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GAUSSIAN PROCESS MODELS FOR LARGE

SPATIO-TEMPORAL DATA WITH AN APPLICATION TO
PARTICULATE MATTER ANALYSIS

By Abhirup Datta and Sudipto Banerjee and Andrew O.
Finley and Nicholas A.S. Hamm and Martijn Schaap

University of Minnesota
University of California, Los Angeles

Michigan State University
University of Twente

TNO Built Environment and Geosciences

Particulate matter (PM) is a class of malicious environmental pol-
lutants known to cause detrimental effects on human health. Regula-
tory efforts aimed at curbing PM levels in different countries require
high resolution space-time maps that can identify red-flag regions ex-
ceeding statutory concentration limits. Continuous space-time Gaus-
sian Process (GP) models can potentially deliver uncertainty quan-
tified map predictions for PM levels. However, traditional GP based
approaches are thwarted by computational challenges posed by large
datasets. We construct a novel class of scalable Dynamic Nearest
Neighbor Gaussian Process (DNNGP) models that can provide a
sparse approximation to any non-separable and possibly non-stationary
spatio-temporal GP. The DNNGP can be used as a sparsity-inducing
prior for spatio-temporal random effects in any Bayesian hierarchical
model to deliver full posterior inference. Storage and memory require-
ments for a DNNGP model are linear in the size of the dataset thereby
delivering massive scalability without sacrificing inferential richness.
Extensive numerical studies reveal that the DNNGP provides sub-
stantially superior approximations to the underlying process than
low rank approximations. Finally, we use the DNNGP to analyze a
massive air quality dataset to substantially improve predictions of
PM levels across Europe in conjunction with the LOTOS-EUROS
chemistry transport models (CTMs).

1. Introduction. Recent years have witnessed considerable growth in
statistical modeling of large spatio-temporal datasets; see, for example, the
recent books by Gelfand et al. (2010), Cressie and Wikle (2011) and Baner-
jee, Carlin and Gelfand (2014) and the references therein for a variety of of

Keywords and phrases: Spatio-temporal Models, Scalable Gaussian Process, Nearest
Neighbors, Bayesian Inference, Markov Chain Monte Carlo, Environmental Pollutants
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2 A. DATTA ET AL.

methods and applications. An especially important domain of application for
such models is environmental public health, where analysts and researchers
seek map projections of ambient air pollutants measured at monitoring sta-
tions and understand the temporal variation in such maps. When inference
is sought at the same scale as the observed data, a popular approach is to
model the measurements as a time series of spatial processes. This approach
encompasses standard time series models with spatial covariance structures
(Pfeifer and Deutsch, 1980a,b; Stoffer, 1986) and dynamic models (Stroud,
Muller and Sanso, 2001; Gelfand, Banerjee and Gamerman, 2005) among
numerous other alternatives.

On the other hand, when inference is sought at arbitrary scales, possibly
finer than the observed data (e.g., interpolation over the entire spatial and
temporal domains), one constructs stochastic process models to capture de-
pendence using spatio-temporal covariance functions (see, e.g., Cressie and
Huang, 1999; Kyriakidis and Journel, 1999; Gneiting, 2002; Stein, 2005; All-
croft and Glasbey, 2003; Gneiting, Genton and Guttorp, 2007). In modeling
ambient air pollution data, it is now customary to meld observed measure-
ments with physical model outputs, where the latter can operate at much
finer scales. Inference, therefore, is increasingly being sought at arbitrary
resolutions using spatio-temporal process models (see, e.g., Gneiting and
Guttorp, 2010) . Henceforth, we focus upon this setting.

While the richness and flexibility of spatio-temporal process models are
indisputable, their computational feasibility and implementation pose major
challenges for large datasets. Model-based inference usually involves the in-
verse and determinant of an n× n spatio-temporal covariance matrix C(θ),
where n is the number of space-time coordinates at which the data have been
observed. This typically requires ∼ n3 floating point operations (flops) and
storage of the order of n2, which becomes prohibitive if n is large and C(θ)
has no exploitable structure. Approaches for modeling large covariance ma-
trices in purely spatial settings include low rank models (see, e.g., Higdon,
2001; Kammann and Wand, 2003; Stein, 2007, 2008; Banerjee et al., 2008;
Cressie and Johannesson, 2008; Crainiceanu, Diggle and Rowlingson, 2008;
Rasmussen and Williams, 2005; Finley, Banerjee and McRoberts, 2009), co-
variance tapering (see, e.g., Furrer, Genton and Nychka, 2006; Kaufman,
Scheverish and Nychka, 2008; Du, Zhang and Mandrekar, 2009; Shaby and
Ruppert, 2012), approximations using Gaussian Markov Random Fields
(GMRF) (see, e.g., Rue and Held, 2005), products of lower dimensional
conditional densities (Datta et al., 2015; Vecchia, 1988, 1992; Stein, Chi
and Welty, 2004), and composite likelihoods (e.g., Eidsvik et al., 2014). Ex-
tensions to spatio-temporal settings include Cressie, Shi and Kang (2010);
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Finley, Banerjee and Gelfand (2012); Katzfuss and Cressie (2012) who ex-
tend low-rank spatial processes in a dynamic spatio-temporal setup, Fasso,
Finazzi and Bevilacqua (2011) who uses tapering in a similar setup, and Xu,
Liang and Genton (2014) who opts for a GMRF approach. All these meth-
ods use dynamic models defined on fixed temporal lags and do not easily
lend themselves to continuous spatio-temporal domains.

Spatio-temporal process models for continuous space-time modeling of
large datasets have received relatively scant attention. Bevilacqua et al.
(2014) proposed a new class of ‘adaptive taper’ covariance functions for
continuous spatio-temporal setup, while Bai, Song and Raghunathan (2012)
used composite likelihoods in similar settings. Both these approaches, like
their spatial analogues, have focused upon constructing computationally at-
tractive likelihood approximations and have restricted inference only to pa-
rameter estimation. Estimating parameter uncertainty is usually based on
asymptotic results which may not hold for irregularly observed datasets.
Moreover, prediction at arbitrary locations and time points proceeds by im-
puting estimates into an interpolator derived from a different process model.
This may not reflect accurate estimates of predictive uncertainty and is un-
desirable.

Our current work offers a highly scalable spatio-temporal process for con-
tinuous space-time modeling. While several of the aforementioned spatial
approaches can, in theory, be extended to spatio-temporal models for large
datasets, we opt to expand upon the neighbor-based conditioning set ap-
proaches outlined in purely spatial contexts by Vecchia (1988), Stein, Chi
and Welty (2004) and Datta et al. (2015). We derive a scalable version of a
spatio-temporal process, which we call the Dynamic Nearest-Neighbor Gaus-
sian Process (DNNGP), using information from smaller sets of neighbors
over space and time. This approach offers several benefits. The DNNGP
is a well-defined spatio-temporal process whose realizations follow Gaus-
sian distributions with sparse precision matrices. Thus, the DNNGP can
act as a sparsity-inducing prior for spatio-temporal random effects in any
Bayesian hierarchical model and enables full posterior inference, which con-
siderably enhances its applicability. Moreover, it can be used with any spatio-
temporal covariance function, thereby accommodating non-separability and
non-stationarity. Being a process, importantly, allows the DNNGP to pro-
vide inference at arbitrary resolutions and, in particular, enables predictions
at new spatial locations and time points in posterior predictive fashion. The
DNNGP also delivers substantially superior approximation to the underlying
process than, for example, what would be obtained by low rank approxima-
tions (see, e.g, Stein, 2014, for problems with low-rank approximations).
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Finally, storage and memory requirements for a DNNGP model are linear
in the number of observations, so it efficiently scales up to massive datasets
without sacrificing richness and flexibility in modeling and inference.

The remainder of the article is organized as follows. In Section 2 we present
the details of a massive environmental pollutants dataset and the need for
a full Bayesian analysis. Section 3 elucidates a general framework for build-
ing scalable spatio-temporal processes and uses it to construct a sparsity-
inducing DNNGP over a spatio-temporal domain. Section 4 describes ef-
ficient schemes for fixed as well as adaptive neighbor selection, which are
used in the DNNGP. Section 5 details a Bayesian hierarchical model with
a DNNGP prior and its implementation using Markov Chain Monte Carlo
(MCMC) algorithms, including an algorithm for fast updates of the adap-
tive neighbor sets. Section 6 illustrates the performance of DNNGP using
simulated datasets. In Section 7 we present a detailed analysis of our envi-
ronmental pollutants dataset. We conclude the manuscript in Section 8 with
a brief review and pointers to future research.

2. PM10 pollution analysis. Exposure to airborne particulate matter
(PM) is known to increase human morbidity and mortality (Brunekreef and
Holgate, 2002; Loomis et al., 2013; Hoek et al., 2013). In response to these
and other health impact studies, regulatory agencies have instigated poli-
cies to monitor and regulate PM concentrations. For example, the European
Commission’s air quality standards limit PM10 (PM<10 µm in diameter)
concentrations to 50 µg m−3 average over 24 hours and 40 µg m−3 over a year
(European Commission, 2015). Measurements made with standard instru-
ments are considered authoritative; however, these observations are sparse
and accurate regional scale maps are needed for monitoring progress with
mitigation strategies and for monitoring compliance. Properly quantifying
uncertainty in predicted PM concentrations is therefore critical.

Substantial work has been aimed at developing regional scale chemistry
transport models (CTM) for use in generating such maps. CTM’s, however,
have been shown to systematically underestimate observed PM10 concen-
trations, due to lack of information and understanding about emissions and
formation pathways (Stern et al., 2008). Empirical regression (Brauer et al.,
2011) or geostatistical models (Lloyd and Atkinson, 2004) are an alterna-
tive to CTM’s for predicting continuous surfaces of PM10. Empirical models
may give accurate results, but are restricted to the conditions under which
they are developed (Manders, Schaap and Hoogerbrugge, 2009). Assimilat-
ing monitoring station observations and CTM output, with appropriate bias
adjustments, has been shown to provide improvements over using either data
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(a) April 3, 2009
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Fig 1: Observed PM10 µg m−3 for two example dates.

source alone (van de Kassteele and Stein, 2006; Denby et al., 2008; Can-
diani et al., 2013; Hamm et al., 2015). In such setting, the CTM output
enters as a model covariate and the measured station observations are the
response. In addition to delivering more informed and realistic maps, analy-
ses conducted using the models detailed in Section 5 can provide estimates of
spatial and temporal dependence not accounted for by the CTM and hence
provide insights useful for improving the transport models.

Our focus was on development and illustration of continuous space-time
process models able to deliver map predictions and forecasts for PM10 and
similar pollutants using sparse monitoring networks and CTM output. We
coupled observed PM10 measurements across central Europe with corre-
sponding output from the LOTOS-EUROS (Schaap et al., 2008) CTM. In-
ferential objectives included: i) delivering continuous maps of PM10 with
associated uncertainty; ii) producing statistically valid forecast maps given
CTM projections, and; iii) developing inference about space and time resid-
ual structure, i.e., space and time lags, that can help identify processes that
are missing in the CTM. The study area and dataset are the same as those
used by Hamm et al. (2015) and the reader is referred to that paper for more
background information. Note, the current paper works with a 2-year time
series, whereas Hamm et al. (2015) focused on daily analysis of a limited
number of pollution events.

2.1. Study area. The study was mainland European countries with a
substantial number of available PM10 observations. The countries included
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were Portugal, Spain, Italy, France, Switzerland, Belgium, The Netherlands,
Germany, Denmark, Austria, Poland, The Czech Republic, Slovakia and
Slovenia. All data were projected to the European Terrestrial Reference
System 1989 (ETRS) Lambert Azimuthal Equal-Area (LAEA) projection
which gives a coordinate reference system for the whole of Europe.

2.2. Observed measurements. Air quality observations for the study area
were drawn from the Airbase (Air quality database)1. Daily PM10 concentra-
tions were extracted for January 1 2008 through December 30 2009 resulting
in a maximum of M=730 observations at each of N = 308 monitoring sta-
tions. Airbase daily values are averaged over the within-day hourly values
when at least 18 hourly measurements are available, otherwise no data are
provided. Airbase monitors are classified by type of area (rural, urban, sub-
urban) and by type (background, industrial, traffic or unknown). Only rural
background monitors were used in our study. This is common for comparing
measured observations to coarse resolution CTM simulations (Denby et al.,
2008). Monitoring stations above 800 m altitude were also excluded. These
tend to be located in areas of variable topography and the accuracy of the
CTM for locations that shift from inside to outside the atmospheric mixing
layer is known to be poor. No further quality control was performed on the
data. The locations of the 308 stations used in the subsequent analysis are
shown in Figure 1 with associated observed and missing PM10 for two ex-
ample dates. Of the 224,840 (M ×N) potential observations across 730 day
time series and 308 stations, 41,761 observations were missing due to sensor
failure or removal, and post-processing removal by Airbase. These missing
values were predicted using the proposed models.

2.3. LOTOS-EUROS CTM data. LOTOS-EUROS (v1.8) is a 3D CTM
that simulates air pollution in the lower troposphere. The simulator geo-
graphic projection is longitude-latitude and with a 0.50◦ longitude ×0.25◦

latitude resolution (approximately 25 km × 25 km). LOTOS-EUROS sim-
ulates the evolution of the components of particulate matter separately.
Hence, this CTM incorporates the dispersion, formation and removal of sul-
fate, nitrate, ammonium, sea salt, dust, primary organic and elemental car-
bon and non-specified primary material, although, it does not incorporate
secondary organic aerosol. Hendriks et al. (2013) provide a detailed descrip-
tion of LOTOS-EUROS.

The hour-by-hour calculations of European air quality in 2008-2009 were
driven by the European Centre for Medium Range Weather Forecasting

1http://acm.eionet.europa.eu/databases/airbase (accessed 26 September 2014)
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(ECMWF). Emissions were taken from the MACC (Monitoring Atmospheric
Composition and Climate) emissions database (Pouliot et al., 2012). Bound-
ary conditions were taken from the global MACC service (Flemming et al.,
2009). The LOTOS-EUROS hourly model output was averaged to daily
mean PM10 concentrations. LOTOS-EUROS grid cells that were spatially
coincident with the Airbase observations were extracted and used as the
covariate in the subsequent model.

CTM grid cell values nearest to station locations were used for subsequent
model development. No attempt was made to match the spatial support (res-
olution) of the CTM simulations and station observations. The support of
the CTM is 25 km, but the support of the observations is vague. Rural
background observations were deliberately chosen because they are distant
from urban areas and pollution sources. They are therefore considered rep-
resentative of background, ambient pollution conditions and appropriate for
matching with moderate resolution CTM-output (Denby et al., 2008; Hamm
et al., 2015). This assumption is further backed-up by empirical studies that
have shown that, even in urban areas, PM10 concentrations are dominated
by rural background values (Eeftens et al., 2012).

3. Scalable Dynamic Nearest-Neighbor Gaussian Processes. Let
{w(`) : ` ∈ L} be a continuous spatio-temporal process (see, e.g., Gneiting
and Guttorp, 2010, for details), where L = S × T with S ⊂ <d (usually
d = 2 or 3), T ⊂ [0,∞) and ` = (s, t) is a space-time coordinate with s ∈ S
denoting a spatial location and t ∈ T is a time point. Such processes are
specified with a spatio-temporal covariance function Cov{w(`i), w(`j)} =
C(`i, `j |θ). For any finite collection U = {`1, `2, . . . , `n} in L, let wU =
(w(`1)), w(`2), . . . , w(`n))′ be the realizations of the process over U . Also,
for two finite sets U and V containing n and m points in L, respectively, we
define the n×m matrix CU ,V(θ) = Cov(wU ,wV |θ), where the covariances
are evaluated using C(·, · |θ). A valid spatio-temporal covariance function
ensures that CU ,U (θ) is positive definite for any finite set U . In particular,
for spatio-temporal Gaussian processes, wU has a multivariate normal dis-
tribution N(0,CU ,U (θ)) and the (i, j)th element of CU ,U (θ) is C(`i, `j |θ).

As mentioned in the preceding section, storage and computations involv-
ing CU ,U (θ) can become impractical when n is large relative to the resources
available. For full Bayesian inference on a continuous domain, we seek a
scalable (in terms of flops and storage) spatio-temporal Gaussian process
that will provide an excellent approximation to a full spatio-temporal pro-
cess with any specified spatio-temporal covariance function. We outline a
general framework that first uses a set of points in L to construct a com-
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putationally efficient approximation for the random field and extends the
finite dimensional distribution over this set to a process.

Let R = {`∗1, `∗2, . . . , `∗r} be a fixed finite set of r points in L. We refer to
R as a reference set. We construct a spatio-temporal process w(`) on L by
first specifying wR = (w(`∗1), w(`∗2), . . . , w(`∗r))

′ ∼ N(0,K(θ)), where K(θ)
is any r × r positive definite matrix and then defining

(3.1) w(`) =
r∑
i=1

ai`(θ)w(`∗i ) + η(`) for any ` /∈ R ,

where η(`) is a zero-centered Gaussian process independent of wR and such
that Cov{η(`i), η(`j)} = 0 for any two distinct points in L.

Observe that w(`) in Equation 3.1 is a well defined spatio-temporal Gaus-
sian process on L for any choice of ai`(θ)’s, as long as K(θ) is positive
definite. Every choice of K(θ) and the ai`(θ)’s yield a possible model for
continuous spatio-temporal data. For example, w(`) is a Gaussian process
with covariance function C(·, · |θ) if we choose K(θ) = CR,R(θ), obtain
ai`(θ)’s from the solution of CR,Ra`(θ) = C`,R, where a`(θ) is r × 1 with
elements ai`(θ), and choose η(`) as an independent Gaussian process with
variance C(`, ` |θ)−C`,RC

−1
R,RCR,`. Equation 3.1 then represents the ‘krig-

ing’ equation for a location ` based on observations over R (Cressie and
Wikle, 2011). Dimension reduction can be achieved with suitable choices for
K(θ) and a`(θ). Low-rank spatio-temporal processes emerge when we choose
R to be a smaller set of ‘knots’ (or ‘centers’). Additionally, specifying η(`) to
be a diagonal or sparse residual process yields w(`) to be a non-degenerate
(or bias-adjusted) low rank Gaussian Process approximating w(`) (Banerjee
et al., 2008; Finley, Banerjee and McRoberts, 2009; Sang and Huang, 2012).

Because of demonstrably impaired inferential performance of low-rank
models in purely spatial contexts (see, e.g., Stein, 2014; Datta et al., 2015)
at scales that we purport to work with here, we use the framework in Equa-
tion 3.1 to construct a class of sparse spatio-temporal process models. To
be specific, let the reference set R be an enumeration of r = MN points in
L, so that each `∗i in R corresponds to some (sj , tk) for j = 1, 2, . . . , N and
k = 1, 2, . . . ,M . For any `∗i = (sj , tk) in R we define a history set H(`∗i ) as
the collection of all locations observed at times before tk and of all points at
tk with spatial locations in {s1, s2, . . . , sj−1}. Thus, H(`∗i ) = {(sp, tq) | p =
1, 2, . . . , N, q = 1, 2, . . . , (k − 1)} ∪ {(sp, tk) | p = 1, 2, . . . , (j − 1)}. For any
location `∗i in R, let N(`∗i ) be a subset of the history set H(`∗i ). Also, for any
location ` /∈ R, let N(`) denote any finite subset of R. We refer to the sets
N(`) as a ‘neighbor set’ for the location ` and describe their construction
later. We now turn to our choices for K(θ) and a`(θ) in Equation 3.1.
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Let w(`) ∼ GP (0, C(·, · |θ)). We choose K(θ) to effectuate a sparse ap-
proximation for the joint density of the realizations of w(`) over R, i.e.,
N(wR |0,CR,R(θ)). Adapting the ideas underlying likelihood approxima-
tions in Vecchia (1988) and Datta et al. (2015), we specify K(θ) to be the
r × r matrix such that

N(wR |0,CR,R(θ)) =
r∏
i=1

p(w(`∗i ) |wH(`∗i ))

≈
r∏
i=1

p(w(`∗i ) |wN(`∗i )) = N(wR |0,K(θ)) ,(3.2)

where H(`∗1) is the empty set (hence, so is N(`∗1)) and p(w(`∗1) |wH(`∗1)) =
p(w(`∗1) |wN(`∗1)) = p(w(`∗1)). The underlying idea behind the approximation
in Equation 3.2 is to compress the conditioning sets from H(`∗i ) to N(`∗i ) so
that the resulting approximation is a multivariate normal distribution with
a sparse precision matrix K(θ)−1. As a consequence, we have

(3.3) E[w(`∗i ) |wH`∗
i
] = E[w(`∗i ) |wN(`∗i )] = a′N(`∗i )wN(`∗i )

where aN(`∗i ) = C−1
N(`∗i ),N(`∗i )CN(`∗i ),`∗i

. Additionally, let f`∗i = Var(w(`∗i ) |wN(`∗i )) =

C(`∗i , `
∗
i |θ) −C`∗i ,N(`∗i )C

−1
N(`∗i ),N(`∗i )CN(`∗i ),`∗i

and vi denote the r × 1 vector

satisfying v′iwR = w(`∗i )−a′N(`∗i )wN(`∗i ) for all values of wR. Then, we have,

(3.4) K(θ)−1 = V′diag(f`∗1 , f`∗2 , . . . , f`∗r )
−1V where V = (v1,v2, . . . ,vr)

If m(<< r) denotes the limiting size of the neighbor sets N(`), then vi’s are
sparse with at most m+ 1 non-zero elements and consequently K(θ)−1 has
at most O(rm2) non-zero elements (this is the spatial-temporal analogue of
the result in Datta et al., 2015). Hence, the approximation in (3.2) pro-
duces a sparsity-inducing proper prior distribution for the spatio-temporal
random effects over R that closely approximates the realizations from a
GP (0, C(·, · |θ)).

Turning to the vector of coefficients a`(θ) in Equation 3.1, we extend
the idea in (3.3) to any point ` outside R by requiring that E[w(`) |wR] =
E[w(`) |wN(`)]. This is achieved by setting ai`(θ) = 0 in Equation 3.1 when-
ever `∗i /∈ N(`) for any point ` outside R. Hence, if N(`) contains m points,
then at most m of the elements in the r × 1 vector a`(θ) can be nonzero.
These nonzero entries are determined from the above conditional expecta-
tion given N(`). To be precise, we collect these m possibly nonzero elements
into an m × 1 vector aN(`) and solve CN(`),N(`)aN(`) = CN(`),`. Also note
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that a`(θ)′wR = a′N(`)wN(`). Finally, to complete the process specifications

in Equation 3.1, we specify η(`)
ind∼ N(0, f`), where f` = Var(w(`) |wN(`)) =

C(`, ` |θ)−C`,N(`)C
−1
N(`),N(`)CN(`),`. The covariance function C̃(·, · |θ) of the

resulting Gaussian Process is given by:

C̃(`i, `j |θ) =


K(θ)p,q if `i = `∗p and `j = `∗q are both in R
a′`iK(θ)∗q if `i /∈ R and `j = `∗q ∈ R
a′`iK(θ)a`j + I(`i = `j)f`i if `i and `j are outside R

(3.5)

Owing to the sparsity of K(θ)−1, the likelihood N(wR |0,K(θ)) can be
evaluated using O(rm3) flops. Substantial computational savings accrue be-
cause m is usually very small (also see later sections). Furthermore as η(`)
yields a diagonal covariance matrix and a`(θ) has at most m non-zero el-
ements, for any finite set V outside R, the flop count for computing the
density N(wV |wR) will be linear in the size of V. We have now con-
structed a scalable Gaussian Process in the spatio-temporal domain using
small neighbor sets N(`). We refer to this as a Dynamic Nearest Neighbor
Gaussian Process (DNNGP) in spatio-temporal domains and denote it by
DNNGP (0, C̃(·, · |θ)) where C̃(·, · |θ)) denotes the covariance function of
this new GP.

4. Constructing Neighbor-Sets.

4.1. Simple Neighbor Selection. So far we have not discussed the choice
of the neighbor sets apart from a restriction on their size. Spatial correla-
tion functions usually decay with increasing inter-site distance, so the set of
nearest neighbors based on the inter-site distances represents locations ex-
hibiting highest correlation with the given location. This has motivated use
of nearest neighbors to construct these small neighbor sets (Vecchia, 1988;
Datta et al., 2015). On the other hand, spatio-temporal covariances between
two points typically depend both on the spatial and temporal lag between
the points. To be specific, non-separable isotropic spatio-temporal covari-
ance functions can be written as C((s1, t1), (s2, t2) |θ) = C(h, u |θ) where
h = ||s1 − s2|| and u = |t1 − t2|. This often precludes defining any universal
distance function d : (S × T )2 → R+ such that C((s1, t1), (s2, t2) |θ) will be
monotonic with respect to d((s1, t1), (s2, t2)) for all choices of θ.

In the light of the above discussion, we define ‘nearest neighbors’ in a
spatio-temporal domain using the spatio-temporal covariance functions. To
elucidate, for any three points (s1, t1), (s2, t2) and (s3, t3), we say (s2, t2) is
nearer to (s1, t1) than (s3, t3) if C((s1, t1), (s2, t2) |θ) > C((s1, t1), (s3, t3) |θ).
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Of course, this choice of nearest neighbors depends on the choice of the co-
variance function C and θ. Since the purpose of the DNNGP is to provide a
scalable approximation of the parent GP, we always choose C(·, · |θ) to be
same as the covariance function of the parent GP. However, θ is unknown
in most applications precluding the use of these newly defined neighbor sets
to construct DNNGP.

We propose a simple intuitive method to construct neighbor sets. We
choose m to be a perfect square. The central idea is to construct a neighbor
set of size m using

√
m spatial nearest neighbors and

√
m temporal nearest

neighbors. For ` = (si, tj) in R, the neighbor set N(`) = N(si, tj) needs
to be a subset of the history set H(si, tj). We define S = {s1, s2, . . . , sN},
Si = {s1, s2, . . . , si−1} and T = {t1, t2, . . . , tM}. Furthermore, for any finite
set of spatial locations V , let A(s, V,m) denote set of m nearest neighbors
of s in V . For any point (si, tj) we define
(4.1)

N(si, tj) =

√
m−1⋃
k=1

{(s, tj−k) | s ∈ A(si, S,
√
m)}

⋃
{(s, tj) | s ∈ A(si, Si,

√
m)}

The above construction implies that the neighbor set for any point in R
consists of

√
m nearest spatial neighbors of the preceding

√
m time points.

Extending to any point outside R, N(s, t) is simply defined as the Cartesian
product of

√
m nearest neighbors of s in S with

√
m nearest neighbors of t in

T . In many applications, one desirable property of the spatio-temporal co-
variance functions is natural monotonicity, i.e. C(h, u) is decreasing in h for
fixed u and decreasing in u for fixed h. Many non-separable classes of covari-
ance functions proposed in the literature possess this property (Stein, 2013;
Omidi and Mohammadzadeh, 2015). If C(·, · |θ) possesses natural mono-
tonicity, then N(si, tj) defined in Equation 4.1 is guaranteed to contain at
least

√
m − 1 nearest neighbors of (si, tj) in H(si, tj). Thus, the neighbor

sets defined above do not depend on any parameter and, for any value of θ,
will contain a few nearest neighbors.

4.2. Adaptive Neighbor Selection. The neighbor selection scheme defined
in Section 4.1 does not depend on the value of the covariance parameters.
This is undoubtedly useful for fast implementation of the DNNGP. However,
depending on the value of θ, the neighbor sets may often consist of very
few nearest neighbors and many points with negligible correlation with the
given point. This issue is illustrated in Figure 2. For a given point in a
10 × 10 × 20 grid, we plot the neighbor set as well as the true set of m-
nearest neighbors based on the covariance function defined in (5.2) with
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Fig 2: Neighbor sets and true nearest neighbors: Black dot indicates the
given point; Green dots indicate true nearest neighbors which are included
in the neighbor set; Red dots indicate true nearest neighbors not included in
the neighbor set and Blue dots indicate points inside the neighbor set which
do not belong to the set of true nearest neighbors

σ2 = 1, α = δ = 1, κ = 0, ν = 1/2. Two different sets of values of a
and c are chosen. The figure on the left panel corresponds to a covariance
function with significant dependence along both space and time while the
one on the right panel corresponds to dependence mostly along space. We
see that for different choices of the covariance parameters the neighbor sets
contain different proportions of the true nearest neighbors. The problem
is exacerbated in extreme cases with variation only along the spatial or
temporal direction. In such cases, the neighbor sets defined in (4.1) will
contain only about

√
m nearest neighbors and m−

√
m uncorrelated points.

Ideally, if θ was known, one could have simply used m-nearest neigh-
bors to construct the neighbor sets. In practice, however, as θ is unknown,
from an implementation point of view we encounter a computational road-
block as for every new value of θ in an iterative optimizer or Markov Chain
Monte Carlo run, we need to recalculate the neighbor sets for all the points.
For updating neighbor sets of all points in R and n datapoints outside R,
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this step requires O(r2 + nr) flops at each iteration. The reference set R is
typically chosen to match the scale of the observed dataset to achieve mean-
ingful approximation of the parent GP by DNNGP. Hence, for large datasets
this update becomes computationally deterrent. In fact, Vecchia (1988) and
Stein, Chi and Welty (2004) admitted that this challenge has inhibited the
use of correlation based neighbor sets in a spatial setting. Jones and Zhang
(1997) permitted locations within a small prefixed temporal lag of a given
location to be eligible for neighbors. However, this assumption will fail to
capture any long term temporal dependence present in the datasets.

We now provide an algorithm that efficiently updates the neighbor sets
after every update of θ. The central idea is to construct small sets that will
contain the set of m-nearest neighbors for all choice of the parameter θ.
Recall from Section 4.1 that, A(s, V,m) is the set of m-nearest neighbors of
s in V . So s ∈ V implies that s ∈ A(s, V,m) for all m ≥ 1. For each (si, tj)
in R, we define the eligible set
(4.2)

E(si, tj) =
m⋃
k=1

{(s, tj−k) | s ∈ A(si, S, [m/k])}
⋃
{(s, tj) | s ∈ A(si, Si,m)}

where for any positive number x, [x] denotes the greatest integer not exceed-
ing x. So the eligible set for a point consists of m-nearest neighbors from
the time levels j and j − 1, [m/2] nearest neighbors from time level j − 2
and so on upto [m/m] = 1 nearest neighbor from time level j −m. For any
point t outside T , let t[k] denote the kth nearest time point of t in T . Then,
we define the eligible set for any (s, t) outside R as

(4.3) E(s, t) =
m⋃
k=1

{(s, t[k]) | s ∈ A(s, S, [m/k])}

The eligible sets do not depend on the covariance parameters θ. We show in
Appendix A that for any point (s, t) in L, the eligible set E(s, t) defined by
Equations 4.2 and 4.3 contains m-nearest neighbors of (s, t) for all values of
θ as long as the underlying covariance function C(h, u |θ) possess natural
monotonicity. This property is illustrated in Figure 3 where for two different
sets of parameter values used in Figure 2, the eligible sets remain same and
contains the entire set of m-nearest neighbors for both cases.

This result has substantial consequences because the size of the eligible
sets do not exceed m +

∑m
k=1[m/k]. As m is typically chosen to be around

20, this sum is approximately equal to 4m. The eligible sets needs to be
calculated only once as they are free of any parameter choices. Subsequently,
for every new update of θ in a MCMC sampler or an iterative solver, one
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Fig 3: Eligible sets and true nearest neighbors: Black dot indicates the Given
point; Green dots indicate true nearest neighbors which are included in the
eligible set and Blue dots indicate points inside the eligible set which do not
belong to the set of true nearest neighbors.

can search for a new set of m-nearest neighbors only within the eligible
sets and use the m-nearest neighbors as the conditioning sets to construct
the DNNGP. We summarize the MCMC steps of the dynamic NNGP with
adaptive neighbor selection in Algorithm 1.

Algorithm 1 Algorithm for adaptive neighbor selection in dynamic NNGP

1: Compute the eligible sets E(si, tj) for all (si, tj) in R from Eqn. (4.2)
2: At the lth iteration of the MCMC:

(a) Calculate C((s, t), (si, tj) |θ(l)) for all (s, t) in E(si, tj)

(b) Define N(si, tj)
(l) as the set of m locations in E(si, tj) which minimizes

C((s, t), (si, tj) |θ(l))

(c) Repeat steps (a) and (b) for all (si, tj) in R
(d) Update θ(l+1) based on the new set of neighbor sets computed in step (c)

3: Repeat Step 2 for N MCMC iterations

As the size of the sets are approximately 4m, the search is now restricted
to eligible sets having 4m points instead of history sets having upto r points.
So the total computational complexity of the search is now reduced to
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O(4m(n+ r)) from O(nr + r2). This is at par with the scale of implement-
ing the remainder of the algorithm. With this adaptive neighbor selection
scheme we gain the advantage of selecting the set of m-nearest neighbors at
every update while retaining the scalability of the DNNGP. Parallel comput-
ing resources, if available, can be greatly utilized to further reduce compu-
tations as the search for eligible sets for each point can proceed independent
of one another.

5. Bayesian DNNGP model. We consider a spatio-temporal dataset
observed at locations s1, s2, . . . , sN and at time points t1, t2, . . . , tM . Note
that there may not be data for all locations at all time points i.e. we allow
missing data. Let {`1, `2, . . . , `n} be an enumeration of n = MN points in L,
where each `i is an ordered pair (sj , tk). Let y(`i) be a univariate response
corresponding to `i and let x(`i) be a corresponding p× 1 vector of spatio-
temporally referenced predictors. A spatio-temporal regression model relates
the response and the predictors as

(5.1) y(`i) = x(`i)
′β + w(`i) + ε(`i) , i = 1, 2, . . . ,MN ,

where β denotes the coefficient vector for the predictors, w(`i) is the spatio-
temporally varying intercept and ε(`i) is the random noise customarily as-
sumed to be independent and identically distributed copies from N(0, τ2).

Usually w(`i)’s are modeled as realizations of a spatio-temporal GP. To
ensure scalability, we will construct a DNNGP from a parent GP with a
non-separable spatio-temporal isotropic covariance function C((s + h, t +
u), (s, t) |θ), introduced by Gneiting (2002),

σ2

2ν−1Γ(ν)(a|u|2α + 1)δ+κ
×
(

c‖h‖
(a|u|2α + 1)κ/2

)ν
×Kν

(
c‖h‖

(a|u|2α + 1)κ/2

)
,

(5.2)

where h and u refers to the spatial and temporal lags between (s+h, t+ u)
and (s, t) and θ = {σ2, α, κ, δ, ν, a, c}. The spatial covariance function at
temporal lag zero corresponds to the Whittle-Matern class with marginal
variance σ2, smoothness parameter ν and decay parameter c. The param-
eters α and a control smoothness and decay, respectively, for the temporal
process, while κ captures non-separability between space and time.

A straightforward choice of the reference set R is the set {`1, `2, . . . , `n}.
While this set will typically be large, its size does not adversely affect the
computations. This choice has been shown to yield excellent approximations
to the parent random field (Vecchia, 1988; Stein, Chi and Welty, 2004). Also,
while several alternate choices of reference sets (like choosing the points over
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a regular grid) are possible, it is unlikely they will provide any additional
computational or inferential benefits; this has been demonstrated in purely
spatial contexts by Datta et al. (2015). Hence, we chooseR = {`1, `2, . . . , `n}
, i.e., `∗i = `i for i = 1, 2, . . . , n.

A full hierarchical model with a DNNGP prior on w(`) is given by

p(θ)× IG(τ2 | aτ , bτ )×N(β |µβ,Vβ)×N(wR |0, C̃R,R)

×
n∏
i=1

N(y(`i) |x(`i)
′β + w(`i), τ

2) ,(5.3)

where p(θ) is the prior on θ, and IG(τ2 | aτ , bτ ) denotes the Inverse-Gamma
density with shape aτ and rate bτ . Below we describe an efficient MCMC
algorithm using Gibbs and Metropolis steps only to carry out full inference
from the posterior in Equation 5.3.

5.1. Gibbs’ sampler steps. Let So be the points in R where the y(`i)’s
is observed and I(`i) denote the binary indicator for presence or absence
of data at `i. Let y be the no × 1 vector formed by stacking the responses
observed and X denotes the corresponding no×p design matrix. The full con-
ditional distribution of β is N(V∗βµ

∗
β,V

∗
β) where V∗β = (V−1

β + X′X/τ2)−1

and µ∗β = (V−1
β µβ + X′(y −wSo)/τ

2). The full conditional distribution of

τ2 follows IG
(
aτ + no

2 , bτ + 1
2(y−Xβ −wSo)

′(y−Xβ −wSo)
)
.

We update the elements of wR sequentially. For any two locations `1 and
`2 in L, if `1 ∈ N(`2) and is the j-th member of N(`2), then we define b`2,`1
as the j-th entry of aN(`2). Let U(`1) = {`2 ∈ R | `1 ∈ N(`2)} and for every
`2 ∈ U(`1), define, a`2,`1 = w(`2) −

∑
`∈N(`2),` 6=`1 w(`)b`2,`. Then, for i =

1, 2, . . . , n the full conditional distribution for w(`i) is N (v(`i)µ(`i), v(`i)),
where

v(`i) =
(
I(`i)/τ

2 + 1/f`i +
∑

`∈U(`i)
b2`,`i/f`

)−1
and

µ(`i) = (y(`i)− x(`i)
′β)I(`i)/τ

2 + a′N(`i)
wN(`i)/f`i +

∑
`∈U(`i)

b`,`ia`,`i/f` .

(5.4)

If U(`i) is empty for some `i, then all summations of the form
∑

`∈U(`i)
in

Equation 5.4 vanish for that w(`i).

5.2. Metropolis step. We update θ using a random walk Metropolis step.
The full-conditional for θ is proportional to

(5.5) p(θ)p(wR |θ) ∝ p(θ)×
n∏
i=1

N
(
w(`i) |a′N(`i)

wN(`i), f`i

)
.
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Since none of the above updates involve expensive matrix decompositions,
the likelihood can be evaluated very efficiently. The algorithm for updating
the parameters for a hierarchical DNNGP model is exactly analogous to the
corresponding updates for a purely spatial NNGP model (see Datta et al.
(2015)). The only additional computational burden stems from updating the
neighbor sets in the adaptive neighbor selection scheme, but even this can
be handled efficiently using eligible sets. Hence, the number of floating point
operations per update is linear in the number of points in L.

5.3. Prediction. Once we have computed the posterior samples of the
model parameters and the spatio-temporal random effects over R, we can
execute, cheaply and efficiently, full posterior predictive inference at unob-
served locations and time points. The Gibbs’ sampler in Section 5.1 generates
full posterior distributions of the w’s at all locations in R. Let `∗i denote a
point in R where the response is unobserved i.e. I(`∗i ) = 0. We already have
posterior distributions of w(`∗i ) and the parameters. We can now generate
posterior samples of y(`∗i ) from N(x(`∗i )

′β + w(`∗i ), τ
2). Turning to predic-

tion at a location ` outside R, we construct N(`) from E(`) described in
Equation 4.3 for every posterior sample of θ. We generate posterior samples
of w(`) from N(a′N(`)wN(`), f`) and, subsequently, draw posterior samples

of y(`) from N(x(`)′β + w(`), τ2).

6. Synthetic data analyses. We generated observations over a n =
15×15×15 = 3375 grid within a unit cube domain. An additional 500 obser-
vations used for out-of-sample prediction validation were also located within
the domain. All data were generated using model 5.1 with x(`) comprising
an intercept and covariate drawn from N(0, 1). The spatial covariance ma-
trix C(θ) was constructed using an exponential form of the non-separable
spatio-temporal covariance function 5.2. Specifically, the (i, j)-th element of
C(θ) was calculated using

(6.1)
σ2

(a|u|2 + 1)κ
exp

(
−c‖h‖

(a|u|α + 1)κ/2

)
,

where u = |ti − tj | and h = ||si − sj || are the time and space Euclidean
norms, respectively. By specifying different values of the decay and inter-
action parameters in θ = (σ2, κ, a, c), function 6.1 was used to generated
three datasets that exhibited different covariance structures. The first col-
umn in Table 1 provides the three specifications for θ and Figure 4 shows
the corresponding space-time correlation surface realizations. As illustrated
in Figure 4, the three datasets exhibit: 1) short spatial range and long tem-
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Fig 4: Space-time correlation surface realizations given true parameter values
in Table 1. Correlation contours are provided, with the two outer white lines
corresponding to 0.05 and 0.01.

poral range; 2) long spatial and temporal range, and; 3) long spatial range
and short temporal range.

For each dataset, model parameters were estimated using the: i) full Gaus-
sian Process (GP); ii) DNNGP with simple neighbor set selection (Simple
DNNGP) described in Section 4.1; iii) DNNGP with adaptive neighbor
set selection (Adaptive DNNGP) described in Section 4.2, and; iv) bias-
corrected Gaussian Predictive Process (GPP) detailed in Banerjee et al.
(2008) and Finley, Banerjee and McRoberts (2009). DNNGP models were
fit using m = {16, 25, 36} and the Gaussian Predictive Process model used
a regularly spaced grid of 8× 8× 8 = 512 knots within the domain.

For all models, the intercept and slope regression parameters, β0 and
β1, were assigned flat prior distributions. The variance parameters were
assumed to follow inverse-Gamma prior distributions width σ2 ∼ IG(2, 1)
and τ2 ∼ IG(2, 0.1). The time and space decay parameters received uniform
priors that were dataset specific: 1) a ∼ U(1, 100), c ∼ U(0, 50); 2) a ∼
U(300, 700), c ∼ U(0, 10), and; 3) a ∼ U(1000, 3000), c ∼ U(0, 10). The prior
for the interaction term matched its theoretical support with κ ∼ U(0, 1).

Candidate model comparison was based on parameter estimates, fit to the
observed data, out-of-sample prediction accuracy, and posterior predictive
distribution coverage. Goodness-of-fit was assessed using DIC (Spiegelhalter
et al., 2002) and GPD (Gelfand and Ghosh, 1998). Prediction accuracy for
the 500 holdout locations was measured using root mean squared prediction
error (Yeniay and Goktas, 2002). The percent of holdout locations that fell
within the candidate models’ posterior predictive distribution’s 95% credible
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interval (CI) was also computed. Candidate model inference was based on
15,000 MCMC samples comprising post burn-in samples from three chains
of 25,000 iterations (i.e., 5,000 samples from each chain).

Dataset analysis results are given in Table 1. With the exception of τ2

for Dataset 1, the full GP model recovered the parameter values used to
generate the datasets, i.e., the 95% CIs cover the true parameter values.
For the DNNGP models, there was negligible difference among parameter
estimates for the 15, 25, and 36 neighbor sets and therefore we report only
the m = 25 cases. There was very little difference between the estimates
produced by the Adaptive and Simple DNNGP models, and, like the full
GP model, they captured the true mean and process parameters, with the
exception of τ2 for Dataset 1. Given the extremes in the space and time
decay in Datasets 1 and 3, we anticipated the Simple DNNGP model—with
at most 5 neighbors in any given time point—would not be able to estimate
the covariance parameters. Extensive analysis of simulated data, some of
which is reported in Table 1, suggested the Simple DNNGP model performed
as well as the Adaptive DNNGP and full GP models. Model goodness-of-fit
and out-of-sample prediction validation metrics in Table 1 also show the full
GP and DNNGP models provided comparable results. In contrast the GPP
model did not capture many of the process parameters and provided worse
fit and prediction than the GP and DNNGP models. The quality of the
GPP results would improve with additional knots, however, computational
time would also increase. The last row in Table 1 provides the CPU time
required for each candidate model to generate 25,000 MCMC samples for
the n = 3375 observations. Even with the substantial dimension reduction,
the GPP model required about twice the CPU time as the DNNGP models.
Compared to the full GP model, the DNNGP models provided substantial
computational advantage while delivering comparable results.

7. Analysis of Airbase and LOTOS-EUROS CTM data. We con-
sider the model in Equation 5.3, where y(`i) is a square-root transformed
measurement of PM10 at space-time coordinate `i, x(`i) is the coinciding
square-root transformed output from the LOTOS-EUROS CTM. Given the
large dimension of the dataset, n = N×M = 308×730 = 224,840, the spatio-
temporal random effects were modeled as a DNNGP prior derived from a
zero-centered GP with the non-separable spatio-temporal covariance func-
tion (6.1). Exploratory analysis—consisting of semivariogram and autocor-
relation function plots of non-spatial model residuals—helped guide choice
of prior and hyper-parameters for the variance and decay parameters. Specif-
ically, σ2 ∼ IG(2, 1), τ2 ∼ IG(2, 0.1), a ∼ U(0.1, 5), and c ∼ U(0.01, 0.5),
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with κ fixed at 0.5.
Candidate models included the: i) LOTOS-EUROS CTM; ii) simple lin-

ear regression model with no spatio-temporal effects, i.e., w(`) = 0, and; iii)
Adaptive and Simple DNNGP with m = {16, 25, 36}. Following Section 6,
candidate model goodness-of-fit to the observed data was assessed using DIC
and GPD, whereas predictive performance was assessed using RMSPE and
95% posterior predictive CI coverage rate for out-of-sample prediction. The
holdout set comprised blocks of five days per station—five days of continu-
ous observations were withheld at random from each station’s 730 day time
series.

Additionally, prediction using the Adaptive and Simple DNNGP models
for a 25% holdout set selected from April 1-14, 2009 was compared with
results from Hamm et al. (2015) who considered time invariant spatial re-
gression models for the same two-week period and comparable prediction
validation approach.

A subset of analysis results are given in Table 2. Parameter estimates
for the model intercept and regression slope coefficient associated with the
CTM output are consistent across the candidate models. For an accurate
CTM it would be expected that β0 ≈ 0 and β1 ≈ 1. The finding that
β0 > 0 and 0 < β1 < 1 corroborate previous findings that showed the CTM
consistently under estimates PM10 (Stern et al., 2008; Hamm et al., 2015).
The spatial and temporal decay parameters differed between the Adaptive
and Simple DNNGP models. Figure 5 provides correlation surfaces generated
using posterior median values of a and c from the m = 36 Adaptive and
Simple DNNGP models (using values given in Table 2). The 0.05 correlation
contour on these surfaces suggest the Simple model estimates a moderately
longer spatial and temporal range, i.e., ∼60 km and ∼33 days, versus ∼45
km and ∼30 days for the Adaptive model. Within a given DNNGP neighbor
selection algorithm there is only marginal difference between the covariance
parameters estimates when comparing m of 25 and 36. Neighbor sets of less
than 25 provided consistently larger temporal decay parameter estimates,
i.e., shorter temporal correlation estimates, although even with such few
neighbors the models seemed to produce consistent estimates of the spatial
decay.

The spatial range of 45 to 60 km is an order of magnitude less than that
observed by Hamm et al. (2015), who estimated median spatial ranges of
500 to 1500 km. This is attributed to the inclusion of temporal correlation
in the model, which itself accounts for a large amount of the residual spatial
structure. The temporal range is physically reasonable considering the life-
time of PM10 is in the order of days and its variability is driven by alternating
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synoptic meteorological conditions, with certain conditions usually lasting
for several days to weeks.

Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

 0.5 

 0.25 

0 5 10 15 20 25 30 35

0

20

40

60

80

100

120

140

S
p

a
ce

 (
km

)

(a) Adaptive m=36
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(b) Simple m=36

Fig 5: Space-time correlation posterior distribution median surfaces. Median
(white lines) and associated 95% credible intervals (dotted white lines) for
correlation contours of 0.05.

Across all candidate models the Adaptive with m=25 provided the low-
est values of DIC and D suggesting improved fit to the observed data. This
improved fit did not correspond to increased out-of-sample prediction ac-
curacy. Rather, RMSPE consistently decreased with increasing number of
neighbors within the Adaptive and Simple model sets. The smallest RMSPE
was achieved using the simple neighbor selection with m=36. All models
achieved reasonable coverage rates.

Figure 6 illustrates the observed and candidate model fitted/predicted
PM10 for three station. These figures are representative of other stations
and show: i) the downward bias in CTM output; ii) improved fit and pre-
diction with the addition of spatio-temporal random effects over non-spatial
regression, and; iii) appropriate widening of CIs for missing station obser-
vations.

Table 3 provides out-of-sample prediction validation metrics for DNNGP
Adaptive and Simple models that can be compared with April 1-14, 2009
holdout validation metrics presented in Hamm et al. (2015, Table 1). Com-
pared to the time invariant (day specific) space-varying intercept (SVI) and
space-varying coefficients (SVC) models considered in Hamm et al. (2015),
the DNNGP models’ RMSPE and bias are lower (more accurate, less biased)
while the R2 values are comparable.
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Fig 6: Fitted and observed PM10 for several example stations. Lines corre-
spond to PM10 observed (black), CTM output (red), non space-time, regres-
sion (orange), and m = 36 Adaptive DNNGP (blue) with associated 95% CI
band (gray). Prediction assessment holdout and actual missing observations
are indicated with green and black points respectively.
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Table 3
April 1-14, 2009 25% holdout set prediction summary for comparison with time invariant

spatial regression models presented in (Hamm et al., 2015, Table 1).

Adaptive Simple
m=25 m=36 m=25 m=36

RMSPE 4.97 5.05 5.06 5.04
Bias 0.20 0.20 0.23 0.22
R2 0.69 0.68 0.68 0.68

In addition to these prediction metrics, maps of posterior predictive sum-
maries at CTM output locations are key inputs to pollution monitoring and
mitigation programs. For example, Figure 7 provides maps of the posterior
predictive prediction median and the probability of exceeding the 50 µg m−3

regulatory threshold for two example dates. These dates were also examined
in Hamm et al. (2015, Figure 8) and the resulting maps are directly compa-
rable. The DNNGP, Figure 7, and SVC maps in Hamm et al. (2015) show
broadly similar patterns, although there are some differences. For example
the high pollution over western France and northern Spain on April 3, 2009
is captured more clearly by Hamm et al. (2015). The SVI and SVC models
in Hamm et al. (2015) did not account for temporal correlation over days—
clearly not an accurate assumption. In contrast the DNNGP models smooth
over days, which can provide improved predictive performance although the
details of highly dynamic events may be less well captured than by the daily
specific models used in Hamm et al. (2015).

The last row in Table 2 provides the CPU time for delivering 25,000
MCMC iterations. As detailed in Section 4.2 particular components of the
algorithm are easily distributed across multiple CPUs. In particular, parti-
tioning the update of w(`i)’s across multiple CPUs yields substantial com-
putational gains. The DNNGP samplers where implemented in C++ and
leveraged OpenMP (Dagum and Menon, 1998) and Intel Math Kernel Li-
brary’s (MKL) threaded BLAS and LAPACK routines for matrix (Intel,
2015). Running on a single CPU the Adaptive m=25 model would require
approximately 260 hours. However, when distributed across a 10-core Xeon
CPU the total run time was approximately 24 hours.

8. Conclusion. We have addressed the problem of modeling large spatio-
temporal datasets, specifically for settings where full inference (with proper
accounting for uncertainty) is required at arbitrary resolutions. We pre-
sented a new class of dynamic nearest-neighbor Gaussian Process (DNNGP)
models over a continuous space-time domain. The DNNGP is a legitimate
Gaussian process whose realizations over finite sets enjoy sparse precision
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(b) April 3, 2009 PM10 > 50 µg m−3
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Fig 7: Predicted PM10 and probability of exceeding 50 µg m−3 for two
example dates.
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matrices, thereby accruing massive computational savings in terms of stor-
age and flops. The DNNGP depends upon the conditional independence of
the random effects given its neighbors. We used the strength of a correla-
tion function to construct a parametric distance metric in a spatio-temporal
domain. Using monotonicity of covariance functions we showed that it is pos-
sible to update neighbor sets using a scalable search algorithm and outlined
the steps of a Gibbs’ sampler that avoids expensive matrix decompositions
and is linear in the number of measurements in terms of storage and flops.

Analyses combining European CTM outputs and observed data has, to
date, focused mainly on spatial analysis per day Denby et al. (2008, 2010);
Hamm et al. (2015), few studies implement full space-time geostatistical
models, e.g., Gräler, Gerharz and Pebesma (2011), and none consider such
a long time series. The work presented in this paper focuses on DNNGP de-
velopment to facilitate novel analyses of spatially-indexed time-series data
such as PM10 concentrations. Here, in addition to improved predictive per-
formance, inference on model covariance parameters provided insight into
space-time structures not captured by the LOTOS-EUROS CTM. Whilst
previous analyses of individual days had shown strong residual spatial struc-
ture, analysis of this long time-series with explicit time correlation parame-
ters reveals the residual temporal structure dominates. The temporal range
is physically reasonable considering the life-time of PM10 is in the order
of days and its variability is driven by alternating synoptic meteorological
conditions, with certain conditions usually lasting for several days to weeks.

Reproducing the observed variability with a CTM remains challenging,
especially for episodic conditions which associated with particular (stagnant)
meteorological conditions or occasional large emissions from, e.g., large wild
fires (R’Honi et al., 2013) or dust events (Birmili et al., 2008). A particular
issue to be resolved is the lack of detail in the anthropogenic emission vari-
ability. This variability is prescribed using static emission profiles for the
month of the year, day of the week, and hour of the day. Further detailing
through inclusion of meteorological effects may improve the modeling (Mues
et al., 2014) and remove the monthly signature found in this analysis.

The type of analysis that is performed depends on the study objective.
Analysis of individual days is important for the study of individual air pollu-
tion events and the associated performance of the CTM Hamm et al. (2015).
The analysis presented in this paper affords a different perspective by identi-
fying long-term space-time structures that offer insight into the performance
of the CTM. The DNNGP also yields more accurate predictions than pre-
vious studies of these same data.

Apart from massive scalability, the DNNGP retains the versatility of
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process-based modeling and can be used as a sparsity-inducing proper prior
in any Bayesian hierarchical model designed to deliver full inference at ar-
bitrary spatio-temporal resolutions for massive spatio-temporal datasets.
Even more generally, the DNNGP can be used for any spatio-temporal ran-
dom effect in the second stage of specification in hierarchical models for
non-Gaussian responses. The continuous spatio-temporal framework for the
DNNGP model ensures that we can interpolate and extrapolate at arbitrary
spatial or temporal resolutions. Full posterior distributions for the underly-
ing spatio-temporal process are available at any arbitrary location and time
point. Thus, DNNGP can potentially be deployed for statistical downscal-
ing of spatio-temporal datasets obtained at coarser resolutions (e.g. climate
downscaling). We also plan to migrate our lower level C++ code into the
spBayes R package for wider and friendlier accessibility to DNNGP models.

APPENDIX A: ELIGIBLE SETS

For any point ` and any set U in L and an isotropic covariance function
C(·, · |θ), let NN(`,U ,θ,m) denote the set of m-nearest neighbors of ` in U
based on C(·, · |θ). Then we have the following result:

Proposition. If C(h, u |θ) posses natural monotonicity defined in Sec-
tion 4.1 for every value of θ, then

(a) For every `∗ in R, the eligible set E(`∗) defined in Equation 4.2 contains
NN(`∗, H(`∗),m,θ) for every value of θ

(b) For every ` outside R, the eligible set E(`) defined in Equation 4.3
contains NN(`,R,m,θ) for every value of θ

Proof. We only prove part (a). Part (b) can be proved similarly. With-
out loss of generality, we write `∗ = (si, tj) for some 1 ≤ i ≤ N and
1 ≤ j ≤ M . We assume that (su, tj−k) ∈ NN(`∗i , H(`∗i ),m,θ) for some θ,
u ≤ N and k ≥ 1. Also let si[l] denote the lth nearest neighbor of si among
{s1, s2, . . . , sN}. So, su = si[l] for some l ≥ 1. Therefore, by natural mono-
tonicity of C, we have C((si, tj), (si[a], tj−k) |θ) ≥ C((si, tj), (si[l], tj−k) |θ)
for all 1 ≤ a ≤ l. One more application of natural monotonicity implies that
C((si, tj), (si[a], tj−b) |θ) > C((si, tj), (si[a], tj−k) |θ) for all 1 ≤ b ≤ k. As
(su, tj−k) ∈ NN(`,U ,θ,m), we have (si[a], tj−b) ∈ NN(`,U ,θ,m) for all
a ≤ l and b ≤ k. Therefore, lk ≤ m i.e. l ≤ [m/k].
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