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Abstract

Pulmonary hypertension is a cardiovascular disorder manifested by elevated mean
arterial blood pressure (> 20mmHg) together with vessel wall stiffening and thicken-
ing due to alterations in collagen, elastin and smooth muscle cells. Hypoxia-induced
(type 3) pulmonary hypertension can be studied in animals exposed to a low oxygen
environment for prolonged time periods leading to biomechanical alterations in ves-
sel wall structure. This study introduces a novel approach to formulating a reduced
order nonlinear elastic structural wall model for a large pulmonary artery. The model
relating blood pressure and area is calibrated using ex vivo measurements of vessel
diameter and wall thickness changes, under controlled pressure conditions, in left
pulmonary arteries isolated from control and hypertensive mice. A two-layer, hy-
perelastic, anisotropic model incorporating residual stresses is formulated using the
Holzapfel-Gasser-Ogden model. Complex relations predicting vessel area and wall
thickness with increasing blood pressure are derived and calibrated using the data.
Sensitivity analysis, parameter estimation, subset selection and physical plausibility
arguments are used to systematically reduce the 16-parameter model to one in which
a much smaller subset of identifiable parameters is estimated via solution of an in-
verse problem. Our final reduced one layer model includes a single set of three elastic
moduli. Estimated ranges of these parameters demonstrate that nonlinear stiffening is
dominated by elastin in the control animals and by collagen in the hypertensive ani-
mals. The pressure-area relation developed in this novel manner has potential impact
on one-dimensional fluids network models of vessel wall remodeling in the presence
of cardiovascular disease.

KEYWORDS:
Pulmonary hypertension; Hypoxia; Arterial wall; Model reduction; Sensitivity analysis; Identifiability;
Hyperelastic pressure-area relation
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1 INTRODUCTION9

Pulmonary hypertension (PH), encompassing several cardiovascular disorders manifested by a mean pulmonary arterial blood10

pressure (BP) above 20 mmHg, is commonly classified into five disease groups [1, 2]. One of these, group 3, “pulmonary11

hypertension due to lung disease”, includes patients with PH induced by hypoxia (HPH). This disease type can be studied in12

mice with PH induced by placing animals in a low oxygen (hypoxic) environment. The response of the cardiovascular system13

is stiffening and thickening of the pulmonary arteries accompanied by an increase in BP to PH levels. The aim of this study is14

to use data-driven mathematical modeling to devise a a well-calibrated reduced model capturing the relationship between BP15

and changes in vessel lumen area and wall thickness that characterizes the structural remodeling of the underlying tissues. For16

this PH group, vascular remodeling typically starts in the small arteries, proceeding to the large arteries as the disease advances17

[3, 4]. The arterial wall comprises three layers, the intima, a single layer of endothelial cells, the media which contains large18

amounts of elastin and smooth muscle cells, and the adventitia mainly composed of collagen (Fig. 1a). In animal models of group19

3 PH, vessels stiffen due to collagen accumulation [5, 6], and smooth muscle cell proliferation, which are known to increase the20

thickness of the vessel wall [7]. Furthermore, wall thickening in the media and adventitia are known to occur by different rates21

and due to different underlying mechanisms of tissue remodeling. For example, adventitial thickening typical occurs earlier and22

is more pronounced, with medial thickening lagging behind [8].23

One advantage of characterizing how PH impacts the pressure-area relationship is that the resulting model can be incor-24

porated into one-dimensional (1D) fluid dynamics network models used extensively to study hemodynamics in both systemic25

[9, 10, 11, 12, 13, 14] and pulmonary [15, 16, 17] arteries. 1D fluid dynamics models are especially well suited to predict flow26

distribution and wave-propagation along the network, but accurate predictions require appropriate specification of the pressure-27

area interaction. Moreover, 1D models can be readily calibrated to in vivo geometry, flow and/or BP measurements [18, 19]. The28

1D fluid dynamics models are derived from the Navier-Stokes equations combined with a state equation relating blood pressure29

and vessel area, often formulated using an empirical or simple elastic wall model. These simpler models have the advantage of30

being specified using a small number of parameters [20, 13, 21, 22], but how tissue remodeling is modulated with disease is un-31

clear. While complex tissue mechanics models exist [23, 24, 25], they have not been integrated with 1D fluid dynamics models.32

One state-of-the-art tissue mechanics model is the two-layer nonlinear hyperelastic model developed by Holzapfel, Gasser, and33

Ogden [23] (HGO model) that captures ex vivo biomechanical deformation of the vessel wall. While this model is complex, it34

includes parameters that more directly and realistically represent structural elements and constituents within the two primary35

tissue layers that are known to remodel in large pulmonary arteries under hypoxic conditions.36

In this study, we introduce a novel data-driven approach to formulating and systematically reducing a nonlinear hyperelastic37

structural wall model for the large pulmonary arteries, generating a reduced pressure-area relation that can characterize remod-38

eling in HPH. The model is calibrated to ex vivo biomechanical deformation and wall thickness measurements from control and39

hypertensive mice. Our approach to effective calibration and reduction is to start with a model having structural features that are40

physiologically motivated. We then fix some parameters based on procedures in the experiments and literature values appropri-41

ate to the vessel and species in our data. Using subset selection, based on local sensitivities, we systematically fix or eliminate42

additional model parameters that are practically unidentifiable, without violating physical plausibility of the reduced model.43

To this end, we first formulate a two-layer, anisotropic vessel wall model using the HGO model formulation [23], which44

disregards the intima. In addition to anisotropy and multiple layers, this model accounts for residual stresses, known to be45

significant in large pulmonary arteries as evidenced by a large opening angle arising when rings from excised vessels are cut.46

The rings are obtained from cutting “a slice" normal to the axial direction, and the opening angle is determined from a radial cut47

through the ring’s circumference [26, 27]. Complex relations determining the dependence of vessel area and wall thickness on48

blood pressure (BP) are derived. Our initial model is calibrated to ex vivo measurements of vessel diameter and wall thickness49

as functions of pressure in the left pulmonary artery (LPA) in control (CTL) and hypertensive (HPH) mice [28]. The full50

model is complex, containing 16 parameters, making calibration and model reduction using data challenging. Our approach to51

effective model calibration and reduction combines sensitivity analysis, subset selection [29, 30, 31, 32] and physical plausibility52

arguments to identify the simplest reduced model and a set of sensitive and identifiable parameters that can be estimated using53

the model and available data.54

†Supported in part by the US National Science Foundation (DMS-1615820, DMS-1638521) and by U.K. Research and Innovation (EPSRC EP/N014642/1,
EP/S030875/1, EP/T017899/1), and a Leverhulme Research Fellowship (NAH). The authors would also like to acknowledge Michelle Bartolo for developing the digital
illustration in Fig. 1a.
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Figure 1 Foundations of the nonlinear hyperelastic wall model: (a) Illustration of a cross-section of a large artery wall (redrawn
from [23]); (b) the stress-free reference state Ω0 defined in equation (1) where Rin is the inner radius, Rout is the outer radius,H
is the wall thickness, L is the axial length and � is the opening angle; (c) the current configuration Ω defined in (2). Note that
the (deformed) inner radius (rin), outer radius (rout) and axial length (l) are all determined after the model equations are solved.

2 MODELS AND METHODS55

1D cardiovascular fluid dynamics network models require a constitutive relation coupling the transmural blood pressure p(z,t)56

(mmHg) (the difference between blood pressure in the vessel and the surrounding tissue) to the vessel lumen area a(z,t) (cm2).We57

represent the vessel wall as a hyperelasticmaterial integrating the two layermodel byHolzapfel, Gasser andOgden, often referred58

to as the HGO model [23]. This model incorporates nonlinear effects of residual stresses, anisotropy, material and geometric59

nonlinearities, and contributions of key wall constituents (collagen and elastin) within the vessel wall layers. A schematic of the60

wall constituents is shown in Fig. 1, and Table 4 (in the Appendix) lists the model parameters and their units.61

2.1 Deformation of the arterial wall62

The model is formulated in terms of three configurations of the vessel wall: (i) a stress-free reference state Ω0 (Fig. 1b) rep-63

resented by a continuous arc of a cylindrical ring free of all residual stresses; (ii) an intermediate load-free configuration (not64

shown) represented by a closed cylindrical ring in the absence of transmural pressure; and (iii) a current configurationΩ (Fig. 1c)65

representing the pressurized vessel under an isochoric deformation as fluid flows through the vessel lumen in an ex vivo or in66

vivo setting.67

Stress-free reference state:Ω0 approximates the process of excising a vessel segment, extracting a cross-section approximated
as a thin cylindrical ring, and then making a single radial cut along the ring’s circumference. It is denoted by

Ω0 =
{(
R,Θ, Z

)
∈ [Rin, Rout] × [0, 2� − �] × [0, L]

}
, (1)

where
(
R,Θ, Z

)
are Lagrangian cylindrical (polar) coordinates, � is the opening angle, L is the reference axial length, and Rin68

and Rout are the inner and outer radii, respectively.69

Current configuration: Ω (shown in Fig. 1c) is associated with the deformed vessel representing the coupled state under fluid
flow and pressure and defined as

Ω =
{(
r, �, z

)
∈ [rin, rout] × [0, 2�] × [0, l]

}
, (2)

where the deformation determines the (unknown) inner radius (rin), the outer radius (rout), and the vessel length (l).70

Finally, an isochoric deformation arising from combining inflation, axial extension, and torsion within an elastic tube is
denoted by (

r, �, z
)
=

Ñ√
R2 − R2in
k�z

+ r2in, kΘ +Z
Φ
L
, �zZ

é
, (3)

where k = 2�
2�−�

, �z is the (constant) axial stretch and Φ is the twist angle. As reported in [28], for the data used in this study71

�z = 1.4 for both the control and hypertensive animals, corresponding to the observed ratio of the axial length of a vessel72
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segment before and after excision.We note that �z > 1 due to residual stresses in vivo. The ex vivomeasurements of deformation,73

after introducing fluid flow through the vessel, are performed in vessels stretched and mounted to match this measured ratio.74

2.2 Two-layer hyperelastic model75

Within the HGO framework, a two-layer hyperelastic wall model accounting for the media (
 = M) and adventitia (
 = A)
(Fig. 1a) is formulated by representing the Cauchy stress � = �M + �A as the sum of the stress in each layer [23],

�
 = c
dev
(
J−

2
3 b
)
+ 2

)Ψ

)Ĩ4


dev
(
a1
 ⊗ a1


)
+2

)Ψ

)Ĩ6


dev
(
a2
 ⊗ a2


)
, 
 =M,A, (4)

where Ψ
 , the Helmholtz free energy for each layer, has the form

Ψ
 =
k1

2k2


[
ek2


(
Ĩ4
−1

)2
+ ek2


(
Ĩ6
−1

)2
− 2
]
, 
 =M,A. (5)

In equation (4), c
 represent the elastic moduli for the isotropic constituents (mostly elastin) in each layer, J = det
(
F
)
, is

the Jacobian where F is the deformation gradient of (3), b = FFT , and Ĩl
 = Al
 ∶ C̄ where C̄ = J−2ℏ3C, C = FTF
and Al
 = a0l
 ⊗ a0l


(
l = 4, 6, 
 = A,M

)
. In (5), k1
 and k2
 are elastic parameters for the anisotropic constituents (mostly

collagen) in each layer (Fig. 1a). Lastly, Eulerian and Lagrangian vectors, al
 and a0l
 (respectively), associated with collagen
fiber directions are (
 = A,M)

al
 = J
− 1
3Fa0l
 , a0l
 =

Ñ
0

cos
(
�

)

± sin
(
�

)
é
, l = 4, 6, (6)

where �
 are the collagen fiber angles, assumed to be constant in each layer (Fig. 1a).76

2.3 Pressure-area relation77

Weobtain a hyperelastic pressure-area relation by integrating the radial component of the stress equilibrium equation. Neglecting
inertial terms and assuming a quasi-static state this stress equilibrium equation, expressed in the current configuration, is given
by

d�rr
dr

+
�rr − ���

r
= 0, rin < r < rout, (7)

where rin = r
(
Rin
)
and rout = r

(
Rin +H

)
, and �rr, ��� are the radial and circumferential normal stress components,78

respectively. Here,H denotes the undeformed vessel wall thickness (Fig. 1b).79

Balance of forces between the transmural blood pressure and the radial component of the normal stress in the wall is enforced
by the condition,

p = −�rr
∣∣
r=rin

⇒ p =

rout

∫
rin

�rr − ���
r

dr. (8)

Equations (3-4) are used to formulate the integrand in (8), which is evaluated with the aid of symbolic computation software80

(MAPLE 2019).81

The resulting pressure-area relation can be written as

p =

rMA

∫
rin

M
(
rin, r

)
dr +

rout

∫
rMA

A
(
rin, r

)
dr, where rMA = r

(
Rin +HM

)
, (9)

and HM is the (reference) thickness of the media. Recall that the relation rin =
»

a
�
is used to express the inner radius (9) in82

terms of the vessel area. For brevity, the mathematical forms of the integrands M and A are not included here as these are83

lengthy expressions imported fromMAPLE intoMATLAB (R2021b). The integral is evaluated numerically using theMATLAB84

“integral" command which employs global adaptive quadrature [33].185

1The code for this evaluation will be publicly available via a github link at http://haider.wordpress.ncsu.edu as of Nov. 15, 2022.
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This final pressure-area relation (9) contains 16 model parameters

q = [Rin, Rout,H,HM , �, L,Φ, �z, cM , k1M , k2M , �M , cA, k1A, k2A, �A], (10)

listed with units and values in the Appendix (Table 4). For any given set of values of these parameters, the model prediction of86

wall thickness is evaluated using equations (9) and (3) via the difference r
(
Rin +H

)
− r
(
Rin
)
.87

2.4 Ex vivo murine data88

The model is calibrated to murine data made available by Naomi Chesler (UC Irvine). The majority of the data along with89

detailed descriptions of the experiments can be found in the study by Tabima and Chesler [28]. All protocols and procedures90

described in [28] were approved by the University of Wisconsin Institutional Animal Care and Use Committee.91

Data measuring lumen area and wall thickness changes with increasing transmural blood pressure were measured under ex92

vivo biomechanical testing in excised left pulmonary artery (LPA) vessel segments frommale C57BL6mice under control (CTL)93

and 10-day hypoxia-induced (380 mmHg) hypertensive (HPH) conditions [28]. In both the control (CTL) and hypertensive94

(HPH) vessel segments, 11 measurements (i = 1,… , 11) relate vessel outer diameter (Ddata
i ) to increasing pressure (pdatai ), and 395

measurements (j = 1, 2, 3) relate vessel wall thickness (T data
j ) to increasing pressure (pdataj ). For each group, these measurements96

represent averages over 4 control (CTL) and 5 hypertensive (HPH) animals under controlled pressure conditions with pressures97

in the range of 0-50 mmHg. Specific pressure values for each group are noted in Fig. 2a-b.98

2.5 Model parameters99

Several of our model parameters are fixed at representative values using literature values or details of the experiments used to100

calibrate the models. First, we assume that the vessels have no twist, i.e. Φ = 0◦ and that the opening angle in the stress-free101

reference state is � = 94.2◦. The latter value is obtained from literature reporting measurements in rings extracted from healthy102

murine LPA vessels [27]. To mimic the in vivo setting, excised vessels were stretched to match their length after extraction prior103

to mechanical testing [28], i.e., �z = 1.4 in (3).104

Control animal parameters. Since detailed histology for the murine LPA is not available, we use a recent literature value105

estimating a mean diagonal collagen fiber angle of 35.55◦ (measured from the axial direction) in the right pulmonary artery106

(RPA) of normoxic mice [34], corresponding to a value of �M = �A = 54.45◦ in our control animal model (CTL). In addition,107

from the same study [34], we assume that the media occupies 63% of the vessel wall thickness in the stress-free reference state108

for our control model.109

Hypertensive animal parameters. For our hypertensive model, two cases are considered. In the first case (HPHa), the fiber110

angle and media thickness percentage values are the same as in the CTL case. In the second case (HPHb), the fiber angle values111

are fixed at �M = �A = 56.58◦ and the media thickness percentage is fixed at 60%. Because our data set is based on 10-days112

of hypoxic exposure, these values are calculated as a 30% perturbation in the direction of the hypertensive values reported in113

[34], where murine RPA was exposed to to 3-6 weeks of hypoxic conditions; the values in [34] are a mean diagonal fiber angle114

of 28.45◦ (measured from the axial direction) and a media thickness percentage of 53%. For both hypertensive cases that we115

consider, the opening angle value (� = 94.2◦ [27]) is chosen to be the same as in the control model, based on the only known116

measurements of this quantity in a similar vessel and species after 10-days of hypoxic conditions [26] (see Fig. 7 therein). The117

fixed parameter values are summarized in the Appendix (Table 4).118

Accounting for these assumptions, for the parameter dependencyRout = Rin+H , and observing that the model is independent
of L yields the following 8 parameters to be estimated

q8 = [Rin,H, cM , k1M , k2M , cA, k1A, k2A]. (11)

2.6 Parameter estimation, sensitivity, identifiability and model reduction119

Given the model and data, we formulate a parameter estimation problem determining m parameters q∗ minimizing the least
squares cost  as

q∗ = arg min
q∈ℝm

≥0


(
q
)
, where: 

(
q
)
= s
(
q
)T s (q) . (12)
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The 14-component residual vector s
(
q
)
is given by120

s
(
q
)
=
[
s1, s2

]
, (13)

s1 =
1√
n1

Ç
p
(
ain,i
)
− pdatai

p∗

å
,

s2 =
1√
n2

Ñ
T
Ä
pdataj

ä
− T data

j

T data
1

é
,

with i = 1,… , n1 and j = 1,… , n2, with n1 = 11 and n2 = 3 (see §2.4). The optimization problem is solved using a Nelder-Mead121

direct search simplex algorithm [35] minimizing 
(
q
)
in (12) using the routine “fminsearch" in Matlab.122

The mathematical model is used to evaluate the term ain,i by first converting the outer diameter data (Ddata
i ) to an inner radius123

using equation (3) and then using equation (9) to determine the values p
(
ain,i
)
. The term T

Ä
pdataj

ä
is evaluated as outlined at124

the end of §2.3. Calibration of the model to data is done in an iterative manner, gradually reducing the model complexity and125

number of parameters estimated using sensitivity analysis and subset selection.126

Sensitivity analysis is performed after parameter estimation (with n data points) using local methods calculating the n × m127

sensitivity matrix � = ∇qs
(
q
)
using a first-order finite-difference scheme. Prior to calculation of sensitivity derivatives, a linear128

mapping is used to normalize across scales. Specifically, a perturbed interval (perturbation �) about the kth component of the129

parameter estimate [
(
1 − �

)
q∗k ,
(
1 + �

)
q∗k] is mapped to [0, 1] via the linear transformation y = 1

2�

(
� − 1 + x

q∗k

)
. This yields,130

via the Chain rule, the derivative transformation )
)x
= dy

dx
)
)y
, resulting in a multiplying factor 2�q∗k used for transforming raw131

sensitivities to their scaled counterparts. A value � = 0.1 is prescribed and all sensitivity derivatives above are approximated132

using first-order finite-difference approximations with a step size chosen sufficiently small (10−7). This choice ensures numerical133

convergence of all scaled parameter sensitivity derivative computations across all cases considered in this study.134

Subset selection and model reduction is performed using the eigenvalue method [29, 30, 31, 32] that analyzes the magnitude135

of eigenvalues and corresponding eigenvectors for the m×m Fisher information matrix approximated as �T� at q = q∗ [36]. In136

our study, the eigenvalue subset selection method is also guided by physical plausibility of our model at each stage of the overall137

process. At q = q∗, the subset selection analysis and model reduction uses the following iterative procedure:138

1. Determine the eigenvalues of the Fisher information matrix �T� .139

2. Check if the smallest eigenvalue of �T� is below a specified threshold � (see, e.g. Fig. 4).140

3. If step 2 is satisfied, examine the eigenvector corresponding to the smallest eigenvalue.141

4. Mark the order 1 components of the eigenvector in step 3.142

5. Parameters corresponding to the marked vector components in step 4 are potentially unidentifiable and considered as143

candidates for fixing at nominal values, or uncovering parameter dependencies.144

6. If possible, we reduce the model by fixing or eliminating unidentifiable parameters.145

During the course of this iterative procedure, we ensure that the cost 
(
q∗
)
is preserved. This approach strikes a balance146

between model reduction and robust optimization, preserving the quality of curve-fits within the context of the given data set147

as the process advances. We defer parameter estimation for the HPH animals until identifiability analysis and model reduction148

are carried out for the CTL animals. This approach ensures that the healthy and diseased cases are compared by solving a more149

robust inverse problem on an equal footing, i.e. with the same set of unidentifiable parameters fixed or eliminated.150

3 RESULTS151

We apply the following iterative approach for estimating the non-fixed parameters in (11):152

§3.1 Estimate the 8 non-fixed parameters for the control animals. Results of parameter estimation, sensitivity analysis, and153

subset selection yield a reduced model with 6 parameters.154
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Figure 2 Results from estimating 8 parameters (listed in Table 1) for the control (CTL) animals. (a) pressure vs. area, model
predictions of the outer area (black) vs. data (circles) and the inner area (red); (b) wall thickness vs. pressure model predictions
compared to the 3 data points (squares); (c) the residual vector (13) across the 14 data points.

§3.2 Estimate these 6 parameters for the control animals using the reduced model. Results of this analysis enable further155

model reduction, yielding a reduced-order model with equal elastic moduli in the two layers. The resulting model has 5156

parameters.157

§3.3 Estimate these 5 parameters in the reduced-order model for both control and hypertensive animals. Results indicate that158

the remaining parameters may be correlated. Fixing one of the correlated parameters yields the final 4-parameter reduced-159

order model.160

§3.4 Examine parameter dependencies in a 4-parameter reduced-order model. To investigate effects of fixing one of the cor-161

related parameters identified in §3.3, we evaluate impacts of varying the fixed parameter. We report parameter ranges for162

successful results, i.e., those preserving physical plausibility and quality of curve-fits via bounds on the least squares error163

for both control and hypertensive animals.164

3.1 Baseline control animal model (8 parameters)165

We first estimate the 8 non-fixed parameters for the control animals

q8 = [Rin,H, cM , k1M , k2M , cA, k1A, k2A]. (14)

Initial and estimated parameter values for this case are reported in Table 1 (initial values are also given in Table 4 (Appendix)).166

The initial value ofRin (1mm) is set using an order of magnitude estimate for the LPA. The initial value for the reference wall167

thickness H , which is highly sensitive to the wall thickness data, is set by systematically multiplying the data measurement at168

10 mmHg in the experiments (see Fig. 2b) by a factor between 1 and 1.5, in increments of 0.05 (11 values). Setting initial values169

for the remaining 6 parameters is challenging given that experiments do not measure these parameters, but outcomes of the170

model (the wall thickness and the pressure-area dynamics). These parameters have physical interpretations, but they represent171

quantities that cannot be directly measured experimentally. The isotropic elastic moduli cM , cA are set to initial values of 10172

kPa, an accurate order of magnitude estimate for this type of biological soft tissue. Initial values for the remaining parameters173

are determined by systematic variation of initial parameter choices, rejecting combinations yielding a high cost  . This results174

in a set of initial values with a curve fit to the data of good quality. The combination of initial values for k1M and k1A is 1 kPa175

and 0.3 kPa, respectively and the initial values for the (dimensionless) parameters k2M and k2A are based on those reported in176

the HGO study [23] from measurements in rabbit carotid arteries. This combination of initial values yields the most consistent177

set of results across all cases considered.178

Model predictions with estimated parameters depicting pressure vs. area and the wall thickness vs. pressure (shown in Fig. 2a179

and b) provide excellent fits to the control animal data. Inspection of estimated parameters reveals that the adventitia parameter180

k1A is very small (k1A << cA, Table 1). This finding implies that we can eliminate the anisotropic terms for the adventitia181
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Figure 3Normalized parameter sensitivities for the control (CTL) animals with 8 estimated parameters across the 14 data points.

Figure 4 Identifiability results using the eigendecomposition of the information matrix (�T�) for the control (CTL) animals
with 8 estimated parameters: (a) log-plot of the eigenvalues of �T� ; (b) components of the eigenvector of �T� corresponding
to the smallest eigenvalue of �T� (� ≈ 10−14) (asterisk).

(the last two terms in equation (4)) since their mechanical contribution to the response is insignificant. In particular, when k1A182

is set to zero, the adventitia parameter k2A is structurally unidentifiable since it can be varied arbitrarily when equation (5) is183

substituted into equation (4).184

The Fisher information matrix �T� is used to evaluate the eigenvalues depicted in Fig. 4a. Examination of the eigenvector185

of �T� (Fig. 4c) corresponding to its smallest eigenvalue (� ≈ 10−14) flags the parameter k1A (has an order 1 component),186

indicating that this parameter is unidentifiable. This designation is consistent with results of sensitivity analysis (shown in Fig. 3),187

which demonstrate that the sensitivities for k1A (and cA) are small relative to the other parameters.188

Taken together, these findings suggest a physically motivated model reduction in which k1A = k2A = 0. Thus, in the next step189

we analyze a 6-parameter reduced model eliminating the anisotropic terms for the adventitia in the stress-strain law.190

3.2 Reduced control animal model (6 parameters)191

Parameter values are initialized as described in §3.1. The 6 parameters to be estimated for the control animals are

q6 = [Rin,H, cM , k1M , k2M , cA]. (15)
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Figure 5 Parameter estimation results for the reduced model for the control (CTL) animals with 6 estimated parameters: (a) pres-
sure vs. area model predictions of the outer area (black) vs. data (circles) and the inner area (red); (b) wall thickness vs. pressure
model predictions compared to the 3 data points (squares); (c) plot of the residual vector (13) across the 14 data points.

Estimated values for these parameters are reported in Table 1. Again, for the control animals the quality of curve fits of the model192

to the pressure vs. area data (Fig. 5a) and the wall thickness vs. pressure data (Fig. 5b) is preserved. A very slight increase in the193

overall cost from  = 1.731 ⋅ 10−4 to  = 1.732 ⋅ 10−4 is observed. The estimated values of the geometric parameters (Rin,H)194

are preserved within 0.02%. The elastic modulus cM exhibits a 0.9% increase, the elastic modulus k1M exhibits a 10.3% increase195

while the elastic modulus cA exhibits a 2.9% reduction. Finally, the dimensionless parameter k2M increases by 0.9%.196

Examination of the eigenvector of �T� (Fig. 6h) corresponding to its smallest eigenvalue (� ≈ 10−7) shown in Fig. 6g flags197

two parameters cA and cM with order 1 components; cA is the dominant parameter. The sensitivity for cA is also small relative198

to the other parameters (Fig. 6a-f). While the overall identifiability of estimated parameters in our model improves (Fig. 4a199

vs. Fig. 6g), these findings motivate a further reduced 5-parameter model examined in the next stage of the process.200

Since two of the remaining 5 parameters are geometric parameters, we retain three elastic parameters describing the isotropic201

and anisotropic responses in the model in terms of a single (combined) layer. The reduced-order model analyzed in the next202

section has elastic moduli and collagen fiber orientation angles in the media and adventitia that are set equal. Thus, only a203

single set of elastic parameters are estimated in the next step. For convenience, these three estimated parameters are denoted by204

cM , k1M and k2M .205

3.3 Reduced-order control and hypertensive animal model (5 parameters)206

In the reduced-order 5-parameter model, elastic parameters in the two layers are assumed equal, i.e., cA = cM , k1A = k1M , and
k2A = k2M . The parameter vector estimated for this model is

q5 = [Rin,H, cM , k1M , k2M ]. (16)

This model is fitted to data from both the control (CTL) and hypertensive (HPH) animals. Values of the five model parameters207

are initialized as described in §3.1 and the estimated parameter values are reported in Table 2. For comparison, results of the208

6-parameter model are also included in the table. Note that the estimated values of cM , k1M , and k2M should be interpreted as209

aggregate elastic parameters for the entire vessel wall, i.e., representing both layers.210

For the control (CTL) animals, the quality of curve fits of the model to the pressure vs. area data (Fig. 7a) and the wall211

thickness vs. pressure data (Fig. 7b) are preserved, with a reduction in overall cost from  = 1.732 ⋅ 10−4 to  = 1.693 ⋅ 10−4.212

All 11 initial values of the wall thickness parameter (H) result in identical parameter estimates, indicating increased robustness213

of the optimization subsequent to model reduction via identifiability analysis. The curve fits for both hypertensive models have214

significantly lower costs ( = 0.5297 ⋅ 10−4 &  = 0.5298 ⋅ 10−4) due, in part, to the smaller range of variation in the pressure-215

area curve caused by vessel wall stiffening (Fig. 7a & Table 2). In the hypertensive animals, geometric parameters exhibit an216

increase in vessel wall inner radius Rin (514�m& 498�m vs. 377�m) and an (expected) increase in reference wall thicknessH217

(49�m& 50�m vs. 45�m). The altered dynamics in the hypertensive animals are reflected by a substantial increase in the elastic218

modulus k1M (3.06kPa & 1.90kPa vs. 0.18kPa) and in the dimensionless parameter k2M (7.08 & 7.12 vs. 2.19), both associated219



10 M.A. Haider ET AL

Figure 6 Identifiability results computed using eigendecomposition of the information matrix (�T�) for the reduced 6 parameter
model with data from the control (CTR) animals: (a-f) normalized parameter sensitivities for the 6 estimated parameters across
the 14 data points; (g) log-plot of the eigenvalues of �T� ; (h) components of the eigenvector of �T� corresponding to the
smallest eigenvalue of �T� (� ≈ 10−7) (asterisk).

Figure 7 Parameter estimation and identifiability results for the reduced 5-parameter model for the control (CTL) and hyperten-
sive animals, illustrated for case HPHb: (a) pressure vs. area model predictions of the outer area (black) vs. data (circles) and the
inner area (red); (b) wall thickness vs. pressure model predictions compared to the 3 data points (squares); (c) plot of the resid-
ual vector (13) across the 14 data points; (d,f) log-plot of the eigenvalues of �T� in the normotensive (d) and hypertensive (f)
animals; (e,g) components of the eigenvector of �T� corresponding to the smallest eigenvalue of �T� (asterisk) in the control
(e) and hypertensive (g) animals.
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with collagen stiffness. Concurrently, in the hypertensive animals there is a substantial drop in the elastic modulus cM (5.07kPa220

& 5.33kPa vs. 21.98kPa), associated with elastin, relative to the control animals. In the hypertensive case, 7 of 11 initial values221

of the wall thickness parameter (H) result in identical parameter estimates (Table 2), with the other 4 cases resulting in curve222

fits of poor quality.223

For this reduced model, subset selection evaluating the eigenvalues and eigenvectors of �T� (Fig. 7d-g) for the estimated224

parameters (Table 2, Fig. 7d-g) reveals that identifiablity of the estimated parameters improves significantly (Fig. 7d,f). Never-225

theless, it is instructive to examine the eigenvectors for the smallest eigenvalue (Fig. 7e,g). Based on the observations that k1M226

is a dominant component in the control case (Fig. 7e) and that k1M and cM share the same units, we examine the possibility of227

a parameter dependency in the next section using our final 4-parameter reduced order model.228

3.4 Parameter dependencies in reduced-order model (4 parameters)229

We study the implications of fixing one of these two parameters, for both the control and hypertensive animals. The final model
fixes cM while still estimating k1M , i.e., analysis in this section estimates the 4 parameters,

q4 =
[
Rin,H, k1M , k2M

]
. (17)

The fixed parameter cM is varied about its estimated value in the 5-parameter model. For brevity, in the hypertensive animals230

results are shown only for case HPHb. Curve fits using this hypertensive model with an estimated value of H less than 1.05 ×231

45.456�m (Table 2, CTL, m = 5) are rejected to ensure (some) wall thickening. Since we do not have data from independent232

experiments for cM , we repeat optimization while varying this parameter about its estimated value in the HPHbmodel withm = 5233

(Table 2, last column). To preserve quality of the curve fits, parameter ranges are determined by enforcing the cost increase to234

be no more than 10% (to two decimal places) relative to the values in Table 2, and across the range of initial values forH (see235

Table 4). Based on this criteria, the maximum cost used as a cutoff is set to  = 1.86 ⋅ 10−4 (CTL) and  = 0.58 ⋅ 10−4 (HPHb).236

The resulting estimated parameter ranges are reported in Table 3. The corresponding curve fits are not shown as they were237

visually identical to those shown in Fig. 7. For the hypertensive animals, the estimated value of k1M varies directly with the238

(fixed) value of cM and inversely with the estimated value of k2M . For the control animals, the estimated value of k1M varies239

inversely with both the (fixed) value of cM and with the estimated value of k2M , albeit over a smaller range of k2M when240

compared to the hypertensive case. For the hypertensive animals, the geometric parameter ranges exhibit significant increases in241

both vessel wall inner radius Rin and reference wall thicknessH . Furthermore, the ranges of values for the hypertensive elastic242

moduli associated with collagen (k1M , k2M ) are substantially higher while the range of values for the modulus associated with243

elastin (cM ) is substantially lower, compared to the control animals.244

4 DISCUSSION245

This study presents a novel data-driven approach yielding a reduced-order model predicting pressure-induced changes in lu-246

men area and wall thickness by encoding a two-layer nonlinear hyperelastic HGO model incorporating residual stresses and247

anisotropy. This model is obtained by calibrating dynamics to pressure and wall thickness data from [28] for control and hyper-248

tensive mice. In the hypertensive animals, pulmonary hypertension is induced by placing the animals in a hyperbaric chamber249

exposing them to hypoxia for 10 days. Model calibration and systematic model reduction are achieved by combining sensitivity250

analysis, subset selection, parameter estimation and physical plausibility arguments. The results demonstrate that this detailed251

structural continuummechanics model, containing a large number of parameters, can be systematically reduced to capture differ-252

ences in key model parameters between control and hypertensive animals. We note that our full (initial) model, which contains253

several unidentifiable parameters, could be integrated into 1D cardiovascular network models by fixing these parameters at nom-254

inal values. For example, choices of such nominal values could be motivated by physiological hypotheses for mechanisms of255

remodeling due to disease; the identifiable parameters would still be estimated via optimization. Overall, the presence of several256

unidentifiable parameters can have adverse consequences when values calibrated on one type of biomechanical loading are used257

to simulate or predict responses under different loading conditions. This risk is much less when the model parameters retained,258

and estimated using data, are both identifiable and structurally meaningful, as is the outcome of the methodology presented in259

this study.260

To our knowledge, this is the first study to carry out robust parameter estimation and local sensitivity based model reduction261

by simultaneously predicting the increase in lumen area and the decrease in wall thickness as pressure is increased in both262
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healthy and diseased animals. While prior studies (e.g. [37] in the mouse carotid artery) have demonstrated that HGO models263

can be overparameterized in the context of data, the analysis in [37] was carried out in an ad hoc or observational manner; by264

contrast our approach is systematic and more mathematically robust. A different study that applied the HGO model to healthy265

porcine pulmonary arteries assumed equal material properties in the media and adventitia a priori [38]. In another study, local266

sensitivity analysis methods were combined with optimization to investigate healthy myocardium [39], but systematic model267

reduction in the context of data comparing measurements from healthy and diseased samples was not considered.268

Our results reveal that coupled biomechanical responses for both vessel lumen and vessel wall deformation can be accurately269

captured using a model that retains a single set of three elastic moduli delineating the contributions of collagen and elastin270

under the loading protocol of the associated experiments. Specifically, the material parameter associated with elastin (cM ) is the271

dominant contributor to nonlinear stiffening in the control animals. By contrast, in the hypertensive animals, the contribution of272

cM is much less. Nonlinear stiffening is dominated by material parameters associated with collagen (k1M , k2M ). Taken together,273

these findings are consistent with well-known increases in collagen content in the wall of large pulmonary arteries with hypoxia-274

induced PH [5, 6].275

Our analysis considers two hypertensive cases (HPHa and HPHb). While one case (HPHb) is based on the only known mea-276

surements of collagen fiber angles in a (right) pulmonary artery [34], we note that their hypoxic exposure was for a much longer277

and more variable duration (3-6 weeks) across the mice. Our data is from the LPA and based on a less variable hypoxic expo-278

sure of 10 days per mouse (§2.4). A comparative study in calves subjected to 14 days of hypoxic exposure found less evidence279

of remodeling in the RPA versus the LPA in the same animals [40]. Another study reported different remodeling rates in the280

RPA and the LPA, but based on a linear elastic response function within the quasilinear viscoelastic modeling framework [41].281

Taken together, these studies potentially support the lack of evidence of hypoxia-induced RPA wall thickening in [34]. By con-282

trast, our data and analysis demonstrate clear evidence of murine LPA wall thickening under 10 days of hypoxic exposure. A283

limitation of our model is the assumption of fixed collagen fiber angles, whereas future studies could extend the model to more284

realistically account for fiber dispersion in the vessel wall [42].285

The robustness of our model and approach is evidenced by its accurate and simultaneous prediction of both pressure and286

wall thickness changes under deformation, for both control and hypertensive data sets. Our systematic approach to parameter287

identifiability, subset selection andmodel reduction decreased the overall number of parameters in themodel while preserving the288

quality of curve-fits to the data at each stage of the iterative procedure. Overall, ourmethodological approach extracts information289

from the data that can be challenging to observe qualitatively. For example, in moving from the two-layer 8-parameter model to290

the two-layer 6-parameter model, parameter identifiability improved significantly. This improvement is evidenced by the large291

drop in the magnitude of the smallest eigenvalues (Fig. 4a vs. Fig. 6g). Hence, while our calibrated two-layer model could be292

used to formulate a pressure-area relation with a delineated media and adventitia, we contend that such a model is less well-293

calibrated due to the outstanding unidentifiable parameter (Fig. 6h). In particular, the robustness and accuracy of parameter294

estimates and ensuing simulations decreases as the number of parameters deemed to be unidentifiable (and thus fixed at nominal295

values) increases.296

Limitations include common parameter estimation challenges when the number of model parameters and/or variables is297

greater than the number of variables for which data is available, as well as the lack of known nominal values for some model298

parameters in large pulmonary arteries. One challenge is non-uniqueness of parameter estimates due to the infeasability of guar-299

anteeing a solution of the optimization problem that is a global minimum of the cost function across the parameter landscape. A300

second challenge is the local nature of sensitivity measures underlying the identifiability techniques used in this study, i.e., the301

final reduced model is not guaranteed to be unique. This can be a problem if translating the model to other diseases or ves-302

sels composed of the same tissues, but with different distribution of tissue components. The accuracy and robustness of the303

approaches presented in this study can be enhanced through both extended ex vivo and in vivo studies informed by the model304

presented here. Our approach for sensitivity and identifiability analysis and model reduction is rooted in prior works describ-305

ing parameter subset selection techniques [29, 30, 43, 32] using an eigendecomposition of the matrix �T� , but similar results306

could likely be obtained using other methods. While global sensitivity analysis techniques exist [44, 45, 46], most subset selec-307

tion techniques are local. The method for identifiability analysis used here is based on eigenvalues but, as discussed in several308

previous studies, similar results can be obtained using other methods [47, 31, 48]. Overall, sensitivities or unidentifiable param-309

eters for particular variables or quantities of interest can suggest which types of data will be most influential in an expanded310

data set. Where practical, examples of extensions include augmentation of ex vivo biomechanical testing to include measure-311

ment of the vessel opening angle, as well as incorporation of in vivo data measuring BP, flow and lumen area prior to sacrifice312
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of the animal(s). Our model is also based on assumptions of hyperelastic deformation and geometric idealization of the stress-313

free reference state (Fig. 1b) as a segment of a cylindrical ring; in reality, the vessel wall may exhibit viscoelastic effects under314

pressurization and/or deviate from circular arcs in the cut open rings.315

5 CONCLUSIONS316

This study develops a data-driven reduced-order nonlinear elastic structural wall model for a healthy and hypertensive murine317

left pulmonary artery. Our methodology provides a systematic reduction of the two layer formulation to a single layer model318

that accurately fits data for both pressure-area dynamics and wall thickness changes, as functions of pressure. Our findings319

demonstrate that elastin parameters dominate nonlinear stiffening in the control animals while collagen parameters are much320

more influential in the hypertensive animals. The reduced order pressure-area relation developed in this study has the potential321

for incorporation into 1D cardiovascular network models of coupled fluid-solid dynamics in large pulmonary arteries. Some322

possible approaches include direct incorporation and coupling of the pressure-area relationwithin the 1Dfluids network solver or,323

alternatively, using the pressure-area relation as a high fidelitymodel for emulation using simpler empirical models [20, 13, 22] or324

statistical models. Overall, the techniques and findings presented here demonstrate the potential for development and systematic325

reduction of more realistic models of key relations (e.g. pressure-area) through the integration of data-driven mathematical326

approaches for ex vivo experiments with modeling approaches predicting in vivo dynamics in cardiovascular biomechanics.327
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6 LIST OF FIGURE CAPTIONS421

Figure 1 - Foundations of the nonlinear hyperelastic wall model: (a) Illustration of a cross-section of a large artery wall (redrawn422

from [23]); (b) the stress-free reference state Ω0 defined in equation (1) where Rin is the inner radius, Rout is the outer radius,H423

is the wall thickness, L is the axial length and � is the opening angle; (c) the current configuration Ω defined in (2). Note that424

the (deformed) inner radius (rin), outer radius (rout) and axial length (l) are all determined after the model equations are solved.425

426

Figure 2 - Results from estimating 8 parameters (listed in Table 1) for the control (CTL) animals. (a) pressure vs. area, model427

predictions of the outer area (black) vs. data (circles) and the inner area (red); (b) wall thickness vs. pressure model predictions428
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compared to the 3 data points (squares); (c) the residual vector (13) across the 14 data points.429

430

Figure 3 - Normalized parameter sensitivities for the control (CTL) animals with 8 estimated parameters across the 14 data431

points.432

433

Figure 4 - Identifiability results using the eigendecomposition of the information matrix (�T�) for the control (CTL) animals434

with 8 estimated parameters: (a) log-plot of the eigenvalues of �T� ; (b) components of the eigenvector of �T� corresponding435

to the smallest eigenvalue of �T� (� ≈ 10−14) (asterisk).436

437

Figure 5 - Parameter estimation results for the reduced model for the control (CTL) animals with 6 estimated parameters: (a)438

pressure vs. area model predictions of the outer area (black) vs. data (circles) and the inner area (red); (b) wall thickness vs. pres-439

sure model predictions compared to the 3 data points (squares); (c) plot of the residual vector (13) across the 14 data points.440

441

Figure 6 - Identifiability results computed using eigendecomposition of the information matrix (�T�) for the reduced 6 param-442

eter model with data from the control (CTR) animals: (a-f) normalized parameter sensitivities for the 6 estimated parameters443

across the 14 data points; (g) log-plot of the eigenvalues of �T� ; (h) components of the eigenvector of �T� corresponding to444

the smallest eigenvalue of �T� (� ≈ 10−7) (asterisk).445

446

Figure 7 = Parameter estimation and identifiability results for the reduced 5-parameter model for the control (CTL) and hyper-447

tensive animals, illustrated for case HPHb: (a) pressure vs. area model predictions of the outer area (black) vs. data (circles) and448

the inner area (red); (b) wall thickness vs. pressure model predictions compared to the 3 data points (squares); (c) plot of the449

residual vector (13) across the 14 data points; (d,f) log-plot of the eigenvalues of �T� in the normotensive (d) and hyperten-450

sive (f) animals; (e,g) components of the eigenvector of �T� corresponding to the smallest eigenvalue of �T� (asterisk) in the451

control (e) and hypertensive (g) animals.452

7 TABLES453

Table 1 Estimated parameter values for the control (CTL) animals with the 8-parameter model (column 5) and the reduced
6-parameter model (column 6).

Param. Units Initial Baseline (§3.1) Reduced (§3.2)
m 8 6

Geom. Rin �m 1000 376.711 376.666
H �m T data1 ⋅ [1, 1 + 
] 45.428 45.430

(
 = [1.0, 1.5]) (
 = 0.1) (
 = 0.4)
Media cM kPa 10 24.835 25.057

k1M kPa 1 0.271 0.299
k2M - 0.839 2.064 2.083

Adv. cA kPa 10 16.460 15.990
k1A kPa 0.3 0.035 0.000 (fixed)
k2A - 0.711 2.734 0.000 (fixed)

 (⋅10−4) - 1.7306 1.7324
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Table 2 Estimated parameter values for the reduced 5-parameter model for control (CTL) (column 6) and hypertensive (HPH)
(column 5) animals. For comparison, results for the reduced 6-parameter model are also shown (column 4).

Param. Units Initial CTL (§3.2) CTL (§3.3) HPHa (§3.3) HPHb (§3.3)
m 6 5 5 5

Geom. Rin �m 1000 376.666 377.378 513.688 497.959
H �m T data1 ⋅ [1, 1 + 
] 45.430 45.356 48.557 49.953

(
 = [0.0, 0.5]) (
 = 0.4) (
 = [0.0, 0.5]) (
 = [0.0, 0.3]) (
 = [0.0, 0.3])
Media cM kPa 10 25.057 21.984 5.073 5.327

k1M kPa 1 0.299 0.185 3.060 1.899
k2M - 0.839 2.083 2.188 7.082 7.119

Adv. cA kPa 10 15.990 = cM = cM = cM
k1A kPa (fixed at 0.0) = k1M = k1M = k1M
k2A - (fixed at 0.0) = k2M = k2M = k2M

 (⋅10−4) - 1.7324 1.6931 0.5297 0.5298

Table 3 Estimated parameter ranges for the final model in both the control (CTL) and hypertensive (HPHb) animals based on
optimization with 4 parameters. The cost  was allowed to increase by nomore than 10% in establishing the estimated parameter
ranges.

Param. Units Initial CTL (§3.4) HPHb (§3.4)
m 4 4

Geom. Rin �m 1000 374.46-380.45 426.50-522.97
H �m T data1 ⋅ [1, 1 + 
] 44.73-45.91 47.77-57.35

(
 = [0.0, 0.5]) (
 = [0.0, 0.5]) (
 = [0.0, 0.3])
Media cM kPa 20.12-23.85 (fixed) 4.79-7.62 (fixed)

k1M kPa 1 0.11-0.31 1.77-1.84
k2M - 0.839 1.96-2.43 5.01-8.03

Adv. cA kPa = cM = cM
k1A kPa = k1M = k1M
k2A - = k2M = k2M

 (⋅10−4) - 1.69-1.86 0.53-0.58

8 APPENDIX454

8.1 Complete set of model parameters455

For convenience, the full set of model parameters, their descriptions, units, designation of parameter type (estimated, fixed,456

dependent or eliminated) and the associated fixed or initial values are summarized in Table 4.457

458
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Table 4 List of all parameters for the model developed in this study. Each parameter is denoted as estimated (E), fixed (F),
dependent (D) or eliminated (El.). When different values are used for the hypertensive case, values are denoted as c (normoten-
sive), ha for the HPH-A model and hb for the HPH-B model. Estimated parameters listed with an asterisk (*) are ultimately fixed
(during the course of the model reduction). Note that the model no longer depends on the parameter L when the twist angle Φ
is assumed to be zero (see (3)).

Type Param. Description Units Role Fixed Initial
Value Value

Geom. Rin Inner radius in Ω0 �m E 1000 [28]
Rout Outer radius in Ω0 �m D Rin +H N/A
H Vessel wall thickness in Ω0 �m E [1, 1.5] ⋅ T data1 [28]
HM Media thickness in Ω0 �m F 0.63H/0.63H/0.60H (c/ha/hb) [34] N/A
� Opening angle in Ω0 deg. F 94.2 [27](c),[26](ha,hb)
L Axial length in Ω0 �m El. N/A
�z Axial stretch in deformation - F 1.4 [28]
Φ Twist angle in deformation - F 0.0

Med. cM elastic modulus (iso.) kPa E 10
k1M elastic modulus (aniso.) kPa E 1
k2M elastic parameter (aniso.) - E 0.839 [23]
�M collagen fiber angle deg. F 54.45/54.45/56.58 (c/ha/hb) [34]

Adv. cA elastic modulus (iso.) kPa E* 10
k1A elastic modulus (aniso.) kPa E* 0.3
k2A elastic parameter (aniso.) - E* 0.711 [23]
�A collagen fiber angle deg. F 54.45/54.45/56.58 (c/ha/hb) [34]
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