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ABSTRACT OF THE DISSERTATION 

 

Analysis and Synthesis of General Flexure Systems 

via Screw Algebra and Graph Theory 

 

by 

 

Frederick Sun 

Doctor of Philosophy in Mechanical Engineering 

University of California, Los Angeles, 2017 

Professor Jonathan Hopkins, Chair 

 

 

 

This thesis introduces a general method for analyzing and synthesizing flexure systems of any 

configuration, including those that cannot be broken into parallel and serial subsystems. Such flexure 

systems are called interconnected hybrid flexure systems because they possess limbs with 

intermediate bodies that are connected by flexure systems or elements. Specifically, the method 

introduced utilizes screw algebra and graph theory to help designers determine the freedom spaces 

(i.e., the geometric shapes that represent all the ways a body is permitted to move) for all the bodies 

joined together by compliant flexure elements within interconnected hybrid flexure systems (i.e., 

perform mobility analysis of general flexure systems). This method also allows designers to determine 

(i) whether such systems are under-constrained or not and (ii) whether such systems are 

over-constrained or exactly-constrained (i.e., perform constraint analysis of general flexure systems). 

Although many flexure-based precision motion stages, compliant mechanisms, and 

microarchitectured materials possess topologies that are highly interconnected, the theory for 
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performing the mobility and constraint analysis and synthesis of such interconnected flexure systems 

using traditional screw theory does not currently exist. The theory introduced here lays the foundation 

for an automated tool that can rapidly generate the freedom spaces of every rigid body within a 

general flexure system without having to perform traditional computationally expensive finite element 

analysis. Case studies are provided to demonstrate the utility of the proposed theory. 
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CHAPTER 1 

 

Introduction 

 

 Flexure systems [1] consist of rigid bodies, shown as rectangles in the schematic portion of Fig. 

1.1, joined together by flexure elements (e.g., wire, blade, or notch flexures), shown as springs in the 

same portion, of Fig. 1.1, joined together by flexure elements (e.g., wire, blade, or notch flexures), 

shown as springs in the same portion, that deform to guide the system’s rigid bodies along desired 

motion paths with high precision. According to their geometry, these elements are stiff in certain 

directions but compliant in other directions. The directions of greatest compliance exhibited by a body 

constrained by flexure elements within a flexure system are the body’s degrees of freedom (DOFs). 

There are three kinds of rigid bodies within a flexure system—a grounded or fixed body labeled ‘G’ in 

Fig. 1.1, intermediate bodies labeled ‘I’, and a stage labeled ‘S’. A system’s stage is the primary body 

of interest (i.e., the body that performs the system’s desired tasks). 

 Traditionally, flexure systems are classified into three categories [1,2] (Fig. 1.1)—parallel, serial, 

and hybrid. Parallel systems consist of two rigid bodies joined directly together by flexure elements as 

shown in the example of Fig. 1.1. Serial flexure systems consist of two or more parallel subsystems 

stacked or nested together in a chain-like configuration. Hybrid flexure systems consist of any other 

configuration of rigid bodies joined together by flexure elements. Most hybrid systems consist of 

various combinations of both parallel and serial subsystems joined together in parallel. Note that the 

hybrid system example in Fig. 1.1 consists of three identical serial subsystems or limbs arranged in 
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parallel, where the serial subsystems or limbs can be lumped to together into a kinematically 

equivalent subsystem, which is not always the case. 

 

 

Figure 1.1: Flexure system categories 

 

 

Figure 1.2: Interconnected hybrid system examples 
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 Some hybrid flexure systems, however, are arranged in configurations that cannot be broken into 

purely parallel and serial subsystems. Two examples of this kind of hybrid system are shown in Fig. 

1.2. These systems are called interconnected hybrid flexure systems [2] because they possess at least 

one set of parallel limbs that are interconnected by flexure subsystems or elements that join the limbs’ 

intermediate bodies together. Screw-theory-based approaches can’t traditionally be used to analyze or 

synthesize such interconnected hybrid systems because most existing approaches can only analyze or 

synthesize systems that can be broken into parallel and serial subsystems like the hybrid example of 

Fig. 1.1, and therefore cannot be analyzed or synthesized using the traditional FACT approach. 

 The purpose of this thesis is to introduce a new systematic analysis and synthesis approach for 

general interconnected hybrid flexure systems flexure systems. The method introduced can also 

determine whether such systems are under-constrained or not and whether such systems are 

exactly-constrained or over-constrained (i.e., constraint analysis). Since interconnected hybrid 

systems are the most complex class of system, this thesis will enable the general analysis and 

synthesis of flexure systems of any configuration. 

 The ability to analyze and synthesize interconnected hybrid flexure system designs is becoming 

increasingly important as more and more applications are emerging that require the use of such 

designs. Nano-positioners and other flexure-based motion stages, like those shown in the example 

portion of Fig. 1.2 for instance, require an interconnected hybrid flexure topology to simultaneously 

achieve their desired stage DOFs while also satisfying their desired load capacity, stiffness, and 
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dynamic requirements. Serial flexure systems that achieve large ranges of motion often suffer from 

under-constraint, which can be eliminated by the addition of flexure linkages [3] that render the 

system’s topology interconnected. The topologies of repeating unit cells within periodic 

microarchitectured material lattices [4,5] are often interconnected hybrid in their configuration. Such 

material lattices, also called mechanical metamaterials [6], can be engineered to exhibit a large variety 

of tunable bulk properties (e.g., negative Poisson ratio [7], zero or negative thermal expansion 

coefficient [8], and high strength-to-weight ratio [5]), which are primarily determined by their 

microstructure’s interconnected hybrid flexure topology. 

 The theory of this thesis uniquely utilizes a combination of screw algebra [9-11] and graph 

theory [12,13] to enable the analysis of interconnected hybrid flexure system topologies. Twist and 

wrench vectors [9-11] are used in the context of screw algebra to model the DOFs and the 

constraining forces imposed on the rigid bodies within a general flexure system. Graph theory is used 

to model the system’s rigid bodies as nodes or vertices and flexure elements as edges within a graph 

to mathematically navigate the graph’s complex connections to identify the fewest number of vector 

equations that need to be solved for completing the mobility analysis of the interconnected hybrid 

system. 

 Screw algebra has been used extensively by others to analyze the mobility of rigid mechanisms 

of various configurations for the past few centuries [9-11,14]. Screw systems that consist of linear 

combinations of twist and wrench vectors have been studied exhaustively and classified for a variety 
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of rigid mechanism purposes [15-19]. Mohamed and Duffy [20] investigated the instantaneous 

kinematics of a parallel manipulator with identical serial chain limbs. Kumar [21] used reciprocal 

twist and wrench vectors for instantaneous kinematic analysis of serial kinematic chains arranged in 

parallel. Kong and Gosselin [22,23] used wrenches to synthesize three DOF parallel manipulators. 

Fang and Tsai [24] synthesized parallel manipulators with identical limbs of four and five DOFs. 

 Graph theory has also been applied in conjunction with screw algebra to analyze and synthesize 

rigid mechanisms of various configurations. Freudenstein and Dobrjanskyj [25,26] used graph theory 

to model the links and joints of general rigid mechanisms as vertices and edges similar to the theory 

of this paper but utilized different mathematics to identify non-isomorphic graphs for the purpose of 

type synthesis for various types of mechanisms. Davies [27] applied Kirchhoff’s voltage law to rigid 

mechanisms, treating closed kinematic chains as an analogue to closed electrical circuits. Angeles and 

Gosselin [28] addressed the mobility of multi-loop rigid mechanisms by calculating the nullity of a 

mechanism’s Jacobian matrix. Zoppi et al. [29] analyze parallel manipulators with interconnecting 

links. Zeng et al. [30] designed a parallel manipulator that also possessed interconnecting links. Lu 

and Leinonen [31] used graph theory to synthesize a family of unified planar and spatial mechanisms. 

Chen and Yao [32] used graph theory to create a systematic approach for synthesizing the topology of 

fractionated geared differential mechanisms. 

 Although screw algebra and graph theory have been applied extensively to rigid mechanisms, 

the combination of these principles have not yet been commonly applied to compliant 
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mechanisms—particularly for solving the mobility of interconnected hybrid flexure systems. Murphy, 

et al. [33] included flexures as a type of joint to enumerating non-isomorphic compliant mechanisms. 

Pucheta and Cardona [34] applied graph theory to perform the type synthesis of compliant 

mechanisms that derive from rigid mechanism analogues. Adding to the contributions of Merlet [35] 

and Hao [36], Hopkins created the Freedom and Constraint Topologies (FACT) synthesis approach 

[37-39], which utilizes a comprehensive library of intuitive shapes, as shown in Fig. 1.3, that help 

designers leverage the geometry of screw systems toward visualizing the topologies and mobility of 

general compliant mechanisms. The mathematics underlying the FACT approach was furthered by Su 

et al. [40-42] and Yu et al. [43] to enhance the computational analysis and synthesis of flexure systems 

of various parallel and serial flexure configurations. Some approaches have also utilized screw 

algebra to analyze and synthesize compliant mechanisms [44,45]. More recently, an approach was 

created that normalizes the compliance matrices of flexure systems to identify the directions of 

greatest compliance (i.e., the DOFs) [46, 47]. Other approaches for analyzing and synthesizing 

compliant mechanisms and flexures have also been developed. Howell [48] developed the pseudo 

rigid body model to approximate large deformation of compliant mechanisms and flexures by 

replacing the flexible elements with traditional rigid body mechanism joints. Kota et al. [49] 

developed a computation based method that optimizes the geometry of a material to achieve desired 

output from input, and although the method is powerful it is also computational intensive. 
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Figure 1.3: Mathematical complete FACT library [38] 

 

 The approach introduced in this work extends upon the FACT approach. The FACT approach 

offers the advantage of better precision in small deformation, it allows more human interaction in the 

process such that the design can be easier conceptualized, and the extension of FACT developed in 

this thesis also offers a basis that allows a more efficient automated design algorithm to be developed 

in the future. The FACT library in Fig.1.3 will be repeatedly used in chapter 3 and chapter for of this 

thesis. FACT is used to identify and interprets the motion of flexure elements into twist and wrench 

vectors for analysis, and conceptually design flexure elements when given twists and wrench vectors 

when performing synthesis. The approach however, does not use the traditional FACT approach that 

lumps the limbs broadens the scope of FACT, and enables the analysis and synthesis of any compliant 
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mechanism (both interconnected or not interconnected) in that it allows users to identify and specify 

the DOFs of  

the rigid bodies within the mechanism regardless of how they are joined together by flexure elements, 

and synthesize flexure systems with any desired DOF regardless of how the rigid bodies are joined 

together. The approach is able to identify these DOFs rapidly in part because the calculations inherent 

to the approach only consider the topology of the system’s flexure elements (i.e., the kind, location, 

and orientation of the elements within the system). The shapes of the rigid bodies, the properties of 

the constituent materials used, and the geometric parameters of the flexure elements (e.g., the lengths, 

widths, or thicknesses of rectangular prism elements) that make up the topology are not considered in 

the mathematical treatment. This simplification is made possible because of the assumption used in 

this thesis that all flexure elements within flexure systems can be modeled as ideal constraints [37-39], 

which are infinitely stiff along the directions they constrain while being infinitely compliant in all 

other directions. Thus, the theory proposed here is well suited to enable an automated approach for 

rapidly analyzing the mobility and constraint characteristics of compliant mechanisms, structures, and 

materials that consists of large numbers of flexible elements of various geometries joined together in 

an interconnected fashion. 
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CHAPTER 2 

 

Review of Freedom and Constraint Topology 

 

 This chapter reviews the freedom and constraint spaces and its underlying mathematics. These 

spaces will be integral to the new mobility and constraint analysis method introduced later in this 

thesis. 

 

2.1 Twist and wrench vectors 

 The instantaneous permissible motions of a general body can be represented as lines (Fig. 2.1) 

that are mathematically modeled as 6x1 twist vectors, T, [9-11] defined as 

 

 
  TpnncnT 

,            (2.1) 

 

 

Figure 2.1: Parameters that define a twist vector 

 

where ω is the magnitude of the body’s angular velocity about the motion’s line, n is a 1x3 unit vector 

that points along the line’s axis, c is a 1x3 location vector that points from the origin of the coordinate 

system to any point along that line, and p is the pitch of the motion (i.e., the ratio of how much the 
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body translates along the line’s to how much the body rotates about that axis). If the pitch is zero, the 

motion is a rotation and its line will be colored red in this paper. If the pitch is non-zero but finite, the 

motion is a screw and its line will be colored green. If the pitch is infinite, the motion is a translation 

and its line will be shown as a thick black arrow. Thus, twist vectors used to model translations can be 

simplified according to 

 

 
 Tv n0T 

,                 (2.2) 

 

where v is the magnitude of the body’s linear velocity along the translation’s arrow, 0 is a 1x3 zero 

vector, and n is a 1x3 unit vector that points in the direction of that same arrow. 

Constraint loads imposed on a general body can also be represented as lines (Fig. 2.2) that are 

mathematically modeled as 6x1 wrench vectors, W, [9-11] defined according to Eq. (2.1) except that 

T is replaced by W, ω is replaced by f, c is replaced by r, and p is replaced by q, defined as: 

 

   Tqf nnrnW              (2.3) 

 

 

Figure 2.2: Parameters that define a wrench vector 
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where the scalar value f is the magnitude of the constraining force imposed on the body along the 

load’s line, r is a 1x3 location vector that points from the origin of the coordinate system to any point 

along that line, and q is the ratio of the magnitude of the constraining moment imposed on the body 

about the line’s axis to the magnitude of the constraining force along the same line. If q is zero, the 

load is a pure force and its line will be colored blue in this paper. If q is non-zero but finite, the motion 

is a wrench and its line will be colored orange. If q is infinite, the load is a pure moment and its line 

will be shown as a thick black line with a circular arrow about its axis. Thus, wrench vectors used to 

model pure moments can be simplified similar to Eq. (2.2): 

 

  Tn0W                (2.4) 

 

where τ is the magnitude of the body’s pure moment about its line with circular arrows. 

 

2.2 Freedom and constraint spaces 

 To demonstrate how twist and wrench vectors can be used to model the permissible motions and 

constraining loads imposed on a body by a flexure element, consider the blade element in Fig. 2.3. 

This element constrains its body such that it possesses three DOFs shown in the figure—two 

rotational twist vectors, T1 and T2, and one translational twist vector, T3. The body can also move 

with every combination of these DOF twist vectors according to  
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Figure 2.3: DOF of a blade flexure 

 

where Tfre,e is a twist vector that represents these DOF combinations, ω1 and ω2 are the magnitudes of 

the angular velocities of T1 and T2 respectively, and v3 is the magnitude of the linear velocity of T3. If 

all the motion lines that are modeled by Tfre,e are graphically depicted for all real combinations of ω1, 

ω2, and v3, the freedom space of the element is produced. A freedom space is a geometric shape, 

which consists of motion lines, that represents all the ways a body is free to move. The freedom space 

of the blade element, Tfre,e, is thus a red plane of rotation lines and an orthogonal black translation 

arrow shown in Fig. 2.4. Thus, a body constrained by a blade element can rotate about any line on the 

plane of the blade and translate in the direction perpendicular to the blade’s plane. Note that the 
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number of independent twist vectors, n, that constitute a freedom space is the number of its DOFs. For 

a blade element, n=3. 

 

 

Figure 2.4: Freedom space of a blade flexure 

 

 The blade flexure element can also impart three independent constraining loads onto its body as 

shown in Fig. 2.5—two pure force wrench vectors, W1 and W2, and one pure moment wrench vector, 

W3. Additionally, the blade element can constrain the body with every combination of these 

independent wrench vectors in a similar fashion to Eq. (2.5): 
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Figure 2.5: Constraint space and constraining actions of a blade flexure 

 

here Tfre,e is replaced by Wcon,e, T1, T2, and T3 are replaced by W1, W2, and W3 respectively, and ω1, 

ω2, and v3 are replaced by f1, f2, and τ3 respectively. The Wcon,e vector represents all the load 

combinations that the element can impart onto the body, f1 and f2 are the magnitudes of the pure forces 

of W1 and W2 respectively, and τ3 is the magnitude of the pure moment of W3. If all the load lines that 

are modeled by Wcon,e are graphically depicted for all real combinations of f1, f2, and τ3, the constraint 

space of the element is produced. A constraint space is a geometric shape, which consists of load 

lines, that represents all the constraining loads imparting on a body that restrict its motions in certain 

directions. The constraint space of the blade element, Wcon,e, is thus a blue plane of force lines and an 

orthogonal black moment line with a circular arrow about its axis as shown in Fig. 2.5. Thus, a body 

constrained by a blade element is restricted from moving by all the force lines that lie on the plane of 
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the blade and by a moment line that is perpendicular to the blade’s plane. The blade flexure is one of 

the special cases where the freedom and constraint space are of the same geometric shape. 

 Note that the number of independent wrench vectors, m, that constitute a constraint space is 6-n 

because of the general relationship [9-11] between freedom spaces, Tfre, and their complementary 

constraint spaces, Wcon, given by  
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                       (2.7) 

 

where [0] is a 3x3 zero matrix and [I] is a 3x3 identity matrix. 

 As another example element, consider the wire flexure shown in Fig. 2.6. This element 

possesses five DOFs—three orthogonal and intersecting rotational twist vectors, T1, T2, and T3, and 

two translational twist vectors, T4 and T5, that are orthogonal and align with the axes of T1 and T2 

respectively as shown in the figure. The wire element’s freedom space, Tfre,e, results from the 

combination of these five twist vectors as: 
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where ω1, ω2, and ω3 are the magnitudes of the angular velocities of T1, T2, and T3 respectively, and v4 

and v5 are the magnitudes of the linear velocities of T4 and T5. The element’s freedom space is  
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Figure 2.6: DOF of a wire flexure 

 

 

 

 

 

 

Figure 2.7: Freedom space of a wire flexure 
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graphically depicted in Fig. 2.7 as (i) red planes of rotation lines that intersect along the wire’s axis, 

(ii) a black disk of translation arrows that point in directions that are perpendicular to the wire’s axis, 

and (iii) green screw lines that are described in Hopkins [37,38] but not shown in the figure to avoid 

visual clutter. The element’s complementary constraint space, Wcon,e, can be calculated using Eqs. 

(2.7) and (2.8) and consists of the single blue line shown in Fig. 2.8 modeled by  

 

 
 Tf 0001001 1con,e WW

         (2.9) 

 

where f1 is the magnitude of the constraining force wrench vector, W1, imparted by the wire element 

along its axis to the body in Fig. 2.8. 

 

 

Figure 2.8: Constraint space of a wire flexure 
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 Mobility analysis of a flexure system is successfully achieved when the freedom space of the 

system’s stage is identified (i.e., when one knows all the ways the system’s stage is free to move). 

Synthesis of a flexure system is successfully achieved when the constraint space of every element in 

the flexure system is specified (i.e., when one specifies all the constraining action every flexure 

element provide). Even though there are infinite linear combinations of twist and wrench vectors, 

there are only a finite number of geometric shapes and thus freedom and constraint spaces they 

manifests. The comprehensive chart by Hopkins [38] previously given in Fig. 1.3 contains all possible 

freedom and constraint spaces, and is essential to the rest of this work. The FACT method is used to 

interpret between the physical implementation of flexure elements and the mathematical expression of 

twist and wrench vectors. 

 

2.3 Parallel and serial flexure systems 

 Current analysis and synthesis approach with freedom and constraint topology hinges on two 

primary principles: 

(1) Parallel Configurations: A system’s constraint space can be found by linearly combining the 

constraint spaces of its constituent flexure elements and/or systems when they are arranged in parallel. 

A system’s freedom space can be found by identifying the intersection of the freedom spaces of its 

constituent flexure elements and/or systems when they are arranged in parallel. 
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(2) Serial Configuration: A system’s freedom space can be found by linearly combining the freedom 

spaces of its stacked flexure subsystems when they are arranged in series. A system’s constraint space 

can be found by identifying the intersection of the constraint spaces of its stacked flexure subsystems 

when they are arranged in series. 

 To demonstrate principle (1), consider the parallel system shown in Fig. 2.9 that consists of a 

blade element, e1, arranged in parallel with a wire element, e2. The constraint space of element e1 is 

the blue plane from Fig. 2.5. Given the coordinate system shown in Fig. 2.10, this constraint space, 

Wcon,e1, can be expressed as 
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where f1 and f2 are the force magnitudes of W1 and W2 in Fig. 2.10 respectively, τ3 is the moment 

magnitude of W3, and D is a scalar distance labeled in the same figure. The constraint space of 

element e2 is the blue line from Fig. 2.8. Given the coordinate system in Fig. 2.10, this constraint 

space, Wcon,e2, can be expressed as 

 

 
 TDf 00)2/(1004 4con,e2 WW

        (2.11) 
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Figure 2.9: A parallel flexure system 

 

 

Figure 2.10: Constraint space of individual flexure elements within a parallel flexure system 

 

 

Figure 2.11: Constraint space of a parallel flexure system 
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where f4 is the force magnitude of W4 in Fig. 2.10. Thus, according to principle (1), since elements e1 

and e2 are arranged in parallel, the constraint space of the parallel system, Wcon,ps, could be calculated 

by linearly combining Eq. (2.10) with Eq. (2.11) (i.e., Wcon,ps=Wcon,e1+Wcon,e2), and thereby describing 

all the constraining actions exerted on the stage by both flexure elements. The resulting parallel 

system’s constraint space is shown in Fig. 2.11. This space consists of (i) a plane of blue force lines 

that is coplanar with the system’s blade element, (ii) a box of parallel blue force lines that are parallel 

with the axis of the system’s wire element, (iii) a disk of black pure moment lines that point in 

directions perpendicular to the wire’s axis, and (iv) orange wrench lines that are described in Hopkins 

[37,38] but are not shown in Fig. 2.11 to avoid visual clutter. 

 The parallel system’s freedom space, Tfre,ps, can be calculated using Wcon,ps in Eq. (2.7). This 

space, shown in Fig. 2.12, consists of (i) a plane of parallel red rotation lines that are parallel to the 

axis of the wire element but are coplanar with the plane of the blade element, and (ii) a black 

translation arrow that is perpendicular to the same plane. This freedom space, Tfre,ps, results from the 

linear combination of two independent twist vectors (e.g., T1 and T2 in Fig. 2.12) according to 
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Figure 2.12: Freedom space of a parallel flexure system 

 

    

Figure 2.13: Freedom space of individual flexure elements within a parallel flexure system 

 

where ω1 is the magnitude of the angular velocity of T1 in Fig. 2.12, and v2 is the magnitude of the 

linear velocity of T2 in the same figure. Note that in accordance with principle (1), the parallel 

system’s freedom space (Fig. 2.12) is the intersection of the freedom spaces of the system’s 
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constituent elements (i.e., Tfre,e1 and Tfre,e2 shown in Fig. 2.13). In other words, the motion lines that 

constitute the space of Fig. 2.13 are the same motion lines that are commonly shared between the two 

spaces shown in Fig. 2.13, and thereby represent the motion allowed by both of the flexure elements 

within the system. Recall that the freedom space of a blade element was given in Fig. 2.4 and the 

freedom space of a wire element was given in Fig. 2.7.  

 The constraint space of Fig. 2.11 and the freedom space in Fig. 2.12 can be found in the FACT 

library of Fig. 1.3, falling under category of the 2
nd

 item in the 2 DOF column. Be careful to notice 

that the freedom and constraint space drawn in Fig. 1.3 is oriented in a different direction. 

 To demonstrate principle (2), consider the serial system shown in Fig. 2.14 that consists of two 

stacked parallel subsystems, ps1 and ps2, of the kind shown in Fig. 2.9. The freedom spaces of each 

subsystem (Fig. 2.12) are shown superimposed on the serial system in Fig. 2.14. Given the coordinate 

system shown in Fig. 2.15, the freedom space of ps1, Tfre,ps1, can be expressed as 
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where ω1 is the angular velocity magnitude of T1, and v2 is the linear velocity magnitude of T2 in Fig. 

2.15. Given the coordinate system of Fig. 2.15, the freedom space of ps2, Tfre,ps2, can be expressed as 
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Figure 2.14: A serial flexure system 

 

Figure 2.15: Freedom space of the flexure subsystems within serial flexure system 

       

Figure 2.16: Freedom space of the stage of the serial flexure system 
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where ω1 is the angular velocity magnitude of T1, and v3 is the linear velocity magnitude of T3 in Fig. 

2.15. Thus, according to principle (2), since the parallel subsystems ps1 and ps2 are arranged in series, 

the freedom space of the serial system, Tfre,ss, could be calculated by linearly combining Eq. (2.13) 

with Eq. (2.14) (i.e., Tfre,ss=Tfre,ps1+Tfre,ps2). The resulting serial system’s freedom space, shown in Fig. 

2.16, consists of (i) a box of parallel red rotation lines that are parallel with the axes of the system’s 

wire elements, and (ii) a disk of black translation arrows that point in directions that are perpendicular 

to these axes. 

 The serial system’s constraint space, Wcon,ss, can be calculated using Tfre,ss in Eq. (2.7). This 

space, shown in Fig. 2.17, consists of (i) a box of parallel blue force lines that are parallel with the 

axes of the system’s wire elements, and (ii) a disk of black moment lines that point in directions that 

are perpendicular to these axes. This constraint space, Wcon,ss, results from the linear combination of 

three independent wrench vectors (e.g., W1, W2, and W3 in Fig. 2.17) according to 
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Figure 2.17: Constraint space of the stage of the serial flexure system 

 

         

Figure 2.18: Constraint space of the flexure subsystems within serial flexure system 
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where f1 is the force magnitude of W1 in Fig. 2.17, and τ2 and τ3 are the moment magnitudes of W2 

and W3 in the same figure. Note that in accordance with principle (2), the serial system’s constraint 

space (Fig. 2.17) is the intersection of the constraint spaces of the system’s stacked parallel 

subsystems (i.e., Wcon,ps1 and Wcon,ps2 shown in Fig. 2.18). In other words, the load lines that constitute 

the space of Fig. 2.17 are the same load lines that are commonly shared between the two spaces 

shown in Fig. 2.18. Recall that the constraint space of each parallel subsystem was given in Fig. 2.11. 

 

2.4 Non-interconnected hybrid flexure systems 

 Since principles (1) and (2) pertain to flexure elements and/or subsystem’s arranged in parallel 

or series, these principles can only be used to perform the mobility analysis of flexure systems that 

can be broken into parallel and serial subsystems. Consider the hybrid system in Fig. 2.19 that 

consists of two serial subsystems (i.e., limbs) arranged in parallel. Once the constraint spaces of each 

parallel subsystem, ps1 through ps4, have been identified according to the principles reviewed in this 

section, the freedom space of the system’s stage can be determined using an operator, Z. This operator 

utilizes Eq. (2.7) to determine the complementary freedom space of a constraint space and vice versa 

(i.e., Z(Wcon)=Tfre and Z(Tfre)=Wcon). Thus, if Wcon,ps1, Wcon,ps2, Wcon,ps3, and Wcon,ps4, are the 

constraint spaces of the parallel subsystems, ps1 through ps4, in Fig. 2.19 respectively, the hybrid 

system’s freedom space, Tfre,hs, (i.e., the freedom space of the system’s stage) can be calculated 

according to  
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Figure 2.19: A hybrid flexure system 

 

 

Figure 2.20: Freedom space of a hybrid flexure system 

 

 

Figure 2.21: An interconnected hybrid flexure system 
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     )()()()( con,ps4con,ps2con,ps3con,ps1fre,hs WWWWT ZZZZZZZ     (2.16) 

This freedom space, shown in Fig. 2.20, consists of (i) a plane of red rotation lines that is coplanar 

with the front face of the system’s stage, (ii) a box of parallel red rotation lines that are directed 

vertically, (iii) a disk of black translation arrows that point in directions perpendicular to these parallel 

rotation lines, and (iv) green screw lines that are described in Hopkins [37,38] but are not shown in 

Fig. 2.20 to avoid visual clutter. If, however, the intermediate bodies of the example system are joined 

together by another parallel subsystem, ps5, as shown in Fig. 2.21, principles (1) and (2) cannot be 

applied to the system’s mobility analysis because the system can’t be broken into parallel and serial 

subsystems. Thus, the system of Fig. 2.21 is an interconnected hybrid system, which requires new 

theory to analyze (i.e., determine its stage’s freedom space). 

 One of the primary objectives of this thesis is to introduce a systematic approach for 

successfully navigating the freedom and constraint spaces of a system’s constituent elements and 

subsystems such that the mobility analysis and topological synthesis of a general flexure system can 

be achieved. The other primary objective of this thesis is to introduce a systematic approach for 

successfully navigating these freedom and constraint spaces such that designers can identify the 

system’s constraint characteristics (i.e., perform constraint analysis) and specify desired designs 

accordingly. 
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CHAPTER 3 

 

Mobility Analysis of Flexure Systems with Screw Algebra and Graph Theory 

 

 This chapter introduces two new complementary screw-algebra and graph-theory approaches for 

systematically performing the mobility analysis of flexure systems of any configuration and 

complexity—including and especially interconnected hybrid flexure systems. Although similar to 

prior approaches [27,28], the first approach focuses on the mobility analysis of compliant mechanisms 

(i.e., flexure systems) instead of rigid mechanisms. It can also be used to identify whether a system is 

under-constrained or not. The second approach is complementary to the first approach (i.e., it uses 

complementary constraint spaces instead of freedom spaces) but it can be used to identify if a system 

is over-constrained or exactly-constrained (i.e., it is used to perform constraint analysis). The 

interconnected hybrid system of Fig. 2.21 will be analyzed as a case study for the theory of this 

section. 

 

3.1 Freedom-space-based Approach to Mobility Analysis 

 This section introduces a freedom-space-based approach for calculating the freedom space of a 

general flexure system’s stage (i.e., for performing mobility analysis). To determine the freedom space 

of a flexure system’s stage using this approach, it is first necessary to identify the freedom spaces of 

each set of flexure elements that join the system’s rigid bodies together. Such sets of flexure elements 

are analogous to the joints of traditional rigid mechanisms (e.g., revolute or prism joints) that guide  
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Figure 3.1: Freedom spaces of each parallel subsystem within the system 

 

 

 

 

Figure 3.2: Twist vectors within freedom spaces 

 



 

32 
 

the motions of their rigid links and join them together. Thus, the ‘compliant joints’ of the 

interconnected hybrid flexure system of Fig. 2.21 are the five parallel subsystems labeled ps1 through 

ps5 in the figure. Their respective freedom spaces, Tfre,ps1 through Tfre,ps5, can each be identified using 

the theory of chapter 2. For the example of Fig. 2.21, these freedom spaces are shown in Fig. 3.1. 

They are the blade flexure’s freedom space from Fig. 2.4 and thus consist of a red plane of rotation 

lines and a black translation arrow that is perpendicular to that plane. 

 Once the freedom spaces of the system’s compliant joints have been identified, each freedom 

space must be mathematically modeled. A freedom space can be modeled mathematically according 

to the theory provided in chapter 2 by selecting n independent twist vectors from within the freedom 

space and linearly combining them. Recall that n is the number of DOFs or independent twist vectors 

that constitute a freedom space. For the example system of Fig. 3.1, the freedom spaces of the 

compliant joints each possess three independent twist vectors within their geometry (i.e., n=3). Thus 

the freedom space, Tfre,ps1, of the parallel subsystem ps1 joint could be mathematically modeled by the 

following linear combination 
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where T1, T2, and T3, are the independent twist vectors shown and defined according to the global 

coordinate system in Fig. 3.2, ω1, ω2 , and v3 are the velocity magnitudes of these twist vectors 

respectively, L is the length defined in the same figure, [jft]ps1 is the joint-freedom-topology matrix of 

the parallel subsystem ps1 defined according to 
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and xps1 is the velocity magnitude vector of ps1 defined as  

 

  Tv321 ps1x .            (3.3) 

 

Note that T1, T2, and T3 in Fig. 3.2 are not the only set of independent twist vectors that could have 

been selected to model Tfre,ps1. Any arbitrary set of three independent twist vectors that lie within the 

ps1 freedom space could have be selected as the basis of the space. 

 The freedom space, Tfre,ps2, of the parallel subsystem ps2 could also be modeled using the T4, T5, 

and T6 independent twist vectors in Fig. 3.2 to construct the corresponding [jft]ps2 matrix according to 
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and the corresponding velocity magnitude vector, xps2, according to  

 

  Tv654 ps2x                           (3.5) 

 

where ω4, ω5, and v6 are the velocity magnitudes of T4, T5, and T6 in Fig. 3.2 respectively. 

 Once all the system’s compliant-joint freedom spaces, Tfre,ps1 through Tfre,ps5, have been modeled 

by constructing their corresponding joint-freedom-topology matrices, [jft]ps1 through [jft]ps5, and their 

corresponding velocity magnitude vectors, xps1 through xps5, the system’s rigid bodies should be 

labeled with numbers. In Fig. 3.1, the system’s ground is labeled b1, the stage is labeled b4, and the 

intermediate bodies are labeled b2 and b3. A graph can be constructed that details what rigid bodies, 

shown as point nodes or vertices in Fig. 3.3, are connected by what compliant-joint freedom spaces, 

shown as edges or arrows in the same figure. The direction of these arrows can be arbitrarily defined 

at the beginning of the analysis process, but it is important to recognize that the way they are defined 

establishes an important convention that must be adhered to throughout the remainder of the analysis 

process to produce correct results. 
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Figure 3.3: Graphical representation of a system with edges as freedom spaces 

 

 Although interconnected hybrid flexure systems cannot be decomposed into purely serial or 

parallel subsystems and consequently cannot be treated using principles (1) and (2) from chapter 2, 

different serial paths can be identified that join the system’s ground to its stage. In the example of Fig. 

3.3, for instance, four unique serial paths exist that can be drawn from the system’s ground to its 

stage. These serial paths can each be expressed as linear combinations of their parallel-subsystem 

freedom spaces (i.e., Tfre,ps1+Tfre,ps3, Tfre,ps2+Tfre,ps4, Tfre,ps1+Tfre,ps5+Tfre,ps4, Tfre,ps2-Tfre,ps5+Tfre,ps3). 

Note that the freedom space’s sign is positive if the path moves from the specified arrow’s tail to its 

head, but is negative if the path moves from the arrow’s head to its tail. The permissible motions of 

the system’s stage (i.e., the stage’s freedom space) can be calculated by equating different 

combinations of these freedom-space paths according to 
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   (3.6) 

 

By equating the different path combinations in Eq. (3.6), the velocity magnitudes that correspond with 

the twist vectors that are commonly shared by the freedom-space paths are preserved, while the 

magnitudes that correspond with the twist vectors that are not shared are forced to be zero to make the 

equation true. Note, therefore, that while a linear combination of vector spaces is determined by 

summing the spaces together, an intersection of vector spaces is determined by equating the spaces. 

By subtracting the right side of Eq. (3.6) from its left side and by expressing the parallel-subsystem 

freedom spaces in the form given in Eq. (3.1), the following matrix-based equation is produced 

 

 

         
         
         
         
         
         

0

x

x

x

x

x

ps5

4ps

ps3

ps2

ps1































































 

00

2

00

00

0

00

543

54321

521

521

4321

543

pspsps

pspspspsps

pspsps

pspsps

pspspsps

pspsps

jftjftjft

jftjftjftjftjft

jftjftjft

jftjftjft

jftjftjftjft

jftjftjft

   (3.7) 

 

where [0] is a 6x6 matrix of zeros, [jft]ps1 through [jft]ps5 are the system’s joint-freedom-topology 

matrices that correspond with the freedom spaces of each compliant joint labeled Tfre,ps1 through 
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Tfre,ps5 in Fig. 3.1, xps1 through xps5 are the velocity magnitude vectors that correspond with the same 

freedom spaces, and 0 is a vector of zeros.  

 Note that the velocity magnitudes that satisfy the combination of equations in Eq. (3.6) result 

from the null space of the matrix consisting of the system’s joint-freedom-topology matrices in Eq. 

(3.7). The significance of these velocity magnitudes toward finalizing the system’s mobility analysis 

will be discussed later in this section. For now, it is sufficient to note that each row in Eqs. (3.6) and 

(3.7) corresponds with a unique closed-loop path that links the system’s ground to its stage (i.e., the 

linear combinations on the left side of Eq. (3.6)) and then back to its ground (i.e., the negative values 

of the linear combinations on the right side of Eq. (3.6)). Thus, the matrix in Eq. (3.7) represents six 

unique closed-loop paths throughout the interconnected system. It is important here to emphasize, 

however, that not all of these closed-loop paths are necessary to calculate the system’s desired 

velocity magnitude vectors. 

 Graph theory provides a means for rapidly determining the fewest number of necessary 

closed-loop paths within a general flexure system to construct the smallest matrix possible for most 

efficiently calculating the system’s desired velocity magnitude vectors. To this end, the incidence 

matrix [12,13], [C], can be constructed using the schematic graph of any flexure system of interest, 

similar to the one diagrammed in Fig. 3.3 for the system of this section’s example. A general 

incidence matrix possesses as many rows as there are edges or arrows in the graph being analyzed and 

as many columns as there are vertices or nodes in the same graph. The component in row e and 
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column u of the matrix will be 1 if the edge’s arrow that corresponds with the freedom space labeled e 

(i.e., Tfre,pse), points into the node or vertex labeled u (i.e., bu). This component will be -1 if the edge’s 

arrow points out of the vertex and will be 0 if the edge’s arrow doesn’t point into or out of the vertex. 

The incidence matrix of the system of Fig. 3.3 is 
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According to graph theory [12,13], the left null space of the incidence matrix produces a matrix, [Q], 

that contains information pertaining to the fewest number of independent closed-loop paths within the 

graph according to 
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              (3.9) 

 

The [Q] matrix of the system of Fig. 3.3 can, thus be calculated using Eq. (3.8) in Eq. (3.9) according 

to 
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If the system’s joint-freedom-topology matrices, [jft]ps1 through [jft]ps5, are then inserted inside their 

respective columns within the transpose of the [Q] matrix from Eq. (3.10) and the resulting matrix is 

multiplied by the velocity magnitude vectors according to 
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Eq. (3.7) is simplified from six closed-loop paths to two independent closed-loop paths. The first of 

these paths, which corresponds with the top row of Eq. (3.11), is shown as a series of green dotted 

arrows in Fig. 3.4. The second of these paths, which corresponds with the bottom row of Eq. (3.11), is 

shown as a series of dashed purple arrows in the same figure. Note that the signs of the joint-freedom- 

 

Figure 3.4: The two independent loops of the system graph 
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topology matrices in Eq. (3.11) are positive if the arrows that pertain to their corresponding freedom 

spaces point in the same directions as the colored arrows that specify the closed-loop paths shown in 

Fig. 3.4. Additionally, note that these signs are negative if the arrows point in opposite directions. The 

matrix in Eq. (3.11), [FT], is the system’s freedom-topology matrix. This matrix always possesses as 

many rows as the number of independent closed-loop paths within the system multiplied by six. The 

matrix possesses as many columns as there are DOFs or independent twist vectors within each of the 

system’s compliant joints (e.g., the parallel subsystems ps1 through ps5 in Fig. 2.21) summed 

together. For the example in this section (Fig. 3.1 to Fig. 3.5), the [FT] matrix can be determined by 

inserting the system’s joint-freedom-topology matrices (e.g., Eqs. (3.2) and (3.4)) into Eq. (3.11) 

according to 
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where H is the length defined in Fig. 3.2. The X vector in Eq. (3.11) contains the system’s velocity 

magnitude vectors, xps1 through xps5. The X vector is calculated by finding the null space of the 

system’s [FT] matrix. The number of independent vector solutions that result by performing the null 

space of this matrix is the number of system DOFs, N, (i.e., the number of independent ways all the 

bodies within the system are compatible to move with respect to one another given their 

interconnected constraint topologies). For the example system in this chapter (Fig. 3.1 to Fig. 3.5), the 

null space of the matrix in Eq. (3.12) consists of three 15x1 X vector solutions (i.e., N=3). 

 To determine the freedom spaces of the rigid bodies within a general flexure system, all of the 

system’s N independent X vectors must be multiplied by a path matrix, [P]. Path matrices always 

possess six rows and as many columns as there are DOFs or independent twist vectors within the 

system’s compliant-joint freedom spaces summed together. Every component within a general path 

matrix is zero except for the components that correspond with the joint-freedom-topology matrices 

used in the chosen path from the ground to the body of interest. As an example, suppose we wished to 

identify the freedom space of the system’s stage, labeled b4 in Fig. 3.1. It is clear from the graph of 

Fig. 3.3 that one potential path starts from ground, b1, and progresses through the parallel subsystem 

ps1 and then through ps3 where it then ends at the system’s stage, b4. This path’s corresponding path 

matrix, [Pps1,ps3], is 

 

              000
313,1 pspspsps jftjftP  .        (3.13) 
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Another, option could be the path matrix, [Pps2,ps5,ps3], that corresponds with the path from the system’s 

ground through ps2, then ps5, and finally ps3 where it then ends at the system’s stage. This path’s 

matrix is 

 

              00
5323,5,2 pspspspspsps jftjftjftP  .      (3.14) 

 

Note that the sign of each joint-freedom-topology matrix corresponds with the graph’s arrow 

convention and the path chosen as discussed previously. Once a potential path matrix that points from 

the system’s ground to the body of interest is identified, the matrix should be multiplied by all N 

independent X vectors found from the null space of Eq. (3.11) to produce N twist vectors. These N 

twist vectors should then be linearly combined to generate the freedom space of the rigid body to 

which the path matrix pointed.  

 For the example in this section (Fig. 3.1 to Fig. 3.5), the stage’s freedom space, Tfre,b4, was 

calculated using this approach. This freedom space, shown in Fig. 3.5, is the freedom space in Fig. 2.4 

that consists of a black translation arrow that is perpendicular to a red plane of rotation lines that lies 

on the front face of the stage as shown. The freedom spaces of the two intermediate bodies, Tfre,b2 and  

Tfre,b3, can also be identified by multiplying all N independent X vectors with path matrices that point 

from ground to their respective bodies. These freedom spaces are also shown in Fig. 3.5. The freedom 
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space of b2 is a red disk of rotation lines and the freedom space of b3 is a single vertical red rotation 

line as shown. 

  

 

Figure 3.5 Freedom space of the system’s bodies 

 

 Identifying the most efficient path from a general system’s ground to its stage (or another body 

of interest) is a simple task to perform by inspection for the example system in this section. Suppose, 

however, we wished to calculate the freedom space of a particular body within a system that consisted 

of thousands of bodies joined together by compliant joints in an interconnected fashion (e.g., a 

lattice-based microarchitectured material). For this case, the adjacency matrix from graph theory 

[12-13] could be used in conjunction with the Dijkstra's algorithm [50] to enable an automated 

process for rapidly identify the most efficient path from ground to the desired body of interest. A 

system’s adjacency matrix, [A], possesses as many rows and columns as there are nodes or vertices in 
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the system’s graph. The component in row h and column u of the matrix is 1 if the body labeled h 

(i.e., bh) is joined to the body labeled t (i.e., bu) by a compliant joint. Otherwise, the component will 

be zero. The adjacency matrix, [A] of the graph in Fig. 3.3 is 
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Once the system’s adjacency matrix has been identified, this matrix can be fed to the Dijkstra’s 

algorithm to find the shortest path between the vertex that corresponds with the grounded body and 

the vertex that corresponds with the rigid body of interest. This path can then be used to generate the 

best path matrix for rapidly calculating the body’s freedom space. 

 Thus, the systematic mobility analysis approach of this section is summarized by the following 

seven steps: 

Step 1: Identify the freedom spaces of a system’s compliant or rigid joints. 

Step 2: Use these freedom spaces to create their corresponding joint-freedom-topology matrices (i.e., 

[jft]pse). 

Step 3: Construct the incidence matrix, [C], using a simplified graph of the system. 

Step 4: Construct the system’s freedom-topology matrix, [FT], by inserting the matrices of Step 2 into 

their corresponding columns within the transpose of the left null space of the matrix in Step 3. 
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Step 5: Find the system’s N independent X vectors by taking the null space of [FT] from Step 4.  

Step 6: Use the system’s adjacency matrix, [A], in conjunction with Dijkstra’s algorithm to construct 

the optimal path matrix, [P], that leads from the system’s ground to the body of interest (usually the 

stage). 

Step 7: Multiply the path matrix in Step 6 with all N of the X vectors from Step 5 and to generate the 

freedom space of the stage. In other words, Tfre,stage = PX. 

 Note that although the freedom spaces of the compliant joints, ps1 through ps5, of the case study 

of Fig. 3.1 are all the same type of freedom space, the approach of this research works for general 

systems with any variety of different compliant-joint freedom spaces.   

 

3.2 Constraint-space-based Approach to Mobility Analysis 

 This section introduces an alternate but complementary constraint-space-based approach to the 

freedom-space-based approach introduced in section 3.1 for performing the mobility analysis of 

general flexure systems. Another way to determine the freedom space of a flexure system’s stage is to 

first identify the constraint spaces of each set of flexure elements (i.e., compliant joints) that join the 

system’s rigid bodies together. The respective constraint spaces, Wcon,ps1 through Wcon,ps5, of the 

compliant joints, ps1 through ps5, in the example of Fig. 2.21 can each be calculated by individually 

inserting their complementary freedom spaces, Tfre,ps1 (i.e., Eq. (3.1)) through Tfre,ps5, found 

previously and depicted in Fig. 3.1, into Eq. (2.7). These resulting constraint spaces coincidentally 
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look similar to their complementary freedom spaces (Fig. 3.1) except for the fact that their planes are 

blue instead of red because they consist of force lines instead of rotation lines, and they possess 

orthogonal black moment lines with circular arrows about their axes instead of black translation 

arrows (Fig. 2.4 and Fig. 2.5). Thus, for the same coordinate system shown in Fig. 3.2 but with the 

independent twist vectors labeled T1 though T6 replaced by independent wrench vectors labeled W1 

though W6, the constraint space of ps1, Wcon,ps1, can be mathematically modeled in a fashion similar 

to Eq. (3.1) 
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where Tfre,ps1 is replaced by Wcon,ps1, n is replaced by m, i is replaced by j, Ti is replaced by Wj, ω1 is 

replaced by f1, ω2 is replaced by f2, v3 is replaced by τ3, [jft]ps1 is replaced by [jct]ps1, and xps1 is 

replaced by yps1. The matrix [jct]ps1 is called the joint-constraint-topology matrix of the parallel 

subsystem ps1 and is defined in a fashion similar to Eq. (3.2) 
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where [jft]ps1 is replaced by [jct]ps1, and yps1 is the load magnitude vector of ps1 defined in a fashion 

similar to Eq. (3.3) 

 

  Tff 321 ps1y            (3.18) 

 

where xps1 is replaced by yps1, and ω1, ω2, and v3 are replaced by f1, f2, and τ3 respectively. Thus, by 

identifying the m independent wrench vectors within each compliant joint’s constraint space, all the 

system’s joint-constraint-topology matrices, [jct]ps1 through [jct]ps5, can be constructed similar to the 

system’s joint-freedom-topology matrices, [jft]ps1 through [jft]ps5, in section 3.1. 

 Note that, unlike the example of in section 3.1, the constraint spaces of most flexure-systems’ 

compliant joints are significantly different in appearance from their complementary freedom spaces 

(e.g., Figs. 2.7, Fig. 2.8, Fig. 2.11, and Fig. 2.12). Furthermore, these constraint spaces typically 

consist of different numbers, m, of independent wrench vectors than the numbers of independent twist 

vectors, n=6-m, that constitute their complementary freedom spaces. Thus, their 6xn 

joint-freedom-topology matrices and their 6xm joint-constraint-topology matrices are typically 

different sizes and consist of different components. The case study example in section 3.1 with 

coincidentally identical joint-freedom-topology matrices and joint-constraint-topology matrices was 

selected to simplify the mathematics and to condense the length of this thesis. 
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Figure 3.6: Constraint spaces of each parallel subsystem within flexure system 

 

 Once all the system’s joint-constraint-topology matrices, [jct]ps1 through [jct]ps5, and their 

corresponding load magnitude vectors, yps1 through yps5, have been constructed, they can be used to 

calculate the freedom space of the system’s stage. To do this, imagine loading each of the system’s 

rigid bodies, labeled b1 through b4 in Fig. 3.6, with external wrench vectors, Wb1 through Wb4 

respectively. For the flexure system to be in static equilibrium, the compliant joints surrounding each 

of the system’s rigid bodies would need to resist their corresponding external load. In other words, the 

external loads imparted on each rigid body subtracted by the loads within their surrounding 

parallel-subsystem constraint spaces must equal zero according to 
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where the signs associated with the constraint spaces of each parallel subsystem are determined by the 

direction of the arrows established in the convention of the system’s graph shown in Fig. 3.7 where 

the edges are labeled Wcon,p1 through Wcon,p5. Just as Eq. (3.6) can be reformulated as Eq. (3.7) in 

section 3.1, Eq. (3.19) can also be reformulated according to 

 

 

Figure 3.7: Graphical representation of a system with edges as constraint spaces 
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   (3.20) 

where [CT] is called the system’s constraint-topology matrix and Y is a vector that contains the 

system’s load magnitude vectors, yps1 though yps5. Note that a system’s [CT] matrix contains as many 

rows as there are rigid bodies within the system multiplied by six and as many columns as the number 

of independent wrench vectors within each of the system’s compliant-joint constraint spaces summed 
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together. The sign of each joint-constraint-topology matrix within the system’s constraint-topology 

matrix is positive if its corresponding arrow in the graph of Fig. 3.7 points into the rigid body that 

corresponds with the row within which the join-constraint-topology matrix resides in the [CT] matrix. 

Otherwise, if the arrow points away from the rigid body, the sign is negative. It is most significant to 

note that the [CT] matrix defined in Eq. (3.20) is the transpose of the system’s incidence matrix 

defined in Eq. (3.8) with the system’s joint-constraint-topology matrices, [jct]ps1 through [jct]ps5, 

inserted within their respective columns. This observation is not coincidental to this example, but is 

true for all flexure systems. 

 The constraint space of any desired rigid body in a system can be calculated using the system’s 

constraint-topology matrix after at least one rigid body has been chosen as the system’s fixed ground. 

Suppose, for instance, we wished to calculate the constraint space of the system’s stage, b4, in the 

example of Fig. 3.6, where body b1 is the fixed ground. To do this, imagine only loading the body of 

interest, (i.e., the stage) with an external wrench vector, Wb4. To maintain static equilibrium, the 

grounded body, b1, would be loaded with an equal but opposite wrench vector Wb1=-Wb4 to keep it 

from moving. Since the other bodies within the system are not loaded, Wb2 and Wb3 in Eq. (3.20) are 

zero vectors. If we then eliminate the rows within Eq. (3.20) that do not correspond with those 

unloaded bodies, the resulting equation is  
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where [Bb2,b3] is called a rigid-body matrix that only contains the rows in the system’s 

constraint-topology matrix that corresponds with body b2 and b3 in the system, and Yb2,b3 is the null 

space of that particular rigid-body matrix. The number of independent vectors within that null space, 

M, is the number of independent load-magnitude combinations that could be imposed throughout the 

compliant joint topology of the system to keep bodies b2 and b3 in static equilibrium in response to 

the loaded body of interest. Thus, if another rigid-body matrix, [Bb4] is extracted from the row within 

the system’s constraint-topology matrix (i.e., Eq. (3.20)) that corresponds with the loaded body of 

interest (i.e., the stage b4) according to 

 

             000
434 pspsb jctjctB          (3.22) 

 

and this matrix is multiplied by all M of these independent vectors, Yb2,b3, another set of independent 

vectors are generated. If the resulting M vectors are linearly combined, the constraint space of the 

stage, Wcon,b4, is determined. Note from the last row’s corresponding equation in Eq. (3.20) that the 

load Wb4 applied to the stage must lie within the stage’s constraint space, Wcon,b4, for the system to 

achieve static equilibrium. This insight is further confirmed by the fact that the theory of this paper 
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models flexure elements as ideal constraints that can only impart loads in certain directions but not in 

others. Once the constraint space of the stage, Wcon,b4, is known, Eq. (2.7) can be used to calculate the 

stage’s freedom space, Tfre,b4, to complete the system’s mobility analysis. 

 The systematic constraint-space-based mobility analysis approach can thus be summarized 

according to the following steps: 

Step 1: Identify the constraint spaces of a system’s compliant or rigid joints. 

Step 2: Use these constraint spaces to create their corresponding joint-constraint-topology matrices 

(i.e., [jct]pse). 

Step 3: Construct the incidence matrix, [C], using a simplified graph of the system. 

Step 4: Construct the system’s constraint-topology matrix, [CT], by inserting the matrices of Step 2 

into their corresponding columns within the transpose of the matrix in Step 3. 

Step 5: Create a rigid-body matrix, [B], containing the rows of the [CT] matrix from Step 4 that 

correspond with the system’s bodies that are not the chosen ground and body of interest (usually the 

stage). 

Step 6: Find the M independent Y vectors that constitute the null space of the rigid-body matrix from 

Step 5, and then multiply all of these vectors with another rigid-body matrix, [Bbody-of-interest], containing 

the row of the [CT] matrix from Step 4 that corresponds with the body of interest. In short, the relation 

can be expressed as Wcon,stage = BY. 
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Step 7: Linearly combine the resulting M wrench vectors from Step 6 to generate the constraint space 

of the body of interest and then use Eq. (2.7) to calculate the body’s complementary freedom space. 

 

3.3 Constraint analysis of flexure systems 

This section introduces a new way to utilize the principles of section 3.1 and 3.2 to rapidly 

perform the constraint analysis of general flexure systems—including those that are interconnected 

hybrid. Constraint analysis is the process by which designers determine whether a flexure system is 

under-constrained or not and whether the system is over-constrained or exactly-constrained. Both of 

these constraint characteristics depend on which bodies within the system are chosen as the system’s 

stage, intermediate bodies, and ground. 

A system is under-constrained [2,38,51] if it possesses intermediate bodies that are not fully 

constrained (i.e., the intermediate bodies possess unconstrained DOFs) when the system’s chosen 

stage is held fixed with respect to its chosen ground. Under-constraint occurs when subsystem’s 

stacked in series possess redundant DOFs. Although an under-constrained system can typically 

achieve larger ranges of motion without yielding, such systems are prone to unwanted vibrations 

along directions that cannot be controlled by system actuators. 

A system is over-constrained [2,38,51] if it possess elements or subsystems that are redundant 

(i.e., they do the same job of constraining a particular DOF or set of DOFs as another element or 

subsystem within the system). A system is exactly-constrained if it is not over-constrained. Although 
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over-constrained systems can exhibit some beneficial characteristics (e.g., increased symmetry, 

thermal stability, stiffness, and load capacity), exactly-constrained systems are preferable for precision 

applications where repeatability is of greatest importance. 

A general system is not under-constrained if the number of independent twist vectors within the 

freedom space of its stage equals the number of system DOFs (i.e., N independent X vectors defined 

in Eq. (3.11) from section 3.1). If N is larger than this number, the system is under-constrained. The 

system in Fig. 3.5 is not under-constrained if b4 is chosen as its stage and b1 is chosen as its ground 

because the freedom space of b4 possesses three independent twist vectors and N=3 in the example 

system. Thus, if b4 is held fixed with respect to the ground b1, the system’s other rigid bodies are also 

unable to move. If, however, b3 is defined as the system’s new stage and b1 remains its ground, the 

system would be under-constrained because the freedom space of b3 only possesses one independent 

twist vector. Thus, if b3 is held fixed with respect to the ground b1, two other system DOFs will 

remain unconstrained allowing b2 and b4 to move in an uncontrolled way. Note that no rigid-body 

freedom space can ever possess more independent twist vectors than system DOFs (i.e., N) and N 

minus the number of independent twist vectors within the freedom space of the system’s chosen stage 

will be the number of system DOFs that are not properly constrained.      

 A general system is exactly-constrained if the number of independent wrench vectors within the 

constraint space of its stage equals the number of independent wrench vectors, M, within the null 

space, Y, of the rigid-body matrix defined in Eq. (3.21) from section 3.2 that contains the rows of the 
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system’s constraint-topology matrix that correspond with the system’s intermediate rigid bodies (i.e., 

not its stage and ground). If M is larger than the number of independent wrench vectors within the 

chosen stage’s constraint space, the system is over-constrained. The system in Fig. 3.5 is 

exactly-constrained if b4 is chosen as its stage and b1 is chosen as its ground because the constraint 

space of b4 possesses three independent wrench vectors and M=3 in the example system. If b3 is 

defined as the system’s new stage and b1 remains its ground, the system would still be 

exactly-constrained because the constraint space of b3 possesses five independent wrench vectors and 

the new system’s M would also be five. Note that no rigid-body constraint space can possess more 

independent wrench vectors than M and M minus the number of independent wrench vectors within 

the constraint space of the system’s chosen stage is the number of redundant constraints in the system. 
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CHAPTER 4 

 

Synthesis of Flexure Systems with Screw Algebra and Graph Theory 

 

 This chapter introduces a systematic synthesis approach of flexure systems of any configuration 

and complexity—including and especially interconnected hybrid flexure systems. The method is 

based on the screw and graph theory analysis method in chapter 3. Three case studies are provided to 

demonstrate the steps of the synthesis approach. 

 The synthesis approach is an extension of the analysis method introduced in the previous section. 

When performing analysis, the [FT] matrix is given, and the [X] matrix is solved for to find the 

motion of the entire system. Conversely, when performing synthesis, the [FT] matrix is the unknown 

to be solved for, and the information given is the desired output motion and the actuator input motion. 

The given information is interpreted as parts of the [FT] and [X] matrices, and then a [FT] compatible 

that satisfies the given design constraints is pieced together for. Three case studies are detailed to 

guide through the synthesis approach. 

 

4.1 Case study 1: Design of a transmission flexure system that doubles a rotation on the same 

axis 

 Suppose that in a Cartesian coordinates frame, a rotation about the z-axis is given as the input, 

and an output rotation about the same axis with twice the magnitude is desired. A six-step synthesis 

process as follows is used to design a flexure system that achieves this desired function: 
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 Step 1: Identify desired motion and design requirements. The desired motions are interpreted 

as twist vectors, where the input is  T00000  , and the output is  T002000  . No 

additional design requirements are present in this case study. 

 Step 2: Choose a Graph. The graph indicates the number of rigid bodies and flexure elements 

in the system and the manner that they are arranged. The graph in Fig. 4.1 is chosen for this case 

study, where the vertices are labeled be through b4, representing the rigid bodies in the system, and b1 

is the ground, b2 the input, and b4 is the output stage; the edges are labeled e1 through e5, 

representing the flexure elements in the system. The number of rigid bodies and flexure elements is 

thus decided when selecting the graph. 

 

 

Figure 4.1: A chosen system graph for a transmission flexure 

 

 Several rules of thumb are outlined and to be used as guidelines in the selection of a graph: 1) 

Select the simplest graph with as few elements as possible. Having the least number of rigid stages 
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and flexure elements reduces the complexity of the system, and thereby may reduce cost and improve 

manufacturability. 2) Select symmetric graphs if possible. Symmetry is often preferred as it may offer 

many advantages. A system cannot be symmetric if the graph itself is not symmetric as the numbers of 

rigid stages and flexure elements renders symmetry impossible. 3) In order to avoid under-constraint, 

identical freedom spaces or sub-freedom spaces of edges should be able to be found in separate loops. 

Identical freedom spaces or freedom subspaces in the same loop will cause solutions found later in the 

synthesis process to have equal and opposite magnitudes even if other bodies are held fixed resulting 

in rigid bodies being under-constrained. 

 For this case study, the input and output are rotations about the same axis, and therefore have the 

same freedom space. It is impossible to employ only one loop and at the same time keep the edges 

from having overlapping sub-freedom spaces, hence the graph in Fig. 4.1 is the simplest graph for the 

desired function in this case study. 

 Step 3: Construct the governing equation [FT][X] = 0. The exact forms of each 

individual [jft] matrix are unknown in this step, however their placements within [FT] are 

known from the chosen graph. For this case study, the graph in Fig. 4.1 yields: 
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where [jft]ei correspond to edge i, and their placement is determined by visual inspection of 

independent loops in the graph of Fig. 4.1. The number of column in the [X] matrix is the 

number of DOF in the system, which equals to 1 for this case study. The independent two 

loops selected in Eq. (4.1) are loop e1-e2-e5 and loop e3-e4-e5. Note that while selecting 

different loops will lead to the same mathematical solutions, but some loops may be easier to 

solve than others depending on the structure of the governing equation. 

 Step 4: Interpret the desired motion as components of the governing equation. In this case 

study, since e1 is the path between the ground and the input, and should have a freedom space that 

allows the input z-axis rotation, the input is interpreted as    T
e

jft 000100
1
 and x1 = 1. A 

path can be traced from the ground to the output through e1 and e3, in order to satisfy the output 

having twice the magnitude, a relation is obtained according to 

 

      T
ee

jftjft 0002003311
 xx         (4.2) 

 

which yields a possible solution set of    T
e

jft 000100
3
 and x3 = 1. 

 Step 5: Find possible solutions to the governing equation. Substitute [jft]e1, [jft]e3, x1 ,and x3 

into [FT] and [X] matrices into the governing equation and solve for compatible [jft] matrices for 

each edge of the graph in Fig. 4.1. For a general flexure system, as well as for this case study, there 

are many possible solutions in the design space. All possible designs can be evaluated and selected at 
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the designer’s discretion, based on criterions such as design constraints, manufacture capability and/or 

more. 

 For this case study, a pure translation in the x-direction is chosen at random as a design choice 

for e5 since it is simple to visualize and easy to implement. The motion can be expressed as 

   T
e

jft 001000
5
  with x5 remaining to be solved. Substituting [jft]e5 into Eq. (4.1), the loop 

through e1-e2-e5 is expressed according to 
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Infinite sets of solutions exists for [jft]e2 , x2 and x5, and the simplest solution set for Eq. (4.3) is 
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where d is an arbitrary distance. It can be seen from Eq. (4.4) that    T
e

djft 00100
2
 , x2 = 1, 

and x5 = d, the motion of this solution set is a rotation parallel to the z-axis with a coupled translation 
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in the x-direction. Decomposing the twist vector of [jft]e2 shows that the axis of rotation is parallel to 

the z-axis and located at distance of d to the positive x-direction from the coordinates frame origin. 

 Another solution to the governing equation can be obtained by adding a DOF to the vector space 

already spanned by the know twist vectors within the loop. One of the many possible solution set for 

[jft]e2 is 
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where x5 = d. Note that in the solution provided in Eq. (4.5) the additional DOF added to [jft]e2 is 

linearly independent to all other twist vectors within the loop, and therefore its associated magnitude 

can only be 0 in order to satisfy the governing equation of Eq. (4.1). The added DOF is locked up by 

the other flexure elements in the loop, and has no impact on the kinematics of the system. A different 

motion may have been added to [jft]e2 for a different solution set, and more motions can be added to 

[jft]e2 to obtain solution sets with higher DOF. Some examples are 

 



 

62 
 

  












































0

0

1

000

100

00

001

000

010

22
d

jft e x            (4.6) 

 

  















































0

0

0

1

0000

0100

000

0001

1000

0010

22
d

jft e x            (4.7) 

 

  



















































0

0

0

0

1

10000

01000

0000

00001

00100

00010

22
d

jft e x           (4.8) 

 

where x5 = d for all of the above solution sets. Each column of the [jft] matrices represents the motions 

allowed by the corresponding flexure element, for this case study [jft]e2 can have up to 5 DOFs as 

indicated in the solution set of Eq. (4.8). 

 Note that in the possible solutions for [jft]e2, the freedom space of the solution set with the least 

DOF is a subspace of the freedom spaces all other solution sets, indicating that the solution with the 

least DOF contains the motions that all other solutions must have. By using the relation of Eq. (2.7), 

constraint spaces corresponding to each freedom space of the solution sets can be found, and the 
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constraint space of the solution set with the least DOC is a subspace of the constraint spaces of all 

other solution sets, indicating that the solution with the least DOC and hence most DOF contains the 

constraining actions that all other solution sets must have. When selecting from one of the possible 

solutions, designers may first identify solutions with the least and most DOF, and search for solutions 

containing the necessary freedom and constraint spaces in the FACT library. Also note that since [jft]e5 

is a design choice made at the beginning of step 5 instead of a design requirement, the DOFs of [jft]e2 

and [jft]e5 can be interchanged and still satisfy Eq. (4.1), resulting in different designs. Extra DOFs 

may also be added to [jft]e1 as long as no redundant DOF is created after solving the governing 

equation. For this case study, interchanging or adding DOFs are unnecessary. 

 With one of the loops in the flexure system solved, to find solutions for remaining unknowns in 

the flexure system, substitute [jft]e5 and x5 into loop e3-e4-e5 and we have 
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The same process can be applied to find possible solution sets for [jft]e4 and x4, where the possible 

solution set with the least DOF is      10010044

T

e
djft x , and the solution set with the 

most DOF is 
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 For this case study, both [jft]e2 and [jft]e4 needs to allow at least one translation and at least 

provide one constraining force. Solution sets chosen for [jft]e2 and [jft]e4 are given as follows 
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These solutions are chosen because they can be easily implemented as blade flexures. 

 Step 6: Interpret joint freedom topology matrices as flexure elements or flexure subsystems 

using FACT. With all [jft] and hence freedom space of the flexure elements determined, the flexure 
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system can now be built by interpreting the matrices into flexure elements using FACT. 

 The motion of [jft]e1 is a rotation about the z-axis, according to FACT the corresponding freedom 

space is a red line through the z-axis, and the constraint space is a set of blue planes intersecting at the 

z-axis, which can be achieved by a set of intersecting blade flexure as shown in Fig. 4.2. Likewise, 

[jft]e3 also indicates a rotation about the z-axis, and can also be achieved by a set of blade flexures 

intersecting the z-axis as shown in Fig. 4.3. The two subsystems of [jft]e1 and [jft]e3 are connected in  

 

Figure 4.2: Implementation of [jft]e1 of a 1 DOF transmission flexure system 
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Figure 4.3: Implementation of [jft]e3 of a 1 DOF transmission flexure system 

 

 

Figure 4.4: Placement of flexure for e1 and e3 of a 1 DOF transmission flexure system 
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a serial configuration as shown in Fig. 4.4. The motion of [jft]e5 is a pure translation in the x-direction, 

and according to FACT it has a constraint space of a set of parallel blue plane, which can be achieved 

by a set of parallel blade flexures as shown in Fig. 4.5. Finally, both of the constraint spaces of [jft]e2 

and [jft]e4 are a single blue plane, allowing two rotations and one translation, and can be achieved by a 

blade flexure placed in the position shown in Fig. 4.6 and Fig. 4.7. The placement of the flexures of 

e2, e4 and e5 connecting b1, b2, b3 and b4 is shown in Fig. 4.8. Connecting all the flexure subsystems, 

the complete flexure system is shown in Fig. 4.9. 

 Frequency modal analysis is performed with SOLIDWORKS to validate the design. The first 

natural frequency modeshape is as shown in Fig. 4.10. The FEA results confirm that the stage rotates 

twice as much as the input body. 

 

 

 

Figure 4.5: Implementation of [jft]e5 of a 1 DOF transmission flexure system 
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Figure 4.6: Implementation of [jft]e2 of a 1 DOF transmission flexure system 

 

 

Figure 4.7: Implementation of [jft]e4 of a 1 DOF transmission flexure system 
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Figure 4.8: Placement of the flexures of e2, e4 and e5 of a 1 DOF transmission flexure system 

 

Figure 4.9: Design of a 1 DOF transmission flexure system 
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Figure 4.10: First natural frequency modeshape of a 1 DOF transmission flexure system 

 

 Alternative design: Suppose a system with the same transmission function but more planes of 

symmetry is desired. To synthesize such a system, the same graph in Fig 4.1 is chosen since it is the 

simplest graph and step one through four is repeated. Different design choices than the previous 

design are made at the start of step 5, and different set of possible solutions are obtained and shown in 

table 4.1. Interpreting the twist vectors, [jft]e1 and [jft]e3 are rotations about the z-axis same as the 

previous design, and ide achieved by sets of blade flexures intersecting at the z-axis shown in Fig. 

4.11 and Fig. 4.12. Also the same as the previous design, the flexures of e1 and e3 are connected in 

serial as shown in Fig. 4.13. The two rotations and one translation of [jft]e2 is achieved by 6 wire 

flexures linearly combining their constraining action into the a blue plane and implemented as a blade 

flexure as shown in Fig. 4.14. According to FACT, [jft]e4 and [jft]e5 are implemented as two sets of  
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Edge Joint freedom topology matrix [jft]ei Magnitude matrix xi 
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Table 4.1: Joint freedom topology matrices for a 1 DOF transmission flexure system 

wire flexures arranged to form two separate circular hyperboloid centered around the z-axis as shown 
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in Fig. 4.15 and Fig. 4.16, where each set of circular hyperboloid allows three screw motion DOFs, 

represented by green lines, listed in table 4.1. Note that in table 4.1, only the twist vectors in the first 

column of [jft]e4 and [jft]e5 has a non-zero magnitude, and they are the screw motions allowed by the 

system in this design, the rest of the screws are inactive for this example. The placement of the 

flexures of e2, e4 and e5 is shown in Fig. 4.17. The complete design is shown in Fig. 4.18. 

 Frequency modal analysis is performed with SOLIDWORKS to validate the design. The first 

natural frequency modeshape is as shown in Fig. 4.19. The FEA results confirm that the stage rotates 

twice as much as the input body.  

 

Figure 4.11 Implementation of [jft]e1 of a 1 DOF transmission flexure system 
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Figure 4.12 Implementation of [jft]e3 of a 1 DOF transmission flexure system 

 

Figure 4.13: Placement of the flexures for e1 and e3 of a 1 DOF transmission flexure system 
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Figure 4.14 Implementation of [jft]e2 of a transmission flexure system 

 

 

 

Figure 4.15 Implementation of [jft]e5 of a transmission flexure system 
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Figure 4.16 Implementation of [jft]e4 of a transmission flexure system 

 

 

Figure 4.17: Placement of flexures of e2, e4 and e5 of a transmission flexure system 
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Figure 4.18: Design of a 1 DOF transmission flexure system 

 

Figure 4.19: First natural frequency modeshape of a 1 DOF transmission flexure system 
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4.2 Case study 2: Design of a transmission flexure system that doubles three DOFs of motion 

 Suppose that in a similar Cartesian coordinates frame, three DOFs of motion are given as the 

input, a rotation parallel to the z-axis, a translation in the x-direction, and a translation in the 

y-direction. The desired outputs are the same three directions of motion with twice the magnitude. A 

flexure system that achieves the described function can also be designed using the same six-step 

approach introduced in this section. 

 Step 1: Identify desired motion and design requirements. The desired input and output 

motions are classified as 3 DOF type 2 in the FACT library in Fig. 1.3. The twist vectors for the input 

are interpreted according to 
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and twist vectors for the output interpreted according to 
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 Step 2: Choose a Graph. The same graph shown in Fig. 4.1 is chosen for this case study, where 

b1 is the ground, b2 the input, and b4 is the output stage. 

 Step 3: Construct the governing equation [FT][X] = 0. The graph chosen in Fig. 4.1 yields the 

governing equation of: 
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where [jft]ei correspond to edge i, and their placement is determined by visual inspection of 

independent loops in the graph of Fig. 4.1. The number of column in the [X] matrix is the 

number of DOF in the system, which equals to 3 to achieve the transmission of all three 

DOFs. 

 Step 4: Interpret the desired motion as components of the governing equation. Similar to 

the previous case study, the path from the ground to input goes through edge e1 of the graph in Fig. 

4.1. To allow the input motion, a solution set for the flexure of e1 is 
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A path can be traced from the ground to the output through e1 and e3, in order to satisfy the output 

having twice the magnitude, the following relation is obtained: 
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which yields the solution set of the flexures of e3 to be 
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 Step 5: Find possible solutions to the governing equation. Substitute [jft]e1, [jft]e3, x1 ,and x3 

into [FT] and [X] matrices into the governing equation, the set of chosen solutions are shown in Table. 

4.2. 

 Step 6: Interpret joint freedom topology matrices as flexure elements or flexure subsystems 

using FACT. According to FACT, the two translations and one rotation of both [jft]e1 and [jft]e3 can be 

implemented with wire flexures parallel to each other but not all occupying the same plane as shown  

Edge Joint freedom topology matrix [jft]ei Magnitude matrix xi 
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Table 4.2: Joint freedom topology matrices for the a 3 DOF transmission flexure system 

in Fig. 4.20 and Fig. 4.21. The motion of [jft]e2 is achieved by 6 wire flexures linearly combining into 

the a constraint space same as the 1 DOF design previously shown in Fig. 4.14. The motion of both 
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[jft]e4 and [jft]e5 can be achieved by two sets of wire flexures arranged to form two separate circular 

hyperboloids the same as the 1 DOF design previously shown in Fig. 4.15 and Fig. 4.16. Connecting 

all the subsystems, the final flexure design is shown in Fig. 4.22. 

 Frequency modal analysis is performed with SOLIDWORKS to validate the design. The first 

three natural frequency modeshapes are as shown in Fig. 4.23 to Fig. 4.25. The FEA results confirm 

that the output body b4 moves twice as much as the input body b2 for all first three modeshapes. 

 

 

Figure 4.20 Implementation of [jft]e1 of a 3 DOF transmission flexure system 
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Figure 4.21 Implementation of [jft]e3 of a 3 DOF transmission flexure system 

 

 

Figure 4.22: Design of a 3 DOF transmission flexure system 
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Figure 4.23: First natural frequency modeshape of a 3 DOF transmission flexure system 

   

Figure 4.24: Second natural frequency modeshape of a 3 DOF transmission flexure system 
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Figure 4.25: Third natural frequency modeshape of a 3 DOF transmission flexure system 

 

4.3 Case study 3: Design of a negative Poisson’s ratio microarchitectured material 

 Suppose a negative Poisson’s microarchitectured material lattice is desired. Negative Poisson’s 

ratio is achieved for a unit cell if one surface of the unit cell is pushed in or pulled out, all other 

surfaces of the unit cell should contract inwards or expands outwards respectively. The motion of a 

negative Poisson’s ratio unit cell can therefore be considered as a flexure transmission system with an 

input of a pure translation and an output of a pure translation in the desired direction. A flexure system 

with the aforementioned input and output motion can be synthesized with the same method introduced 

in previous sections of this chapter. 

 For this case study, a highly symmetric design is preferred, and the design process is simplified 

by only designing a part of the system, and then the partially-completed system is mirrored about the 
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various planes of symmetry into a full design. The same six-step synthesis process for the partial 

system is presented as follows: 

 Step 1: Identify desired motion and design requirements. A coordinates system is set at the 

center of the unit cell, the input then can be interpreted as a translation in the positive x-direction, i.e.

 Tv 00000 , and the output can be interpreted as a translation in the positive y-direction, i.e.

 Tv 00000 . In addition to the desired motions, a highly symmetric design is preferred, and 

should be kept in mind when selecting the system graph and flexure elements later in the synthesis 

process. 

 

Figure 4.26: System graph for partial design of a negative Poisson’s ratio microarchitectured material 

 

 Step 2: Choose a Graph. The graph chosen is shown in Fig.4.26. It is the simplest graph 

containing only the fixed ground b1, the input b2, and the output b3. The graph is symmetric about b1, 

allowing a symmetric design. 

 Step 3: Construct the governing equation [FT][X] = 0. The graph chosen in Fig. 4.26 yields 

the governing equation of: 
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where [jft]ei correspond to edge i, and the number of column in the [X] matrix is one since the 

system is of 1 DOF. 

 Step 4: Interpret the desired motion as components of the governing equation. The input 

body is connected directly to the ground through e1, for the desired motion identified in step one, the 

simplest interpretation of e1 is    T
e

jft 001000
1
 and x1 = 1. Likewise, since the output is 

directly to the ground through e3, and the simplest interpretation of e1 is    T
e

jft 010000
1


and x3 = 1. 

 Step 5: Find possible solutions to the governing equation. Substitute [jft]e1, [jft]e3, x1 ,and x3 

into [FT] and [X] matrices into the governing equation and solve for a compatible [jft]e2. The solution 

set chosen solution for e2 is defined according to 
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The solution is selected for being able to be implemented as a symmetric design. 
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 Step 6: Interpret joint freedom topology matrices as flexure elements or flexure subsystems 

using FACT. For this example, the freedom and constraint space of [jft]e1 and [jft]e3 are a black arrow 

and sets of parallel blue planes respectively, and can be achieved by sets of parallel blade flexures as 

shown in Fig. 4.27 and Fig. 4.28. The freedom and constraint space for [jft]e2 is of 4 DOF type 2 in the 

FACT library of Fig. 1.3. The freedom space allows two rotational and two translational DOFs, and 

the constraint space contains a plane of parallel blue lines. The flexure subsystem for e2 implemented 

as a set of two bent blades shown in Fig. 4.29, which is kinematically equivalent to two wire flexures 

located at the fold of the blade flexures. Connecting all the flexure elements, the transmission flexure 

is as shown in Fig. 4.30. 

  

 

Figure 4.27 Implementation of [jft]e1 of a negative Poisson’s ratio microarchitectured material 
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Figure 4.28 Implementation of [jft]e3 of a negative Poisson’s ratio microarchitectured material 

 

 

 

Figure 4.29 Implementation of [jft]e2 of a negative Poisson’s ratio microarchitectured material 
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Figure 4.30 A corner of a negative Poisson’s ratio microarchitectured material 

 

 

Figure 4.31 Cross-section of a negative Poisson’s ratio microarchitectured material 
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Figure 4.32 System graph of cross-section of a negative Poisson’s ratio microarchitectured material 

 

 Using the partial design to construct the full design, the 2D cross-section of the entire negative 

Poisson’s ratio microarchitectured material design is shown in Fig. 4.31. The graph for the 2D 

cross-section is as shown in Fig. 4.32, and its corresponding [FT] is 
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 The complete 3D design is as shown in Fig. 4.33. The graph for the 3D design is as shown in Fig. 

4.34, and its corresponding [FT] is: 
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                 (4.22) 

Even though the more complex graphs and [FT] seemed intimidating, the same synthesis process can 

still be applied to obtain the same design. 

 Frequency modal analysis is performed with SOLIDWORKS to validate the design. The first 

natural frequency modeshapes of the 2D cross section is shown in Fig. 4.35, and the first natural 

frequency modeshapes of the complete 3D design is shown in Fig. 4.36. 

 

 

Figure 4.33 Design of a negative Poisson’s ratio microarchitectured material 
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Figure 4.34 System graph of a negative Poisson’s ratio microarchitectured material 

 

Figure 4.35 First natural frequency modeshape of the cross section of a negative Poisson’s ratio 

microarchitectured material 
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Figure 4.36 First natural frequency modeshape of a negative Poisson’s ratio microarchitectured 

material 

  

Alternative design: Here two alternative designs of the negative Poisson’s ratio microarchitectured 

material are presented. The same synthesis process is applied, and a transmission flexure is first 

designed as a corner of the microarchitectured material. The graph chosen for the transmission flexure 

is shown in Fig. 4.37, defining the governing equation according to  
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 The chosen solution set for Eq. (4.23) is shown in Table 4.3. The 2D cross-sections and one of 

the full 3D design is shown in Fig. 4.38 and Fig. 4.39. The 2D cross section and the full 3D design of 

the other design is shown in Fig. 4.40 and Fig. 4.41. Note that even though the two designs seems 

different, the flexure elements share the same [jft]s. 

 

 

Figure 4.37 System graph for partial design of a negative Poisson’s ratio microarchitectured material 
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Table 4.3: Joint freedom topology matrices for a negative Poisson’s ratio microarchitectured material 
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Figure 4.38 Cross section of a negative Poisson’s ratio microarchitectured material 

 

 

 

Figure 4.39 Design of a negative Poisson’s ratio microarchitectured material 
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Figure 4.40 Cross section of a negative Poisson’s ratio microarchitectured material 

 

 

Figure 4.41 Design of a negative Poisson’s ratio microarchitectured material 
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CHAPTER 5 

 

Conclusion 

 

 In this thesis, systematic steps for both analysis and synthesis have been provided. The theory 

underlying these steps utilizes screw algebra, graph theory, and simple linear matrix-based 

calculations to rapidly determine the freedom spaces of thousands of rigid bodies that are joined 

together by compliant joints of any geometry. 

 The analysis approach enables automated mobility and constraint analysis of general flexure 

systems of any complexity including those classified as interconnected hybrid flexure systems. One 

can program a computer tool to automatically identify flexure elements and their constraint lines in a 

CAD model of a flexure system, then use the method developed in this thesis to solve for the freedom 

and constraint space of a designated body of the said flexure system. Principles of under-constraint 

and over-constraint are revised in the context of interconnected hybrid flexure systems and a case 

study is performed to demonstrate the theory’s utility. 

 The synthesis approach enables the design of flexure systems of any complexity including those 

classified as interconnected hybrid flexure systems that cannot be designed via traditional freedom 

and constraint topology methods, allowing rapid conceptual design of many complex flexure systems 

such as flexure transmissions and microarchitectured materials. 

 The research in this work also laid a foundation to possible future advancements of an 

automated tool that allows more efficient enumeration of general flexure systems of any complexity. 
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