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Coherent Structure Phenomenain Drift Wave—Zonal Flow Turbulence
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(Received 24 May 1999)

Zonal flows are azimuthally symmetric plasma potential perturbations spontaneously generated from
small-scale drift-wave fluctuations via the action of Reynolds stresses. We show that, after initia linear
growth, zonal flows can undergo further nonlinear evolution leading to the formation of long-lived
coherent structures which consist of self-bound wave packets supporting stationary shear layers. Such
coherent zonal flow structures constitute dynamical paradigms for intermittency in drift-wave turbulence
that manifests itself by the intermittent distribution of regions with a reduced level of anomalous

transport.

PACS numbers: 52.35.Mw, 52.35.Ra, 52.55.Dy

Generation of zonal flows by drift wavesin plasmas and
the analogous Rossby waves in geostrophic fluids is often
observed, both in nature and in numerical simulations
[1-3] (see dso references in [2]). [We define a zonal
flow as a poloidal and toroidally symmetric (g, = go =
0) potential perturbation with a finite radial scale ¢!
significantly larger than the scale of the underlying small-
scale turbulence, ¢, < k,, where q is the wave vector
for the large-scale perturbations; k is the wave vector
of the background small-scale turbulence; r, 6, and z
are the radia, poloidal, and toroidal directions of a
straight cylindrical tokamak.] Already, earlier numerical
simulations of drift-wave turbulence in a tokamak plasma
[4—7] indicated the presence of large-scale components of
the spectrum which were later identified as zonal flows.
Over the past few years, it has been redized [8,9,10]
that zonal flows play a maor role in controlling the
level of anomalous transport due to drift-wave turbulence
in magnetic confinement systems. Recent advances in
numerical simulations of tokamak plasmas [11] have
unambiguously demonstrated that a certain level of E X
B flow (in the poloidal direction) triggers a transition to
a state with greatly reduced anomalous transport. The
suppression of the turbulence by the sheared E X B
flow theoretically investigated in Refs. [12—14] has also
been confirmed in experiment [15]. These works indicate
that zona flows play a critical role in the dynamics of
drift-wave turbulence and its self-regulation [10]. Further
development of the theory of zonal flows isimperative for
the understanding of the complex dynamics of transport
processes in a tokamak. Because of a similarity between
equations for drift waves in plasma and Rossby waves in
rotating atmospheres, development of the theory of zonal
flows is al'so important in the geophysics context [3].

The underlying mechanism for zona flow growth in
drift-wave turbulenceistheinverse cascade process|[1,16],
i.e., the energy transfer to large scales. As a result, the
effects of small-scale fluctuations appear in the large scale
not as turbulent damping but as negative viscosity [17—20]
that gives rise to the zonal flow instability. In this paper,
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we study the nonlinear evolution of zona flows and the
underlying small-scale turbulence. Until now, virtually all
theoretical analyses of zonal flows have been perturbative
and statistical in approach, thus precluding the treatment
of coherent structure phenomena. However, as the am-
plitude of the zonal flows increases, a variety of nonlinear
phenomena can occur, such as wave breaking, wave packet
trapping, etc. We investigate such phenomena by demon-
strating that finite amplitude shear flow perturbations can
propagate radially and form kink-type structures describ-
ing transitions between two different values of the zonal
flow velocity. (These structures are similar to kink soli-
tons of Bloch waves for the magnetization vector in ferro-
magnetism.) On other hand, the small-scale turbulence is
also affected by the large-scale shear flow via arefraction
of the ray trgjectories for the wave-action density [10,21].
Thus, for a sufficiently large amplitude of the zona flow
perturbations, the wave packets may be trapped, so that sta-
tionary Bernstein-Greene-Kruskal (BGK)—type solutions
for the wave quanta density can be realized. We quan-
titatively characterize such self-trapped wave packets and
their stability.

We consider zonal flows dynamics within a simple
model of drift-wave turbulence described by the equa-
tion [22]

ad ed ed
<8t * Vo V) . VYV,

Jd ~ e
p3<5 +V0-V+VE-V>ViT‘f=o. D
Here, pf = Tg/m,wfi is the ion-sound Larmor radius,
V. = 6cT, /eBoL, isthe electron diamagnetic drift veloc-
ity, and L,, isthe characteristic length scale of plasmainho-
mogeneity. The electrostatic potential ¢ isrepresented as
asum of fluctuating ¢» and mean ¢ quantities, Vo = cb X
Vé /By, Vi = cb X V¢ /By. The large-scale plasma
flow V, varies on a longer time scale compared to the
small-scale fluctuations, so that we may employ a multi-
ple scale expansion, thus assuming that there is a sufficient
spectral gap separating large-scale (X, 7) and small-scale

© 2000 The American Physical Society 491



VOLUME 84, NUMBER 3

PHYSICAL REVIEW LETTERS

17 JANUARY 2000

(x, t) motions. In some situations, the space scale separa
tion may not be so clearly pronounced [5,6]. However, the
small-scale components of the zonal flows with ¢, ~ &,
are in general less important, as shown in Refs. [10,14].

The model given by Eq. (1) is similar to the Hasegawa
Mima model except the different treatment of the mean
component ¢ (X, T') which does not enter the first term in
(1) because plasma density does not follow the Boltzmann
distribution for the zonal flow modes with ¢, = gy = 0.
Note that it is the total electrostatic potential ¢ that enters
the last term in (2).

Averaging (1) over the magnetic surface and over fast
small scales, we obtain the evolution equation for the
mean flow:

9 -
ﬁVisb:——b Vo X VVid — yVié

= —Vz(VMf’Vad)) - vVig, ()

where the last term describes the flow damping due to
plasma collisions [23]. We assume that the mean flow is
one dimensiona ¢ (r, T), so that V4 — 0, while the small-
scale fluctuations are two dimensional, ¢ = ¢(r, 6).

Calculation of the mean quantity V,¢Vy¢ is most
conveniently done by employing the kinetic equation for
the wave action [10,19,21,24]:

B_M + E)a)k . aNk aa)k aNk

a1 ok ox  ox ok 0O

where Ny = F/w} o (1 + k% p?)?|pi|? is the adiabatic
action invariant [22], E is the wave energy, and w; =
koVo + w,ﬂ = koVo + koV./(1 + kipz) is the wave
frequency. Notethat it isthe local frequency wi (without
the Doppler shift) that enters the action invariant. We
take kg = const for azimuthally symmetric flows.

The instability of the zona flow can be obtained
by linearizing Egs. (2) and (3) for small perturbations
(Ny, ) ~ exp(—iQT + igr); g = g, = —id/dr isthe
radial wave vector of the large-scale perturbation. The
instability is related to the in-phase (resonant) part of Ny
which is calculated from (3):
AN,

ok,
Here, R(Q,q,Awk) =i/(Q — gV, + iAwy) is the re-
sponse function, and A w, is the nonlinear broadening in-
crement, V, = dw/dk.. Inthe weskly nonlinear regime
R(Q,q,Awy) — w8(Q — qV,). For the wide spectrum
of fluctuations, one obtains R({), g, Awy) — 1/Aw;.

Using (4) in (2), one finds the growth rate y = ¢’D,,
of the zonal flow instability [11]:

b _<L>2f R(Q, g, Awp)kik, 9N, ©)

" By (1 + kip2? ok,
Note that the condition for growth is k,dN,/dk, < 0,
which is typicaly satisfied in drift-wave turbulence.
Equation (5) describes an initial (linear) stage of zonal
flow growth due to the resonant interaction. For typical
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N[ = Awy). (4)

tokamak parameters () < q - dwy/0k, so that the non-
~ (1 .
resonant response N,E ! from ) is

- (1) dwi )l J
Ny = . 6
¢ < ok, ok, ©

As the amplitude of the zonal flow increases, nonlinear
effects become important. The nonlinear response can be
determined to the next order:

2

oNe 1 2<awk>1 9 Kawk)laNo}

ar AL ok, ) ok, L\ ok, ] ok, |’
- ) 0) (7

Substituting Ny = N{ + N, + Ny into (2), we

obtain the nonlinear equation for the evolution of the
zonal flow:

ERE 92

V —_ —_
arar 0T U2V

92 93

— b5V, Ve = =Dy 5 Vo.

€S
The u parameter has a meaning of the radial propagation
velocity and is defined by

2 Vo)~ 'kgk,
u=<i> (V)™ "kgk, 9N 2 ©)
By (1 + k1 p2)? ok,
The nonlinear term 4 is
1 2 Vo) kik,
b:_<i> (g) 20 6[(V)18N0} k
2 \By (1 + k1p2)? ok,
(10)

Cooperative effects of wave motion, wave steepening,
and instability create a possibility of stationary or moving
“switching” wave (kink soliton) which is atransition layer
between two different values of the mean flow. The
simplest solution of this type can be obtained from (8)
by neglecting the time dependent term on the left. Then
(8) can be integrated twice to obtain

d
uVo + bV¢ = D,, — Vo + C. (11)
r

The integration constant C is determined from the bound-
ary conditions Vo — V;, V§ = 0, for r — —o, and Vy —
Vs, V§ = 0, for r — . From (11) we find

V= E[V] + Vo + (Vi = Vo)tanh(=r/5)],  (12)

where § = —2D,,./b(Vy — V,). The values of V; and
V, are related to the coefficients u and » in an obvious
way. One can simply generalize this result for a moving
structure in the form V(r — upt), leading to a one-
parameter family of solutions.

It follows from (8) that, in general, zonal flows are not
purely stationary but radially moving structures. Their
radial velocity given by EqQ. (9) is determined by the
value of the radia group velocity as well as by the
spectral density of background fluctuations. A simple
estimate of u from (9) shows that u is of the order
of the drift velocity, u = |kg/k,|ledr/T.|*v?./ Vs =
vr.ps/L, = V.. For the unstable case, k,dNy/dk, < 0,
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the radial velocity is opposite to the direction of the
group velocity V,., and inversely proportional to it in
amplitude. [Note that our eguation is derived for the
slow evolving zonal flows with a characteristic frequency
Q which satisfies the inequdity ()} < q - V,, so the
limit 'V, — 0 is not encompassed by expression (9).]
This simple analysis demonstrates the self-organization
properties of the drift wave—zona flow system, which
lead to the formation of propagating shear layer “domain
walls’ between regions of constant flow velocity.

The development of the negative diffusion instability
and nonlinear wave breaking sometimes leads to finite-
time singularities, as reported in [25]. The development
of such singularities may be prevented by nonlinearities
[similar to that in Eqg. (8)] and by higher order diffusive
terms which limit the region of unstable ¢. Higher order
diffusive terms (e.g., fourth order hyperviscosity) are ob-
tained from higher orders of the two-scale expansion [20]
and from higher order moments responsible for wave-
particle (Landau) interactions effects [7]. The nonlinear
Eq. (8) with the fourth order derivative term becomes a
Kuramoto-Sivashinskii-type equation, which is a typical
model for pattern formation in unstable media [26].

Another class of stationary solutions for the system
of Egs. (2) and (3) can be obtained by exploiting its
analogy with the collisionless Vlasov equation and the self-
gravitating systems [27]. These strongly nonlinear solu-
tions have properties akin to BGK modes of the Vlasov
equation and occur due to the reflection and trapping of
wave packets by zonal flows[22,28]. Asaresult, the dis-
tribution function of the wave-action density is modified
toward amarginal equilibrium state for the zonal flow, i.e.,
the state with no net growth. As with BGK solutions of
the Vlasov-Poisson system, there is an infinity of such so-
lutions. To thisend, we adopt the methodology of Dupree
[28,29] to smply characterize stable, localized equilibria
which are “Jeans marginal” states [27], i.e., states which
marginally stable to zona flow instability. The central
idea of such equilibria is an existence of a unique, self-
supported scale, namely, the Jeans length [27]. By using
a box approximation to the packet’s quanta density distri-
bution (i.e., action density), the packet intensity, size, dis-
persion, and speed may be self-consistently related by an
analytically derived marginal stability criterion.

The box approximation for the wave-action density al-
lows us to give simple quantitative relations. Within this
approach, the action density is Ny = Ny + N(kg)W(k —
kr0,Ak,), where W(k — k,0,Ak,) is a “box” function
equal to unity for |k, — k, ol < Ak,/2 and equal to zero
otherwise. Then, the gradient of the action density is

ON,  oNy -
= 2% 5[k, — (kro — Ak, /2
ok, ok, N(kg){6[k (ky0 k./2)]

- 6[kr - (kr,() + Akr/z)]} 5
(13)
where k, o is the wave packet or caviton location, and Ak,
is the bump or hole width. The dispersion Eq. (5) for the

instability of zonal flow perturbations has the form

N, i
Q=—“fdk[dk,k2k, )
R B 0% 9k, Q — qV, + ihwy

(14)

In the marginal state we set Re() — 0 and include the
effect of the damping of the zonal flow vy, due to ion-
ion collisions [9,10], ImQ) = —v,, so that the dispersion
eguation takes the form

oN, 1
2.2 2 k
= - dky | dk, k}k, .
i 1 CS/ Hf 07 9k, —qV, + iAwy
(15
Introducing the response function
€lg) = vya + qchf dkg]dk, kak,
IN A
: 2k (16)

% V2 + Al

which describes the linear response of zona flow to the
self-bound packet, and taking N(kg) = 8(kg — kq) for
simplicity, we obtain, from (15),

e(q) = —q*ciky okroN (ko)
1
Ak, /2) + iAwy
1
T TVilbo + Ak/2) © iAwk] (10
We approximated k, = k. except in the argument of
the group velocity V, = V,(k, £ Ak./2). After some
simple algebra, Eq. (17) becomes
e(q) = (]chkz,okr,oﬁ
qAk.V,
[(—qu + iAwp)?* — Ak}q?ViE/4

dl
_qvg (kr,() -

} . (18)

This equation relates the amplitude of the bump/hole N
to the wave vector ¢ for the marginal equilibrium states.
For a broad fluctuation spectrum, |gV,| < [Awyl, and
Eq. (18) reads

N
Aw; + AK}qPVE /4 = ~@ q’cikg okro(gAk, V).
(19)

The dependence on ¢ here is somewhat analogous to
the speed-amplitude relation familiar from soliton theory.
Taking into account that V, < 0 here, the self-trapping
condition is N > 0 for e(g) > 0, and N < 0 for e(q) <
0. For a given sign of e(g), either N >0 or N <0
is selected. Thus the spectrum of the self-trapped wave
packet should exhibit definite skewness, depending on
radial scale and the scaling of the background spectrum.

Note that effects of the dispersion (Ak,) and decorre-
lation (Awy) add quadratically in Eq. (19). This is not
surprising, as turbulent motions are a natural source of
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support against self-binding and collapse in self-attracting
media. It isindeed interesting to note that structured so-
lutions persist in the presence of strong dissipation, such
as that due to eddy decorrelation Aw; and collisional
flow damping .

We have shown in this paper that the condensation of
drift waves onto the long wave-length region, a process
which isinitially described by the negative viscosity insta-
bility for the long wavelength component, further leads to
the nucleation of large-scale coherent structures. These
structures occur both in the large-scale component [as
given by Eq. (11)] and in the small-scale background tur-
bulence [as described by Eq. (19)]. The combined effects
of the nonlinearity and radia motion cause formations
of sharp moving transition fronts switching between two
different values of the mean plasma velocity. Similar
structures were aso observed in numerical simulations in
[4,25]. These coherent structures are consistent with a sce-
nario of intermittent regions of strong shear that may be
an underlying cause of the transport barriers in the tem-
poral L — H dynamics [30] and may give rise to struc-
tured, spatialy intermittent behavior in generic drift-wave
turbulence. Formation of the sharp transition regionsisin
general agreement with experimental observations of the
zonal flow profiles in a number of geostrophic fluids [2].
The picture of localized propagating fronts removing the
“supercritical” perturbation from the growth zone is also
similar to the avalanche concept from self-organized criti-
cality [31]. Itisinteresting to note that the nonlinear equa-
tion derived in the present paper for the kink structuresin
zonal flowsisthe Burgers equation, recently proposed as a
simplest prototype model for the avalanche transport event
[31]. Theother type of structuresin the background small-
scale turbulence are due to wave packet trapping and re-
flection. We have characterized the amplitude and the size
[Eq. (19)] of the localized wave packets that are in self-
consistent stationary equilibrium with zonal flows. These
structures should manifest themselves as bumps or holesin
the wave-action density spectrum. We have demonstrated
that such structures will persist in the presence of dissi-
pative processes such as ion-ion collisions and drift-wave
decorrelation. All told, both examples of structure self-
organization in drift wave—zonal flow systems constitute
dynamical paradigms for the origin of spatiotemporal in-
termittency in drift-wave turbulence.

This research was supported by NSERC Canada and
U.S. DOE Grant No. FG03-88ER53275.
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