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This dissertation addresses complex biostatistical challenges through the application of

nature-inspired metaheuristics. As the name suggests these algorithms are often motivated

by animals’ behavior and natural processes. A salient feature of nature-inspired metaheuris-

tic algorithm is that they provide flexible and robust strategies for solving tackling all types

of optimization problems and can solve optimization problems that traditional methods

cannot. Interestingly, they rarely come with rigorous proofs of convergence to the global

optimum, but they frequently do so or get close to the optimum in practice. Codes for

these algorithms are widely available in di!erent format and platforms, and they are easy to

implement and use. Consequently, nature-inspired metaheuristic algorithms are popular and

are increasingly used across disciplines. There are many such algorithms, and to fix ideas, we

focus on two such algorithms, Particle Swarm Optimization (PSO) and Competitive Swarm

Optimizer with Mutated Agents (CSO-MA), and demonstrate their utility and e!ectiveness

for tackling several types of biostatistical applications.

The primary contribution of this research is the development and applications of these

algorithms to solve a range of biostatistical problems. They include solving challenging opti-

mization problems to improve accuracy in statistical inference for single-cell RNA sequencing

ii



data analysis (Chapter 2), parametric and non-parametric statistical estimation (Chapter

3), and finding more e”cient and realistic experimental designs in toxicology (Chapter 5 and

Chapter 6). In addition, the dissertation introduces an innovative semi-parametric Bayesian

model (DPMIV) for interval-censored and doubly-censored data (Chapter 4).

The applications and results showcased in the dissertation not only highlight the adapt-

ability of metaheuristics to tackle a diverse set of biostatistical problems but also open up new

avenues for future research in statistical methodology and its applications in biomedicine.
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CHAPTER 1

Motivation: Opening New Insights for Statisticians

As Kai Lai Chung (1917-2009) pointed out in his monograph (Chung, 1974), “A mathe-

matical course is not a stockpile of raw materials nor a random selection of vignettes. It

should o!er a sustained tour of the field being surveyed and a preferred approach to it.”

Similarly, a PhD dissertation in biostatistics may not be a compilation of various models

and examples nor tedious and endless theoretical derivations. It shall bring new insights and

provide new techniques (either conceptually or methodologically) for peers in statistics. In

this dissertation, I am not aiming for such a high goal but I do hope that we can have some

new horizons for either conventional or brand new statistical optimization problems. As the

title suggests, such hope heavily depends on the so-called “metaheuristics”.

Optimization plays a paramount role in statistics (Everitt, 2012; Lange, 2013; Rustagi,

2014). From stock marketing prediction in econometric, image classification in computer

vision and allocation of coupons in Alibaba to protein structure prediction in biology, optimal

design in clinical trials and variable selection in biomarker studies, everything involves

optimization at di!erent levels. Because of its great demand, there has been extensive

literature on developing di!erent optimization algorithms for approximating optimal solu-

tions for di!erent types of problems. Among all algorithms, this dissertation focuses on

metaheuristics, a class of gradient-free algorithms popular in optimal design and engineering

that is e”cient for solving optimization problems with constraints and undesirable analytical

properties (Talbi, 2009).

Metaheuristics is widely used in increasingly many disciplines because 1) there are many

codes and packages available for users in a lot of programming languages including Matlab,

R, Python, C++, etc., including examples of their very di!erent applications to solving real
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complex optimization problems. For example, particle swarm optimization (Eberhart and

Kennedy, 1995) has been applied to 1) estimate infection fatality rate (IFR) in COVID-

19 (Haouari and Mhiri, 2021), 2) optimize and estimate the relation between pseudotime

(Trapnell et al., 2014) and gene expression values (Cui et al., 2022), 3) select the knot

positions in adaptive spline regression models (Wang and Mohanty, 2010; Normandin et al.,

2018; Mohanty and Fahnestock, 2021). Cuckoo search (Yang and Deb, 2009) has been applied

to 1) train parameters in neural networks (Valian et al., 2013) and 2) parameter estimation

problems in reliability theory (Valian et al., 2011). Genetic algorithm (Storn and Price,

1997) has been applied to find experimental optimal designs in statistics (Stokes et al., 2020).

Competitive swarm optimizer and its variants has been applied to 1) find Bayesian optimal

design for nonlinear mixed models applied to HIV dynamics and 2) travelling salesman

problem (Zhang, 2020b).

Strangely, metaheuristics is still very underused in the mainstream of biomedical and

biostatistics research. There are several reasons. First, many types of metaheuristics have

not been exposed to statisticians so that statisticians do not use them often in practice

(Cui et al., 2024a). Second, global convergence of many metaheuristics is only guaranteed

under stringent assumptions, limiting it to the use in the statistical community (Tong et al.,

2021). Third, it will be better for statisticians to have an ”all-in-one” function (lm(),

glm(), geeglm() in R) instead of having an optimization algorithm along. However, existing

statistical packages do not use metaheuristics but other algorithms for finding estimates.

The dissertation mainly focuses on two particular types of metaheuristics known as

particle swarm optimization (PSO) and competitive swarm optimization with mutated agents

(CSO-MA) and the dissertation is organized as follows. In the rest of the chapter, we first

state the main aim of the dissertation and then provide a historical review of metaheuristics,

together with an introduction to several metaheuristic algorithms used in the dissertation.

In chapter 2, we apply PSO to solve a constrained optimization problem in bioinformatics

using single-cell RNA sequencing datasets. In chapter 3, we illustrate how metaheuristics

can be applied to solve di!erent types of estimation problems in statistics. In chapter 4, we

develop a semi-parametric Bayesian instrumental variable analysis model with a customized
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Markov Chain Monte Carlo (MCMC) algorithm. In chapter 5, we apply metaheuristics to

solve optimal approximate design problems and in chapter 6 we propose a new sequential

optimal design schema for toxicological studies. In chapter 7, we provide supplementary

materials for the previous chapters.

1.1 Main Aim of the Dissertation

Main aim of the thesis is to demonstrate the usefulness and power of modern metaheuristic

algorithms for solving complex biostatistics and biomedical problems that seem unsolvable

until now. More specifically, we aim to solve the following problems involving metaheuristics:

• Develop an e!ective model for making improved inference of pseudotime to gain better

insights of single cell dynamics, which is an increasingly important topic in bioinfor-

matics.

• Demonstrate the e!ectiveness and usefulness of metaheuristics in parameter estimation

problems including constrained and unconstrained maximum likelihood estimation,

matrix completion, variable selection, etc.

• Develop a semiparametric Bayesian causal inference model for the analysis of doubly

interval-censored data and methods for sampling from the nonparametric maximum

likelihood estimator, and then develop an R package for users to use in practice.

• Develop a unified framework for finding 2-point optimal designs for binary regression

with di!erent link functions and then extend it to 3- or 4-point designs.

• Develop a two-stage design framework for toxicologists to perform experiments in a

sequential manner, leading to a more reliable and e”cient estimation of dose-response

relationships.

In each of the above proposed research, we apply metaheuristic algorithms, especially

PSO and CSO-MA, to solve di!erent types of optimization problems and make recommen-

dation on specific choice of the algorithms, including choice of tuning parameters that seem
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to perform adequately for the problem at hand. In chapter 2, PSO plays a dominant role

for finding the constrained optimal solution. In chapter 3, PSO and CSO-MA are applied to

a series of estimation problems arising in statistics, ecology, engineering, etc. In chapter 4,

PSO is applied to select single nucleotide polymorphisms (SNPs) that are highly correlated

with the outcome. In chapter 5 and 6, we apply PSO and CSO-MA to find optimal designs

when analytical solutions are not available or di”cult to derive.

1.2 Metaheuristics

Metaheuristics is a widely-adopted, but under-appreciated term. The prefix ”meta” orig-

inates from Greek with meaning ”more comprehensive” or ”transcending” and the word

”heuristic” means ”discovering or unravelling something by oneself”. In literature, there are

several jargons or synonym of metaheuristics, i.e., metaheuristic algorithms, nature-inspired

metaheuristics, nature-inspired metaheuristic algorithms and nature-inspired algorithms.

Though strictly speaking, there are subtle di!erences among these terminologies, many

papers just use them to represent the same meaning. Hence, throughout the dissertation,

we mainly adopt the term ”metaheuristics” but sometimes switch to the other terminologies

without further instruction. Metaheuristics is a class of approximate algorithms 1 (Archetti

and Schoen, 1984) with four common characteristics: 1) it mimics a natural phenomenon

from biology, physics, or ethology; 2) it has stochastic components (random perturbations);

3) it has tuning-parameters; 4) it does not require gradient information (Boussäıd et al.,

2013; Korani and Mouhoub, 2021).

Based on the number of candidate solutions, metaheuristics can be classified into two

main cagetories: single-solution-based (SS) algorithms and population-based (PB) algo-

rithms. Based on the mechanism, the population-based algorithms can be further classified

into two sub-categories: evolutionary computation (EC) algorithms and swarm intelligence

1The term “approximate” means the algorithms find nearly-optimal solutions to the problems while
convergence to the global optimal is not guaranteed theoretically. In computer science, approximate
algorithms have been used to solve NP-hard problems.
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(SI) algorithms. For more details on this type of classification, see Gogna and Tayal (2013);

Sörensen (2015); Aranha et al. (2021). The Table 1.1 provides a list of metaheuristics and

we provide a description of some of them in the next subsection. For a more comprehensive

and detailed review on metaheuristics, see Abdel-Basset et al. (2018); Hussain et al. (2019);

Korani and Mouhoub (2021); Rajwar et al. (2023) for the general information, the monograph

(Yang, 2017) and the paper on the applications of metaheuristics in deep learning (Tian and

Fong, 2016).

Table 1.1: A Brief List of Metaheuristics

Algorithm Category 1 Reference

Stochastic Approximation SS Lai (2003); Robbins and Monro (1951)

Simulated Annealing SS Pincus (1970)

Genetic Algorithm PB-EC Sampson (1976)

Tabu Search SS Glover (1986)

Threshold Accepting SS Dueck and Scheuer (1990)

Ant Colony Algorithm PB-SI Drigo (1996); Dorigo et al. (1991)

Particle Swarm Optimization PB-SI Kennedy and Eberhart (1995)

Di!erential Evolution PB-EC Storn and Price (1997)

Evolutionary Programming PB-EC Fogel (1998)

Harmony Search PB-EC Geem et al. (2001)

Water Flow-like Algorithm PB-SI Yang and Wang (2007)

Cuckoo Search PB-SI Yang and Deb (2009)

Firefly Algorithm PB-SI Yang (2010)

Bat Algorithm PB-SI Yang and Gandomi (2012)

Flower Pollination PB-SI Yang (2012)

Competitive Swarm Optimizer PB-SI Cheng and Jin (2014)

Grey Wolf Optimizer PB-SI Mirjalili et al. (2014)

DPSO PB-SI Kim and Wong (2018)

NovDE PB-EC Xu et al. (2019)
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Competitive Swarm Optimizer

with Mutated Agents

PB-SI Zhang et al. (2020)

Skip Salp Swarm Algorithm PB-SI Abualigah et al. (2022)

Snake Optimizer PB-SI Hashim and Hussien (2022)

1SS refers to single-solution-based, PB-EC and PB-SI refer to population-based evolutionary

computation and swarm intelligence respectively.

1.3 Particle Swarm Optimization

We introduce one of the most commonly used metaheuristics, the particle swarm optimization

(PSO) algorithm.

1.3.1 The PSO Algorithm

Swarm intelligence algorithms, such as ant colony (Dorigo et al., 2006), cuckoo search (Yang

and Deb, 2009) and firefly algorithms (Yang, 2009), mimic the behaviour of a swarm to solve

optimization problems. They are now receiving more and more interest and attention not

only in the literature of mathematics, but also in econometrics, optimal design, engineering,

etc (Yang, 2017). Particle swarm optimization (PSO), proposed by Kennedy and Eberhart

(1995), is one of the most widely used swarm intelligence algorithms to optimize an objective

function with boundary constraints. It is the main optimization tool in this dissertation and

is introduced in below.

PSO tackles an optimization problem by producing a sequence of candidate solutions.

Unlike the gradient descent algorithms widely used for deep learning, PSO does not require

either di!erentiability or convexity (Boyd and Vandenberghe, 2004) of the objective function

and constraints. Therefore, PSO is particularly useful when the objective function does not

have desirable analytical properties (e.g., not di!erentiable).

PSO encodes swarm intelligence, such as bird flocking, into two simple dynamic equations
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to solve optimization problems of the following form:

min f(x) s.t. x ↑ S ,

where x ↑ Rd is a d-dimensional vector, f(x) is a real-valued objective function (measurabil-

ity is the only requirement), and S ↓ Rd is the search space or domain of x). The algorithm

starts with n candidate values of x, denoted as x0
1, · · · ,x

0
n
. Each x0

i
, i = 1, · · ·n, represents

a particle and is initialized with a velocity vector v0
i
↑ Rd. Then for i = 1, · · · , n, PSO

iterates with the following two equations Bratton and Kennedy (2007):

vk+1
i

= wvk

i
+ c1r

k

i1(x̂
k

i
→ xk

i
) + c2r

k

i2(x̂
k
→ xk

i
) ,

xk+1
i

= xk

i
+ vk+1

i
, (1.3.1)

where k = 0, 1, · · · is the number of iterations finished, w is called the inertia weight, c1

and c2 are called the cognitive and social parameters respectively, and r
k

i1 and r
k

i2 are two

random numbers independently generated uniformly from [0, 1]. Usually, w, c1, and c2 are

set to numbers in [0, 2] by users. Most importantly,

x̂k

i
= argmin

x↑Ai

f(x) ,

x̂k = argmin
x↑↓n

i=1Ai

f(x) ,

where Ai = {xt

i
: t = 0, · · · , k} .

Thus, x̂k

i
is the best position recorded by particle i up to the kth iteration, and x̂k is the best

position recorded by the whole swarm up to the kth iteration. The inertia weight w controls

the level of a particle moving towards its last direction vk

i
. The cognitive parameter c1

represents how a particle is a!ected by its best known position x̂k

i
. Similarly, the social

parameter c2 determines the influence of the swarm’s best knowledge x̂k on particle i.

Because x̂k is the best solution found by the whole swarm, the set of equations (1.3.1)

is also called the global best PSO (Bratton and Kennedy, 2007).
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To better understand the logic of PSO, suppose we have 10 ants starting around origin

(0, 0) and they are looking for food at point (2, 2) (left panel of Fig. 1.1). Background colors

represent distances to the food. The initial position of each ant corresponds to x0
i
, and the

objective function f(x) is the Euclidean distance between point x and the food at (2, 2).

Each ant is initialized with an velocity vector v0
i
(blue arrow). After moving one step, ants

re-analyze their positions and distances to the food so that (1) the best position of ant i is

recorded as x̂1
i
; (2) the best position of all ants is recorded as x̂1. Here the best position has

the minimum distance to the food at (2,2). Then, each ant re-corrects its velocity according

to equation (1.3.1) (middle panel of Fig. 1.1). After several iterations, all ants gather around

the food and the velocity decreases to 0 gradually (right panel of Fig. 1.1). Finally, in section

2.4.6, we illustrate the premature convergence issue of PSO using a real-world dataset.

Figure 1.1: Illustration of PSO.

1.3.2 Applications of PSO in the Dissertation

PSO is one of the two dominating optimization tools throughout the whole dissertation and

we briefly describe below how we apply PSO in solving problems in many di!erent fields.

Other optimization techniques used in this dissertation are Gaussian quadrature methods
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(section 5.3.1), Newton-type algorithms (section 3.5), Metropolis-Hastings (MH) algorithms

(section 4.3.2), Markov Chain Monte Carlo for nonparametric Bayesian statistics (section

7.3.4 and 7.3.6) and Expectation-Maximization algorithms (section 3.3 and 3.8).

In the next chapter, we demonstrate the usefulness of PSO by applying PSO in a novel

way to gain insights into gene expression trends in single-cell RNA sequencing technolo-

gies (section 2.2.1). Throughout the whole chapter 3, PSO is compared with many other

algorithms, either metaheuristics or gradient-based methods for tackling various interesting

optimization problems across disciplines. PSO plays as a bottle opener in chapter 4 where we

apply it to select SNPs as instrumental variables for downstream data analysis tasks (section

4.5.1). In chapter 5, we apply PSO to solve the optimal design for binary regression with

Laplace link function, since the analytical solution is not available and the dimension of the

optimization problem is unknown (section 5.3.1). Finally, PSO helps to find the proposed

robust optimal designs in chapter 6 (section 6.4.2.2).

1.4 Competitive Swarm Optimizer with Mutated Agents

1.4.1 Competitive Swarm Optimizer

Competitive Swarm Optimizer (CSO) swarm-based algorithm proposed by Cheng and Jin

(2015) and has proven its e!ectiveness for solving di!erent types of optimization problems

with various dimensions . For example, Gu et al. (2018) applied CSO to select variables

for high-dimensional classification models, and Xiong and Shi (2018) used CSO to study

a power system economic dispatch, which is typically a complex nonlinear multivariable

strongly coupled optimization problem with equality and inequality constraints.

CSO minimizes a given continuous function f(x) over a user-specified compact space !

by first randomly generating a set of candidate solutions. They take the form of a swarm

of n particles at positions x1, · · · , xn, along with their corresponding random velocities

v1, · · · , vn. For tackling design problems, each particle is a candidate design and upon

convergence, the solution is the optimal design.
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After the initial swarm is generated, at each iteration we randomly divide the swarm into
⌊
n

2

⌋
pairs and compare their objective function values. At iteration t, we identify xt

i
as the

winner and xt

j
as the loser if f(xt

i
) < f(xt

j
). The winner retains the status quo and the loser

learns from the winner. The two defining equations for CSO are

vt+1
j

= R1 ↔ vt

j
+R2 ↔ (xt

i
→ xt

j
) + ϱR3 ↔ (x̄t

→ xt

j
) (1.4.1)

and xt+1
j

= xt

j
+ vt+1

j
, (1.4.2)

where R1, R2, R3 are all random vectors whose elements are drawn from U(0, 1). The

operation ↔ represents element-wise multiplication and the vector x̄t is the swarm center at

iteration t. The social factor ϱ controls the influence of the neighboring particles to the loser

and a large value is helpful for enhancing swarm diversity (but possibly impacts convergence

rate). This process iterates until a pre-specified stopping criterion or criteria are met.

Simulation results have repeatedly shown that CSO either outperforms or is competitive

with several state-of-the-art evolutionary and swarm based algorithms, including several

enhanced versions of PSO. This conclusion was arrived at after comparing CSO performance

with state-of-the-art EAs using a variety of benchmark functions with dimensions up to 5000

and found that CSO was frequently the fastest and with the best quality results Cheng and

Jin (2015); Mohapatra et al. (2017); Sun et al. (2016); Zhang et al. (2016).

1.4.2 Mutated Agents

Zhang et al. (2017) proposed an improvement on CSO and call the enhanced version,

Competitive Swarm Optimizer with Mutated Agents (CSO-MA). After pairing up the swarm

in groups of two at each iteration, the variant randomly chooses a loser particle p as an agent,

randomly picks a variable indexed as q and then randomly changes the value of xpq to either

xmaxq or xminq, where xmaxq and xminq represent, respectively, the upper bound and

lower bound of the q-th variable. If the current optimal value is already close to the global
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Figure 1.2: Flowchart of CSO-MA.

optimum, this change will not hurt since we implement this experiment on a loser particle,

which is not leading the movement for the whole swarm; otherwise, this chosen agent restarts

a journey from the boundary and has a chance to escape from a local optimum. We present

the flowchart of CSO-MA in Figure 1.2. The mutation step (the box in purple) is a key feature

of the CSO-MA that di!erentiates it from the standard CSO. The mutation is intended to

increase the diversity of the solutions and prevent premature convergence to a local optimum

by allowing particles to explore more distant regions of the search space.

Let n be the swarm size and let D be the dimension of the problem. The computational

complexity of CSO is O(nD) and since our modification only adds one coordinate mutation

operation to each particle, its computational complexity is the same as that of CSO. The

improved performance of CSO-MA over CSO for finding optimal designs for many complex

multi-dimensional benchmark functions has been validated in Zhang et al. (2020); ?.

1.4.3 Applications of CSO-MA in the Dissertation

CSO-MA is the dominating optimization tool throughout the whole chapter 3, and is com-

pared with many other algorithms, either metaheuristics or gradient-based methods for

tackling various interesting optimization problems across disciplines. CSO-MA also plays

a crucial role in finding optimal designs for toxicological experiments and other types of

design problems (section 3.9 and 6.4).
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CHAPTER 2

Single-cell Generalized Trend Model (scGTM)

2.1 Background and Existing Work

In recent years, single-cell RNA-sequencing (scRNA-seq) technologies are booming and

have provided many valuable insights into complex biological systems, ranging from cancer

genomics to diverse viral and bacterial evolution (Saliba et al., 2014). Tons of newly

developed and advanced computer science, topological and statistical methods have been

applied to bioinformatics and scRNA-seq data analysis including protein structure prediction,

di!erential expression analysis and time series analysis of gene expression data (Li and Li,

2018; Rabadán and Blumberg, 2019).

Pseudotime analysis is one of the most important topics in single-cell transcriptomics.

There has been fruitful work on inferring cell pseudotime (Magwene et al., 2003; Bendall

et al., 2014; Trapnell et al., 2014; Shin et al., 2015; Ji and Ji, 2016; Qiu et al., 2017; Street

et al., 2018; Cao et al., 2019; Mondal et al., 2021) and constructing statistical models for gene

expression along the inferred cell pseudotime (Campbell and Yau, 2017; Bacher et al., 2018;

Van den Berge et al., 2020; Ren and Kuan, 2020; Song and Li, 2021). Informative trends of

gene expression along cell pseudotime may reflect molecular signatures in biological processes.

For instance, if a gene shows a hill-shaped (first-upward-then-downward; Fig. 2.1b) or valley-

shaped (first-downward-then-upward; Fig. 2.1c) trend, the hill or valley position may indicate

the occurrence of some biological event. Hence, it is of great interest to have a statistical

model for characterizing hill- and valley-shaped gene expression trends along cell pseudotime.

Two types of statistical methods have been developed to model the relationship between

a gene’s expression in a cell (or a sample) and the cell pseudotime (or the sample’s physical
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time, whose modeling is similar from a statistical perspective). Methods of the first type

are based on statistical regression models, such as the generalized linear model (GLM) and

generalized additive model (GAM), whose parameters do not have direct relevance to gene

expression dynamics. Specifically, the GLM used in the Monocle3 method (Cao et al., 2019)

assumes that a gene’s log-transformed expected expression in a cell is a linear function of the

cell pseudotime, making it unable to capture hill- and valley-shaped trends that linear trends

cannot approximate well. To avoid this issue, most methods use nonparametric regression

models, such as the GAM and piece-wise linear models, to capture complex trends. To

name a few, Storey et al. (2005) applied basis regression; Trapnell et al. (2014) considered

the GAM with the Tobit likelihood; Ren and Kuan (2020) applied the GAM with Bayesian

shrinkage dispersion estimates; Van den Berge et al. (2020) proposed tradeSeq using the

spline-based GAM; the more recent PseudotimeDE method by Song and Li (2021), which

fixes the p-value calibration issue in tradeSeq, also uses the spline-based GAM with spline

functions; Bacher et al. (2018) used a piecewise linear model, which is more restrictive than

the GAM. Although these nonparametric regression methods can fit complex gene expression

trends, they are prone to over-fitting if without proper hyper-parameter tuning (as we will

show in Section 3), and their parameters do not directly inform the shape of a trend (e.g.,

hill-shaped) or carry biological meanings.

Unlike the first type, methods of the second type use models with direct relevance to

gene expression dynamics, and notable methods include ImpulseDE/ImpulseDE2 (Chechik

and Koller, 2009; Sander et al., 2017; Fischer et al., 2018) and switchDE (Campbell and Yau,

2017). Specifically, ImpulseDE2 estimates a gene expression trend as a double-logistic curve

so it can capture non-monotone trends; however, its parameters, though having biological

interpretations, do not intuitively inform the shape of a trend. In contrast, switchDE has a

restrictive model and can find only monotone trends, although its parameters directly inform

the shape of a trend (e.g., a gene’s activation time).

With the above summary, we find a gap in the existing methods: no method can

capture monotone, hill-shaped, and valley-shaped trends with biologically interpretable and

trend-informative parameters. Hence, we propose the single-cell generalized trend model
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(scGTM) that has three advantages over existing methods and models: (i) capturing hill-

and valley-shaped trends in addition to monotone trends, (2) estimating interpretable and

trend-informative parameters, and (3) allowing flexible modeling of count data. Fig. 2.1a

illustrates the scGTM’s four parameters for a hill-shaped trend (a valley-shaped trend has

four similar parameters; a monotone increasing trend is a special case of a hill-shaped trend

with the increasing part only): the maximum log expected expression µmag, the activation

strength k1, the repression strength k2, and the change time t0 where the expected expression

stops increasing. Fig. 2.1b–c show how the scGTM fits to the two example genes (Tmsb10 in

the GYRUS dataset and NFKBIA in the LPS dataset; Supplementary Table S1) and reveals

their hill- and valley-shaped trends.

To estimate the scGTM parameters, we apply the particle swarm optimization (PSO)

algorithm (Section 2.2) for constrained maximum likelihood estimation (MLE). PSO has

several advantages that make it suitable for our optimization problem: (i) it does not require

the convexity and di!erentiability of the objective function; (ii) it can handle boundary

constraints and discrete parameters without re-formulating the objective function, (iii) unlike

the Newton-type algorithms used in (Trapnell et al., 2014; Wood, 2017; Campbell and Yau,

2017), it is gradient-free and thus easy to implement.

Figure 2.1: Illustration of the scGTM. (a) Four parameters of the scGTM in Equation (2.2.2) for a hill-
shaped trend: the maximum log expected expression µmag (horizontal blue line), the activation strength k1
(absolute value of the left tangent line’s slope), the repression strength k2 (absolute value of the right tangent
line’s slope), and the change time t0 (vertical blue line). (b) A hill-shaped trend of gene Tmsb10 (in the
GYRUS dataset) fitted by the scGTM with counts modeled by the Poisson distribution. (c) A valley-shaped
trend of gene NFKBIA (in the LPS dataset) fitted by the scGTM with counts modeled by the Poisson
distribution. In b–c, the scatter points indicate gene expression levels, and the curves are the trends fit by
the scGTM.

14



2.2 scGTM Formulation and Estimation

Let Y = (ygc) be an observed G↗C gene expression count matrix, where G is the number of

genes, C is the number of cells (i.e., the number of pseudotime values), and ygc is the (g, c)-th

element indicating the observed expression count of gene g = 1, . . . , G in cell c = 1, . . . , C.

We consider gene expression counts as random variables whose randomness comes from

experimental measurement uncertainty, so ygc is a realization of the random count variable

Ygc. Given a particular gene g, for notation simplicity, we drop the subscript g and denote

Ygc as Yc and ygc as yc. We denote by tc the inferred pseudotime of cell c. In the scGTM,

t1, . . . , tC are treated as fixed values of pseudotime and serve as the covariate vector of

interest.

Given tc, the scGTM can model the count variable Yc using four count distributions

commonly used for gene expression data: the Poisson, negative binomial (NB), zero-inflated

Poisson (ZIP), and zero-inflated negative binomial (ZINB) distributions.

For a hill-shaped gene, the scGTM is

Yc

ind
↘ F (↽c, ϱ, pc) , c = 1, . . . , C , (2.2.1)

log(↽c + 1) =






µmag exp (→k1(tc → t0)2) if tc ≃ t0

µmag exp (→k2(tc → t0)2) if tc > t0

, (2.2.2)

log

(
pc

1→ pc

)
= φ log(↽c + 1) + ω , (2.2.3)

where F (↽c, ϱ, pc) in (2.2.1) represents one of the four common count distributions. The

most general case is when F (↽c, ϱ, pc) = ZINB (↽c, ϱ, pc) with mean parameter ↽c ⇐ 0,

dispersion parameter ϱ ↑ Z+ := {1, 2, 3, · · · } and zero-inflated parameter pc ↑ [0, 1]. As

special cases, F (↽c, ϱ, 0) = NB (↽c, ϱ), F (↽c, ⇒, pc) = ZIP (↽c, pc), and F (↽c, ⇒, 0) =

Poisson (↽c).

Fig. 2.1a displays and shows the roles of the 4 parameters in 2.2.2 for modelling a hill-

shaped trend. For a valley-shaped trend, there are four similar parameters and we note
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that a monotone increasing trend is a special case of a hill-shaped trend with the increasing

part only. The four parameters in the Fig. 2.1a are the maximum log expected expression

µmag, the activation strength k1, the repression strength k2, and the change time t0 where

the expected expression stops increasing. Fig. 2.1b–c show the scGTM fits to the gene

(Tmsb10 in the GYRUS data set and another gene NFKBIA in the LPS data set from the

Supplementary Table S1). Their trends reveal a hill- and valley-shaped trend., respectively.

In this hill-shaped scGTM, we assume that the gene’s expression count Yc in cell c has

mean parameter ↽c and zero-inflation parameter pc, and both depend on the pseudotime

tc of cell c. In (2.2.2), we link ↽c to tc by assuming that log(↽c + 1) is a non-negative

transformation that compresses extremely large values of ↽c using a two-part Gaussian

function corresponding to tc ≃ t0 and tc > t0; we choose the Gaussian function for its

good mathematical properties and interpretability. We link pc to tc in (2.2.3) using a logistic

regression, with predictor log(↽c+1), i.e., the logistic transformation of pc is a linear function

of log(↽c + 1) (with slope φ and intercept ω) and thus a function of tc.

Besides ϱ ↑ Z+ and φ, ω ↑ R, the following parameters of the hill-shaped scGTM shown

in Fig. 2.1a need to be estimated for biological interpretations:

• µmag ⇐ 0: magnitude of the hill,

i.e., µmag = maxc↑{1,...,C} log(↽c + 1);

• k1 ⇐ 0: activation strength (how fast the gene is up-regulated);

• k2 ⇐ 0: repression strength (how fast the gene is down-regulated);

• t0 ↑ [0, 1]: change time (where the gene reaches the maximum expected expression).

For a valley-shaped gene, the scGTM is the same except that we replace (2.2.2) by

log(↽c + 1) =






b→ µmag exp (→k2(tc → t0)2) if tc ≃ t0

b→ µmag exp (→k1(tc → t0)2) if tc > t0

, (2.2.4)
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where b indicates the baseline (maximum) log-transformed

(expected expression + 1) of the valley-shaped gene. The interpretation of the four key

parameters of the valley-shaped scGTM becomes

• µmag ↑ [0, b]: magnitude of the valley, i.e., b→ µmag = minc↑{1,...,C} log(↽c + 1);

• k1 ⇐ 0: activation strength (how fast the gene is up-regulated);

• k2 ⇐ 0: repression strength (how fast the gene is down-regulated);

• t0 ↑ [0, 1]: change time (where the gene reaches the minimum expected expression).

Compared to the hill-shaped scGTM, the valley-shaped scGTM has an additional baseline

parameter b that needs to be estimated. For simplicity, we estimate b by a plug-in estimator

b̂ = maxc↑{1,...,C} log(yc + 1), where y1, . . . , yC are the observed counts of a valley-shaped

gene. For the common parameters of the hill- and valley-shaped scGTMs in Section 2.2.1,

we next discuss how PSO can provide constrained likelihood estimates for these parameters.

2.2.1 Constrained MLE and the PSO Algorithm

To fit the scGTM to a gene, we first need to ascertain whether the gene is hill- or valley-

shaped: we call the gene valley-shaped only if its expression count yc is negatively correlated

with tc ↑ [0, 0.5] and positively correlated with tc ↑ [0.5, 1]; otherwise, we consider the gene

hill-shaped. Next, based on the trend shape, we estimate the scGTM parameters. For a

hill-shaped gene, we estimate the scGTM parameters # = (µmag, k1, k2, t0,ϱ,φ, ω)T from the

observed expression counts y = (y1, . . . , yC)T and cell pseudotimes t = (t1, . . . , tC)T using

the constrained maximum likelihood method, which respects each parameter’s range and

ensures the estimation stability. Let logL(# | y, t) be the log likelihood function and the
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optimization problem is:

max
!

logL(# | y, t)

such that min
c↑{1,...,C}

log(yc + 1) ≃ µmag ≃ max
c↑{1,...,C}

log(yc + 1) , (2.2.5)

k1, k2 ⇐ 0 ,

min
c↑{1,...,C}

tc ≃ t0 ≃ max
c↑{1,...,C}

tc ,

ϱ ↑ Z+ ,

where

logL(# | y, t) = log

[
C∏

c=1

P(Yc = yc | tc)

]

=
C∑

c=1

log
[
(1→ pc)f(yc|tc) + pc I(yc = 0)

]
(2.2.6)

and

f(yc|tc) =
↽
yc
c

yc!

$(ϱ+ yc)

$(ϱ)(ϱ+ ↽c)yc
1


1 + ωc

ε

ε
,

which can be further specified as a function of # based on (2.2.2) and (2.2.3).

For a valley-shaped gene, the constrained MLE problem for estimating parameters in the

scGTM is similar and we omit the discussion for space consideration.

There are two di”culties in the optimization problem (2.2.5). First, the likelihood

function (2.2.6) is neither convex nor concave. Second, the constraint is linear in µmag,

k1, k2, and t0 but ϱ is a positive integer-valued variable. Hence, conventional optimization

algorithms such as P-IRLS in GAM (Wood, 2011, 2017) and L-BFGS in switchDE (Van Loan

and Golub, 1996; Campbell and Yau, 2017) are di”cult to apply in this case. Metaheuristics

is a class of assumptions-free general purpose optimization algorithms that is widely and

increasingly used to tackle challenging and high-dimensional optimization problems in the

quantitative sciences (Whitacre, 2011a,b; Yang, 2017). PSO is an exemplary and popular
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member of this class and has been shown to be e!ective to solve various types of optimization

problems and (Korani and Mouhoub, 2021) provides a recent review of such alogirthms and

applications across various disciplines.

PSO first generates a swarm of candidate solutions (known as particles) to the opti-

mization problem (2.2.5). At each iteration, particles change their positions within the

constraints, and the algorithm finds the best solution among all particle trajectories. We

summarize the vanilla PSO algorithm Bratton and Kennedy (2007) for the constrained MLE

of the scGTM in Algorithm 1, and provide further details of PSO in the Supplementary

Information. The below algorithm applies PSO to solve our optimization problem (2.2.5).

2.2.2 Approximate Confidence Intervals of the Four Key Parameters in the

scGTM

The estimated parameters #̂ = (µ̂mag, k̂1, k̂2, t̂0, ϱ̂, φ̂, ω̂)T are next used to construct approx-

imate confidence intervals for µmag, k1, k2, and t0 using the maximum likelihood theory.

Specifically, we calculate the plug-in asymptotic covariance matrix of (µ̂mag, k̂1, k̂2, t̂0)T as

the inverse of the partial Fisher information matrix of the four parameters evaluated at

(µ̂mag, k̂1, k̂2, t̂0)T (detailed derivation in the Supplementary Information). Then we use the

diagonal elements of this matrix as the plug-in asymptotic variances of µ̂mag, k̂1, k̂2, and t̂0,

and denote them by Var(µ̂mag), Var(k̂1), Var(k̂2), and Var(t̂0), respectively. We then obtain

a 95% approximate confidence interval for each of the parameters: [µ̂lb
mag, µ̂

ub
mag], [k̂

lb
1 , k̂

ub
1 ],

[k̂lb
2 , k̂

ub
2 ], and [t̂lb0 , t̂

ub
0 ], where

µ̂
lb
mag = max

(
0, µ̂mag → 1.96


Var(µ̂mag)

)
, µ̂

ub
mag = µ̂mag + 1.96


Var(µ̂mag) ,

k̂
lb
1 = max

(
0, k̂1 → 1.96


Var(k̂1)

)
, k̂

ub
1 = k̂1 + 1.96


Var(k̂1) ,

k̂
lb
2 = max

(
0, k̂2 → 1.96


Var(k̂2)

)
, k̂

ub
2 = k̂2 + 1.96


Var(k̂2) ,

t̂
lb
0 = max

(
0, t̂0 → 1.96


Var(t̂0)

)
, t̂

ub
0 = min

(
t̂0 + 1.96


Var(t̂0), 1

)
.
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Algorithm 1 PSO for the constrained MLE for the scGTM
Input data: a gene’s expression counts and cell pseudotime values
y: a C ↗ 1 gene expression count vector;
t: a C ↗ 1 cell pseudotime vector;

Input parameters:
F : count distribution: Poisson, NB, ZIP, or ZINB;
H: number of iterations in PSO; set to H = 100 by default;
w, c1, and c2: hyperparameters of PSO; set to w = 0.9, c1 = 1.2, and c2 = 0.3 by default;

Algorithm:
1. Randomly initialize # with B particles: #0

1,#
0
2, . . . ,#

0
B
;

2. Randomly initialize velocity vectors for the B particles: v0
1,v

0
2, · · · ,v

0
B
;

3. For h = 0 to H:
(i) Update the best solution of each particle i

#̂h

i
= argmax

!↑Ah
i

logL(# | y, t) ,

where A
h

i
= {#k

i
: k = 0, · · · , h}, i = 1, . . . , B;

(ii) Update the global best solution

#̂h = argmax
!↑↓B

i=1Ah
i

logL(# | y, t) ;

(iii) Update velocity of each particle i

vh+1
i

= wvh

i
+ c1r

h

i1


#̂h

i
→#h

i


+ c2r

h

i2


#̂h

→#h

i


,

where r
h

i1 and r
h

i2 are independently generated from Unif(0, 1), i = 1 . . . , B;

(iv) Update each particle i

#h+1
i

= #h

i
+ vh

i
, i = 1, . . . , B ;

4. Set #̂ = #̂H ;
5. Calculate 95% approximate confidence intervals of key parameters based on #̂

(Section 2.2.2).
Output:
→ logL(#̂ | y, t): fitted negative log likelihood value;
#̂ = (µ̂mag, k̂1, k̂2, t̂0, ϱ̂, φ̂, ω̂)T: estimated parameters;
[µ̂lb

mag, µ̂
ub
mag], [k̂

lb
1 , k̂

ub
1 ], [k̂lb

2 , k̂
ub
2 ], and [t̂lb0 , t̂

ub
0 ]: 95% approximate confidence intervals.
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2.3 Applications of scGTM

2.3.1 scGTM Outperforms GAM, GLM, LOESS, switchDE, and ImpulseDE2

in Capturing Informative and Interpretable Trends

As an example, we use the MAOA gene in the WANG dataset (Wang et al., 2020b) (Sup-

plementary Table S1) to compare the fitted trends of the scGTM, GAM, GLM, LOESS,

switchDE, and ImpulseDE2. In the original study, the gene was reported to have a hill-

shaped trend. Our comparison results have several interesting observations. First, we show

that the scGTM provides more informative and interpretable gene expression trends than

the GAM and GLM do when the count outcome comes from the Poisson, ZIP, NB, and ZINB

distributions. Fig. 2.2a shows that the scGTM robustly captures the hill-shaped trends for

the four distributions and consistently estimates the change time around 0.75, which is where

the MAOA gene reaches its expected maximum expression. While the GAM also estimates

the maximum expression around 0.75, its estimated trends are much more complex. This

is likely due to possible overfitting (despite the use of penalization) and consequently, more

di”cult to interpret them than the scGTM trends (Fig. 2.2b). Unlike the scGTM and GAM,

the GLM only allows for capturing monotone trends, making it unable to detect the possible

existence of expression change time (Fig. 2.2c). Second, we compare the scGTM with the two

existing methods, switchDE and ImpulseDE2, that use models with direct relevance to gene

expression dynamics. Although switchDE estimates the activation time around 0.75, similar

to the scGTM’s estimate change time, it cannot capture the downward expression trend as

the cell pseudotime approaches 1.00 due to its monotone nature (Fig. 2.2d). ImpulseDE2

can theoretically capture a hill-shaped trend, but it only fits a monotone increasing trend for

the MAOA gene (Fig. 2.2e). A likely reason is that the method was designed for time-course

bulk RNA-seq data. Third, we compare the scGTM with the LOESS method commonly

used for exploratory data analysis. While LOESS outputs a reasonable, though less smooth

trend (Fig. 2.2f), it is not probability-based and thus does not have a likelihood. Hence,

LOESS does not allow likelihood-based model selection, a functionality of the scGTM. To
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summarize, the scGTM fits outperform those from GAM, GLM, LOESS, switchDE and

ImpulseDE2 by providing a more informative and interpretable trend with less concern on

model overfitting.

In addition to the MAOA gene, Wang et al. (2020b) reported 19 other exemplary genes

that define menstrual cycle phases and exhibit hill-shaped expression trends along the cell

pseudotime. Supplementary Figs. S1-S19 compare the various model fits for the 19 genes

and and we observe that the scGTM consistently provides more informative, interpretable

trends than the other models.

Besides visually inspecting the fitted expression trends, we compare the AIC values of the

scGTM, GAM, and GLM used with the four count distributions fitted to the aforementioned

20 genes. Note that a lower AIC value indicates a model’s better goodness-of-fit with the

model complexity penalized. Supplementary Fig. S20 shows that the scGTM has comparable

or even lower AIC values than the GAM’s AIC values, confirming that the scGTM fits well

to data despite its much simpler model than GAM’s. Based on Fig. 2.2 and Supplementary

Figs. S1–S20, we use the scGTM with the Poisson distribution in the following applications

for its goodness-of-fit and model simplicity. This choice is consistent with previous research

on modeling sequencing data (Silverman et al., 2020) and other count data (Warton, 2005;

Campbell, 2021).

2.3.2 scGTM Recapitulates Gene Expression Trends of Endometrial Transfor-

mation in the Human Menstrual Cycle

The WANG dataset contains 20 exemplar genes that exhibit temporal expression trends in

unciliated epithelia cells in the human menstrual cycle Wang et al. (2020b). The original

study also ordered the 20 genes by the estimated pseudotime at which they achieved the

maximum expression (Fig. 2.3a; genes ordered from top to bottom), and it was found that

the ordering agreed well with the menstrual cycle phases (Fig. 2.3a; the top bar indicates the

phases). Comparing the fitted expression trends of the 20 genes by the scGTM, switchDE,

and ImpulseDE2, we observe that only the scGTM trends agree well with the data (Fig. 2.3).
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Figure 2.2: Comparison of the scGTM with GAM, GLM, LOESS, switchDE, and ImpulseDE2 for fitting
the expression trend of gene MAOA in the WANG dataset (Wang et al., 2020b) (Supplementary Table S1).
In the first four columns, the three rows correspond to (a) scGTM, (b) GAM, and (c) GLM. From left
to right, the first four columns correspond to Poisson, ZIP, NB, and ZINB as the count distribution used
in the scGTM, GAM, and GLM. The fifth column corresponds to (d) switchDE, (e) ImpulseDE2 and (f)
LOESS. Each panel shows the same scatterplot of gene MAOA’s log-transformed expression counts vs. cell
pseudotime values, as well as a model’s fitted trend. With all four count distributions, the scGTM robustly
captures the gene expression trend and estimates the change time around 0.75. In contrast, GLM, switchDE
and ImpulseDE2 only describe the trend as increasing; GAM overfits the data and does not output trends as
interpretable as the scGTM does; LOESS outputs a reasonable trend, but it does not allow likelihood-based
model selection like the scGTM.
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Additionally, we evaluate the 20 genes’ estimated change times (i.e., t0) by the scGTM and

their estimated activation times by the switchDE. Although the change times and estimation

times are both expected to correlate well with the gene ordering in the original study, only

the change times estimated by the scGTM fulfills this expectation (Fig. 2.3b–c). Compared

with the scGTM, switchDE miscalculates the activation times for many hill-shaped genes

whose maximum expression occurs in the middle of the cycle; this is likely due to the fact that

switchDE can only capture monotone trends (Fig. 2.3c). Similarly, ImpulseDE2 cannot well

capture the trends of those hill-shaped genes (Fig. 2.3d). Unlike switchDE and ImpulseDE2,

the scGTM estimates the change times reasonably for almost all genes. For instance, the

GPX3 gene has an estimated change time at 0.88, consistent with its role as a secretory

middle/late phase marker gene Wang et al. (2020b).

Besides the 20 exemplar genes, we apply the scGTM, switchDE, and ImpulseDE2 to fit

the expression trends of all 1,382 menstrual cycle genes reported in Wang et al. (2020b).

Supplementary Fig. S28 shows that the scGTM still outperforms switchDE and ImpulseDE2

for capturing these genes’ expression trends. In summary, the scGTM provides useful

summaries for gene expression trends in the human menstrual cycle.
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Figure 2.3: Fitted expression trends by the scGTM, switchDE, and ImpulseDE2 for 20 exemplar genes
in the WANG dataset (Wang et al., 2020b) (Supplementary Table S1). All panels are ordered by cell
pseudotime values from 0 (left) to 1 (right). The top color bars show the endometrial phases defined in the
original study. (a) The original expression values along pseudotime. (b) The fitted trends of the scGTM,
with the red segments highlighting the estimated change times t0. (c) The fitted trends of switchDE, with
the red segments highlighting the estimated activation times. (d) The fitted trends of ImpulseDE2.
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2.3.3 scGTM Identifies Informative Gene Expression Trends after Immune Cell

Stimulation

As the second real data application, we use the scGTM to categorize gene expression trends

in mouse dendritic cells (DCs) after stimulation with lipopolysaccharide (LPS, a component

of gram-negative bacteria) Shalek et al. (2014). First, we apply the likelihood ratio tests to

screen the genes that the scGTM fits significantly better than the null Poisson model (in

which ↽c and pc in (2.2.1) do not depend on cell pseudotime tc). Assuming that the likelihood

ratio statistic of every gene follows ⇀2
3 as the null distribution, we retain 2405 genes whose

Benjamini-Hochberg (BH) adjusted p-values ≃ 0.01.

Second, we use the scGTM’s confidence levels of the three parameters t0, k1, and k2

to categorize the 2405 genes into three types: (1) hill-shaped & mostly increasing genes :

t
lb
0 > 0.5 + 0.1 (change time occurs at late pseudotime) and k

lb
1 > 1 (strong activation

strength), (2) hill-shaped & mostly decreasing genes : tub0 < 0.5→ 0.1 (change time occurs at

early pseudotime) and k
lb
2 > 1 (strong repression strength), and (3) valley-shaped genes. To

demonstrate that this categorization is biologically meaningful, we perform gene ontology

(GO) analysis on the three gene types and compare the enriched GO terms. Fig. 2.4a shows

that the three gene types are enriched with largely unique GO terms, verifying their func-

tional di!erences. Notably, the hill-shaped & mostly increasing genes are related to immune

response processes, showing consistency between their expression trends (activation after the

LPS stimulation) and functions (immune response). Further, we visualize 5 illustrative genes

from each gene type (Fig. 2.4b) and observe that the scGTM’s fitted trends agree well with

the data. In conclusion, the scGTM can help users discern genes with specific trends by its

trend-informative parameters.

Besides the above three real data applications, we conduct a simulation study (section 2.4)

to verify the robustness of the scGTM to gene expression trends not generated from the

scGTM assumptions. The simulation results also show that, beyond good interpretability,

the scGTM is flexible enough to fit various trends to a similar extent as the GAM does

(Supplementary Information S3). Moreover, we use a bootstrap analysis to show that the
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Figure 2.4: Three types of gene expression trends characterized by the scGTM parameters in the LPS
dataset (Supplementary Table S1). (a) GO enrichment analysis of the three gene types. The top enriched
GO terms are di!erent among the three gene types. Notably, the hill-shaped & mostly increasing genes (1st
column) are functionally related to immune responses. (b) Visualization of example genes in the three types.
The scatter plots show gene expression data; the trends estimated by the scGTM (blue curves) well match
the data.

26



fitted scGTM trend has a smaller variance than the fitted GAM trend does (Supplementary

Information S3), at the cost of a larger bias.

2.4 Robustness and Sensitivity Analysis of scGTM

2.4.1 scGTM outperforms GAM and GLM in balancing goodness-of-fit and

model complexity

We compare scGTM with GLM and GAM in terms of relative AIC. The relative AIC is

calculated as follows: we first compute the AIC of all models for a particular gene and then

divide all AIC values by the minimum AIC value so that the minimum value becomes 1; we

call the resulting values the relative AIC values and write AICi

rel = AICi
/minj AIC

j, where

i is the model index. In Fig. 2.5, we plot the boxplots of relative AIC values of di!erent

models on the 20 exemplar genes in the WANG dataset (Wang et al., 2020b). From left to

right, the four panels correspond to Poisson, ZIP, NB and ZINB respectively. Except for

ZINB, scGTM has the top performance with other three distributions in terms of relative

AIC. By the definition of AIC and relative AIC, the result suggests that scGTM is relatively

robust to the choice of count distribution and does not have an overfitting problem.

2.4.2 Benchmarking scGTM against GAM by simulation and bootstrapping

We design a comprehensive simulation study to compare the scGTM with GAM. The

simulation settings are summarized in Table 2.1. The design can be summarized in two

aspects. The first aspect is the function of log(↽c + 1): the scGTM function, the quadratic

function, and the logistic function; the latter two functions are used to show the robustness

of the scGTM to trends that follow other functions. The second aspect is the trend shape:

hill, valley, increasing, and decreasing. Together, we have eight function + shape settings,

and we generate ten genes under each setting. Given the function of log(↽c+1), we generate

the gene expression count Yc from a negative binomial distribution with mean ↽c.
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Figure 2.5: AIC comparison (balance of goodness-of-fit and model complexity) of scGTM with GAM
and GLM on the WANG dataset (Wang et al., 2020b) (Supplementary Table S1). From left to right, the
four panels correspond to the three models with the count distribution as Poisson, ZIP, NB, and ZINB,
respectively. In each panel, from left to right, scGTM, GAM, and GLM are shown as blue, red, and orange
boxplots, respectively; each boxplot shows the distribution of a model’s relative AIC values across genes. A
lower relative AIC value indicates better balance of goodness-of-fit and model complexity. With Poisson,
ZIP, and NB as the count distribution (the left three panels), scGTM outperforms GAM and GLM.

Table 2.1: Overview of eight simulation settings.

Function Shape Formula Key parameter range(s)

scGTM hill f(tc) =

{
µmag exp (→k1(tc → t0)2) if tc ↔ t0

µmag exp (→k2(tc → t0)2) if tc > t0
0.4 < t0 < 0.6

scGTM valley f(tc) = b→
{
µmag exp (→k1(tc → t0)2) if tc ↔ t0

µmag exp (→k2(tc → t0)2) if tc > t0
0.4 < t0 < 0.6

scGTM increasing f(tc) =

{
µmag exp (→k1(tc → t0)2) if tc ↔ t0

µmag exp (→k2(tc → t0)2) if tc > t0
1 < t0 < 1.2

scGTM decreasing f(tc) =

{
µmag exp (→k1(tc → t0)2) if tc ↔ t0

µmag exp (→k2(tc → t0)2) if tc > t0
→0.2 < t0 < 0

quadratic hill f(tc) = b→ µ(tc → t0)2 0.4 < t0 < 0.6; µ > 0
quadratic valley f(tc) = b+ µ(tc → t0)2 0.4 < t0 < 0.6; µ > 0
logistic increasing f(tc) =

µ
1+exp(→k(tc→t0))

0.4 < t0 < 0.6; µ > 0

logistic decreasing f(tc) =
→µ

1+exp(→k(tc→t0))
0.4 < t0 < 0.6; µ > 0
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We first check if the scGTM can correctly recapitulate trend shapes. After fitting both

hill- and valley-shaped scGTMs to a gene, we choose the model that has the smaller AIC

value. Given the chosen model, we decide if a trend is monotone by checking if the confidence

interval of k1 or k2 (Section 2.3) contains 0. For example, if a hill-shaped scGTM is chosen

and the confidence interval of k1 contains 0, we consider the trend as monotone decreasing;

if a valley-shaped scGTM is chosen and the confidence interval of k1 contains 0, we consider

the trend as monotone increasing. Based on this decision process, the fitted scGTMs can

perfectly distinguish between hill- and valley-shaped trends, and they have 97.5% accuracy

for distinguishing increasing and decreasing trends. Given that a half of the genes are not

simulated from the scGTM assumptions, these results demonstrate the robustness of scGTM.

We next check if the goodness-of-fit of the scGTM is comparable to that of GAM, which

is designed to have great flexibility. For every gene g, we calculate the root mean square

error eg between the true trend f and the fitted trend f̂ :

eg =




C

c=1

[
f(tc)→ f̂(tc)

]2

C
.

A smaller eg means a better fit. We calculate the average of G simulated genes’ eg’s and

denote it as ē = 1
G


G

g=1 eg. For all 80 simulated genes (10 genes per setting ↗ 8 settings),

the scGTM performs similarly to GAM (ēscGTM = 0.080; ēGAM = 0.077). For the 40 genes

simulated from the scGTM assumptions, the scGTM expectedly fits better than GAM does

(ē
↑
scGTM = 0.058; ē

↑
GAM = 0.075). Fig. 2.6 shows one example gene per simulation setting,

including the gene’s true trend and the fitted trends by the scGTM and GAM. In particular,

the scGTM fits increasing and decreasing trends better than GAM does.

Moreover, we use a bootstrap analysis to show that the fitted scGTM trend has a smaller

variance than the fitted GAM trend does, at the cost of a larger bias. Fig. 2.7 shows the

fitted scGTM and GAM trends on ten bootstrap samples of the MAOA gene in the WANG

dataset Wang et al. (2020b), and the scGTM trends are more stable across the bootstrap

samples. This is more evident in Fig. 2.8, where the ten fitted trends for each model are
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Figure 2.6: Comparison of scGTM with GAM for one example gene under each simulation setting.

overlaying with their mean trend; the root mean square error (between the fitted trends and

the mean trend; calculated on 1000 evenly spaced pseudotime values in [0, 1]) is 0.399 for

the scGTM and 2.799 for GAM.

Further, note that we already used the built-in penalization in themgcv package to reduce

the overfitting of GAM when we fit it (the gam function). Specifically, there is a smoothing

parameter ϖ to control the wiggliness of the fitted GAM trend, and ϖ is estimated during

the GAM fitting.

2.4.3 scGTM is robust to pseudotime uncertainty

Unlike the observed (true) physical time, the pseudotime is inferred from data and thus

intrinsically uncertain. The e!ects of pseudotime uncertainty on hypothesis testing (i.e., if a

gene’s expression changes with time) has been discussed in the PseudotimeDE method Song

and Li (2021). However, the focus of this work is to proposed the scGTM for interpreting a

trend, instead of testing whether a trend is di!erent from a horizontal line, i.e., the focus of

PseudotimeDE. Although scGTM does not directly account for the pseudotime uncertainty,
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Figure 2.7: Fitted trends of scGTM and GAM on 10 bootstrap samples of the MAOA gene in the WANG
dataset Wang et al. (2020b).

Figure 2.8: The fitted trends of scGTM and GAM on 10 bootstrap samples (light colored scatters) and
the mean trends (dark colored curves) of the MAOA gene in the WANG dataset Wang et al. (2020b).
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we use simulation to show the robustness of scGTM to pseudotime uncertainty in a simple

setting.

We first generate the true time tc and the true trend f(tc). To introduce uncertainty to

tc, we add normal random noise to obtain the pseudotime t
↗
c
= tc + e, where e ↘ N(0, 0.12).

Fig. 2.9 shows that the scGTM fitted trends are still close to the true trend and correctly

capture the trend shape.

Figure 2.9: The e!ect of pseudotime uncertainty on scGTM fitting.

2.4.4 scGTM extension can capture more complicated gene trends

Currently the scGTM is designed for detecting simple and easy-to-interpret gene expression

trends including monotone, hill-shaped and valley-shaped trends. The reason is that most

genes of biological interests are observed to follow one of these simple trends. We deem this

reasonable because each pseudotime trajectory is expected to indicate a directional change

process, such as development and immune response, along which important genes usually

have no more than one hill or valley.
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Meanwhile, in practice some genes may exhibit more complicated patterns. Accordingly,

the scGTM is extendable by assuming a more complicated mean function, whose estimation

can still be achieved by the PSO algorithm (whose major advantage is its flexibility). To

demonstrate this functionality of the scGTM, we conduct a simulation study where we use

the sine function to generate one gene’s true expression trend along the pseudotime. With

its mean function set as as the sine function, the scGTM accurately estimates the gene trend

(Fig. 2.10).

Figure 2.10: scGTM extension correctly captures the sine gene trend.

2.4.5 Applying scGTM on 1,382 human menstrual cycle genes

We choose the 20 genes because they were analyzed and provided with biological interpre-

tations in Wang et al. (2020b). The complete dataset contains 22,036 genes, most of which

are not related to human menstrual cycle and thus do not exhibit notable expression trends.

To further show the performance of scGTM, we focused on the 1,382 menstrual cycle genes

reported in Wang et al. (2020b), and we applied the scGTM to fit these genes’ expression

trends. The results are still satisfying.
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Figure 2.11: Fitted expression trends by scGTM, switchDE, and ImpulseDE2 for 1,382 menstrual cycle
related genes in Wang et al. (2020b).

2.4.6 Stagnation: Premature Convergence Issues

The premature convergence issue arises while running the PSO algorithm and in the following

we take the PAEP gene in WANG Wang et al. (2020b) for illustration. We use Poisson

marginal and swarmsize 30. The left panel of Fig. 2.12 shows the result of PAEP returned

by PSO after 100 iterations while the right panel shows the result after 1000 iterations. It is

apparent that the left panel underfits the data and it undergoes a ”premature convergence

issue” commonly arised in the application of PSO (Bratton and Kennedy, 2007; Larsen et al.,

2016).

(a) Premature with 100 iterations (b) Convergence with 1000 iterations

Figure 2.12: Premature convergence of PAEP gene

The two panels in Fig. 2.13 further show the cost history of the premature issue of PSO

for fitting the PAEP gene. The x-axis is the number of iterations and the y-axis is the global
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best negative log-likelihood value. There is a premature around 200 iterations and after that

there is a big drop, corresponding to the transformation of left hill to right hill in Fig. 2.12.

(a) Cost history with 100 iterations (b) Cost history with 1000 iterations

Figure 2.13: Premature convergence of PAEP gene

To handle the premature convergence issues in PSO and other metaheuristics, scholars

have proposed many variants and remedies. For example, local best (lbest) PSO is an

alternative (Bratton and Kennedy, 2007). However, it is of great interest to explore that

when we have multiple humps or hills, how many iterations we need to prevent PSO from

premature convergence. In the next chapter, we further illustrate how metaheuristics can be

helpful in a high dimensional data analysis problem.
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CHAPTER 3

Metaheuristics in Action: Further Estimation

Problems in Statistics

3.1 Preamble

Metaheuristics has been used to find estimates for model parameters and there is work that

showed they can outperform those from statistical packages or find them when the latter

fail to do so. For example, Cheng et al. (2015) showed that PSO can find more optimal

L1-estimates for some models than those in statistical packages. In what is to follow, we

expand the applications of metaheuristics by highlighting its role in parameter estimation

and model optimization across diverse biostatistical contexts. Through a series of examples,

we demonstrate the CSO-MA can find more optimal maximum likelihood estimates and also

able to find them when some statistical packages cannot. Our applications include finding

maximum likelihood estimates for models in bioinformatics and in education studies, and

proportional hazard model for analysis in COVID-19 patients in Ethiopia, and a variable

selection problem with parameter tuning in ecology.

3.2 Single-cell Generalized Trend Model (scGTM)

In the previous chapter as well as in Cui et al. (2022), we proposed a model called scGTM

to study relationship between pseudotime (Trapnell et al., 2014) and gene expression data.

The model assumes that the gene expression has a ‘hill’ trend along the pseudotime and can

be modeled using a set of interpretable parameters. Below is a brief description of the model

and shows CSO-MA outperforms PSO algorithm for all but one gene in terms of finding the
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optimal value of the negative loglikelihood function; details in Cui et al. (2022).

For a hill-shaped gene, the scGTM parameters are # = (µmag, k1, k2, t0,ϱ,φ, ω)T and

they are estimated from from the observed expression counts y = (y1, . . . , yC)T and cell

pseudotimes t = (t1, . . . , tC)T using the constrained maximum likelihood method. Here C is

the number of cells and the interpretations of the parameters in the model are given in Section

2.1 of Cui et al. (2022). If logL(# | y, t) is the log likelihood function, the optimization

problem is:

max
!

logL(# | y, t) (3.2.1)

such that

min
c↑{1,...,C}

log(yc + 1) ≃ µmag ≃ max
c↑{1,...,C}

log(yc + 1) ,

k1, k2 ⇐ 0 , min
c↑{1,...,C}

tc ≃ t0 ≃ max
c↑{1,...,C}

tc , ϱ ↑ Z+ , (3.2.2)

where

logL(# | y, t) = log

[
C∏

c=1

P(Yc = yc | tc)

]

=
C∑

c=1

log
[
(1→ pc)f(yc|tc) + pc I(yc = 0)

]
(3.2.3)

and

f(yc|tc) =
↽
yc
c

yc!

$(ϱ+ yc)

$(ϱ)(ϱ+ ↽c)yc
1


1 + ωc

ε

ε
,

log(↽c + 1) =






b+ µmag exp (→k1(tc → t0)2) if tc ≃ t0

b+ µmag exp (→k2(tc → t0)2) if tc > t0

,

log

(
pc

1→ pc

)
= φ log(↽c + 1) + ω ,
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which are all functions of #. There are two di”culties in the optimization problem (3.2.1).

First, the likelihood function (3.2.3) is neither convex nor concave. Second, the constraint is

linear in µmag, k1, k2, and t0 but ϱ is a positive integer-valued variable. Hence, conventional

optimization algorithms, like P-IRLS in GAM (Wood, 2011, 2017) and L-BFGS in switchDE

Campbell and Yau (2017) are unlikely able to work well. The authors proposed PSO to

solve for the constrained MLEs and a Python package is available online. We now apply

CSO-MA to the same problem and compare results from the Python package. In addition,

we compared CSO-MA’s performance with results from two recently proposed metaheuristic

algorithms: the prairie dog optimization algorithm (PDO) proposed by Ezugwu et al. (2022)

and the Rutta and Kutta optimization (RUN) algorithm proposed by Ahmadianfar et al.

(2021). Table 3.1 displays the negative log likelihood function values found by CSO-MA

and PSO for the 20 exemplary genes in Wang et al. (2020b) after 1000 function evaluations

of equation (3.2.3) for the two algorithms and it shows that CSO-MA outperformed PSO

and PDO in all but three of the 20 genes. The Wilcoxon test of CSO-MA against the other

two algorithms produced p-values less than 0.001 (0.00077 for PSO and 0.00026 for PDO),

suggesting that CSO-MA indeed outperformed PSO and PDO in this example.

Gene CSO-MA PSO PDO Gene CSO-MA PSO PDO
PLAU 1.1115 1.1291 1.1177 MMP7 1.6562 1.6573 1.6963
THBS1 1.7491 1.7498 1.7569 CADM1 0.9903 0.9907 1.0316
NPAS3 0.4519 0.4598 0.4885 ATP1A1 1.0570 1.0571 1.1407
ANK3 1.0473 1.0501 1.1171 ALPL 0.6232 0.6235 0.6315
TRAK1 0.7759 0.7758 0.7785 SCGB1D2 2.0608 2.0501 2.0952
MT1F 0.7851 0.7907 0.8637 MT1X 0.8060 0.8065 0.9026
MT1E 0.6580 0.6597 0.6735 MT1G 1.1025 1.1414 1.1290
CXCL14 0.7939 0.8512 0.7244 MAOA 0.8094 0.8820 0.8161
DPP4 0.5503 0.5535 .5528 NUPR1 0.7307 0.7854 0.7739
GPX3 1.7413 1.7881 1.7904 PAEP 2.1034 2.3693 2.2036

Table 3.1: Optimized negative log likelihood (NLL) values (multiplied by 105) obtained by CSO-MA, PSO
and PDO after 1000 function evaluations. Lowest NLL values among the three algorithms are in bold for
each gene and overall results suggest that CSO-MA outperforms PSO and PDO in almost all cases.

Figure 3.1 displays the fitted PAEP gene given by CSO-MA, PSO and PDO. We observe

that CSO-MA captures the ”fast decreasing trend” when t ⇐ 0.8 better than PSO does, and
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it reaches the higher peak than PDO does. Figures for other genes also show a consistent

pattern.

Figure 3.1: Comparison of CSO-MA, PDO and PSO results for the fitted scGTM with gene PAEP.

3.3 Estimation for a Rasch Model

The Rasch model is one of the most widely used item response models in education and

psychology research (Embretson and Reise, 2013). Estimating the parameters in the Rasch

and other item response models can be challenging and there is continuing interest to estimate

them using di!erent methods and studying the various computational issues. For example,

(Linacre, 2022; Robitzsch, 2021) reported that there are at least 27 R packages indexed with

the word “Rasch” and 11 packages capable of estimating parameters and analysis for the

Rasch model.

The expectation-maximization (EM) algorithms is a common method for parameter

estimation in statistics (Dempster et al., 1977; Baker and Kim, 2004; Liu et al., 2018).
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The Bock-Aitkin algorithm is a variant of the EM algorithm and is one of the most popular

algorithms for estimating parameters in the Rasch models (Bock and Aitkin, 1981). Because

the Rasch model also has many extensions with applications in agriculture, health care

studies and in research in marketing (Mendes et al., 2020; Bezruczko, 2005; Bechtel, 1985),

this subsection compares, for the first time, how metaheuristic algorithms perform relative

to the Bock-Aitkin’s method.

We give a brief review of the Rasch model before we compare the estimation results given

by CSO-MA, Bock-Aitkin’s (in the R package ltm) and two other metaheuristic algorithms

CA and PSO in terms of the likelihood values. In a Rasch model, we work with N↗I binary

item response data where 1 indicates correct and 0 indicates incorrect responses. The data

come from a cognitive assessment (e.g., math or reading) that includes I test items. A group

of N students gave their responses to the I items, and their binary answers to each of the

N items were scored and analyzed (Embretson and Reise, 2013). The Rasch model is given

by:

logit

P

Yji = 1|⇁j


= ⇁j → ωi, ⇁j ↘ N(0, σ2). (3.3.1)

The item parameter ωi represents the di”culty of item i and parameter ⇁j represents the

ability of person j. We assume that ⇁j ↘ N(0, σ2). This model is called the one-parameter

model because it considers one type of item characteristic (di”culty). Let pji = P

Yji = 1|⇁j



and write the marginal likelihood function for model (3.3.1) as

L(#) =
N∏

j=1

 I∏

i=1

p
Yji

ji
(1→ pji)

1→Yjiπ(⇁)d⇁, (3.3.2)

where # =

ω1, · · · , ωI , σ

2
T

and π(⇁) is the prior of ⇁.

Metaheuristics has been shown that it can provide superior performance over statistical

methods. For instance, Wang and Huang (2014) tackled the challenge of deriving the

maximum likelihood estimates for parameters in a mixture of two Weibull distributions

with complete and multiple censored data. Their simulation outcomes indicated that the
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Particle Swarm Optimization (PSO) frequently outperformed the quasi-Newton method and

the EM algorithm in terms of bias and root mean square errors.

In this study, we present similar results and show that the nature-inspired metaheuristic

algorithm Mutation Algorithm (CSO-MA) can also give more precise maximum likelihood

estimates compared to three of its competitors: PSO, the Bock-Aitkin’s method, and the

Cat Swarm Algorithm (CA). PSO is legendary and an exemplary nature-inspired swarm

based algorithm and CA was introduced by Chu and Tsai (2007), and its e!ectiveness as an

optimizer for a single objective function was demonstrated in Bahrami et al. (2018), where

they showed its superior competitive edge against several contemporary top-performing

algorithms.

We employed the ”Verbal Aggression” data set the R Archive (Bates, 2010) and let

NLL denote the minimized value of the negative log-likelihood function. Table 3.2 displays

the NLLs from the 4 algorithms, where a swarm size of 30 was used for the 3 metaheuristic

algorithms. The hyper-parameter for CSO-MA, was set to ϱ = 0.3, and the hyper-parameters

for PSO and CA were set to the default values in the R packagemetaheuristicOpt (Riza et al.,

2018). Evidently, CSO-MA has the smallest NLL value and is the winner. The estimated

NNL values from CSO-MA, PSO, and Bock-Aitkin are similar, but that from CA is not,

suggesting that CA appears less reliable since its estimated NLLs (gold points and lines on

the left panel do not come close to the others.

Algorithm CSO-MA Bock-Aitkin PSO CA
NLL 4038.77 4072.93 4041.23 4780.49

Table 3.2: Negative log likelihood values from the four algorithms with CSO-MA outperforming the other
three algorithms.

Figure 3.2 presents a two-panel visualization. The upper panel illustrates the estimated

parameters derived from the four algorithms: CSO-MA, Bock-Aitkin, PSO, and CA. Here,

the x-axis represents all 24 parameters (encompassing 23 items in addition to the variance

parameter) in the model, while the y-axis depicts their estimated values. The lower panel

delineates the progression trajectories of the negative log-likelihood functions of the four

algorithms, spanning about 100 function evaluations. The left panel shows that except for the
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CA algorithm, Bock-Aitkin, PSO and CSO-MA give similar parameter estimates; the right

panel shows that Bock-Aitkin converges fastest in terms of number of function evaluations

while PSO is the slowest. However, CSO-MA has the smallest negative log-likelihood value,

or equivalently, the largest log-likelihood value.

Figure 3.2: The left panel shows estimated parameters from the four algorithms: CSO-MA, Bock-Aitkin,
PSO and CA. The x-axis refers to all 24 parameters (23 items plus the variance parameter) in the model and
the y-axis refers to the estimated parameter values. The right panel shows the trajectories of the negative
log likelihood functions of the four algorithms as they evaluate the negative log-likelihood functions about
100 times.

3.4 M-estimation for Cox Regression in a Markov Renewal Model

In this subsection, we show CSO-MA can solve estimating equations and produce M-estimates

for model parameters, that are sometimes more e”cient than those from statistical packages.

Askin et al. (2017) correctly noted that metaheuristics is rarely used to solve estimating

equations in the statistical community.

In a survival study, the experience of a patient may be modelled as a process with finite

states (Meira-Machado et al., 2009) and modelling is based on transition probabilities among

di!erent states. We take bone marrow transplantation (BMT) as an example. BMT is a

primary treatment for leukemia but has major complications, notably Graft-Versus-Host

Disease (GVHD), where transplanted marrow’s immune cells react against the recipient’s

cells in two forms: Acute (AGVHD) and Chronic (CGVHD). The main treatment failure

is death in remission, often seen in patients with AGVHD or both GVHD types, occurring
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Figure 3.3: A five-state Markov renewal model for BMT failure. Reproduced from Dabrowska et al.
(1994). TX = Transplant, AGVHD = Acute Graft-Versus-Host Disease, CGVHD = Chronic Graft-Versus-
Host Disease, Relapse = Relapse of leukemia, Death in Remission = Death of a patient who is in remission
from leukemia..

unpredictably before relapse. The term ”death in remission” in the context of leukemia

refers to the death of a patient who is in remission from leukemia. This means the patient

has achieved remission, where there are no detectable leukemia cells in the body, but they

died from other causes that are not directly related to the active progression of leukemia.

However, both AGVHD and CGVHD reduce leukemia relapse risks. Hence, there’s a five-

state model: transplant (TX), AGVHD, and CGVHD are temporary states, while relapse

and death in remission are absorbing states (Dabrowska et al., 1994). Figure 3.3 shows the

possible transitions among di!erent states (i.e., TX, AGVHD, CGVHD, Relapse and Death).

To model such a process in a mathematically rigorous way, we assume observations

on each individual form a Markov renewal process with a finite state, say {1, 2, · · · , r}

(Dabrowska, 2012). That is, we observe a process (X, T ) = {(Xn, Tn) : n ⇐ 0} where

(for simplicity, we do not consider censoring in this subsection), and 0 = T0 < T1 < T2 <

· · · are calendar times of entrances into the states X0, X1, · · · , Xn ↑ {1, 2, · · · , r}. In the

BMT example, r = 5 and Xn takes values in {TX, AGVHD, CGVHD, Relapse, Death in

Remission} and Wi = Tn→Tn→1 represents the sojourn time staying in the state Xn. We also
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observe a covariate matrix Z = {Zij : i, j = 1, 2, · · · , r} where each Zij itself is a vector. In

practice, we assume that the sojourn time Wn given Xn→1 = i and Z has survival probability

(Jacod, 1975)

P(Wn > x|Xn→1 = i,Z) = exp


→

r∑

k=1,k ↘=i

A0,ik(x)e
ϑ
T
Zik



and the transition probability is (i ⇑= j)

P(Xn = j|Xn→1 = i,Wn) =
φ0,ij(Wn)eϑ

T
Zij


k ↘=i

φ0,ik(Wn)eϑ
TZik

,

where ω is the parameter of interest, A0,ik(x) =


x

0 φ0,ik(s)ds is the baseline cumulative

hazard from state i to state k and φ0,ik(x) is the hazard function from state i to state k

(Cox, 1972). Suppose we observe M iid individuals and suppose the risk process for an

individual is given by Yi(x) =


n≃1 I(Wn ⇐ x,Xn→1 = i). For a fixed x, Yi(x) counts the

number of visits to state i with sojourn time more than x for a particular individual. In the

five-state model in Figure 3.3, since we cannot revisit the states that we have already exited,

Yi(x) is a binary variable. Then from Dabrowska et al. (1994); Cook and Lawless (2007);

Andersen et al. (2012), the estimating equation for ω is

U(ω) =
M∑

m=1

r∑

i ↘=j

 ⇐

0

[
Zijm →

S
(1)
ij

(x, ω)

S
(0)
ij

(x, ω)

]
dNijm(x). (3.4.1)

Here Nijm(x) =


n≃1 I(Tn ≃ x,Xn = j,Xn→1 = i), S(0)
ij

(x, ω) = 1
M


M

m=1 Yim(x)eϑ
T
Zijm and

S
(1)
ij

(x, ω) is the first partial derivative of S(0)
ij

with respect to ω. The M-estimates of ω are

obtained by solving U(ω) = 0. To apply CSO-MA to obtain the estimates, we turn the

problem of solving U(ω) = 0 into a minimization problem as follows:

ω̂ = argmin
ϑ

⇓U(ω)⇓p (3.4.2)

where p ↑ [1,⇒] is a user-selected constant. If the solution exists for U(ω) = 0, then we
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have min⇓U(ω)⇓p= 0 for any p ⇐ 1. Using metaheuristics to creatively solve the system

of nonlinear equations Li et al. (2015b); Pant et al. (2019), results from our simulation

study suggest that the choice of p does not a!ect the convergence speed of CSO-MA nor the

estimated parameters.

For simulation, we set p = 2 and assume r = 3, A0,ij(x) = 0.5x for all i ⇑= j, the true

parameter vector ω = (0.901, 0.759, 0.348)T and elements of the covariance matrix Z are

random uniform variates from [→1, 1]. In total, we generated M = 100 individuals and the

left panel of Figure 3.4 shows one of the realizations. The swarm size for CSO-MA was

20 and we ran it for 100 function evaluations and the right panel of Figure 3.4 shows the

convergence of CSO-MA. The estimated parameter is ω̂ = (0.908, 0.753, 0.329)T , which is

close to the true value. The observed vector of biases (0.007, 0.006, 0.017)T is likely due

to both the optimization algorithm and the method of partial likelihood itself. The first

issue can be reduced by trying using di!erent initialized values of CSO-MA and the second

issue may be solved by having a larger sample size so that consistency of the estimators is

guaranteed theoretically. For space consideration, we omit additional simulation results that

support the e!ectiveness of CSO-MA for estimating the true parameters correctly.

Figure 3.4: Application of CSO-MA to find M -estimates for a Cox regression in a Markov renewal model.
The left panel is one of the realizations of 100 individuals; the red dots represent the jump times and the
transitions for the pair (Xn, Tn). The right panel shows the convergence trajectory of CSO-MA.

To further investigate the scalability of CSO-MA and compare it with other algorithms,
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we perform another simulation study where the state space of Xi consists of two, i.e., {1, 2}

and 2 is an absorbing state. Consequently, the Markov renewal model is equivalent to a

two-state Markov model or a Cox proportional hazards model (Cox, 1972), the sample size

is M = 10, 000 and the ω parameter has is the 100 ↗ 1 vector with all entries equal to

1. The elements of the covariance matrix Z are again generated uniformly from [→1, 1]

to mimic the high-dimensional scenario in statistical applications (Tibshirani, 2009). The

simulation is performed on the Matlab 2023a platform. Instead of minimizing the norm of

U(ω), we minimize the negative partial log-likelihood (NLL) value (Dabrowska et al., 1994).

We compare CSO-MA with PDO and Runge Kutta optimization (abbreviated as RUN, it

is another recently proposed metaheuristics (Ahmadianfar et al., 2021)) in terms of their

optimum values, stability and running time. The results are given in Table 3.3. We run each

algorithm 30 times to get reasonable statistical results and the number of function evaluation

is set to 1000, the swarm size for each algorithm is set to 30. The results suggest that RUN

performs the best in terms of NLL and its stability; The CSO-MA has the best performance

in terms of average elapsed time and PDO is the slowest among the three algorithms.

Algorithm CSO-MA PDO RUN
NLL 1868.51 (248.61) 1825.20 (2.79) 1636.39 (4.34)
Elapsed time 250.10s (10.16s) 472.09s (5.59s) 270.40s (2.41s)

Table 3.3: Negative log likelihood values from the three algorithms with CSO-MA outperforming the other
two recently proposed algorithms.

3.5 Proportional Hazard Analysis of COVID-19 patients in Ethiopia

COVID-19 is a global public health problem causing high mortality worldwide. This subsec-

tion used a proportional hazard model to assess time to death using predictors of mortality

among patients hospitalized for COVID-19 in the Arsi zone treatment center in Ethiopia.

The data was from medical records of laboratory-confirmed COVID-19 cases hospitalized at

Bokoji Hospital (Kaso et al., 2022). The primary goal was to identify potential risk factors

of the death caused by COVID-19 among 422 patients (Kaso et al., 2022) and the data

is available in the appendix of their paper. The purpose of this subsection is to further
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demonstrate the usefulness and flexibility of CSO-MA to obtain M-estimates in the model

with the following risk factors taken from Kaso et al. (2022): malignancy, chronic kidney

disease, comorbidity, AIDS/HIV, ICU admission, and intranasal oxygen use. All are binary

risk factors. The time-to-event outcome is admission to death (in days)

Let Xm be the observed survival time and ▷m be the censoring indicator (1 refers to death

and 0 refers to censored) of patient m. Define Ym(t) = I(Xm ⇐ t) and Nm(t) = I(Xm ≃

t, ▷m = 1) be the risk and counting process respectively (Andersen et al., 2012). Then the

score equation for the proportional hazard model is

U(ω) =
M∑

m=1


ω

0


Zm →

S
(1)(x, ω)

S(0)(x, ω)


dNm(x) (3.5.1)

and

S
(0)(x, ω) =

M∑

m=1

Ym(x)e
ϑ
TZm , S

(1)(x, ω) =
M∑

m=1

Ym(x)Zme
ϑ
TZm .

As in the previous subsection, we apply CSO-MA and solve for the minimizer of (3.5.1) by

ω̂ = argmin
ϑ

⇓U(ω)⇓22. (3.5.2)

The standard deviation of ω̂ can be estimated using observed Fisher information matrix

(Klein and Moeschberger, 2003; Elasho! et al., 2016). In the following, we compare the

objective function values in (3.5.2) returned by CSO-MA with that given by standard package

”coxph” in R and we use Breslow’s method for handling ties (Klein and Moeschberger, 2003;

Elasho! et al., 2016).

Table 3.4 displays results for the case M = 422, where ω̂ is the estimate, ⇓U⇓2 is defined

in Equations (3.5.1) and (3.5.2) and LPL(ω) refers to the log partial likelihood function

(Cox, 1975; Elasho! et al., 2016) defined by

LPL(ω) =
M∑

m=1


ω

0


ω
TZm → logS(0)(x, ω)


dNm(x).
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We observe from the table that although the data set is not complicated, both CSO-MA and

”coxph” produce similar results (up to 3 decimals), suggesting that CSO-MA is reliable for

solving estimating equations

CSO-MA coxph

Risk factors ϑ̂ ⇒U⇒2 LPL(ϑ) ϑ̂ ⇒U⇒2 LPL(ϑ)
Malaginance 1.305 1.256⇑ 10→8 -277.75 1.304 1.256⇑ 10→8 -277.75
Chronic kidney disease 1.685 3.590⇑ 10→8 -277.13 1.685 3.590⇑ 10→8 -277.13
Comorbidity 1.669 1.831⇑ 10→10 -268.03 1.669 1.831⇑ 10→10 -268.03
AIDS/HIV 1.810 7.467⇑ 10→9 -268.03 1.810 7.467⇑ 10→9 -268.03
ICU admission 2.975 1.798⇑ 10→7 -259.83 2.974 1.798⇑ 10→7 -259.82
Intranasal oxygen use 2.933 3.150⇑ 10→8 -253.76 2.933 3.150⇑ 10→8 -253.76

Table 3.4: Comparison of CSO-MA and coxph on the COVID-19 data set.

3.6 Find MLE for Log-binomial Model

The Log-binomial model is sometimes used to estimate the relative risk ratio directly,

controlling for confounders when the outcome is not rare (Blizzard et al., 2006). However, one

notorious problem using log-binomial model in practice is that the iterative methods provided

in statistical software usually fail to find the MLE or the convergence cannot be attained. For

instance, Blizzard et al. (2006) implemented a simulation study to examine the successful

rate of fitting log-binomial model where 12 data generation designs were proposed. Their

results showed that only around 20% of well-designed simulated samples had no problem

fitting a log-binomial model. The main reason for the fitting problem is that the optimum

may be near the boundary of the constrained space or out of the space, where we require

the parameter vector to be admissible. Standard iterative methods in software packages are

likely to update steps that lead to estimates outside the constrained space and result in a

crash.

A solution for better fitting a log-binomial model was proposed by de Andrade et al.

(2018), where the original constrained problem of finding MLE is replaced by a sequence of

penalized unconstrained sub-problems whose solutions converge to the solution of the original

program. To solve each unconstrained sub-problem, they recommended using derivative-free

algorithms such as Nelder-Mead or BFGS. The results show that more than 93% of their
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simulations produce the correct parameters for the log-binomial models.

In this subsection, we show the flexibility of CSO-MA and demonstrate that it also

an e!ective method for finding MLEs for challenging models, like the log-binomial model.

Because the objective is to maximize the log-likelihood function with subject to the constraint

that the parameter vector should be admissible, we make it an unconstrained optimization

problem by minimizing the following penalized function:

→log-likelihood + penalty of inadmissibility.

We used all 12 simulated scenarios implemented in Blizzard et al. (2006) and were able

to confirm that CSO-MA can correctly and stably find all the MLEs with each one running

time less than 1 CPU second.

In the following, we compare BAT with several popular nature-inspired algorithms for

finding MLE in log-binomial models using simulated data. The model for log-binomial

regression stipulates the outcome yi ↘ Binomial(ni, pi) and

log pi = ω0 + ω1xi1 + ω2xi2 + · · ·+ ωkxik
(3.6.1)

Since pi is within range 0 to 1, log pi is always non-positive, leading to the linear constraint

ω0 + ω1xi1 + ω2xi2 + · · ·+ ωkxik ≃ 0. Hence, the optimization problem is:

min
pi

→

n∑

i=1

logP(Yi = yi|pi)

s.t. ω0 + ω1xi1 + ω2xi2 + · · ·+ ωkxik ≃ 0.

(3.6.2)

For the simulation study, we have three categories of the log-binomial model described

in Williamson (2013), where the maximizer of (3.6.1) is on a finite boundary, inside the

parameter space or is in the limit. Table 3.5 contains three data sets for estimating the

two parameters ω0 and ω1 in the model with only one covariate X taking on three possible

values {→1, 0, 1}. Fig.3.5 displays the contour plots of the negative log likelihood function
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constructed from each data set and we observe that its maximum is at the boundary, in

the limit of the parameter space and in its interior, respectively, using data sets from left to

right.

(Y=1) (Y=0)
(X=-1) 10 8
(X=0) 18 9
(X=1) 5 0

MLE at boundary

(Y=1) (Y=0)
(X=-1) 0 17
(X=0) 0 21
(X=1) 0 12

MLE at infinity

(Y=1) (Y=0)
(X=-1) 2 2
(X=0) 14 3
(X=1) 2 17

MLE at interior

Table 3.5: Three data sets from Williamson (2013).

Figure 3.5: Contour plots of the negative log likelihood functions from the three data sets. Left: MLE at
boundary; middle: MLE at infinity; right: MLE at interior.

How does BAT perform relative to other metaheuristic algorithms? We mentioned at

the onset that there are many other nature-inspired metaheuristic algorithms and it is good

practice not to rely on results from a metaheuristic algorithm since such algorithms do not

guarantee convergence to the optimum. Accordingly, we additionally implement some of

CSO competitors to find the MLEs of parameters in the same log binomial model using each

of the three data sets, except that we now restrict values of both ω0 and ω1 in the range

[→10, 10]. Table 3.6 reports the comparison results, where NLL refers to the negative log

likelihood. We run each algorithm 100 times with 100 iterations using their default values

and report the estimated quantities, along with their means and the standard deviations.

The results shown in the table support that CSO-MA is an e!ective algorithm for solving

the optimization problem. In particular, we observe that the optimized NLL values from CSO-

MA are generally smaller than other NLL values found by the other algorithms and the two
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CSO-MA ABC BA CS GA PSO
NLL 29.78 (0.011) 30.28 (0.72) 29.91 (0.17) 34.81 (4.21) 43.50 (12.88) 29.77 (0.0013)
ϑ0 -0.34 (0.0086) -0.37 (0.069) -0.34 (0.019) -0.59 (0.24) -0.97 (0.57) -0.34 (0.0029)
ϑ1 0.34 (0.0090) 0.29 (0.083) 0.31 (0.035) 0.12 (0.31) -0.19 (0.58) 0.34 (0.0029)

MLE at boundary

CSO-MA ABC BA CS GA PSO
NLL 2.25 (2⇑10→10) 2.25 (3⇑ 10→10) 2.25 (1⇑ 10→6) 2.86 (4⇑ 10→4) 3.28 (2⇑ 10→3) 2.25 (0)
ϑ0 -10 (0) -10 (0) -10 (0) -9.84 (0.14) -9.74 (0.31) -10 (0)
ϑ1 0.17 (4⇑10→4) 0.17 (2⇑10→4) 0.17 (0.025) 0.19 (0.50) 0.22 (0.37) 0.17 (0)

MLE at infinity (NLL ↗10→3)

CSO-MA ABC BA CS GA PSO
NLL 24.14 (2.44⇑10→4) 24.15 (0.025) 24.17 (0.069) 26.41 (1.98) 27.53 (4.15) 24.14 (6.8⇑10→6)
ϑ0 -0.70 (0.0024) -0.71 (0.022) -0.69 (0.020) -0.88 (0.26) -1.11 (0.37) -0.71 (3.85⇑10→4)
ϑ1 -0.47 (0.0023) -0.47 (0.021) -0.45 (0.033) -0.42 (0.29) -0.66 (0.24) -0.47 (4.06⇑10→4)

MLE at interior

Table 3.6: Minimized negative log likelihood values and estimated parameters. ABC = Artificial Bee
Colony Algorithm, BA = Bat Algorithm, CS = Cuckoo Search, GA = Genetic Algorithm, PSO = Particle
Swarm Optimization.

parameters are estimated more accurately compared with the larger standard errors from the other

algorithms. Genetic algorithm (GA) clearly performs the worst followed by Cuckoo Search (CS)

in this particular study, but this does not imply that they are inferior algorithms at all. They

may well excel in tackling other optimization problems but these are just intriguing aspects of

metaheuristics. The take home message is that one should compare results from a metaheuristic

algorithm with several other algorithms and have a higher confidence that the generated results

are correct or nearly so when other algorithms also produce similar results.

3.7 Empirical Likelihood and Turnbull’s Estimator

The empirical likelihood has a long history in statistics with the advantage of robustness, but it

is computationally intensive Lazar (2021) and di”cult to compute in practice. In this subsection,

we show that CSO-MA can generate competitive results for deriving Turnbull’s estimator, a type

of empirical likelihood based statistical estimator, hence suggesting its potential for solving other

types of empirical likelihood problems. Let X1, X2, · · · be a sequence of i.i.d. survival times for n
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subjects, and we only observe the interval censored data:

{(Li, Ri] : i = 1, 2, · · · , n}

where 0 ≃ Li < Ri ≃ ⇒ are left- and right- endpoint of an observation. That is, we only know

that Xi ↑ (Li, Ri] instead of their exact values. There are two types of interval censoring:

• The case I interval censoring refers to either Li = 0 or Ri = ⇒ and it is also called the

current status data.

• The case II interval censoring refers to Li > 0 and Ri < ⇒.

Such censoring mechanism arises commonly in longitudinal studies, and in particular, COVID-19

data analyses (Mingyue et al., 2020; Yin et al., 2021; Tian and Sun, 2022). The counting process

approaches do not apply in estimating the survival function of X with interval-censored data, and

so we can formulate the likelihood function of our observations by:

L(S) =
n∏

i=1

(S(Li)→ S(Ri)) ,

where S is the survival function of X. If Li = Ri for some i, we replace S(Li) with its the left

limit S(Li→) so that the likelihood assigns probability mass to 1 → S(#Ri). The nonparametric

maximum likelihood estimation (NPMLE) is defined as

Ŝ = argmax
S

logL(S).

Following Turnbull (1976) and Sun (2006), let {sj}mi=0 be the unique ordered elements of

{0, Li, Ri : i = 1, · · · , n}, let ωij = I(sj ↑ (Li, Ri]) and let pj = S(sj) → S(sj→1), for i = 1, · · · , n

and j = 1, · · · ,m. If Li = Ri for some i, i.e., an exact observation, then we replace ωij by

ωij = I(sj ↑ [Li→, Ri]) so that ωij = 1 if sj = Li. Hence, the likelihood L(S) can be written as

L(S) =
n∏

i=1




m∑

j=1

ωijpj



 (3.7.1)

and NPMLE refers to the probability vector p = (p1, · · · , pm)T . If m is large, then finding p that
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maximizes L(S) is computationally intractable or ine”cient. However, if we know in advance that

some (or many) pj are 0, then the computation will be reduced by a lot. The following lemma

shows that it is feasible in practice.

Lemma 1 (Turnbull’s intervals). The pj can be nonzero only if sj→1 = Li, sj = Rk for some i and

some k.

Proof. Fix i and we consider Figure 3.6 as an example where a1, a2, b1, b2 are indexes. The ith

sum of L(S) is Li =


m

j=1 ωijpj , and it reduces to
5

k=1 pj+k = S(sj+5) → S(sj). If there is a

probability mass for either (Ra1 , Lb1 ], (Lb1 , Lb2 ] or (Ra2 , Ri], we can always put the mass to the

interval (Lb2 , Ra2 ] from them without changing the value of Li. On the other hand, the bth2 sum

Lb2 will increase by at least the probability assigned to the (Ra1 , Lb2 ].

Figure 3.6: Illustration of Turnbull’s intervals.

The resulting intervals (sj→1, sj ] for nonzero pj are referred as the Turnbull’s intervals and the

resulting estimator p̂ = (p̂1, · · · , p̂m)T is termed as the Turnbull’s estimator.

The ”Icens” (Gentleman and Vandal, 2010), ”interval” (Fay and Shaw, 2010), ”icenReg” (Anderson-

Bergman, 2017) are three well-established R packages for handling univariate interval-censored data

while ”MLEcens” (Groeneboom et al., 2008; Maathuis and Maathuis, 2022) and ”intccr” (Park

et al., 2019) are designed for bivariate and competing risk interval-censored data, respectively.

In table 3.7, we illustrate the stability of CSO-MA. The lung tumor data is from Hoel and

Walburg Jr (1972); Anderson-Bergman (2017), the simulated Weibull data is generated using

”simIC-weib” function in ”icenReg” with n = 1000, b1 = 0, b2 = 0, shape = 0.5, and scale = 1

and the simulated Poisson data is generated by (X,X + Y ] with sample size 600 where X and Y

are independent Poisson variables with rate 30 and 15, respectively. We run CSO-MA and PSO 50
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times and each time with 1000 iterations to get reasonable statistical results. The column CSO-

MA refers to the average log L(S) along with its standard deviation returned by CSO-MA. The

second column refers to the results given by PSO along with their standard deviation. The third

column corresponds to result given by the ”EMICM” function in ”icens”. Though CSO-MA does

not output a lower → logL(S) than PSO and ”EMICM”, it has a smaller standard deviation than

PSO does, suggesting its robustness among metaheuristic algorithms.

Dataset CSO-MA PSO ”EMICM”
Lung tumor data 77.9570 (0.0340) 77.8362 (0.0265) 77.8351 (0)
Simulated Weibull data 806.1604 (0.323) 805.6635 (0.754) 803.1158 (0)
Simulated Poisson data 475.3893 (0.0163) 475.2120 (0.0791) 475.2146 (0)

Table 3.7: Stability of CSO-MA applied to Turnbull’s estimator using di!erent datasets.

3.8 Matrix Completion (Missing Data Imputation) in a Two Com-

partment Model

In this subsection, we apply CSO-MA to a missing data imputation problem in a non-linear

Gaussian regression model using simulated data. Missing data arise commonly in engineering,

economics, social science and biomedical research. Imputation is one of the most important topics

in handling missing data (Little and Rubin, 2019) and EM algorithm Dempster et al. (1977) is a

popular choice for imputing multivariate normal data. We briefly describe the problem and the

EM algorithm below.

Suppose that (Y1, Y2) ↑ R2 has a bivariate normal distribution with mean µ(ε) = (µ1(x, ε), µ2(x, ε))

and a known covariance matrix $ =



 ϑ2
1 ϖϑ1ϑ2

ϖϑ1ϑ2 ϑ2
2



 where ε is a vector of parameters charac-

terizing µ and x is (possibly) a vector of covariates. We observe n realizations yi = (yi1, yi2), i =

1, 2, · · · , n and yij contains missing values for some i and j. Let Y(0) and Y(1) denote the observed

and missing parts, respectively. At the (t + 1)th iteration, the E step of the algorithm calculates

(page 250-251 in Little and Rubin (2019))

E


∑

i=1

yij
∣∣∣Y(0), ε(t)


=

n∑

i=1

y(t+1)
ij
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and

E


∑

i=1

yijyik
∣∣∣Y(0), ε(t)


=

n∑

i=1


y(t+1)
ij

y(t+1)
ik

+ c(t+1)
jki



for j, k = 1, 2, · · · ,K where

y(t+1)
ij

=






yij if yij ↑ Y(0)

E


yij

∣∣∣Y(0), ε(t)


if yij ↑ Y(1)

and

c(t+1)
jki

=






0 if yij or yik is observed.

Cov

yij , yik

∣∣∣Y(0), ε(t)


if yij , yik ↑ Y(1).

After the E-step, missing values are replaced by the conditional expectation derived above. Next,

for the M -step, we maximize the following conditional log-likelihood with respect to ε using CSO-

MA:

E


l(ε|Y(0), Y(1))

∣∣∣Y(0), ε(t)


(3.8.1)

=→
1

2

n∑

i=1


y
(t+1)
i

→ µ(xi, ε)

T

$→1

y
(t+1)
i

→ µ(xi, ε)

+ C

where y
(t+1)
i

= (y(t+1)
i1 , y(t+1)

i2 ) and C is a constant that is independent of ε.

Wild and Seber (1989) illustrates a two-compartment model with (see also chapter 7 in Fedorov

and Leonov (2013))

yij = µj(xi, ε) + ϱij , i = 1, 2, · · · , n, j = 1, 2,

where x refers to time, (ϱi1, ϱi2) ↘ind N (0,$), and

µ1(x, ε) = ε1e
→ϖ2x + (1→ ε1)e

→ϖ3x,

µ2(x, ε) = 1→ (ε1 + ε4)e
→ϖ2x + (ε1 + ε4 → 1)e→ϖ3x,

and

ε4 =
(ε3 → ε2)ε1(1→ ε1)

(ε3 → ε2)ε1 + ε2
.

Suppose at some time point x, the operator forgot to record either yi1, yi2 or both and we observe
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Y(0) and Y(1) (n observations in total). To make inference about ε, however, we still want to make

use of the partially observed data. In this case, we adopt the EM algorithm described above and

need to maximize the conditional likelihood (3.8.1).

We analyze a real dataset to illustrate this idea. The dataset comes from Beauchamp and

Cornell (1966), see also section 11.2 in Wild and Seber (1989). We randomly mask some of the

values to be missing (denote as NA) and present the data in table 3.8.

i xi (hours) yi1 yi2

1 0.33 NA 0.03
2 2 0.84 0.10
3 3 NA 0.14
4 5 0.64 0.21
5 8 0.55 NA
6 12 NA 0.40
7 24 0.27 0.54
8 48 0.12 0.66
9 72 0.06 0.71

Table 3.8: The dataset from Beauchamp and Cornell (1966)

The covariance $ is taken to be



0.075 →0.06

→0.06 0.06



 (estimated from complete observations) and

in the original paper, using full data, the authors estimate the parameters as ε̂ = (0.060, 0.007, 0.093).

For the EM algorithm, we set the initial ε to be (0.381, 0.021, 0.197) and set the iteration of CSO-

MA to be 200 and ς = 0.3. The whole algorithm alternates between computing expression (3.8.1)

and applying CSO-MA to maximize (3.8.1) and we run 10 iterations in total. The imputed results

and parameter estimates are given in table 3.9.

We further perform a simulation study (not reported here) with sample size n = 80 and 40

missing values in total. The true parameter ε is (0.4, 0.05, 0.3) and the initial value for the

EM algorithm is (0.1, 0.1, 0.1). The algorithm terminates after 5 iterations, with the estimated

parameter value ε̂ = (0.392, 0.056, 0.275).
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Imputed data
i xi (hours) yi1 yi2

1 0.33 0.75 0.03
3 3 0.65 0.14
4 5 0.64 0.21
5 8 0.55 0.28
6 12 0.39 0.40

⇁1 ⇁2 ⇁3

Estimates 0.394 0.006 1.879

Table 3.9: The imputed dataset and estimated parameters

3.9 High Dimensional D-optimal Design for Generalized Linear

Models

In this section, we apply metaheuristics and construct a variety of new optimal designs under a

complex situation. In a generalized linear model (GLM) setting, one is usually interested in multiple

factors (covariates) and their interactions because a few explanatory factors may not capture the

complex structure of the full data adequately. But this will lead to an increasing number of

parameters. For example, a 5-factor GLM with second order interactions has 16 parameters in

total. Then the optimal design will be at least a 16 ↗ 6 = 96 dimensional optimization problem,

which is formidable to solve in the pre-computer age. In this subsection, we demonstrate how

to apply CSO-MA to find D-optimal designs in such a high dimensional setting and compare the

results with the reported optimal designs in Shi et al. (2019).

We give a very brief introduction to GLM below, for a more comprehensive introduction, see

Afifi et al. (2011); Dobson and Barnett (2018); McCullagh and Nelder (2019). A GLM (with

5 explanatory covariates x1, · · · , x5) assumes that the response y follows an exponential family

distribution, i.e.,

f(y|x) = h(y) exp(yφ →A(φ))

where A(φ) is the cumulant generating function and φ, known as the canonical link, is a linear
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function of parameter εT = (ε0. · · · , ε15), i.e.,

φ = ε0 + ε1x1 + · · ·+ ε5x5 + ε6x1x2 + · · ·+ ε15x4x5.

For example, the Bernoulli distribution with success rate p corresponds to the canonical link φ =

log( p

1→p
), and the resulting model is known as the logistic regression. The Poisson distribution with

mean rate ↼ corresponds to the canonical link φ = exp(↼), and the resulting model is called the

Poisson regression. It is well-known that given a n ↗ p design matrix X, the Fisher information

matrix of the parameter ε is (Dobson and Barnett, 2018)

M(ε) =
n∑

i=1

wixix
T

i

where xi = (xi1, · · · , xi5)T is the ith row of the design matrix and wi =
ϱ
2
A(ςi)
ϱς

2
i

, i = 1, 2, · · · , n is

the weight associated with xi. Then a D-optimal design seeks to find a suitable ↽⇓ with elements

↽⇓ =









x11

x12

x13

x14

x15









x21

x22

x33

x44

x55





· · ·





xn1

xn2

xn3

xn4

xn5





p1 p2 · · · pn





such that


n

i=1 pi = 0, pi ⇐ 0 and

↽⇓ = argmin
φ

log det


n∑

i=1

piwixix
T

i


(3.9.1)

Here we note that the number of design points n itself is an unknown parameter that cannot be

less than the number of parameters (which is 16 in this case). In practice, we start with a large n

and then collapse same design points together later.

To apply CSO-MA solve a high dimensional locally D-optimal design, we use the commands:

We compare the results with the designs found in Table 2 in Shi et al. (2019). Four di!erent

models are considered. The first two are logistic regression models with di!erent nominal parameter
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values and the next two are Poisson regression models with di!erent nominal parameter values (see

Table 1 in Shi et al. (2019)).

Model CSO-MA GA PSO CSO
Logistic 1 28.88(0.16) 29.54(0.83) 31.05(1.51) 28.80(0.37)
Logistic 2 28.89(0.22) 29.76(1.12) 30.78(1.07) 28.91(0.54)
Poisson 1 -151.67(0.41) -167.30(1.31) -163.11(0.92) -169.04(1.24)
Poisson 2 -100.51(0.32) -100.14(1.71) -93.23(1.40) -100.35(0.64)
Average Runtime 20.1s 95.2s 64.5s 42.3s

Table 3.10: Average criterion values of the locally D-optimal designs found by di!erent algorithms, along
with their standard deviations in parentheses.

Table 3.11 shows the D-optimal design found by CSO-MA under the Poisson 2 model. It has

only 16 design points, 5 points less than that found in Shi et al. (2019) while still it achieves a high

e”ciency.

x1 x2 x3 x4 x5 p
1.000 -1.000 0.001 1.000 -1.000 0.0629
-1.000 -1.000 -1.000 1.000 -0.505 0.0628
-1.000 1.000 -0.683 -1.000 -1.000 0.0624
-1.000 -0.452 -1.000 1.000 -0.523 0.0625
-1.000 1.000 -1.000 -1.000 -1.000 0.0627
-0.030 -1.000 -1.000 1.000 -0.600 0.0626
-1.000 -0.436 -1.000 1.000 -1.000 0.0627
0.906 -1.000 -1.000 0.222 -1.000 0.0622
-1.000 -1.000 -1.000 1.000 -1.000 0.0622
0.195 -1.000 -1.000 1.000 -1.000 0.0617
-1.000 -1.000 -0.670 1.000 -1.000 0.0627
-1.000 1.000 -1.000 -1.000 0.506 0.0636
-1.000 -0.350 -0.618 1.000 -1.000 0.0627
-1.000 -1.000 -0.611 1.000 -0.419 0.0623
-0.198 1.000 -1.000 -1.000 -1.000 0.0618
-1.000 -1.000 -1.000 0.516 -1.000 0.0622

Table 3.11: A CSO-MA generated 16 point design for Poisson model 2
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3.10 A Variable Selection Problem in Ecology

In this subsection, we apply CSOMA to a penalized linear regression problem in ecology. Model

selection is essential in much of ecology because ecological systems are often too large and slow-

moving for our hypotheses to be tested through manipulative experiments at the relevant temporal

and spatial scales (Tredennick et al., 2021).

The data comes from a plateau lake in Yunnan, China, and was collected by a group of

researchers at Department of Environmental Engineering, Tsinghua University in 2019. They

took the water sample in March (Spring), June (Summer), September (Autumn) and December

(Winter). At each time 30 sites were sampled, where 15 sites was from upper water and 15 sites was

from bottom water. Due to weather issues at the plateau lake in June, 6 sites were not recorded.

Therefore, they collected a water sample of size 114 (30 ↗ 4 → 6). After sampling, they measured

key characteristics of water quality, such as the concentration of total Nitrogen (TN), the potential

of Hydrogen (pH), etc. The table of measurements of water quality is 114↗ 20 and table 3.12 lists

first two samples with 19 measurements.

Sample idx Depth Chi-a DO Turbity pH
1 1D 0.5 34.29 6.1 4.19 9.36
1 1M 0.5 18.36 6.46 15.4 9.47

NH4-N NO3-N TN TP TOC TDS
0.4 0.38 0.96 0.07 22.61 906.7
0.13 0.33 0.96 0.06 22.15 910.4
T Ca K Mg Na F
17.3 7.26 11 68.08 191.38 2.23
16.1 5.02 9.906 68.88 223.35 2.83

CRAP 16sCRA
0.64444 0.361235
0.0126 0.143714

Table 3.12: Measurements of water quality.

Cyanobacteria can form dense and sometimes produce algal toxins. The cyanobacteria bloom,

which mean the high cyanobacterial density or high proportion of cyanobacteria in phytoplank-

ton, would threaten the aquatic ecosystem function, fisheries and human drinking water safety.

Remarkably, the cyanobacterial blooms are increasing in frequency, magnitude and duration glob-
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ally (Huisman et al., 2018). The cyanobacteiral bloom is not independant, but is influenced by

surrounding environment. To e!ectively control and prevent the cyanobacterial bloom, one of

the most important scientific questions is how other measurements a!ect CRAP (Cyanobacteria

relative abundance in Phytoplankton). High value of CRAP often indicates cyanobacterial bloom.

Therefore, if we can control the key factors that are associated with CRAP (or 16sCRA), we can

improve environment dramatically.

Linear regression analysis is a default choice for detecting association and outliers. Note that

many measurements(covariates) are correlated. For example, NH4-N (Nitrogen in Ammonium)

and NO3-N (Nitrogen in Nitrate) are highly correlated with TN (Total concentration of Nitrogen).

Thus, in reality, some measurements are more important than others to ecologists. In statistics,

Variable selection and penalized regression methods are proposed to address this issue. Hence, we

conduct a penalized regression to analyze the data via the CSOMA algorithm.

We denote X as the covariate matrix (i.e., from variable Depth to F in table 3.12) and y as the

response vector (variable CRAP in table 3.12). The optimization problem is

min
ϑ

⇓y →X⇀⇓22+ϖ


p∑

i=1

P (⇀j |↼, a)


(3.10.1)

Where ϖ is the regularization parameter and

P (⇀j |↼, a) =






↼|⇀j | if |⇀j | ≃ ↼

a↼|ϑj |→ϑ
2
j→↼

2

a→1 if ↼ < |⇀j | ≃ a↼

↼
2(a+1)

2 if |⇀j | > a↼

is a di!erentiable but non-convex function. First, we standardize each column of X by subtracting

its mean and dividing its standard deviation so that each column of X has mean 0 and standard

deviation 1. This step is crucial because we want to analyze the relative influence of variables

on CRAP and di!erent scales cause confusion. Next, we perform SCAD regression (Fan and Li,

2001) on our data (X, y) for di!erent choices of ϖ (see formula (3.10.1)) and optimize it using PSO

algorithm. We set 12 di!erent values for ϖ, i.e., 10→6, 10→5, 10→4, 10→3, 0.01, 0.025, 0.05, 0.1, 0.2,

0.5, 1, 10, 100. For each ϖ, we record the best particle position found by CSOMA as our estimation

for ⇀. The CSO-MA algorithm is initialized with 25 particles and iterates 100 times (i.e., 100
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function evaluations). We run the algorithm 50 times for each ϖ to analyze the stability of CSO-

MA. For illustration purpose, we demonstrate the average and standard deviation of the 50 runs

when ϖ = 0.025 and the results are shown in Table 3.13; further, the average minimum of (3.10.1)

when ϖ = 0.025 is 0.315 with a standard deviation of 0.0009 (the other ϖ’s have similar standard

deviation and minimum values), suggesting the stability of CSO-MA algorithm.

Variable Average Standard deviation Variable Average Standard deviation
Depth 0.191 0.012 NO3-N 0.128 0.013
Chl-a -0.001 0.003 TN 0.000 0.002
DO 0.219 0.015 TP 0.047 0.008
Turbity -0.195 0.016 TOC -0.001 0.003
pH -0.003 0.012 Ca 0.003 0.007
TDS 0.000 0.002 K -0.002 0.009
T 0.499 0.033 Mg -0.031 0.027
NH4-N 0.166 0.018 Na -0.162 0.025
F -0.016 0.028

Table 3.13: Average and standard deviation of parameter estimation after 50 times of runs.

Figure 3.7 illustrates the solution path of SCAD using the CSO-MA algorithm. The x-axis

represents the scaled ϖ values. When ϖ decreases from 100, estimation of turbidity (T) deviates from

0 at first. It suggests that turbidity is one of the most important measurements associating with

the level of DRAP. One possible reason for such phenomenon is that the turbid water prevents light

from penetrating, which in turn indicates a lower amount of the algae carrying out photosynthesis.

Further, temperature (T) is another variable deviating from 0 at first. The reason is that the

optimum temperature for algae growth is 20 + C⇔ and the lower the temperature, the less active

the metabolism of algaeis. In addition, when ϖ decreases from 0.05 to 0.01 (x from 7 to 5),

parameter estimation for chemical elements, such as K, Mg, Na, all deviates from 0, suggesting

that the concentration of chemical elements has slightly di!erent association of CRAP.

This subsection shows CSO-MA can be usefully applied along with SCAD penalized regression

to explore association among di!erent components of water quality and how that a!ect the outcome

CRAP. The interpretation of the solution path is in line with scientific common sense.
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Figure 3.7: Solution path of SCAD using CSO-MA. Each line represents the trajectory of an estimated
coe”cient for a predictor variable across the ordered values of the regularization parameter ϖ. The y-axis
denotes the estimated coe”cient values. The x-axis corresponds to the ordinal position of each ϖ value in
the set 10→6, 10→5, . . . , 100 , which have been rescaled to 1, 2, ..., for clarity of presentation.

3.11 Parameter Tuning of LASSO Regression

In the previous section, we conduct a penalized regression to select variables. However, the choice

of the regularization parameter (or tuning parameter) ϖ is selected by-hand. In this section, we

focus on another type of penalized regression known as the LASSO regression and discuss how to

apply metaheuristics to choose the tuning parameter. In statistical literature, many methods for

empirically choosing ϖ given a fixed data set have been proposed. These methods can be lumped

into three various categories (Homrighausen and McDonald, 2018):

• GIC-based approach: Proposed by Schwarz (1978), BIC was originally designed for regres-

sion models with unpenalized MLEs, lacking motivation in the penalized likelihood setting.

Hence, several modifications of BIC are proposed to address the tuning parameter selection

problem (Wang et al., 2009; Wang and Zhu, 2011; Gao et al., 2012; Kwon et al., 2017).

Importantly, it has been proved that the extended BIC (EBIC) is selection consistent in both

linear models and GLMs (Luo and Chen, 2013). Hui et al. (2015) proposed the extended

regularized information criterion (ERIC) for choosing the tuning parameter in adaptive Lasso

regression. In addition, Flynn et al. (2013) investigates a variety GIC-based methods with
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increasing dimensions.

• Resampling procedures: Cross-validation (Allen, 1974) is one of the most common tech-

niques for choosing tuning parameters (Zou et al., 2007). Yu and Feng (2014) proposed a

modified version of cross-validation (MCV) which corrects the bias introduced by the LASSO

regression. Hall et al. (2009) proposed an m-out-of-n bootstrap algorithm, pointing out that

standard bootstrap methods would fail for the LASSO regression. Later, Chatterjee and

Lahiri (2011) proposed a modified bootstrap algorithm for LASSO. Based on their theoretical

and empirical results, they suggested choosing the tuning parameter that minimizes the

bootstrapped approximation to the mean-squared error of the LASSO estimator.

• Reformulations of the LASSO: Several alternatives to the original LASSO formulation

has been proposed. Some theoretical developments show that the consistency of LASSO

estimator requires the knowledge of the variance parameter in the linear model Bickel et al.

(2009). Based on this, Sun and Zhang (2012) proposed the scaled LASSO which jointly

estimates the regression coe”cients and the variance parameter in a sparse linear regression

model; Chichignoud et al. (2016) proposed a novel adaptive validation method for tuning

parameter selection for LASSO. Belloni and Chernozhukov (2011); Belloni et al. (2011)

proposed the square-root lasso, which is also a variant of LASSO that avoids calibrating the

tuning parameter with respect to the noise parameter. To further alleviate the problem of

parameter tuning, Lederer and Müller (2015) proposed the TREX estimator which standards

for tuning-free (T) regression (R) that adapts to the entire (E) design matrix (X). Wang et al.

(2020a) proposed the rank LASSO which can be easily simulated and automatically adapts

to both the unknown random error distribution and the structure of the design matrix. Other

sub-splitting and reformulations are also proposed and are well-summarized in Wu and Wang

(2020).

In this subsection, we show that PSO generates reasonable results for the optimal tuning parameter

compared with standard statistical packages. Using the same notations in Section 3.10, we can write
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the optimization problem of the tuning parameter selection in LASSO regression as

↼̂ = argmin
↼

E

ynew → xTnew⇀̂↼

2
(3.11.1)

⇀̂↼ = argmin
ϑ

⇓y →X⇀⇓22+↼⇓⇀⇓1

where xnew and ynew are new test points and the expectation is taken over the joint distribution of

(xnew, ynew). In practice, the true joint distribution is never known to us, so we have to estimate the

expectation. One general approach is to split our data into training and testing datasets, i.e., if X

is an n↗ p matrix and y is an n↗ 1 vector, then we split them into (Xtrain, ytrain) and (Xtest, ytest)

so that X = Xtrain ⇔Xtest and y = ytrain ⇔ ytest. Then ⇀̂↼ is estimated from the training dataset

and the expectation is taken w.r.t. to the empirical distribution induced by the test dataset. To

further alleviate the uncertainty caused the random split of training and testing datasets, we can

split (X, y) into K disjoint datasets and treat each of them as both training and testing datasets.

Then we estimate the expectation via

Ê

ynew → xTnew⇀̂↼

2
=

1

K

K∑

k=1

1

nk

⇓ytest,k →Xtest,k⇀̂↼,k⇓
2
2 (3.11.2)

where (Xtest,k, ytest,k) is the kth dataset and nk is its corresponding sample size (usually this number

is the same across datasets so that nk = n/K, in our experiments, it is always the case), and

⇀̂↼,k is the LASSO estimate of ⇀ using the kth training dataset (i.e., the whole dataset without

(Xtest,k, ytest,k)). The choice of K usually depends on the sample size of the dataset; a rule of

thumb is to set K = 10 when sample size is large and K = 5 when the sample size is small. In

practice, it also depends on the computational resources available since as K increases, the required

computational power increases drastically. We note that Anguita et al. (2012) discusses the choice

of K in detail; Marcot and Hanea (2021) presents a comprehensive simulation study on choosing

K and they recommend the value K = 5 or 10 is su”cient in most applications. We set K = 10

in our Table 3.14. In summary, we have transformed the problem of tuning parameter selection in
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LASSO into the following form:

min
↼

1

K

K∑

k=1

1

nk

⇓ytest,k →Xtest,k⇀̂↼,k⇓
2
2 (3.11.3)

s.t. ⇀̂↼,k = argmin
ϑ

⇓ytrain,k →Xtrain,k⇀⇓
2
2+↼⇓⇀⇓1 (3.11.4)

where ytrain,k is the union of ytest,k↑ andXtrain,k is the union ofXtest,k for k↗ ⇑= k. Mathematically, let

(Xtrain,k, ytrain,k) and (Xtest,k, ytest,k) be the kth splitted training and testing datasets, respectively.

Then we could write

y = ytrain,k ⇔ ytest,k =
K⋃

k=1

ytest,k, and X = Xtrain,k ⇔Xtest,k =
K⋃

k=1

Xtest,k

for any k = 1, 2, · · · ,K. Although the constraint of the above optimization problem is not

“restricting ⇀ to a specific region”, we can still apply metaheuristics in this case using a two-

stage approach: fix a ↼, we estimate ⇀̂↼,k and then vary ↼ to minimize the objective function. In

this scenario, particles are one-dimensional, i.e., particles correspond to the tuning parameter ↼.

This two-stage approach is applicable to any type of penalized regression, not just specific to the

LASSO regression. For instance, we can replace ⇓⇀⇓1 with the SCAD penalty in Section 3.10 or

the elastic net penalty (Zou and Hastie, 2005) and the procedure for applying metaheuristics stays

the same. The Elastic net penalty has two tuning parameters (↼,ω) and is of the following form

↼

(
ω⇓⇀⇓1+

(1→ ω)

2
⇓⇀⇓22

)

where ↼, as usual, represents the regularization strength and ω ↑ [0, 1] controls the trade-o! between

Lasso and Ridge penalty. When ω = 0, Elastic net reduces to the Ridge penalty and when ω = 1,

Elastic net coincides with the LASSO penalty.

Our proposed strategy for tackling tuning parameters problem in penalized regression is to

formulate it into one that PSO can solve directly, as follows:

• Choose a penalty such as LASSO or SCAD of user’s own interest; choose K, the number of

cross-validation folds.

• Choose an objective function such as mean squared loss (MSE) for regression or the receiver
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operating characteristic (ROC) curve for classification. Then given the parameter estimate

based on the penalty, tuning parameter(s) and K, we can estimate the expectation of the

objective function (e.g., Equation 3.11.2 for regression).

• Run PSO to minimize the estimate of the expectation by finding the best tuning parameter(s).

We apply our proposed strategy to the same ecology data in Section 3.10 and another Hitters data

(James et al., 2013) with LASSO, Ridge and Elastic net penalties and compare the results with the

standard R package glmnet (Hastie et al., 2021) in Table 3.14 (using K = 10). Because the split of

CV is random, so we need to perform multiple rounds (in this case, 30) of estimation to get a stable

estimation of the best tuning parameter(s). The values in the braces are standard errors of tuning

parameter(s). The glmnet package does not provide options for tuning both parameters (↼,ω) in

Elastic net but users have to specify ω on their own so that our proposed strategy is more general.

In practice, one can define grids for tuning parameters and then use glmnet to fit the models, such

functionality is implemented in the caret package (Kuhn et al., 2020). We set the hyperparameters

of PSO to be c1 = 1.2, c2 = 0.5, w = 0.9 and number of iteration is 30 (which is more than su”cient

to converge). For LASSO and Ridge penalties, the best tuning parameters for LASSO found by

PSO and glmnet are quite similar but quite di!erent for Ridge. We note that PSO seems to be

more robust compared with glmnet. We also perform additional simulation and real data studies

using di!erent K values, the results are consistent with the Table 3.14.

The Ecology Data
Penalty PSO glmnet
LASSO 0.026 (0.001) 0.027 (0.003)
Ridge 0.116 (0.001) 0.409 (0.242)
Elastic net (ϖ,φ) 0.0098 (0.001), 0.0122 (0.024) NA

The Hitters Data
Penalty PSO glmnet
LASSO 0.0059 (0.001) 0.0063 (0.006)
Ridge 0.113 (0.004) 0.092 (0.113)
Elastic net (ϖ,φ) 0.0082 (0.003), 0.1021 (0.203) NA

Table 3.14: Comparison of PSO-generated tuning parameter and the standard pacakge glmnet using K=10.

Under the choice ↼ = 0.026, the parameter estimates of the LASSO regression using the ecology
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dataset in given in Table 3.15. In the same table, we also compare the estimates with ↼ = 0.1, a

randomly selected tuning parameter, to illustrate that di!erent tuning parameters result in distinct

parameter estimates, thereby leading to varied scientific conclusions. For instance, ↼ = 0.026

suggests that K and Mg have negative e!ect on the CRC while ↼ = 0.1 suggests that such e!ect

is negligible.

Variable ϖ = 0.026 ϖ = 0.1 Variable ϖ = 0.026 ϖ = 0.1
Depth 0.191 0.009 NO3-N 0.000 0.000
Chl-a -0.001 0.000 TN 0.046 0.000
DO 0.213 0.000 TP 0.000 0.000
Turbity -0.192 -0.220 TOC 0.000 0.000
pH -0.000 0.000 Ca 0.000 0.000
TDS 0.000 0.000 K -0.018 0.000
T 0.506 0.260 Mg -0.168 0.000
NH4-N 0.163 0.073 Na 0.000 0.000
F 0.119 0.108

Table 3.15: Comparison of LASSO estimates under di!erent ↼ using the ecology data.

We also created a Python App to illustrate the tuning parameter problem for di!erent penalties

via PSO (Figure 3.8) and is publicly available at https://pso-parameter-tuning.streamlit.

app/. The App pro!ers an intuitive interface, enabling users to upload their dataset, with the first

column designated as the response variable and the subsequent columns as covariates. Users can

tailor the optimization process by selecting the type of regularization, the type of task (regression or

classification), the number of particles in the swarm, the number of iterations for convergence, and

the folds for cross-validation evaluation (Left panel of Figure 3.8). The PSO algorithm iteratively

updates the positions of the particles, representing potential solutions, through the problem space

by following the current optimum in a quest to discover the most propitious tuning parameters

for the regularized regression model. The best tuning parameters are then printed in the screen

together with the final positions of all particles (Middle panel of Figure 3.8). A contour plot

further illustrates the swarm’s trajectory through the iterations, o!ering a graphical elucidation

of the optimization process and the convergence of the swarm towards the optimal values (Right

panel of Figure 3.8).

In conclusion, we have shown that (i) choice of an optimal or appropriate tuning parameter

is important; otherwise, one can arrive at di!erent estimate of risks, (ii) using the Ecology and
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the Hitters example, we demonstrate PSO can provide comparable tuning parameters in terms

of standard deviation than current methods of choosing tuning parameters, (iii) the regression

estimates can depend on the tuning parameter sensitively and Ridge regression produces a higher

tuning parameter compared with LASSO, and (iv) a Python App is available for users who are

interested in both parameter tuning topics and applications of metaheuristics (PSO in particular).

(a) Beginning of the App. (b) Loading data and optimizing.

(c) Visualization of PSO.

Figure 3.8: Illustration of the Python App for tuning parameter optimization.
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3.12 A Two-factor Quasi-sequential Design

In this section, we implemented a two-factor quasi-sequential D-optimal designs defined in section

6.3. The fixed points are (→2,→2), (10, 0) and (0, 10) which correspond to the control group, death

level for dose 1 and death level for dose 2, respectively. The pre-specified weight ω is set to 0.2 and

we restrict the design space to [→1, 8]↗ [0, 7]. The model is

y ↘ M(n,⇁), ⇁ = (⇁1,⇁2,⇁3)
T

log
⇁1

⇁2 + ⇁3
= φ1 = ⇀1 + ω1x1 + ω2x2

log
⇁1 + ⇁2

⇁3
= φ2 = ⇀2 + ω1x1 + ω2x2

log(⇁1 + ⇁2 + ⇁3) = φ3 = 0.

with parameter ε = (⇀1,⇀2.ω1,ω2)T . We put estimation ε̂ = (→1.8, 3.8,→0.5,→0.4)T to find the

quasi-sequential locally D-optimal design. By PSO, the optimal design is

↽quasi→D =







→1

0







8

0







→1

7







4

0







→2

→2







10

0







 0

10





0.216 0.212 0.272 0.100 0.067 0.067 0.066




(3.12.1)

and the sensitivity surface is shown in figure 3.9, which indicates that the optimal design is indeed a

4-point design in equation 3.12.1. Hence, PSO has successfully derived a two-factor quasi-sequential

D-optimal design.
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Figure 3.9: Sensitivity surface of the two-factor quasi-sequential D-optimal design.
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3.13 A Metric-based Principal Curve Approach for Learning One-

dimensional Manifold

Principal curve (Hastie, 1984) is a well-known statistical method oriented in manifold learning

using concepts from di!erential geometry. In this paper, we propose a novel metric-based principal

curve (MPC) method that learns one-dimensional manifold of spatial data. Synthetic datasets Real

applications using MNIST dataset show that our method can learn the one-dimensional manifold

well in terms of the shape. This section is based on Cui and Shao (2024).

3.13.1 A Brief Review on Di”erential Geometry in Statistics

The application of di!erential geometry in statistics should be credit to two great Indian statisticians

Mahalanobis (2018) (the original paper was published in 1936) and Rao (1945). One of the early

pioneer papers of di!erential geometry in statistics was done by Efron (1975). He defined the

concept statistical curvature rigorously for the first time. Following his work, Skovgaard (1984)

studied the Riemannian geometry of a family of multivariate normal models in depth. Some

other early works include Efron (1978); Atkinson and Mitchell (1981); Amari (1982); Campbell

(1985); Barndor!-Nielsen et al. (1986) and Ravishanker et al. (1990). Two excellent monographs

in connecting di!erential geometry and statistics are Murray and Rice (1993) and Amari (2006).

In addition, the concept of tangent space is borrowed from di!erential geometry and deeply studied

in Bickel et al. (1993). Apart from the conventional work mentioned above, there are also much

more interesting and exciting progress going on in bridging these two fields (which are under the

fancy names metric learning (Izenman, 2008), topological data analysis (Rabadán and Blumberg,

2019), directional statistics (Mardia et al., 2000), shape analysis (Bhattacharya and Bhattacharya,

2012; Dryden and Mardia, 2016) and functional data analysis (Wang et al., 2016) , etc.). In most

of these works, data are not assumed to be sampled from a regular Euclidean space (say, Rd) but a

smooth low-dimensional manifold embedded in Rd (Do Carmo and Flaherty Francis, 1992; Tapp,

2016). To the best of our knowledge, it was Hastie (1984) who first defined such a manifold in a

statistical setting and he named it as the principal curve. His idea was later developed in Hastie

and Stuetzle (1989) and Tibshirani (1992) and more recently in Ozertem and Erdogmus (2011).

We list some of other applications of di!erential geometry methods in statistics in table 3.16. For
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a more comprehensive review, we suggest the article written by Wasserman (2018).

Method / Approach 1 Reference

Principle curves and surfaces Hastie and Stuetzle (1989)

Kernel principal component analysis (K-PCA) Schölkopf et al. (1997)

Local linear embedding (LLE) Roweis and Saul (2000)

Isometric feature mapping (ISOMAP) Tenenbaum et al. (2000)

Laplacian eigenmap Belkin and Niyogi (2003)

Hessian eigenmaps Donoho and Grimes (2003)

Intrinsic dimension estimation (IDE) Levina and Bickel (2004)

Principal geodesic analysis (PGA) Fletcher et al. (2004)

Intrinsic statistics on Riemannian manifolds Pennec (2006)

Nonparametric regression on Riemannian manifolds Pelletier (2006)

The di”usion maps Coifman and Lafon (2006)

Shape-space smoothing Kume et al. (2007)

Mapper algorithm Singh et al. (2007)

Riemannian K-means Goh and Vidal (2008); Zhang (2020a)

Locally defined principal curves Ozertem and Erdogmus (2011)

Computation of Vietoris-Rips filtration Sheehy (2012)

Probablistic principal geodesic analysis (P-PGA) Zhang and Fletcher (2013)

Geodesic mixture models (GMM) Simo-Serra et al. (2017)

Geodesic convolutional neural network (G-CNN) Masci et al. (2015)

Dirichlet process mixture on spherical manifold Straub et al. (2015)

Locally adaptive normal distribution (LAND) Arvanitidis et al. (2016)

Uniform manifold approximation and projection McInnes et al. (2018)

Statistical inference on Lie groups Falorsi et al. (2019)

Fréchet regression Petersen and Müller (2019)

Geometrically enriched latent space approach Arvanitidis et al. (2020)

Wasserstein regression Chen et al. (2021); Matabuena et al. (2021)

Pseudotime analysis Cui et al. (2022)

Invertible kernel PCA (IK-PCA) Gedon et al. (2023)

Table 3.16: Applications of Di!erential Geometry in Statistics. 1 This table only includes methods that
use concepts or tools from di!erential geometry. Hence, some other popular manifold learning techniques are
not included, such as local discriminant analysis (Hastie and Tibshirani, 1995), random projection (Johnson
and Lindenstrauss, 1984), and t-SNE (Van der Maaten and Hinton, 2008).

.

We note that many methods listed above are published in non-statistical journals. Hence, it is

urgent (and also a necessity) for statisticians to develop concepts, tools and methods that can

adapt today’s societal needs. Further, the Geomstats package (Miolane et al., 2020a,b), the Geoopt

package (Kochurov et al., 2020) and the Pymanopt package (Townsend et al., 2016) in Python
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and the umap package, the geomorph package (Adams and Otárola-Castillo, 2013) and the frechet

package in R (Konopka and Konopka, 2018) provides many useful computational tools for the

di!erential geometry methods mentioned in the table.

The rest of the section is organized as follows. In section 3.13.2, we propose a new approach for

learning one-dimensional representation of data and term it as the metric-based principal curve.

Simulation studies using synthetic datasets are presented in section 6.5 and real applications using

the MNIST dataset is given in section 3.13.4. In appendix 7.2.1, we provide some preliminaries in

Riemann geometry.

3.13.2 Metric-based Principal Curve

In this section, we propose a new algorithm for learning a one-dimensional representation of data.

We term it the metric-based principal curve as it minimizes a metric distance between the raw data

and the projected data using smoothing and regression techniques. We give a formal and rigorous

introduction below.

Definition 3.13.1 (Principal curve assumption). LetY = (Y1, Y2, · · · , Yp)T ↑ Rp be a p-dimensional

random vector and ↼ ↑ R be a scalar known as the projection index. Extending the idea in

Tibshirani (1992), the principal curve assumption for (Y,↼) is described as follows:

Yj |↼ ↘ind PYj |↼, j = 1, · · · , p, (3.13.1)

P(↼) = E (Y|↼) =



Rp
y PY|↼(dy) (3.13.2)

where P represents a general probability measure and the expectation P(↼) is defined as the

principal curve of Y. Alternatively, using the idea of nonparametric regression, we can also

assume that

Yj = fj(↼) + ϱj , j = 1, 2, · · · , p

where fj(·) is a smooth function and ϱj is a random error.

Note that the above definition is in the population level, i.e., we have the oracle knowledge

PY|↼. However, in practice, we do not have the access to it and have to estimate either PY|↼

or fi from data as well as the projection index ↼. There are several projection-expectation (PE)
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type algorithms to learn the principal curve P(↼) (Hastie and Stuetzle, 1989; Chang and Ghosh,

1998). However, it is well-known that PE algorithms do not guarantee convergence and di!erent

types of definition and algorithm lead to di!erent estimated principal curve (Gerber and Whitaker,

2013). Hence, it is of great interest to develop new algorithms to estimate principal curves. In the

following, we propose a metric-based algorithm for learning principal curves and term the estimator

the metric-based principal curve (MPC).

The idea of MPC starts with a user-specified metric d(·, ·) on R ↗ R and a regularization

parameter ϖ. Suppose we observe the data Y1,Y2, · · · ,Yn where each Yi ↑ Rp. The associated

projection index ↼1, · · · ,↼n is chosen such that the following quantity is minimized.

{↼i}
n

i=1 = argmin
↼

1

n

n∑

i=1

d(Yi, Ŷ(↼i)) + ϖ ς({↼i}
n

i=1) (3.13.3)

where Ŷ(↼i) = (f̂1(↼i), f̂2(↼i), · · · , f̂p(↼i))T is the fitted value of Yi using under-smooth regression

models {fj}
p

j=1 and ς is a dispersion function characterizing the dispersion of ↼’s. We provide a

list of the smoother fj , the metric d(·, ·), and the dispersion ς in table 3.17.

Table 3.17: Some choices of fj , d(·, ·) and ς(·).

fj d(x, y) ϱ
*

Smoothing spline Ld-distance ⇓x→ y⇓d


n→1
i=1 |ϖ(i+1) → ϖ(i)|

LOWESS Mahalanobis distance


n→1
i=1


ϖ(i+1) → ϖ(i)

2

Kernel ridge regression Chebyshev distance maxi |ϖ(i+1) → ϖ(i)|

Gaussian process regression Hellinger distance Coe”cient of variation

Support vector regression Canberra distance

Nadaraya-Watson estimator

* Here ϖ(i) denotes the i
th order statistics from ϖ1, · · · ,ϖn.

In short, a metric-based principal curve minimizes the mean of distances of all points (feature

vectors) projected onto the curve plus a regularization term that penalizes the dispersion of the

on-dimensional parameter.
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3.13.3 Simulation Studies

In this section, we perform simulation studies based on three synthetic datasets, namely, spiral

curve, golden bridge and Arabic numerals seven.

• Number Seven

The generative model is

Y1 = t+ ϱ1

Y2 = UX

2 (1 + ϱ2)
1→X

Y3 = (1 + ϱ3)
XU1→X

3

where t ↑ [0, 1], U2 ↘ U(0, 1), U3 ↘ U(→2, 0.7), ϱi ↘iid N (0, 0.1) and X ↘ Ber(0.5). For

simulation, we take the sample size to be 120 and generate t uniformly spaced within [0, 1].

For estimation of ↼’s, we set fj to be smoothing splines, d(x, y) to be L2-distance and ς(↼)

to be


n→1
i=1 |↼(i+1)→↼(i)|. For prediction, we set fj to be LOWESS with bandwidth 0.4. The

results are shown in the left panel of figure 3.10. In addition, we also fit another MPC for

(Y2, Y3) only since Y1 is just a linear function in t. The results are shown in the left panel of

figure 3.11.

Figure 3.10: Principal curves of seven, spiral and bridge in R3. Red lines are learned principal curves
which represent the trajectory of data manifold.

• A Spiral Curve
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The generative model is

Y1 = t

Y2 = 2t cos (6t) + ϱ2

Y3 = 2t sin(6t) + ϱ3

where ϱi ↘iid N (0, 0.1) and t ↑ [0, 1]. For simulation, we take the sample size to be 120 and

generate t uniformly spaced within [0, 1]. For estimation of ↼’s, we set fj to be LOWESS with

bandwidth 5, d(x, y) to be L2-distance and ς(↼) to be


n→1
i=1 |↼(i+1) → ↼(i)|. For prediction,

we set fj to be LOWESS with bandwidth 0.4. The results are shown in the middle panel of

figure 3.10. In addition, we also fit another MPC for (Y2, Y3) only since Y1 is just a linear

function in t. The results are shown in the middle panel of figure 3.11.

• The Golden Bridge

The generative model is

Y1 = t

Y2 = sin(2t) + cos

(
2

3
t

)
+ ϱ2

Y3 = →t sin(2t) + ϱ3

where ϱi ↘iid N (0, 0.1) and t ↑ [0, 1]. For simulation, we take the sample size to be 120

and generate t uniformly spaced within [0, 1]. For estimation of ↼’s, we set fj to be kernel

regression with regularization parameter ω = 10, d(x, y) to be L2-distance and ς(↼) to be


n→1
i=1 |↼(i+1)→↼(i)|. For prediction, we set fj to be smoothing splines. The results are shown

in the right panel of figure 3.10. In addition, we also fit another MPC for (Y2, Y3) only since

Y1 is just a linear function in t. The results are shown in the right panel of figure 3.11.

3.13.4 Applications to MNIST data

In this section, we apply MPC to the famous MNIST dataset (LeCun et al., 1998). We first sample

150 figures for each handwritten digit from the training set. Each figure can be viewed as a point
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Figure 3.11: Principal curves of seven, spiral and bridge in R2. Red lines and colorful points are learned
principal curves which represent the trajectory of data manifold. Blue points are raw data in R2.

living in a 28↗ 28 = 784 dimensional space. Next, we apply uniform manifold approximation and

projection (UMAP) algorithm to each digit (150 figures) so that each figure is projected onto R3.

Then we perform an MPC analysis to the projected 3-dimensional data for each digit. We visualize

the principal curves of all ten digits from in Figure 3.12 for illustration.
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Figure 3.12: Principal curves of MNIST. Blue lines are learned principal curves which represent the
trajectory of data manifold.
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3.14 Parameter Estimation in Hawkes Process Models

In this section, we demonstrate the potential usage of metaheuristics to Hawkes process models,

which has been applied in epidemiology to model the progress of infectious disease such as COVID-

19 Rizoiu et al. (2018); Garetto et al. (2021). Hawkes (1971), Hawkes process is a self-exciting point

process that can be applied to model the dynamics of disease progression and is proposed in 1971

Hawkes (1971). Di!erent algorithms have been proposed to simulate a Hawkes process, see e.g.,

Ogata (1981, 1998); Daley et al. (2003); Møller and Rasmussen (2005); Laub et al. (2021). Briefly

speaking, a Hawkes process is an extension of the non-homogeneous Poisson process such that the

intensity increases as more events happen. Mathematically, let N(t), t ⇐ 0 denote the number of

infected patients at time t, then we assume that the intensity of N(t) satisfies Hawkes (1971)

↼(t) = ν +


t

0
g(t→ u)dN(u) = ν +

∑

ti<t

g(t→ ti) (3.14.1)

where ν > 0 is a constant parameter of a Poisson process, ti’s are jump times of N(t) and g is

known as the triggering function. We take it to be exponential, i.e., g(x) = ω exp(→⇀x) where

⇀ > ω > 0 are hyper-parameters. One can think of ↼(t) in the following way: at the beginning,

the spread of COVID-19 is at a low speed; as more and more patients are infected, the spread

of COVID-19 speeds up (the addition terms g(t → ti) in ↼(t)). This is indeed the case when the

COVID-19 pandemic first breakout Fanelli and Piazza (2020); Bavel et al. (2020). Suppose within a

pre-specified time range [0, T ], we observe k (infection) events with time points t1, t2, · · · , tk. Then

the likelihood of the Hawkess process is Ozaki (1979)

L(ν,ω,⇀) =


k∏

i=1

↼(ti)


exp

(
→


T

0
↼(t)dt

)
. (3.14.2)

Di!erent algorithms for simulating N(t) and explicitly calculating logL(ν,ω,⇀) leads to various

computational time. In this section, we adopts the algorithm implemented in the R package hawkes.

It uses Ogata’s algorithm Ogata (1981) to simulate both univariate and multivariate Hawkes

processes. We compare the BAT algorithm with other metaheuristic algorithms implemented in

the R package metaheuristicOpt for deriving the MLE of (ν,ω,⇀) Riza et al. (2018). The true

parameter vector is (0.2, 0.5, 0.7) and we run each algorithm 100 times with 300 iterations each
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to get reasonable statistical results. The tuning parameter are set to the default values in the

metaheuristicOpt package and the swarm size is set to 30 for all algorithms.

The average and standard errors of negative log-likelihood, estimated ν, ω and ⇀ and L2-error

are reported in Table 3.18 and Figure 3.13 (the values in brackets are standard error estimates

based on 100 runs). Given an estimate (ν̂, ω̂, ⇀̂), the L2-error is defined as

1

3


(ν̂ → ν)2 + (ω̂→ ω)2 + (⇀̂ → ⇀)2


.

From the table, we see that PSO performs the best among 5 algorithms in terms of negative

log-likelihood values and standard errors. All of PSO standard errors are 0.000 because they are

too small to report, i.e., they are smaller than 10→10. In addition to PSO, Harmony search (HS)

algorithm has the smallest L2-error and produces stable parameter estimates. Bat algorithm has

an intermediate performance among all 5 algorithms. Finally, Cuckoo search (CS) and Genetic

algorithm (GA) do not produce stable results as other 3 algorithms do.

Algorithm Negative log-likelihood ↽ ⇀ ϑ L2-error
BA 2739.851 (9.458) 0.214 (0.026) 0.408 (0.054) 0.572 (0.075) 0.164 (0.087)
CS 2788.553 (29.623) 0.260 (0.086) 0.563 (0.182) 0.859 (0.285) 0.337 (0.201)
GA 2749.475 (12.023) 0.257 (0.031) 0.568 (0.090) 0.833 (0.144) 0.207 (0.112)
HS 2733.447 (1.222) 0.029 (0.006) 0.457 (0.022) 0.648 (0.036) 0.082 (0.021)
PSO 2732.831 (0.000) 0.225 (0.000) 0.442 (0.000) 0.624 (0.000) 0.099 (0.000)

Table 3.18: Average and standard errors of negative log-likelihood, estimated ν,ω and ⇀ and L2-error based
on various metaheuristic algorithms. BAT = Bat algorithm, CS = Cuckoo search, GA = Genetic algorithm,
HS = Harmony search, PSO = Particle swarm optimization.
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Figure 3.13: Negative log-likelihood, estimated parameters and L2-error of 100 simulated Hawkes process
estimates. BAT = Bat algorithm, CS = Cuckoo search, GA = Genetic algorithm, HS = Harmony search,
PSO = Particle swarm optimization.
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CHAPTER 4

Instrumental Variable Analysis with Interval-censored

and Doubly-censored Outcome

4.1 Preamble

Focusing on the complexities of interval-censored and doubly-censored data, this chapter presents

a sophisticated instrumental variable analysis framework. By developing and applying the DPMIV

model, we tackle the challenges associated with such data, showcasing the model’s e”cacy through

simulation studies and real-world applications.

4.2 Introduction to Instrumental Variable Analysis

Estimating the causal e!ects of covariates on an outcome is a fundamental focus of scientific

research. For example, in epidemiology studies, the emphasis often lies on discerning the causal

impact of modifiable phenotypes or exposures on disease outcomes, transcending mere associations.

However, unlike randomized control trials (RCT), which provide the gold standard for drawing

causal inferences, deducing causation from real-world data sources such as electronic health records

poses considerable challenges. One of the many hurdles encountered is the presence of unknown

or unmeasured confounding factors in observational studies, potentially giving rise to spurious

associations between covariates and outcomes (Rubin, 1997; Lin et al., 1998; Greenland et al.,

1999; Fewell et al., 2007; Bareinboim et al., 2015; Pearl et al., 2016; VanderWeele et al., 2021).

Additionally, measurement errors in the covariates are a common issue in observational studies

that can introduce bias into estimates of causal e!ects (Hernán and Cole, 2009; Yi et al., 2015;

Lee and Burstyn, 2016; Sengewald et al., 2019; Shu and Yi, 2019; Yi and Yan, 2021). For

example, in Section 4.5, we examine the causal e!ect of systolic blood pressure (SBP) on the
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time to cardiovascular disease (CVD) following the diagnosis of diabetes mellitus (DM) using

data from the UK Biobank (UKB) study (Allen et al., 2014). While the UKB dataset includes

some common observed covariates, such as age, smoking, and cholesterol, potential confounders

that exhibit correlations with both SBP and time-to-CVD, such as annual income and drinking

habits, are absent from the dataset (Naimi et al., 2005). Furthermore, it is well-known that SBP

measurements are susceptible to errors. As illustrated in Section 4.5, directly regressing time-to-

CVD on SBP without accounting for potential unobserved confounders and measurement errors

produced a result indicating an unexpected association. The outcome, presented in Table 4.3,

suggests a counterintuitive link where higher SBP is associated with longer time-to-CVD, contrary

to expectations. In Section 4.4, our simulation studies further highlight that neglecting unobserved

confounders and measurement errors can result in significant estimation bias and invalid inference

for a causal e!ect.

Two primary approaches are frequently employed for causal inference: the potential (coun-

terfactual) outcomes framework (Rubin, 1974; Angrist et al., 1996; Imbens and Rubin, 2010,

among others) and the graphical causal models (Baiocchi et al., 2014; Burgess et al., 2017, among

others). This paper will focus on instrumental variable (IV) analysis under the latter framework,

which has been commonly used for mitigating bias arising from unmeasured confounding and

measurement errors (Pearl, 2000; Heckman, 2008; Wright et al., 1928; Haavelmo, 1943; Theil, 1958;

Goldberger, 1972; Heckman and Robb, 1985; Morgan, 1991; Swanson and Hernán, 2013, among

others). IV analysis is also known as the Mendelian Randomization (MR) in epidemiology where

genetic markers are used as the instrument (e.g. Gray and Wheatley, 1991; Didelez and Sheehan,

2007; Lawlor et al., 2008; Wehby et al., 2008; VanderWeele et al., 2014; Emdin et al., 2017).

The basic structure of Instrumental Variable (IV) analysis can be visually depicted using directed

acyclic graphs (DAGs), as illustrated in Figure 4.1, where variables are denoted as nodes, causal

relationships are indicated by directed arrows between nodes, and the absence of a direct arrow

between two nodes signifies the absence of a direct causal link. In Figure 4.1, Y represents the

outcome variable, W is the endogenous covariate that may remain unobserved due to measurement

errors, X represents an observed surrogate for the covariateW , Z is a vector encompassing observed

confounders, U comprises unobserved confounders, and G serves as an instrument vector. A

mathematical representation of this IV analysis structure is provided in Section 2 through equations

(4.3.1), (4.3.2), and (4.3.3). Before going further, it is important to note that IV analysis operates
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Figure 4.1: Directed acyclic graph of instrumental variable analysis. G is the instrumental variable, W
refers to the unobserved endogenous covariate, X refers to the noisy surrogate, Z and U refer to the observed
and unobserved confounders, Y is the outcome. ⇀1 represents the causal e!ect of W on Y . A line with no
arrow indicates association and an arrow indicates a causal relationship in a specific direction.

under three key assumptions:

1. Independence: G is independent of both U and the measurement errors in W .

2. Relatedness: G is correlated with W .

3. Exclusion Restriction: G is independent of Y given W , Z, and U , meaning that any

association between G and Y is solely through W .

For continuous outcomes, assuming linear models, classical IV analysis estimates the causal

parameter (⇀1 in equation (4.3.2)) using a Two-stage Least Squares (TSLS) method. This is

achieved by first regressing the observed surrogate X on the instrument G and then regressing the

outcome Y on the fitted values ofX (Huber (1967); White (1980); Murphy and Topel (1985); Hardin

(2002); Hardin and Carroll (2003); Gustafson (2007); Martins and Gabriel (2014) among others).

This approach has also been extended to nonlinear models, such as the logistic regression model

for binary outcomes, based on the M-estimation method (Amemiya (1985, 1990); Foster (1997)

among others). Bayesian IV methods have also been developed for continuous outcomes. For

instance, among others, Kleibergen and Van Dijk (1998); Hoogerheide et al. (2007) have discussed

parametric Bayesian IV methods based on the assumption that the error terms in a two-stage

IV model (4.3.4) and (4.3.5) follow a bivariate normal distribution with conjugate priors. Wang

et al. (2023b) combines the linear Bayes method (Hartigan, 1969) with the IV approach using both

conjugate and non-conjugate priors. On the other hand, Conley et al. (2008) and Wiesenfarth et al.
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(2014) have developed semiparametric Bayesian IV methods using a Gaussian mixture of Dirichlet

process (DPM) model (Ferguson, 1983; Lo, 1984; Escobar and West, 1995), and demonstrated by

simulations that they are more e”cient than their parametric counterparts when the error terms

are non-normal. We refer to Baiocchi et al. (2014); Bowden et al. (2021) for some recent surveys

of IV analysis methods for causal inference.

In recent years, IV analysis methods have also been developed for time-to-event outcomes

(Bijwaard, 2008; Roodman, 2011; Atiyat, 2011; Li and Lu, 2015; Li et al., 2015a; Tchetgen et al.,

2015; Kjaersgaard and Parner, 2016; Martinussen et al., 2017, 2019; Martinussen and Vansteelandt,

2020; Lee et al., 2023; Wang et al., 2023a, among others). For instance, one line of research has

considered the potential outcome framework to estimate the causal treatment e!ect and extended

the G-estimation method proposed in Robins and Tsiatis (1991) to various time-to-event models

with right-censored data including Aalen’s additive risk model (Martinussen et al., 2017), a Cox

structural model (Martinussen et al., 2019; Wang et al., 2023a), and a competing risks model

(Martinussen and Vansteelandt, 2020). More recently, Li and Peng (2023) studied a general

class of causal semiparametric transformation models for estimating the complier causal treatment

e!ect with interval-censored data within the potential outcome causal framework. The DAG IV

framework depicted in Figure 4.1 has also been studied to address unobserved confounders and/or

measurement errors for time-to-event models with right-censored data. For example, Bijwaard

(2008) proposed an IV Linear Rank estimator for right-censored time-to-event data, based on a

Generalized Accelerated Failure Time (GAFT) model which encompasses the Proportional Hazard

model and the Accelerated Failure Time (AFT) model. Kjaersgaard and Parner (2016) proposed a

pseudo-observation approach to IV analysis of the survival function, the restricted mean, and the

cumulative incidence function for right-censored competing risks data. Li and Lu (2015) developed

a parametric Bayesian method for a two-stage IV model (PBIV) assuming bivariate normal errors

with right-censored data.

It’s important to note that the theoretical underpinnings of most frequentist IV methods for

right-censored data primarily rely on the counting process and martingale framework (Andersen

and Gill, 1982; Martinussen et al., 2017). However, these frameworks don’t easily extend to other

censoring schemes, such as interval-censoring. Li and Lu (2015) developed a parametric Bayesian

method for a two-stage IV model (PBIV) assuming bivariate normal errors for right-censored data

and noted that their approach can potentially be extended to handle more complex censoring
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schemes.

This chapter aims to develop an IV analysis tool for estimating the causal e!ect of an endogenous

variable when dealing with unobserved confounders and measurement errors. Our method is

particularly tailored for partly interval-censored time-to-event data, where event times are observed

exactly for some subjects but left-censored, right-censored, or interval-censored for others (Pan

et al., 2020). To the best of our knowledge, this problem has not been previously addressed in the

literature. Specifically, we develop a semiparametric Bayesian IV analysis method based on a two-

stage Dirichlet process mixture instrumental variable (DPMIV) model for the DAG IV framework

illustrated in Figure 4.1. As detailed in Section 2.1, our DPMIV method simultaneously models the

first-stage random error term for the exposure variable and the second-stage random error term for

the time-to-event outcome using a Gaussian mixture of the Dirichlet process (DPM) model. The

DPM model can be broadly understood as a mixture model with an unspecified number of Gaussian

components, making it versatile for approximating various error distributions (Ferguson, 1983; Lo,

1984). It relaxes the normal error assumptions and allows the number of mixture components to

be determined by the data. It’s important to note that our approach can be viewed as a non-trivial

extension of the work presented in Conley et al. (2008), transitioning from uncensored data to partly

interval-censored data. A fundamental di!erence in our approach is our use of non-conjugate priors

within the DPM model. This choice is pivotal for e!ectively handling partly interval-censored

data, while the previous method relied on the use of conjugate priors tailored for its Markov Chain

Monte Carlo (MCMC) sampling algorithm designed for uncensored data. Throughout this paper,

we develop an MCMC algorithm tailored for our DPMIV model when applied to partly interval-

censored data, and discuss its distinct features in comparison with the approach presented in Conley

et al. (2008). For completeness and comparison purposes, we additionally broaden the applicability

of the PBIV method as presented in Li and Lu (2015), extending it from right-censored data to

partly interval-censored data. We conduct extensive simulations to assess the performance of our

DPMIV method and exemplify its practicality and e!ectiveness through real data applications. Our

simulations revealed that compared to the naive method, which ignores unobserved confounders and

measurement errors, the proposed DPMIV significantly reduces bias in estimation and substantially

improves the coverage probability of the endogenous variable parameter. Moreover, when the errors

exhibit a non-normal distribution, the DPMIV approach consistently provides less biased parameter

estimates with smaller standard errors while maintaining performance comparable to the parametric
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Bayesian approach PBIV in cases where errors follow a bivariate normal distribution. Furthermore,

we have developed an R package that facilitates the implementation of both the DPMIV method

and the PBIV method for partly interval-censored data. This package is publicly accessible at

https://github.com/ElvisCuiHan/PBIV/.

4.3 DPMIV: A Semiparametric Bayesian Instrumental Variable

Method for Partly Interval-censored Data

In this section, we present our two-stage Dirichlet process mixture instrumental variable (DPMIV)

model. We also outline an MCMC estimation and inference procedure centered around the DPM

model, tailored specifically for handling partly interval-censored data. A detailed description of the

MCMC algorithm is provided in the Appendix.

We note that our algorithm is more general and also more complicated than Conley et al. (2008)

and Wiesenfarth et al. (2014) by putting uniform priors and using random walk M-H algorithm.

In other words, it is not only able to handle partly interval-censored data but also continuous and

categorical outcome with minor modifications to the likelihood function.

4.3.1 The Model and the Data

Consider the DAG IV framework in Figure 4.1. Let (Yi,Wi, Xi, Zi, Ui, Gi) be n independent

and identically distributed realizations of (Y,W,X,Z, U,G). Then, assuming linear models, the

underlying structure of Figure 4.1 can be represented as follows:

Wi = ω0 + ω1
↗Gi + ω2

↗Zi + ω3
↗Ui + ε1i, (4.3.1)

Yi = ⇀0 + ⇀1Wi + ⇀2
↗Zi + ⇀3

↗Ui + ε2i, (4.3.2)

Xi = Wi + ε3i, i = 1, . . . , n, (4.3.3)

where ⇀1 is the causal e!ect parameter of interest, and ε1i, ε2i, and ε3i represent independent

random errors in models (4.3.1), (4.3.2) and (4.3.3), respectively.

It is easy to see that by substituting the unobserved Wi with Wi = Xi → ε3i into equations

88

https://github.com/ElvisCuiHan/PBIV/


(4.3.1) and (4.3.2), we obtain the following two-stage linear model:

Xi = ω1
↗Gi + ω2

↗Zi + ↽1i, (4.3.4)

Yi = ⇀1Xi + ⇀2
↗Zi + ↽2i, (4.3.5)

where ↽1i = ω0+ω3
↗Ui+ε1i+ε3i and ↽2i = ⇀0+⇀3

↗Ui+ε2i→⇀1ε3i are independent of the instrument

Gi, but there is the possibility of them being correlated with Xi and Zi. This correlation is an

important consideration in instrumental variable (IV) analysis and highlights the need for careful

modeling and estimation to account for these relationships when estimating the causal e!ect (⇀1).

Our two-stage DPMIV model with time-to-event outcome takes the form of (4.3.4) and (4.3.5)

and assumes that the random errors ↽1i and ↽2i jointly follow a bivariate normal distribution with

a Dirichlet Process (DP) prior for its mean and variance-covariance parameters:

(↽1i, ↽2i)
↗

↘ N2(µi,$i), (4.3.6)

(µi,$i) ↘ i.i.d. H, (4.3.7)

H ↘ DP(ν, H0). (4.3.8)

Here µi = (µ1i, µ2i)↗, $i =



 ϑ2
1i ϖiϑ1iϑ2i

ϖiϑ1iϑ2i ϑ2
2i



, and DP (ν, H0) in (4.3.8) is the Dirichlet process

(DP) prior with strength parameter ν and base distribution H0 (Ferguson, 1973).

Assume that instead of observing (Yi,Wi, Xi, Zi, Ui, Gi), i = 1, . . . , n, one observes a partly

interval-censored data set consisting of n independent and identically distributed observations

(Li, Ri, ▷i, Xi, Zi, Gi), i = 1, . . . n, where Li and Ri represent the left and right endpoints of the

censoring interval for the outcome variable Yi, and ▷i is an indicator variable (▷i = 1 if Yi < Li

(left-censored); ▷i = 2 if Li ≃ Yi ≃ Ri and Li < Ri (interval-censored); ▷i = 3 if Yi > Ri (right-

censored); ▷i = 4 if Li = Yi = Ri (event)). Our objective is to estimate the causal e!ect of Wi on

Yi, represented by parameter ⇀1, based on this partly interval-censored data.

Remark 1: The model (4.3.6)-(4.3.8) for the error (↽1i, ↽2i)T , known as a Dirichlet process

mixture (DPM) model (Ferguson, 1983), is a widely used nonparametric Bayesian model. A nice

introduction of DP prior and DPM can be found in Ghosal and Van der Vaart (2017). The DPM

model can be viewed as a mixture of Gaussians with infinite number of components. Notably, H is
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a random discrete distribution that has the same support as H0, where H0 is usually a continuous

distribution, i.e., P (H(B) > 0) = 1 if and only if H0(B) > 0 for any Borel sets B. This discreteness

of H randomly clusters di!erent (µi,$i) together. The parameters µi and $i are the same within

one cluster and di!erent across clusters. Note that the marginal distribution of any (µi,$i) (by

marginalizing out H) is H0. In other words, given all the parameters and H, the samples (Xi, Yi)T

are drawn mixtures of normal distributions (i.e., the distribution of (µ,$)) and hence are clustered

naturally. As a result, the total number of clusters, denoted as k, is random and we denote the

cluster indicators as c in later subsections. The posterior distribution of k is determined by both

the strength parameter ν and the data. Therefore, the DP prior enables the model to better

capture heterogeneity in the error distribution, without using a pre-specified number of clusters.

Further, theorem 2 in Eaton (1981) states that a large class of distributions can be represented as

a mixture of Gaussian density and an underlying mixing distribution. Similarly, Fejér’s theorem

states that with a Gaussian kernel, we may approximate any density in L1 by mixtures (Lo, 1984;

Ghosal and Van der Vaart, 2017). Ferguson (1983) pointed out that an infinite mixture of Gaussian

densities can approximate any distribution on the real line with any preassigned accuracy in the

Lévy metric. These justifies the use of Dirichlet process mixtures. In addition, as Conley et al.

(2008) pointed out, putting a prior on ν makes it easier for the data to determine the number of

clusters instead of letting users to specify the possible number of clusters in DPM. Hence, in our

customized MCMC algorithm, we put a prior on ν so that both small and large number of clusters

are possible (Section 4.3.2).

Remark 2: The two-stage model (4.3.4)-(4.3.8) is an extension of the semiparametric IV model

proposed in Conley et al. (2008) where we allow Y to be partly interval-censored time-to-event data.

Because the likelihood function for censored outcome has a complicated form, conjugate priors (and

thus, Gibbs sampler) are not available for (ω1,ω2,⇀1,⇀2) (Neal, 2000) and there is no convenience

to assume H0 to be conjugate as in Conley et al. (2008) (we give details of H0 in Section 4.3.2, for

Gibbs sampler, see Equation (3.2) in Neal (2000)). This is another major di!erence between our

algorithm and that in Conley et al. (2008).

Remark 3: Our proposed model can relax the parametric assumption of a specific distribution

for the IV model introduced in Li and Lu (2015), and address for potential heterogeneous clustering

problems within the context of IV modelling with right censored-data. For completeness, the PBIV

assumes that the error (↽1i, ↽2i)T follows a common bivariate normal distribution and the mean µ
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follows a mean 0 normal distribution, ϖ follows a uniform distribution on (→1, 1) and ϑ1,ϑ2 have

inverse Gamma distributions, respectively.

Assume that one observes a partly interval-censored data set consisting of n independent and

identically distributed observations (Li, Ri, ▷i, Xi, Zi, Gi), i = 1, . . . n, where Li and Ri represent the

left and right endpoints of the censoring interval for the outcome variable Yi, and ▷i is an indicator

variable (▷i = 1 if Yi < Li (left-censored); ▷i = 2 if Li ≃ Yi ≃ Ri and Li < Ri (interval-censored);

▷i = 3 if Yi > Ri (right-censored); ▷i = 4 if Li = Yi = Ri (event)). Our objective is to estimate the

causal e!ect of Wi on Yi, represented by parameter ⇀1, based on this partly interval-censored data.

4.3.2 The MCMC Algorithm

Our Bayesian causal inference on ⇀1 is conducted through its posterior distribution given the

data and other parameters. Because an analytical expression for the posterior distribution is

not available, we resort to Markov Chain Monte Carlo (MCMC) methods, which are particularly

useful in Bayesian statistics (Robert et al., 1999). Notably, due to the non-parametric and discrete

nature of the Dirichlet Process (DP) and Dirichlet Process Mixture (DPM), the MCMC algorithm

developed by Li and Lu (2015) for the two-stage normal IV model is not applicable in our case,

necessitating the development of new algorithms. Various methods exist for drawing posterior

samples from a DPM, and both Neal (2000) and Chapter 3 in Müller et al. (2015) provide

comprehensive reviews of these methods. In our work, we have developed a customized MCMC

procedure to make inference on ⇀1. In each iteration of the procedure, we sequentially update

individual parameters while keeping other parameters fixed at their current states. Below, we

outline the key steps of our MCMC algorithm, with a more detailed description provided in

Appendix.

Because of the discrete nature of the DP, the DPM model induces a probability on clusters

associated with latent εi = (µ1i, µ2i,ϑ2
1i,ϑ

2
2i, ϖi)

T , i = 1, 2, · · · , n (Antoniak, 1974; Müller et al.,

2015). That is, there is a positive probability of having identical values among the εi’s. Let

εc, c = 1, · · · , k be the k ≃ n unique values ( so that the total number of clusters is k), and

Sj = {i : εi = εc} be the indices associated with εc. Then the multiset {S1, · · · , Sk} forms a

partition of {1, 2, · · · , n} and it is random because εi’s are random (Müller et al., 2015). For

convenience, we represent the clustering by an equivalent set of cluster membership indicators: let
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◁C = {c1, . . . , cn} be the latent class indicator of a subject, i.e. εC consists of all distinct values

of εi and ◁C is a vector of indicators that maps the individuals to the clusters. Note that the

numbering of C can be arbitrary. For the two-stage DPMIV model (4.3.4)–(4.3.8), we denote the

parameters as % = (ω1,ω2,⇀1,⇀2, εC , ◁C). The observed data consists of Data = (◁L, ◁R,◁▷, ◁X, ◁Z, ◁G),

where ◁L = (L1, ..., Ln), ◁R = (R1, ..., Rn), ◁▷ = (▷1, ..., ▷n), ◁X = (X1, ..., Xn), ◁Z = (Z1, ..., Zn) and

◁G = (G1, ..., Gn). Then the likelihood function is written as

L(% | ◁L, ◁R,◁▷, ◁X, ◁Z, ◁G) = P ( ◁X, ◁Z, ◁G | %) · P (◁L, ◁R,◁▷ | ◁X, ◁Z, ◁G,%) (4.3.9)

where P ( ◁X, ◁Z, ◁G | %) is likelihood contributed by the first-stage model (4.3.4) and P (◁L, ◁R,◁▷ |

◁X, ◁Z, ◁G,%) is the likelihood based on the second-stage model (4.3.5). We provide details of

derivation of both terms in the Appendix.

Given the likelihood function L(% | ◁L, ◁R,◁▷, ◁X, ◁Z, ◁G), our MCMC algorithm draw samples from

the following posterior distributions iteratively:

1) ω1|ω2,⇀1,⇀2, εc, ◁C, ν,Data 2) ω2|ω1,⇀1,⇀2, εc, ◁C, ν,Data

3) ⇀1|ω1,ω2,⇀2, εc, ◁C, ν,Data 4) ⇀2|ω1,ω2,⇀1, εc, ◁C, ν,Data

5) ◁C|ω1,ω2,⇀1,⇀2, εc, ν,Data 6) εc|ω1,ω2,⇀1,⇀2, εc, ◁C,Data

7) ν|ω1,ω2,⇀1,⇀2, εc, ◁C,Data.

Draw of (ω1,ω2,ε1,ε2)

The algorithm provided by Conley et al. (2008) do not involve ω2 and they break the draw into 2

parts, i.e., ω1 and (⇀1,⇀2), both with normal priors. Our customized draw of (ω1,ω2,⇀1,⇀2) is done

by the random walk Metropolis-Hastings (M-H) algorithm. In constrast to potentially correlated

normal priors in Conley et al. (2008), independent normal priors are put on each parameters and

the proposal distribution is uniform within a certain interval. We note that a suitable length

(neither too wide nor too narrow) of the uniform distribution leads to fast convergence of the

MCMC algorithm. We set 0.0128 for ⇀1 and 0.0064 for ω1,ω2,⇀2 in simulation studies, and 0.0584

for ⇀1 and 0.0128 for ω1,ω2,⇀2 in the UKB example.

Draw of ϑC and ϖc
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We draw new ε’s and update ◁C from the base measure H0, hence it is required to specify H0.

Conley et al. (2008) assumes it is a Normal-Wishart distribution, i.e., H0 = ⇁(µ|$)⇁($) where

⇁(µ|$) is a bivariate normal density whose covariance matrix is proportional to $ and ⇁($) is a

Wishart density. In contrast, since the conjugate prior is not available for censored outcome, we do

not assume that the base measure H0 follows a Normal-Wishart distribution as that in Conley et al.

(2008). Instead, we assume independent priors on H0, i.e., H0 = ⇁(µ1)⇁(µ2)⇁(ϑ2
1)⇁(ϑ

2
2)⇁(ϖ) where

⇁(·) is an abuse of notation for priors. For simulation studies, we set ⇁(µ1) and ⇁(µ2) to be normal

density with mean 0 and pre-specified large variances (we set it to 10 and it works well), ⇁(ϑ2
1) and

⇁(ϑ2
2) to be inverse-gamma with pre-specified small shape and scale parameters (we set them to

0.1 and 0.001), ⇁(ϖ) to be uniform within [→1, 1]. These correspond to non-informative (or vague)

priors (Li and Lu, 2015). For the UKB study in Section 4.5, we use slightly informative priors

(here “slightly informative” means we use 5% of the samples as the training data to get posterior

distributions of parameters and use them as priors for the the remaining 95% interval-censored

data.) and the details are given in the Appendix.

We adopts algorithm 8 in Neal (2000) for non-conjugate priors to update ◁C and εc while Conley

et al. (2008) use the Gibbs sampler in Bush and MacEachern (1996) (see also algorithm 2 in Neal

(2000)). We note that according to Neal (2000), posterior samples using the algorithm 8 has the

smallest auto-correlation among other MCMC algorithms.

Draw of ϱ

It is tricky to set the prior and update the posterior for ν as we indicated in Remark 2. Given

Data and k, the number of distinct values of εc, the distribution of ν is independent of % (Ghosal

and Van der Vaart, 2017). Hence, computation of ν|k, n (n is the sample size) requires a prior

for ν and a marginal expression for k|ν, n. Antoniak (1974) derived the expression for k|ν, n and

Conley et al. (2008) suggested a prior for ν on the discrete grid between ν and ν so that ν can be

interpreted as groups of observations:

P (ν) ↖

(
ν → ν

ν → ν

)
⇁

· I(ν < ν < ν).

We note it is also workable for ν to be continuous as in our algorithm (see Appendix). In our

simulation study and real data examples, we set ν and ν to be 0.1 and 4.8 so that the modes of k

are 1 and 16 for sample size equals to 100, respectively.
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By iterating the procedure described above, a su”ciently large amount of MCMC samples can

be generated from the posterior distribution. Posterior mean of a parameter can be used as an

estimation of the parameter. Credible intervals of the parameters can be constructed by using

the empirical quartiles of the simulated samples. Convergence of the MCMC algorithm can be

examined visually by graphical methods including trace plots and histograms, and quantitatively

by using the Brooks-Gelman-Rubin diagnostics (Brooks and Gelman, 1998). We implemented this

method in C programming language, due to its relatively fast process in large number of iterations.

Our C program is available online at https://github.com/ElvisCuiHan/BayesianIVAnalysis.

4.4 Simulation Studies

We conducted extensive simulations to evaluate the performance of proposed two-stage DPMIV

method for partly interval-censored time-to-event data under a variety of scenarios. Additionally,

we include two other methods for reference in our simulation analysis: 1) the naive single-stage

accelerated failure time (AFT) model for partly interval-censored data (Huang and Wellner, 1997;

Anderson-Bergman, 2017), which does not account for unobserved confounders and measurement

errors, and 2) the two-stage PBIV method, as described in Appendix, which extends the parametric

Bayesian IV method introduced by Li and Lu (2015) from right-censored data to partly interval-

censored data.

We simulated data from model (4.3.4)-(4.3.5) with a two-dimensional instrument Gi and a

two-dimensional observed confounder Ui, both following a standard bivariate normal distribution

N(0, I2). The regression parameters in equation (4.3.4) were set as ω1 = (0.5, 0.5)T , and ω2 =

(0.5, 0.5)T . The regression parameters in equation (4.3.5) were set as ⇀1 = →1, and ⇀2 = (0.8, 0.8)T .

We considered six scenarios for the bivariate distribution of (↽1i, ↽2i)T :

1. Bivariate normal distribution.

2. Bivariate exponential distribution as described in Equation 18 in Nagao and Kadoya (1971).

3. Mixture of two bivariate normal distributions with di!erent means but the same variance-

covariance matrix.

4. Mixture of two bivariate normal distributions with the same mean but di!erent variance-
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covariance matrices.

5. Mixture of five bivariate normal distributions, mimicking the distribution of the female cohort

estimated from the UK Biobank dataset using the DPMIV method.

6. Mixture of five bivariate normal distributions, mimicking the distribution of the male cohort

estimated from the UK Biobank dataset using the DPMIV method.

Detailed specifications for the bivariate distribution of (↽1i, ↽2i)T under these six simulation scenarios

can be found in Table 7.11.

Similar to the simulation settings in Pan et al. (2020), we generate partly interval-censored

data as follows. In each simulated dataset, we first set around 25% individuals to have exact event

times observed. Next, we assume Li has an exponential distribution with hazard rate 2 and Ri→Li

has another independent exponential distribution with hazard rate 2. Then left-, interval- and

right-censored observations are determined by whether Yi is less than Li, within (Li, Ri] or greater

than Ri, resulting in a approximate censoring rate around 20%, 20%, 35% and 25% (left-, interval-,

right-censored and event). Finally, we considered di!erent sample sizes n = 300, 500 and 1000

under each scenario.

Table 4.2 presents a summary of the simulated bias, standard deviation (SD), and coverage

probability (CP) for the causal parameter ⇀1 using the three aforementioned methods based on 100

Monte Carlo replications. Additionally, the proposed DPMIV method, we also report the average

of the estimated number of clusters k.

As observed in Table 4.2, the naive single-stage AFT model estimate generally exhibits substan-

tial bias and unacceptably low coverage probability, which underscores the critical need to address

unobserved confounders and measurement errors.

The PBIV estimate demonstrates satisfactory performance in scenario 1 (normal model) and

scenarios 2 and 4 when the error distribution is, or can be approximated by, a mixture of 1 or 2

normal components. Nevertheless, it exhibits substantial bias and very low coverage probability

in scenarios 5 and 6, where the error distribution involves a mixture of a larger number of normal

components (five). These findings underscore the limited robustness of the PBIV method under

certain scenarios.

Our proposed DPMIV method consistently delivers robust and stable performance, with mini-
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Table 4.1: Specification of the bivariate distribution of (ε1i, ε2i)T under six simulation scenarios

Scenario 1 Normal
Component Proportion µ1 σ

2
1 µ2 σ

2
2 ρ

1 100% 0.5 0.500 0.5 1.000 0.424

Scenario 2 Bivariate exponential
Component Proportion µ1 σ1 µ2 σ2 ρ

1 100% \ 0.300 \ 0.300 0.300

Scenario 3 Normal mixture I
Component Proportion µ1 σ

2
1 µ2 σ

2
2 ρ

1 50% 0.630 0.300 -0.630 0.300 0.500
2 50% -0.630 0.300 0.630 0.300 0.500

Scenario 4 Normal mixture I
Component Proportion µ1 σ

2
1 µ2 σ

2
2 ρ

1 50% 0.000 0.700 0.000 0.700 0.357
2 50% 0.000 0.050 0.000 0.050 0.600

Scenario 5 Normal mixture III
Component Proportion µ1 σ

2
1 µ2 σ

2
2 ρ

1 72% 1.882 0.015 1.511 1.110 0.107
2 18% 1.783 0.022 -2.370 0.204 -0.081
3 5% 1.260 0.112 1.265 0.226 0.996
4 3% 1.941 0.095 1.128 0.493 0.345
5 2% 1.922 0.052 -0.701 2.347 0.401

Scenario 6 Normal mixture IV
Component Proportion µ1 σ

2
1 µ2 σ

2
2 ρ

1 50% 4.985 0.015 5.011 0.966 0.076
2 20% 4.585 0.024 4.265 0.177 -0.051
3 10% 4.830 0.103 5.265 0.255 0.878
4 10% 4.983 0.084 5.256 0.633 0.484
5 10% 4.924 0.055 3.880 2.264 0.670

The simulation studies puts six di”erent distributions on the bivariate random error (φ1i, φ2i)T in the
DPMIV model (4.3.4)-(4.3.5). The first scenario is bivariate normal with mean (0.5, 0.5)T and covariance

matrix

(
0.5 0.3
0.3 1

)
. The second scenario is a bivariate exponential distribution where the density is given

in the Equation 18 in Nagao and Kadoya (1971). For this distribution, we only need to specify the
two scale parameters σ1 and σ2 and the correlation parameter ρ. The third scenario is a mixture of
two bivariate normal distributions with equal proportion, separate means and same covariances, i.e., 0.5⇑

N

((
0.63
→0.63

)
,

(
0.3 0.15
0.15 0.3

))
+0.5⇑N

((
→0.63
0.63

)
,

(
0.3 0.15
0.15 0.3

))
. The fourth scenario is also a mixture

of two bivariate normal distributions with equal proportion but the same means and di”erent covariances,

i.e., the density is 0.5 ⇑ N

((
0
0

)
,

(
0.7 0.25
0.25 0.7

))
+ 0.5 ⇑ N

((
0
0

)
,

(
0.05 0.03
0.03 0.05

))
. The fifth and sixth

scenarios are five-component normal mixtures (with di”erent proportions) that mimics the estimated error
distribution in Section 4.5.
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mal bias and satisfactory coverage probability across all six scenarios and various sample sizes. In

the first scenario, it exhibits similar bias and standard deviation (SD) to PBIV and outperforms

in the remaining four scenarios, correctly identifying the number of clusters k as 1. In scenario

2, where there isn’t a correct number of clusters, DPMIV estimates k as 2, providing a normal

mixture approximation to the bivariate exponential distribution. While it may appear that k is

over-estimated in scenarios 3 and 4, it’s worth noting that the estimation of random errors reveals

two dominant components, with negligible sample sizes in the remaining clusters. As for scenarios

5 and 6, as the sample size increases, DPMIV correctly estimates k as expected.

Lastly, in Figure 4.2, we depict the true and estimated log-density error distribution by DPMIV

under di!erent sample sizes. The results align with our expectations, showing that as the sample

size increases, DPMIV accurately estimates the random error distribution.

In our comprehensive simulation studies, we have broadened the scope to include a variety of

di!erent scenarios focusing particularly on scenarios with low event rates, such as a censoring rate

leaving only 5% observable events. We have also explored a smaller e!ect size where ⇀1 = →0.363,

mirroring the causal e!ect magnitude found in the UKB data. Furthermore, we have assessed the

performance of our methods across a spectrum of instrument strengths, considering from weak

to strong instrumental strengths at 2%, 15%, 35%, and 50% respectively. The outcomes of these

additional simulations have been consistent with the findings reported in the main text, rea”rming

the robustness of our methods under a wide array of conditions.
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4.5 IV Analysis of Interval-censored UK Biobank Data

The UK Biobank (UKB) cohort comprises 500,000 individuals aged 40 to 69 years at baseline,

recruited between 2006 and 2010 at 22 assessment centers across the United Kingdom. Participants

were followed up until January 1, 2018, or until their date of death. This extensive resource provides

data on genotyping, clinical measurements, assays of biological samples, and self-reported health

behavior. As an illustrative example, we will investigate the causal e!ects of systolic blood pressure

(SBP) on the time-to-development of cardiovascular disease (CVD) from the onset of diabetes

mellitus (DM) with a focus on White individuals, including 3,141 females and 5,029 males, who

developed DM before CVD. Descriptive statistics of baseline characteristics for this subgroup are

summarized in Appendix. It is commonly known that CVD is associated with death (Amini et al.,

2021), i.e., death is a competing risk for CVD. Hence, we construct a composite event that is

either CVD or death and adjust the time-to-event outcome accordingly. A significant challenge

arises from time stamp ambiguities regarding the onset of DM in the UKB data, a common issue

in many electronic health record (EHR) datasets for various diseases. Consequently, the time-to-

development of CVD from the onset of DM is partly interval-censored with 8.9% interval-censored

and 91.1% right-censored in the UKB white female cohort and 16.4% interval-censored and 83.6%

right-censored in the white male cohort.

For both the male and female cohorts, we applied a DPMIV model (4.3.4)-(4.3.8). In this model,

Yi represents the log-transformed time-to-development of cardiovascular disease (CVD) from the

onset of diabetes mellitus (DM). The endogenous covariate of interest, Xi, corresponds to the

standardized log-transformed SBP level. The instrumental variables Gi consist of 15 SNPs known

to be associated with SBP (refer to Appendix for details on SNP selection). Additionally, the vector

Zi encompasses observed potential confounders, such as age at recruitment, cholesterol levels, body

mass index (BMI), smoking status (yes vs. no), and physical activity level measured in metabolic

equivalents (MET, range: 2-8 h/week). The priors used in the DPMIV model are informed by

a training set consisting of 5% of the total dataset (see Appendix E). The instrumental variable

strength (partial R-squared) of G are 0.056 for the female cohort and 0.056 for the male cohort.

Subsequently, we employ a log-normal accelerated failure time (AFT) model (4.3.5) for analyzing

partly interval-censored data, Anderson-Bergman (2017) with estimated coe”cients and standard

errors serving as hyperparameters for the second-stage priors on ⇀1, ⇀2 and ↽i2 in the DPMIV model.
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Figure 4.2: True and estimated error distributions of the DPMIV method for simulation studies under
di!erent sample sizes.

(a) Scenario 1 (true) (b) n = 300 (c) n = 500 (d) n = 1000

(e) Scenario 2 (true) (f) n = 300 (g) n = 500 (h) n = 1000

(i) Scenario 3 (true) (j) n = 300 (k) n = 500 (l) n = 1000

(m) Scenario 4 (true) (n) n = 300 (o) n = 500 (p) n = 1000

(q) Scenario 5 (true) (r) n = 300 (s) n = 500 (t) n = 1000

(u) Scenario 6 (true) (v) n = 300 (w) n = 500 (x) n = 1000
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The specifics of these priors used in both cohorts of the UKB data are detailed in Appendix. For

the DPMIV method, we run 6 chains separately with length 1,200,000, 200 thinning and 200,000

burn-in samples. We also run 51 chains with length 3,200,000 and 200,000 burn-in samples and the

results are the same. A large thinning value reduces the auto-correlation among posterior samples

and a large burn-in value ensures the chain enters the stationary distribution (Robert et al., 1999).

Table 4.3 provides a summary of the estimated causal e!ect (⇀1), its associated standard error,

and the 95% credible interval (CI) for both the male and female cohorts using three distinct

methods: the DPMIV method, the PBIV method, and a naive single-stage AFT model designed

for interval-censored data using the ”icenReg” R package (Anderson-Bergman, 2017).

Table 4.3 also reveals that, in the case of the female cohort, the causal e!ect estimated by

the proposed DPMIV method is ⇀̂1 = →0.363 (95% CI = (-0.670, -0.092)). This finding indicates

that a higher systolic blood pressure (SBP) level is associated with a significantly shorter time-to-

cardiovascular disease (CVD) from the onset of diabetes mellitus (DM). To put this into perspective,

if SBP increases by 10%, then the expected survival time from DM to CVD will be shortened by

a factor of 10%↗ ⇀1 ↙ 3.6%. Interestingly, this result aligns with recent findings in the literature,

as reported by studies such as Chan et al. (2021) and Wan et al. (2021). Moreover, our DPMIV

analysis indicates that the error distribution is a mixture of k = 5 bivariate normal distributions,

with two dominant clusters (the mixing proportions are around 97% and 1.5% for the white female

cohort and 95% and 2.5% for the white male cohort). This observation is further substantiated by

density contour plots of the estimated error distribution displayed in Figure 4.3.

It is important to highlight that, in the case of the female cohort, the naive single-stage AFT

model produced a positive estimated coe”cient ⇀̂1 = 0.262. This unexpected result suggests that a

higher systolic blood pressure (SBP) level is associated with a longer time-to-cardiovascular disease

(CVD) from the onset of diabetes mellitus (DM), contrary to what one might intuitively expect.

This anomaly can likely be attributed to the omission of significant confounders, such as annual

income and drinking habits, as well as potential measurement errors in SBP by the naive single-

stage AFT model. These findings underscore the critical need to address unobserved confounders

and measurement errors when conducting causal analyses.

It is worth noting that the PBIV method also yielded a positive causal e!ect estimate for the

female cohort, with ⇀̂1 = 0.589 (95% CI = (0.245, 0.870)). However, this seemingly unreasonable
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result from the PBIV method may be attributed to the highly heterogeneous error distribution

characterized by five clusters, as estimated by the DPMIV method. To this end, we recall that

our simulation studies in Section 3 (as seen in scenarios 5 and 6 in Table 4.2) suggest that under

such conditions, the PBIV method may face significant challenges, which can result in substantially

biased causal e!ect estimates and thus misleading findings.

Finally, Table 4.3 unveils remarkably similar results for the male cohort.

Table 4.3: Comparison of approaches for the analysis of UKB data

Female Cohort (n=3141) Partial R-squared = 0.056
Estimated causal e!ect (ω1) SE 95% CI

DPMIV with SNPs as instruments -0.363 0.146 (-0.670, -0.092)
PBIV with SNPs as instruments 0.589 0.181 (0.245, 0.870)
Naive AFT Model 0.262 0.230 (-0.201, 0.703)

Male Cohort (n=5029) Partial R-squared = 0.056
Estimated causal e!ect (ω1) SE 95% CI

DPMIV with SNPs as instruments -0.356 0.092 (-0.537, -0.173)
PBIV with SNPs as instruments 0.562 0.150 (0.255, 0.837)
Naive AFT Model 0.288 0.150 (-0.005, 0.581)

DPMIV with SNPs as instruments refers to our proposed method with the
selected 15 SNPs. PBIV with SNPs as instruments refers to the extension
of parametric Bayesian method proposed in Li and Lu (2015) where the
details of the algorithm are given in the appendix. Single-stage AFT model
without instruments refers to the interval-censored AFT model implemented
in Anderson-Bergman (2017) and we do not include instruments in the model.

4.5.1 Using PSO to Find Maximal Correlation between SNPs and SBP

A key assumption in IV analysis is that the correlation between instruments (SNPs) and the causal

e!ect covariate (SBP) should not be too small. Hence, we apply PSO to select a linear combination

of SNPs (15 in total) such that the maximal correlation (Rényi, 1959) between the SNPs and SBP

is maximized.
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Figure 4.3: Log-density contour plot of random errors (↽1, ↽2) of the Dirichlet process mixture model for
the UKB data.

(a) Female cohort (b) Male cohort

Figure 4.4: Trace plots of causal e!ect ⇀1 of the Dirichlet process mixture model for the UKB data.

(a) Female cohort

(b) Male cohort
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4.6 Extensions to Doubly Interval-censored Data with Interval-

censored Covariates

In this section, we first give a brief review on handling doubly interval-censored data (Sun, 2006)

and then extend our previous approach to deal with it.

4.6.1 Introduction to Doubly Interval-censored Data and Problem Formulation

Doubly interval-censored data, also known as doubly censored data in literature, arise in studies

where both the time of the originating event (denote as Si) and the failure event (denote as Ti) are

either right- or interval-censored (Kim et al., 1993). The basic structure of doubly interval-censored

is

{(Ui, Vi], (Li, Ri],Zi, i = 1, · · · , n} (4.6.1)

where

• Si ↑ (Ui, Vi] is the 1st interval-censored time (time-to-DM in our application).

• Ti ↑ (Li, Ri] is the 2nd interval-censored time (time-to-CVD in our application).

• Zi is a vector of (possibly time-dependent and even interval-censored) covariates (age, sex,

MET, etc.).

• Yi = Ti → Si is the time of interest (time from DM to CVD in our application).

Another example of doubly censored data occurs frequently in acquired immune deficiency

syndrome (AIDS) cohort studies (Sun et al., 1999) where we are interested in estimating the time

from the Type-I human immunodeficiency virus (HIV-1) infection to the diagnosis of AIDS. The

HIV-1 infection time is our Si. It is interval-censored and we only observe (Ui, Vi] in practice

because the recruitment of HIV-1 positive patients into the studies and the fact that the infection

times of these patients can usually only be determined retrospectively to lie in some intervals. The

time to AIDS on-site is our Ti while in practice, we only observe (Li, Ri] due to the same reason.

We note that in this case, if it is censored, then it is right-censored, i.e., Ri = +⇒.
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4.6.1.1 Brief Review of Methods for Doubly Interval-Censored Data

There is a growing number of statistical literature dealing with doubly censored data in the past

few decades, focusing on nonparametric estimation of survival functions, estimation of survival

quantities, parametric and semiparametric regression models. We give a brief historical review

below.

Given a set of interval-censored data without covaraites, Turnbull (1976) proposed to maximize

the empirical likelihood function and used a self-consistency algorithm; his approach was termed

as Turnbull’s estimator. However, Turnbull’s estimator only applies to interval-censored data so

extension to doubly censored data is needed. De Gruttola and Lagakos (1989) is one of the first

papers that generalizes Turnbull’s estimator and his self-consistency algorithm to analyze doubly

censored data in AIDS studies. Chang (1990) established the weak convergence result of Turnbull’s

estimator for doubly censored data. Kim et al. (1993) extended the previous work to a Cox’s

proportional hazards model with doubly censored data using a marginal likelihood approach. That

is, they compute the marginal likelihood of observations (4.6.1) and maximize it with respect to

regression coe”cients. For doubly censored current status data, an accelerated failure time (AFT)

model was proposed by Rabinowitz and Jewell (1996). In Sun et al. (1999) and Sun et al. (2004),

the authors proposed a general regression framework when Si is interval-censored and Ti is right-

censored and they applied counting process and martingale theory to establish the corresponding

asymptotic results for Cox’s proportional hazards model and Aalen’s additive risk model. Because

of it simplicity and generality, we give an introduction of their approach in the sequel.

Suppose that the hazard of Ẽi at time t is of form (Sun, 2006)

↼i(t) = ↼0(t) exp(Z
T

i ⇀)

given Zi where ↼0(t) is an unknown baseline hazard and ⇀ is the vector of regression coe”cients.

For estimation of ⇀, define the risk process Yi(t|S̃i) = I(Ẽi → S̃i ⇐ t) and the counting process

Ni(t|S̃i) = I(Ẽi → S̃i ≃ t, ▷i = 1). Using the conventional notation, let S = (S̃1, · · · , S̃n) and

S(j)(t;⇀|S) =
1

n
Yi(t|S̃i)Z

j

i
exp(ZT

i ⇀),

j = 0, 1, where Z
0
i
= 1 and Z

1
i
= Zi. Conditioned on S, we can estimate ⇀ solving the score
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equation (Andersen et al., 2012)

Up(⇀|S) =


ω

0

n∑

i=1

[
Zi →

S(1)(t;⇀|S)

S(0)(t;⇀|S)

]
dNi(t|S̃i) = 0

where 0 is the upper bound of Ẽi→ S̃i. Because S is unknown (or unobservable), it is natural to use

the profile likelihood idea and marginalize S. That is, we first estimate the cumulative distribution

function of the S̃i’s based on interval-censored data (L̃i, R̃i] using Turnbull’s estimator. We denote

it as Ĥ. Then we estimate ⇀ by the solution, say, ⇀̂, to the following marginalized estimating

equation

Up(⇀, Ĥ) =


n∏

i=1

a→1
i


R̃1

L̃1

· · ·


R̃n

L̃n

Up(⇀|s)
n∏

i=1

[
dĤ(si)

]
= 0, (4.6.2)

where ai =

R̃i

L̃i
dĤ(si), i = 1, 2, · · · , n. If all S̃i’s are exactly observed, then ⇀̂ boils down to the

maximum partial likelihood estimator.

Sun (2001) also developed a nonparametric test for doubly censored data. More recently, Ji et al.

(2012) proposed a quantile regression and asymptotic results, including the uniform consistency

and weak convergence, are established. Wong et al. (2023) proposed a sieve maximum likelihood

approach to address the infeasibility of maximum likelihood estimator. The methods mentioned

above are from a frequentist perspective. Bayesian methods are also develoepd for doubly censored

data. Among the early work within a Bayesian paradigm, Komárek and Lesa!re (2006) and

Komárek and Lesa!re (2008) are two representative papers and they proposed Bayesian AFT

model for doubly censored data. The Cox’s proportional hazards model with priors are studied in

Yu (2010). Jara et al. (2010) developed a more elaborated model based on Pitman-Yor processes

(Pitman and Yor, 1997) and it can handle multivariate doubly censored data. Recently, Zeng et al.

(2016) proposed a EM-type algorithm for semiparametric transformation models with interval-

censored data with the presence of time-dependent covariates.

4.6.1.2 Brief Review of Methods for Interval-censored Covariates

Besides doubly censored data, interval-censored covariates also puts a great challenge in front

of applied statisticians. Goggins et al. (1999) presents an example of interval-censored covariate

106



arising from the AIDS Clinical Trial Group (ACTG) 181. In the study, the interest is to model

the relationship between the status of cytomegalovirus (CMV) and the onset of active CMV end-

organ disease. Because only interval-censored data are available for the time-to-CMV shedding so

it is an interval-censored covariate in the model (Goggins et al., 1999; Goggins and Finkelstein,

2000; Sun, 2006). According to Morrison et al. (2022), there are three mainstreams of handling

interval-censored covariate:

• Midpoint imputation of the interval-censored covariate (Rubin, 1976; Little and Rubin, 2019),

i.e., if a covariate Xi ↑ (ai, bi], then we replace it with ai+bi
2 ;

• Multiple imputation with uniform distribution of the interval-censored covariate (Koniko!

et al., 2013);

• Joint modeling or simultaneuous estimation of the nuisance distribution of the interval-

censored covariate and the regression model (e.g., Frailty model) (Hsiao, 1983; Goggins et al.,

1999; Gómez et al., 2003; Topp and Gómez, 2004; Du et al., 2021; Morrison et al., 2022; Melis

et al., 2023).

For the third mainstream, the approach of Goggins et al. (1999), referred to as the GFZ method,

suggested to treat Zi (the interval-censored covariate) as a latent variable and they developed

a Monte Carlo EM algorithm (Levine and Casella, 2001) for parameter estimation. One open

problem with the GFZ method is that no asymptotic justification is available yet for the derived

parameter estimates. Section 10.3.2 in Sun (2006) provides an extension of the GFZ method to

doubly censored data with interval-censored covariate. His method is to integrate out Zi in equation

(4.6.2) using a NPMLE of the cumulative distribution function of the Zi’s. The approach of Gómez

et al. (2003), referred to as the GEL approach, and the approach of Morrison et al. (2022), referred

to as the MLB approach, model the distribution of time-to-event, interval-censored covariate and

longitudinal outcomes simultaneously. In addition, an EM estimating procedure is proposed by

Morrison et al. (2022).

4.6.2 An Imputation-based Approach Based on Turnbull’s Estmator

In this section, we propose a new approach for handling doubly censored data. The idea can be

described as follows.
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• We first perform Turnbull’s estimator on the first interval-censored data.

• We then sample the imputed Ŝi based on each individual’s (Ui, Vi]. If Ui = Vi, then there is

no need to sample but let Si = Ui = Vi (exact event).

• Based on the imputed Ŝi’s, we define the imputed time of interest Ŷi = Ti → Ŝi and the

imputed second interval-censored time (Li → Ŝi, Ri → Ŝi] for i = 1, 2, · · · , n.

• Perform DPMIV analysis based on the vector of covariates Zi (including the exposure Xi)

and the second interval-censored data.

• Repeat the above four steps M times to create multiple imputed datasets.

One of the advantages of the proposed approach is that it reduces the more complicated doubly

interval-censored data to partly interval-censored data by imputing the first interval-censored

outcome. The imputation procedure is based on sampling from the conditional probability vector

estimated by Turnbull’s estimator.

4.6.3 Simulation Studies

Similar to the partly interval-censored case, we conduct simulations to evaluate the performance of

proposed two-stage DPMIV method for doubly interval-censored time-to-event data under a variety

of scenarios. We compare the proposed imputation-based estimator with two other imputation

methods: uniform imputation and midpoint imputation. Additionally, we include two other

methods for reference in our simulation analysis: 1) the naive single-stage accelerated failure time

(AFT) model for partly interval-censored data (Huang and Wellner, 1997; Anderson-Bergman,

2017), which does not account for unobserved confounders and measurement errors, and 2) the

two-stage AFT model, i.e., we first regress the exposure on instruments and then regress the

outcome on the fitted exposure.

We simulated data from model (4.3.4)-(4.3.5) with a two-dimensional instrument Gi and a

two-dimensional observed confounder Ui, both following a standard bivariate normal distribution

N(0, I2). The regression parameters in equation (4.3.4) were set as ω1 = (0.5, 0.5)T , and ω2 =

(0.5, 0.5)T . The regression parameters in equation (4.3.5) were set as ⇀1 = →1, and ⇀2 = (0.8, 0.8)T .
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Similar to the partly interval-censored case, we considered six scenarios for the bivariate distri-

bution of (↽1i, ↽2i)T :

1. Bivariate normal distribution.

2. Bivariate exponential distribution as described in Equation 18 in Gumbel (1960).

3. Mixture of two bivariate normal distributions with di!erent means but the same variance-

covariance matrix.

4. Mixture of two bivariate normal distributions with the same mean but di!erent variance-

covariance matrices.

5. Mixture of five bivariate normal distributions, mimicking the distribution of the female cohort

estimated from the UK Biobank dataset using the DPMIV method.

6. Mixture of five bivariate normal distributions, mimicking the distribution of the male cohort

estimated from the UK Biobank dataset using the DPMIV method.

Detailed specifications for the bivariate distribution of (↽1i, ↽2i)T under these six simulation scenarios

can be found in Table 7.11.

Similarly to the simulation settings in Sun et al. (2004), we generate doubly interval-censored

data (Ui, Vi), Si, (Li, Ri), Ti as follows. In each simulated dataset, we assume

• logSi ↘ 2↗Beta(5, 5);

• Si → Ui ↘ Uniform(0, 0.2), Vi → Si ↘ Uniform(0, 0.2);

• Ti = exp(Yi) + Si;

• Ti is assumed to be right-censoring only, i.e., either Ri = Li or Ri = +⇒;

• Right-censoring is generated as Ci ↘ Uniform(Vi, Vi + 2), then Li = min(Ci, Ti), Ri = Li if

Li = Ti else Ri = +⇒.

A natural question is, how many multiple imputation datasets do we need? We conduct a simulation

study to show the e!ect of the number of imputed datasets on the bias of causal e!ect estimate

in Figure 4.5. The x-axis is the number of imputed datasets and the y-axis represents six di!erent
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Figure 4.5: Bias of ⇀1 Using Multiple Imputations. The x-axis represents the number of multiple
imputations for sample size 500; the y-axis represents the average bias using Turnbull’s estimator for
imputation under di!erent simulation scenarios.

simulation scenarios. From the figure, we recommend that 51̃0 imputed datasets would be su”cient

to produce reasonable results and in the simulation study, we set it to 5.

Finally, we considered di!erent sample sizes n = 300, 500 and 1000 under each scenario. Ta-

ble 4.4 presents a summary of the simulated bias, standard deviation (SD), and coverage probability

(CP) for the causal parameter ⇀1 using the three aforementioned methods based on 100 Monte Carlo

replications. Additionally, we also report the average of the estimated number of clusters k using

the DPMIV method.
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Figure 4.6: Number of Clusters for Each Scenario with Size 1000 and Turnbull’s Estimator

Table 4.4 presents a summary of the simulated bias, standard deviation (SD), and coverage

probability (CP) for the causal parameter ⇀1 = →1 using three di!erent methods: the single-stage

AFT estimate, the two-stage AFT estimate, and the proposed DPMIV estimate, based on 100

Monte Carlo replications. Additionally, for the proposed DPMIV method, the table reports the

average of the estimated number of clusters k.

As observed in Table 4.4, the naive single-stage AFT model estimate generally exhibits sub-

stantial bias and unacceptably low coverage probability across all scenarios and sample sizes. This

highlights the critical need to address unobserved confounders and measurement errors, as failing

to do so results in biased estimates and poor coverage.

The two-stage AFT estimate performs better than the single-stage estimate, showing reduced

bias and improved coverage probabilities. However, its performance varies depending on the

scenario and the sample size, indicating that while it addresses some of the issues related to

confounders and measurement errors, it does not fully resolve them.

Our proposed DPMIV method consistently delivers robust and stable performance, with min-
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imal bias and satisfactory coverage probability across all six scenarios and various sample sizes.

In the first scenario, it exhibits similar bias and standard deviation (SD) to the two-stage AFT

estimate and outperforms it in terms of coverage probability. The DPMIV method also correctly

identifies the number of clusters k as being close to the expected value, indicating its ability to

adapt to the underlying data structure.

In Scenario 2, where the error distribution is exponential, the DPMIV method estimates

k as 5.755, 6.285, and 7.387 for the di!erent imputation methods with n = 300, suggesting

a normal mixture approximation to the bivariate exponential distribution. This indicates the

method’s flexibility in modeling di!erent types of data distributions. In Scenarios 3 and 4, which

involve normal mixture distributions, the DPMIV method shows minimal bias and high coverage

probability. It tends to estimate k as slightly higher than the true number of clusters, reflecting the

presence of additional components in the data that capture the variability in the distribution. For

Scenarios 5 and 6, which involve more complex normal mixture distributions, the DPMIV method’s

performance remains strong as the sample size increases. The method provides accurate estimates

of ⇀1 with good coverage probabilities, and the estimated number of clusters k aligns well with the

expected values, indicating its e!ectiveness in handling complex data structures.

Comparing the three imputation strategies (midpoint, uniform, and Turnbull), we observe

notable di!erences in their performance:

• Midpoint Imputation: This strategy tends to show higher bias and lower CP in some

scenarios compared to the other methods. While it is simple to implement, its performance

is less reliable, especially in scenarios with more complex error distributions.

• Uniform Imputation: This strategy generally performs better than midpoint imputation,

showing reduced bias and improved CP across most scenarios. It provides a good balance

between simplicity and accuracy, making it a reasonable choice for many applications.

• Turnbull Imputation (Proposed Strategy): Turnbull imputation consistently outper-

forms the other two strategies, particularly in scenarios with complex error distributions.

It shows the least bias and highest CP across all scenarios, highlighting its robustness and

reliability. The Turnbull method’s superior performance makes it the preferred choice for

handling mixed censoring in instrumental variable analysis.
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Overall, the DPMIV method with Turnbull’s estimator imputation strategy demonstrates su-

perior performance in estimating the causal parameter ⇀1 under di!erent simulation scenarios.

4.6.4 IV Analysis of Doubly Interval-censored UK Biobank Data

The UK Biobank (UKB) cohort comprises 500,000 individuals aged 40 to 69 years at baseline,

recruited between 2006 and 2010 at 22 assessment centers across the United Kingdom. Participants

were followed up until January 1, 2018, or until their date of death. This extensive resource provides

data on genotyping, clinical measurements, assays of biological samples, and self-reported health

behavior. As an illustrative example, we will investigate the causal e!ects of systolic blood pressure

(SBP) on the time-to-development of cardiovascular disease (CVD) from the onset of diabetes

mellitus (DM) with a focus on White individuals, including 3,141 females and 5,029 males, who

developed DM before CVD. Descriptive statistics of baseline characteristics for this subgroup are

summarized in Appendix E.

A significant challenge arises from time stamp ambiguities regarding the onset of DM in the UKB

data, a common issue in many electronic health record (EHR) datasets for various diseases. The

exact DM onset date remains unknown, only known to fall between two visit times. Consequently,

the time-to-DM is partly interval-censored with 28.7% interval-censored, 16.2% left-censored, and

55.1% event in the UKB white male cohort and 37.8% interval-censored, 1.4% left-censored, and

60.7% event in the white female cohort. Similarly, the time-to-CVD is partly interval-censored with

85.1% right-censored, and 14.9% event in the UKB white male cohort and 2.6% interval-censored,

87.7% right-censored, and 9.7% event in the white female cohort.

Applying the proposed imputation-based approach, we first imputed five interval-censored time-

to-CVD datasets for each cohort and then run DPMIV for each imputed dataset. Figure 4.7 has

shown two samples of the imputed NPMLE (the top is from the female cohort and the bottom

five is from the male cohort). More samples are provided in the Appendix 7.3.8. The left panels

represent conditional survival probabilities from the Turnbull’s estimator and the right panels plot

the empirical cumulative distribution function (ECDF) based on the left panels; the grey dashed

lines are cdf of a uniform distribution. It is clear that the empirical distribution of the UKB study

is far from a uniform distribution. Hence, it might not be appropriate to impute the time-to-DM

using either midpoint imputation or uniform distribution approaches.
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Some of the priors used in the DPMIV model are partly informed by the results from a

preliminary two-stage least squares estimation method. To elucidate, we initially conduct an

ordinary linear regression of X on G (SNPs) (refer to Equation (4.3.4)), utilizing the estimated

coe”cients and standard errors as hyperparameters for the first-stage priors on ω1, ω2 and ↽i1 in

the DPMIV model.

Table 4.7 shows the doubly interval-censored analogue of Table 4.3 where the CIs of DPMIV

and PBIV are constructed by combining posterior samples using di!erent datasets and then taking

the quantiles. Figure 4.8 shows the doubly interval-censored counterpart of Figure 4.4. The results

are consistent with the interval-censored case, suggesting that our proposed method is reliable and

stable. Similar density contour plots of the estimated error distribution are displayed in Figure 4.9,

providing evidence for the e”cacy of our proposed approach.

4.7 Discussion

In this chapter, we have developed DPMIV, a semiparametric Bayesian approach for IV analysis

to examine the causal e!ect of a covariate on a partly interval-censored time-to-event outcome, in

the presence of unobserved confounders and/or measurement errors in the covariate. We show by

simulations that the proposed method largely reduces bias in estimation and it greatly improves

coverage probability of the endogenous parameter, compared to the ‘simple method’ where the

unobserved confounders and measurement errors are ignored and PBIV, the parametric Bayesian

approach. The method works well in a variety of settings, provided that the instrumental variable

assumptions described early in introduction are satisfied. We also extend the methods to doubly

interval-censored data and it produces consistent results compared with the interval-censored data

using the UKB data.

We note that one of the limitations of our MCMC algorithm is that it uses Neal’s algorithm

8 which is slow and ine”cient with a large number of auxiliary parameter m. We put the

computational modification as one of our future works. In addition, a first step in IV analysis

is to select which IVs are valid under the three assumptions in the introduction. Kang et al. (2016)

developed the R package ”sisVIVE” to select instrumental variables that are valid under the three

IV assumptions and estimate the causal e!ect simultaneously. It is of interest to develop a Bayesian
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method for selecting instrumental variables and estimating the causal e!ect simultaneously. One

alternative is to replace the uniform priors in our algorithm with horseshoe priors (Carvalho et al.,

2009) and we put it as our future work.

Table 4.7: Comparison of approaches for the analysis of doubly interval-censored UKB data. For
completeness, we extend PBIV to handle doubly interval-censored data in a similar fashion as DPMIV does.
The AFT model without instruments assumes a parametric log-normal error. For uniform and Turnbull’s
imputation strategies, we impute 5 di!erent datasets and for each imputed dataset, we run 5 di!erent chains.
For the midpoint imputation strategy, there is only one imputed dataset and we also run 5 di!erent chains.

Female Cohort
Imputation Estimate of ϑ1 SE 95% CI

DPMIV with SNPs as instruments Midpoint -0.280 0.151 (-0.589, 0.005)
DPMIV with SNPs as instruments Right -0.104 0.162 (-0.429 , 0.214)
DPMIV with SNPs as instruments Uniform -0.271 0.170 (-0.605, 0.054)
DPMIV with SNPs as instruments Turnbull -0.351 0.177 (-0.694, -0.006)
PBIV with SNPs as instruments Midpoint 0.756 0.216 (0.396, 1.334)
PBIV with SNPs as instruments Right 0.688 0.162 (0.392, 1.026)
PBIV with SNPs as instruments Uniform 0.875 0.198 (0.483, 1.264)
PBIV with SNPs as instruments Turnbull 0.609 0.234 (0.113, 0.971)
AFT Model without instruments Midpoint 0.396 0.195 (0.013,0.780)
AFT Model without instruments Right 0.358 0.224 (-0.081,0.798)
AFT Model without instruments Uniform 0.355 0.186 (-0.009,0.720)
AFT Model without instruments Turnbull 0.447 0.237 (-0.017,0.812)

Male Cohort
Imputation Estimate of ϑ1 SE 95% CI

DPMIV with SNPs as instruments Midpoint -0.329 0.118 (-0.527, -0.114)
DPMIV with SNPs as instruments Right -0.269 0.142 ( -0.556, -0.008)
DPMIV with SNPs as instruments Uniform -0.344 0.128 (-0.614, -0.125)
DPMIV with SNPs as instruments Turnbull -0.405 0.144 (-0.672, -0.135)
PBIV with SNPs as instruments Midpoint 0.603 0.200 (0.134, 0.989)
PBIV with SNPs as instruments Right 0.452 0.132 (0.206, 0.714)
PBIV with SNPs as instruments Uniform 0.495 0.197 (0.069 0.802)
PBIV with SNPs as instruments Turnbull 0.527 0.155 (0.256, 0.870)
AFT Model without instruments Midpoint 0.495 0.113 (0.274, 0.716)
AFT Model without instruments Right 0.659 0.134 (0.396, 0.922)
AFT Model without instruments Uniform 0.511 0.112 (0.292, 0.731)
AFT Model without instruments Turnbull 0.503 0.129 (0.249, 0.756)
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Figure 4.7: Two samples of the imputed NPMLE (Top: female; Bottom: male). The left panels represent
conditional survival probabilities from the Turnbull’s estimator. A single verticle line means it puts a
probability mass at that particular age; a gold rectangle means it puts the probability on the interval. The
right panels plot the empirical cumulative distribution function (ECDF) based on the left panels and the
grey dashed lines are cdf of a uniform distribution.
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Figure 4.8: Trace plots of the Female (top) and the Male (bottom) Cohorts. Each trace comes from an
imputed dataset.

Figure 4.9: Log-density contour plot of random errors (↽1, ↽2) of the DPMIV for the doubly interval-
censored UKB data using Turnbull’s estimator.

(a) Female cohort (b) Male cohort
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CHAPTER 5

Introduction to Optimal Design and Its Applications

in Regression Models

5.1 Preamble

In this chapter, we show metaheuristics can be used to provide improved inference for toxicology

experiments by finding more e”cient designs. In section 5.2, we first illustrate the motivation

of optimal design, and review the fundamental theory of optimal approximate designs, including

the representation of information matrices and convex optimality criteria. The preliminary work

consists of two separate parts. In section 5.3.1, we provide analytical formulae for various types

of optimal designs and apply metaheuristics to find global optimal designs based on equivalence

theorems. In section 5.4, we apply compound optimality criteria and build an R Shiny app to help

toxicologists to design experiments at a lower cost.

5.2 Introduction to Optimal Design

5.2.1 Motivation of Optimal Design

In a dose–response experiment, decisions regarding the dose range, the number of doses, the dose

levels, and the number of experimental units at each dose are sometimes made predicated on

nebulous criteria. These are design issues that can potentially have a substantial impact on the

quality of the statistical inference at the end of the study, yet they are decided in some cases on an

ad-hoc basis. Frequently, an equal number of experimental units are assigned at each dose. When

the doses are equally spaced, these are called uniform designs in the statistical literature and while

they are appealing and intuitive, it has been shown that they can be ine”cient, depending on the
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goal of the study and the underlying model assumed. For example, Wong and Lachenbruch (1996)

showed that performance of such designs can depend sensitively on the choice of the number of

doses in a uniform design, the model, and the optimality criteria. Therefore, each aspect in the

design of the study must be carefully considered to realize maximum accuracy in the information.

Such attention to detail will enhance reproducibility, thus addressing a current issue in animal

experimentation (Giles, 2006) and reducing the overall cost of experiments. More specifically, if

the current cost for producing a new drug is 10 dollars per dose, then using optimal design theory,

one is able to reduce the cost to 5 dollars per dose.

To optimally design an experiment, model assumptions are required to work out the mathe-

matical and statistical details. Invariably, the goal is formulated as an objective function defined

on the user-specified dose range (or design interval) that depends on the statistical model and

the design. The optimization of the criterion can then be performed among a specific class of

designs, for example, among all designs with five doses, or among all designs on a given dose

interval. The resulting optimal design is therefore model-based and, as a consequence, can be

highly model-dependent, suggesting that choice of a statistical model for the dose–response study

is also important.

5.2.2 Basic Concepts of Optimal Approximate Design

Optimal approximate designs in clinical trials can help investigators achieve higher quality results

for the given resource constraints (Schwaab et al., 2006; Jóźwiak and Moerbeek, 2013; Sverdlov

et al., 2020; Zhou et al., 2021). The creation of this field can be traced back to Smith (1918).

From 1950s to 1980s, the field of approximate design has witnessed a booming development

(Federov, 1972; Kiefer, 1974; Pázman, 1986; Atkinson et al., 2007; Silvey, 2013) and we give a

brief introduction below.

Consider a linear model E(y) = µ = ⇀T f(x) where µ is the expectation of y. A k-point design

↽ is a 2↗ k matrix of the following form

↽ =



x1 x2 · · · xk→1 xk

p1 p2 · · · pk→1 pk





where xi’s are called design points and pi’s are non-negative weights that sum to 1. In practice, we
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usually have a total of n observations and npi is not an integer in general. Hence, we choose the

closest integer of npi and assign the corresponding dose xi to these individuals. For this reason, ↽

is referred as approximate design in literature. The information matrix associated with design ↽ is

M(↽) =



X
f(x)f(x)T ↽(dx) =

k∑

i=1

pif(xi)f(xi)
T

where ↽(dx) is the measure induced by pi’s. The optimal design seeks to find a ↽⇓ that minimizes

ς(M(↽)) where ς(·) is a real-valued function. Commons choices of ς(·) and their terminologies are

given in the following table

Table 5.1: List of Common Choices of ς(·)

Optimality
a

Choice of ς Remarks

A Tr(M→1)b Sum of variances

c Var(g(⇀̂))c Variance of g(⇀̂)

D log detM→1 Log-volume of the ellipse

E min↼i(M) = ↼min
d Length of minor axis

G maxi(M→1)ii Maximum of Var(⇀̂)

I

X f(x)TM→1f(x)µ(dx) Integrated variance

a For example, the first line reads A-optimality.

b Tr refers to the trace function of a matrix.

c g is a function of ⇀, ⇀̂ is the MLE of ⇀ and the variance of g(⇀̂) can be derived using Delta

method, i.e., Var(g(⇀̂)) = ∝g(⇀̂)TM→1
∝g(⇀̂) and ∝ refers to the gradient operator.

d ↼’s refer to eigenvalues of M.

Further, if we extend the linear model framework to generalized linear models, then the information

matrix depends on parameters (see section 5.3.1). In this case, one usually plug-in plausible

parameter values and then calculate the optimal design ↽⇓. We call it ς-optimal design, where

ς refers to D-, A-, c-, E-, etc. In practice, researchers would like to consider di!erent criteria

simultaneously, leading to the so-called compound criteria. For a comprehensive review of di!erent

optimality criteria, see Chapter 10 of Atkinson et al. (2007) or the review paper by Fedorov (2010).
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To verify that the resulting design is globally optimal, that is, optimal among all possible

designs, one needs to apply the equivalence theorem (Kiefer, 1974) and plot the sensitivity functions

to check. Di!erent optimality criteria corresponds to di!erent types of equivalence theorems and

sensitivity functions, hence for brevity, we state them only if necessary. In addition, Chen et al.

(2022) provides a comprehensive review on the application of PSO in optimal approximate design.

5.2.3 The General Equivalence Theorem

The celebrated general equivalence theorem is not a single theorem but a series of theorems

that specify the ς-optimality of a design. It was first proved by Kiefer (1959) and Kiefer and

Wolfowitz (1960) showing the equivalence of D- and G-optimal designs in classical Gaussian linear

models. Later, Fedorov (1971) extended it to multivariate linear regression models and White

(1973) generalized it to non-linear models. The well-known paper by Kiefer (1974) proposed new

optimality criteria and provided a general class of equivalence theorems. In 1980, S.D. Silvey

collected the general theory of both linear and non-linear cases in his monograph (Silvey (2013)).

Making a step further, Cook and Wong (1994) and Clyde and Chaloner (1996) provided theorems on

the equivalence of compound designs and constraind designs. Non-trial extensions to multivariate

non-linear case were also studied by a number of authors, for example, see the appendix in Zocchi

and Atkinson (1999). Chapter 9 and 10 in Atkinson et al. (2007) collects many of the theorems in

the linear case while Fedorov and Leonov (2013) mainly deals with non-linear models.

Let X be a given compact subset of Euclidean k-space, to be known as a design space. Suppose

the response vector y is related to x ↑ M via generalized linear models. Let s̃(x) be the quasi-score

vector defined as the square root of the Fisher information matrix based on a single observation

(See Section 6.4.2.4 for an example). In the linear regression case, s̃(x) is simply x itself.

Let P be the class of probability measures on the Borel sets of X . Any ↽ ↑ P will be called a

design measure. Let M(↽) be the Fisher information matrix associated with the design measure ↽.

That is, suppose for each x ↑ X , the response vector y follows an exponential family distribution

M(↽) =



X
s̃(x)s̃(x)T ↽(dx)

Further define M = {M(↽) : ↽ ↑ P}. Sometimes we drop the dependence on ↽ and simply write
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M or Mi ↑ M.

Definition 5.2.1 (Gâteaux Derivative). Let ς be a real-valued function defined on the k ↗ k

symmetric matrices and bounded above on M. We allow ς to take the value →⇒ on M. The

Gâteaux Derivative of ς at M1 in the direction of M2 is:

Gε(M1,M2) = lim
▷↖0+

1

ϱ
{ς(M1 + ϱM2)→ ς(M1)} . (5.2.1)

An important property of Gε is:

Gε(M1,
∑

i

aiMi) =
∑

i

aiGε(M1,Mi),

for all real ai. For details, see page 74 in Silvey (2013) and page 241 in Rockafellar (1970). This

fact is the key to our subsequent derivations.

Definition 5.2.2 (Fréchet Derivative). The Fréchet derivative of ς at M1 in the direction of M2

is:

Fε(M1,M2) = lim
▷↖0

1

ϱ
[ς((1→ ϱ)M1 + ϱM2)] . (5.2.2)

Lemma 2 (Basic Properties of Fréchet Derivative (Silvey, 2013)). Some basic properties of Fréchet

dericative are

1. Since M is convex, ς((1→ ϱ)M1 + ϱM2) is automatically defined.

2. Concavity of ς implies that
1

ϱ
[ς((1→ ϱ)M1 + ϱM2)]

is a non-increasing function of ϱ ↑ (0, 1].

3. By letting ϱ = 1 and concavity of ς implies that

Fε(M1,M2) ⇐ ς(M2)→ ς(M1).
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4. By definition, Fε(M1,M2) = Gε(M1,M2 →M1). Hence, if ς is di!erentiable and


i
ai = 1,

Fε(M1,
∑

i

aiMi) =
∑

i

aiFε(M1,Mi).

5. If M̃ is a random matrix, ς is di!erentiable, we have

EFε(M1, M̃) = Fε(M1,EM̃).

6. Suppose s is a random k-vector with distribution ↽ and M(↽) = E(ssT ). If ς is di!erentiable

at M(↽),

EFε(M(↽), ssT ) = Fε(M(↽),E(ssT )) = Fε(M(↽),M(↽)) = 0.

These properties enable us to construct ς-optimal design measures in the next theorem.

Theorem 5.2.1 (The General Equivalence Theorem (Kiefer, 1974; Silvey, 2013)). We assume that

M(↽) is of form M(↽) =


l

i=1 pis(x)s(x)
T and


l

i
pi = 1 are nonnegative design weights. Note this

is indeed the case in generalized linear models. If ς is concave on M and di!erentiable at M(↽⇓),

then the following are equivalent:

(1) ↽⇓ is ς-optimal;

(2) The Fréchet derivative

Fε(M(↽⇓), s(x)s(x)T ) ≃ 0 (5.2.3)

for all x ↑ X and the maximum of Fε is 0 which occurs when x is at the points of support

of ↽⇓;

(3) The design ↽⇓ satisfies

max
x↑X

Fε(M(↽⇓), s(x)s(x)T ) = min
φ

max
x↑X

Fε(M(↽), s(x)s(x)T ). (5.2.4)

Proof. We prove that (2) ′ (1), (1) ′ (2), (1) ′ (3) and (3) ′ (1).
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• (2) ′ (1): Since any M(↽) is of form M(↽) =


l

i=1 pis(x)s(x)
T , we have that

Fε(M(↽⇓),M(↽)) =
∑

i

piFε(M(↽⇓), s(x)s(x)T ) ≃ 0

by property 4 in 2. By property 3 in 2, we have

ς(M(↽))→ ς(M(↽⇓)) ≃ Fε(M(↽⇓),M(↽)).

Hence, M(↽⇓) is ς-optimal.

• (1) ′ (2): By (1) we have

ς((1→ ϱ)M(↽⇓) + ϱM(↽))→ ς(M(↽⇓)) ≃ 0

for any ↽ and ϱ ↑ [0, 1]. Note that (1 → ϱ)M(↽⇓) + ϱM(↽) = M((1 → ϱ)↽⇓ + ϱ↽) so that

(1→ ϱ)M(↽⇓) + ϱM(↽) is within the domain M. Dividing both sides by ϱ and letting it goes

down to 0 gives the desired result. To show the maximum is attained at the support points

of ↽⇓, by property 6 in 2, we have E

Fε(M(↽⇓), s(x⇓)s(x⇓)T )


= 0 for any design ↽⇓ and x⇓

with distribution induced by ↽⇓. If ↽⇓ is discrete with finite support x1, · · · , xn, then we must

have Fε(M(↽⇓), s(xi)s(xi)T ) = 0, i = 1, · · · , n.

• (1) ′ (3): Let x⇓ be a random vector with distribution induced by ↽⇓. By property 6 in 2,

we have E

Fε(M(↽⇓), s(x⇓)s(x⇓)T )


= 0. Hence,

max
x↑X

Fε(M(↽⇓), s(x)s(x)T ) ⇐ 0.

By (2), we have Fε(M(↽⇓), s(x)s(x)T ) ≃ 0 and it follows that

min
φ

max
x↑X

Fε(M(↽), s(x)s(x)T ) = max
x↑X

Fε(M(↽⇓), s(x)s(x)T ) = 0.

The minimum is attained when ↽ = ↽⇓ if such a ↽⇓ exists.

• (3) ′ (1): If ↽+ satisfies the condition. Suppose a ς-optimal design exists and denote it as
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↽⇓, then we know

max
x↑X

Fε(M(↽⇓), s(x)s(x)T ) = 0 = min
φ

max
x↑X

Fε(M(↽), s(x)s(x)T ).

But this suggests that

max
x↑X

Fε(M(↽+), s(x)s(x)T ) = 0,

which implies ↽+ is also ς-optimal.

There are several classes of optimal designs lay outside the general Fisher information-based

framework. One is known as optimal discriminating designs. T→ and KL→optimal designs fall

into this category. Another type of optimal designs is known as asymptotic optimal designs. It

is, indeed, based on functional of matrices. However, the matrices here are no longer Fisher

information but asymptotic variance matrices of the corresponding estimators. These estimators

can be constructed from likelihood functions, estimating equations or M -/Z-estimators in general

(Dette and Trampisch, 2012).

5.3 Binary Regression Models

5.3.1 Two-parameter Binary Regression

Binary endpoints are common in clinical trials, to name a few: beetle mortality and embryogenic

anthers in toxicology studies; tumor progression status in cancer studies; low-density lipo-protein

(LDL) cholesterol levels (desirable vs undesirable). If we can determine the dose level most

e”ciently under some criteria, then we would be able to reduce the cost of experiments significantly.

Some preliminary work on D-optimal design for binary regression is given in Haines et al. (2007);

Atkinson et al. (2007); Kabera and Haines (2012). However, there lack a detailed and unified

framework for binary regression with di!erent types of link functions under D-optimality. This

project is trying to fill in the gap. Once the gap is being filled, practitioners can choose their own

favorite link functions in practice to construct an D-optimal design quickly. Further, not many

user-friendly packages have been developed for practitioners, so we develop a Python Package for
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clinicians and biostatisticians to use.

In the following, we first give a review on binary regression and then derive the key equation

for D-optimal design. Finally, we illustrate the use of the equation using di!erent examples.

Assume that for i = 1, · · · , n, the response yi is a binary outcome with covariate xi ↑ Rd. The

yi’s are independently distributed and the density is

p(y|x,⇁) = p(y|φ(x,⇀)) = exp

(
y ln

⇁

1→ ⇁
+ ln(1→ ⇁)

)

where ⇀ is a p-dimensional parameter of interest and ⇁ = F (φ) =

ς

→⇐ f(s)ds. Let X be the design

space and the design ↽ be

↽ =



x1 x2 · · · xn→1 xn

p1 p2 · · · pn→1 pn





where for all i, xi ↑ X , pi ⇐ 0 and


n

i=1 pi = 1. Let g(x,⇀) = E

→

ϱ
2 log p(y|x,◁)

ϱϑϱϑT


be the Fisher

information associated with a single point x, then

g(x,⇀) = 1xxT

where 1 = F ↗(φ)2/(⇁(1 → ⇁)) = f(φ)2/(⇁(1 → ⇁)). The information matrix associated with the

design ↽ is

M(↽) =



X
g(x,⇀)↽(dx)

=
n∑

i=1

pi1ixix
T

i ,

where

1i =
f(φ)2

(⇁(1→ ⇁))
,

n∑

i=1

pi = 1, pi ⇐ 0.

Here are some examples of commonly used models in practice.
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• (Logit) The most famous model is the logistic regression with logit link.

f(φi) =
exp(φi)

(1 + exp(φi))2
,

φi = ln
⇁i

1→ ⇁i
,

⇁i =
exp(φi)

1 + exp(φi)
,

M(↽) =
n∑

i=1

pi exp(φi)

(1 + exp(φi))2
xix

T

i .

• (Probit) Prior to the presense of logit link, one uses the probit link.

f(φi) =
1

∞
2⇁

exp

(
→
1

2
φ2i

)
,

φi = &→1(⇁i),

⇁i = &(φi),

M(↽) =
n∑

i=1

pi exp(→φ2
i
)

2⇁&(→φi)&(φi)
xix

T

i .

where &(·) is the cumulative function of standard normal.

• (Laplace) If we want the rate of decay is faster than student t but slower than probit, then

Laplace density is an alternative:

f(φi) =
1

2
exp (→|φi|) ,

φi = F→1(⇁i),

F (φi) =
1

2
+

1

2
sgn(φi) (1→ exp(→|φi|)) ,

M(↽) =
n∑

i=1

pi exp(→2|φi|)

4F (φi)S(φi)
xix

T

i

where sgn(·) is the sign function and S(·) = 1→ F (·).
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5.3.2 Some Optimal Design Results on Binary Regression Models

A D-optimal design seeks to find a design ↽⇓ such that detM(↽) is maximized. It is well known that

if we know the D-optimal design for a k-parameter model is supported at k-points, then all points

are equally weighted (Pázman, 1986; Wong, 2021). In the following, we always assume k = 2, then

detM(↽) =
1

4
det



 11 + 12 11x1 + 12x2

12x2 + 11x1 11x21 + 12x22





↖ (11 + 12)

11x

2
1 + 12x

2
2


→ (11x1 + 12x2)

2

=

12
1x

2
1 + 1112(x

2
1 + x22) + 12

2x
2
2


→


12
1x

2
1 + 21112x1x2 + 12

2x
2
2



= 1112

x21 → 2x1x2 + x22



↖
f(φ1)2f(φ2)2

F (φ1)S(φ1)F (φ2)S(φ2)
(x1 → x2)

2 (5.3.1)

where for i = 1, 2, φi = ⇀0 + ⇀1xi, F (φi) =

ςi

→⇐ f(s)ds, S(φi) = 1 → F (φi). Now it is natural to

consider, if we are given a maximizer (φ⇓1, φ
⇓
2) of Formula 5.3.2, is it unique? The short answer is

no unless φ⇓1 and φ⇓2 is symmetric around 2a and we provide a lemma below.

Lemma 3. If f(s) is symmetric, i.e., f(a+ s) = f(a→ s) for some a, then for any design

↽⇓ =




ς
↓
1→ϑ0

ϑ1

ς
↓
2→ϑ0

ϑ1

0.5 0.5





we have

detM(↽⇓) = detM(↽↗)

where

↽↗ =




2a→ς

↓
2→ϑ0

ϑ1

2a→ς
↓
1→ϑ0

ϑ1

0.5 0.5





Proof. For i = 1, 2, let x⇓
i
=

ς
↓
1→ϑ0

ϑ1
and x↗

i
=

2a→ς
↓
2→ϑ0

ϑ1
, then

(x⇓1 → x⇓2)
2 =

(
φ⇓1 → φ⇓2

⇀1

)2

= (x↗1 → x↗2)
2
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Next, let φ↗1 = 2a→ φ⇓2 and φ↗2 = 2a→ φ⇓1, we have

f(φ⇓1) = f(a+ (φ⇓1 → a)) = f(a→ (φ⇓1 → a)) = f(2a→ φ⇓1) = f(φ↗2)

and similarly, f(φ⇓2) = f(φ↗1).

Finally, we have

F (φ⇓1) = F (a+ (φ⇓1 → a))

= S(φ↗2)

and S(φ⇓1) = F (φ↗2), F (φ⇓2) = S(φ↗1), S(φ
⇓
2) = F (φ↗1).

WLOG, we may assume that f(s) = f(→s). As an example, one such f is logistic density

f(s) = e→s/(1 + e→s)2. Then we have

detM(↽) =
f(φ1)2f(φ2)2

F (φ1)S(φ1)F (φ2)S(φ2)

(
φ1 → φ2

⇀1

)2

and taking the logarithm of detM(↽) and setting the derivative w.r.t. φ1 equal to zero gives

2f ↗(φ1)

f(φ1)
→

f(φ1)

F (φ1)
+

f(φ1)

S(φ1)
+

2

φ1 → φ2
= 0 (5.3.2)

We denote the above the key equation and call it the WC equation where WC stands for Wong

and Cui. For a symmetric two-point design, we let φ1 = →φ2, then

detM(↽) =
f(φ1)4

F (φ1)2S(φ1)2

(
2φ1
⇀1

)2

and taking the logarithm of detM(↽) and setting the derivative w.r.t. φ1 equal to zero gives

2f ↗(φ1)

f(φ1)
→

f(φ1)

F (φ1)
+

f(φ1)

S(φ1)
+

1

φ1
= 0 (5.3.3)

The resulting solutions provide the design points of theD-optimal and G-optimal designs among

all 2-point designs. To verify that it is optimal among all possible designs, we need to calculate the

sensitivity function based on the equivalence theorem (Atkinson et al., 2007; Wong, 2021).
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Theorem 5.3.1 (Equivalence theorem (Atkinson et al., 2007; Wong, 2021)). Let M(↽) be the

information matrix associated with design ↽, then the following are equivalent (dim(X ) = d),

1. The design ↽⇓ is D-optimal, i.e., ↽⇓ = argminφ detM(↽).

2. The inequality 2(x,⇀) = w(x)(xTM(↽⇓)→1
x) → d ≃ 0 holds for all x ↑ X ↓ Rd where w(x)

is a weight depending on the link φ(x) and 2 is called the sensitivity function.

In the following, we apply the key equation to 3 examples and verify the results using PSO. In

short, we write φ for ⇀0 + ⇀1x. We omit the derivation of the explicit form of information matrices

since it is straightforward.

Example 5.3.1 (Logit). For this problem, f(φ) = exp(φ)/(1 + exp(φ))2 and w = 1/((1+exp φ)(1→

exp φ)). Plug-in all necessary elements, the key equation is

2→
4 exp φ

1 + exp φ
+

2

φ
= 0

Solving it numerically, we obtain φ1 = +1.5434 and φ2 = →1.5434.

The Figure 5.1 demonstrates the sensitivity functions of two locally D-optimal designs with

logit link and specified parameter values.

Figure 5.1: Sensitivity function for logit link.

Example 5.3.2 (Probit). For this problem, f(φ) = exp

→

1
2φ

2

/
∞
2⇁ and &(φ) =


ς

⇐ f(s)ds and

w = exp(→φ2)/(2⇁&(φ)(1→ &(φ))). Plug-in all necessary elements, the key equation is

2

φ
→ 4φ → 2f(φ)

(
1

&(φ)
→

1

1→ &(φ)

)
= 0
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Solving it numerically, we obtain φ1 = +1.1381 and φ2 = →1.1381.

The two panels of Figure 5.2 demonstrates the sensitivity functions of two locally D-optimal

designs with probit link and specified parameter values.

Figure 5.2: Sensitivity function for probit link.

Example 5.3.3 (Laplace). For this problem, we have f(φ) = exp(→|φ|)/2 and w = 1/(2 exp(|φ|)→

1). Plug-in all necessary elements, the key equation is

→4 sgn(φ1)→
2 exp(→|φ1|)

1 + sgn(φ1)(1→ exp(→|φ1|))
+

2 exp(→|φ1|)

1→ sgn(φ1)(1→ exp(→|φ1|))
+

2

φ1
= 0

Solving it numerically, we obtain φ1 = +0.7680 and φ2 = →0.7680.

However, the left panel of Figure 5.3 has shown that (+0.7680,→0.7680) is NOT a locally D-

optimal design. According to Federov’s algorithm (Atkinson et al., 2007), it suggests that we need

to add a design point at 0. This is empirically verified by Particle Swarm Optimization (PSO) in

section 1.3 using the Python package “pyswarms” (Miranda, 2018). The right panel of Figure 5.3

has shown the sensitivity function of the three point design generated by PSO.

5.3.3 Applications

In this section, we apply the developed theory to a dataset which comes from toxicology studies

using sea urchins (the data is provided in Collins et al. (2022)). There are two endpoints (failure

types): EDA/D and Radial:Ab and we use the second endpoint for illustration. The concentration

level for the second endpoint is within 0 to 450 µM , and we re-scale it to [0, 0.45] by dividing 1000.

We run two binary regression models using logit and complementary log-log (Cox regression) link
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Figure 5.3: Sensitivity function for Laplace link.

functions respectively. The results are generated by ‘gtsummary‘ package in R Sjoberg et al. (2021)

and given in Table 5.2.

Table 5.2: Binary regression with two di!erent link functions using sea urchin data

Logit link
Characteristic Estimation 95% CI p-value

ω0 -4.5 (-4.7,-4.4) < 0.001
ω1 20 (19,21) < 0.001

Cox regression
Characteristic Estimation 95% CI p-value

ω0 -3.7 (-3.8, -3.6) < 0.001
ω1 14 (13, 14) < 0.001

The fitted dose-response curve (in this case, concentration-response curve) is given in Figure 5.4:

the orange and dodgerblue curves correspond to Cox regression and logit link respectively. The

dots represent the true observations in Collins et al. (2022) with concentration level greater than

450 removed. Hence, by the WC equation 5.3.2 for two-parameter binary regression, the D-optimal

designs are

↽logit =



0.1478 0.3022

0.5 0.5





↽Cox =



0.1687 0.3343

0.5 0.5





and the sensitivity functions are given in Figure 5.5 (left panel: logit link; right panel: Cox

regression). Multiplying by 1000, the resulting D-optimal designs at the original scale are
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Figure 5.4: The fitted concentration-response curves.

Figure 5.5: Sensitivity functions for the sea urchin data.

↽⇓logit =



147.8 302.2

0.5 0.5



 (5.3.4)

↽⇓Cox =



168.7 334.3

0.5 0.5



 (5.3.5)

Comparing them with the original design given in Collins et al. (2022):

↽⇓original =



 0 100 125 150 175 180 200 225 300 450

0.254 0.148 0.0129 0.169 0.0263 0.0338 0.128 0.0370 0.155 0.0360





(5.3.6)
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we find that the D-optimal design reduces the number of required concentration levels significantly.

5.4 Applications of Beta Regression Models to Toxicity Studies

In toxicity studies, one is interested in designing a dose–response experiment, and more specifically,

a concentration–response experiment (FDA, 2003). As we have indicated in the motivation, existing

methods are always based on uniform design or some nebulous criteria, leading to ine”cient designs

in practice. Hence, the goal of this project is to develop a more quantitative approach to designing

a dose–response experiment.

We have proposed a model-based approach to determine the dose–response relationship using

sea urchins. It can provide the most accurate statistical inference for the underlying parameters of

interest, which may be estimating one or more model parameters or pre-specified functions of the

model parameters, such as lethal dose, at maximal e”ciency (Collins et al., 2022).

Our model assumes that the response follows a Beta distribution whose density is f(y) =
#(⇀+ϑ)
#(⇀)#(ϑ)y

⇀→1(1 → y)ϑ→1. By assuming ω = exp(ω1 + ω2x) and ⇀ = exp(⇀1 + ⇀2x) where x is the

actual dose range (Wu et al., 2005), the mean response rate of the Beta distribution is

1

1 + exp{(⇀1 → ω1) + (⇀2 → ω2)x}
(5.4.1)

where %T = (ω1,ω2,⇀1,⇀2) are unknown model parameters that controls the shape of the response

curve. We apply formula 5.4.1 to construct a dual-objective optimal design and estimate a specific

LDp (the dose concentration expected to result in p% of the urchins succumbing) and % as

accurately as possible. To be more specific, we seek a design ↽ to maximize the dual e”ciency

edual = W ↗ log eD + (1→W )↗ log ec (5.4.2)

where W is a value within [0, 1] and edual, eD and ec are dual- D- and c- e”ciencies respectively

(Atkinson et al., 2007). Details for rescaling the two criteria into e”ciencies and how the weight W

is properly chosen are discussed in Cook and Wong (1994) and theorem 5.4.1. In general, smaller

values of W imply less emphasis on the D-optimality criterion. Additional examples with R codes

for related models are given in Hyun et al. (2018).
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Since the locally optimal design depends on unknown parameters %, we provide one set of

nominal values of % based on maximum likelihood estimation (MLE) from concentration–response

data for the sea urchin study with various trimethoprim concentrations (Conc) (Collins et al.,

2022). To investigate if the optimal designs were robust to misspecified nominal parameter values,

five additional sets of parameter values were selected that provide reasonable approximations to

response curves (Collins et al., 2022). Both eD and ec are given in our publication.

We also implemented an app based on R Shiny (Wickham, 2021) and practitioners can find it

available online at https://elviscuihan.shinyapps.io/Dc_optimal_design/. As Figure 5.6

has shown, the app allows users to choose their own hyper-parameters as well as nominal values

and find the locally optimal design by clicking the “Search optimal design” button.

Figure 5.6: Illustration of the R Shiny App

In practice, we use the following procedure to proceed.

1. Estimate parameters of the Beta model using pilot data.

2. Based on the estimated parameters, we further specify more groups of parameters, each with

a weight.
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3. Use estimated and specified parameters to compute the Fisher information matrix of a design

↽.

4. Compute the asymptotic variance of the quantities of interest (LDp, MTD, etc.) by delta-

method.

5. Construct an expression of the dual optimal criterion for the design ↽ with a specified weight

W .

6. Derive the optimal design ↽⇓ using either gradient-based or meta-heuristic algorithms.

7. Use the equivalence theorem to check the resulting design ↽⇓ is globally optimal.

5.4.1 The Cook-Wong Theorem

Finally, we apply Cook-Wong theorem to choose W so that one of the two e”ciencies can achieve a

certain pre-specified level (say, D-e”ciency at 90%), and we provide a modified version (convexity

is not required) and a modified proof is given below.

Theorem 5.4.1 (Cook-Wong, 1994). Suppose ς1 and ς2 are two non-positive finite continuous

functionals and ↼ ↑ (0, 1) and let ↽↼ be the solution to the compound optimization problem

↽↼ = argmax
φ

ς(↽|↼)

= argmax
φ

(↼ς1(↽) + (1→ ↼)ς2(↽)) (5.4.3)

and let ↽c be the solution to the constrained optimization problem

max ς2(↽)

s.t. ς1(↽) ⇐ c (5.4.4)

where WLOG c ↑ [→⇒, 0]. Then 5.4.3 implies 5.4.4 for some suitable c and 5.4.4 implies 5.4.3 for

some suitable ↼ if ς1(↽↼) is left-continuous at ↼ = 1 and right-continuous at ↼ = 0.

Proof. (′): Define c↼ = ς1(↽↼). Suppose there ∈ a ↽⇓ such that ς2(↽↼) ≃ ς2(↽⇓) and ς1(↽⇓) ⇐ c↼,
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then

ς(↽↼|↼) = ↼ς1(↽↼) + (1→ ↼)ς2(↽↼)

= ↼↗ c↼ + (1→ ↼)ς2(↽↼)

≃ ↼ς1(↽
⇓) + (1→ ↼)ς2(↽

⇓)

= ς(↽⇓|↼)

≃ ς(↽↼|↼)

where the last inequality is due to the compound optimality of ↽↼. Hence, we conclude ↽↼ solves

the constrained optimization problem for c = c↼.

(∋): Let c⇓ = ς1(↽c), then the result follows from definition if either c⇓ = ς1(↽↼=1) or c⇓ =

ς1(↽↼=0). Hence WLOG we assume

ς1(↽↼=0) < c⇓ < ς1(↽↼=1)

By the left- and right-continuity of ς1(↽↼) and lemma 3.1 in Pshenichnyi (2020) (page 71), ∈ a

↼⇓ such that c⇓ = ς1(↽↼↓). The compound optimality of ↽⇓ implies ς2(↽↼↓) ⇐ ς2(↽↼c) while the

constrained optimality implies ς2(↽↼↓) ≃ ς2(↽↼c). In conclusion, we have

ς(↽↼↓ |↼⇓) = ς(↽c|c),

which means ↽c is also a solution to the compound optimization problem.

We have reviewed how to construct an optimal design based on di!erent criteria. The opti-

mization is complex in general, numerical methods need to be applied to find the optimal design.

In the next chapter, we demonstrate how metaheuristics can be used in a novel approach to design

toxicology experiments sequentially.
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CHAPTER 6

Failure of Optimal Design Theory? A Case Study in

Toxicology Using Sequential Robust Optimal Design

Framework

6.1 Motivation and Introduction

6.1.1 Importance of the Chapter

As statisticians, we should always ask “what others (say, toxicologists) need”, instead of saying

“what we have in our beautiful theory”. This work represents a groundbreaking collabo-

ration between statisticians and toxicologists, addressing the urgent need to reduce

costs in toxicology experiments using sea urchins. Unlike previous studies in sequential

optimal design, which are largely theoretical or simulation-based, our research directly engages with

practical challenges faced by toxicologists. Surprisingly, our findings reveal that parameter

estimates derived from optimal designs often fail to outperform those obtained from

conventional uniform designs in practice.

This apparent discrepancy arises not from the failure of optimal design theory but from a

multitude of real-world factors. These include (1) practical constraints, such as adherence to Food

and Drug Administration (FDA) guidelines and budgetary limitations (U.S. Department of Health

and Human Services, 2015; Buckley et al., 2020); (2) the influence of genetic shifts in experimental

organisms, which complicate the transferability of theoretical designs across datasets; and (3) the

inherent challenges of implementing complex designs in dynamic experimental settings. These

factors highlight the critical gap between theoretical advancements and practical applications in

toxicological studies.
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To bridge this gap, we propose several remedies:

1. For statisticians: Design frameworks must incorporate robust features like control groups

and endpoints (e.g., lethal doses) to align with biological and practical considerations.

2. For toxicologists: Greater control over genetic shifts in experimental organisms can improve

the consistency and applicability of optimal designs.

3. For researchers and practitioners: Developing accessible, user-friendly tools is essential

to implement theoretical designs e!ectively in real-world toxicology.

While the future of optimal design in practice remains uncertain, our work highlights the need

for continuous adaptation and collaboration. By addressing these challenges, we aim to strengthen

the connection between theoretical statistics and experimental toxicology, paving the way for more

impactful research and applications.

6.1.2 Introduction

In this era of rapid advancement in statistical methods and computational technology, the time

has come to revisit our approach to toxicology experiments. The once-dominant uniform design,

which takes an equal number of observations at each of the equally spaced doses was conceived

in an age before the dawn of computational simulations, has limitations, and it is susceptible to

empiricism and unable to incorporate improved statistical methodology from the field of optimal

designs (Tse-Tung, 2014). With at our disposal now, the future calls for multiple parallel iterative

approaches, where experimentation moves in concert with technology. This shift is not a choice,

but an inevitability. The march of progress is spiral—driven by constant iterations, failures, and

self-renewal (Marx, 2000).

The field of experimental toxicology is a fascinating and dynamic arena within the scientific

landscape. Unlike many traditional disciplines where experiments are conducted under controlled,

predictable conditions, toxicology embraces the inherent unpredictability of biological responses. In

fields such as chemistry or physics, experiments often follow meticulously designed trajectories, with

every variable tightly controlled to minimize surprises. Toxicologists, on the other hand, explore the

intricate interactions between substances and biological systems, frequently uncovering unexpected
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adverse e!ects. This unpredictability is precisely what makes toxicology both challenging and

captivating—every experiment has the potential to reveal something new and unforeseen about the

way our bodies interact with the world around us (Schoen, 1996; Costa et al., 2010).

In contemporary toxicology laboratories, researchers frequently adopt a stepwise experimental

approach, where the outcomes of each testing phase guide subsequent experiments (Collins et al.,

2022). This method, while rooted in decades of practical wisdom, often lacks the e”ciency and

precision that a more structured experimental design could provide. Enter the world of optimal

experimental design—a transformative approach that could revolutionize toxicology. Imagine a

process where every experiment is not just an isolated trial, but a part of a strategic, interconnected

sequence that builds upon the last. With optimal design, toxicologists can use the data they gather

to refine their approach in real-time, saving time, reducing costs, and accelerating the discovery

process with precision and accuracy (de la Calle-Arroyo et al., 2023).

Historically, toxicologists have relied on straightforward experimental designs, such as evenly

spaced dose levels or uniform designs (Casarett et al., 2008; Fedorov and Leonov, 2013). While

simple to implement, these approaches often lead to ine”ciencies—extended timelines, unnecessary

costs, and suboptimal use of data. Moreover, the complexity of toxicological systems, including

dose-response nonlinearity, low-dose e!ects, and phenomena like hormesis (Calabrese and Baldwin,

2003), necessitates experimental strategies that adapt to emerging insights. This demands a move

away from static, empirical methods to a more dynamic, data-driven approach that integrates

modern statistical tools (Dragalin et al., 2008a; Gertsch and Wong, 2024).

The secret to designing these e”cient experiments lies in their flexibility and precision (Holland-

Letz and Kopp-Schneider, 2015). By clearly defining the goals of a toxicology study—whether

it’s identifying a toxic threshold, studying low-dose e!ects, or detecting complex phenomena like

hormesis—researchers can leverage statistical models to guide their experimental designs. This

approach maximizes the accuracy of estimates while streamlining the experimental process. Even

though optimal design theory wasn’t initially created with sequential experiments in mind, it o!ers

a rich toolbox that can be adapted to meet the evolving needs of toxicology (Cui et al., 2024b).

In this project, we present an innovative framework that marries the precision of optimal

design theory with the adaptive, step-by-step nature of toxicological testing (Koutra et al., 2021).

Our method uses data from each experimental phase to fine-tune subsequent steps, ensuring that
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each iteration propels researchers closer to their objectives. By applying optimal design criteria,

toxicologists can select dose levels that maximize statistical precision, all while reducing both costs

and labor. Here’s a glimpse into our step-by-step approach:

• Initial Experiment Design: Based on their expertise, the toxicologist selects an initial set

of doses and conducts the first round of experiments.

• Modeling the Data: After analyzing the initial data, the toxicologist identifies the best-

fitting statistical model, which will guide the design of the next batch of experiments.

• Optimal Dose Selection: Using the fitted model, optimal design criteria can help choose

the next set of doses. For example, a D-optimal design focuses on estimating model param-

eters with maximum accuracy, while a G-optimal design minimizes the variance across the

entire dose-response surface. Alternatively, an integrated criterion can emphasize di!erent

parts of the response curve, depending on the specific goals of the study. These designs often

require fewer dose levels than traditional approaches, making the next round of experiments

more e”cient.

• Evaluating and Adjusting: After the second batch of experiments, the data are analyzed

again. The model is either confirmed through graphical or statistical checks (e.g., a lack-of-fit

test) or adjusted to reflect new insights. If the model remains consistent with earlier findings,

the e”ciency of the current design is compared to that of the optimal design.

• Refining the Design: If the current design is found to be less e”cient, additional dose

levels may be introduced to enhance precision. The process is repeated as necessary.

The following sections demonstrate how our method can be applied to real-world toxicology

experiments, showcasing significant improvements in e”ciency and cost-e!ectiveness. By embrac-

ing this streamlined, data-driven approach, toxicologists can transform the way they approach

experimental design, moving from initial hypotheses to conclusive findings with greater speed and

precision. The rest of the chapter is organized as follows: Section 6.2 provides a comprehensive

review of existing sequential optimal design methodologies and highlights their limitations in

toxicological applications. Section 6.3 introduces our proposed quasi-sequential robust optimal

design framework, detailing its theoretical foundation and implementation. Section 6.4 applies this
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framework to real-world toxicology experiments, showcasing its e!ectiveness in improving dose-

response modeling and experimental e”ciency. Section 6.5 provides simulation studies based on

bivariate probit model. Finally, Section 5 discusses the implications of our findings, potential

limitations, and directions for future research.

6.2 Literature Review: Sequential Optimal Design and Applica-

tions

Sequential optimal design has been a cornerstone in experimental research, allowing for iterative

refinement of experimental parameters based on accumulated data. This approach has found

applications across various fields, including toxicology, clinical trials, and epidemiology.

Theoretical Foundations: The concept of sequential design traces its roots to early works in

optimal experimental design, such as those by Silvey (2013) and Fedorov (1971). Sequential designs

aim to enhance e”ciency by adapting experimental conditions dynamically. Park and Faraway

(1998) introduced a nonparametric sequential approach for estimating response curves, emphasizing

the advantage of iterative adaptation in achieving greater precision with fewer samples. Similarly,

Hughes-Oliver and Rosenberger (2000) utilized compound D-optimality in adaptive group testing

to estimate rare trait prevalences e”ciently, underscoring the method’s applicability to nonlinear

and heteroscedastic models. Lane (2020) developed a theoretical framework that utilizes observed

Fisher information as a priori.

Applications in Dose-Response Studies: One prominent application of sequential optimal

design is in dose-response studies. Dragalin et al. (2008b) proposed a two-stage design for dose-

finding in clinical trials, incorporating both e”cacy and safety considerations through a bivariate

probit model. This methodology demonstrated how sequential designs could address ethical and

practical constraints in clinical research by optimizing dose allocations iteratively. Stacey (2007)

extended this idea using a Bayesian framework, showcasing how adaptive designs could improve

the precision of dose-response models while reducing the risk to participants.

Real-World Implementations: Real-world implementations of sequential designs have high-

lighted their versatility. For instance, Wright and Bailer (2006) discussed sequential methods in

toxicology, where adaptive designs facilitated the e”cient identification of toxic thresholds. In
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biomedical research, Qiu and Wong (2023) employed metaheuristic algorithms like particle swarm

optimization to develop optimal designs for continuation-ratio models, addressing complex dose-

response relationships in early-phase clinical trials. Similar algorithms are booming in optimal

design and other fields of statistics (Cui et al., 2024a).

Challenges and Advancements: Despite their advantages, sequential designs face challenges,

including dependence on prior information and computational complexity. Recent advancements

aim to mitigate these issues. de la Calle-Arroyo et al. (2023) introduced D-augmentation techniques

to enhance design flexibility, enabling better model discrimination and adequacy checks. Park and

Faraway (1998) highlighted the importance of robust algorithms that adapt to uncertain initial

conditions, ensuring reliability in applications with limited prior data.

6.3 Methodology

In this section, we detail the proposed sequential robust optimal design framework, which builds on

existing methodologies such as Wang et al. (2013). We also outline the mathematical framework,

the sequential design process across two stages, and discuss an augmented design approach to

account for practical requirements. Finally, we demonstrate the applicability of this framework to

proportional odds models commonly used in toxicological studies.

6.3.1 Notations

The sequential robust optimal design aims to iteratively refine experimental designs across multiple

stages to achieve greater e”ciency and precision. The core idea is to leverage information from

earlier stages of the experiment to optimize the design of subsequent stages, ensuring robustness

to model uncertainties.

Let [xL, xU ] denote the design space, where xL and xU represent the lower and upper bounds

of the experimental range. An initial proportion of samples, ω, is allocated to Stage I, while the

remaining (1→ω) samples are reserved for Stage II. The optimality criterion, such as D-optimality,

c-optimality, or dual-optimality, guides the design process by optimizing the Fisher information

matrix across stages.
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6.3.2 Proposed Sequential Robust Optimal Design Scheme

In the following, we propose a sequential robust optimal design scheme which is a modification of

Wang et al. (2013). We provide a comparison between two methods in Table 6.1.

• Inputs:

– [xL, xU ], the design space;

– ω, the proportion of samples performed at Stage I (so (1 → ω) is the proportion of

samples performed at Stage II).

– Optimality criterion (e.g., D-optimality, c-optimality or dual-optimality).

• Stage I:

– Perform the initial design which could be evenly spaced on the original or log-scale or

be designed using toxicologist’s expert knowledge;

– Collect a total of N1 samples;

– Repeat the procedure K times.

– Choose a regression model that fits the first set of data well.

• Stage II:

– Utilize the information from Stage I to perform Stage II design for the remaining (1→ω)

experiments:

△ Based on the K sets of data and the regression model that we have chosen, we

estimate K sets of nominal values.

△ Based on the optimality criteria we have chosen, we compute the robust optimal

design that optimizes the criterion function where the Fisher information matrix

is the combination of the first stage design and the to-be-determined second stage

design. It is robust in the sense that we utilizes K di!erent sets of nominal values.

– Perform the statistical modeling and inference using the obtained Stage II design to get

the fitted model.
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• Outputs: The fitted models and the quantity that we are interested in (e.g., parameter

estimates, ED50, oral radialization 50, etc.).

6.3.3 Augmented Optimal Design

To address practical considerations in toxicological studies, such as the inclusion of control groups,

we propose an augmented design approach. The augmented design incorporates additional dose

levels to account for specific experimental requirements.

6.3.3.0.1 Incorporating a Control Group The design can include a zero-dose level to

estimate baseline responses, as follows:

↽ =



0 x1 · · · xn

p (1→ p)p1 · · · (1→ p)pn



 ,

where p is the weight assigned to the control group (x = 0) and pi are the weights for other dose

levels. Following Gollapudi et al. (2013), a common choice is p = 1/(n+ 1).

6.3.3.0.2 Incorporating High Dose Levels To capture endpoints such as lethal e!ects,

the design can include an additional high-dose level x⇓:

↽ =



 0 x1 · · · xn x⇓

ω1 (1→ ω)p1 · · · (1→ ω)pn ω2



 ,

where ω1 + ω2 = ω and x⇓ ensures the inclusion of high-dose observations.

6.3.4 Application to Proportional Odds Models

The proposed framework is particularly suitable for proportional odds models, widely used in

toxicological studies to analyze ordinal responses. These models relate the cumulative probability

of a response to dose levels through a logistic function:

log
P (Y ≃ k | x)

P (Y > k | x)
= ⇀0 + ⇀1x,

148



where Y denotes the response category, x is the dose level, and ⇀0,⇀1 are model parameters.

6.3.4.0.1 Stage I Design for Proportional Odds Models In Stage I, dose levels

are selected to ensure su”cient coverage of the response range, allowing for accurate parameter

estimation. Data from this stage provide initial estimates of ⇀0 and ⇀1.

6.3.4.0.2 Stage II Design for Proportional Odds Models Stage II incorporates the

estimated parameters into the optimal design criteria. The Fisher information matrix for the

proportional odds model is used to determine dose levels that maximize parameter precision while

maintaining robustness to uncertainty.

6.3.4.0.3 Outputs The final model provides parameter estimates and key toxicological end-

points, such as the e!ective dose (ED50) and thresholds for higher response categories.

Table 6.1: Comparison of Wang et al. (2013) and the Proposed Scheme

Aspect Wang et al. (2013) Proposed Scheme
Framework Two-stage design for dose-

response modeling.
Sequential robust design
adaptable to various con-
texts.

Stage I Design Evenly spaced doses. Flexible: uniform, log-scale,
or expert-driven.

Stage II Design Bootstrap-based optimiza-
tion.

Robust criteria using Fisher
information.

Variance Heterogeneity Explicitly modeled. Similar but more flexible.
E#ciency High computational cost

due to bootstrapping.
Faster with analytical opti-
mization.

Practicality Limited to basic designs. Supports control groups
and extreme doses
(augmented design).

6.3.5 Optimizer

The Particle Swarm Optimizer (PSO) is the main optimizer used in this chapter and it is widely

available online (Miranda, 2018; Riza et al., 2019).
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6.4 Case Study: Toxicology Experiments

In this section, we explore the application of our proposed quasi-sequential robust optimal design

framework to real-world toxicology experiments using sea urchin embryos. Sea urchin embryos are

an important biological model for understanding dose-response relationships due to their sensitivity

to environmental toxins and their relevance to broader ecological and human health concerns. These

experiments aim to identify critical dose levels, such as the e!ective dose for 50% response (ED50)

and lethal dose for 50% mortality (LD50), which are fundamental metrics for assessing toxicity

(Calabrese and Baldwin, 2003; Gollapudi et al., 2013).

The challenges of these studies arise from high biological variability due to genetic heterogeneity

and environmental influences. Conventional static experimental designs, such as uniform or evenly

spaced dose levels, often fail to capture complex dose-response relationships or adapt to emerging

patterns in the data. These limitations result in ine”ciencies, including increased costs, wasted

resources, and reduced precision in parameter estimates (Ritz et al., 2015; Hartung and Rovida,

2009).

Our proposed framework, leveraging Particle Swarm Optimization (PSO) and robust design

principles, addresses these issues by iteratively refining the experimental design across two stages.

This approach balances e”ciency and flexibility, enabling the exploration of critical dose-response

regions while adapting to uncertainties in biological systems. In this case study, we demonstrate

the framework’s e”cacy using experimental data from sea urchin toxicology studies.

Section 6.4.1 details the experimental data collected and its structure, highlighting the variabil-

ity across di!erent timelines and genetic groups. Section 6.4.2.1 discusses the modeling approaches

and diagnostic measures used to evaluate the data. Section 6.4.2.2 and 6.4.2.3 present the optimal

designs generated using our framework, comparing them with conventional methods. Finally,

Section 6.4.2.4 provides a theoretical condition that ensures the generated designs are indeed

optimal.
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6.4.1 Description of Four Datasets

6.4.1.1 The First Dataset

The first dataset was collected by Dr. Collins between June 23rd and August 19th, 2022, over nine

days of experiments. The dose levels and design weights were determined solely by the toxicologist’s

expertise. Table 6.2 illustrates the typical data structure, capturing essential experimental variables

such as dose levels, embryo response categories, and durations.

date dose duration observed normal radial 0 spicules dead/delayed

2022.6.23 0 1-24h 108 107 0 0 1
· · · · · · · · · · · · · · · · · · · · · · · ·

Table 6.2: A typical sea urchin data structure.

• Date: the date of the row being recorded.

• Dose: dose level with unit mg/cm3, the lowest dose level is 0.

• Duration: the total experimental time of the sea urchin embryo; 1-24h means that embryo

has spent 24 hours in the solution.

• Observed: total number of observed sea urchin embryos.

• Normal: number of observed normal embryos.

• Radial: Number of embryo that has radialization.

• 0 spicules and dead/delayed: Together with other unrecorded abnormal status, these cate-

gories record the number of observed abnormal sea urchin embryos.

6.4.1.2 The Second, Third and Fourth Datasets

The second, third, and fourth datasets were collected based on the framework developed in Sec-

tion 6.3, utilizing optimal design theory and PSO. These datasets represent the second-stage designs

in our study. Specifically, the second dataset was collected in December 2022, while the third and

fourth datasets were gathered between January 2024 and April 2024. Detailed descriptions of the
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design processes for these datasets, along with their associated statistical analyses (including the

first dataset), are provided in Section ??.

6.4.2 Sequential Robust Optimal Designs

6.4.2.1 Analysis and Model Selection Based on the First Dataset

Each experiment records the number of embryos across four outcome categories: normal, radializa-

tion, 0 spicules, and dead/delayed. The experimental design points (dose levels) and corresponding

weights varied significantly across the nine days, as summarized in Table 6.3. We fitted multiple

Date Design points Design weights E!D E!c

06/23 [0, 1, 5, 10, 30, 100] [0.16, 0.17, 0.17, 0.19, 0.17,
0.16]

0.448 0.640

07/07 [0, 100, 300, 1000] [0.25, 0.25, 0.25, 0.25] 0.755 0.199
07/14 [0, 1, 3, 10, 30, 100, 300,

3000, 10000]
[0.12, 0.12, 0.1, 0.11, 0.11,
0.11, 0.11, 0.10, 0.12]

0.900 0.430

07/19 [0, 3, 10, 30, 100, 300,
10000, 30000]

[0.13, 0.12, 0.12, 0.14, 0.11,
0.12, 0.15, 0.11]

0.869 0.425

07/21 [0, 0.3, 3, 30, 300, 3000,
30000]

[0.14, 0.16, 0.13, 0.13, 0.13,
0.17, 0.14]

0.830 0.317

07/26 [0, 1, 10, 30, 100, 300,
10000, 20000, 30000]

[0.11, 0.13, 0.10, 0.12, 0.11,
0.11, 0.11, 0.11, 0.11]

0.843 0.356

07/28 [0, 0.3, 1, 30, 3000, 10000,
20000, 30000]

[0.13, 0.14, 0.12, 0.12, 0.13,
0.14, 0.11, 0.12]

0.692 0.141

08/11 [0, 0.3, 1, 10, 100, 3000,
10000, 20000]

[0.11, 0.12, 0.14, 0.13, 0.13,
0.12, 0.13, 0.12]

0.814 0.305

08/19 [0, 0.3, 1, 30, 300, 3000,
10000, 20000]

[0.11, 0.13, 0.11, 0.12, 0.12,
0.14, 0.16, 0.11]

0.836 0.249

Table 6.3: D- and c-e”ciencies of designs used in the first dataset.

regression models to analyze the data, including ordinal regression (proportional odds), continuation

ratio, and adjacent categories logit models. Model selection was guided by AIC and BIC values

(Table 6.4). Based on the AIC and BIC results, we choose to use proportional odds model with logit

link for fitting the 9 day data separately. The fitted proportional odds model with logit link using

the whole first dataset is given in Figure 6.1 while the fitted models using 9 day data separately is

given in Figure 6.2 and estimated parameters are given in Table 6.5. Later we utilize the estimated
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Model AIC BIC
Cumulative logit model 7212.557 7221.376
Proportional odds model with Cauchit link 7973.305 7994.327
Proportional odds model with logit link 6747.137 6768.160
Adjacent categories logit model 7720.505 7727.119
Continuation-ratio logit model 7656.651 7663.265

Table 6.4: Comparison of trinomial models

parameters to construct the so-called robust designs (Section 6.4.2.3) (Collins et al., 2022).

The proportional odds model with logit link was selected for its superior performance. Figure 6.2

illustrates the fitted models for each experimental day, highlighting variations in dose-response

relationships due to biological variability.

Although the data is not independent across 9 days, the resulting dose-response curve can still

provide invaluable information when we have di!erent designs. Hence, the resulting second stage

design stage is expected to be more robust against the design that we only use one set of nominal

values (i.e., the one that we fit the 9-day data all altogether). Taking the first panel in Figure 6.2

as an example, the dose levels are low compared with others, reflecting potential genetic variants

in sea urchins across di!erent timelines (since the second stage design is performed at a di!erent

time compared with the first one).

Date ω1 ω2 φ

06/23 2.328 9.845 -1.562
07/07 2.077 10.686 -1.303
07/14 2.157 9.342 -1.019
07/19 2.516 9.127 -1.086
07/21 2.186 8.029 -0.960
07/26 2.380 8.359 -1.040
07/28 2.442 8.331 -1.037
08/11 2.449 8.121 -1.021
08/19 2.506 7.800 -0.979

Table 6.5: 9 sets of nominal values based on the first dataset.
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Figure 6.1: The fitted proportional odds model with logit link using the whole first dataset.

6.4.2.2 The Second Dataset: Locally Optimal Design

We construct a locally optimal design to compare it with our proposed two-stage robust design. To

construct locally optimal design, we need to first fit the whole dataset and then use the nominal

values (i.e., fitted parameter estimates) to compute an optimal design numerically. To estimate

the parameters ε = (⇀1,⇀2,ω) as accurate as possible, we consider minimizing the volume of the

confidence set:

S =
{
ε : (ε̂ → ε)TM→1(ε̂ → ε) ≃ 32

df,0.95

}

where ε̂ is the estimator of ε, M is the asymptotic variance of ε̂ and ↽2
df,0.95 is the 95%-quantile

of Chi-square distribution with degrees of freedom df . It can be shown that the volume of S is

proportional to the determinant of M→1, which is the D-optimality in literature.

In addition, RD50 is another important quantity of interest (personal communication with Dr.

Collins). Hence, minimizing the asymptotic variance of an estimator of RD50 is another goal of the

design. The asymptotic variance of RD50 has a neat form and we call it the c-optimality. Then a

dual-optimality criteria can be constructed as a convex combination of D- and c-optimality.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.2: Daily fitted proportional odds models with logit link based on the first dataset. Red represents
the observed and predicted proportion of normal embryos; blue represents the observed and predicted
proportion of radial embryos; black represents the observed and predicted proportion of dead/delayed
embryos.
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The dual-optimal design is then defined as

↽dual = argmin
φ↑$

&dual(M) = argmin
φ↑$

(
↼
&D(M)

3
→ (1→ ↼) log&c(M)

)
(6.4.1)

where &D(M) = log detM and &c(M) =

∝ϖx|ϖ=ϖ̂


T
M(↽)→1


∝ϖx|ϖ=ϖ̂


and ↼ ↑ [0, 1] is a weight

to trade-o! between D- and c-optimality. The optimization problem 6.4.1 is constrained because

the design space is [0,+⇒) and the design weights are all within [0, 1] with summation 1. Hence,

we apply Particle Swarm Optimization (PSO) (Miranda, 2018) to solve it with the special choice

↼ = 0.5, indicating an equal importance of both criteria. Using the estimated parameters of the

first dataset in table 6.7, the resulting locally dual-optimal design with equal weights and additional

zero dose level is given in the table 6.6 which forms the basis of the second dataset. The sensitivity

function is shown in figure 6.3. Note that the table shows the raw scale of dose level while for

implementation, we use log(Dose level + 1) so that the design space is the same as the original

space [0,+⇒) but the numerical issues can be lightened.

Figure 6.3: Sensitivity function of the dual-optimal design. The x-axis represents the log-transformed
dose levels, while the y-axis shows the sensitivity function values. The blue curve represents the sensitivity
function across these dose levels, while the red line at the top of the plot highlights the zero-sensitivity
baseline.

The estimated parameters and their standard errors based on the second dataset (also called the

December data) is given in the right column of Table 6.7 and the fitted dose-response curve is given

in Figure 6.4a. It is obvious that the curve does not fit the data well and the corresponding standard
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Date Design points Design weights E!D E!c

ϑD [5.77, 161.4, 4391.52] [0.33, 0.34, 0.33] 1.000 0.372
ϑc [12.01] [1.00] Singular 1.000

ϑdual [9.08, 59.7, 4290] [0.65, 0.175, 0.175] 0.798 0.748

12/03 [0, 9.05, 59.7, 4290] [0.169, 0.521, 0.169, 0.169] 0.767 0.688
12/09 [0, 9.08, 59.7, 4290] [0.169, 0.521, 0.169, 0.169] 0.767 0.688
12/10 [0, 9.08, 59.7, 4290] [0.169, 0.521, 0.169, 0.169] 0.767 0.688

Table 6.6: D- and c-e”ciencies of the December data.

errors are not small enough as expected (though we are using dual-optimality here). Hence, it is

not enough to just use optimal design alone, and we are expecting that the two-stage design may

perform better. To investigate the gap between the reality and theory in depth, we conjecture

that there could a genetic shift in the dataset (see also Figure 6.2), meaning that the tolerance

of sea urchin changes in the genetic composition of populations over time, often in response to

environmental pressures such as temperature, pH, or salinity. In sea urchins, like many marine

organisms, these shifts can influence key developmental processes in embryos and can impact the

resilience of populations to climate change and ocean acidification (Jorde and Wooding, 2004).

The first dataset (June-August) The second dataset (December)

Total observations 8163 2070
ω1 2.506 (0.055) 0.593 (0.081)

ω2 7.800 (0.134) 6.106 (0.231)

φ 0.979 (0.016) 0.719 (0.030)

RD50 2.580 (0.089) 0.780 (0.149)

Table 6.7: Ordinal regression models based on two datasets.

6.4.2.3 The Third and Fourth Datasets: Two-stage Robust Optimal Design

The name ”robust” comes from the fact that we use di!erent sets of nominal values to construct

the optimal design (Zang et al., 2005; Collins et al., 2022).The optimal design is constructed as

follows:

↽opt = argmax
φ

K∑

i=1

&(↽, ε̂i)
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where each &(↽, εi) is a criterion function that uses the nominal value εi. In the case of D-optimality,

&(↽, εi) is the log determinant of Fisher information matrix while in the case of dual-optimality

for estimating parameters and oral radialization 50%, &(↽, εi) is the convex combination of log

D-e”ciency and log c-e”ciency (Hyun and Wong, 2015).

We construct the two-stage robust optimal designs based on the first dataset. To achieve this,

we need to determine how many additional doses we want add to the first dataset. In our real

application, we set this as the same number of total observations as the first dataset (ω = 0.5).

Further, we determine to put a fixed proportion to zero dose level (the control group) and 10,000

dose level (the endpoint to make sure all sea urchins are dead). The resulting two-stage robust

D-optimal design is given in Table 6.8 while the two-stage robust dual-optimal design (with equal

weights) is given in Table 6.9.

Design points 0 14 55 683 4808 10000

Design weights 0.225 0.145 0.112 0.151 0.142 0.225

Table 6.8: Two-stage robust D-optimal design based on the first dataset.

Design points 0 5 25 989 3727 10000

Design weights 0.215 0.200 0.305 0.033 0.032 0.215

Table 6.9: Two-stage robust dual-optimal design with equal weights based on the first dataset.

Based the above suggested designs, we collect additional toxicological data and we have the

following four datasets:

• The first dataset from June-August;

• The second dataset in December which is based on the first dataset and is dual-optimal (not

robust);

• The third dataset which is based on the two-stage robust D-optimal design;

• The fourth dataset which is based on the two-stage robust dual-optimal design.

The results of fitted ordinal regression models for the third and fourth datasets are shown in

Table 6.10 and Figure 6.4. Table 6.10 provides fitted parameters from ordinal regression models
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with a logit link function using two robust design strategies: the two-stage robust D-optimal and

the two-stage robust dual-optimal designs. Here, we note that the total number of observations

is slightly higher for the dual-optimal design (927 compared to 889 for the D-optimal design), as

the actual number of observations may fluctuate a little in contrast to theoretical calculations.

Parameter estimates, such as ⇀1, ⇀2, and ω, as well as the RD50, are provided along with standard

errors. The smaller standard errors in the dual-optimal design indicate potentially greater precision

for this design. Interestingly, the standard errors of the dual-optimal design are generally lower

than the D-optimal designs, which contradicts with the intuition and the original intention of both

designs. We further explore this issue in Table 6.11. In addition, the RD50 estimate is slightly

higher under the dual-optimal design (2.955 compared to 2.650), which could imply di!erences in

dose-response sensitivity captured by each design.

Table 6.11 provides a detailed look at the D→ and c→ optimality values and their e”ciencies

under di!erent design settings. The e”ciencies are computed in a relative manner, i.e., it is the

actual e”ciency divided by the largest e”ciency among 4 designs and sample sizes (total number

of observations) are scaled so results from di!erent designs are comparable. Here %i, i = 1, 2, 3, 4

correspond to the parameters that we estimated from four di!erent designs. The Conventional

design refers to the original dataset designed by Dr. Michael Collins; the Dual, Robust-D and

Robust Dual designs refer to the locally dual-optimal, robust-D and robust-dual designs based on

%1 and daily fitted models (see Figure 6.5) respectively. Interestingly and sarcastically, the Robust

D design never performs the best in terms of D-optimality among all scenarios (%’s). One most

plausible explanation is still due to the genetic shift of the dataset, making it awkward for the new

dataset it has collected. Apart from that, all designs perform as expected and in some scenarios

the Dual design performs better than the Robust Dual design in terms of both D- and c-optimality,

suggesting that there is always a gap between theory and practice.

Two-stage robust D-optimal design Two-stage robust Dual-optimal design

Total observations 889 927
ϑ1 2.694 (0.181) 2.065 (0.127)
ϑ2 7.449 (0.430) 5.313 (0.298)
⇀ 0.906 (0.043) 0.787 (0.040)

RD50 2.650 (0.154) 2.955 (0.123)

Table 6.10: Fitted ordinal regression models with logit link based on two-stage robust designs.
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(a) Fitted proportional odds model
based on the December data (the sec-
ond dataset).

(b) Fitted dose-response curve based
on the two-stage robust D-optimal de-
sign (the third dataset).

(c) Fitted dose-response curve based
on the two-stage robust Dual-optimal
design (the fourth dataset).

Figure 6.4: Dose-response curves fitted using various datasets and design strategies, illustrating the
probability (or proportion) of di!erent outcomes across dose levels on a logarithmic scale. The curves
represent three outcome categories: ”Dead/Delayed/Others” (red), ”Normal” (green), and ”Radial” (purple).
Plot (a) shows the dose-response curve using a proportional odds model based on the December data,
representing a conventional approach. Plot (b) uses the two-stage robust D-optimal design, adjusting the
dose-response curve to improve model robustness. Plot (c) applies the two-stage robust dual-optimal design,
further refining the dose-response prediction, particularly for the ”Radial” and ”Dead/Delayed/Others”
categories, and demonstrating the enhanced adaptability of the dual-optimal approach. These variations
highlight the e!ects of di!erent optimization criteria on dose-response predictions across varying outcome
probabilities.

Estimates Datasets 1 (Conventional) 2 (Dual) 3 (Robust D) 4 (Robust Dual)
!1 D-optimality 5.918 6.293 6.118 6.417

D-e%ciency 1.000 0.882 0.935 0.847
c-optimality 11.990 6.305 17.103 10.191
c-e%ciency 0.526 1.000 0.369 0.619

!2 D-optimality 4.997 5.556 5.039 5.163
D-e%ciency 1.000 0.830 0.986 0.946
c-optimality 17.961 17.160 18.202 13.753
c-e%ciency 0.766 0.801 0.756 1.000

!3 D-optimality 5.783 6.159 6.025 6.386
D-e%ciency 1.000 0.882 0.923 0.818
c-optimality 12.582 7.048 18.508 12.106
c-e%ciency 0.560 1.000 0.381 0.582

!4 D-optimality 4.891 5.063 5.202 5.353
D-e%ciency 1.000 0.944 0.902 0.857
c-optimality 14.891 8.943 19.921 12.787
c-e%ciency 0.601 1.000 0.449 0.699

Table 6.11: Comparison among four datasets. %1,%2,%3,%4 stand for estimated parameters (⇀1,⇀2,ω)
from the four di!erent datasets.

6.4.2.4 Equivalence Theorems

In this subsubsection, we derive the equivalence theorems for the two-stage robust dual-optimal

design with an additional 0 dose level under the ordinal regression setting.

We start with a more general case which is the multivariate logistic regression. The multivariate
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logistic regression is an extension of the usual logistic regression for categorical outcomes with or

without intrinsic ordering (personal communication with Dr. Weng Kee Wong). Suppose y ↘

M(n,⇁) and we assume

φ = X⇀, ⇁ = µ(ε)

φ = g(ς) = 2→1(ς) = CT log(Lς)

ε = r(φ) = logς = log g→1(φ)

whereX is the design matrix and C and L are matrices of contrasts and marginal indicators (Glonek

and McCullagh, 1995). Di!erent choices of C and L lead to di!erent models such as proportional

odds model, adjacent categories logit model and continuation ratio logit model. Further, the

nominal logistic regression can also be written in this form (Glonek and McCullagh, 1995). Most

importantly, by introducing L we ensure the mapping ς ▽ φ is of full rank so that we can write

ε = logς. Thus, we implicitly put the linear constraint 1T exp(ε) = 1 so that in this case A(ε) = 0.

For convenience, we note:

• y, ς, ε and φ are all k ↗ 1 vectors;

• ⇀ is a p↗ 1 vector;

• X is a k ↗ p matrix of full row rank;

• L and C are l ↗ k matrices both of full column rank.

The Fisher information of ⇀ is given by

M(⇀) = XT

CTD→1L

→T

V
→1


CTD→1L

→1
X (6.4.2)

= s̃(X)s̃(X)T

where D = Diag(Lς) and

s̃(X) = XT

CTD→1L

→1
V

→1/2,

V
→1/2 = Diag(1/

∞
ς).
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The s̃(X) representation is particularly useful we are deriving equivalence theorems and sensitivity

functions in optimal design theory. More properties of multivariate logistic regression and its

extensions are given in Glonek and McCullagh (1995); Lang (1996); Bu et al. (2020).

Example 6.4.1 (Ordinal Trinomial Regression (Zocchi and Atkinson, 1999)). Following the pre-

vious example, the 3-dimensional response vector y = (y1, y2, y3)T ↘ M(1,⇁) has an intrinsic

ordering, i.e., y1, y2 and y3 correspond to normal, radialization and dead, respectively. We model

y using a proportional odds model with common slope:

φ1 = log

(
⇁1

⇁2 + ⇁3

)
= ⇀1 + ωx

φ2 = log

(
⇁1 + ⇁2

⇁3

)
= ⇀2 + ωx

φ3 = log(⇁1 + ⇁2 + ⇁3) = 0

In this case, the parameter ε and the design matrix X are

ε =

⇀1 ⇀2 ω 0

T

, X =





1 0 x 0

0 1 x 0

0 0 0 1





and the choices of L and CT are

L =





1 0 0

1 1 0

0 1 1

0 0 1

1 1 1





, CT =





1 0 →1 0 0

0 1 0 →1 0

0 0 0 0 1




.

In a usual sequential design setting, we add a point x to the existing design ↽ so that the

corresponding design e”ciency (say, D-e”ciency) is improved. However, as we mentioned in

Section 6.3.3, this is not always what toxicologists want in practice. In practice, we always want a

”control group” under any experimental design. In other words, there should always a 0 dose level
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group. In this case, the design becomes

↽ =



0 x1 · · · xn

ω (1→ ω)p1 · · · (1→ ω)pn





where pi, i = 1, · · · , n are nonnegative design weights and ω ↑ [0, 1] is another weight assigned to

the control group x = 0. In the following, we derive the expression of Fisher information when we

add a new design point to the original design.

Example 6.4.2 (Adding a new design point). In example 6.4.1, the Fisher information matrix is

of form

M(⇀) = s̃(X)s̃(X)T

where s̃(X) is a p↗ k matrix. Let M1 =


n

i=1 pis̃(Xi)s̃(Xi)T be the information matrix associated

with ↽1 and pi are nonnegative design weights. Also let M0 = s̃(X0)s̃(X0) be the information

matrix at point 0. If we want to add 0 to the design ↽1 with weight ω ↑ (0, 1), then by Sherman-

Woodbury-Morrison, the corresponding D-optimality criteria becomes

det ((1→ ω)M1 + ωM0) = (1→ ω)p det(M1) det

(
I +

ω

1→ ω
s̃(X0)

TM→1
1 s̃(X0)

)
. (6.4.3)

Further, the c-optimality for estimating g(ε) becomes

∝gT ((1→ ω)M1 + ωM0)
→1

∝g =

∝gTM→1
1 ∝g

1→ ω
→

ω

(1→ ω)2
∝gTM→1

1 s̃(X0)

(
I +

ω

1→ ω
s̃(X0)

TM→1
1 s̃(X0)

)→1

s̃(X0)
TM→1

1 ∝g (6.4.4)

where ∝g is the gradient of g(ε) at ε.

Following example 6.4.1, the Fisher information matrix of ⇀ associated with ↽ is M(↽) =

ωs0sT0 + (1→ ω)M1 where s0 = s̃(X)|x=0 and M1 is the Fisher information matrix associated with

the design with point 0 removed. Let us consider D-optimality, i.e., &D(M) = log detM , then by

example 6.4.2, we have

&D(M) = log det(M1) + p log(1→ ω) + log det

(
I +

ω

1→ ω
sT0 M

→1
1 s0

)
. (6.4.5)
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Suppose ω is fixed so that M1 is the only free variable in the expression and we write &D(M1)

instead of &D(M). By standard matrix calculus, the Fréchet derivative of &D(M) at M1 in the

direction of M2 is

F&D(M1,M2) = (1→ ω)Tr

M→1(M2 →M1)


(6.4.6)

= Tr

M→1

1 M2 → I

→

Tr

(
1→ ω

ω
I + sT0 M

→1
1 s0

)→1 
sT0 (M

→1
1 M2M

→1
1 →M→1

1 )s0


. (6.4.7)

Now the general equivalence theorem applies using the fact that &D(M1) is concave in M1. For

c-optimality, we need to use the implicit function theorem (Rudin, 1976) to compute the asymptotic

variance of, say, radialization 50% estimate.

Example 6.4.3 (Radialization 50%). In this example, we are interested in finding a specific dose

level of a substance that leads to a 50% reaction rate (referred to as RD50), meaning it causes

a measurable response in 50% of the population. Using a trinomial regression model, which is

a statistical method for analyzing outcomes that can take on three possible values, we aim to

calculate this dose level. However, there isn’t a simple formula to solve for this dose directly based

on the model parameters. Instead, we use mathematical techniques to approximate the e!ect of

small changes in the model parameters on our estimate of the RD50 dose. This process allows

us to calculate an ”asymptotic variance,” or a measure of how accurate and stable our estimated

RD50 is likely to be with large sample sizes. Additionally, we look at a related measure, LD50,

which indicates a 50% lethal dose, and compute the variability for a ratio of these two metrics.

This approach is valuable because it helps us assess the reliability of the dose estimates used in

toxicological studies.

Suppose we have the trinomial regression model (Example 6.4.1) with parameters εT = (ω,⇀1,⇀2, b)

and dose level x (with the implicit constraint b=0). Suppose the interest is in estimating radializa-

tion 50% (RD50), i.e., the dose level x such that ⇁2 = 0.5. An equation for solving x is

1

1 + exp(→φ2)
→

1

1 + exp(→φ1)
→ 0.5 = 0.

There is no closed form solution of x in terms of ε. However, it is more important for us to derive

the partial derivatives 4x/4εT so that #-method can be applied to approximate the asymptotic
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variance of estimated radialization 50%. Denote the left hand side of the equation as f(x, ε), then

by the implicit function theorem, we have

A = f ↗(x, ε)

=

ϱf

ϱx

ϱf

ϱ⇀

ϱf

ϱϑ1

ϱf

ϱϑ2

ϱf

ϱb



=





⇀ exp(→ς2)
(1+exp(→ς2))2

→
⇀ exp(→ς1)

(1+exp(→ς1))2

x exp(→ς2)
(1+exp(→ς2))2

→
x exp(→ς1)

(1+exp(→ς1))2

→
exp(→ς1)

(1+exp(→ς1))2

exp(→ς2)
(1+exp(→ς2))2

0





T

so that the desired ∝ϖx can be computed numerically by plug-in estimates of ε, i.e.,

∝ϖx
T

=

(
4f/4ω

4f/4x
,
4f/4⇀1
4f/4x

,
4f/4⇀2
4f/4x

,
4f/4b

4f/4x

)
.

The asymptotic variance of radialization 50% is thus

V(x̂) ↙

∝ϖx|ϖ=ϖ̂


T
M(↽)→1


∝ϖx|ϖ=ϖ̂



where M(↽) is the Fisher information matrix of ε associated with design ↽ evaluated at ε̂. Further,

if we are also interested in lethal dose 50% (LD50) , and we want to estimate the ratio (suggested

by Dr. Collins) r = LD50
RD50 , then the asymptotic variance of r̂ can be approximated as

V(r̂) =



→
x̂LD50
x̂
2
RD50

1
x̂RD50




T

Cov



x̂LD50

x̂RD50







→
x̂LD50
x̂
2
RD50

1
x̂RD50





where the 2↗ 2 covariance matrix of x̂LD50 and x̂RD50 is computed by, again, the #-method.

Plug-in M(↽) = ωs0sT0 + (1 → ω)M1 where s0 = s̃(X)|x=0 and M1 is the Fisher information

matrix associated with the design with point 0 removed. Let us consider c-optimality, i.e., &c(M) =
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logV(x̂), then by example 6.4.2, we have

&c(M) = log

[
cTM→1

1 c

1→ ω
→

ω

(1→ ω)2
cTM→1

1 s̃(X0)

(
I +

ω

1→ ω
s̃(X0)

TM→1
1 s̃(X0)

)→1

s̃(X0)
TM→1

1 c

]

(6.4.8)

where c = ∝ϖx|ϖ=ϖ̂
is the gradient computed using the implicit function theorem. The Fréchet

derivative of &c at M in the direction of M2 is

F&c(M,M2) = →Tr

ccTM→1 (M2 →M)M→1


(6.4.9)

= cTM→1c→ cTM→1s̃(x)s̃(x)TM→1c. (6.4.10)

where M is defined above and provided M2 = s̃(x)s̃(x)T . Now we have all the necessary elements

to derive the equivalence theorem for the two-stage robust dual-optimal design. A robust dual

optimal design optimizes the following criterion

&robust-dual(M) =
1

K

K∑

i=1

(
↼i

p
&D(M |ε̂i) + (1→ ↼i)&c(M |ε̂i)

)
(6.4.11)

where K is the number of sets of nominal values, p is the dimension of εi ↼i is the weight for D→

and c→optimality using the ith nominal values and ε̂i represents the ith nominal values.

Theorem 6.4.1 (Equivalence theorem for augmented two-stage robust dual-optimal design). Sup-

pose at first stage, we perform K sets of experiments and derive K sets of nominal values (denoted

as ε̂1, · · · , ε̂K). Given specific weights ↼1, · · · ,↼K and the proportion of added zero dose level

ωi, i = 1, · · · ,K, suppose we are trying optimize the robust dual-optimal criterion 6.4.11. Then a

design ↽ is robust dual-optimal if and only if for any x, the Fisher information associated with ↽

(denoted as M), satisfies

1

K

K∑

i=1

(
↼i

p
F&D(M, s̃(x)s̃(x)T |ε̂i) + (1→ ↼i)F&c(M, s̃(x)s̃(x)T |ε̂i)

)
≃ 0 (6.4.12)

where F&D(M, s̃(x)s̃(x)T |ε̂i) is given by 6.4.6 and F&c(M, s̃(x)s̃(x)T |ε̂i) is given by 6.4.9.

According to Theorem 6.4.1, the researcher could apply a dual-criterion approach where weights

are assigned to both D- and c-optimality objectives. The design that satisfies the conditions laid
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out in Theorem 3.4 would optimize this balance, ensuring robustness by minimizing variability

across di!erent possible parameter values for the drug’s e!ect. By using a two-stage approach, the

researcher can refine the design after an initial set of experiments, focusing on the most informative

dose levels identified in the first stage.

Further, Theorem 6.4.1 guides the researcher in setting up the dual-optimal design that not only

optimizes parameter estimation (D-optimality) but also ensures accurate dose-response relationship

modeling (c-optimality) across various experimental conditions. This robustness is crucial in

toxicology, where small inaccuracies in dose-response estimates can lead to significant errors in

understanding the drug’s safety and e”cacy.

An Application We apply Theorem 6.4.1 to the two-stage robust design scheme developed in

Section 6.3. Here we consider ω = 0.225, i.e., 22.5% of the second-stage observations will be put

as 0 dose level and 22.5% of the second-stage observations will be put as 10,000 dose level. Note

that 0 dose serves as the control group while 10, 000 dose level is to ensure that all sea urchins

are dead, which is an important endpoint in toxicology. The sensitivity plot of the sequential

D-optimal design is given in Figure 6.5 and it verifies the global optimality of our implemented

design despite of a little numerical fluctuation. We include more sensitivity plots under di!erent

optimality criterion and di!erent ω-values in the Appendix ??.

6.5 Simulation Study: Sequential Optimal Designs for Bivariate

Probit Model

In this section, we develop two-stage optimal designs for bivariate probit model described in

Dragalin et al. (2008b). Such a model has numerous applications in the context of Phase I or

II studies, exploiting dose-finding that accounts for both e”cacy and safety.

6.5.1 The Model and the Fisher Information Matrix

Recently, various approaches have been suggested for dose escalation studies based on observations

of both undesirable events and evidence of therapeutic benefit. bivariate probit model has been

applied to model such a response and we give a brief introduction below; for a more comprehensive
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Figure 6.5: Sensitivity function of the sequential robust D-optimal design. The x-axis represents the log-
transformed dose levels, while the y-axis shows the sensitivity function values. The blue curve represents
the sensitivity function across these dose levels, while the red line at the top of the plot highlights the zero-
sensitivity baseline.
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review, see McCullagh and Nelder (2019).

Let Y ↑ {0, 1} represent e”cacy response and Z ↑ {0, 1} represent toxicity response, where 1

indicates occurrence and 0 indicates non-occurrence. In our example, the e”cacy response is ’no

VTE’ and the toxicity response is ’bleeding’. A possible dose is denoted by x. The probabilities of

di!erent response combinations are defined as:

pyz(x) = Pr(Y = y, Z = z | x), y, z = 0, 1

The probit model for correlated responses (see Chib and Greenberg (1998); Bekele and Thall (2006))

is given by:

p11(x, ε) = F (εT1 f1(x), ε
T

2 f2(x), ϖ) =


ϖ
T
1 f1(x)

→⇐


ϖ
T
2 f2(x)

→⇐

1

2⇁|$|1/2
exp

(
→
1

2
v
T$→1

v

)
dv1dv2

Here, ε = (εT1 , ε
T

2 ), and the variance–covariance matrix is:

$ =



1 ϖ

ϖ 1





The matrix $ is assumed known, though similar results can be derived if ϖ is unknown. The

functions f1(x) and f2(x) include relevant covariates, such as f1(x) = f2(x) = (1, x)T for modeling

a single drug e!ect, or f1(x) = f2(x) = (1, x1, x2, x1x2)T for modeling drug combinations with

interaction e!ects (Ashford and Sowden, 1970). Additional covariates, such as age, weight, or

dosage frequency, can also be incorporated into f1 and f2. The marginal distributions for the

probabilities of e”cacy p1.(x, ε) and toxicity p.1(x, ε) are:

p1.(x, ε) = F (εT1 f1(x)) and p.1(x, ε) = F (εT2 f2(x))

where

F (v) =


v

→⇐

1
∞
2⇁

exp

(
→
u2

2

)
du

The other probabilities are derived as follows:

p10(x, ε) = p1.(x, ε)→ p11(x, ε)
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p01(x, ε) = p.1(x, ε)→ p11(x, ε)

p00(x, ε) = 1→ p1.(x, ε)→ p.1(x, ε) + p11(x, ε)

For clarity, we sometimes omit arguments like x and ε when the context is clear.

6.5.1.1 Information Matrix for Bivariate Probit Model

The normalized and unnormalized Fisher information matrices are derived in detail in Dragalin

et al. (2008b) and we present their results here. For a more general procedure of deriving Fisher

information for optimal designs, see Atkinson et al. (2014).

Given a design

↽ =



x1 x2 · · · xn→1 xn

p1 p2 · · · pn→1 pn



 ,

then the (normalized) Fisher information matrix under the bivariate probit model is

M(↽, ε) =
n∑

i=1

piµ(xi, ε)

where µ(xi, ε) is the elemental information for a single observation at dose x:

µ(x, ε) = C1C2(P → ppT )→1CT

2 C
T

1

with

C1 =



2(εT1 f1)f1 0

0 2(εT2 f2)f2



 , C2 =



F (u1) 1→ F (u1) →F (u1)

F (u2) →F (u2) 1→ F (u2)





u1 =
εT2 f2 → ϖεT1 f1√

1→ ϖ2
, u2 =

εT1 f1 → ϖεT2 f2√
1→ ϖ2

P =





p11 0 0

0 p10 0

0 0 p01




and p = (p11, p10, p01)

T

where 2(u) = 4F (u)/4u denotes the probability density function of the standard normal distribu-
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tion.

6.5.2 D-optimality and L-optimality

If the interest is purely in estimating the parameters ε = (εT1 , ε
T

2 ), then we can maximize the

determinant of the total normalized information matrix M(↽, ε). The resulting design is referred

to as the D-optimal design. In practice, we may have specific quantities that are of great interest.

For example, we may specify targeted probabilities (p⇓1., p
⇓
.1) in advance, representing the desired

e”cacy and toxicity levels. Suppose we want the response probabilities (p1.(x, ε), p.1(x, ε)) are

closest to the targeted probabilities in the following sense:

d(ε) = min
x

{
w[p1.(x, ε)→ p⇓1.]

2 + (1→ w)[p.1(x, ε)→ p⇓.1]
2
}

(6.5.1)

where w is weight between 0 and 1. In other words, we are going to solve for the dose level X⇓

such that the minimum in the above is obtained. Then the L-optimality is defined as

’(M(↽, ε)) = LT (ε)M→1(↽, ε)L(ε), L(ε) =
4X⇓

4ε
. (6.5.2)

It can also be viewed as A-criterion with A = L(ε)LT (ε) or c-optimality since L(ε) is a vector.

Statistically speaking, ’(M(↽, ε)) represents the asymptotic variance of the estimator X⇓. For

locally optimal designs, we replace ε with its estimate ε̂. As pointed out in Dragalin et al. (2008b),

it is complicated to work with p1. and p1. directly; so we replace them with their quantiles, i.e.,

ς1(x, ε) = F→1(p1.(x)), ς2(x, ε) = F→1(p.1(x)), ς⇓
1 = F→1(p⇓1.) and ς⇓

2 = F→1(p⇓
.1). Dragalin et al.

(2008b) shows that the minimizer in this case is

X⇓ =
(1→ w)ε22(ς⇓

2 → ε21) + wε12(ς⇓
1 → ε11)

wε212 + (1→ w)ε⇓22

and its partial derivative w.r.t. ε can be derived easily.
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6.5.3 Two Extensions

6.5.3.1 Extension with Penalty

Dragalin et al. (2008b) suggests to introduce penalty into’(M(↽, ε)) for clinical trial considerations,

see also Haines et al. (2003); Dragalin and Fedorov (2006); Dragalin et al. (2008a). Specifically,

they define the total normalized penalty

&(↽, ε) =



X
ς(x, ε)↽(dx)

where ς is a user-specified penalty function. For example, to control the costs associated with

undesirable events like lack of e”cacy or the occurrence of toxicity, then one can define

ς(x, ε) = p→CE
1. (1→ p.1)

→CT (6.5.3)

where CE and CT are positive constants that quantify the relative importance of penalties for

lack of e”cacy and occurrence of toxicity, respectively. We use ς defined in Equation 6.5.3 in the

simulation studies (Section 6.5.4). The resulting optimal design is

↽⇓ = argmin
φ↑$

’

(
M(↽, ε)

&(↽, ε)

)
.

Note that the special choice CE = CT = 0 corresponds to the un-penalized case.

6.5.3.2 Extension to Two-stage Designs

In practice, estimating ε often relies on pilot data, leading to a two-stage design approach. This

method is similar to the one outlined in Section 6.3.2. Specifically, we begin by fixing a proportion

ω ↑ [0, 1] of the total pre-specified observations to be collected as pilot data. From this pilot data,

we then obtain an estimate ε̂ using maximum likelihood estimation or other suitable methods.

Based on ε̂, a locally optimal design is constructed according to a chosen criterion, such as D-

optimality or L-optimality. The remaining (1 → ω) proportion of the observations is subsequently

collected following this optimized design.
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6.5.4 Simulation Studies

In this subsection, we apply PSO to solve for both the D- and L-optimal designs in bivariate probit

model and compare the results with those reported in Dragalin et al. (2008b) where they used the

first-order algorithm (Atkinson et al., 2007; Fedorov and Hackl, 2012). Although the sensitivity

plots fail to confirm the optimality of designs, PSO-generated designs beat the reported designs

under most scenarios in terms of criterion values.

Dragalin et al. (2008b) suggests a nominal value ε̂ = (→0.9, 1.9,→3.98, 3) obtained from a

five-dose evenly spaced uniform design (such design is common when we do not have any prior

knowledge):

↽u =



0.2 0.5 0.8 1.1 1.4

0.2 0.2 0.2 0.2 0.2



 .

Based on the estimated ε̂, they also constructed and reported the D-optimal and L-optimal designs

using first-order algorithms. For comparison, we take ϖ = 0.5, w = 0.5 and CE = CT = 1,

consistent with the approach outlined in the chapter. The results are presented in Table 6.12

where we compare PSO-generated designs with the three benchmark designs reported in Dragalin

et al. (2008b). As an illustration, consider the value 8.332 in row one, column one of the table.

This value represents the criterion for the PSO-generated D-optimal one-stage design without

penalty. Specifically, it corresponds to the one-stage D-optimality criterion without any penalties

applied (i.e., CE = CT = 1). This design is contrasted with the two-stage extension discussed in

Section 6.5.3.2. Highlighted values in bold represent the best performance within each category,

indicating the most e”cient design strategy for minimizing D-optimality and L-optimality under

specific conditions.

The PSO approach used here is e!ective in finding designs that minimize specific criteria,

making it an adaptive and e”cient method to optimize both D-optimality and L-optimality. Key

insights from this table include the advantages of PSO-generated designs, the impact of using

one-stage versus two-stage designs, and the influence of applying penalties.

Firstly, PSO-generated designs consistently outperform the benchmark designs in both one-

stage and two-stage configurations, indicating that PSO e!ectively identifies optimal dose levels

and weight distributions to improve statistical e”ciency. Two-stage designs generally yield better
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performance than one-stage designs, as seen in lower values for both D-optimal and L-optimal

criteria (e.g., 8.332 for one-stage D-optimality without penalty versus 8.413 for two-stage). This

performance improvement with two-stage designs demonstrates the added flexibility and refine-

ment they o!er. Furthermore, applying penalties (i.e., adjusting CE and CT parameters) slightly

increases the values of D-optimal and L-optimal criteria, highlighting a trade-o! between strict

optimality and practical constraints. Nevertheless, even with penalties, PSO-generated designs

remain more e”cient than the benchmark designs, underscoring the robustness of the PSO approach

in real-world scenarios where constraints often exist.

The superior performance of PSO-generated designs is evident across various design criteria.

For example, PSO-generated designs achieve the lowest values in each category, such as 8.332

for one-stage D-optimality without penalty and 0.434 for L-optimality, confirming that they are

highly e”cient solutions. This consistency suggests that PSO is highly e!ective regardless of

configuration—whether in one-stage, two-stage, penalized, or non-penalized setups. The PSO

approach’s adaptability allows researchers to fine-tune experimental designs to meet specific needs,

such as balancing dose-response optimization or addressing therapeutic study requirements. In

practical terms, the ability of PSO-generated designs to minimize D-optimality and L-optimality

with or without penalties positions it as a versatile tool for improving experimental design e”ciency,

especially in fields like clinical or pharmaceutical studies where optimal dose selection is crucial.

These findings highlight PSO’s potential to enhance the quality of experimental data, reduce

resource usage, and support more accurate conclusions in research.

6.5.5 Python Streamlit App

Additionally, we have developed a Python Streamlit application, which is accessible online at

https://optimaldesignbivariateprobit.streamlit.app/.

6.6 Discussion

In this chapter, we have designed a new sequential design scheme for toxicologists to design their

experiments more e”ciently and more robust in estimating dose-response relationships as well as

important endpoints they are interested in. We provide equivalence theorems for checking the
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optimality of the design in terms of estimating the RD50 and volume of the confidence ellipsoid.

Further, based on the four datasets that Dr. Collins has collected, we empirically show that

• The zero-dose level is crucial in either estimating endpoint or dose-response curves while the

extremely high dose level is necessary when we want to estimate the dose-response curve.

In conventional statistical literature, the added practical dose levels are always neglected by

statisticians;

• The two-stage designs are robust in the way they are constructed. For instance, the two-

stage robust D-optimal has relatively high D-e”ciencies under di!erent sets of estimated

parameters.
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CHAPTER 7

Supplementary Materials

7.1 Supplementary Information for Chapter 2

7.1.1 Fitted trends of 19 genes in the WANG dataset

In this section, we present the other 19 exemplar genes (in addition toMAOA) in the WANG dataset

Wang et al. (2020b) and their fitted trends by the scGTM, GAM, GLM, LOESS, switchDE, and

ImpulseDE2. The interpretation of each figure is the same as the figure in the main text.
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Figure 7.1: PLAU
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Figure 7.2: MMP7
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Figure 7.3: THBS1
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Figure 7.4: CADM1
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Figure 7.5: NPAS3
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Figure 7.6: ATP1A1
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Figure 7.7: ANK3
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Figure 7.8: ALPL
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Figure 7.9: TRAK1
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Figure 7.10: SCGB1D2
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Figure 7.11: MT1F
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Figure 7.12: MT1X
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Figure 7.13: MT1E

183



 scGTM−Poisson

0.00 0.25 0.50 0.75 1.00

0

3

6

9

Ex
pr

es
si

on
 lo

g(
co

un
t+

1)

GAM−Poisson

0.00 0.25 0.50 0.75 1.00

0

3

6

9

Ex
pr

es
si

on
 lo

g(
co

un
t+

1)

GLM−Poisson

0.00 0.25 0.50 0.75 1.00

0

3

6

9

Pseudotime

Ex
pr

es
si

on
 lo

g(
co

un
t+

1)

 scGTM−ZIP

0.00 0.25 0.50 0.75 1.00

0

3

6

9

 

GAM−ZIP

0.00 0.25 0.50 0.75 1.00

0

3

6

9

 

GLM−ZIP

0.00 0.25 0.50 0.75 1.00

0

3

6

9

Pseudotime

 

 scGTM−NB

0.00 0.25 0.50 0.75 1.00

0

3

6

9

 

GAM−NB

0.00 0.25 0.50 0.75 1.00

0

3

6

9

 

GLM−NB

0.00 0.25 0.50 0.75 1.00

0

3

6

9

Pseudotime

 

 scGTM−ZINB

0.00 0.25 0.50 0.75 1.00

0

3

6

9

 

GAM−ZINB

0.00 0.25 0.50 0.75 1.00

0

3

6

9

 

GLM−ZINB

0.00 0.25 0.50 0.75 1.00

0

3

6

9

Pseudotime

 

switchDE

0.00 0.25 0.50 0.75 1.00

0

3

6

9

 

ImpulseDE2

0.00 0.25 0.50 0.75 1.00

0

3

6

9

Pseudotime

 

Figure 7.14: MT1G
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Figure 7.15: CXCL14
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Figure 7.16: DPP4
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Figure 7.17: NUPR1
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Figure 7.18: GPX3
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Figure 7.19: PAEP
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7.1.2 Derivation of Fisher Information for Confidence Interval Construction

Below we derive the Fisher information for the key parameters

%⇓ = (µmag, k1, k2, t0)
T

of the scGTM with Poisson distribution (for demonstration purposes; used for the results in

Section 2.3.3). Recall the scGTM for a hill-shaped gene is

Yc ↘ Poisson(0c) ,

log(0c + 1) =






µmag exp (→k1(tc → t0)2) if tc ≃ t0

µmag exp (→k2(tc → t0)2) if tc > t0

. (7.1.1)

The Fisher information for 0c alone is IPoi(0c) = 1/0c, c = 1, . . . , C, and every 0c is related to

%⇓ via (7.1.1). Then by the chain rule, the Fisher information for %⇓ is

IPoi(%
⇓) =

∑

{c: tc↔t0}

(
1 +

1

exp(f1)→ 1

)
xcx

T
c +

∑

{c: tc>t0}

(
1 +

1

exp(f2)→ 1

)
xcx

T
c ,

where xc =






(f1/µmag, (tc → t0)2f1, 0, 2k1(tc → t0)f1)
T if tc ≃ t0

(f2/µmag, 0, (tc → t0)2f2, 2k2(tc → t0)f2)
T if tc > t0

,

f1 = µmag exp (→k1(tc → t0)
2) ,

f2 = µmag exp (→k2(tc → t0)
2) . (7.1.2)

Then the estimated asymptotic covariance of %̂⇓ is Î→1
Poi(%̂

⇓).
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7.1.3 Datasets, R packages, and R functions used in this paper

Table 7.1: Overview of datasets used.

Dataset Sequencing protocol Gene # Cell # Description Ref

LPS Fluidigm c1 4018 390

mouse
bone-marrow-

derived
dendritic
cells after
stimulation
with LPS

Shalek et
al. (2014)

WANG Fluidigm C1 22036 984

human
unciliated

epithelia cells
during the
menstrual

cycle

Wang et
al. (2020)

GYRUS 10x Genomics Chromium 2291 678
mouse

developing
dentate gyrus

Hochgerneret
al.(2018)

Table 7.2: Overview of R packages and functions used for fitting GLMs and GAMs.

Model R package R function1 Parameter family2

GLM-Poisson stats glm() poisson()
GLM-ZIP mgcv gam() ziP()
GLM-NB mgcv gam() negbin()
GLM-ZINB zigam zinbgam()
GAM-Poisson mgcv gam() poisson()
GAM-ZIP mgcv gam() ziP()
GAM-NB mgcv gam() negbin()
GAM-ZINB zigam zinbgam()

1 The R function to call in the R package.
2 The family parameter (i.e., distribution) to specify in the R function. For example,
ziP() refers to the ZIP distribution and can be specified in the gam() function in the
mgcv package. There is no such parameter in the zinbgam() function in the zigam
package.
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7.1.4 Additional detail of analysis in the paper

7.1.4.1 Pseudotime inference

For the LPS and GYRUS datasets, we use the R package slingshot (version 2.0.0) to infer cell

pseudotime. We use the top 2 principal components on the log(count + 1) matrix as the input

of slingshot. For the WANG dataset, the pseudotime is provided by the authors of the original

study Wang et al. (2020b).

7.1.4.2 GO analysis

We use the R package clusterProfiler (4.0.5) to perform GO analysis in Section 3.3. We set

the p-value cuto! and q-value cuto! as 0.01 and 0.05, respectively. We set the ontology type as

“BP (Biological Process)”. We use the function clusterProfiler::simplify to further reduce

the redundancy in GO terms.

7.1.4.3 Visualization

Most figures are made with the R package ggplot2 (version 3.3.5). Figure 5 is generated by the R

package ComplexHeatmap (version 2.9.3).
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7.2 Supplementary Information for Chapter 3

7.2.1 Some Preliminaries in Riemann Geometry

In this section, we provide some preliminaries on di!erential geometry for more details, we refer to

Do Carmo and Flaherty Francis (1992) and Tapp (2016). Suppose all points x ↑ Rd are column

vectors and S
d
++ represents the set of symmetric d↗ d positive definite matrices. The manifold is

denoted M, and its tagent space at x ↑ M is denoted TxM.

Definition 7.2.1 (Riemannian manifold). A Riemannian manifold is a smooth manifold M,

equipped with a positive definite Riemannian metric M(x) ̸x ↑ M, which is a smoothly varying

inner product 〈v, u∀x = vTM(x)u in the tangent space TxM.

Definition 7.2.2 (Geodesic). Let M be a Riemannian manifold. A geodesic curve 5 : [0, 1] ▽ M

is a length-minimizing smmooth curve connecting two given points x, y ↑ M, i.e.,

5(t) = argmin
c

L(t, c, c↗) (7.2.1)

L(t, c, c↗) =

 1

0


c↗(t)TM (c(t)) c↗(t)dt (7.2.2)

5(0) = x and 5(1) = y, (7.2.3)

where L is a functional of t, c and c↗, c↗(t) ↑ Tc(t)M is the velocity of the curve c at t and M is the

Riemannian metric tensor. Formula 7.2.3 is referred as boundary value conditions.

Theorem 7.2.1 (Euler-Lagrange equation for geodesic (Hauberg et al., 2012)). At minima of

L(t, c, c↗), the Euler-Lagrange equation must hold, i.e.,

4L

45
=

d

dt

4L

45↗
.

Hence, geodesic curves embedded in Rd satisfy the following system of second-order ordinal di!er-

ential equations (ODE):

M(5(t))5↗↗(t) = →
1

2

(
4vec[M(5(t))]

45(t)

)
T 

5↗(t)↔ 5↗(t)

, (7.2.4)

where ↔ denotes the Kronecker product and vec(·) stacks the columns of a matrix into a vector.
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7.3 Supplementary Information for Chapter 4

7.3.1 Likelihood Derivation for the Semiparametric Bayesian Approach with

Arbitrary Censoring

Recall that our model is

Xi = ω1
↗Gi + ω2

↗Zi + ↽1i (7.3.1)

Yi = ⇀1Xi + ⇀2
↗Zi + ↽2i (7.3.2)

where the random errors ↽1i and ↽2i jointly follow a bivariate normal distribution with Dirichlet

process (DP) prior:

(↽1i, ↽2i)
↗

↘ N2(µi,$i) (7.3.3)

(µi,$i) ↘ i.i.d. H (7.3.4)

H ↘ DP(ν, H0) (7.3.5)

where DP refers to the Dirichlet process.

Recall that ◁C = {c1, . . . , cn} is the latent class (or “cluster”) indicator of a subject, and εC =

{εc : c ↑ c1, . . . , cn}, where εc = {µ1c, µ2c,ϑ2
1c,ϑ

2
2c, ϖc}, i.e. εC consists of all distinct values of

εi = {µ1i, µ2i,ϑ2
1i,ϑ

2
2i, ϖi} and ◁C is a vector of indicators that maps the individuals to the clusters.

Note that the numbering of C can be arbitrary. We denote the total number of clusters as k. For the

two-stage IV model (4.3.4)–(4.3.8), we denote the parameters as % = (ω1,ω2,⇀1,⇀2, εC , ◁C). The

observed data consists of (◁L, ◁R,◁▷, ◁X, ◁Z, ◁G), where ◁L = (L1, ..., Ln), ◁R = (R1, ..., Rn), ◁▷ = (▷1, ..., ▷n),

◁X = (X1, ..., Xn), ◁Z = (Z1, ..., Zn) and ◁G = (G1, ..., Gn). Due to censoring of the event times ◁Y , the

likelihood function cannot be derived based on the bivariate distribution given by (4.3.6) directly.

We construct the likelihood function by using the marginal likelihood of the first-stage model (4.3.4)

and the conditional likelihood of the second-stage model (4.3.5). The likelihood function is (details
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are given below):

L(% | ◁L, ◁R,◁▷, ◁X, ◁Z, ◁G) = P ( ◁X, ◁Z, ◁G | %) · P (◁L, ◁R,◁▷ | ◁X, ◁Z, ◁G,%)

=
n∏

i=1

f1i(Xi, Zi, Gi) · [1→ Si(Li | Xi, Zi, Gi)]
I{0i=1}

· [Si(Li | Xi, Zi, Gi)→ Si(Ri | Xi, Zi, Gi)]
I{0i=2}

·Si(Ri | Xi, Zi, Gi)
I{0i=3}

· f2i(Li | Xi, Zi, Gi)
I{0i=4}

(7.3.6)

where

f1i(X,Z,G) = ς



X → µ1i → ω1
↗G→ ω2

↗Z
ϑ2
1i





f2i(Y | X,Z,G) = ς



Y → µ2i → ⇀1X → ⇀2
↗Z →

σ2i
σ1i

ϖi(X → µ1i → ω1
↗G→ ω2

↗Z)

(1→ ϖi2)ϑ2

2i





Si(Y | X,Z,G) = 1→ &



Y → µ2i → ⇀1X → ⇀2
↗Z →

σ2i
σ1i

ϖi(X → µ1i → ω1
↗G→ ω2

↗Z)

(1→ ϖi2)ϑ2

2i





i = 1, . . . n. &(·) and ς(·) are the cumulative density function and the probability density function

of standard normal distribution, respectively. The detailed derivation of the likelihood is given in

the appendix. Note that functions f1i(·), f2i(·) and Si(·) are specifically for subject i, since the

subjects have di!erent distribution parameters given by the DP prior.

For time-to-event data subject to arbitrary-censoring, the likelihood of (◁L, ◁R,◁▷) is:

L =
n∏

i=1

(1→ S(Li))
I{0i=1} (S(Li)→ S(Ri))

I{0i=2} S(Ri)
I{0i=3}f(Li)

I{0i=4} (7.3.7)

where S(y) = Pr(Y > y) is the survival distribution function and f(y) = →
d

dy
S(y) is the survival

time density function.

Based on the Two-stage IV model (4.3.4) and (4.3.5), the likelihood function of observing
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(◁L, ◁R,◁▷, ◁X, ◁Z, ◁G) can be written as:

L(% | ◁L, ◁R,◁▷, ◁X, ◁Z, ◁G) = P ( ◁X, ◁Z, ◁G | %) · P (◁L, ◁R,◁▷ | ◁X, ◁Z, ◁G,%) (7.3.8)

where the first part is the marginal likelihood of the first-stage model (4.3.4), and the second part

is the conditional likelihood of the second-stage model (4.3.5).

For the first part: From the bivariate normality assumption of ↽1 and ↽2 given by (4.3.6), the

marginal distribution of ↽1i is:

↽1i ↘ N(µ1i,ϑ
2
1i)

which gives the marginal density function for the first-stage model (4.3.4):

f1i(X,Z,G) = ς



X → µ1i → ω1
↗G→ ω2

↗Z
ϑ2
1i





i = 1, . . . n. Therefore, the likelihood of observing ◁X, ◁Z and ◁G is:

P ( ◁X, ◁Z, ◁G | %) =
n∏

i=1

f1i(Xi, Zi, Gi) (7.3.9)

For the second part: From the bivariate normality assumption of ↽1 and ↽2 given by (4.3.6), the

conditional distribution of ↽2i given ↽1i is:

↽2i | ↽1i ↘ N

(
µ2i +

ϑ2i
ϑ1i

ϖi(↽1i → µ1i), (1→ ϖ2i )ϑ
2
2i

)

i = 1, . . . n. Since ↽1i = Xi → ω1
↗Gi → ω2

↗Zi from the first-stage model (4.3.4), the conditional

distribution becomes:

↽2i | Xi, Zi, Gi ↘ N

(
µ2i +

ϑ2i
ϑ1i

ϖi(Xi → µ1i → ω1
↗Gi → ω2

↗Zi), (1→ ϖ2i )ϑ
2
2i

)
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Therefore, given ◁X, ◁Z, ◁G and %, the second-stage model (4.3.5) has conditional survival function

Si(T | X,Z,G) = P (Y > T | X,Z,G)

= P (⇀1X + ⇀2
↗Z + ↽2 > T )

= P (↽2 > T → ⇀1X → ⇀2
↗Z)

= 1→ &



T → µ2i → ⇀1X → ⇀2
↗Z →

σ2i
σ1i

ϖi(X → µ1i → ω1
↗G→ ω2

↗Z)


(1→ ϖ2
i
)ϑ2

2i





and conditional density function

f2i(T | X,Z,G) = →
4

4t
Si(T | X,Z,G)

= ς



T → µ2i → ⇀1X → ⇀2
↗Z →

σ2i
σ1i

ϖi(X → µ1i → ω1
↗G→ ω2

↗Z)

(1→ ϖ2

i
)ϑ2

2i





where &(·) and ς(·) are the cumulative density function and the probability density function of

standard normal distribution, respectively. From (7.3.7), we have

P (◁L, ◁R,◁▷ | ◁X, ◁Z, ◁G,%) =
n∏

i=1

[1→ Si(Li | Xi, Zi, Gi)]
I{0i=1}

· [Si(Li | Xi, Zi, Gi)→ Si(Ri | Xi, Zi, Gi)]
I{0i=2}

·Si(Ri | Xi, Zi, Gi)
I{0i=3}

· f2i(Li | Xi, Zi, Gi)
I{0i=4}

(7.3.10)

From (7.3.8), (7.3.9) and (7.3.10), we have the joint likelihood function (7.3.6).

7.3.2 Details on Pre-processing the UKB Data

7.3.2.1 Definition of the Outcome

Recall that a total of approximately 500,000 participants were included in this study and a total

of approximately 26,000 participants (5.3%) had prevalent diabetes at the start of the study (age

of diabetes diagnosis was recorded from self-reported data and where missing supplemented using

Hospital Episode Statistics (HES) data). The goal is to quantify the time from diabetes diagnosis
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to complications. Below we use CVD complication as an example. For each individual, we output

(Li, Ri), where Li ≃ Ri, such that Ti ↑ (Li, Ri]. For the notations used for interval-censored data,

see for example Sun (2006).

We start from the diabetes cohort curated before with n ↙ 26k (both T1D and T2D). For

each individual in this cohort, DM diagnosis is from UKB assessment, admission data, or primary

care data, along with the first known evidence date TDM = min(self DM , diagnosis DM). We

determine the time-to-diabetes diagnosis (or time-to-DM), denoted as Si, was subject to interval

censoring, indicating that it falls within the interval (Ui, Vi]. Here, Ui represents the left endpoint

of the interval, corresponding to the last recorded visit time before a negative diabetes diagnosis.

Conversely, Vi signifies the right endpoint of the interval, denoting the first recorded visit time

when a positive diabetes diagnosis was made. For determining Ui, the following variables played a

crucial role:

• last a1c lt48 pre DMEHR: This variable recorded the date of the last non-diabetic HbA1c

level (<48mmol/mol) before the occurrence of the first diabetic event.

• date last visit negDMEHR: It indicated the date of the last electronic health record (EHR)

visit (either to a hospital or primary care provider) before the first diabetic event.

• last a1c lt48 pre higha1c: This variable marked the date of the last non-diabetic HbA1c

level (<48mmol/mol) recorded prior to the first occurrence of a high HbA1c level.

On the other hand, for defining Vi, the study relied on the following variables:

• first dm hosp: This variable indicated the date when diabetes was first recorded in the

hospital records.

• first a1c gt48: It represented the date when the first diabetic HbA1c level (>48 mmol/mol)

was recorded.

• first dm EHR: The date of the first recorded diagnosis of diabetes in the EHR, which was

defined as the minimum value between first dm hosp and first dm pc (primary care).

For each individual in this cohort, we determine whether CVD complications occurred or not from

UKB assessment(s), admission records, and primary care data. If occurred, we determine the date,

TCV D, and the censoring mechanism is determined below.
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• If the DM first diagnosis date is unknown (DM diagnosis date before TDM ) and CVD

complication has not occurred yet (TCV D = ⇒), then the time-to-event is lower bounded

by (Li = max(last UKB assessment time of this individual, last admission record date, last

primary care record date) - TDM ). Then the time-to-event is type I right-censored (Ri = ⇒).

• If the DM first diagnosis date is known and CVD complication has not occurred yet (TCV D =

⇒), then the time-to-event is lower bounded by

Li = max(TUmax, TAmax, TPCmax)→ TDM

where the definitions of TUmax, TAmax and TDM are given below. Then the time-to-event is

type II right-censored (Ri = ⇒).

• If the DM first diagnosis date is unknown (DM diagnosis date before TDM ) and CVD

complication has already occurred, then the time-to-event is lower bounded by (Li = TCV D→

TDM ) and upper bounded by (Ri = TCV D → birth date). In this case, the time-to-event is

interval-censored.

• Finally, if the DM first diagnosis date is known (DM diagnosis date = TDM ) and CVD

complication has already occurred, then the time-to-event is exactly observed (Li = Ri =

TCV D →DM diagnosis date).

To sum up, we have determined the following quantities:

• TCV D: date of CVD complications first occurrence.

• TDM : date at diabetes first occurrence, i.e., min(self DM , diagnosis DM)

• TUmax: date at the last UKB assessment visit.

• TAmin: date of the first admission record date.

• TAmax: date of the last admission record date.

• TPCmin: date of the first primary care record date.

• TPCmax: date of the last primary care record date.
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• Tmax: max(TUmax, TAmax, TPCmax).

• Tmin: min(TDM , TAmin, TPCmin).

7.3.2.2 Missing Data

The missing information of the observed confounders in the UKB data (n=23801) is given in the

following.

Figure 7.20: Missing proportion of the observed confounders in the UKB data

The missing entries of SNPs are filled using mean value of that particular SNP, and the missing

entries in the observed confounder matrix are filled using Multiple Imputation by Chained Equations

(MICE) (Azur et al., 2011) with fully conditional specification (FCS).

7.3.2.3 Selection of SNPs

A total of 269 SNPs were chosen for IV analysis representing independent loci previously shown to

be associated with mean SBP levels (Ko et al., 2022). These index variants were identified using

PLINK 1.9; lead variants were chosen greedily starting with the SNPs with lowest p-value among

those SNPs having p-value < 5↗ 10→8. Sites that were < 250 kb away from an index variant and

r2 > 0 : 5 with the index variant were assigned to that index variant’s clump.
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7.3.3 Slightly Informative Priors for Male and Female Cohorts of UKB Data

The slightly informative priors are estimated from 5% of the samples using the proposed DPMIV

method.

Table 7.3: Priors of parameters in DPMIV for the analysis of UKB data

Parameters Distribution
φ1 N(0.015, 0.087)
φ2 N(0.017, 0.076)
ω1 N(→0.476, 1.401)
ω2 N(→0.025, 0.344)
µ1c N(4.804, 0.853)
µ2c N(4.583, 3.334)
σ1c Inv-Gamma(0.025, 1)
σ2c Inv-Gamma(0.025, 1)
ε Uniform(→1, 1)
ς ς = 0.01, ς = 4.8,◁ = 2.4

We use 5% of the samples as the training data to get posterior distributions of parameters
and use them as priors for the the remaining 95% interval-censored data. For example,
the prior of ω1 has a normal distribution with mean -0.476 and standard deviation 1.401.
The prior of the first element of ω2 has a normal distribution with mean -0.025 and
standard deviation 0.344.

7.3.4 The MCMC Algorithm for DPMIV Based on Neal’s No-gaps

We follow notations defined in Sections 4.3.1 and 4.3.2. We develop an MCMC procedure to

generate posterior samples of ω1, ω2, ⇀1, ⇀2, εi = {µ1i, µ2i,ϑ2
1i,ϑ

2
2i, ϖi},

◁C = {c1, . . . , cn}, εc =

{µ1c, µ2c,ϑ2
1c,ϑ

2
2c, ϖc}, and ν, where i = 1, . . . , n, cluster indicators {c1, . . . , cn} are coded as values

in {1, 2, . . . , k}, k is the total number of clusters, c = 1, . . . , k. In each iteration, we generate a new

sample for each of the parameters listed above using the following algorithm.

• For ω1: We update vector ω1 by updating its elements one-by-one using the random walk

Metropolis-Hasting (M-H) algorithm described in Section A2. For the j-th element ω1j , we

propose to use a vague normal prior distribution N(µp, 62p ) with large variance (e.g. µp = 0,

62p = 1002), and a uniform proposal distribution Unif(ω1j → 1p, ω1j + 1p) for the random

198



walk, where 1p is a positive number chosen to give an appropriate acceptance rate (e.g.

20% ↘ 40%). A candidate sample ω⇓
1j is generated from the proposal distribution, and

accepted as the current state of ω1j with probability a(ω1j ,ω⇓
1j). The log of acceptance

probability is given by:

log(a(ω1j ,ω
⇓
1j)) = 7(%⇓)→ 7(%) +

1

262p


(ω1j → µp)

2
→ (ω⇓

1j → µp)
2


where %⇓ is % with ω1j replaced by ω⇓
1j , 7(·) is the log-likelihood function given by 7(%) =

log(L(%)), and L(%) is the likelihood function given by equation (7.3.6).

• For ω2: Similar procedure as for ω1 is used. Elements in vector ω2 is updated one-by-one using

the M-H sampling algorithm. For the j-th element ω2j , we propose to use a vague normal

prior distribution N(µp, 62p ) and a uniform proposal distribution Unif(ω2j→1p, ω2j+1p) with

appropriate width 1p. A candidate sample ω⇓
2j is generated from the proposal distribution,

and accepted as the current state of ω2j with probability a(ω2j ,ω⇓
2j). Similarly, the log of

acceptance probability is given by:

log(a(ω2j ,ω
⇓
2j)) = 7(%⇓)→ 7(%) +

1

262p


(ω2j → µp)

2
→ (ω⇓

2j → µp)
2


where %⇓ is % with ω2j replaced by ω⇓
2j .

• For ⇀1: We update ⇀1 using the M-H sampling algorithm, similar to the procedure for ω1j . We

propose to use a vague normal prior distributionN(µp, 62p ) and a uniform proposal distribution

Unif(⇀1 → 1p, ⇀1 + 1p) with appropriate width 1p. A candidate sample ⇀⇓
1 is generated from

the proposal distribution, and accepted as the current state of ⇀1 with probability a(⇀1,⇀⇓
1).

Similarly, the log of acceptance probability is given by:

log(a(⇀1,⇀
⇓
1)) = 7(%⇓)→ 7(%) +

1

262p


(⇀1 → µp)

2
→ (⇀⇓

1 → µp)
2


where %⇓ is % with ⇀1 replaced by ⇀⇓
1 .

• For ⇀2: Similar procedure as for ω1 is used. Elements in vector ⇀2 is updated one-by-one using

the M-H sampling algorithm. For the j-th element ⇀2j , we propose to use a vague normal

prior distribution N(µp, 62p ) and a uniform proposal distribution Unif(⇀2j→1p, ⇀2j+1p) with
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appropriate width 1p. A candidate sample ⇀⇓
2j is generated from the proposal distribution,

and accepted as the current state of ⇀2j with probability a(⇀2j ,⇀⇓
2j). Similarly, the log of

acceptance probability is given by:

log(a(⇀2j ,⇀
⇓
2j)) = 7(%⇓)→ 7(%) +

1

262p


(⇀2j → µp)

2
→ (⇀⇓

2j → µp)
2


where %⇓ is % with ⇀2j replaced by ⇀⇓
2j .

• For ◁C: We update the cluster indicators c1, . . . , cn, one-by-one. Let m be a prefixed number

of auxiliary parameters. We use m = 10 in our simulation studies and real data examples

in Chapter 4. For the base distribution H0 of the Dirichlet process prior, we propose to use

independent slightly informative priors H0 = ⇁(µ1i)⇁(µ2i)⇁(ϑ2
1i)⇁(ϑ

2
2i)⇁(ϖi). Here ‘slightly

informative’ means that the chosen priors spread out and properly cover the reasonable values

for the parameters. We propose to use normal distributions for ⇁(µ1i) and ⇁(µ2i), inverse-

gamma distributions for ⇁(ϑ2
1i) and ⇁(ϑ2

2i), and a uniform distribution Unif(→1, 1) for ⇁(ϖi).

The following procedure is used to update cluster indicator ci:

1. For subject i: Let k→ be the number of distinct cj for j ⇑= i. Let h = k→ + m, and

c→i = {cj : j ⇑= i}.

2. If ci = cj for some j ⇑= i (i.e. subject i is not a ‘singleton’), draw m samples

independently from H0 as {εk→+1, ..., εh} (i.e. draw m independent samples from ⇁(µ1i)

as {µ1,k→+1, ..., µ1h}, draw m independent samples from ⇁(µ2i) as {µ2,k→+1, ..., µ2h},

draw m independent samples from ⇁(ϑ2
1i) as {ϑ2

1,k→+1, ...,ϑ
2
1h}, draw m independent

samples from ⇁(ϑ2
2i) as {ϑ2

2,k→+1, ...,ϑ
2
2h}, draw m independent samples from ⇁(ϖi) as

{ϖ→
k
+ 1, ..., ϖh}).

3. If ci ⇑= cj for all j ⇑= i (i.e. subject i is a ‘singleton’), relabel these cj with values in

{1, ..., k→}, and label ci as k→ + 1. Draw m → 1 samples independently from H0 as

{εk→+2, ..., εh}.

4. Draw a new value for ci from {1, ..., h} with probabilities:

P (ci = c|c→i, ε1, . . . , εh) =






b · n→i,c · Li(εc) , 1 ≃ c ≃ k→

b · ↽

m
· Li(εc) , k→ ≃ c ≃ h

where n→i,c is the number of subjects that are in {j : j ⇑= i, cj = c}, and Li(εc) is the
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likelihood of subject i with parameter εc:

Li(εc) = L(ω1,ω2,⇀1,⇀2, εc | Li, Ri, ▷i, Xi, Zi, Gi)

and b is a normalizing constant.

5. Update the total number of clusters k accordingly.

• For εc: We update cluster parameters εc, c = 1, . . . , k, one-by-one. For each c ↑ {1, . . . , k}, we

update {µ1c, µ2c,ϑ2
1c,ϑ

2
2c, ϖc} one-by-one, while keeping the other parameters at their current

state, using the M-H sampling algorithm. We propose to use independent vague priors for the

parameters: a normal distribution N(µ, 62) with large variance (e.g. µ = 0, 62 = 1002) for

µ1c and µ2c; an inverse-gamma distribution Inv-Gamma(51, 52) with small shape parameter

and small scale parameter (e.g. 51 = 52 = 0.001) for ϑ2
1c and ϑ2

2c; and a uniform distribution

Unif(→1, 1) for ϖc.

– For µ1c: We use a uniform proposal distribution Unif(µ1c→1p, µ1c+1p) with appropriate

width 1p. A candidate sample µ⇓
1c is generated from the proposal distribution, and

accepted as the current state of µ1c with probability a(µ1c, µ⇓
1c). The log of acceptance

probability is given by:

log(a(µ1c, µ
⇓
1c)) = 7c(%

⇓)→ 7c(%) +
1

262p


(µ1c → µp)

2
→ (µ⇓

1c → µp)
2


where %⇓ is % with µ1c replaced by µ⇓
1c, and 7c(·) is the log-likelihood function with

subjects in cluster c only,

7c(%) = log(L(% | Li, Ri, ▷i, Xi, Zi, Gi, i ↑ {j : cj = c}))

– For ϑ2
1c: We use a uniform proposal distribution Unif(max(ϑ2

1c → 1p, 0),ϑ2
1c + 1p) with

appropriate width 1p. A candidate sample ϑ2
1c

⇓
is generated from the proposal distri-

bution, and accepted as the current state of ϑ2
1c with probability a(ϑ2

1c,ϑ
2
1c

⇓
). The log
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of acceptance probability is given by:

log(a(ϑ2
1c,ϑ

2
1c

⇓
)) =7c(%

⇓)→ 7c(%)

+ log(min(21p,ϑ
2
1c + 1p))→ log(min(21p,ϑ

2
1c

⇓
+ 1p))

+ (51 + 1)
[
log(ϑ2

1c)→ log(ϑ2
1c

⇓
)
]
+ 52

(
1

ϑ2
1c

→
1

ϑ2
1c

⇓

)

where %⇓ is % with ϑ2
1c replaced by ϑ2

1c
⇓
.

– For µ2c: Similar to µ1c, we use a uniform proposal distribution Unif(µ2c→1p, µ2c+1p)

with appropriate width 1p. A candidate sample µ⇓
2c is generated from the proposal

distribution, and accepted as the current state of µ2c with probability a(µ2c, µ⇓
2c). The

log of acceptance probability is given by:

log(a(µ2c, µ
⇓
2c)) = 7c(%

⇓)→ 7c(%) +
1

262p


(µ2c → µp)

2
→ (µ⇓

2c → µp)
2


where %⇓ is % with µ2c replaced by µ⇓
2c.

– For ϑ2
2c: Similar to ϑ2

1c, we use a uniform proposal distribution Unif(max(ϑ2
2c→1p, 0),ϑ2

2c+

1p) with appropriate width 1p. A candidate sample ϑ2
2c

⇓
is generated from the proposal

distribution, and accepted as the current state of ϑ2
2c with probability a(ϑ2

2c,ϑ
2
2c

⇓
). The

log of acceptance probability is given by:

log(a(ϑ2
2c,ϑ

2
2c

⇓
)) =7c(%

⇓)→ 7c(%)

+ log(min(21p,ϑ
2
2c + 1p))→ log(min(21p,ϑ

2
2c

⇓
+ 1p))

+ (51 + 1)
[
log(ϑ2

2c)→ log(ϑ2
2c

⇓
)
]
+ 52

(
1

ϑ2
2c

→
1

ϑ2
2c

⇓

)

where %⇓ is % with ϑ2
2c replaced by ϑ2

2c
⇓
.

– For ϖc: We use a uniform proposal distribution Unif(max(ϖc →1p,→1),min(ϖc +1p, 1))

with appropriate width 1p. A candidate sample ϖ⇓c is generated from the proposal

distribution, and accepted as the current state of ϖc with probability a(ϖc, ϖ⇓c). The log
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of acceptance probability is given by:

log(a(ϖc, ϖ
⇓
c)) =7c(%

⇓)→ 7c(%) + log(min(ϖc + 1p, 1))→ log(max(ϖc → 1p,→1))

→ log(min(ϖ⇓c + 1p, 1)) + log(max(ϖ⇓c → 1p,→1))

where %⇓ is % with ϖc replaced by ϖ⇓c .

• For εi: After updating ◁C and εc, c = 1, . . . , k, the individual parameters εi = {µ1i, µ2i,ϑ2
1i,ϑ

2
2i, ϖi},

i = 1, . . . , n, can be derived.

• For ν: We update the strength parameter ν of the Dirichlet process prior using the M-H

sampling algorithm. We propose to use prior distribution

P (ν) ↖

(
ν → ν

ν → ν

)
⇁

· I(ν < ν < ν)

where ν and ν are chosen to give small k (e.g. mode of k = 1) and large k (e.g. mode of

k = 15), respectively. 1 is a constant chosen to control the shape of the prior (e.g. 1 = 0.8).

We use a uniform proposal distribution Unif(max(ν, ν → 1p),min(ν, ν + 1p)). A candidate

sample ν⇓ is generated from the proposal distribution, and accepted as the current state of

ν with probability a(ν, ν⇓). The log of acceptance probability is given by:

log(a(ν, ν⇓)) =log(min(ν, ν + 1p)→max(ν, ν → 1p))

→ log(min(ν, ν⇓ + 1p)→max(ν, ν⇓ → 1p))

+ 1p [log(ν → ν⇓)→ log(ν → ν)]

+ k(logν⇓ → logν) + log(((ν⇓))→ log(((ν⇓ + n))

→ log(((ν)) + log(((ν + n))

where ((·) is the gamma function.

7.3.5 Extension of Li-Lu’s PBIV to Arbitrary Censoring

In this subsection, we briefly describe how to extend the parametric Bayesian method in Li and Lu

(2015) from right-censored data only to all four types of censoring.
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Following the same notation, the likelihood of observing (◁L, ◁R,◁▷) is:

L =
n∏

i=1

(1→ S(Li))
I{0i=1} (S(Li)→ S(Ri))

I{0i=2} S(Ri)
I{0i=3}f(Li)

I{0i=4} (7.3.11)

where S(y) = Pr(Y > y) is the survival distribution function and f(y) = →
d

dy
S(y) is the survival

time density function.

The likelihood function of observing (◁L, ◁R,◁▷, ◁X, ◁Z, ◁G) can be written as:

L(% | ◁L, ◁R,◁▷, ◁X, ◁Z, ◁G) = P ( ◁X, ◁Z, ◁G | %) · P (◁L, ◁R,◁▷ | ◁X, ◁Z, ◁G,%) (7.3.12)

where the first part is the marginal likelihood of the first-stage model, and the second part is the

conditional likelihood of the second-stage model. For the first part: from the bivariate normality

assumption of ↽1 and ↽2, the conditional distribution of ↽2i given ↽1i is:

↽2i | ↽1i ↘ N

(
ϑ2
ϑ1

ϖ ↽1i, (1→ ϖ2)ϑ2
2

)

i = 1, . . . n. Since ↽1i = Xi → ω0 → ω1
↗Gi → ω2

↗Zi from the first-stage model, the conditional

distribution becomes:

↽2i | Xi, Zi, Gi ↘ N

(
ϑ2
ϑ1

ϖ(Xi → ω0 → ω1
↗Gi → ω2

↗Zi), (1→ ϖ2)ϑ2
2

)

Therefore, given ◁X, ◁Z, ◁G, ω0, ω1 and ω2, the second-stage model has conditional survival function

(T refers to L and R)

S(T | X,Z,G) = P (Y > T | X,Z,G)

= P (⇀0 + ⇀1X + ⇀2
↗Z + ↽2 > T )

= P (↽2 > T → ⇀0 → ⇀1X → ⇀2
↗Z)

= 1→ &


T → ⇀0 → ⇀1X → ⇀2

↗Z →
σ2
σ1
ϖ(X → ω0 → ω1

↗G→ ω2
↗Z)

√
(1→ ϖ2)ϑ2

2


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and conditional density function

f1(T | X,Z,G) = →
4

4t
S(T | X,Z,G)

= ς


T → ⇀0 → ⇀1X → ⇀2

↗Z →
σ2
σ1
ϖ(X → ω0 → ω1

↗G→ ω2
↗Z)

√
(1→ ϖ2)ϑ2

2



where &(·) and ς(·) are the cumulative density function and the probability density function of

standard normal distribution, respectively. Combine them together with (7.3.12), we have the full

likelihood function for PBIV.

For the MH algorithm, independent di!use priors are used for the parameters: a normal

distribution N(µ, 62) with large variance (e.g. µ = 0, 62 = 1002) for each element in ω0, ω1,

ω2, ⇀0, ⇀1 and ⇀2; an inverse-gamma distribution Inv-Gamma(51, 52) with small shape parameter

and small scale parameter (e.g. 51 = 52 = 0.001) for ϑ2
1 and ϑ2

2; and a uniform distribution

Unif(→1, 1) for ϖ. Uniform proposal distributions are used for the random walk: Unif(z→1, z+1)

for each element in ω0, ω1, ω2, ⇀0, ⇀1 and ⇀2; Unif(max(z → 1, 0), z + 1) for ϑ2
1 and ϑ2

2; and

Unif(max(z → 1,→1),min(z + 1, 1)) for ϖ. Di!erent positive 1 is chosen for each parameter to

obtain an appropriate acceptance rate (e.g. 20% ↘ 40% depending on the sample size).

The detailed derivation of the log of acceptance probability for parameters in ε is as follows:

• ω0: Denote the current state and candidate sample as ω0 and ω⇓
0, respectively. With prior

distribution N(µ, 62) and proposal distribution Unif(ω0 → 1, ω0 + 1), the log of acceptance

probability:

log(a(ω0,ω
⇓
0)) =

1

262

(ω0 → µ)2 → (ω⇓

0 → µ)2

+

n∑

i=1


I{▷i = 4}

(
1

2
(q2i → q⇓i

2)

)

+ I{▷i = 3}

(
log(1→ &(q⇓i ))→ log(1→ &(qi))

)

+ I{▷i = 2}

(
log(&(q⇓i )→ &(p⇓i ))→ log(&(q⇓i )→ &(pi))

)

+ I{▷i = 1}

(
log(1→ &(p⇓i ))→ log(1→ &(pi))

)
+

1

2

(
ν2i → ν⇓i

2
)

(7.3.13)
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where

pi =
1√

(1→ ϖ2)ϑ2
2


log(Li)→ (⇀0 + ⇀1Xi + ⇀2

↗Zi)→
ϑ2
ϑ1

ϖ(Xi → ω0 → ω1
↗Gi → ω2

↗Zi)



(7.3.14)

qi =
1√

(1→ ϖ2)ϑ2
2


log(Ri)→ (⇀0 + ⇀1Xi + ⇀2

↗Zi)→
ϑ2
ϑ1

ϖ(Xi → ω0 → ω1
↗Gi → ω2

↗Zi)



(7.3.15)

νi =
1√
ϑ2
1

(Xi → ω0 → ω1
↗Gi → ω2

↗Zi) (7.3.16)

p⇓
i
, q⇓

i
and ν⇓

i
are similar to pi, qi and νi, respectively, equations with all ω0 replaced by ω⇓

0.

• ω1: We update ω1 by updating its elements one-by-one. To update the j-th element ω1j

with candidate sample ω⇓
1j , and with prior distribution N(µ, 62) and proposal distribution

Unif(ω1j → 1, ω1j + 1), the log of acceptance probability is similar to (7.3.13), with the first

term replaced by 1
212 ((ω1j →µ)2→ (ω⇓

1j →µ)2). pi, qi and νi stay the same as (7.3.14), (7.3.15)

and (7.3.16). p⇓
i
, q⇓

i
and ν⇓

i
are similar to pi, qi and νi, respectively: All equations have all ω1

replaced by ω⇓
1, where ω⇓

1 is ω1 with the j-th element replaced by ω⇓
1j .

• ω2: We update ω2 by updating its elements one-by-one. To update the j-th element ω2j

with candidate sample ω⇓
2j , and with prior distribution N(µ, 62) and proposal distribution

Unif(ω2j → 1, ω2j + 1), the log of acceptance probability is similar to (7.3.13), with the first

term replaced by 1
212 ((ω2j →µ)2→ (ω⇓

2j →µ)2). pi, qi and νi stay the same as (7.3.14), (7.3.15)

and (7.3.16). p⇓
i
, q⇓

i
and ν⇓

i
are similar to pi, qi and νi, respectively: All equations have all ω2

replaced by ω⇓
2, where ω⇓

2 is ω2 with the j-th element replaced by ω⇓
2j .

• ⇀0: We update the current state ⇀0 with candidate sample ⇀⇓
0 . With prior distribution
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N(µ, 62) and proposal distribution Unif(⇀0 → 1, ⇀0 + 1), the log of acceptance probability:

log(a(⇀0,⇀
⇓
0)) =

1

262

(⇀0 → µ)2 → (⇀⇓

0 → µ)2

+

n∑

i=1


I{▷i = 4}

(
1

2
(q2i → q⇓i

2)

)

+ I{▷i = 3}

(
log(1→ &(q⇓i ))→ log(1→ &(qi))

)

+ I{▷i = 2}

(
log(&(q⇓i )→ &(p⇓i ))→ log(&(q⇓i )→ &(pi))

)

+ I{▷i = 1}

(
log(1→ &(p⇓i ))→ log(1→ &(pi))

)

(7.3.17)

where pi, qi stay the same as (7.3.14) and (7.3.15). p⇓
i
, q⇓

i
are similar to pi, qi, with ⇀0 replaced

by ⇀⇓
0 .

• ⇀1: We update the current state ⇀1 with candidate sample ⇀⇓
1 . With prior distribution

N(µ, 62) and proposal distribution Unif(⇀1 → 1, ⇀1 + 1), the log of acceptance probability is

similar to (7.3.17), with the first term replaced by 1
212 ((⇀1 → µ)2 → (⇀⇓

1 → µ)2). pi and qi stay

the same as (7.3.14) and (7.3.15). p⇓
i
and q⇓

i
are similar to pi and qi, with ⇀1 replaced by ⇀⇓

1 .

• ⇀2: We update ⇀2 by updating its elements one-by-one. To update the j-th element ⇀2j

with candidate sample ⇀⇓
2j , and with prior distribution N(µ, 62) and proposal distribution

Unif(⇀2j → 1, ⇀2j + 1), the log of acceptance probability is similar to (7.3.17), with the first

term replaced by 1
212 ((⇀2j→µ)2→(⇀⇓

2j→µ)2). pi and qi stay the same as (7.3.14) and (7.3.15).

p⇓
i
and q⇓

i
are similar to pi and qi, with ⇀2 replaced by ⇀⇓

2 , where ⇀⇓
2 is ⇀2 with the j-th

element replaced by ⇀⇓
2j .

• ϑ2
1: We update the current state ϑ2

1 with candidate sample ϑ2
1
⇓
. With prior distribution Inv-

Gamma(51, 52) and proposal distribution Unif(max(ϑ2
1 →1, 0),ϑ2

1 +1), the log of acceptance
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probability:

log(a(ϑ2
1,ϑ

2
1
⇓
)) =


log(ϑ2

1 + 1 →max(0,ϑ2
1 → 1))→ log(ϑ2

1
⇓
+ 1 →max(0,ϑ2

1
⇓
→ 1))



+


(51 + 1)(logϑ2

1 → logϑ2
1
⇓
) + 52

(
1

ϑ2
1

→
1

ϑ2
1
⇓

)

+
n∑

i=1


I{▷i = 4}

(
1

2
(q2i → q⇓i

2)

)

+ I{▷i = 3}

(
log(1→ &(q⇓i ))→ log(1→ &(qi))

)

+ I{▷i = 2}

(
log(&(q⇓i )→ &(p⇓i ))→ log(&(q⇓i )→ &(pi))

)

+ I{▷i = 1}

(
log(1→ &(p⇓i ))→ log(1→ &(pi))

)

+
1

2

(
(logϑ2

1 → logϑ2
1
⇓
) + (ν2i → ν⇓i

2)

)

where pi, qi and νi stay the same as (7.3.14), (7.3.15) and (7.3.16). p⇓
i
, q⇓

i
and ν⇓

i
are similar

to pi, qi and νi, respectively: All equations have all ϑ2
1 replaced by ϑ2

1
⇓
.

• ϑ2
2: We update the current state ϑ2

2 with candidate sample ϑ2
2
⇓
. With prior distribution Inv-

Gamma(51, 52) and proposal distribution Unif(max(ϑ2
2 →1, 0),ϑ2

2 +1), the log of acceptance

probability:

log(a(ϑ2
2,ϑ

2
2
⇓
)) =


log(ϑ2

2 + 1 →max(0,ϑ2
2 → 1))→ log(ϑ2

2
⇓
+ 1 →max(0,ϑ2

2
⇓
→ 1))



+


(51 + 1)(logϑ2

2 → logϑ2
2
⇓
) + 52

(
1

ϑ2
2

→
1

ϑ2
2
⇓

)

+
n∑

i=1


I{▷i = 4}

(
1

2
(logϑ2

2 → logϑ2
2
⇓
+ q2i → q⇓i

2)

)

+ I{▷i = 3}

(
log(1→ &(q⇓i ))→ log(1→ &(qi))

)

+ I{▷i = 2}

(
log(&(q⇓i )→ &(p⇓i ))→ log(&(q⇓i )→ &(pi))

)

+ I{▷i = 1}

(
log(1→ &(p⇓i ))→ log(1→ &(pi))

)

where pi and qi stay the same as (7.3.14) and (7.3.15). p⇓
i
, q⇓

i
are similar to pi, qi, with all ϑ2

2
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replaced by ϑ2
2
⇓
.

• ϖ: We update the current state ϖ with candidate sample ϖ⇓. With prior distribution Unif(→1, 1)

and proposal distribution Unif(max(ϖ→ 1,→1),min(ϖ+ 1, 1)), the log of acceptance proba-

bility:

log(a(ϖ2, ϖ⇓)) =


log(min(ϖ+ 1, 1)→max(ϖ→ 1,→1))→ log(min(ϖ⇓ + 1, 1)→max(ϖ⇓ → 1,→1))



+
n∑

i=1


I{▷i = 4}

1

2


(log(1→ ϖ2)→ log(1→ ϖ⇓2) + q2i → q⇓i

2)


+ I{▷i = 3}

(
log(1→ &(q⇓i ))→ log(1→ &(qi))

)

+ I{▷i = 2}

(
log(&(q⇓i )→ &(p⇓i ))→ log(&(q⇓i )→ &(pi))

)

+ I{▷i = 1}

(
log(1→ &(p⇓i ))→ log(1→ &(pi))

)

where pi and qi stay the same as (7.3.14) and (7.3.15). p⇓
i
, q⇓

i
are similar to pi, qi, with all ϖ

replaced by ϖ⇓.
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7.3.6 Ishwaran-James Block Gibbs Sampler

In additional to the MCMC algorithm developed in section 7.3.4, we also developed another MCMC

algorithm based on Ishwaran-James truncated representation of a Dirichlet process (Ishwaran and

James, 2001) (also known as block Gibbs sampler). The di!erence between this one and Neal’s

algorithm in section 7.3.4 is that we replace the step of updating ◁C with a two-stage procedure.

We summarize this step below.

• For ◁C: We update the cluster indicators c1, . . . , cn simultaneously. Let the truncated DP be

H ↘

N∑

k=1

⇁k▷ϖk

where N is the truncation number and we augment the data by adding (⇁k, εk), k = 1, · · · , N .

For i = 1, · · · , n, draw

P (ci = c|◁⇁, ◁ε,Data) =
⇁cLi(εc)

N

k=1 ⇁kLi(εk)

where Li(εc) is the likelihood of subject i with parameter εc:

Li(εc) = L(ω1,ω2,⇀1,⇀2, εc | Li, Ri, ▷i, Xi, Zi, Gi),

note that the posterior of ci does not involve c→i as we truncate the DP at order N .

• For ⇁c: We update weights of each cluster using the following procedure.

For c = 1, 2, · · · , N → 1, let Ac =


n

i=1 I(ci = c) and Bh =


n

i=1 I(ci > c). We generate

Vc ↘ind Be(1 +Ac, ν +Bc)

and VN = 1. Then we set

⇁c = Vc

c→1∏

k=1

(1→ Vk), c = 1, · · · , N.

In the UKB data analysis, we set N = 5 due to previous experiences and summarize the results

in table 7.4. The trace plots are given in figure 7.21.
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Figure 7.21: Trace plot of causal e!ect ⇀1 of the Dirichlet process mixture model for the UKB data.

(a) Female cohort

(b) Male cohort
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Table 7.4: Analysis of UKB data using Ishwaran-James block Gibbs sampler

Estimate of ω1 SE 95% CI
Female Cohort -0.399 0.141 (-0.677, -0.122)
Male Cohort -0.328 0.111 (-0.523, -0.086)

7.3.7 Additional Simulations

In this section, we present additional simulation settings investigating the robustness of our method

under di!erent e!ect sizes, instrumental strengths and censoring rates (Table (7.5)-(7.10)). We

also include a simulation setting (Table (7.11)) that mimics the UKB data in our paper. These

simulation settings are similar to the one in the main paper (e.g., generation of covariates) except

for the following:

• Zero e!ect size where ⇀1 = 0 in the DPMIV model (4.3.5)-(4.3.6) is presented in Table (7.5);

• Varying instrumental variable strength with partial R-squared equal to 2%, 15%, 35% and

50% (Table (7.6)-(7.9));

• The event rate is as low as 5% (Table (7.10)) so that the censoring rate is high;

• The e!ect size ⇀1 = →0.363 which resembles the UKB example in the paper and the standard

deviation (SD) of X is scaled to 0.13, mimicking the SD of log systolic blood pressure (SBP)

in the UKB example.

7.3.7.1 Zero e”ect size (ω1 = 0)

In this subsection, we set ⇀1 = 0 in the DPMIV model (4.3.5)-(4.3.6) and others remain the same

as in the simulation section. The simulation result is consistent with nonzero e!ect size.
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7.3.7.2 Varying Instrumental Variable Strength

In this subsection, we set the partial R-squared between G, the instruments and X, the exposure

to be 2% (low strength), 15% (moderate strength), 35% (middle strength) and 50% (high strength)

in the DPMIV model (4.3.5)-(4.3.6) and others remain the same as in the simulation section. The

simulation results are consistent among di!erent varying instrumental variable strengths.
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7.3.7.3 High Censoring Rates and Low Event Rate

In this subsection, we set the event rate (i.e., the number of observations with Li = Ri) to be 5%

in the DPMIV model (4.3.5)-(4.3.6) and others remain the same as in the simulation section. The

simulation results are consistent among di!erent censoring rates.
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7.3.7.4 Mimicking the UKB Data

In this subsection, we set ⇀1 = →0.363 in the DPMIV model (4.3.5)-(4.3.6) and scales the standard

deviation of X to be 0.13 and others remain the same as in the simulation section. The value 0.13

is calculated from the standard deviation of the log SBP in the UKB data.

Table 7.11: Specification of the bivariate distribution of (ε1i, ε2i)T under new UK Biobank simulation
scenario with ⇀1 = →0.363

Scenario 7 New UK Biobank
Component Proportion µ1 σ

2
1 µ2 σ

2
2 ε

1 75% 4.996 0.015 4.908 0.304 -0.015
2 10% 4.969 0.036 3.349 0.285 0.318
3 5% 5.012 0.084 5.525 0.481 0.789
4 5% 5.054 0.027 3.685 1.087 0.480
5 5% 4.972 0.099 5.028 0.839 -0.356
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7.3.8 More Samples of the Imputed NPMLE from UKB Data
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(a) (b)

(c) (d)

(e) (f)

Figure 7.22: Six samples of the imputed NPMLE from the female cohort. For each sample figure, the left
panel represents conditional survival probilities from the Turnbull’s estimator. A single verticle line means it
puts a probability mass at that particular age; a gold rectangle means it puts the probability on the interval.
The right panel plots the empirical cumulative distribution function (ECDF) based on the left panels and
the grey dashed lines are cdf of a uniform distribution.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.23: Six additional samples of the imputed NPMLE from the male cohort. For each sample figure,
the left panel represents conditional survival probilities from the Turnbull’s estimator. A single verticle line
means it puts a probability mass at that particular age; a gold rectangle means it puts the probability on
the interval. The right panel plots the empirical cumulative distribution function (ECDF) based on the left
panels and the grey dashed lines are cdf of a uniform distribution.
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7.4 Supplementary Information for Chapter 6

7.4.1 Some Theoretical Developments

Here we derive the equivalence theorem for other optimalities. Suppose

&A(M) = Tr

M→1


= Tr


(ωs0s

T

0 + (1→ ω)A1)
→1


.

Then its Fréchet derivative at M1 in the direction of M2 is

F&A(M1,M2) = →(1→ ω)Tr

M→1(M2 →M1)M

→1

.

The above Fréchet derivative coincides with those in conventional optimal design literature if we set

ω = 0. Similar sensitivity function for a multiple objective optimal design can be derived similarly.

For instance, set

&(M) =
1

K

K∑

i=1


↼1
iPhiiD + ↼2

i&
i

A + (1→ ↼1
i → ↼2

i )&
i

c



where K is the number of sets of nominal values and i is to emphasize the dependency of locally

optimal design. The resulting design M is optimally optimal if the following holds for all x:

K∑

i=1

(
↼1
i

p
F i

&D
+ ↼2

iF
i

&A
+ (1→ ↼1

i → ↼2
i )F&c

)
≃ 0. (7.4.1)

We next give some simulations on the above equivalence theorem and sensitivity functions.
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7.4.2 Sensitivity Plots and Multiple Optimality

7.4.2.1 D-optimality

Figure 7.24: Sensitivity plots for D-optimality.
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7.4.2.2 DA-optimality with equal weights

Figure 7.25: Sensitivity plots for DA-optimality.
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7.4.2.3 Dc-optimality

Figure 7.26: Sensitivity plots for Dc-optimality.

229



7.4.2.4 Ac-optimality

Figure 7.27: Sensitivity plots for Ac-optimality.

230



7.4.2.5 Multiple-optimality

Figure 7.28: Sensitivity plots for Multiple-optimality.
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7.4.2.6 A Nine-parameter Model

Finally, we plot the sensitivity function of a nine-parameter model of the following form:

φ1 = log

(
⇁1

⇁2 + ⇁3

)
= ⇀1 + ω1x+ 51x

2 + 01 sin(2x)

φ2 = log

(
⇁1 + ⇁2

⇁3

)
= ⇀2 + ω2x+ 52x

2 + 02 sin(2x)

φ3 = log(⇁1 + ⇁2 + ⇁3) = 0

Figure 7.29: Sensitivity plots for the nine-parameter model.
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7.5 Some Unpublished Proofs

7.5.1 A Proof on the Product Integral Representation of A Survival Function

Definition 7.5.1 (Product integral (Gill and Johansen, 1990)). Let )(t), t ↑ T , be a cádlág

function of locally bounded variation. We define

S = !(1→ ))

the product-integral of ) over intervals of the form [0, t], t ↑ T , as the following function:

S(t) = !
s↑[0,t]

(1→ )(ds)) = lim
max |ti→ti→1|↖0

∏
(1 + )ti → )ti→1)

where 0 = t0 < t1 < · · · < tn = t is a partition of [0, t] and the matrix product is taken from left to

right.

Lemma 4 (Cox’s lemma (Cox, 1972; Cui, 2022)). Let T be a nonegative random variable and

S(t) = P(T ⇐ t) be its survival function. Let )(t), )(dt) = →S(dt)/S(t→), )(0) = 0 be the

associated cumulative hazard. Then for any t ≃ 0 , S(0) > 0, we have

S(t) = !
s↔t

(1→ )(ds)) =
∏

s↔t

(1→ )(#s)) exp(→)c(t))

where )c is the continuous part of ).

Proof. S(0) > 0 implies ) is of bounded variation on the interval [0, 0 ], which implies

)(t) = )c(t) + )d(t)

where )d(t) =


s↔t
)(#t) and )c(t) = )(t) → )d(t) =


t

0 )c(ds), )(#t) = )(t) → )(t→). Hence,

the product integral can be decomposed into

!
s↔t

(1→ )(ds)) =
∏

s↔t

(1→ )(#s))!
s↔t

(1→ )c(ds)) .
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But the first term is

log
∏

s↔t

(1→ )(#s)) =
∑

s↔t

log

(
S(s)

S(s→)

)

and the second term is (log(1→ x) ↙ →x when x small and use the definition of Riemann integral)

!
s↔t

(1→ )c(ds)) = exp




∑

s↔t

log(1→ )c(ds))





= exp

(
→


t

0
)c(ds)

)

= exp (→)c(t)) .

7.5.2 A Proof on the Predictable Variation of A Counting Process Martingale

Let N(t), t ↑ [0, 0 ] be a counting process and )(t) be its compensator, i.e., )(t) is predictable,

càdlàg and finite variation such that M(t) = N(t) → )(t) is a local-martingale (Andersen et al.,

2012). We refer to M(t) as the counting process martingale. By Doob-Meyer’s theorem, there

exists a unique finite variation càdlàg predictable process 〈M∀(t) such that M2(t) → 〈M∀(t) is a

local-martingale.

Lemma 5. The predictable variation of M(t) is

〈M∀(t) =


t

0
(1→ )(#s))(ds)) .

Proof. We have (note that N(#s)k = N(#s) for any integer k)

M(#s)2 = (M(s)→M(s→))2

= (N(s)→ )(s)→N(s→) + )(s→))2

= (N(#s)→ )(#s))2

= N(#s) + )(#s)2 → 2N(#s))(#s)

= M(#s) (1→ 2)(#s)) + )(#s) (1→ )(#s)) .
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Hence,

∑

s↔t

M(#s)2 =


t

0
(1→ 2)(#s))M(ds) +


t

0
(1→ )(#s)))(ds).

By integration-by-parts (Dabrowska, 2019),

M(t)2 = 2


t

0
M(s→)M(ds) +

∑

s↔t

M(#s)2

=

(
2


t

0
M(s→)M(ds) +


t

0
(1→ 2)(#s))M(ds)

)
+


t

0
(1→ )(#s)))(ds).

The first term is a local-martingale by the definition of Riemann-Stieltjes while the second term

is predictable. Hence, by the uniqueness of Doob-Meyer’s theorem (Dabrowska, 2019), we have

〈M∀(t) =

t

0 (1→ )(#s))(ds)) .

7.5.3 A Proof on the Non-di”erentiability of Brownian Motion Paths

We start with a proposition that describes the peculiarities of the Brownian motion path, and then

jump into pointwise and globalwise non-di!erentiability of B.

Lemma 6 (Liggett (2010); Karatzas and Shreve (1991)). Almost surely the Brownian motion B

is not monotone on any interval [s, t].

Proof. It is enough to show that the following set has probability 0:

A =
⋃

s,t↑Q+

{1 ↑ * : B(1) is monotone on [s,t]}

=
⋃

s,t↑Q+

Ast

By ϑ-additivity of a probability measure and stationarity of B, we only have to show that A01 =

{B is monotonically decreasing on [0, 1]} has probability 0. Set

Bn =
n⋂

i=1

{
B

(
i→ 1

n

)
→B

(
i

n

)
⇐ 0

}
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so that A01 = ∃
⇐
n=1Bn. But

P 0(Bn) = 2→n
▽ 0 as n ▽ ⇒.

Lemma 7 (Pointwise Nonsmoothness (Liggett, 2010)). For a fixed t ⇐ 0,

P(B(·,1) is not di!erentiable at t) = 1. (7.5.1)

Further, for P→ a.s. 1 ↑ *,

m(A) = 0, A = {t ⇐ 0 : B(·,1) is di!erentiable at t}. (7.5.2)

Proof. For t = 0, we have lim supt↙0
B(t)∝

t
= +⇒ a.s. If B is di!erentiable at B, then ∈K, ϱ > 0,

and we have (by the mean value theorem)

|B(s)→B(0)| ≃ K|s→ 0|, s ↑ [0, ϱ).

A contradiction. Next, for any t > 0, we note that B(t) → B(t0) has the same distribution as

B(t→ t0). For the second part, fix 1 and define the random set

C =

{
t ⇐ 0 : lim

n↖⇐

B(t+ 1
n
,1)→B(t,1)

1/n
exists at t.

}

By Fubini’s theorem and joint measurability of B(t,1)

E (m(A)) ≃ Em(C) = E
( ⇐

0
IC(t)dt

)
=

 ⇐

0



’
IC(t)dPdt = 0 (7.5.3)

where the last equality follows from the first part.

Theorem 7.5.1 (Nondi!erentiability of B: Paley-Wiener-Zygmund (Liggett, 2010)). The Brown-

ian motion B(·,1) is no where di!erentiable a.s.

Remarks: By the Markov property, B(· + s) → B(s) has the same distribution as B(·), so it

is su”cient to show that P(B is di!erentiable on (0, 1]) = 0. Let Ds be the set such that the path

B(·,1) is di!erentiable at s. By the previous lemma, we know P(Ds) = 0 for any s. Here we want
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to show that

D =
⋃

s↑(0,1]

Ds = {1 : B(s,1) is di!erentiable at some s ↑ (0, 1]}

has P-measure 0, but this is an uncountable union. The idea here is to bound this quantity by

discretizing the sample path of B and each piece has a small oscillation. Then D can be written

as a countable union of sets. Within each discretized interval, the sample path cannot be Lipschitz

continuous and hence, cannot be di!erentiable.

Proof. Recall

D =
⋃

s↑(0,1]

Ds

where Ds is the set that the path B(·,1) is di!erentiable at s. Define

( =
⇐⋃

m=1

lim inf
n↖⇐

n→2⋃

k=1

k+2⋂

j=k

{∣∣∣B
(
j

n

)
→B

(
j → 1

n

) ∣∣∣ ≃
3m

n

}

︸ ︷︷ ︸
Dmn

(7.5.4)

=
⇐⋃

m=1

⇐⋃

l=1

⇐⋂

n=l

Dmn

If D ¬ (, then we have

P(D) ≃ P(() ≃
⇐∑

m=1

P

lim inf
n↖⇐

Dmn


=

⇐∑

m=1

P




⇐⋃

l=1

⇐⋂

n≃l

Dmn





and for any fixed m. The proof is completed if we can show each term on the right-hand side
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is 0. By stationarity and independence of increments,

P
 ⇐⋃

l=1

⇐⋂

n=l

Dmn


≃ lim inf

n↖⇐
P (Dmn)

≃ lim inf
n↖⇐

n→2∑

k=1

P
(∣∣∣B

(
1

n

) ∣∣∣ ≃
3m

n

)3

≃ lim inf
n↖⇐

n


P
(∣∣∣B (1)

∣∣∣ ≃
3m
∞
n

)3

≃ lim inf
n↖⇐

n

 3m↔
n

→ 3m↔
n

1
∞
2⇁

e→
x2

2 dx

3

≃ lim inf
n↖⇐

(
6m
∞
2⇁

)3 1
∞
n

= 0.

We only have D ¬ ( left to show.

Lemma 8. We have D ¬ ( where D =
⋃

s↑(0,1]Ds and

( =
⇐⋃

m=1

lim inf
n↖⇐

Dmn

where

Dmn =
n→2⋃

k=1

k+2⋂

j=k

{∣∣∣B
(
j

n

)
→B

(
j → 1

n

) ∣∣∣ ≃
3m

n

}
.

Proof. If B is di!erentiable at some s ↑ (0, 1], then it is Lipschitz continuous at s. Let

Amn =

{
∈s ↑ (0, 1],

∣∣∣B(t)→B(s)
∣∣∣ ≃ m|t→ s| ̸t s.t. |t→ s| ≃

2

n

}

so that clearly D ¬
⋃

m

⋃
n
Amn. We next show that for any 1 ↑ D, then 1 ↑ (.

If 1 ↑ D, then ∈M,N so that 1 ↑ AMN .

Pick k s.t. k

N
≃ s ≃ k+1

N
, so 1 ↑

⋂
k+2
j=k

{∣∣∣B( j

N
)→B( j→1

N
)
∣∣∣ ≃ 3M

N

}
.
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In other words, we can pick N0 large and

1 ↑

⋂

N≃N0

N→2⋃

k=1

k+2⋂

j=k

{∣∣∣B
(

j

N

)
→B

(
j → 1

N

) ∣∣∣ ≃
3M

N

}
=

⋂

N≃N0

DMN .

We have shown that if 1 ↑ D, then 1 ↑ ( =
⋃

m

⋃
l

⋂
n≃l

Dmn.

7.5.4 A Proof on the Existence of Dirichlet Processes

Definition 7.5.2 (Dirichlet process (Ferguson, 1973)). Let ω be a non-null finite measure on

(X ,B(X )). We say P is a Dirichlet process on (X ,B(X )) with parameter ω if for every k =

1, 2, · · · , and measurable partition (B1, · · · , Bk) of X , we have

(P (B1), · · · , P (Bk)) ↘ Dirichlet(ω(B1), · · · ,ω(Bk)).

We write P ↘ D(ω) to represent a Dirichlet process.

Theorem 7.5.2 (Existence of DP (Ferguson, 1973)). Let P be the DP defined above satisfying

H(Ø) = 0. We assign probabilities to arbitrary measurable sets A1, · · · , Am ↑ B(X ) using the

following rule:

P (Ai) =
∑

(v1,··· ,vm)′vi=1

P (Bv1,··· ,vm)

where

Bv1,··· ,vm = ∃
m

j=1A
vj

j

for each vj = 0 or 1 and A1
j

= Aj while A0
j

= Ac

j
. Then there exists a probability P on

([0, 1]B(X ),B

[0, 1]B(X )


) where the ϑ-field is generated by cylinder sets.

Proof. Here we use a more explicit construction compared with the original proof in Ferguson

(1973). We need the following theorem.

Theorem 7.5.3 (Kolmogorov’s Theorem (Dabrowska, 2019)). Suppose that for each t, (*t,Ft)

represents a complete separable metric space with its Borel ϑ-algebra. If P is a compatible family
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of distributions then there exists a uniquely defined probability measure on the product space

(
∏

t↑T*t,↔t↑TFt) such that its finite dimensional distributions are given by the family P.

To check the Kolmogorov’s consistency conditions, we must show that, for arbitrary m and

measurable sets A1, · · · , Am, the marginal distribution of (P (A1), · · · , P (Am→1)) derived from

marginalizing (P (A1), · · · , P (Am)) is identical to the defined distribution of (P (A1), · · · , P (Am→1)),

i.e., the following are identical




∑

(v1,··· ,vm),v1=1

P (Bv1,··· ,vm), · · · ,
∑

(v1,··· ,vm),vm→1=1

P (Bv1,··· ,vm)








∑

(v1,··· ,vm→1),v1=1

P (Bv1,··· ,vm→1), · · · ,
∑

(v1,··· ,vm→1),vm→1=1

P (Bv1,··· ,vm→1)



 .

Since Bv1,··· ,vm→1 = Bv1,··· ,vm→1,0 ∅Bv1,··· ,vm→1,1, we have

P (Bv1,··· ,vm→1) =d P (Bv1,··· ,vm→1,0) + P (Bv1,··· ,vm→1,1)

by the properties of Dirichlet distribution (Ferguson, 1973). With this replacement, the two random

vectors defined in the previous slide have the identical distribution, i.e., the definition of P (·)

induces a compatible probability family on ([0, 1]B(X ),B

[0, 1]B(X )


). Further, if there exists another

partition (or disjointification of A1, · · · , Am), then the same argument still applies. Hence, the

Dirichlet process P actually defines a random process.

7.5.5 A Proof on the Concentration of Kernel Density Estimate

This subsection derives a refined bound for Exercise 2.15 in Wainwright (2019). A convergence rate

of order O


logn
nhn


, where hn ▽ 0 is the bandwidth, is provided in Example 10.14.3 of Dabrowska

(2019).

Let {Xi}
n

i=1 be an i.i.d. sequence of random variables drawn from a density f on the real line.

A commonly used estimate of f is the kernel density estimate, defined as:

f̂n(x) :=
1

n

n∑

i=1

Kh (x→Xi) ,
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where Kh(·) = 1
h
K( ·

h
) and K : R ▽ [0,⇒) is a kernel function satisfying

⇐
→⇐K(t) dt = 1, and

h > 0 is a bandwidth parameter. Define the L1-norm

⇓f̂n → f⇓1 :=

 ⇐

→⇐
|f̂n(t)→ f(t)| dt.

Lemma 9.

P

⇓f̂n → f⇓1 ⇐ E[⇓f̂n → f⇓1] + ▷


≃ e→n0

2
/2.

Proof. The random function ⇓f̂n → f⇓1 satisfies the bounded di!erence property with a bound of

2. To demonstrate this, consider varying the first component X1, and let X⇓
1 be an independent

copy of X1:



R

(∣∣∣∣
1

n
Kh(x→X1)→ f(x)

∣∣∣∣→
∣∣∣∣
1

n
Kh(x→X⇓

1 )→ f(x)

∣∣∣∣

)
dx ≃

1

n



R

∣∣∣∣Kh(x→X1)→Kh(x→X⇓
1 )

∣∣∣∣dx

≃
2

n
.

Hence, by McDiarmid’s inequality (Wainwright, 2019), the claim follows.
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lie groups. In The 22nd International Conference on Artificial Intelligence and Statistics, pages

3244–3253. PMLR.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle

properties. Journal of the American statistical Association, 96(456):1348–1360.

Fanelli, D. and Piazza, F. (2020). Analysis and forecast of covid-19 spreading in china, italy and

france. Chaos, Solitons & Fractals, 134:109761.

Fay, M. P. and Shaw, P. A. (2010). Exact and asymptotic weighted logrank tests for interval

censored data: the interval r package. Journal of statistical software, 36(2).

252



FDA (2003). Guidance for industry: exposure-response relationships-study design, data analysis,

and regulatory applications. http://www. fda. gov/cber/gdlns/exposure. pdf.

Federov, V. (1972). Theory of Optimal Experiments, translated and edited by WJ. Elsevier.

Fedorov, V. (2010). Optimal experimental design. Wiley Interdisciplinary Reviews: Computational

Statistics, 2(5):581–589.

Fedorov, V. V. (1971). The design of experiments in the multiresponse case. Theory of Probability

& Its Applications, 16(2):323–332.

Fedorov, V. V. and Hackl, P. (2012). Model-oriented design of experiments, volume 125. Springer

Science & Business Media.

Fedorov, V. V. and Leonov, S. L. (2013). Optimal design for nonlinear response models. CRC

Press.

Ferguson, T. S. (1973). A bayesian analysis of some nonparametric problems. The Annals of

Statistics, 1(2):209–230.

Ferguson, T. S. (1983). Bayesian density estimation by mixtures of normal distributions. In Recent

advances in statistics, pages 287–302. Elsevier.

Fewell, Z., Davey Smith, G., and Sterne, J. A. (2007). The impact of residual and unmeasured

confounding in epidemiologic studies: a simulation study. American journal of epidemiology,

166(6):646–655.

Fischer, D. S., Theis, F. J., and Yosef, N. (2018). Impulse model-based di!erential expression

analysis of time course sequencing data. Nucleic acids research, 46(20):e119–e119.

Fletcher, P. T., Lu, C., Pizer, S. M., and Joshi, S. (2004). Principal geodesic analysis for the study

of nonlinear statistics of shape. IEEE transactions on medical imaging, 23(8):995–1005.

Flynn, C. J., Hurvich, C. M., and Simono!, J. S. (2013). E”ciency for regularization parameter

selection in penalized likelihood estimation of misspecified models. Journal of the American

Statistical Association, 108(503):1031–1043.

253



Fogel, D. B. (1998). Artificial intelligence through simulated evolution. Wiley-IEEE Press.

Foster, E. M. (1997). Instrumental variables for logistic regression: an illustration. Social Science

Research, 26(4):487–504.

Gao, X., Pu, D. Q., Wu, Y., and Xu, H. (2012). Tuning parameter selection for penalized likelihood

estimation of gaussian graphical model. Statistica Sinica, pages 1123–1146.

Garetto, M., Leonardi, E., and Torrisi, G. L. (2021). A time-modulated hawkes process to model

the spread of covid-19 and the impact of countermeasures. Annual reviews in control, 51:551–563.
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