Table 1
Description of the hmodel Parameters and Their Minimum and Maximum Values That Define
the Prior Uncertainty Ranges

Parameter Symbol Min. Max. Unit True
Maximum interception Imax 0.5 10 mm 3.84
Soil water storage capacity Smax 10 1,000 mm 776.40
Maximum percolation rate Qmax 0 100 mm/d 26.60
Evaporation parameter 𝛼E 0 100 — 61.61
Runoff parameter 𝛼F −10 10 — −4.18
Time constant, fast reservoir KF 0 10 days 6.01
Time constant, slow reservoir KS 0 150 days 111.67

Note. The last column lists the “true” parameter values used in our numerical experiment.

3. Illustrative Case Studies
In this section, we analyze, test, and evaluate the performance of the DREAM(KZS) algorithm by application
to several different case studies with complex, high-dimensional, or multimodal target distributions. These
studies involve mathematical models of rainfall-runoff transformation, groundwater flow, and contaminant
transport. We use simulated data of known parameter values to evaluate the performance of the DREAM(KZS)
algorithm and benchmark its sampling efficiency against the DREAM(ZS) algorithm. The DREAM(ZS) algo-
rithm has found widespread application and use, and many published studies corroborate its excellent ability
to rapidly sample complex, high-dimensional target distributions (Bikowski et al., 2012; Muleta et al., 2012;
Ramin et al., 2014; Shi et al., 2014; Wöhling & Vrugt, 2011; Zhang et al., 2018). In the numerical experi-
ments, we suggest to set pP = 0.6, pS = 0.1, pK = 0.3, and TK = 0.3T in the DREAM(KZS) algorithm, where
T signifies the maximum number of chain generations. Moreover, to demonstrate that the Kalman-inspired
proposal distribution can be conveniently embedded in any adequate MCMC method, in section 3.1, we fur-
ther test the performance of the Kalman-inspired proposal in two plainer MCMC algorithms, that is, AM
(Haario et al., 2001) and Delayed Rejection AM (DRAM, Haario et al., 2006).

3.1. Case Study 1: A Rainfall-Runoff Model
Our first case study considers application of the DREAM(KZS) algorithm to modeling of the rainfall-discharge
relationship of the Guadalupe River basin (Duan et al., 2006). We use the seven-parameter hmodel of
Schoups and Vrugt (2010) to simulate daily discharge records of the Guadalupe River at Spring Branch,
Texas, using basin average estimates of precipitation and potential evapotranspiration. The hmodel trans-
forms rainfall into runoff at the watershed outlet using four different control volumes and simulation of
interception, throughfall, evaporation, runoff generation, and percolation through surface and subsurface
routings. The seven parameters of the hmodel and their prior ranges are listed in Table 1. We refer the reader
to Schoups and Vrugt (2010) for a detailed description of the hmodel, including model structure, process
specification, and parameterization.

We use the hmodel parameter values listed in Table 1 to simulate an n = 1, 827 record of daily discharge
values, d. This record is corrupted with heteroscedastic measurement errors by drawing from the n-variate
normal distribution, d̃ ∼ n(d,R), with values of (0.05d)2 on the main diagonal of the covariance matrix,
R, and zero entries elsewhere. We now use the perturbed record, d̃, to infer the posterior distribution of
the hmodel parameters with the DREAM(KZS) algorithm using N = 4 chains with T = 6, 000 samples in
each chain. We assume a uniform prior parameter distribution over the ranges listed in Table 1 and use the
Gaussian likelihood function of equation (3) with known measurement error covariance matrix, R.

Figure 1 presents a trace plot of the univariate convergence diagnostic for each of the k = 7 hmodel param-
eters, R̂𝑗 , 𝑗 = 1, … , k, and the multivariate convergence diagnostic, R̂k, using the DREAM(KZS) (left panel)
and DREAM(ZS) (right panel) algorithms. The different hmodel parameters are coded with different colors.
The horizontal black dashed line in each panel demarcates the threshold of 1.2 below which the chains are
assumed to have converged to a stationary distribution. The DREAM(KZS) algorithm requires about 1,800 iter-
ations (i.e., 7,200 model evaluations) to satisfy the stipulated convergence threshold of 1.2. The DREAM(ZS)
algorithm, on the contrary, needs a substantially larger number of about 3,360 iterations (i.e., 13,440 model
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Figure 1. Traces of the R̂-statistics of the seven hmodel parameters using the (a) DREAM(KZS) and (b) DREAM(ZS)
algorithms. The horizontal black dashed lines depict the threshold value of 1.2 used to declare convergence to a
stationary distribution.

evaluations) to converge to the stationary distribution. These findings suggest an improvement in simulation
efficiency on the order of 1.87 times.

These initial results are encouraging, yet they would not mean much if the DREAM(KZS) algorithm did not
approximate correctly the target distribution. In Figure 2, we plot marginal posterior distributions of the
seven hmodel parameters derived from the DREAM(KZS) (red dashed lines) and DREAM(ZS) (blue lines)
algorithms. The densities are estimated with a normal kernel function using the last 1,000 samples in each of
the N = 4 Markov chains. The “true” values of the hmodel parameters are separately indicated in each panel
with a vertical black line. The approximated marginal distributions of both algorithms appear remarkably
similar and center nicely on the “true” values of the hmodel parameters. This provides evidence for the
claim that the DREAM(KZS) algorithm successfully approximates the target distribution.

Now one question still remains, that is, what if we do not switch the Kalman-inspired proposal distribution
off after burn-in? To answer this question, we further implement the DREAM(KZS) algorithm that uses the
Kalman-inspired proposal all the time. From Figure S1 (in the supporting information) we can find that the
R̂-diagnostic plots for the two DREAM(KZS) approaches can reach the threshold value of 1.2 with a similar
number of iterations. This is not surprising as the two approaches use the same settings during burn-in. After
burn-in, if we continue to use the Kalman-inspired proposal, we can obtain slightly smaller R̂ values than the
approach that switches off the Kalman-inspired proposal after burn-in. However, as shown in Figure 2, using
the Kalman-inspired proposal all the time in MCMC will make the final estimation of posterior (magenta
dash-dotted lines) slightly narrower than the reference results obtained by DREAM(ZS) (blue lines), while the
recommended approach that uses the Kalman-inspired proposal only during burn-in obtains reliable results
(red dashed lines). To investigate the performance of the Kalman-inspired proposal, we further analyze the
acceptance rates of the two DREAM(KZS) approaches. In Figure S2, we depict the evolution of the numbers
of accepted candidate states in the two DREAM(KZS) approaches. During the prescribed burn-in period (i.e.,
the first 30% of the MCMC simulation), the average acceptance rate (using the parallel direction, snooker
and Kalman-inspired proposals with suggested selection probabilities) is about 0.17; if we only account
for the candidate states generated by the Kalman-inspired proposal, the acceptance rate can be as high as
about 0.40, which indicates that the Kalman-inspired proposal can generate “good” candidates that are less
likely to be rejected. After burn-in, if we switch off the Kalman-inspired proposal, the average acceptance
rate (using the other two proposals) during the last 70% of the MCMC simulation will be about 0.10; if the
Kalman-inspired proposal is still left on, the average acceptance rate (using the three proposals) can be about
0.33. The above results indicate that the Kalman-inspired proposal can shorten burn-in, but it introduces
asymmetry to the sampled chains. To maintain detailed balance of the Markov chains, we can adopt the
three strategies proposed in section 2.2, among which the simplest way is to restrict the Kalman-inspired
proposal distribution to the burn-in period, which is our default setting in the following tests.
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Figure 2. (a–g) Marginal posterior distributions of the seven hmodel parameters obtained by DREAM(KZS) that uses
the Kalman-inspired proposal during burn-in (default setting, red dashed lines), DREAM(KZS) that uses the
Kalman-inspired proposal all the time (magenta dash-dotted lines), and DREAM(ZS) (reference results, blue lines),
respectively. The vertical black lines display the “true” values of the hmodel parameters.

To generalize our findings, we repeat our numerical experiment using six sets of other hmodel parame-
ter vectors drawn randomly from the uniform prior distribution. To negate sampling variability, we repeat
the simulation of the DREAM(KZS) and DREAM(ZS) algorithms five times for each parameter vector. The
results of our analysis are presented in Figure 3, which presents traces of the R̂k-diagnostic for the five repe-
titions (within a graph) of each parameter vector (between graphs) using the DREAM(KZS) and DREAM(ZS)
algorithms. Thus, each subplot corresponds to a different hmodel parameter vector and contains a sepa-
rate trace of the R̂k-convergence diagnostic for each of its five repetitions with the same set of measurement
data. Color coding differentiates between the DREAM(KZS) (red dashed lines) and DREAM(ZS) (blue lines)

Figure 3. Evolution of the multivariate R̂k-convergence diagnostic derived from the DREAM(KZS) (red dashed lines)
and DREAM(ZS) (blue lines) algorithms for six discharge data sets (between plots) each with five repetitions (within
plot). The horizontal black dashed line in each plot displays the threshold of 1.2 used to declare convergence to a
stationary distribution.
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Figure 4. (a–i) Marginal posterior distributions of the seven hmodel parameters and two measurement error model
coefficients derived from the DREAM(KZS) (red dashed lines) and DREAM(ZS) (blue lines) algorithms. The “true”
values of the k = 9 parameters are separately indicated in each panel with a vertical black line.

algorithms. As we plot the multivariate R̂k-statistic, a single line suffices for each combination of algorithm,
parameter vector and repetition simulation. The results in Figure 3 generalize our earlier findings. Indeed,
the DREAM(KZS) algorithm consistently requires fewer model evaluations to converge to the posterior dis-
tribution. Note, that the speedup in sampling efficiency of the DREAM(KZS) algorithm is hardly impressive.
This is not surprising due to the rather low dimensionality of the target distribution.

Up to now, we have conveniently assumed the covariance matrix of measurement errors to be known, that
is, 𝝐 ∼ n(𝟎,R), where

√
R was diagonal with entries equal to 1/20 of the “true” model responses, d. In

practice, the distribution of measurement errors may not be known a priori. In those cases, we can define a
measurement error model; say, the standard deviation of the measurement errors is expressed as, 𝛔 = a+bd̃.
The coefficients a and b can be treated as nuisance variables whose values can be inferred simultaneously
with the model parameters (see e.g., Schoups & Vrugt, 2010; Vrugt, 2016). As a proof of concept, Figure 4
presents marginal posterior distributions of the hmodel parameters and coefficients a and b derived from
the DREAM(KZS) (red dashed lines) and DREAM(ZS) (blue lines) algorithms. The estimated marginal distri-
butions of both algorithms are in close agreement with each other and cover the assumed values (vertical
black lines) of the hmodel parameters and measurement error model coefficients (a = 0 and b = 0.05).

It is noted here that the Kalman-inspired proposal distribution is not tied to a particular MCMC algorithm,
for example, DREAM, but is straightforwardly extendable to any adequate MCMC method. To support
this claim, we also introduce the Kalman-inspired proposal distribution to two widely used, single chain
MCMC methods, that is, the AM and DRAM algorithms (Haario et al., 2001, 2006). When implementing
the AM algorithm, we first start the Markov chain from the prior mean values and set the chain length
as T = 24, 000. Introducing the Kalman-inspired proposal distribution to the AM algorithm produces a
modified method, which is termed the AM(K) algorithm here. In the AM(K) algorithm, the Kalman-inspired
proposal distribution is used during a prescribed burn-in period (the first 30% of the MCMC simulation)
with a selection probability of pK = 0.3. With the same settings, we then run the DRAM and correspond-
ing DRAM(K) algorithms to infer the posterior distribution of the seven hmodel parameters. As shown in
Figure S3, conditioned on the same set of measurement data (generated from one set of random parame-
ter vector and corrupted with a zero-mean normally distributed error), the AM (black lines), AM(K) (black
dashed lines), DRAM (blue lines), DRAM(K) (blue dashed lines), and DREAM(KZS) (red dashed lines) algo-
rithms can obtain very consistent estimates of the posterior distribution. From the traces of the seven hmodel
parameters obtained by the AM (red dots in Figure S4), AM(K) (blue dots in Figure S4), DRAM (red dots
in Figure S5), and DRAM(K) (blue dots in Figure S5) algorithms, it is evident that the AM(K) and DRAM(K)
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Figure 5. Schematic overview of the simulated spatial domain with
imposed boundary conditions. The area with light red signifies the
potential location of contaminant release from a point source, and the blue
dots represent the wells at which measurements of the steady-state
hydraulic head and transient contaminant concentration are collected.

algorithms require fewer iterations to reach the stationary regime
than their original counterparts, and the Kalman-inspired proposal can
improve the performance of AM more than DRAM. After systematic eval-
uations, we find that the initial state, or starting point, of the Markov
chain can have a significant impact on the performance of the AM algo-
rithm. As shown in Figure S6, starting from a random state drawn from
the prior distribution, the AM algorithm (red dots) performs much worse
than the AM algorithm starting from the prior mean state (red dots in
Figure S4). However, starting from the same random state, the AM(K)
algorithm (blue dots in Figure S6) exhibits a more desirable performance
than the AM algorithm. Starting from the same random initial state, the
DRAM algorithm (red dots in Figure S7) performs better than the AM
algorithm, and adopting the Kalman-inspired proposal in DRAM (i.e.,
DRAM(K), blue dots in Figure S7) can further improve the performance.
It is noted here that the use of delayed rejection in DRAM (or DRAM(K))
will make the actual number of model evaluations much larger than the

prescribed chain length of T = 24, 000. To improve the performance of MCMC, it is a common practice to
first run an optimizer to obtain a “good” initial state. Here we adopt a simplex search method developed by
Lagarias et al. (1998) (the build-in function “fminsearch” in MATLAB) to obtain a head start. The optimizer
explores the parameter space from the prior mean values and calls 1,406 model evaluations in total. With the
optimized initial state, we run the AM algorithm and plot the traces (red dots) of the seven hmodel param-
eters in Figure S8. In this figure, we again present the results of the AM(K) algorithm starting from the prior
mean state (blue dots). Without extra model evaluations, the AM(K) algorithm still works slightly better than
the AM algorithm with an initial optimizer. From the above simulation results we can conclude that the
starting point of the Markov chain can have a considerable effect on the convergence speed of a plain MCMC
algorithm like AM. Thus, finding a good starting point, for example, using an optimization method, can
improve the simulation efficiency of the MCMC algorithm. Nevertheless, without resorting to looking for a
good starting point, one can also employ an effective proposal distribution, for example, the Kalman-inspired
proposal distribution formulated in this work, to generate “good” candidates that can accelerate the move-
ment of the chain to the target region. To enhance search efficiency, adaptation of covariance(s) based on
the chain history is always performed.

3.2. Case Study 2: Groundwater Contaminant Source Identification
The second case study considers two-dimensional simulation of steady-state groundwater flow and con-
taminant transport. We consider a hypothetical rectangular flow domain (see Figure 5) with x ∈ [0, 20] (L)
and 𝑦 ∈ [0, 10] (L) in units of length in the horizontal and vertical directions, respectively. A constant head
of h = 12 (L) and h = 11 (L) at the left and right sides of the domain, respectively, and no-flow condi-
tion at the top and bottom of the field impose a steady-state water flux from left to right across the domain.
The hydraulic conductivity field, K(x, 𝑦) (LT−1), of the domain is assumed to be spatially heterogeneous
and isotropic with covariance function, C(x1, 𝑦1; x2, 𝑦2), of two arbitrary points, (x1, 𝑦1) and (x2, 𝑦2), for the
log-transformed field,  = log (K(x, 𝑦)), equal to (Zhang & Lu, 2004)

C(x1, 𝑦1; x2, 𝑦2) = 𝜎2
 exp

(
−
||x1 − x2

||
𝜆x

−
||𝑦1 − 𝑦2

||
𝜆𝑦

)
, (15)

where 𝜎2
 is the variance of the log conductivity field and 𝜆x (L) and 𝜆𝑦 (L) signify the correlation lengths in

the x and 𝑦 directions, respectively.

We sample a reference hydraulic conductivity field (see Figure 8a) with mean logarithmic conductivity,
𝜇 = 2, and values of 𝜎2

 = 1, 𝜆x = 10 (L), and 𝜆𝑦 = 5 (L) in equation (15). Next, we simulate the steady-state
hydraulic head, h (L), and corresponding pore water velocity, v (LT−1), in our rectangular domain by solving
the following two equations numerically with MODFLOW (Harbaugh et al., 2000)

𝜕

𝜕xi

(
Ki

𝜕h
𝜕xi

)
= 0, (16)

and
vi = −

Ki

𝜙

𝜕h
𝜕xi

, (17)

where 𝜙 = 0.25 (-) is the aquifer porosity and the subscript i signifies the respective coordinate axis (i = 1, 2).
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Table 2
Description of the Eight Contaminant Source Parameters of Our Contaminant Transport Model and
the Ranges of Their Multivariate Uniform Prior Distribution

Parameter Symbol Min. Max. Unit True
x coordinate of spill xs 3 5 L 3.52
𝑦 coordinate of spill 𝑦s 4 6 L 4.44
Release strength of the first segment s1 0 8 MT−1 5.69
Release strength of the second segment s2 0 8 MT−1 7.88
Release strength of the third segment s3 0 8 MT−1 6.31
Release strength of the fourth segment s4 0 8 MT−1 1.49
Release strength of the fifth segment s5 0 8 MT−1 6.87
Release strength of the sixth segment s6 0 8 MT−1 5.55

Note. The last column lists the “true” values of the parameters used in our numerical experiment.

To simulate contaminant transport, we pollute the water in our flow domain with an unknown point source.
The exact location of this point source is assumed unknown, but its spatial coordinates, xs and 𝑦s, must be
found within the light red square depicted in Figure 5. As the release strength of the contaminant may be
time dependent, we use a simple step function to simulate transient mass-loading rates. This step function is
composed of six equidistant time intervals with a constant mass-loading rate, si (MT−1), i = 1, … , 6, in each
segment. The space-time concentration, C(x, 𝑦, t) (ML−3), of the contaminant in our rectangular domain
is simulated with MT3DMS (Zheng & Wang, 1999), using numerical solution of the advection-dispersion
equation

𝜕(𝜙C)
𝜕t

= 𝜕

𝜕xi

(
𝜙Di𝑗

𝜕C
𝜕x𝑗

)
− 𝜕

𝜕xi
(𝜙viC) + qaCs, (18)

where qa (T−1) denotes the volumetric flow rate per unit volume of the aquifer, Cs (ML−3) is the concentration
of the contaminant source, and Di𝑗 (L2T−1) signifies the hydrodynamic dispersion tensor. This tensor is made
up of the following four components

Dxx = 1||v|| (𝛼Lv2
x + 𝛼Tv2

𝑦
),

D𝑦𝑦 =
1||v|| (𝛼Lv2

𝑦
+ 𝛼Tv2

x),

Dx𝑦 = D𝑦x = 1||v|| (𝛼L − 𝛼T)vxv𝑦,

(19)

where Dxx, D𝑦𝑦, Dx𝑦, and D𝑦x (L2T−1) are the two principal components of the dispersion tensor and their
two cross terms, respectively, 𝛼L and 𝛼T (L) signify the longitudinal and transverse dispersivity, respectively,
vx and v𝑦 are the water flow velocities in the x and 𝑦 directions, respectively, and ||v|| = √

v2
x + v2

𝑦
is the 𝓁2

norm, or magnitude, of the velocity vector, v.

To test, evaluate, and benchmark the DREAM(KZS) algorithm, we create a reference data set as follows.
We sample randomly from a multivariate uniform prior distribution of the two coordinates, {xs, 𝑦s}, of the
contaminant source location and six release strengths, {s1, … , s6}, of the mass-loading rate step function
using the ranges listed in Table 2. These sampled values are listed in the last column of Table 2 and used
to construct an artificial data set by collecting, at 15 different wells within the flow domain, the simulated
steady-state hydraulic heads and transient contaminant concentrations. The location of each of these wells
is separately indicated in Figure 5 with a blue dot. We now simulate a reference run of steady-state heads
and transient contaminant concentrations at each well using 𝛼L = 0.3 (L) and 𝛼T = 0.03 (L). The simulated
heads and contaminant concentrations are subsequently corrupted with a zero mean normally distributed
error with standard deviations of 0.005 (L) and 0.005 (ML−3), respectively. The final data set now consists of
the steady-state hydraulic heads and transient contaminant concentrations at t = {4, 5, … , 12} (T) at the
15 wells. This equates to nh = 15 measurements of the hydraulic head and nC = 135 observations of the
contaminant concentration.

We now use the DREAM(KZS) algorithm to reconstruct the hydraulic conductivity field, point source loca-
tion, and transient mass-loading rates from the measurement data. This requires a parametric definition
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Figure 6. Trace plots of the sampled values of the point source coordinates, {xs, 𝑦s}, and the six coefficients,
{s1, … , s6}, of the mass-loading rate step function for the DREAM(KZS) (a–h) and DREAM(ZS) (i–p) algorithms. Color
and symbol coding are used to differentiate among the sampled chains. The “true” parameter values are separately
indicated in each panel with the black crosses.

of the hydraulic conductivity field of the rectangular flow domain. A simple Cartesian parameterization of
the hydraulic conductivity field would require an excessively large number of parameters to characterize
adequately the imposed spatial variability. Instead, we take advantage of the Karhunen-Loève (KL) expan-
sion and approximate the log-hydraulic conductivity field, , using a finite, yet relatively small, number of
orthogonal basis functions (Zhang & Lu, 2004)

̃(x) = 𝜇(x) +
p∑

i=1

√
𝜏isi(x)𝛽i, (20)

where 𝜇(x) denotes the mean log conductivity, x represents the Cartesian coordinates of the flow domain,
si(x), 𝜏i, i = 1, … , p, signify the eigenfunctions and eigenvalues of the kernel defined in equation (15), and
{𝛽1, … , 𝛽p} are standard normal random variables, the so-called KL expansion terms. The mean square
error of the reconstructed log conductivity field, ̃(x), will go to zero in the limit of p → ∞. Yet the use of
a very large number of KL terms defeats the purpose of this expansion and is not encouraged for statistical
inference. Instead, 100 expansion terms preserve about 95% of the variance of the “true” log conductivity
field, (x, 𝑦), that is,

∑p
i=1 𝜏i∕

∑∞
i=1 𝜏i ≈ 0.95. Henceforth, we characterize the conductivity field of our flow

domain with p = 100 KL terms, 𝛃 = {𝛽1, … , 𝛽100}.

Our numerical experiment now involves inference of k = 108 parameters, namely, p = 100 KL terms,
𝛃 = {𝛽1, … , 𝛽100}, two coordinates of the source location, {xs, 𝑦s}, and six coefficients, {s1, … , s6}, of the
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Figure 7. Evolution of the log-transformed values of unnormalized
posterior density, that is, (𝜽|d̃) = log

[
p(𝜽)L(𝜽|d̃)], at 𝜽, sampled by both

the DREAM(KZS) (red dots) and DREAM(ZS) (blue dots) algorithms.

mass-loading rate step function. Thus, the unknown parameters are 𝜽 =
{𝛽1, … , 𝛽100, xs, 𝑦s, s1, … , s6}. We use a standard Gaussian likelihood
function (see equation (3)) and execute the DREAM(KZS) and DREAM(ZS)
algorithms with N = 20 chains using default values of the algorithmic
variables.

Figure 6 presents trace plots of the sampled values of the point
source coordinates, {xs, 𝑦s}, and the six coefficients, {s1, … , s6}, of the
mass-loading rate step function for the DREAM(KZS) (left column) and
DREAM(ZS) (right column) algorithms. Here we only draw 5 of the 20
Markov chains so that size of the image file would not be too big. The
different chains are coded with different symbols and colors. The “true”
value of each parameter (i.e., the last column of Table 2) is separately
indicated with a black cross symbol at the right-hand side of each panel.
The most important results are as follows. First, the sampled chains
of both algorithms converge to the “true” values used to generate the
hydraulic head and contaminant concentration observations. Second, the
location of the point source and mass-loading rate step function appears
well defined with negligible posterior uncertainty compared to the width
of the prior distribution. Third, and perhaps the most important, the
DREAM(KZS) algorithm requires far fewer model evaluations than the
DREAM(ZS) algorithm to explore the target distribution.

To better understand the search capabilities of the two MCMC algorithms, please consider Figure 7 that
presents the evolution of the log-transformed values of unnormalized posterior density, that is, (𝜽|d̃) =
log

[
p(𝜽)L(𝜽|d̃)], at𝜽, sampled by the DREAM(KZS) (red dots) and DREAM(ZS) (blue dots) algorithms, respec-

tively. At early stages of the search with both MCMC algorithms, the sampled chain states exhibit rather
small logarithmic values (on the order of −107) of the posterior density. Gradually, the Markov chains move
to the high probability region. During the last 60% of the MCMC simulations, (𝜽|d̃) lies between −1,500
and 500. Finally, both algorithms reach a similar (𝜽|d̃) value of about 220. Note that the total number of
model evaluations required by the DREAM(KZS) algorithm (5,000 generations × 20 chains = 100, 000 sam-
ples) is only one tenth of the DREAM(ZS) algorithm (50,000 generations × 20 chains = 1, 000, 000 samples).
This constitutes a speedup on the order of 10 times. With an average CPU time of 2 s for each evaluation
of the integrated model of MODFLOW and MT3DMS, this speedup equates to about 500 hr reduction in
CPU cost.

Next, Figure 8 presents log conductivity fields, ̃(x, 𝑦), of the last 10,000 posterior realizations sampled by the
DREAM(KZS) (left column) and DREAM(ZS) (right column) algorithms. Figures 8b and 8c show the posterior
mean ̃(x, 𝑦) fields obtained by averaging the log conductivity fields of the 10,000 posterior realizations. The
bottom row presents maps of the standard deviation of the 10,000 log conductivity fields. Compared with
the reference field as shown in Figure 8a, the posterior mean map of the DREAM(KZS) algorithm illuminates
correctly the areas of high and low conductivity in the flow domain yet underestimates their spatial extent.
Altogether, these findings suggest that the hydraulic head and contaminant concentration measurements
contain insufficient information to back out exactly the actual conductivity field. A larger and more diverse
data set is warranted.

Above we have tested a nonlinear inverse problem with k = 108 unknown model parameters. In this case,
even using a state-of-the-art MCMC algorithm, that is, DREAM(ZS), at least one million forward model eval-
uations are needed, which constitutes a prohibitively high computational cost. However, introducing the
Kalman-inspired proposal distribution can bring a speedup of about 10 times in simulation efficiency. The
advantage of the Kalman-inspired proposal distribution is obvious in high-dimensional settings. Neverthe-
less, when a problem has a much larger number of unknown parameters, for example, k > 1, 000, and this
problem is highly nonlinear and complex, performance of MCMC methods will deteriorate. In this situa-
tion, one can resort to more computationally appealing methods, for example, EnKF and its variants (Chen
& Zhang, 2006; Crestani et al., 2013; Evensen, 2009), that assume multi-Gaussian parameter and error dis-
tributions. However, these methods will not work properly when the posterior is non-Gaussian or even
has multiple modes. To address these issues, several strategies can be adopted, for example, transforming
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Figure 8. (a) The reference field of log-transformed conductivity, . (b–e) Posterior mean  fields (middle row)
and associated standard deviations (bottom row) derived from the DREAM(KZS) (left column) and DREAM(ZS)
(right column) algorithms.

non-Gaussian variables to be Gaussian distributed (Chang et al., 2010; Zhou et al., 2011) or adopting a local
Kalman update strategy to handle multimodal posteriors (Zhang, Lin, et al., 2018).

3.3. Case Study 3: A 3-D Groundwater Model
The third case study considers application of the DREAM(KZS) algorithm to aquifer characterization using
the three-dimensional groundwater model of Fienen et al. (2013). This model simulates three horizontal
layers of 1.8, 1.4, and 1.8 m thickness that are each discretized into 35 columns and 40 rows with equidistant
spacing of 2.0 and 1.5 m in the x (column) and 𝑦 (row) directions, respectively. This equates to a domain of
70 m by 60 m by 5 m and a total of Nnode = 35× 40× 3 = 4, 200 nodes. A constant head of 60 m is prescribed
at all vertical edges of the flow domain. Furthermore, an artificial well is located at row 18 and column 17,
which pumps water from each horizontal layer at a constant rate of 0.01 L/min.

To reduce parametric dimensionality, we use a sparse representation of the conductivity field of each layer.
Here, mean and variance of the log conductivity fields are 𝜇(x) = −6.5 and 𝜎2

 = 0.5, and correlation
lengths in the x and 𝑦 directions are 𝜆x = 37.5 m and 𝜆𝑦 = 60 m, respectively, for all the three layers. About
40 KL terms are deemed sufficient to represent the  field of each layer and preserve about 94% of the field
variance of each original 1,400 cell conductivity field. Hydraulic head measurements at the three layers from
81 wells located every four rows from Row 3 to Row 35, every three columns from Column 5 to Column 29,
are generated from the reference fields depicted in the left column of Figure 9 with additive white noise,
ϵ ∼ n(0, 0.012). We infer the k = 120 unknown KL terms with the DREAM(KZS) and DREAM(ZS) algorithms
using N = 20 chains and T = 4, 000 generations. We discard the first 3,500 generations as burn-in and use
the 10,000 samples in the last 500 generations of the joint chains to summarize the posterior estimates of
the conductivity field of each discretized aquifer layer.

Figure 9 presents the posterior mean log conductivity fields derived from the DREAM(KZS) (middle column)
and DREAM(ZS) (right column) algorithms. The mean log conductivity fields derived from both algorithms
capture quite well the main patterns of the reference fields of the three layers (left column). Some discrep-
ancies are visible but appear relatively minor. These results are encouraging but do not convey anything
about the efficiency of the two MCMC algorithms. We therefore proceed with analysis of the convergence
properties of the DREAM(KZS) and DREAM(ZS) algorithms.
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Figure 9. Reference field of the log-transformed hydraulic conductivity for each of the three layers of the aquifer (left column) and their posterior mean
counterparts inferred from the DREAM(KZS) (middle column) and DREAM(ZS) (right column) algorithms using the measured steady-state hydraulic heads.

In Figure 10, we present trace plots of the root-mean-square error (RMSE) in the N = 20 Markov chains
between the MODFLOW simulated and measured steady-state heads at the 81 wells. We use color cod-
ing in red and blue for the DREAM(KZS) and DREAM(ZS) algorithms, respectively. The results in this figure
confirm our earlier conclusions. The DREAM(KZS) algorithm converges at a much faster pace to the target
distribution. Indeed, whereas the DREAM(ZS) algorithm requires about 60,000–80,000 function evaluations
to sample values of the RMSE on the order of the Gaussian measurement error of 0.01, the DREAM(KZS)
algorithm needs only about 2,500–3,000 MODFLOW evaluations to minimize the RMSE. This equates to
a speedup on the order of 20–30 times. This gives the DREAM(KZS) algorithm sufficient opportunity to

Figure 10. Evolution of the sampled RMSE values between the MODFLOW
simulated and observed steady-state hydraulic heads. All chains are plotted.
Color coding in red and blue differentiates between the chains sampled by
the DREAM(KZS) and DREAM(ZS) algorithms, respectively.

sample thoroughly the target distribution and summarize adequately the
posterior moments of the quasi three-dimensional conductivity distribu-
tion of the aquifer.

In this case study, although the number of unknown model parameters
(k = 120) is slightly larger than that in the second case study (k = 108),
much fewer model evaluations are needed in the MCMC simulations.
Using the DREAM(ZS) algorithm, to obtain acceptable results, the total
numbers of model evaluations in the second and present case studies
are at least 1,000,000 and 60,000, respectively. Using the DREAM(KZS)
algorithm, the corresponding numbers are about 100,000 and 2,500. This
comparison indicates that the convergence speed of an MCMC algo-
rithm is determined not only by the number of model parameters but
also by the nonlinearity and complexity of the problem. In many situ-
ations, the high-dimensionality of unknown parameters (e.g., hydraulic
conductivity field) comes from the discretization of the underlying func-
tion. Using a standard MCMC algorithm, the convergence speed degrades
significantly with mesh refinement. This kind of MCMC algorithm is
thus called dimension dependent. To address this kind of dimensional-
ity issue, dimension-independent MCMC methods have been developed,
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Figure 11. Bivariate scatter plots of posterior parameter samples obtained by (a) DREAM(KZS) and (b) DREAM(ZS).

for example, the preconditioned Crank-Nicolson algorithm proposed by Cotter et al. (2013) that pre-
serves the reference measure with a Crank-Nicolson discretization of the underlying function and the
dimension-independent and likelihood-informed algorithm proposed by Cui et al. (2016) that constructs
a global likelihood-informed subspace to capture essential features of the posterior distribution. The
dimension-independent MCMC methods require that the distributions exhibit certain special structure. Yet
sampling generic high-dimensional target distributions with MCMC methods is still a challenging problem.

3.4. Case Study 4: Inverse Problems With Multimodal Posteriors
To demonstrate the performance of the DREAM(KZS) algorithm in solving nonlinear and ill-posed inverse
problems, three examples with multimodal posterior distributions are further tested below.

The first example is very simple yet highly ill-posed. The underlying function has the following form

d = 𝜃2
1 + 𝜃2

2 , (21)

where 𝜃1 ∼  (−2, 2) and 𝜃2 ∼  (−2, 2) are all uniformly distributed in the prior. The measurement is d̃ = 1
with measurement error, 𝜖 ∼ 

(
0, 0.12). Here we are trying to infer the joint posterior distribution of two

parameters, 𝜽 =
{
𝜃1, 𝜃2

}
, from a scalar measurement, d̃. It is evident that there exists an infinite number

of parameter combinations that can fit the measurement well. Figure 11 shows the bivariate scatter plots
of posterior parameter samples obtained by both the DREAM(KZS) and DREAM(ZS) algorithms. Here both
algorithms evolve N = 3 Markov chains with T = 1, 000 samples in each chain. The last 300 samples in each
of the three chains are used to draw Figure 11. It is found that both algorithms obtain reasonable results.

Then we extend the above example to a high-dimensional setting, which turns the underlying function to

d = 𝜃2
1 + 𝜃2

2 + … + 𝜃2
100, (22)

where
{
𝜃1, … , 𝜃99

}
are all uniformly distributed with  (0, 2) and 𝜃100 ∼  (−10, 10). There is still only

a scalar measurement, whose value is d̃ = 80.62, and the error is normally distributed, 𝜖 ∼ 
(
0, 12).

Compared to the previous example, inferring the joint distribution of 100-dimensional parameters, 𝜽 ={
𝜃1, … , 𝜃100

}
, from a scalar measurement, d̃, becomes more challenging. As 𝜃100 has a wide prior range,

the marginal posterior distribution of 𝜃100 can be obviously bimodal, as both 𝜃100 and −𝜃100 have the same
effect on the function output. As shown in Figure 12, both the DREAM(KZS) and DREAM(ZS) algorithms
(here N = 5 and T = 1, 000) can identify the bimodality of 𝜃100 and fit the measurement quite well.

Finally, we test a groundwater contaminant source identification problem with multiple modes in the pos-
terior. The model settings are the same as the example tested in section 3.2, except that here we consider
a homogeneous conductivity field with a known value of K = 8

(
LT−1) and a different parameteriza-

tion of the contaminant source. The source located at
(

xs, 𝑦s
)

(L) starts to release from t = ton (T) with
a constant mass-loading rate of Ss (MT−1) until t = toff (T). Thus, there are five unknown parameters,
that is, 𝜽 =

{
xs, 𝑦s, Ss, ton, toff

}
, whose prior ranges (uniform distributions) and “true” values are pro-

vided in Table 3. Concentration measurements are collected at a single well (the blue dot in Figure S9) at
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Figure 12. Trace plots of the sampled values of (a, b) 𝜃100 and (c, d) the model output. The left column is for the
DREAM(KZS) algorithm, and the right column is for the DREAM(ZS) algorithm. The measurement d̃ is represented by a
red cross in each panel at the bottom row.

t = {6, 8, 10, 12, 14}(T). The measurement error is normally distributed, 𝜖 ∼ 
(
0, 0.012). Then we imple-

ment the DREAM(KZS) and DREAM(ZS) algorithms to infer the posterior distribution of the five unknown
parameters, respectively. Here, for both algorithms, there are N = 4 parallel chains, and each chain
has 5,000 samples. Trace plots of the sampled values of the five contaminant source parameters, that is,
𝜽 =

{
xs, 𝑦s, Ss, ton, toff

}
, obtained by the DREAM(KZS) and DREAM(ZS) algorithms are depicted in Figures 13

and S10, respectively. Both algorithms can identify the bimodal posterior distribution of 𝑦s. From the multi-
variate R̂k-diagnostic that monitors the convergence of the Markov chains (Figure S11), it is found that the
DREAM(KZS) algorithm converges to its stationary regime slightly faster than the DREAM(ZS) algorithm.

The above three examples demonstrate that the proposed method can still work properly in multimodal
cases. When dealing with a nonlinear, non-Gaussian inverse problem, the simulation results of EnKF and
it variants will deteriorate significantly, as the updated ensemble of states cannot approximate the complex
posterior distribution accurately. However, the Kalman-inspired proposal used in the MCMC simulation
can still have a positive effect. In the Kalman-inspired proposal, we only generate a candidate at a time.
Although the jump from the current state 𝜽(t−1) to the candidate 𝜽p may be not optimal, it can still pro-
vide some information about the high posterior density region and thus shorten burn-in. Even in the worst
case that most of the Kalman-inspired candidates are rejected (very unlikely though), as we only use the

Table 3
Description of the Five Contaminant Source Parameters in the Multimodal Case and the Ranges
of Their Multivariate Uniform Prior Distribution

Parameter Symbol Min. Max. Unit True
x coordinate of spill xs 3 5 L 3.85
𝑦 coordinate of spill 𝑦s 3 7 L 6.00
Constant release strength Ss 10 13 MT−1 11.04
Start time of contaminant release ton 3 5 T 4.90
End time of contaminant release toff 9 11 T 9.08

Note. The last column lists the “true” values of the parameters used in our numerical
experiment.
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Figure 13. (a–e) Trace plots of the sampled values of the five contaminant source parameters obtained by the
DREAM(KZS) algorithm. The “true” parameter values are separately indicated in each panel with the red crosses.

Kalman-inspired proposal during a relatively short burn-in period (e.g., the first 30 % of the MCMC simu-
lation) with a small selection probability (e.g., pK = 0.3), only less than 9% of the total computational cost
will be wasted because of introducing the Kalman-inspired proposal distribution. The complex posterior
can still be explored with other proposal distributions (e.g., the parallel direction and snooker proposal dis-
tributions). If we monitor the rejection rate of the Kalman-inspired proposal distribution and find a very
high value, we can actually stop using the Kalman-inspired proposal early to avoid further computational
waste. Nevertheless, in complicated, multimodal cases, the proposed method still faces the risk of missing
secondary modes. To improve the capacity of the Kalman-inspired proposal in multimodal cases, we can
adopt the modified Kalman-inspired proposal suggested in the last paragraph of section 2.3.1 The modi-
fied method borrows ideas from a new ensemble smoother-based method (Zhang, Lin, et al., 2018) that is
specifically designed to solve inverse problems with (possible) multimodal parameter distributions.

4. Discussion and Conclusions
MCMC methods have found widespread application and use to approximate the posterior distribution.
Such methods generate a random walk through the parameter space and successively visit solutions
with frequency proportional to the density of the underlying target distribution. The speed with which
MCMC methods converge to the stationary distribution, however, deteriorates rapidly with increasing target
dimensionality.

The power and usefulness of the Kalman analysis step has been demonstrated time and again with applica-
tion to state estimation in real-time forecasting studies. The use of the analysis state enhances considerably
the short-term predictive skill of computer simulation models. The analysis step in data assimilation meth-
ods can facilitate parameter estimation as well, which makes possible the application of data assimilation
methods such as EnKF and its variants to solving high-dimensional inverse problems. The so-obtained
posterior parameter distribution can, at best, only roughly approximate the target distribution.

This paper introduces a Kalman-inspired proposal distribution to improve the efficiency of posterior explo-
ration using MCMC methods. This new proposal distribution exploits the cross covariances of model
parameters, measurements, and model outputs and generates candidate states much alike the analysis step
in the Kalman filter. The Kalman-inspired proposal distribution was embedded in the DREAM algorithm,
and this new sibling of the DREAM family of MCMC methods coined the DREAM(KZS) algorithm. As
the Kalman-inspired proposal distribution is asymmetric, its use is restricted to a relatively short burn-in
period, after which a mix of parallel direction and snooker candidate states is used to evolve the chains
in the DREAM(KZS) algorithm. Diminishing adaptation guarantees that the sampled chains converge to
the exact target distribution. Numerical experiments with watershed and aquifer models confirm that the
Kalman-inspired proposal distribution enhances considerably the efficiency of posterior exploration. Specif-
ically, we observe a speedup on the order of 20–30 times for a three-dimensional groundwater model with
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more than 100 unknown parameters. Although we combine the Kalman-inspired idea with the DREAM
algorithm, the new proposal distribution is not tied to a specific MCMC algorithm but can be conveniently
embedded in any adequate MCMC method.

When the inverse problem is ill-posed and the posterior is multimodal, introducing the Kalman-inspired
proposal distribution into an MCMC algorithm can still help. Furthermore, there have been some strategies
developed for EnKF and its variants to solve non-Gaussian inverse problems, for example, transforming
non-Gaussian variables to be Gaussian distributed (Chang et al., 2010; Zhou et al., 2011) or adopting a local
Kalman update strategy to handle multimodal posteriors (Zhang, Lin, et al., 2018). These strategies can also
be used in the Kalman-inspired proposal to gain further strength. On a more theoretical note, it may be
desirable to enforce symmetry of the Kalman-inspired proposal distribution. This would deteriorate at least
somewhat sampling efficiency but make possible its application to the entire chain generations simulated
by the MCMC algorithm. These issues will be addressed in our future work.
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