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ABSTRACT OF THE DISSERTATION

Identifying and Accommodating Context Dependent Effects in Studies of
Genetic Variation and Human Disease

by

Danjuma Quarless

Doctor of Philosophy in Biomedical Sciences

University of California, San Diego, 2017

Professor Nicholas Schork, Chair
Professor Richard Kolodner, Co-Chair

Genetic variants, or changes in DNA sequence, are known to contribute to

both complex and Mendelian diseases. The identification of individual and collec-

tions of variants, both common and rare, associated with diseases can help elucidate

pathogenic mechanisms contributing to those diseases, since it is known that genetic

variants can impact gene function and drive pathophysiology. Unfortunately, there

is no consensus on the best strategies for identifying genetic associations and effects.

In fact, many methods simply involve testing each variant in the genome for associa-

tion with a trait directly, and ignore the fact that most molecular and physiological

systems are quite complex and involve a number of interacting parts. In this light,

xv



the effect of any one variant may be masked by, or interact with, other variants and

phenomena (such as environmental factors). This is a likely reason why many at-

tempts to identify genetic variants associated with most diseases have not been able

to explain the majority of the heritable component of those diseases. It is therefore

important to consider genetic association analysis methods that are sensitive to the

fact that genetic variants may exhibit effects that are “context dependent” in that

their effects depend on the existence of other variants or environmental factors.

Quantifying the extent to which genetic variants interact with other factors

remains a challenge in genetic studies. This is the case despite the fact that there have

been numerous historical studies exposing the existence of context dependent genetic

effects in very broad settings that should motivate greater concern for context de-

pendency in modern genetic association studies. For example, many model organism

studies, highly contrived in vitro studies, studies of tumor responsiveness to targeted

therapies, and general clinical studies of monogenic diseases have all suggested that

the phenotypic impact of certain genetic factors is dependent on other factors. We

believe that ignoring the genetic and overall context within which a genetic variant

is operating can negatively impact understanding disease pathogenesis and human

biology.

In the following, we explore two broad settings in which genetic background

and context can have an effect on the interpretation of the impact of genetic vari-

ation on a clinically meaningful phenotype. The first setting involves associating

genetic variation exhibited by the pathogen Methicillin-Resistant Staphylococcus Au-

reus (MRSA) and the clinical outcomes of patients harboring an infection induced by

that pathogen. Essentially, the current manner in which MRSA genetic variants are

identified requires the choice of a reference strain genome whose genetic background

relative to the strains of interest could influence the characterization, association and

interpretation of the impact of those variants. The second setting considers the iden-

tification of genetic factors that collectively influence Alzheimer’s Disease (AD) in

a manner that is dependent on the genetic background of the individuals studied

through intermediate phenotypes. We ultimately believe that the approaches and

findings in our work should motivate further research and a sensitivity to the numer-

ous contexts in which genetic variants may impact phenotype development.
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Chapter 1

Context Dependent Effect

Considerations For Genomics

Research

1.1 General Introduction

Genetics studies seeking to identify casual factors associated with human dis-

ease are often highly problematic, since many confounding factors complicate their

implementation and interpretation. These confounding factors are rooted in the bi-

ological and genetic complexity of disease pathogenesis but are exacerbated further

in studies leveraging DNA sequencing and genotyping protocols. For example, DNA

extraction, sample processing, variant identification techniques, etc. as well as sta-

tistical analysis methods that can’t possibly control for all relevant parameters that

might affect a study’s results. As a result, substantial interaction effects involving

additional factors influencing disease and context dependent biological effects, which

in many instances often go unnoticed, have been identified in recent investigations.

These elements are important to consider in the elucidation of the contribution of

various factors to natural phenotype variation, particularly in the context of whole

genome sequencing (WGS) and genome-wide association studies (GWAS)1,2.

A prime motivation for the work outlined in this thesis is that it addresses the

shortcomings of current genome-wide association study (GWAS) methodologies to

1
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explain the heritable portion of most common diseases3–11. Genetic variations, single

nucleotide variation (SNVs) in particular, are known to have small individual effects

on disease susceptibility but often interact in subtle ways. Thus, more appropriate

methods are needed to understand the full context in which genetic factors impact

disease, above-and-beyond the individual effects of SNVs.

The context dependency of the effects of genetic factors is particularly im-

portant in precision medicine (PMed), through investigation of either complex or

Mendelian disease, since PMed requires the identification of drug targets that could

be specific SNVs and structural mutations. The assumption, however, is that those

genetically-mediated targets are not modified by other factors, which, again, may be

the critical oversight in GWAS methodologies. In many cases, the biology behind a

disease relevant to particular PMED is known to be rather complicated. Take as an

example cancer, where common practice often relies on treatments that target specific

somatically-acquired tumor-initiating mutations. However, many of these individual

mutation-targeting therapies fail due to preexisting mechanisms not accounted for or

THAT ARE acquired and create resistance that are unaccounted for at the time of

treatment initiation12–14. The occurrence of these mutations enables continued tumor

proliferation. Although this example is specific to the etiology of cancer, it points

out how mutations not accounted for, i.e., context specific mutations or mutations

in the genetic background, can be important for the successful treatment of cancer.

Thus, cancer mutations that are the targets of specific drugs often operate in a very

context-specific manner, given that the existence of other factors could mitigate their

success in combatting the tumor.

The context-dependency of targeted therapies and the existence of biological

and genetic bypass mechanisms confounding potential therapies are not unique to

cancer. For example, it has long been established that anti-microbial treatments tar-

geting specific pathogens often unknowingly assume a particular genetic architecture

and genetically-mediated capabilities of the pathogen for most infectious diseases. As

a result, many pathogens have eluded successful treatment, in a similar fashion to

certain tumors, through an ability to rapidly evolve mechanisms that withstand effec-

tive treatments. In addition, many complex neurological diseases, such as Alzheimer’s

Disease (AD), are known to be influenced by many factors whose complex interac-
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tions make it difficult to identify successful treatments that consider only one of those

factors15.

The biological complexity surrounding cancer, infectious disease and common

chronic congenital diseases like AD makes it hard enough to elucidate genetic mech-

anisms contributing to them that might lead to treatments, but the very process of

identifying those factors adds even more complexity. This observation motivated our

study of the choice of a MRSA reference genome, as a goal of that study was to

uncover technical sources of variation that complicate clinically-meaningful interpre-

tations of MRSA genome associations. For example, WGS and genotyping protocols

for identifying genetic variants that might be implicated in cancer, infectious disease

and common chronic diseases use constructs, like reference genomes, that may not be

suitable for the identification of all the relevant genetic factors.

These observations suggest that gene and DNA variations responsible for hu-

man diseases do not work in isolation, but rather have effects that are ‘shaped’ or

influenced by the activities of other genes and variants. In addition, current strate-

gies for assembling and characterizing genomes in anticipation of mining them for

important, clinically meaningful genetic variants are also impacted by the assump-

tions they make about the variation they are interrogating. In this light, there is

overwhelming evidence in the scientific literature that the ‘background,’ primarily ge-

netic background, in which a specific variant can be identified and in which it operates

biologically influences both the identification and the ultimate effect of the variant,

ultimately suggesting that the genetic background associated with a specific variant

creates a true ‘context specific’ manner in which genetic variants can be character-

ized and have an influence on a human disease. See figure 1.1 for a diagram of the

complexity associated with disease gene identification.

1.2 Terminology

The term “genetic background” has numerous definitions in the biomedical

literature. However, it historically denotes the phenomenon whereby the phenotypic

penetrance or expression of one genetic factor, such as a specific SNV or structural

variant, can influence the expression or function, or lack thereof, of a second genetic
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The Interplay of Genetic Background and Disease Risk

Figure 1.1: Figure from Bourgeron et. al (2015): A) Panel depicting various disease
burdens. B) Disease transmission may occur through multiple paths: a de novo highly
penetrant mutation (far left), a medium burden of rare variants passed on from each
parent (left of middle), if one parent has a medium load of common risk variants
and one has medium burden of rare risk variants (right of middle), and lastly when
children develop disease where both parents have a high dose of common risk variants
(far right).

factor. This type of interaction can often affect a phenotype of interest in a non-

additive manner16. In this context, the regulated factor in question that is influenced

by the presence or ability of another factor, is often said to be “modified” by the

other factor. Most human phenotypes are known to be under control of extensive

collections of genes, where variations in many of these genes contribute to the total

phenotype variation and hence modify each other’s effects. Ignoring modifiers is

known to confound research studies16–18.

The term ‘epistasis’ originally described phenomena in which the penetrance

of one gene could be suppressed by a modifying gene. However, its current use in

biomedical literature refers to other sorts of modifications impacting phenomena be-

yond gene expression. In addition, other forms of interactions are known to occur,

including gene-environment interactions that could themselves complicate character-

izations of variant interactions occurring both within the gene, i.e., SNV-SNV in-

teractions, or between variants in different genes19,20. In all, terms such as genetic

background, modifying factors, epistasis, and additional terms such as synergism,

interaction deviation, intragenic complementation and others21, all convey the fact
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that genetic variants often act in a context-dependent or context-specific manner and

they will be treated as more or less synonymous and used throughout the remainder

of this thesis.

1.3 Examples of Context-Specificity from Biological

Studies

Publications in the genetic and biomedical literature going back centuries have

noted the non-trivial difficulty in identifying context dependent effects, including the

rediscovery of Mendel’s laws of genetics22. These difficulties mainly derive from the

large sample sizes necessary to detect the often-subtle context-specific effects that

contribute to many phenotypes. Although there in notable exceptions, mostly in the

model organism literature, this fact and others have resulted relatively few specific

investigations characterizing context-dependent effects involving very specific genetic

variants or factors in the human biomedical literature. Many studies, however, have

considered the gross or overall effects of disease modifying factors, as will be discussed

later. In addition, there is growing interest in studies investigating human context

specific effects that leverage multiple high-throughput genome sequencing technolo-

gies and other ‘omics’ technologies (transcriptomics, proteomics, metabolomics, etc.).

In fact, these studies could allow researchers to potentially identify all variants and

other genomic factors that interact with a primary genetic factor of interest23,24 and

further could be motivated by and extend historical attempts to characterize instances

where genetic context impacts a biological outcome, as described below.

1.3.1 Basic Eukaryotic Model Organism Studies

Multiple historical investigations have exploited inbred mouse strains to assess

the transfer of genes and genetic variants from one strain to another25,26. These

studies demonstrated the importance of genetic context and motivated researchers

to consider their implications for human disease. For example, many mouse studies

have shown that the transfer of a gene with a lethal embryonic mutation in one

mouse strain could actually lead to viable mice when implanted in a mouse strain
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with a different genetic background23,27–29More recently, it has been estimated that

approximately 74% of all variants that modify the effect of a specific mutation, the

optomotor-blind gene, in Drosophila are dependent on the genetic background of

strains studied.4,5. The authors of the study investigating the optomotoer-blind gene

ultimately noted that the genetic background effects on the expression of the mutant

were likely underestimated in the study, and that the wider consequences of such

genetic influences are poorly understood5,6. Finally, Kruglyak and colleagues showed

that many phenotypically-impactful variants in yeast had effects that were modified

by the genetic backgrounds of different yeast strains3.

1.3.2 Cancer and Treatment Response

As noted in the introduction, it is well-documented that cancer is initiated

and sustained by the coordinated activities of multiple oncogenes, often harboring

inherited and somatically-acquired mutations, and the activities associated with spe-

cific gene and protein networks30. For example, Vogelstein et al. recently reviewed

the current state of knowledge about tumorigenesis in various cancer types and con-

cluded that each tumor is likely a product of multiple primary driver mutations in

addition to the activities and impact of many subtler ‘backseat’ driver mutations.

These secondary mutations often work independently and in tandem, such that if one

mutated gene is therapeutically targeted, other mutated genes sustain tumor growth

and may initiate metastasis by circumventing any targeted treatments focusing on

a single mutated gene. In addition, it has been shown recently that tumors acquire

copies of growth sustaining genes, such as housekeeping genes, and lose copies of

tumor suppressor genes during the evolution of the tumor. Such gains and losses

provide a unique ‘permissive’ background for tumor growth, allowing the primary

driver mutations to thrive and work in an uninhibited environment31. In addition, it

is becoming increasingly clear that tumorigenesis is not only influenced by de novo

acquired somatic mutations, but also by variants present in the host genome, as some

inherited germline variants may themselves create a more permissive environment for

tumorigenesis while increasing cancer susceptibility32.
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1.3.3 Human Ancestry and Disease

It has been shown unequivocally that disease prevalence rates vary by country,

community affiliation, and geoethnic origins. For example, genetic differences between

ethnic groups are known to modify the association of specific disease-causing variants

with disease risk and transmission33. This is often attributed to dietary and cultural

differences between the population groups, but also to genetic differences between

populations34. As a result of genetic background differences between individuals that

modify specific variant effects, individuals that are admixed between different popu-

lations (e.g., African Americans, Hispanics, Brazilians, etc.) often exhibit phenotypes

and disease rates that are intermediate between the two relevant parental populations,

suggesting that genetic background does indeed influence human phenotypic expres-

sion and can modify the effects of individual variants associated with a particular

disease of phenotype in the population at large.35,36

1.3.4 The Polygenic Model of Human Diseases

Recent studies have sought to determine the degree to which the combined or

collective effects of genetic variants, each with a minor or non-substantive phenotypic

effect, contribute to a disease state37–39,39–41. Such studies suggest that most complex

human diseases do indeed have a large polygenic, or genetic background effect, which

contributes to their manifestation. Although this may make it difficult to identify

each and every variant contributing to a particular disease, given the small effect

each individual variant may have on the disease, it does suggest that the cumulative

effects of many variants shape phenotypic expression. This further suggests that the

genetic ‘context’ of an individual shapes their phenotypic presentation, i.e. the state

of gene expression, protein levels, metabolic profile, physiologic function, and overt

clinical profile in vivo 7. Also, there are many examples in the literature where a

small number of genes or genetic variants have been shown to influence a phenotype,

also suggesting that the genetic background context within which a gene or variant

operates is important to consider in the assessment of the contribution of any one

gene or variant3.
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1.3.5 Infectious Disease Caused by Bacterial Pathogens

Many antibiotic agents target individual genetic regions of essential genes,

which are responsible for bacterial fitness42. Resistance to these therapies can arise

if mutations, as small as individual nucleotides in conserved genes throughout the

genome, arise that counteract the mechanism targeted by the therapy. It is now

well accepted that infectious diseases caused by bacterial pathogens can reach epi-

demic proportions due to evolutionary mechanisms involving the accumulation of

mutations that allow them to survive and overcome most antibiotics and interven-

tions43,44. This suggests that a host’s defense mechanisms cannot always deal with

a pathogen and creates the potential for host-pathogen interactions influencing the

evolutionary mechanisms that contribute to sustained human infectious disease. In

this light, it is well known that host genetic background and a particular pathogen

may be better ‘matched’ and lead to a symbiotic or mutually beneficial relationship45.

A number of studies on this particular topic have investigated the ability of host and

pathogen genetic background to contribute to disease pathogenesis as well as shape

features of bacteria46–49.

1.3.6 General Gene x Environment Interactions

There is a great deal of literature on the modifying influence of gross envi-

ronmental factors on the impact of a gene or genetic variant on disease susceptibility

or general phenotypic expression in humans50. For example, lactose intolerance is

known to be influenced by genetic variants, but only really manifests in societies with

sufficient access to milk51–53. Other well-known examples that need further study and

validation include obesity and diabetes, many forms of cancer and addiction, all of

which are likely influenced by gene-environment interactions54–56.

1.3.7 General Epistasis the Non-Additive Effects of Genetic

Variants

As noted, epistasis involves the interaction between multiple biological inter-

mediates such as proteins, genes, SNVs, and other factors, and is known to contribute



9

to both disease susceptibility and organismal function. Epistatic effects can be re-

vealed through either direct biological studies or statistical analyses by identifying

non-additive effects of combinations of factors. However, methods in to identify bi-

ological or statistical epistasis have particular challenges57–60. Both In vivo and in

vitro systems and strategies exist to characterize epistasis, although identifying spe-

cific genes and/or mutations for potential analyses is not trivial for many reasons, not

the least of which has to do with cost of testing thousands or millions of potential

interacting factors61. Some statistical methods for detecting epistasis that do not

just consider individual variant associations seek to statistically prioritize collections

of SNVs for study in laboratory assays. As such, potential epistatic events identified

through statistical analyses could reveal non-additive or multiplicative effects that

may explain missing heritability of a disease or reveal novel drug targets that can

be further assessed in focused laboratory investigations62. A caveat with statistical

association-based epistatic screens is that they often suffer from difficulties associ-

ated with validation and replication in different data sets, whereas lab based epistatic

screens often do not. Despite this, an advantage of sophisticated ‘big-data’ analytic

methodologies for assessing interactions is that they can be used to screen thousands

of genetic and phenotypic variables at fractions of the cost and time compared to

functional assays and prioritize findings for further study.

Interestingly, in the context of Alzheimer’s disease (AD), evidence suggests

that APOE variants exhibit epistatic, or context dependent effects. For example,

the ε4 allele is known to impact disease in a dosage dependent manner where two

copies more than doubles the disease odds ratio. However, having either an ε2 or ε3

allele decreases the odds of having AD even if an ε4 allele is present; and possessing

two ε2 alleles can protect against AD development63. These complexities suggest

that the ApoE is involved in a number of processes controlling AD pathogenesis that

may involve interactions of the sort that could be teased out via statistical meth-

ods. In addition, as mentioned, ethnicity and ancestral genetic background, which is

a measurable genetic phenomenon, can impact differential disease associations. For

example, African-American and Hispanics show weak disease association with the ε4

allele, although individuals from a Caucasian and Japanese ethnic background exhibit

more pronounced allele dosage dependent effects of ε4 allele64. These phenomena are
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likely attributable to epistatic or context-specific interactions amenable to statistical

analyses, but not likely to be identified through conventional additive disease mod-

eling65. One hypothesis we explore is that APOE, specifically the ε4 allele, interacts

with groups or collections of other SNVs in a manner that would be missed by simple

pairwise interaction-based association testing, or an assessment of the additive main

or marginal effects or individual genetic variants.

1.4 The Genomics Era and Context-Specificity

1.4.1 Sequencing and High-Throughput Technologies

The advent of affordable genome-wide DNA sequence interrogation tools, such

as genotyping microarray chips and high-throughput sequencing technologies, has en-

abled a data-driven biological era. Through these technologies, researchers can probe

genetic aberrations throughout the genome for their association with diseases using

genome-wide association study (GWAS) strategies66. Given the massive amounts

of data that modern genetic and genomic technologies generate, particularly in the

context of GWAS strategies, the challenges that impede their use to elucidate the

biological complexity of diseases involve computational efficiency, management and

storage of data, and mathematical and statistical analysis of data. This is in distinc-

tion to a great deal of biomedical research in the past where the solutions needed for

many problems were biological or chemical in nature having to do with the creation

of appropriate laboratory assays.

In this light, contemporary genomic studies currently need analytical meth-

ods that can: 1) robustly associate the vast number of DNA sequence variations with

relevant clinical disease phenotypes via GWAS strategies; 2) Accommodate complexi-

ties, such as interactions between genetic variants, environmental factors, and general

context dependencies in association studies; and 3) correct for the incredibly large

number of statistical calculations needed to test each variant, or combination of vari-

ants and other factors, for association with disease. This chapter will address these

three issues and describe methods to improve the GWAS analysis and the interpre-

tation of information resulting from GWAS.
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1.4.2 GWAS and Statistical Analyses

Since the first draft of the human genome was published in 2003, subsequent

genomic studies have sought out to identify genomically-mediated pathophysiologic

factors that positively or negatively modulate disease expression, either under the

assumption that these factors involve multiple loci (i.e., complex ‘diseases’), or one or

a few individual loci (i.e., Mendelian ‘diseases’).67 These efforts led to the initiation of

the GWAS era of genetic studies, in which naturally occurring DNA sequence variants

throughout the genome are interrogated or ‘genotyped’ on a large number of individ-

uals either with or without a phenotype of interest or measured on a specific quantita-

tive phenotype such as weight or cholesterol level, and tested for association with the

phenotype using traditional statistical methods, such as linear regression methods for

quantitative traits or logistic regression methods for qualitative traits68,69. Identifying

genetic variants influencing diseases is particularly important because these variants

can be used to predict disease risk and aid the development of novel therapeutics by

revealing drug targets. To date, the NHGRI GWAS catalogue, which records the re-

sults of GWAS and is maintained by the National Human Genome Research Institute,

lists ≥ 29,000 SNV-disease or SNV-trait associations that pass simple criteria for sta-

tistical significance (e.g., P(x) ≤ 5.0x10ˆ-8) for hundreds of Mendelian and complex

diseases. However, as noted, the majority of these associations fail to explain large

portions of the heritable components of more complex, polygenic disease70.

Given the abundance of genomic data generated from genomic sequencing and

high-throughput genotyping technologies, GWAS analyses have become rooted in the

“Small N, Large P” statistical and mathematical problems, which have increasingly

become commonplace in many research challenges. Thus, genomic analyses typically

involving relatively small samples size (N) that have been leveraged to collect a large

number of variables (P), such as phenotypes or genetic information.71 The problem

with these types of analyses is often low statistical power to draw compelling infer-

ences, given the small sample size and the number of statistical tests which require

a multiple hypothesis test correction. In the context of the AD studies that we

have investigated and will discuss below, N=14,000+ Alzheimer’s disease patients

and controls have been evaluated for P=3,000,000+ DNA variants. It is expected
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in such studies that the majority of variants will exhibit little or no association with

disease72; however, a small subset of these variants will demonstrate an association

with disease. In this light, the problem of most pressing concern is trying to distin-

guish the appropriate true association ‘signals’ from the background ‘noise’ induced

from all the other non-associated variants. In addition, for most diseases, like AD,

the belief is that they have many genetic determinants with weak effects that are

likely to be context specific, resulting in genetic studies that ultimately explain a far

lower proportion of the heritability of the disease than originally anticipated since the

identification of variants with weak effects in genome-wide studies requires very large

sample sizes. Ultimately, then, deciphering the root genetic cause(s) of the complex

and multigenic nature of most chronic conditions, like AD, can be considered largely

a data analysis and large-scale study design endeavor.73,74

1.4.3 GWAS and Context-Specific Genetic Effects

As noted, a major problem inherent to GWAS methodologies, and genetic as-

sociation studies in general, is that the majority of variants in the human genome

that could be interrogated are simply not associated with the disease. In addition, if

an association can be detected, it is typically not very strong for a variety of reasons,

including not accounting for interactions involving the relevant gene or variant7,75,76.

Despite implicating thousands of disease variants, the traditional or canonical single-

variant-focused GWAS framework used to date will likely fail to explain the relation-

ship between genetic variants and disease since it ignores complexities, like genetic

interactions. One can argue that to overcome this issue, one could increase statistical

power to detect the effects of individual loci through the analysis of larger samples.

However, this may not work when certain types of interaction are at play.16 This is

not to devalue the utility of current association analysis efforts or the entire paradigm

of GWAS, however, but to suggest that improving the power of variant detection via

association analysis could involve statistical analysis models that consider more than

just the marginal effects of genetic variants and robustly account for and explore

interactions.

The challenges associated with identifying pairwise or interacting variants are
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apparent when considering more complex phenotypes, e.g., diseases associated with

the genomically complex antimicrobial resistance or neuropsychiatric disorders, that

are known to be among the most heterogeneous in terms of phenotypic presentation

and causal etiology. Complex pathologies and phenotypes are thought to arise from

perturbations in multifaceted gene networks, the interplay between multiple genetic-

factors which influence biochemical and biophysical processes, or environmental fac-

tors that exacerbate genetic effects.

As discussed in the previous sections, the analysis of epistatic interactions

and general context-specificity of disease-mediating factors is typically not pursued

because of the additional statistical and computational burden involved, i.e. “Small N,

Large P”. For example, without knowing which variants may be interacting, one may

test all possible combinations of variants for a potential interaction effect. With an

initial dataset of millions of genetic variant, this would create an astronomical number

of statistical tests. Thus, although it is recognized that gene-gene, gene-environment,

SNV-SNV, and other interactions exist and influence disease, and may potentially

produce genetic effects on par with the main effects of individual genetic variant,

they are hard to tease out with standard statistical analysis methodologies. Of the

methods proposed to assess gene-gene or SNV-SNV interaction effects, for example,

the majority of them exhaustively test all gene or SNVs for association in a pairwise

fashion, creating an enormous statistical problem given the need to correct for multiple

hypotheses.77–85 Alternative statistical methods could elucidate combinatorial effects

missed in traditional single locus or SNV association studies, however. For example,

in the context of our analysis of AD, we propose a two-step, nested logistic regression

approach to testing the hypothesis that a particular variant known to be associated

with a disease influences or interacts with the collective or combined effects of many

other variants. We apply this approach to the study of Alzheimer’s disease (AD).

In particular, we are interested in characterizing the ability of the ε4 allele in the

Apolipoprotein E (ApoE) gene to interact with and/or modulate groups or collections

of other SNVs, possibly throughout the genome. This approach obviates the need

for directly testing all possible individual SNV-SNV interactions that could number

in the tens of millions, if not more. We apply this two-step approach to a set of

SNVS thought to be associated with AD obtained from the NHGRI GWAS catalogue.
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Ultimately we find some evidence that the e4 allele modulates the influence of a

group of other susceptibility SNVs on AD, but only in the context of the cohorts that

have been studied, with the ADGC data. We also consider analyses that explore

the identification of variants impacting infectious disease and show that the current

techniques for identifying variants in a pathogen and then relating them to a clinical

outcome in the host is very context-specific, and ultimately requires care and an

attention to detail that precedes testing specific interactions involving those variants.

We also show that despite this issue, DNA sequencing of pathogens does often result

in more confident clinical classification of pathogens than standard culture-based

methods.

1.5 Overview and Organization of Dissertation

The examples and issues discussed in the previous sections demonstrate both

the interest in, and inherent difficulties associated with, characterizing the context-

specific effects of genetic factors influencing disease susceptibility and general pheno-

typic expression. Genetic background and general context-specificity may be subtle

and impact even the bioinformatic and assay workflow used to identify and character-

ize genetic factors and their relationship to a phenotype. This suggests that a variety

of bioinformatics and statistical genetic analysis methods are needed. Ultimately,

we hypothesize that failure to control for genetic background and general context-

specificity, e.g., multiple genetic loci interacting to influence disease, may lead to: 1.

confounding effects and mischaracterization of the contribution of genetic factors to

disease; 2. variability across studies when associating disease outcomes with genetic

factors, especially in clinical contexts; and 3. a need for sensitivity to the design and

implementation of studies, limitations of data analysis methods, and clinical genetic

assay interpretation. As an example of this last point, consider researchers devel-

oping genetic assays for mutation detection in clinical diagnostic settings that focus

on the identification of single mutations where the result could mislead prognoses if

the mutation of interest has an effect that is modified by another gene or genetic

background as a whole. We have embarked on three different studies designed to

characterize the context-specificity and the effect of genetic background on human
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diseases. First, in chapter 2, we explore the utility of DNA sequencing relative to

traditional culture-based methods in the context of identifying bacterial pathogens in

the clinical setting. Second, in chapter 3, we explore the context-specificity of genetic

variant identification protocols involving the MRSA pathogen and show how they

can impact clinical interpretations about the severity and outcomes of the infection

in humans. Third, in chapter 4, we consider the influence of a single genetic factor,

the much-studied APOE4 locus on the impact of a number of other AD susceptibility

variants and show that these variants have differential effects depending on whether

an individual does or does not have the APOE4 variant and in what set of individuals

the study is pursued in. Fourth, in chapter 5, we consider the identification genetic

variants that influence AD by considering whether they influence gene expression

levels that are ultimately associated with AD via mediator-wide association study

(mWAS) methodology. We conclude in Chapter 6 with a general discussion of the

results, limitations of the studies and areas for future research.



Chapter 2

Clinical Bacterial Species

Determination by Whole-Genome

Sequencing: A Proof of Concept

Study

2.1 Abstract

Whole-genome sequencing (WGS) has drastically improved bacterial pathogen

identification, which is crucial for diagnosing and managing infectious disease. WGS

technologies present potential advantages over current complex, labor-intensive, and

often slow clinical laboratory identification practices. However, few studies have ad-

dressed the clinical validity of WGS to accurately determine bacterial species. We

compared the performance of WGS and traditional laboratory-based methods to iden-

tify species from 354 bacterial cultures collected from routine clinical microbiology

laboratory practices in the Scripps Hospital system in Southern California. To de-

termine pathogen identity, contiguous DNA sequences from cultures were assembled

and aligned against the NCBI genome database, where species identification was

defined as ≥97% assembly similarity with a database species across ≥35% of that

speciesâĂŹ genome. Laboratory identification methods were defined by Clinical Lab-

oratory Standards Institute (CLSI) protocols established at the Scripps Microbiolog-

16
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ical Laboratory. Our results showed the WGS approach adequately determined 35

distinct species for 339 samples (95.8 of the total), which closely matched the 340

samples with species determinations by the clinical laboratory methods. Discordance

between routine clinical and WGS protocols occurred in 29 of the 339 samples (8.6),

in addition to 17 samples where WGS detected additional bacterial species that met

the WGS match criteria. We conclude that WGS identification methods utilized in

conjunction with the NCBI database provided more resolute species determinations,

at a lower cost, and shorter turnaround time. Nonetheless, a more comprehensive

genome database and improved species match thresholds may be necessary for WGS

adoption in routine clinical pathogen identification strategies.

2.2 Introduction

Bacterial infections cause roughly 16% of annual deaths, which significantly

impacts global rates of morbidity and mortality. Management of antimicrobial in-

terventions and therapies for infectious disease critically rely on efficient pathogen

identification. However, current clinical pathogen identification practices are often

labor-intensive, costly, and slow86. Emerging whole-genome sequencing (WGS) tech-

nologies routinely characterize research grade bacterial genomes and could potentially

improve clinical microbial pathogen identification strategies. However, clinical imple-

mentation of WGS identification is not common-place, despite the first complete bac-

terial, Haemophilus influzenzae, having been sequenced in 199587. In addition, the

current National Center for Biotechnology Information (NCBI) genomic database

contains complete genomes for over 5,000 bacterial species, and numerous bioinfor-

matic tools exist to accuratley compare the genomes of clinically isolated bacteria

which could be exploited in clinical settings88.

Many large-scale epidemiological research projects have leveraged WGS in

ways that could be of clinical relevance. For example, retrospecitve WGS studies

have elucidated transmission dynamics for outbreaks associated with Escherichia

coli, Vibrio cholerae, Klebsiella pneumoniae, and Mycobacteria 89. Real-time high-

throughput WGS methods have also uncovered primary outbreak sources of hospital

infections caused by methicillin-resistant strains Staphylococcus aureus (MRSA)90,91
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vancomycin-resistant Enteroccocus facecium, and carbapenem-resistant Enterobacter

cloacae 92. Despite these examples, additional validity and feasibility studies are still

required are motivate the routine implementation of WGS technologies for clinical

pathogen identification. Thus, to investigate the performance of WGS-based bac-

terial pathogen identification, we compared a WGS-based identification strategy to

a traditional Clinical Laboratory Standards Institute (CLSI) identification protocol.

The two methods were applied to 354 clinical isolate cultures collected from a standard

routine clinical microbiology workflow not screened for specific pathogenic features

and thus reflect the incidental pathogenic variation arising in routine clinical care.

2.3 Methods

2.3.1 Sample Collection

We obtained 354 bacterial specimens from the Scripps Heath system-associated

Sorrento Mesa Microbiological Laboratory in Southern California. Potentially pathogenic

samples were collected from various body sites and cultured overnight. Resulting

colonies were then inoculated on two duplicate plates: one for clinical laboratory test-

ing and one for WGS sequencing analysis. The clinical laboratory bacterial species

identification strategy adhered to the following CLSI guidelines: direct microscopic

examination, gram-staining, elective media culture, and biochemical assays. The BD

PhoenixTM Automated Microbiology System further analyzed all colonies to confirm

bacterial species determinations and antimicrobial susceptibility.

2.3.2 DNA Processing and Whole-Genome Sequencing

DNA was extracted from 354 bacterial isolate plate colonies using ThermoFish-

erâĂŹs ChargeSwitch technology, and prepared for sequencing using the Illumina

Nextera XT library preparation kit. Libraries were rapidly sequenced on an Illumina

HiSeq 2500 sequencer. Single-ended, 50-bp reads were generated in batches of up to

48 samples. Read coverage ranged from 15 -247 apart from three low-coverage out-

liers. Sequence reads were trimmed for quality using the trimmotmatic tool and were

subjected to reference-free de novo read-based assembly (Velvet assembler V1.2.10,
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k-mer seed = 25)93. All computational analyses were performed on the Triton Shared

Computer Cluster at the San Diego Super Computer Center (8 or 16 cores per node).

2.3.3 WGS Species Determination Based on NCBI Database

Matching

BLAST+ V2.2.29 was used to align assembled contiguous sequences (contigs)

for each bacterial isolate against the NCBI genomic database, which at the time of

analysis (November 10, 2014) contained over 28,000 whole bacterial genomes93,94.

Quality matches for common species were based on the nucleotide (nt) collection

of finished assemblies. However, uncommon species samples required querying the

whole-genome shotgun (wgs) database of unfinished assemblies. Custom Perl scripts

processed BLAST outputs, identified optimal contig matches, and derived match

metrics, i.e. matched contigs frequency, DNA species match length (nucleotides), and

species length above a specified identity threshold. Adequate species determination

for individual samples was defined as ≥97% identity with a species in the database

across ≥35% of the species’ genome.

2.3.4 Partial Genomic Matches

Custom Perl scripts assessed samples exhibiting partial contig matches to mul-

tiple closely related database species and discrepant identifications between the WGS

and the clinical laboratory methodologies. The average nucleotide identity and match

length between the assembled genomes and the additional database matches were then

calculated.

2.4 Results

2.4.1 Bactria Sample Distribution by Culture Sources and

Species

178 of 354 (50%) presumed pathogen samples were from wounds; 79 samples

(21%) from blood and sterile sites; and 43 samples (12%) and 42 samples (12%) from
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sputum and urine, respectively (Table 1). This represented a typical communal dis-

tribution of common bacterial pathogens. Using the previously described thresholds,

WGS adequately determined bacterial species in 339 of 354 samples (95.8%), which

was comparable to the 340 clinical laboratory species determinations. WGS methods

revealed 15 inadequate samples (Table 2.1). Figure 2.1 (complete list in Table S5

of the Supplementary Appendix) describes the frequencies of the 35 distinct bacte-

rial species adequately identified by the WGS species determination method. The

most common pathogens were Staphylococcus aureus (35%), Escherichia coli (15%),

Enterococcus spp. (13%), Coagulase-negative Staphylococcus spp. (8%), and Pseu-

domonas aeruginosa (6%) (complete list in Table S5). Didelot, et al., reported a

similar common bacterial pathogen species distribution86.

Figure 2.1: Species Distribution for 346 samples with a single species adequately
determined by WGS. Histogram depicts the occurrence frequency of WGS based
sample identification where a subset of samples disagree with laboratory identification
methods.
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Figure 2.2: Left Panel: Depicts the distribution of matched coverage, i.e., the
matched blast length divided by length of genome of determined species. Right
Panel: Distribution of assembly coverage, i.e., assembly length divided by length of
genome of determined species.

Table 2.1: Distribution of bacterial samples by culture source. Additional informa-
tion includes the result species determination by WGS and the clinical laboratory.

2.4.2 Clinical Laboratory Species Determination

337 of 354 bacterial samples initially had complete clinical laboratory species

determinations. 17 samples exhibited incomplete results, 13 determinations with only

genus specifications and 4 characterized either “mixed flora” or “skin contamination”,

which are common when microscopic or biochemical examinations suggest a non-

pathogenic species. WGS provided adequate species determinations for 13 of the 17

unidentifiable samples. Beyond incomplete species determinations, 21 other samples

returned discordant species determinations between the laboratory and WGS meth-

ods. This raised human intervention error concerns for the laboratory method, i.e.

multiple handlings or poor sensitivity. To assess the reproducibility of the laboratory

determinations and also which method, laboratory or WGS, might be problematic, the
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laboratory determination process was repeated on the 23 discrepant samples. Species

determination results were updated in 12 of these 23 samples (Table S7). After repeat

testing, 6 originally discordant samples became concordant between the two methods

tested, while the remaining 6 samples remained discordant (2 with incomplete species

information).

The clinical laboratory initially determined 37 bacterial species in 337 samples;

the remaining 17 samples had incomplete species information, with 13 determined

only to the genus and four characterized as “mixed flora” or “skin contamination”.

The latter characterizations are common when routine microscopic examination and

biochemical assays suggest the species are not pathogenic. WGS adequately deter-

mined the species in 16 of the preceding 17 samples. In addition to the samples with

incomplete species determination, 24 others had an initial laboratory species that did

not fully agree with the WGS species. This suggested possible handling errors and

poor sensitivity for the laboratory species determination. To assess its reproducibility,

23 samples (20 with discordant determinations) were returned to the laboratory for

repeat testing, and the species information changed in 12 of these samples (Table S7

of the Supplementary Appendix). Whereas none of these 12 samples had agreement

between the WGS and laboratory species initially, six agreed after repeat sequencing.

The number of samples with incomplete species determination decreased from 17 to

14.

2.4.3 Whole Genome Sequencing Species Determination

Contigs from 339 samples with adequate WGS species determination matched

almost exclusively to a single species (Table 2.4). However, 29 samples had sizable

matches (longer than 300kb) to multiple species (Table 2.6). For 25 of 29 samples,

investigations revealed the total lengths of additional matched assemblies were com-

parable to, or less than, the lengths of the original matched genome. This implied that

25 samples contained a single species; however the remaining 4 samples inadvertently

contained two species, as denoted by the additional database matches. The resulting

adjustment to single and multi-species matched coverage samples is reflected in the

“Adjusted” column of Table 2.1.
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To support our adjustments, we noted that all 29 discordant samples exhib-

ited nearly identical DNA content based on additional BLAST optimal strain matches

(Table S4). Indeed, matched species results for 22 of these samples had Latin names,

while other NCBI matches returned only numbered ID identifiers. Numbered IDs in-

dicate these NCBI genomes may not characterize fully complete species as that desig-

nation typically corresponds to named species. Also, 2 of the 24 samples matched to

two clearly distinct NCBI database species, which potentially indicates contaminated

entries. To determine the species of each adjusted sample, either the longest named

species match or the correct species in the case of a database error was chosen. One

single-species sample matched to two species with numbered IDs that were not close

enough for adjustment which suggests inadequate species determinations.

For the 354 samples that underwent WGS analysis, Figure depicts the matched

coverage sample distribution, i.e., matched contig length ≥97% identity for the best

species divided by a typical genome length for that species. For the 24 samples with

adjustments, we added the matched lengths of the species that were nearly identical

at the DNA sequence level to calculate the matched coverage. The matched coverage

threshold was set at 35%, due to 339 samples (95.8%) falling above 40%. Figure

shows the corresponding assembly coverage sample distribution, i.e., the assembly

length divided by the best matched species typical genome length, which is greater

than 55% in all cases. The triangles in the figure correspond to the four samples with

multiple WGS species results, which had assembly coverage values between 129% and

249%.

15 samples failed the NCBI database match criteria and were deemed inad-

equate for WGS species determination. 13 of these samples had long assemblies;

however, they exhibited drastically low read coverage which is calculated by total

read length multiplied by total sequencing reads, divided by genome length (Table

2.9). When the identity threshold was relaxed from 97 to 95%, seven of the nine

sample coverage values were increased substantially. We hypothesize our WGS pro-

cedure likely produced correct species identifications for these samples, apart from

three with only numbered IDs. Four samples had leq2% matched coverage at geq97%

identity, thus have no proximal NCBI database genome matches.
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2.4.4 Wgs and Clinical Laboratory Discrepant Species Deter-

minations

Of the 339 samples with adequate WGS species determination, only 29 were

discrepant with the laboratory determination, even after repeat clinical testing. Upon

separating discordant samples into four categories (Table 2.2)), Category 1 contained

11 samples where the clinical laboratory species determination failed. Eight of these

samples were determined only to the genus, and three samples were deemed iden-

tified incomplete by laboratory testing. This highlights two potential limitations of

current laboratory procedures: 1) subjectivity by laboratory technicians; and 2) poor

biochemical assays sensitivity, although this limitation may be specific to less com-

monly annotated bacterial species and not inherent to the laboratory method. In

Category 2, 12 samples had complete species determination by the clinical labora-

tory and agreement with WGS to genus, but not species. For 10 of these samples,

the NCBI database contained whole genomes of the laboratory species designations,

however WGS species method matched more robustly than the laboratory-determined

species. This suggests the laboratory determinations were less accurate. The two re-

maining samples in Category 2 were not in the NCBI database and thus whether a

concordant species determination exists remains unclear.

In Category 3, 2 samples had discrepant genus species determination. Cate-

gory 4 had four samples that contained two WGS species, but only one laboratory

species result (WGS not fully determining both species in one of these samples).

Nonetheless, these events suggest WGS methods may potentially improve multiple

pathogen identification events compared to the more stringent laboratory practices.

Category 3 contains two samples that did not agree even to the genus. Cate-

gory 4 contains four samples that had two species according to WGS, but only one

according to the laboratory, which indicates that WGS is better able to identify mul-

tiple pathogens in a single sample. Even though our WGS procedure was unable to

determine the species of four samples, the laboratory species for three of those were

inconsistent with the WGS data (Table S6 of the Supplementary Appendix). Since

the laboratory species are in the NCBI database, they would have been found by our

procedure if they were correct.
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Table 2.2: Clinical isolates with adequate WGS species determination status which
partially of fully failed to agree with the clinical laboratory determinations (N=34).

The culture source distribution of the 29 discordant samples was similar to the

distribution of the collection at large. However, a heterogeneous species distribution

was observed among discordant samples (Figure 2.1). No disagreement was seen

in Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa; however

coagulase-negative Staphylococcus spp. and other clinically uncommon species caused

a high-percentage disagreement events. These results indicate that WGS can produce

higher resolution and accurate bacterial species determinations for at least the more

common species.

2.4.5 WGS Cost Efficiency in Real-Time Clinical Applications

Cost and turnaround time is crucial for real-time clinical implementation. The

costs associated with our WGS method were approximately $50 per bacterial genome,
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which includes the costs of bacterial cell culture, DNA extraction, library preparation,

and sequencing(Table 2.3). Sequencing technologies are rapidly advancing which has

significantly decreased associated costs over the past decade (estimated WGS cost

in 2012 was $150 per isolate) [7]. Didelot, et al., estimated a cost of $25 per Mb of

assembled sequence, and bacterial genomes typically range from 2-6 Mb86.

Table 2.3: The cost, turnaround time, and major limitations of WGS and clinical
laboratory determinations of bacterial species.

To replicate the typical community hospital microbiology lab workload, 48

samples were processed per WGS analysis batch. Genomic sequences were obtained

approximately 18 hours after bacterial colonies were available for a 48-sample pool (3

hours for DNA extraction, 3 hours for library preparation, and 12 hours for sequenc-

ing). A similar WGS turnaround time was reported by Hasman et al.95, which roughly

compares to routine clinical laboratory turnaround time. Bioinformatic species de-

termination analyses required <1 hour per sample and all samples can be computa-

tionally processed in parallel.

2.5 Discussion

Currently, clinical laboratories follow a variety CLSI guided methods for pathogen

identification which rely on organism culture and phenotypic characterization, i.e.

gram staining and biochemical properties. These processes are complex, time-consuming,

and often species-specific with variable sensitivity and specificity. WGS, in conjunc-

tion with comprehensive reference genome databases and highly-accurate bioinfor-

matic workflows, can ultimately resolve and infectious microorganism identities, at

potentially greater resolutions. Our study demonstrates that WGS-based bacterial
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species identification is at least as accurate as laboratory methods, which highlights

the growing validity of WGS as a scalable clinical microbiology diagnostic tool with

low-cost and short turnaround time.

Over a third of the 29 discordant species determinations between the two

methods had incomplete laboratory results; i.e. they returned as mixed flora or co-

agulase negative Staphylococcus (CoNS). Incomplete laboratory determinations were

more probable when pathogenicity was âĂĲruled outâĂİ during the initial CLSI ex-

amination. However, informing clinicians of these types of pathogen identification

discrepancies is crucial, particularly because previously recognized non-pathogenic

strains have emerged as pathogenic. CoNS bacteria commonly colonize skin and

mucosa and had long been considered non-pathogenic infections. However, as in-

travascular device use increases, CoNS infections have become a major cause of noso-

comial bacteremia96. A blood culture sample in our study was initially determined

as Staphylococcus epidermidis by WGS and MRSA by clinical laboratory testing re-

spectively. Upon repeat laboratory testing, the sample identity was determined as

CoNS, thus becoming concordant with the WGS determination. Interestingly, the

mecA gene that confers β-lactam resistance, i.e. methicillin, was found in the DNA

sequences of this sample. MRSA and CoNS are are closely related, thus a mischar-

acterization event based on the phenotypic contribution of methicillin resistance is

possible. Mischaracterizations events such as this example can introduce variability

in disease management by causing heterogeneous clinical treatment and outcomes.

Certain bacterial species demonstrated more frequent clinical laboratory mis-

characterization, including Enterococcus faecalis and faecium, CoNS, and Klebsiella

spp. Exemplifying Enterococci, the most reliable laboratory testing schemes for differ-

entiating Enterococcus faecalis and faecium from other Enterococcus species includes 8

procedures: acid production from sorbose, sucrose, ribose and l-arabinose, utilization

of pyruvate, deamination of arginine, motility, and pigment production on tellurite97.

Efficient rapid and cost-effective strategies to identify the Enterococcus genus relies on

antibiogram analysis, which requires continuous surveillance and is region-specific98.

The complexity of existing laboratory testing schemes, with poor sensitivity and

specificity, complicate optimal pathogen characterization approaches. Moreover, the

application of our WGS methodology led to the identification of additional pathogens
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in one blood culture sample, where the antibiotics necessary for the two distinct infec-

tions often varies amongst physicians, e.g., WGS identified Enterococcus faecalis and

Staphylococcus aureus while the clinical laboratory only identified Enterococcus fae-

calis. Antibiotics necessary to combat these two distinct infections often vary amongst

physicians. Thus, misdetection of additional pathogens through standard laboratory

methods could confound patient care and significantly increase the occurrence of ad-

verse events, especially in patients presenting bacteremia. Antibiotics necessary to

combat these two distinct infections often vary amongst physicians. Thus, misdetec-

tion of additional pathogens through standard laboratory methods could confound

patient care and significantly increase the occurrence of adverse events, especially in

patients presenting bacteremia.

An unintended, yet important, finding was poor reproducibility of the clin-

ical laboratory. Twenty-three discordant samples were sent for repeat testing and

species results differed for more than half. Six initially discordant samples agreed

completely with WGS after repeat. This error rate was unexpectedly high and thus

raised concerns regarding human handling errors in current gold-standard identifica-

tion methods. Exemplifying one blood culture sample, WGS returned Enterococcus

faecalis while clinical laboratory initially returned Streptococcus parasanguinis and

then Enterococcus faecalis after repeat. Clearly, initial mischaracterizations could

mislead clinicians and produce differential diagnostic decisions.

2.5.1 Method Limitations

Elements of our proof-of-concept study suggest two major limitations of WGS

determination methods to routinely identify bactieral species: (1) genome databases

lack comprehensive bacterial representation, which will likely improve as additional

bacterial genomes are deposited into the NCBI database; and (2) appropriate com-

putational sequence matching thresholds are uncertain. Our threshold of geq97%

identity and geq35% coverage is based upon similar studies99, which conducted a

study that leveraged 28 bacterial genomes in six phylogenetically distinct groups

and determined the 95% threshold sufficient to delineate species. A more extensive

study100 involving 536 pairwise genome comparisons from the NCBI database sug-
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gested an average nucleotide identity (ANI) threshold of 95-96%, which is closer to

our study and the more stringent ANI threshold (Table 2.9). We leveraged a highly

stringent threshold to ensure confident species determinations and the highest degree

of clinically applicability. Nonetheless, bacterial species identification can be ambigu-

ous because genomic variation in each species is non-uniform. As additional WGS

studies are completed, the uncovered distribution of genomic variation in bacterial

species, within and between bacterial species, will reveal more reliable DNA based

differentiators as opposed to continued use of phenotypic differentiators.

Two extensions could futher improve clinical WGS approaches. First, drug re-

sistance profiling during species determination would improve pathogen surveiliance

efforts. ARG-ANNOT is a recently developed drug-resistance gene database with po-

tential101, however comprehensively investigating its clinical effectiveness is necessary.

Second, cultureless species determination of patient samples from WGS could greatly

reduce human errors compared to laboratory methods, and has been demonstrated

previously95. However, the necessary metagenomic analyses are more computation-

ally demanding, and will likely complicate processing samples from various sources.

2.6 Conclusion

WGS combined with the NCBI database is able to determine the species of

most bacteria typically found in a clinical setting with high resolution, low cost, and

short turnaround. Nonetheless, a more comprehensive reference genome database and

validated species identity thresholds may be necessary for clinical implementation of

WGS.
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2.9 Supplemental Appendix

2.9.1 Species Delineation By Average Nucleotide Identity

To compute the average nucleotide identity (ANI) between a sample genome

and a genome in the NCBI database, we used a variant of the algorithm adopted

by Goris, et al.102. Instead of splitting the sample genome into 1-kb fragments for

the alignments with BLAST103, we just used the variable-length contigs. Often each

database genome also consisted of multiple contigs, rather than a single chromosome,

so this worked as well when comparing two database genomes. In all cases we used

the default blastn settings. By contrast, Goris, et al., used alternate settings to obtain

better sensitivity when comparing two distantly related genomes, but we were most

interested in closely related genomes. By comparing ANI and DNA-DNA hybridiza-

tion values for 28 bacterial genomes in six phylogenetically distinct groups, Goris,

et al., concluded that two genomes with an ANI value above 95% that covers more

than 69% of the genomes are within the same species. They also showed that the

ANI value and its coverage are highly correlated, so it is often sufficient to just report

the former. In a much more extensive study involving 536 pairwise comparisons of

genomes in 85 groups from the NCBI database, a species delineation threshold of

95-96% ANI was observed104. They further noted that two genomes with an ANI

value between 94% and 96% are in a “transition zone" within which it is less certain

whether they are the same species or not.
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2.9.2 Illustrative Output for WGS Species and Strain Deter-

mination

To illustrate the information obtained from our WGS analysis, we provide

results here for a typical sample: 2014-043. Its Velvet assembly generated 538 contigs

with a total length of 2,704,594 b. The longest contig had a length of 96,326 b, and

the N50 value was 34,602 b. The assembly took 2 min 27 s running on 8 cores of

an Intel Sandy Bridge processor. The subsequent BLAST analysis with blastn, using

-max_target_seqs 1 and default settings otherwise, found the best match for each

contig against all of the genomes in the NCBI database as of November 10, 2014.

For Sample 2014-043 this took 28 min 11s on 16 cores of two Intel Sandy Bridge

processors.

Two Perl scripts that we wrote processed the BLAST output. These binned

the best matches of the contigs by species and by strain above our 95% identity

threshold and then output the corresponding number of matching contigs and the

total length of the matches. These scripts took less than a second to run. Outputs

for Sample 2014-043 are shown in Tables 2.4 and 2.4. Table 2.4 shows that practically

all contigs of the assembly match to Staphylococcus aureus genomes in the database.

The few matches to genomes of other species are presumably due to contamination

or incorporation of short segments of DNA from the other species in the genome of

our sample. Table 2.4 shows that the matches are too many different strains of S.

aureus. The strain with the longest match length is S. aureus A8117.

Evolution of the NCBI Database

At the outset of our study we downloaded the NCBI database as of January

23, 2014 to SDSC, and this was used for the initial BLAST alignments of all of our

samples. We found several genomes that had been assigned incorrect species and

reported them to NCBI. By the time that our study was nearing completion, many

more genomes had been added to the database, so we downloaded a newer version as

of November 10, 2014. We used this to reanalyze all samples with inadequate species

determinations by WGS or ones for which the WGS and laboratory determinations

disagreed. We found several samples with much better matches using the newer

database, and these improved results are those reported here. We also found that
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two errors we reported had been corrected, though another one affecting our results

had been added.

As the NCBI database continues to grow, the BLAST run times will likely

increase. If this is deemed a problem, the local version of the database could be

restricted to a smaller subset of relevant genomes.

2.9.3 Long Match/Multiple Species WGS Samples

Most samples had long matches to a single named species as shown in Table

2.4. However, some samples had long matches to multiple species, and these required

further investigation. Table 2.6 contains information on the 33 samples that initially

appeared to contain multiple species, since they had relatively long matched lengths

of >300 kb to two to four species. However, examination of the assembly coverage

for these samples suggested that all but four contained only a single species. To

characterize these samples, we separated them into four categories in the table.

Category 1 of Table 2.6 contains 25 samples with long matches to multiple

species, at least one of which has a numbered ID. According to NCBI, such unnamed

isolates “are clearly distinct from currently recognized species [and] are tentatively des-

ignated at the species level". These unnamed isolates have not yet been characterized

by traditional methods, or the species name has not yet been validly published." Such

species are unknown to a clinical laboratory and cannot agree with the laboratory-

determined species, which are named. This led us to ask how close genomically the

multiple matching species are to each other and, especially, whether the species with

numbered IDs are really distinct from named species. To quantify our answers, we

computed the ANI between various combinations of sample-strain and strain-strain

pairs. Some relevant results are shown in Table 2.7, and four are discussed here.

Sample 2014-038 has long matches to Enterobacter cloacae UCICRE 5, Enter-

obacter hormaechei YT3 Enterobacter MGH 1, and Enterobacter MGH 33. As shown

in Table 2.7, all four strains have ANIs ≥98.7% relative to the sample. Thus they

seem to be the same species, which we took to be E. cloacae because of its longest

match. It also agrees with the species determined by the laboratory, but calls into

question the validity of the E. hormaechei YT3 strain being within a named species
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distinct from E. cloacae in the NCBI database. Sample 2014-272 has long matches

to Aeromonas hydrophila 173, Aeromonas MDS58, and Aeromonas dhakensis AAK1.

All three strains have ANIs ≥96.9% relative to the sample and between each other.

Thus they seem to be the same species, which we took to be A. hydrophila based upon

its much longer match to the sample. This also calls into question the validity of A.

dhakensis AAK1 being a strain within a named species distinct from A. hydrophila in

the NCBI database. The laboratory-determined species was Aeromonas sobria, which

is not in the NCBI database. Sample 2014-330 has long matches to Corynebacterium

ATCC 6931 and Corynebacterium HFH0028. Relative to the sample, the first strain

has an ANI of 96.4, while the second strain has an ANI of 95.4. These two strains

are close genomically, with an ANI between them of 94.9, which is just below the

95 species identity threshold of Goris, et al 2.7. Neither strain has a Latin species

name, however, whereas Corynebacterium amycolatum SK46 does and has an ANI

relative to the sample that is only slightly lower at 94.5. We took the latter, named

species to be that of the sample and adjusted the matched length to be the sum of

the lengths for C. ATCC 6931 and C. HFH0028. Note that the laboratory also had

difficulty identifying the species of this sample and reported it as “Mod Corynebac-

terium species, not JK”. Sample 2014-352 has long matches to Sphingomonas S17

and Sphingomonas paucimobilis NBRC 13935, and the two strains have ANIs ≥99.3

relative to the sample. Thus they are clearly the same species, which we took to be

S. paucimobilis, even though its match was shorter. By comparison, the laboratory-

determined species was Elizabethkingia meningoseptica. The ANI value between the

sample and E. meningoseptica 502, a typical species, is 79.0 (and only over a very

short portion of the genome), so the laboratory determination is incorrect.

2.9.4 Multiple Close Species in Different Genera Samples Matches

Category 2 of Table 2.6 contains two samples that had long matches to both

Stenotrophomonas maltophilia RR-10 and Pseudomonas geniculata N1. These strains

assigned to different genera have an ANI between them of 96.2, so they are actually

the same species, namely Stenotrophomonas maltophilia, which has been noted before

[S7].
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2.9.5 Two Distant Species Long Matches Due to NCBI Database

Error

The two samples in Category 3 of Table 2.6 had long matches to NCBI genomes

of very different species because of errors in the database. Sample 2014-356 had long

matches to Morganella morganii F675 and Strongyloides ratti. The latter is a ne-

matode, not a bacterium, so it was likely contaminated with M. morganii when the

genome was sequenced. Similarly, Sample 2014-370 had long matches to Staphylo-

coccus capitis QN1 and Balansia obtecta B249. The latter is a fungus, which again

was presumably contaminated with S. capitis during sequencing. Samples with high

assembly coverage that really did contain two species Category 4 of Table 2.6 con-

tains four samples that had high assembly coverage and so really did contain whole

genomes from two different species as well as from different genera.

2.9.6 Adequate Coverage Matches To Numbered ID Species

Five samples had longest matches of adequate coverage to a species with a

numbered ID. Two of those, 2014-330 and 2014-352, each had two long matches as

discussed previously and were determined to be Corynebacterium amycolatum and

Sphingomonas paucimobilis, respectively. For a third sample, 2014-170, our WGS

procedure gave only a single long match to Corynebacterium HFH0082 with an ANI

of 98.1% as shown in Table S4. However, this sample also matches Corynebacterium

amycolatum SK46 with an ANI of 95.2%. Thus we took the latter species with a

Latin name to be the one determined by WGS. By contrast, the laboratory initially

determined the species to be Enterobacter cloacae and changed that to Klebsiella

pneumoniae after repeat testing. The ANI value between the sample and K. pneu-

moniae MGH 18, a typical species, is 79.9% (and only over a very short portion

of the genome), so the laboratory determination is clearly incorrect. For two other

samples, 2014-276 and 2014-286, our WGS procedure gave only a single long match

to Staphylococcus HGB0015 with an ANI of 95.2%. Since the NCBI database had

no species with Latin names that gave close matches, we took the preceding species

with a numbered ID to be that determined by WGS. These two samples were the

only ones with adequate matched coverage for which we could not find a genomically
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equivalent species with a Latin name. The clinical laboratory determined the species

for these samples to be Staphylococcus schleiferi, which is not in the NCBI database.

Thus it is possible that the WGS and laboratory species are, in fact, the same.

2.9.7 Distribution by species of samples with a single species

adequately determinated by WGS

Table 2.8 shows the distribution by species of the 346 samples for which our

WGS procedure adequately determined a single species after the preceding adjust-

ments were made. There are 39 distinct species.

2.9.8 Samples with inadequate species determination by WGS

and their associated ANI values

Using our threshold of ≥95% identity across ≥25% of the genome, WGS was

unable to determine the species for only four samples. These are in the lower left

corner of Figure 2A and are the first four listed in Category 1 of Table 2.10, where

the samples are ordered by matched coverage. The remaining 13 samples in Category

2 of the table have the next lowest matched coverage values of ≥25% but <70%, so

these all have adequate species determinations. Also listed in the table are the ANI

values between each sample and the WGS species as well as between each sample and

the laboratory species when it was determined and in the NCBI database. All of the

samples in Category 1 have ANI values well below the 95% species identity threshold

of Goris, et al. 2.7, and all of the samples in Category 2 have ANI values above

the 95% threshold, except for the two Stenotrophomonas maltophilia samples with a

slightly lower ANI of 93.1%. Three other samples in Category 2 have ANI coverage

values below 69% because of low read coverage and so might not strictly pass the

species identity requirement of Goris, et al. On balance, though, our species identity

threshold and that of Goris, et al., seem nearly equivalent. The first three samples of

Category 1 have laboratory species with very low ANI values. This indicates that the

laboratory species determination was not correct for these. Table S7 contains results

for those samples with repeat species determination by the clinical laboratory.
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Table 2.4: Output of BLAST matches binned by species for Sample 2014-043
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Table 2.5: Complete output of BLAST matches binned by strain for Sample 2014-
043.
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Table 2.6: Samples that appeared to contain multiple species upon initial analysis
by WGS (n=31).
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Table 2.7: Distribution of samples by species adequately determined by WGS.
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Table 2.8: Distribution of samples by species adequately determined by WGS.
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Table 2.9: Samples with <70% matched coverage at ≥95% identity (n=19).

Table 2.10: Distribution of samples by species adequately determined by WGS.



Chapter 3

Implications of Methicillin-Resistant

Staphylococcus Aureus (MRSA)

Reference Genome Choice for

Investigating Clinical Correlates

3.1 Abstract

Methicillin-Resistant Staphylococcus Aureus (MRSA) is an opportunistic in-

fectious pathogen of epidemic proportions. Recently, technological advancements

have enabled reference guided whole-genome sequencing (WGS) of bacterial genomes.

This has uncovered vast heterogeneity in the function of single nucleotide variations

(SNVs), which complicates the process of associating clinical phenotypes, genetic pro-

file elements, and antibiotic resistance because SNV based investigations depend crit-

ically on the contents of the reference genome. Multiple reference genomes have been

utilized throughout the scientific literature. However the contribution of individual

reference genomes is unknown for MRSA analyses. We hypothesize that additional

sources of variation in DNA sequencing protocols can significantly confound investi-

gations aiming to elucidate pathogen-related genetic virulence associations. Analyses

aimed to interrogate this genetic variation, either within or across pathogen strains,

must assert assumptions concerning the most optimal reference genome or comparator

42
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strain.

To assess the effect of incorporating multiple reference genomes on investiga-

tions aiming associate clinical phenotypes with pathogen virulence factors, we imple-

mented identical WGS analytic pipelines with two different MRSA reference genomes

used in literature. DNA Sequences, antibiogram drug resistance, and patient response

data were collected for 302 bacterial cultures isolated from routine clinical microbi-

ology laboratory workflows. We describe strategies for multiple reference genome

implementations while observing that bacterial reference genome strain can adversely

influence clinically relevant claims about pathogenicity which can confound clinical

studies. We find that clinical correlations differ amongst reference strain utilization

and argue that care must be taken in pursuing studies of genetic variation in complex,

highly variable pathogens such as MRSA.

3.2 Introduction

Combatting infectious disease is a critical medical concern among industri-

alized and developed countries, where hospital and community acquired bacteria

account for a significant proportion of global morbidity and mortality. Staphylo-

coccus aureus is considered one of the most virulent multi-drug resistant pathogens,

which may attribute its virulence and evolutionary capabilities to functional factors

present throughout the genome105–109. It is well known that genetic elements aug-

ment pathogen virulence capabilities to rapidly evolve, adapt, and overcome the most

sanitary hospital environments110. Great genetic diversity reflects this increase in in-

fection rate and proliferative ability, which is largely due to 1) a substantial lack in

efficacious drugs to treat pathogenic infections; 2) the much-recognized ability of in-

fectious pathogens to adapt and develop genetic and biological mechanisms to evade

therapeutic interventions, and 3) the wide-spread overuse and improper medical ap-

plications of antibiotic treatment109,111–115. Efficient and powerful high-throughput

screening platforms, i.e. genomic sequencing and antibiotic profiling technologies,

has shed light on the degree to which genetic elements influence andor correlate with

clinically-relevant outcomes86,112,116–118. Specific genetic factors associate with indi-

vidual phenotypes, however additional work is needed to uncover their complex inter-
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play with pathogenicity, environmental pressures, and host-related factors45,119–121.

Computational, and statistical hurdles impede associating genetic factors for

drug resistance with clinical outcomes122, not the least of which concern the inherent

biological complexity. Thus, bacterial infection is complicated, where DNA sequenc-

ing based investigations critically depend on DNA sequence protocols and their ability

to differentiate signal from noise90,123–125. Typically, millions of genome sequencing

‘reads’ (i.e., relatively small stretches of DNA sequence) captured by sequencers need

to be reconciled, ordered and ‘assembled’ in order to identify differences (i.e., vari-

ants) in the genomes and their associations with clinical outcomes126. This process

can be pursued completely unbiased through ‘de novo assembly’ methods, that exclu-

sively utilize reads and no reference genome to reverse engineer particular bacterial

genome127–129. Unfortunately, de novo assembly approaches are computationally and

strategically intensive, especially for comparatory investigations130,131. Therefore,

reference-guided approaches, which match sequencing read(s) to a previously char-

acterized genome, are implemented to aid target pathogen genome reconstruction,

which inherently uncovers differences between the target and the reference genomes.

These differences may reveal clinically meaningful DNA associations. However This

raises the challenge of identifying the most optimal or proximal reference genome

which may impact conclusions made about the target genomes in question.

3.2.1 Bacterial Virulence Determination Deficiencies

Clinical and Laboratory Standards Institute (CLSI) antibiogram protocols de-

fine gold-standard assays for the clinical practice of determining drug resistance132. In

attempts to surpass binary drug response indications, high-throughput DNA sequenc-

ing instruments have aided antiobiogram protocols by characterizing highly variable

individual mutations that contribute to the genetic architecture of drug resistance. A

recent study investigating the genotype-phenotype relationship of MRSA antibiotic

resistance demonstrated a 99.8 percent correlation between 12 antibiotics based on

193 MRSA samples124,133,134, which implicated genetic penetrance as a mechanism for

antibiotic resistance and pathogenicity. Thus, laboratory or sequencing methods that

limit the number of DNA factors, i.e. specific gene regions, mutations, etc, may fail
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to account for the full context of DNA functionality inherent in genome. This may

potentially confounding research investigations aimed at identifying the biological

underpinnings of infectious disease.

3.2.2 Antibiotic Resistance

Decreasing the prevalence of antibiotic resistance by understanding its genetic

contributions would benefit the medical community. Over the past two decades,

rates of β-lactam targeting methicillin, vancomycin, and multi-drug resistant bacterial

phenotypes have unyieldingly increased. For example, resistance to the antibiotic

penicillin was observed in clinical isolate strains less than 10 years after its clinical

introduction in 1944, and the first MRSA strain was reported only one year after the

drug’s initial launch in 1975. 15 major antibiotic classes have been utilized clinically

to treat pathogenic infections, however none have eluded the emergence of untreatable

bacteria112 (Table 3.1).

Table 3.1: From left to right, columns correspond to the antibiotic class with an
example class, the year the drug was discovered, the year the compound was first
introduced in clinical practice, the year antibiotic resistance was first observed, the
Resistance mechanism of action, and the species the compound is effective for.

Antibiotic Class;
Example

Dis-
cov-
ery

Clinic In-
troduction

Resistance
Observed

Mechanism of
Action

Activity or Target

Sulfadrugs; prontosil 1932 1936 1942 Inhibition of
dihydropteroate

synthetase

Gram-positive bacteria

β-lactams; penicillin 1928 1938 1945 Inhibition of cell wall
biosynthesis

Broad-spectrum activity

Aminoglycosides;
streptomycin

1943 1946 1946 Binding of 30S
ribosomal subunit

Broad-spectrum activity

Chloramphenicols;
chloramphenicol

1946 1948 1950 Binding of 50S
ribosomal subunit

Broad-spectrum activity

Macrolides;
erythromycin

1948 1951 1955 Binding of 50S
ribosomal subunit

Broad-spectrum activity

Tetracyclines;
chlortetracycline

1944 1952 1950 Binding of 30S
ribosomal subunit

Broad-spectrum activity

Rifamycins; rifampicin 1957 1958 1962 Binding of RNA
polymerase β-subunit

Gram-positive bacteria

Glycopeptides;
vancomycin

1953 1958 1960 Inhibition of cell wall
biosynthesis

Gram-positive bacteria

Quinolones; ciprofloxacin 1961 1968 1968 Inhibition of DNA
synthesis

Broad-spectrum activity

Streptogramins;
streptogramin B

1963 1998 1964 Binding of 50S
ribosomal subunit

Gram-positive bacteria

Oxazolidinones; linezolid 1955 2000 2001 Binding of 50S
ribosomal subunit

Gram-positive bacteria

Lipopetides; daptomycin 1986 2003 1987 Depolarization of cell
membrane

Gram-positive bacteria

Fidaxomicin (targeting
Clostridium difficile)

1948 2011 1977 Inhibition of RNA
polymerase

Gram-positive bacteria

Fidaxomicin (targeting
Clostridium difficile)

1948 2011 1977 Inhibition of RNA
polymerase

Gram-positive bacteria

Diarylquinolines;
bedaquiline

1997 2012 2006 Inhibition of
F1FO-ATPase

Narrow-spectrum activity
(Mycobacterium tuberculosis)
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3.3 Overview

Bacterial resistance investigations often leverage statistical associations of ge-

nomic variation. These analyses often utilize different reference genomes as a result of

heterogeneity in DNA sequencing computational strategies (Table 3.2). We asked the

question, does a particular reference genome effect the study of a particular bacterial

population? Our investigation explored the impact of utilizing two of most widely

used and publicly available MRSA reference genomes, Staphylococcus aureus subsp.

aureus TW20 (Genbank accession number: FN433596.1) and Staphylococcus aureus

subsp. aureus HO 5096 0412 (Genbank accession number: HE681097.1) in variant

calling practices when assessing genomic DNA sequence variation of clinical MRSA

bacterial isolates. These reference genomes were analyzed in conjunction with whole

genome sequence data obtained for 302 MRSA clinical isolates from patients in a

single hospital system, and 49 MRSA DNA sequences acquired from the National

Center for Biotechnology Information (NCBI)135,136.

Our analyses suggest that the choice of a reference to guide the identification

of genetic variations does make a difference, though not necessarily a pronounced one.

We argue that the differences in clinically-meaningful associations based on reference

choice are an inevitable product of the very pathogen genomic diversity of interest

and that newer strategies for ensuring robust claims about associations between the

genomic properties of pathogens must be developed and leveraged. Problematic in-

fectious disease control of has caused alarm among clinicians, epidemiologists and

public health workers where the multidrug-resistant pathogen has significantly in-

creased global morbidity and mortality rates. Tremendous variation at the genomic

level which influences S. aureus resistance to every known antibiotic (Table 3.1, data

adapted from Lewis (2013)). Thus, understanding the genetic contribution of vari-

ability in resistance and pathogenicity phenotypes could increase treatment efficacy,

improve clinical outcomes, and highlight functional virulence mechanisms.
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Table 3.2: Summary of studies that used difference references, with columns provid-
ing the citation, the number of strains studied, the source of the strains, and what
reference was used.

Citation PMID Sequenced
Genomes RefĠenome Outcomes

Laabei,
M(̇2014)125 24717264 Methicillin-

resistant Sȧureus TW20

A predictive model based on a set of
significant single nucleotide polymorphisms
(SNPs) and insertion and deletions events
(indels) showed a high degree of accuracy
in predicting an isolate’s toxicity solely from
the genetic signature at these sites.

Md Tauqeer Alam
(2014)137 PMC4040999

Vancomycin-
intermediate
Staphylococcus
aureus (VISA)

Sȧureus
N315

whole-genome comparison predicted VISA
based on the presence of a rare mutationa
in a set of candidate genes.

Holmes,
A(̇2013)138 23927001

Methicillin-
resistant Staphy-
lococcus aureus
(MRSA)

HO50960412
Single nucleotide polymorphism assay for
epidemiological analysis of EMRSA-15 clini-
cal isolates.

Hsu, L(̇2015)106 25903077

Methicillin-
resistant Staphy-
lococcus aureus
(MRSA)

HO50960412
TW20

Competition between clones also has an im-
portant role in driving the evolution of noso-
comial pathogen populations.

Claudio,
K(̇2012)134 22693998

Methicillin-
resistant Staphy-
lococcus aureus
(MRSA)

HO50960412
Revealed a distinct cluster of outbreak iso-
lates and clear separation between these and
the nonoutbreak isolates.

Weng,
Z(̇2014)139 24969089

Drug-resistant
hospital-
associated
methicillin-
resistant Staphy-
lococcusaureus
(HA-MRSA)

TW20 T0131
JKD6008

The results suggest that ST239 strains iso-
lated in Hong Kong since the 1990s belong to
the Asian clade, present mainly in southern
Asia, whereas those that emerged in north-
ern China were of a distinct origin, reflecting
the complexity of dissemination and the dy-
namic evolution of this ST239 lineage.

Table 3.3: Summary (averages across the strains) of variant calls metrics across two
separate MRSA reference genomes (Table 3.2). Information compiled from mapped
bams using the flagstat command.

Reference Genome Number
of SNVs

Percent
Cover-
age

Average
Depth
Per
Base

Average
Base
Quality

Percent
Mapped
Reads

Average
Mapped
Reads

H050960412 Reference 26080 93.48 175.78 36.60 84.62 5966295
TW20 Reference 16422 88.53 179.75 36.58 87.55 5980804

3.4 Methods

3.4.1 Sample Collection and Clinical Laboratory Processing

302 bacterial cultures collected from a routine workflow in a clinical micro-

biology laboratory. Specimens were collected from various body sites and cultured

overnight. Then, resulting colonies were then inoculated on plates and then taken to

a sequencing laboratory for WGS analyses. The clinical laboratory determined the

bacterial species following Clinical Laboratory Standards Institute (CLSI) standards

with the following guidelines: direct microscopic examination, gram staining, culture
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on elective media, and additional biochemical assays. All culture colonies were fur-

ther analyzed on a BD PhoenixTM Automated Microbiology System to confirm the

bacterial species determination and test for antimicrobial susceptibility.

3.4.2 DNA Sequencing

DNA was extracted from the colonies, and WGS was performed on an Illumina

HiSeq 2500 sequencer in the rapid run mode. Single-end, 50-bp reads were generated

in batches of up to 48 samples per flow cell, with read coverage ranging from 15-247x.

3.4.3 Sequence Data Processing and Variant Calling

All computer analyses were implemented on the Triton Shared Computer Clus-

ter (TSCC) at the San Diego Super Computer Cluster (SDSC) in parallel on 8 or 16

cores within a node to minimize the run times. Our protocol utilized the ‘Reddog’

short-read length sequencing analysis pipeline (Version V1beta.10.3 070916, Calico

Cat) to perform quality based read filtering, specific reference genome FASTA se-

quence read mapping, and variant calling. The RedDog program is a software pack-

age that executes a distributed computational workflow on a specified sample set

and was chosen specifically for its streamlined analyses and pipeline reproducibility

(https://github.com/katholt/RedDog)140. The package includes necessary functions

for DNA variant calling including BWA read mapping, Genome Analysis Tool Kit

(GATSK) variant detection, and downstream analyses (SNPs only)141,142.

Additionally, complete genome sequences for 49 MRSA samples were down-

loaded from the NCBI. These samples were included to act as genetic control samples

in our analyses to account for any systemic laboratory or computational biases in our

sequencing pipeline.

3.4.4 Statistical Analyses

Variants called against the two reference genomes were utilized to formulate

a genetic distance or dissimilarity matrices, which are defined in terms of nucleotide

variant content shared across variant positions throughout the genome between each
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pair of clinical isolate genomes. Matrices were then subjected to statistical tests to

calculate the conditional effects of each particular reference genome, where both tests

rely on the nucleotide variant distance matrix to measures the percent dissimilarity

of each species when compared to each other species in the dataset (often referred to

as a ‘Genetic Relationship Matrix’39. The first is Mantel’s statistical test for matrix

equality, which determines the degree of correlation between two square matrices (n

rows X n columns), and second being the Generalized Analysis of Molecular Variation

(GAMOVA)143,144 to measure the variance component of each clinical variable.

A genetic distance matrix compares the genetic dissimilarity of reads for each

species mapped against the H050960412 reference genome, and then those same reads

from each species mapped against the TW20 reference genome. If the MRSA refer-

ences produced no result altering genetic effects, then each individual isolate would

follow similar patterns in their placement relative to MRSA species included in the

matrix. Thus, the mapped reference would have no effect on genetic composition.

For the implementation of Mantel’s test, 1000 Permutations were used to assess the

probability that the dissimilarity of the two matrices occurred purely by chance.

GAMOVA, implemented in the ADONIS function of the R language (Vegan Package

2.3-3), leveraged the dissimilarity matrix to calculate the proportion of variance ex-

plained by clinical variables, the framework allowed use to test the hypothesis that

dissimilarity in variant profiles across the genomes of the MRSA isolates as a whole

correlated with similarity in clinical outcomes. This analysis is thus complementary

to the single locus or gene-specific analyses, since it explores the impact of the phylo-

genetic relationships between the isolates produced with the use of a specific reference

and the clinical outcomes.

3.5 Results

3.5.1 Strain Similarities as a Function of the Reference Used

After mapping reads for each isolate to either MRSA reference genome and

SNP variants were called, we assessed the number of variant sites called per clinical

isolate in addition to comparing variant calling metrics to determine mapping quality
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of each reference respectively. Variant calling metrics included base depth, percentage

of the reference genome covered, number of mapped reads, etc. A summary of these

analyses is provided in Table 3.3, where it can be seen that although many of the

mapping statistics are similar, a greater number of variants were called with confi-

dence using H050960412 reference. This increase is mostly likely a function of the

genetic distance of this particular reference genome in relation to the cohort of clinical

isolates, i.e. phylogenetic relationship which was reflected in the outcome of Man-

tel’s test. Phylogenetic divergence often comes with (or assumes) differences at the

genomic level, such that mapping reads on to the reference would inevitably expose

differences in the nucleotide content of the target and reference sequences; i.e., the

more phylogenetic divergence between the target and reference, the more nucleotide

differences. Annotating the two references for gene content lead to 736 genes being

identified with the H050960412 reference genome and 885 genes being identified on

the TW20 reference genome. The two references had 722 genes in common (80.3%).

Probably due to the greater number of variants found in the H050960412 reference

genome, there were more variants found in these 722 genes in the H050960412 refer-

ence genome (Figure 3.1; Supplementary Figure 3.4.

Figure 3.2 provides dendrograms that reflect the genetic similarity and cluster-

ing of the MRSA clinical isolate genomes based on whether the H050960412 reference

was used to identify genomic variants from each isolate in contrast to whether the

TW20 reference was used. The figure demonstrates that the clustering is not identi-

cal when the different references are used. Another graphical device, a heatmap, was

utilized to display the GRMs and they also exhibit a difference in isolate representa-

tion (Figure 3.3). Principal components analyses also suggested that clinical isolate

genomes clustered with greater more densely when the TW20 reference genome was

used as opposed to the H050960412 reference genome (Supplementary Figure 3.5). A

Mantel’s matrix equality test of the GRMs utilized in the dendogram analysis was

correlated at .508 with a permutation p-value of .001 (correlation = 0.5077231, at p(x)

= .001). This result suggests that the use of the two references generates different

relationships between the MRSA clinical isolate genomes.
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Figure 3.1: Gene Region SNV Frequency Correlation By MRSA Reference Genome

3.5.2 Clinical Associations with Clinical Isolate Genomes

We next utilized the GAMOVA statistical test to determine if the use of dif-

ferent reference genomes affected the relationships between isolate genome similarity,

clinical outcomes, and individual isolate drug resistance profiles. Table 3.4 and 3.5

presents the results of the analyses involving the clinical outcomes and Table 3.6

and 3.7 presents the results of the analyses involving the drug resistance phenotypes.

These tables suggest that the association strength and their statistical significance

differs somewhat depending on what reference is used, but the overall trends are the

same: whether the strain resulted in a pathogenic outcome, the age at which the

infection was diagnosed, the antibiotics chosen to treat the infection and the diag-

nosis at admission are all associated with isolate genome similarities. However, the

diagnosis at admission was only significantly associated if the less polymorphic TW20
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Figure 3.2: Genetic Variant Based Sample Phylogeny By Mapped Reference. SNP
variants were utilized to create a genetic distance based dendogram tree. This tree
provides the clustering of each clinical isolate sample for each of the two reference
genomes mapped against.

Figure 3.3: Genetic Variant Heatmap Visualization For Species Distance. Clustering
of clinical strains when using two different references.

genome was used as a reference.

An analyses involving the drug resistance profiles of each isolate suggest greater

concordance between the results, as the resistance profiles associated with antibiotics
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penicillin, clindamycin, erythromycin and oxacillin were found to be associated with

isolate genome similarity, but to different degrees depending on the reference used.

This was the case despite the fact the isolates exhibited great variation in the drug

resistance profiles (Supplementary Figure 3.6).

Table 3.4: ANOVA statistics for for variance explained for clinical covariates in
clinical isolates acquired from Scripps Green hospital mapped against the H050960412
reference genome.

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Significance
Pathogenic 1 104434 104434 4.6335 0.04019 0.003996 **

Age of Infection 1 179205 179205 7.9509 0.06897 0.000999 ***
Antibiotic Duration 1 16172 16172 0.7175 0.00622 0.621379
Hospital Time (Days) 1 20353 20353 0.903 0.00783 0.508492
Vancomycin MIC 1 33526 33526 1.4875 0.0129 0.148851
Antibiotic Chosen 33 990018 30001 1.3311 0.38101 0.021978 *

Admission Diagnosis 29 758810 26166 1.1609 0.29203 0.151848
Residuals 22 495856 22539 0.19083
Total 89 2598374 1

Table 3.5: ANOVA statistics for for variance explained for clinical covariates in
clinical isolates acquired from Scripps Green hospital mapped against the TW20
reference genome.

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) Significance
Pathogenic 1 99089 99089 5.0068 0.03986 0.0037 **

Age of Infection 1 182876 182876 9.2404 0.07356 0.0002 ***
Antibiotic Duration 1 16084 16084 0.8127 0.00647 0.464554
Hospital Time (Days) 1 18768 18768 0.9483 0.00755 0.460954
Vancomycin MIC 1 25607 25607 1.2939 0.0103 0.222778
Antibiotic Chosen 33 936206 28370 1.4335 0.37658 0.007999 **

Admission Diagnosis 29 772023 26621 1.3451 0.31054 0.043296 *
Residuals 22 435398 19791 0.17514
Total 89 2486050 1

Table 3.6: The ANOVA outcome statistics for variance explained when the antibi-
ogram drug response data was compared to the SNP dissimilarity matrix derived from
variant calls against the H050960412 reference genome.

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
Penicillin 2 101126 50563 2.2743 0.01561 0.012987 *

Clindamycin 2 1329223 664612 29.8936 0.2052 0.000999 ***
Erythromycin 2 125353 62677 2.8191 0.01935 0.008991 **

Oxacillin 2 120651 60326 2.7134 0.01863 0.004995 **
Tetracycline 2 26501 13250 0.596 0.00409 0.942058
Trimethoprim 2 29388 14694 0.6609 0.00454 0.777223

Rifampin 2 40461 20230 0.9099 0.00625 0.495504
Levofloxacin 2 58410 29205 1.3136 0.00902 0.171828
Residuals 209 4646613 22233 0.71732

3.6 Discussion

Pathogenic infections are increasingly becoming a public health issue, given the

ability of pathogens to evolve quickly and develop antibiotic treatment resistances.
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Table 3.7: The ANOVA outcome statistics for variance explained for variance ex-
plained when the antibiogram drug response data was compared to the SNP dissim-
ilarity matrix derived from variant calls against the TW20 reference genome.

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
Penicillin 2 95759 47879 2.384 0.01505 0.030969 *

Clindamycin 2 1649395 824697 41.061 0.25917 0.000999 ***
Erythromycin 2 124387 62193 3.097 0.01954 0.008991 **

Oxacillin 2 113804 56902 2.833 0.01788 0.011988 *
Tetracycline 2 28451 14226 0.708 0.00447 0.727273
Trimethoprim 2 30881 15441 0.769 0.00485 0.583417

Rifampin 2 47602 23801 1.185 0.00748 0.320679
Levofloxacin 2 76198 38099 1.897 0.01197 0.100899
Residuals 209 4197668 20085 0.65958
Total 225 6364145 1

Identifying specific pathogen strains, genes and genetic variants that contribute to

communicable nature of a pathogen, its virulence and treatment resistances are there-

fore of tremendous importance. Unfortunately, genetically-mediated resistance mech-

anisms exploited by pathogens are complex and hard to decipher. This challenge is

further complicated by the computational and statistical manners in which genetic

variations are identified, catalogued and tested. The traditional method of identify-

ing variants in pathogen genomes, which involves mapping DNA sequence obtained

from target pathogen genomes onto a chosen reference genome, can produce unde-

sired sources of variation if the reference genome mapped against differs in terms of

gene content, structural variations, overall organization and specific nucleotide con-

tent. Our study demonstrates the consequences of reference genome choice in relating

genomic variation to clinical outcomes and drug resistance profiles.

We find obvious and expected differences in two reference genomes we chose

for study, but also differences in the outcomes of association studies involving the clin-

ical isolates when variants are identified with each of two references. Although not

pronounced, our study suggests SNVs identified from a particular reference genome

can impact an ability to identify associations between clinical isolate genomes and

clinical outcomes, however this effect was not drastic. Differential reference use to

formulate genetic distance matrices as a measure of similarity can effect the phylo-

genetic clustering of a population of bacterial isolates, which can be important in

investigations attempting to compare variant mutations from vastly different bacte-

rial species. We also find that variant call frequencies in annotated gene regions have

a strong correlation, which indicates a general uniformity between reference genomes

for MRSA.
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3.6.1 Study Limitations

We recognize that our study has obvious limits. A more comprehensive study

would have explored the use of many different potential reference genomes. We were

constrained by what was available in the public domain. In addition, we did not

explore the utility of, e.g., multiple sequence alignments, and other analyses to identify

points of divergence between the references that could have been overcome by perhaps

combining their use. We also did not consider structural variant analyses or copy

number variant analyses. Finally, our analyses were also constrained by the relatively

small number of patients for which we had clinical outcome and phenotype data and

the fact that we did not explicitly consider host-genome and other host-related factors

that might interact with pathogen-related factors to affect clinical outcomes145.

3.6.2 Conclusions

Despite these limitations, our results do suggest that care should be taken

when interpreting pathogen genome background and clinical outcome associations.

There may be, however, ways to mitigate the problems associated with a choice of a

reference genome. First, one could simply look at the sensitivity of the results when

using different references, more or less as we did. Second, one could try to combine

genome information from different references into a unique read mapping framework,

much in the way strategies like those implemented in the program GenomeMapper146.

Third, one could do away with reference mapping altogether and rely on assembly

each genome of interest de novo, although the problem of reconciling the various

positions in the target genomes subjected to de novo assembly might be problematic

despite the high quality of multiple sequence alignment tools93,147.
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3.8 Supplementary Figures

Figure 3.4: Venn Diagram of Gene Regions Shared By Each MRSA Reference
Genome. Annotations were downloaded the NCBI gene tracks.
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Figure 3.5: Principal component analysis of samples by MRSA reference genomes

Figure 3.6: Clinical Isolate Antibiogram Drug Response Data



Chapter 4

Comprehensive Gene

Expression-Based Mediator-Wide

Association Study of Alzheimer’s

Disease

4.1 Abstract

Alzheimer’s Disease (AD) is a complex, multifactorial condition that plagues

approximately 5.5 million Americans who collectively require hundreds of billions of

dollars’ worth of health care. Identifying the factors contributing to AD is not trivial

given its complexities. Mediator-wide Association Studies (mWAS), which search for

molecular and subclinical phenotypes that mediate the relationship between a ge-

netic variant and a disease, have the potential to shed light on factors contributing

to AD that can leverage genetic data from existing studies. We pursued a large-

scale mWAS for AD that exploited: 1. three very large cohorts (International Ge-

nomics of Alzheimer’s Project (IGAP), the Alzheimer’s Disease Genetics Consortium

1 (ADGC1) and ADGC2 cohorts) that collectively totaled 11576 to cases and 10796

controls (ADGC1: 9549 cases and 7683 control, ADGC2: 2027 cases and 3133 con-

trol); 2. Comprehensive gene expression and genetic data within the Genotype-Tissue

Expression (GTEx) database obtained on 44 different human tissues in hundreds of

59
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individuals; and 3. Proven analytical methods for conducting mWAS that also con-

sidered potential heterogeneity in the relationships between the genetic variants, gene

expression levels and AD across and within the cohorts. We ultimately found evi-

dence for a few weak associations, but little consistency in mWAS results between the

cohorts beyond tests involving the APOE gene, despite minimal statistical evidence

for heterogeneity in effects sizes among the individual subcohorts that make up the

total ADGC1 and ADGC2 cohorts. We did see compelling and replicated evidence

suggesting that expression levels in the APOE gene are associated with AD and likely

mediate the relationship between APOE genetic variants and AD susceptibility.

4.2 Introduction

Alzheimer’s Disease (AD) is a chronic neuropsychiatric disorder caused by

amyloid-plaque and neurofibrillary tangle build-up in the cortical and hippocampal

regions in the brain148–150. AD is the most common cause of dementia in many

countries, as roughly 5.5 million individuals are affected in the United States alone and

44 million are affected worldwide, and the costs associated with caring for people with

AD amounts to hundreds of billions of dollars and continues to rise151,152. Currently,

no reliable and proven therapeutic interventions exist to alter the disease progression

of AD. Thus, two critical challenges for the biomedical community are to identify

factors that contribute to AD susceptibility and progression, and to identify ways of

mitigating the effects of those factors to prevent and treat AD effectively153.

Unfortunately, AD is a complex, multifactorial disease with many genetic and

non-genetic influences whose individual contributions and interactions have been dif-

ficult to sort out150,152,154–156. Genome wide association studies (GWAS) have been

pursued to identify genetic variants that might impact AD and, outside of the well-

known Apolipoprotein ε (APOE) gene, few variants of strong effect have been iden-

tified and replicated70,156–159. This is unfortunate, since the identification of genetic

variants contributing to AD could lead to insights into the molecular processes that

contribute to AD pathogenesis and reveal points for pharmacotherapeutic interven-

tion. However, recent extensions of GWAS that consider the role that an intermediate

phenotype (IP) might play in a causal pathophysiologic chain leading from a genetic
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variant to AD clinical manifestations have promise160. Mediator-wide association

studies (MWAS) leverage GWAS data along with sources of information that provide

knowledge of relationships between genetic variants and IPs to systematically test

IPs for potential causal associations with a disease of interest, such as AD, that could

be considered drug targets15,16. Unfortunately, the choice of IPs to study and their

measurement on thousands of individuals can be difficult. As a result, aspects of

the implementation of MWAS initiatives can be impractical and challenging161,162.

Unfortunately, the choice of IPs to study and their measurement on thousands of

individuals can be difficult. As a result, aspects of the implementation of MWAS

initiatives can be impractical and challenging.

Clever statistical analysis methods have been developed to overcome the need

to directly measure an IP on individuals for an MWAS. Consider the fact that it

is possible to leverage knowledge of associations between genetic variants and IPs

to build predictive models of those IPs that can then be used to impute or assign

predicted IP values to individuals with genetic variants typed on them as part of a

GWAS. In this way, the predicted IP values can then be tested for association with a

disease of interest with the GWAS data. it has been further shown that an MWAS can

be conducted using only summary statistic information resulting from a GWAS163–165.

If done properly under many testable assumptions, the principles behind Mendelian

Randomization (MR) tests can be invoked and thereby lead to statistical hypothesis

tests in an MWAS setting that can be used to investigate causal links between the

genetic variants, an IP, and a disease of interest164,166,167.

We pursued an MWAS of AD using state-of-the-field epidemiological data from

multiple cohorts, gene expression-based IP databases and state-of-the-field statistical

methods for relating the IPs, SNPs and AD diagnosis. We obtained GWAS summary

statistic data from the International Genomics of Alzheimer’s Project (IGAP) as well

as raw GWAS genotype and phenotype data from the Alzheimer’s Disease Genetics

Consortium 1 (ADGC1) and ADGC2 cohorts156,158. Together the ADGC cohorts

totaled 11,272 to cases and 10,419 controls (ADGC1: 9549 cases and 7683 control,

ADGC2: 1723 cases and 2736 control). We also used information in the GTEx

database about relationships between SNPs and the expression levels of genes in 44

human tissues from 449 donors168. Finally, we leveraged state-of-the-field statistical



62

analysis methods, many associated with MR Base, a resource for Mendelian Random-

ization and MWAS tools, to carry out relevant analyses integrating the AD GWAS

and gene expression data164. These statistical analysis methods included methods for

assessing evidence for heterogeneity in the strength of the MWAS results within and

across the AD cohorts.

Our results provide evidence that suggests that APOE gene expression me-

diates the relationship between APOE genetic variants and AD. We found evidence

that other genes may have expression levels that influence AD susceptibility that

are affected by genetic variants, but the evidence for these other genes was not as

compelling as for the APOE gene. We did not find evidence for heterogeneity in

the effects of SNPs and gene expression levels on AD within or across the cohorts.

We ultimately believe that analyses like ours can shed light on potentially modifi-

able factors contributing to AD, but must be approached with a sensitivity to their

limitations.

4.3 Methods

4.3.1 ADGC Data Processing

ADGC Data Processing. We obtained and analyzed genotype and phenotype

data from the ADGC, which has been previously described21. The ADGC is made

up of 26 individual cohorts divided into an initial set of cohorts and data (ADGC1; 13

cohorts) and a replication or follow-up set of cohorts and data (ADGC2; 13 cohorts).

For each individual cohort within the broader collection of cohorts in ADGC1 and

ADGC2, we generated imputed genotype input files from the available genotype data

for GWAS and MWAS analyses. Essentially, we leveraged the Plink bioinformatic

suite (Version 1.90b3v) to convert ADGC IMPUTE2/SNPTEST Oxford-format files

containing genotype imputation probabilities available for hard genotype calls in bi-

nary Plink format. We used Plink for data processing and applied the default uncer-

tainty threshold for imputing variants to remove any imputation calls with certainty

less than 0.1. We also applied the following additional Plink filtration parameters to

remove genotypes that were problematic from the imputation protocol: variants above
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the maximum missing genotype rate of 0.02, variants violating the Hardy-Weinberg

equilibrium threshold of 0.000001, variants with minor allele frequency values below

the threshold of 1 percent, and highly correlated genotype calls arising from strong

linkage disequilibrium. Individual samples missing more than 10% of genotype calls

were also removed. We also removed individuals with missing AD phenotype status,

sex status, or APOE ε4 allele designation.

4.3.2 Summary Data from the International Genomics of

Alzheimer’s Project (IGAP)

We obtained publicly available summary statistics data from the published

meta-analysis of the AD GWAS published by IGAP investigators156. Details about

the study participants’ ascertainment, data quality control, and association analyses

are described in the study9. We ultimately used the stage 1 IGAP summary statistics

dataset, which consists of 7,055,881 single nucleotide polymorphisms (SNPs) from

17,008 Alzheimer’s disease cases and 37,154 controlsÂăof European ancestry. For

each SNP, we leveraged the following information in our analyses from the available

IGAP resources: Chromosome of the SNP (Build 37, Assembly Hg19), Position of the

SNP (Build 37, Assembly Hg19), SNP rsID or chromosome position if the rsID was

not available, reference allele (i.e., coded allele), Non reference allele (i.e., non-coded

allele), overall estimated effect size for the effect allele (i.e., the Beta weight provided),

overall standard error for effect size estimate (denoted as the SE in the dataset), and

the meta-analysis GWAS p-value for the stage 1 IGAP analyses.

4.3.3 GTEx Genotype Expression Data

As noted, we considered gene expression levels as potential IPs for AD in our

analyses. We obtained information about SNP-gene expression level relationships

from the Genotype-Tissue Expression Project (GTEx) publicly available resource168.

The GTEx resource provides expression quantitative trait loci (eQTLs) based on cor-

relation analysis between genotype and tissue-specific RNA expression on 44 different

tissues obtained on 449 individuals with genotype information. We focused on pri-

marily cis-acting eQTLS. Details about the expression QTLs (eQTLs) analysis can be
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found in multiple publications by the GTEx Consortium168. For each SNP identified

as an eQTL in the GTEx database, we obtained the following information: SNP rsID,

Chromosome of the SNP (Build 37, Assembly Hg19), Position of the SNP (Build 37,

Assembly Hg19), Reference allele (coded allele), Non reference allele (non-coded al-

lele), the gene whose expression levels were associated with a SNP in given tissue (IP),

the overall estimated effect size for the associated allele (Beta), the overall standard

error for effect size estimate (SE), and the p-value reflected the statistical significance

of the association. Based on this, we extracted 187,263 independent cis-eQTL SNPs

for 27,094 genes across the 44 tissues.

The intersection between the independent cis-eQTL SNPs from the GTEx

consortium and the IGAP AD GWAS was found by matching rsID. A total of 77,854

SNPs were found in common, and used as instruments in the MR analysis. The

exposure and outcome datasets were harmonized to ensure each SNP corresponded

to the same effect allele. We tested the causal effect of cis-eQTLs for 22,878 genes

across 44 tissues on AD using the analysis tools described below.

4.3.4 Mendelian Randomization Analysis

For each eQTL from GTEx for which the associated tissue specific expres-

sion data were available to build a predictive model of the expression level, and for

which the associated SNP was also genotyped or imputed in the IGAP and ADGC

cohorts, we pursued Mendelian Randomization (MR) tests. MR tests, as noted, test

the hypothesis that the IP of interest âĂŞ in this case the expression level of a gene

âĂŞ is causally associated with the phenotype (AD) based on its association with a

SNP and that SNP’s relationship to AD. MR tests have their roots in instrumental

variables analyses169. Ultimately, in the context of instrumental variables analyses,

the genetic variants (SNPs) associated with an IP are used as instrumental variables,

the IP is considered the “exposure” variable, and the disease is the outcome vari-

able. To conduct MR tests we used, in part, two analytical techniques and associated

software available from the MR-Base resource: the two sample MR test and asso-

ciated R package âĂĲTwoSampleMRâĂİ and the âĂĲMRInstrumentsâĂİ analysis

suite developed by Hemani et al. The MR estimate of the causal effect between the
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expression levels and AD was calculated as the Wald ratio as discussed by Hemani et

al. We considered the Fixed effects meta-analysis method (delta method for standard

errors) also available from MR-Base. To control for multiple comparisons we used a

Bonferroni correction based on the number individual mediation tests we performed.

We note that this is conservative given that many of the tests are correlated due to

linkage disequilibrium and relationships between expression values of genes within

and across tissues.

4.3.5 ADGC Cohort-Based Meta-Analyses

To assess the robustness of GWAS association metrics from each individual

ADGC1 and ADGC2 subcohort we analyzed using the Metasoft meta-analysis pack-

age (version v2.0.0)169. Briefly, plink case/control association statistics for each in-

dividual ADGC dataset, ADGC1 and ADGC2 respectively, were converted to the

standard Metasoft input format. The resulting files were then analyzed in the Meta-

soft using default run parameters, with filtering out of GWAS SNVs that reported

either a standard error of 0 or a plink unadjusted p-value of “INF”. To determine the

robustness of mWAS results, the metap (Version 0.8) was utilized in the R language

to perform meta-weight analyses of the cohort based results for ADGC1 and ADGC2.

To assess the meta-significance of MWAS results, beta scores and standard error val-

ues from MRbase outputs for each individual cohort were loaded into metasoft. This

analysis only consisted of fixed effect MR tests, which included 130,659 MWAS tests

across 90,383 unique RSID identifiers. Metasoft excludes entries where only 2 or less

cohorts have entries, which left 130,641 resulting entries.

4.3.6 Heterogeneity Analysis

To explore evidence that the strength of the association in the GWAS and

MWAS analyses varied across ADGC cohorts, we used Cochran’s Q test as imple-

mented in the software package, derived from the Metasoft package169.
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4.4 Results

4.4.1 GWAS Analyses

Figure 4.1

Figure 4.1: Manhattan plots for IGAP, ADGC1, and ADGC2 GWAS results.
ADGC1 and ADGC2 results were calculated by the metasoft meta analysis software,
where each dataset contains the corresponding individual cohorts.

Figure 4.1 provides the Manhattan plots associated with the GWAS results

for the three cohorts we analyzed. Note that IGAP GWAS results simply reflect

the summary statistics obtained from IGAP. The ADGC1 and ADGC2 plots reflect

meta-analysis p-values based on re-analysis of GWAS for each component cohort

within the ADGC1 and ADGC2 cohorts. Tables 4.1, 4.2, and 4.3 provide a list

of the top hits of the GWAS across the ADGC and IGAP cohorts, with support
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Figure 4.2

Figure 4.2: ADGC1 and ADGC2 Heterogeneity P-value QQ-Plots. Plots contain
the plotted p-value statistic for the Cochran statistic (Q) calculated by metasoft.
Although the ADGC2 QQ-plot appears to demonstrate inflation, bonferroni adjust-
ment of the p-values returns zero SNVs which remain significant. The same is true
for ADGC1. This indicates that there was no observable heterogeneity effect in ei-
ther cohort from the ADGC data, which could have downstream effects on Mrbase
analyses.

for the associations for each of the cohorts separately. Additionally, we tested each

SNP for heterogeneity of association strength with AD among the different cohorts

across the individual ADGC1 and ADGC2 subgroups for GWAS results. Figure 4.2

provides q:q plots displaying the observed p-values against expected p-values (i.e., if

no heterogeneity exists among the ADGC cohorts). It can be seen that little evidence

for heterogeneity exists in SNP association strength, as no GWAS entry surpassed

the Bonferroni significance threshold, which gives us confidence the MWAS analyses

are not likely to suffer from heterogeneity as well.

Gene Expression-Based mWAS Analyses. We conducted MWAS analyses for

the IGAP cohort and each individual ADGC cohorts for all SNPs associated with

gene expression values in the different tissues available from the GTEx database,

but limited to only genes whose expression levels could be imputed or assigned to

individuals in the three GWAS cohorts based on the availability of relevant SNP

information. This resulted in 118,292 tests for IGAP, 353,756 tests across 53,665
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Table 4.1: Top GWAS meta-analysis results derived from the metasoft program for
ADGC1.

unique entries for ADGC1, and 838,716 tests across 87,182 unique entries for ADGC2.

Meta-analysis was used to combine the MWAS results from the individual ADGC1

and ADGC2 cohorts as with the GWAS data. Supplementary Figure 1 provides q:q

plots for the GWAS heterogeneity tests for the ADGC1 and ADGC2 subcohorts to

see if the might be reason to believe the MWAS results were likely to show variation

because of differences in the SNP association strengths across the cohorts. This

suggested that although there appears to be a slightl levels of inflation. Tables 4.4

and 4.5 provide a list of the most significant MWAS associated genes and gives the

SNP, the gene whose expression level is associated with that SNP, and the p-value

resulting from the MR tests for each of the two datasets (IGAP, ADGC). These tables

again suggest that outside the APOE gene and top associated SNVs on chromosome

19, i.e. PVRL2, Bin1, and CEACAM19, etc, little consistency exists between the MR

test results even though within some of the cohorts strong MR associations exist.
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Table 4.2: Top GWAS meta-analysis results derived from the metasoft program for
ADGC2.

4.5 Discussion

The complexities surrounding the pathobiology of AD make it difficult to iden-

tify genetically-mediated factors that might not only contribute to the disease, but

also act as potential targets for intervention and treatment. Although progress has

been made in characterizing aspects of the subclinical manifestations of AD using,

e.g., post-mortem brain samples and sophisticated neuroimaging techniques, these

studies often suffer from small sample sizes or a lack of integration with molecu-

lar phenotyping170. Obtaining molecular phenotypes associated with AD that could

reveal drug targets on large numbers of living humans is extremely difficult for prac-

tical and ethical reasons (e.g., brain biopsies are notoriously problematic and risky).

Therefore, practical alternatives are needed. GWAS initiatives have identified a few

genes that have acted as entry points into the pathobiology of AD, but have not

necessarily revealed many druggable factors171,172. As a result, we considered the use
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Table 4.3: Top GWAS meta-analysis results derived from the metasoft program for
IGAP.

Table 4.4: Top MWAS meta-analysis results derived from MRbase for ADGC.
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Table 4.5: Top MWAS meta-analysis results derived from MRbase for IGAP.

of emerging statistical analysis strategies rooted in MR tests and MWAS concepts,

in which GWAS data are repurposed to accommodate the imputation or assignment

of predicted molecular (or intermediate) phenotypes (IPs) to a cohort of individuals

based on their genetic profiles. These imputed or assigned molecular phenotypes can

then be tested for association with a trait. In this light, one can avoid costly and

problematic measurement of factors in less accessible tissues (like the brain) and still

obtain evidence implicating a molecular factor in the pathobiology of the disease (at

least if certain assumptions uphold).

We pursued an MWAS of AD that considered gene expression levels as candi-

date IPs. We leveraged available GWAS data on three very large cohorts. We used

the SNP-gene expression relationships in 44 tissues described in the GTEx database

as IPs in our MWAS as well as state-of-the-field MR test analytical methods to test

each SNP-gene expression pair’s relationship to AD. Unfortunately, we did not find

a great deal of consistency in the MWAS and individual MR test results across the

three cohorts, despite the fact we explicitly tested for heterogeneity in effect sizes and

found little evidence for heterogeneity. The exceptions involved the APOE gene, an

obvious factor in AD susceptibility, and a few other genes that exhibited marginally

significant associations in one or more of the cohorts, as noted in Table 4.5.

There are limitations to our study, however, despite the large sample sizes of
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the GWAS cohorts used and the state-of-the-field GTEx information and analytical

methods. For example, as noted, our ability to assess associations between predicted

gene expression and AD depends critically on how well we can predict gene expression

values from genetic variants through resources such as the GTEx database. This in

turn depends on the sample sizes in the GTEx database, the reliability of the gene

expression assays, and the how comprehensive the genotyping of the samples is. Many

research groups are seeking to improve and extend both databases like GTEx168 as

well as analytical methods for predicting gene expression values34, both of which

future work can take advantage of in studies of AD. In addition, the gene expression

data we used from GTEx was confined to 44 tissues whose relevance to AD may not be

the strongest. Despite this fact, we believe strategies such as MWAS and individual

MR tests have promise in elucidating both the pathobiology and drug targets complex

diseases like AD and could be pursued with other, perhaps more compelling, IPs, such

as protein levels, metabolite levels, lipid levels, or other factors once databases for

these factors are constructed in an analogous manner to GTEx.

4.6 Acknowledgements

Chapter 4, in full is currently being prepared for submission for publication,

Quarless Q., Mitra I., ADGC GROUP, Schellenberg G., and Schork N. "Compre-

hensive Gene Expression-Based Mediator-Wide Association Study of Alzhei-mer’s

Disease". The dissertation author is the primary researcher and author on this pa-

per.



Chapter 5

Conclusions and Discussion

5.1 Summary

We have pursued a number of data analyses designed to identify and charac-

terize settings in which genetic effects on a human disease are context-dependent. We

focused on three broad settings. First, we considered issues surrounding the use of

DNA sequencing to facilitate clinical diagnoses and prognoses of patients infected with

MRSA. These issues considered how well sequencing could lead to appropriate diag-

noses as opposed to standard clinical culture-based systems. Secondly, we considered

how the reference genome choice impacts not only the identification of variants on

the MRSA genome, but also the association between genomic variation within strains

of MRSA. This was specifically for samples obtained from patients being treated in

a hospital for MRSA infection and patient outcomes. And lastly, we considered how

context-dependent variants associate with AD through tools which leverage Mende-

lain Randomization. We assessed these effects by testing whether or not a number

of variants associated with AD through intermediate phenotypes. In this particular

case we utilized particular gene expression levels to help identify groups of variants

associated with AD. We found evidence for context specificity in both settings. We

briefly summarize our findings for each of these activities below.

73
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5.1.1 MRSA Whole Genome Sequencing vs. Standard Clini-

cal Identification Methods

We developed and implemented an end-to-end de novo assembly pipeline for

whole genome sequencing (WGS) and characterizing sequence variants for strains

of MRSA isolated from hospital patients. The purpose of this investigation was to

establish baseline accuracy for WGS based pathogen identification compared to gold-

standard clinical practices. In our pipeline, a successful identification was defined as

≥95% identity with an entry in the NCBI non-redundant bacterial sequence database

across≥25% of that species’ genome. Our study demonstrated that out of 350 samples

where WGS was implemented, roughly 10% (38 samples) showed discrepancies with

the standard clinical identification methods. Despite this discordance, WGS was able

to provide accurate and high resolution species identification with faster turnaround

times, increased cost effectiveness, and additionally was able identifying a number

a polymicrobial infections which would have been undetected through conventional

methods. Thus, DNA sequencing protocols have the potential to be more accurate in

MRSA pathogen identification than standard methodologies.

5.1.2 MRSA Reference Genome Implications for Investigating

Clinical Correlates

Genetic variation, i.e., the genetic background or mutational profile, of infec-

tious bacteria is understood to mechanistically decrease the efficacy of antimicrobial

treatments while increasing pathogenicity. Although many mutations exhibit a bi-

nary response in their ability to promote disease or virulence effects, heterogeneity in

the genetic background of infectious pathogens has been observed through numerous

whole genome sequencing investigations. This heterogeneity can exist with respect

to the either the presentation of clinical phenotypes stemming from host-pathogen

interactions or through differential outcomes for pathogenic virulence factors, where

a reference genome from a similar species of pathogen or comparator strain is utilized

for analytic purposes. Our investigation was designed to quantify the degree to which

the choice of a reference genome for identifying MRSA genetic variants impacts as-
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sessments of the correlations between in patient outcomes and MRSA genomic profile.

We found that choice of reference genome can significantly impact the correlation of

MRSA strains with clinical outcomes and antibiotic drug responses profiles. This

suggests that the context within which MRSA genomes are evaluated could impact

inferences about pathogen virulence.

5.1.3 Associating Alzheimer’s Disease Factors Through Inter-

mediate Phenotypes

The identification of genetic variants that influence susceptibility to AD is in-

tricate and complex for a number of reason as the previous section makes clear. Most

variants which associate with AD have weak to moderate effects, thus, this compli-

cates identifying disease contributing variants without large sample sizes. However,

through statistics its is possible to exploit biological links that exists between genetics

variants and AD, then the power to detect the effects of those variants, which may

increase power. We leveraged the use of mediator variables and a predicted interme-

diate phenotype, gene expression levels, to identify a relationship between AD and a

gene previously not thought to be associated with AD. We also found that there are

a group of potential genes that could impact AD using the same methodology and

further that some of these genes have a heterogeneous relationship with AD. Thus,

we were able to identify groups of variants whose association with AD can best be

brought to light by their impact on gene expression, this creating a context within

which their effects occur.

5.2 Limitations

Although we used what we feel are state-of-the-art genomic and clinical phe-

notype data sets, we recognize that inherent limitations exist that may impact both

the generalizability of the results of our analyses as well as direct interpretation of

our findings. We discuss some of the more salient limitations in isolation below.
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5.3 Small sample sizes

The sample sizes that we used for our studies were quite large relative to

other studies considered infectious disease and genetic association studies. However,

since the goal of our studies was to identify interactions and context-specific effects

of variants that might be subtle, even larger sample sizes would have been desirable.

5.3.1 Better and More Sophisticated Clinical Data and Out-

comes

For our MRSA studies exploring the clinical utility of genomic sequencing rel-

ative to the traditional culture-based pathogen identification methods, we would have

benefited from having more sophisticated outcome measures on a larger collection of

patients. For example, longitudinal data, host-specific factor characterization, med-

ication use, prior health issues, etc. information on the patients would have helped

put into our results into an even more compelling clinical context.

5.3.2 More reference genomes for MRSA project

Our analysis of the MRSA genomes and the choice of a reference genome

focused on the differences in interpretation when two different reference genomes are

used. Many other MRSA reference genomes have been discussed in the literature and

it would have been ideal had we been able to consider those genomes as well.

5.3.3 Additional ADGC Clinical Data to Refine AD Diagnosis

Our analysis of the ADGC data considered genotypes that were assigned or

imputed to individuals that did not have those genotypes. This imputation strategy

was pursued by the original ADGC investigative team. Unfortunately, the reliabil-

ity of the genotyping resulting from imputation strategies depends critically on the

imputation strategy itself. Although we have no reason to believe that our results

are not-trustworthy due to the imputation, it would have been better to use directly

genotyped variants rather than imputed variants in our analyses.
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5.3.4 Use of Quantitative Phenotypes for Association

We focused on AD diagnosis as our primary dependent variable, but we could

have benefited from an analysis of a subclinical phenotype, like cognitive decline or

cognitive score to reduce problems associated with criteria for AD diagnosis.

5.3.5 Greater Diversity of Individuals in our AD Study

Ironically, our studies of the context dependency of variants that influence

AD focused on individuals of largely European descent. It would have been ideal to

explore the effect of the variants on AD susceptibility in other genetic backgrounds.

This would allow us to test the hypothesis that greater context-dependency occurs,

whereby the variants in different ancestral populations modifies the influence of the

APOE4 allele on other variants.

5.3.6 GTEX Database Limitations

We used the GTEX database to build models relating genetic variants to gene

expression values. Although state-of-the-field, the GTEX database only contains

information on a few hundred individuals, which could compromise the power to

identify variant-gene expression associations. This could easily impact our ability to

relate predicted gene expression values to AD based on GTEX-derived models.

5.3.7 Prediction Modeling

As noted above, the assignment of predicted gene expression values to individ-

uals in the ADGC dataset depends critically on the reliability of the models relating

genetic variants to gene expression values. There are many ways to build such models.

A study comparing the different methods and how they might impact the results of

mediator analyses like ours would help put into context how sensitive our results are

to model choice.
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5.4 Future Directions

It is quite likely that as genomic and related technologies advance and become

more efficient, they will be used in a wide variety of settings in which context will

matter to an even greater degree. For example, we believe that at some point pathogen

sequencing will become routine in clinical settings. If this is will be the case, then

making sure the clinical impact of a particular pathogen is not in doubt will be crucial.

The reference-guided characterization of variants in pathogen genomes used to date

is complicated and potentially problematic, as our analyses suggest: if the mere

choice of a reference for variant identification and genome characterization can impact

interpretation, then the downstream clinical diagnostic and prognostic interpretation

of the pathogen is likely to be even more affected. Therefore, alternative strategies,

such as de novo assembly of pathogen genomes, are needed. In addition, greater

attention to host-related factors, such as a compromised immune system, co-infection,

or debilitating disease, will be necessary to understand the likely impact that an

infection may have on an individual’s health. These host-related factors can also

be characterized with genetic and related technologies. Thus, greater integration of

data sources will be required for the effective use of pathogen sequencing in clinical

practice.

In the context of the discovery of genetic factors that influence common chronic

conditions such as Alzheimer’s Disease (AD), not only will better strategies for identi-

fying variants that might be associated with AD be necessary, but also better charac-

terization of their likely functional impact will be necessary. The mere identification

of an associated variant - even in a context dependent manner - will not be as use-

ful as understanding the functional impact of the variant. Thus, more sophisticated

high-throughput functional assays, such as those leveraging emerging CRISPR-based

technologies173, will be essential for validating and putting into even more basic bio-

logical contexts the effects of genetic variants. Such studies can consider the influence

of genetic background by modifying the sequence of relevant constructs using cells or

organoids with different genetic backgrounds and then determining if the background

influenced the in vitro activity of the variant of interest. In addition, although we ex-

plored the use of gene expression levels as a ‘mediator’ between genetic factor effects
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and the clinical phenotype of AD, there are many other possibly mediators that could

have been used; for example, protein levels, metabolite levels, cognition scores, etc.

Future work will leverage information about these possible mediators to link genetic

variants to AD and other complex diseases using technology similar to what we used.

Ultimately, all of biology and life depends on the interplay of genetic, environmental

and stochastic factors. Believing that individual genetic factors will have robust and

completely reproducible effects within every genetic background and environment flies

in the face of this fact. Therefore, methodology that can accommodate and charac-

terize the context-specific effects of genetic factors is absolutely essential for moving

biology in a genomic era forward. When taken in this light, we hope that our work

will motivate future research.
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