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Abstract of the Dissertation

Robust and Large-scale Human Motion Estimation with Low-cost

Sensors

by

Hua-I Chang

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2016

Professor Gregory J. Pottie, Chair

Enabling large-scale monitoring and classification of a range of motion activities is of pri-

mary importance due to the need by healthcare and fitness professionals to monitor exercises

for quality and compliance. Video based motion capturing systems (e.g., VICON cameras)

provide a partial solution. However, these expensive and fixed systems are not suitable for

patients’ at-home daily motion monitoring. Wireless motion sensors, including accelerome-

ters and gyroscopes, can provide a low-cost, small-size, and highly-mobile option. However,

acquiring robust inference of human motion trajectory via low-cost inertial sensors remains

challenging. Sensor noise and drift, sensor placement errors and variation of activity over

the population all lead to the necessity of a large amount of data collection. Unfortunately,

such a large amount of data collection is prohibitively costly.

In observance of these issues, a series of solutions for robust human motion monitoring and

activity classification will be presented. The implementation of a real-time context-guided

activity classification system will be discussed. To facilitate ground truth data acquisition, we

proposed a virtual inertial measurements platform to convert the currently available MoCap

database into a noiseless and error-free inertial measurements database. An opportunistic

calibration system which deals with sensor placement errors will be discussed. In addition,

a sensor fusion approach for robust upper limb motion tracking will also be presented.
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CHAPTER 1

Introduction

Chapter 1 introduces some preliminary knowledge that is necessary for this thesis. For

motion sensing technologies, we will introduce and compare two of the most commonly used

motion sensing technologies: inertial sensors and vision-based sensors. For activity classi-

fication, we will introduce machine learning techniques that are commonly used in activity

classification such as the tree classifier, Näıve Bayes classifier, and support vector machine.

For motion reconstruction, we will present the algorithm for trajectory reconstruction and

the zero-velocity update technique that deal with sensor drift.

I Motivations and Objective

We are living on an aging planet. According to a current report [1] from the U.S. Census

Bureau, for the first time in human history, the number of people over the age of 65 will

surpass the number of children under the age of 5 (Fig. 1.1). At the same time, we see

an unprecedented rise of chronic afflictions such as stroke and Parkinson’s disease. These

diseases are the leading causes for the degradation of the quality of life for the elderly.

In order to provide targeted treatment and effective rehabilitation, doctors would like to

monitor patients’ mobility status to assess their condition. The traditional approach relies

on patients’ self-reports during clinic visits. However, this approach is unreliable and lacks

timely feedback. Thanks to the proliferation of wearable inertial sensors, nowadays, these

sensing devices can provide valuable information for doctors during diagnostic, treatment

and rehabilitation process. This will improve the quality of life for patients with mobility

1



difficulties.

Our objective is to enable robust and large-scale human motion inference with low-

cost sensors . We want to acquire robust motion inference, such as knowing when and

what kind of activities are performed, and their quality. However, there exist fundamental

challenges that have not been solved in the past. When scaling to a large population, model

complexity and user compliance will degrade our motion inference. In addition, while low-

cost sensors are suitable for large-scale deployment, their uncertainties will also provide

inferior performance.

In this thesis, we present a couple of novel algorithms and models to solve these problems.

The following goals are pursued:

• Implement a real-time activity classification system for large-scale population, with

high accuracy, low model complexity, and targeted monitoring.

• Systematically generate ground truth data without a large amount of human effort

involved.

• Provide reliable motion data, without the requirement of pre-defined calibration move-

ments or careful placement of wearable sensors.

• Robustly estimate the motion trajectories of the upper limbs at any given moment of

the time.

II Background 1: Motion Sensing Technologies

Inertial sensors and vision-based sensors are the two most popular technologies used for

human motion sensing. In this section, we provide a brief introduction to the two systems

as well as a comparison of their capabilities and limitations.

2



Figure 1.1: Young Children and Older People as a Percentage of Global Population: 1950
to 2050 [1]

II.1 Inertial Sensor Based System

Advances in MEMS technologies have led to the proliferation of wearable inertial sensor based

activity monitoring systems. State-of-the-art inertial sensing platforms typically include ac-

celerometers, gyroscopes, and magnetometers. MEMS accelerometers sense both gravitation

and externally applied acceleration by measuring the deviation of a mass suspended between

several capacitive plates. The measured change in capacitance can be directly correlated

with the strength of the applied acceleration. The MEMS gyroscope measures the Coriolis

force exerted by a vibrating mass on its supports when the sensor undergoes rotational ac-

celeration. The perpendicular displacement of a suspended proof mass by the Coriolis force

results in a change of capacitance in the sensing arms, the value of which is directly correlated

with the angular acceleration. An example diagram for both a MEMS accelerometer and

gyroscope is shown in Fig. 1.2 and 1.3. The magnetometer is a highly sensitive Hall Effect

sensor primarily used to measure the magnetic field of the earth. When a magnetic field is

present, the current exposed to this field gets deflected. From this measured deflection the

magnetic field force can be calculated.

3



Figure 1.2: Example diagram of a MEMS accelerometer

Figure 1.3: Example diagram of a MEMS gyroscope

4



Activity monitoring using MEMS inertial sensors is rapidly growing. [2] used one tri-

axial accelerometer mounted on the waist to classify activities correlated with movements

measured in a controlled laboratory. [3] and [4] utilize a Kalman filter to combine accelerom-

eter, gyroscope, and magnetometer sensor data to detect slow moving body rotation and

linear translation. In [5], the author developed a biomechanical model to track motions with

wearable sensors. Furthermore, inertial sensor based activity monitoring systems have been

verified to accurately and reliably characterize the gait of post-stroke patients [6,7]. In a pi-

oneering clinical trial, a group of physicians and engineers deployed wearable inertial devices

on hundreds of post-stroke patients with feedback provided to the physicians and patients on

a daily basis. The system proved effective in monitoring activity in the ambulatory commu-

nity [8,9]. To detect relative position in 3D space, data from inertial sensors require double

integration. Thus, the drift and broadband noise present in MEMS sensor result in rapid

accumulation of errors. To meet the stringent accuracy requirements for use in healthcare,

algorithms must be developed to reduce the impact of noise on the final results. Fig. 1.4

demonstrates some of the inertial sensors used by the UCLA’s Wireless Health Institute

(WHI).

II.2 Vision-based System

Vision-based motion sensing systems comprise two major categories: marker-based systems

and image-based systems. Marker-based motion capture systems [10,11] track the movement

of reflective markers or light-emitting diodes placed on the human body. Thus they indirectly

track the movement of body segments as well as the configuration of body joints. For such

systems, accurate 3D marker positions in a global frame of reference are computed from

the images captured by a group of surrounding cameras using triangulation. Although such

systems can provide high-precision joint position in 3D space, they are extremely expensive

and time intensive in their deployment. Therefore, they are infeasible for daily activity

monitoring.
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Figure 1.4: Sensors used/developed by Wireless Health Institute (WHI)
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Marker-less systems use computer vision techniques to derive motion parameters from

the captured video [12]. Recently, low-cost off-the-shelf sensors have exploited depth cameras

to capture the movement of human limbs and extract the 3D position of body joints. The

Kinect, for example, is a motion-tracking device developed by Microsoft capable of moni-

toring up to 6 full skeletons within the sensor’s field of view. For each skeleton, 24 joints

are defined and their positions and rotations tracked. Due to the embedded tracking algo-

rithm’s large training data set, the Kinect provides accurate tracking outcomes which can be

considered as the ground truth [13]. Another example is the Leap Motion controller, which

is designed specifically for motion tracking of hand gestures. In this system, three infrared

LEDs and two monochromatic cameras are used to reconstruct the 3D scene and precisely

track hand position within a small range. Research suggests that the Leap Motion controller

can potentially be extended as a rehabilitation tool in the home environment, removing the

requirement for the presence of a therapist [14]. While vision-based systems can provide

desirable tracking accuracy, they are not self-contained and require cameras deployed in the

environment. Additionally, vision based systems raise privacy concerns and are as yet not

feasible for large-scale employment.

In this research, vision-based motion sensing systems we used included the Microsoft

Kinect, Leap Motion controller and Vicon-460 camera. Details of these devices will be

presented in later chapters.

III Background 2: Activity Classification

The goal of activity classification is to infer which activity is performed, given data and

machine learning models. In this section, we introduce several machine learning techniques

that are commonly used in activity classification.

7



Classifier: A classifier is a function which maps the feature vectors into classes. Suppose

we have collected a set of training data (TD) consisting of n observations, each observation

has p features, and there is one label out of q classes associated with each observation.

TD =
{

(xi, yi)|xi ∈ Rp, yi ∈ {1, 2, ..., q}
}
, i = 1, 2, ..., n (1.1)

where xi is the feature vector, and the yi are the labeled classes associated with the features.

The classifier can be thought of as a mapping function that maps the training data to a

specific class or partition:

f : TDi → ŷi (1.2)

where TDi is the ith instance of the n observations from the training data, and yi is the

classification result of the corresponding ith observation.

III.1 Decision Tree Classifier

A decision tree classifier is a supervised machine learning technique which is simple and

widely used in solving classification problems. The main idea is to break down multi-class

classification into simpler subsets, stage-by-stage and finally reach the classification results.

A decision tree contains multiple internal nodes, and there is a series of carefully crafted test

conditions about the features of the test dataset at each internal node. Starting from the root

node, new datasets are tested over every test condition and follow the appropriate branch

based on the outcome of the test. Each time it makes a decision, a follow-up condition is

tested until a conclusion about the class label of the record is reached.

In multi-class classification, the curse of dimensionality is a crucial issue: as the num-

ber of classes increases, one usually has to select more features and make decisions in a

high-dimensional feature space. Therefore, in order to collect enough training data that is

representative of the nature of each class, a huge amount of ground truth data is required as

the dimension of the feature space increases. Without sufficient training data, the predictive
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power suffers from increasing dimensionality [8]. The decision tree classifier assumes that

each class is conditionally independent and performs many classifications targeting smaller

classes, instead of a single stage with a huge number of states. Thus each decision is done

in a feature space with lower dimensionality. Because of its nature of divide and conquer of

the decision-making procedure, the decision tree classifier avoids the curse of dimensionality

in multivariate analysis [6][7].

In this research, we use decision tree classifiers with a combination of the Näıve Bayes

classifier and support vector machine (SVM) as the decision making kernel in internal nodes

for activity classification. Fig. 1.5 shows an example of a classification tree for 6 activities.

More details of Näıve Bayes classifiers and SVM will be discussed in the following sub-

sections.

III.2 Näıve Bayes Classifier

The Näıve Bayes Classifier is based on the Bayes theorem. It assumes every feature to be

independent from the others, and they are Gaussian distributed. Despite its simplicity, Näıve

Bayes can often yield better performance than most sophisticated classification algorithms.

In addition, the Näıve Bayes classifier also inherits the prosperities of the Bayes classifier,

which has the advantage to be more extensible. It requires little effort in classifier retraining

and software update upon further expansion or modification of the activity classes.

III.2.1 PDF Estimation

For a given set of feature values, F = {f1, f2, ..., fn}, the posterior probability for the class

Cj among a set of possible activity classes C = {c1, c2, ..., cd} is to be found. Using Bayes’

rule:

p(Cj|f1, f2, ..., fn) ∝ p(f1, f2, ..., fn|Cj)p(Cj)
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Figure 1.5: Example of a decision tree classifier for 6 activities
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where p(Cj|f1, f2, ..., fn) is the posterior probability of class membership, that is, the prob-

ability of F belongs to Cj. Since Näıve Bayes assumes that the conditional probabilities of

the independent variables are statistically independent, the likelihood can be decomposed to

a product of terms:

p(F |Cj) ∝
n∏

k=1

p(fk|Cj)

and the posterior rewritten as:

p(Cj|F ) ∝ p(Cj)
n∏

k=1

p(fk|Cj)

III.2.2 Classification

Using Bayes’ rule above, the classification result of F is labeled with the Cj that achieves

the highest posterior probability.

C(f1, f2, ..., fn) = argmax
c

p(C = c)
n∏

i=1

p(fi|C = c)

Although it is not always accurate to assume that the features are independent, this assump-

tion does simplify the classification task dramatically, since it allows the class conditional

densities p(fk|Cj) to be calculated separately for each feature. In effect, Näıve Bayes reduces

a multi-dimensional density estimation task to a one-dimensional kernel density estimation.

Furthermore, the assumption does not seem to greatly affect the posterior probabilities,

especially in regions near decision boundaries, therefore, leaving the classification task unaf-

fected.

III.3 Support Vector Machine

A Support Vector Machine (SVM) [15–17] is a non-probabilistic, discriminative classifier

formally defined by a separating hyperplane. Given labeled training data (supervised learn-
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ing), the algorithm tries to find the optimal hyperplane which has the largest gap that can

separate the classes. For example, suppose we have n different features for each sample data.

SVM forms a n− 1 dimensional hyperplane that divides categories given features vectors of

n elements lying in a n-dimensional space. Fig. 1.6 shows an example of classification of two

classes using the SVM classifier and two features. As shown in the figure, the solid shapes

form the support vectors, and SVM tries to find a gap that maximizes the distance between

the support vectors.

There are two main benefits of using the SVM in activity classification. First, when

using the SVM at internal nodes of tree classifiers, the SVM can effectively draw a decision

boundary for activities that are not easily characterized by probabilistic models such as the

Näıve Bayes classifier. For example, a single-peak Gaussian model may be insufficient if

there is more than one activity within an internal node of a decision tree classifier. On the

other hand, the decision boundary of the SVM is only determined by its support vectors and

not affected by interior feature points. This also leads to another benefit of using the SVM,

which is the robustness when trying to classify activities using features that are susceptible

to noise. For example, some features of stationary activities such as energy for siting and

standing tend to produce small feature values and thus are susceptible to any external noise

or unexpected movements. As a result, the means and standard deviation may not be very

representative. In this study, we mainly use the SVMs to classify stationary activities such

as standing, lying down, and sitting because the training data are concentrated and a few

outliers occur.

III.4 Wireless Health Institute Sensor Fusion Toolkit (WHISFT)

The UCLA Wireless Health Institute (WHI) uses activity classification extensively for both

real world and instructional deployments. For real-world deployments we have been collabo-

rating with the UCLA Neurology department and the UCLA Ronald Regan Hospital. There

were a number of studies ranging from congestive heart failure patients [18] to intensive care
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Figure 1.6: Example of SVM on 2 classes

unit cycling restorator [19]. One of the high impact studies included monitoring of exercise

intervention effectiveness of acute stroke patients from 150 sites in 12 countries [20]. In these

studies, sensors were provided to outpatients to enable follow-up physical activity monitor-

ing in community. Instructional deployments include EE180D and EE202C classes held each

year, where students are given projects that allow them to use the sensors and the activity

classification techniques to perform studies such as sports activity efficiency, daily energy

expenditure and workspace wellness. To facilitate the use-cases, we developed the Wireless

Health Institute Sensor Fusion Toolkit (WHISFT). The WHISFT is a suite of accurate clas-

sification methods for user activities that has undergone testing in diverse situations and

clinical settings [21, 22]. It provides multimodal hierarchical classification based on a set of

classifiers such as Näıve Bayes and Support Vector Machine [20].

Starting with raw data from multiple sensors, WHISFT combines streams of data into a

single structure. Features such as short time energy, mean, and variance are computed from

the combined data structure. There are a number of diverse features, providing freedom in

selecting the ones that best suit each application. From the selected features, hierarchical

structures (decision tree) can be built to model the classification problem. The decision tree
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Figure 1.7: WHISFT: function menu

classifier first grossly separates activities into groups sharing similar features, and then fur-

ther isolates activities within each group using additional features until all can be identified.

At each level of the tree, WHISFT uses either a Näıve Bayes or SVM classifier to separate

unknown data into one of the branches. The final classification result is produced when a

leaf node is reached. Fig. 1.7, 1.8, 1.9, 1.10 and 1.11 show the interface and some sample

results of the toolkit.

IV Background 3: Motion Reconstruction with Inertial Sensors

Two of the most widely used inertial sensors for motion reconstruction are gyroscopes and

accelerometers. Fig. 1.12 shows the algorithm for trajectory reconstruction.

An accelerometer measures the summation of gravity and motion acceleration. Theoret-

ically, if the motion acceleration can be perfectly isolated, double integration of the motion

acceleration yields the motion trajectory. However, it is not trivial to detect the direction of

gravity and isolate the motion acceleration when the sensor is experiencing external forces.

The gyroscopes can be helpful in determining the direction of gravity. Gyroscopes output
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Figure 1.8: WHISFT: data processing (alignment and labeling)

Figure 1.9: WHISFT: decision tree and feature selection
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Figure 1.10: WHISFT: classification result

Figure 1.11: WHISFT: classification statistic
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Figure 1.12: Trajectory reconstruction algorithm

angular velocity, and we integrate the angular velocity for orientation angles. The issue is,

gyroscopes have bias, which means its reading won’t be exactly zero when the sensor is sta-

tionary. In addition, the bias is not fixed nor predictable. This means we cannot get accurate

angle from gyros because it will drift over time. As a result, even with the information from

gyroscopes, we cannot get accurate motion acceleration from accelerometers without careful

calibration.

IV.1 Zero-velocity Update (ZUPT)

The zero-velocity update (ZUPT) is a commonly used technique to reduce sensor drift [23].

The idea is to set the velocity to zero when the sensor is stationary and smooth the velocity

in between before being integrated for position. By doing this, drift can be detected and

compensated before it propagates to position estimation. Fig. 1.13 show an example of using

ZUPT to compensate velocity drift. However, ZUPT cannot always perfectly remove the

velocity drift because there exists some uncertainties when detecting zero-velocity windows.

For example, the zero-velocity window might be too short for the algorithm to detect, or

the declared zero-velocity window is a false positive. Therefore, many methods have been

proposed to provide more accurate trajectory estimation such as using human bio-mechanical

models [24], sensor fusion [25], and Non-ZUPT [26].
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(a) Captured accelerometer data

(b) Double integrated result including drift

(c) Estimated linear drift

(d) Double integrated result after ZUPT is used to remove drift

Figure 1.13: An example of zero-velocity update.
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Figure 1.14: Shoe-mounted sensor

IV.2 Inertial Navigation System (INS) Toolkit

The UCLA Wireless Health Institute developed the Inertial Navigation System (INS) toolkit

[27] for gait trajectory reconstruction and visualization. The INS toolkit allows researchers

to collect motion data from shoe-mounted sensors (Fig. 1.14) and reconstruct motion tra-

jectories. This toolkit has been deployed in many studies ranging from quality assessment

of hemiparetic gait [27] to calibration of upper limb motion tracking [28]. For instructional

deployments, students in EE180D and EE202C were given projects that allow them to use

the sensors and the toolkit to perform studies such as gait cycle analysis and indoor local-

ization. Fig. 1.15, 1.16 and 1.17 show the interface and some sample results of the toolkit.

In this research, we used some methods from this toolkit to perform ZUPT and trajectory

reconstruction for upper limb movement.

V Organization

The rest of the chapters of this dissertation are organized as follows: In Chapter 2, we present

a real-time context-guided activity classification system which can deal with increasing model
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Figure 1.15: INS: function menu

Figure 1.16: INS: zero-velocity update

20



Figure 1.17: INS: reconstructed trajectory

complexity inherent in large-scale populations. Chapter 3 describes a virtual inertial mea-

surements platform which converts the currently available camera motion database into a

noiseless and error-free inertial measurements database. In Chapter 4, we propose an op-

portunistic calibration system which can detect and compensate sensor placement errors.

In Chapter 5, we present a sensor fusion approach for robust upper limb motion tracking.

Chapter 6 summarizes this thesis, and presents suggestions for future research.
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CHAPTER 2

Context-guided Universal Hybrid Decision Tree for

Activity Classification

I Introduction

Activity monitoring provides critical benefits for important concerns such as health and

wellness promotion, disease treatment and disease condition detection. Through the auto-

matic feedback of activity status to both individuals and health care providers, the quality

of health can be improved while reducing the costs. Due to the rapid advance in micro-

electronics, MEMS inertial sensors, low power processors, and low cost monitoring systems,

human activity classification is now possible. The ubiquity of mobile devices also provides

a platform for the wireless healthcare community to integrate monitoring and in-field guid-

ance for both advancing and evaluating treatment outcomes. Increased research effort has

been devoted to the development of systems that monitor human activities with feasible

cost, classify activities with good accuracy, and then analyze these activities with respect to

different rules [29, 30].

Some systems [31, 32] based on Näıve Bayes classifiers can provide accuracy up to 90%

for classifying a small number of daily activities. However, the use of a single-stage classifier

is problematic from many aspects including exploding training data requirements as the

number of classes grows. Other approaches [33–35] utilized decision tree classifiers that
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can better handle complex decision regions by partitioning them into smaller sets with low

dimensional hypothesis spaces at each stage, providing advantages such as reduced training

set size, robustness to outliers in training data, extensibility of target classes, and invariance

under monotone transformations.

However, decision tree methodologies can suffer from mismatches between assumed and

actual distributions for different sets of classes, resulting in poor accuracy, if only a single

classifier type at each node is applied. Another issue arises in clinical trials when generalizing

the model to a large population. In practice, one can acquire extensive ground truth only

for a small set of subjects due to high logistical costs; for the rest, at best only short training

is feasible. However, if the tree can be personalized then we can get far better results. One

solution is to construct a decision tree structure that fits the population, and then tune only

the decision thresholds using short training sequences for individuals. This was attempted

in [29], but with inadequate accuracy.

The above methods also face challenges as we scale to large and diverse user communi-

ties. The rapidly expanding activity set increases model complexity, which causes degraded

classifier performance. In addition, the diverse user community has varied requirements.

Thus we need a system that is personalized and provides targeted monitoring of activities

under different conditions. The energy efficiency of energy-constrained monitoring sensors

should be taken into consideration as well. These objectives require the capability of detect-

ing the location and environmental context [36, 37]. Context information has the potential

to directly enhance activity classification accuracy and speed through reduction in search

space, and reduce energy demand through context-aware optimization of sensor sampling

and operation schedules.

There have been attempts to introduce context awareness into activity classification to

facilitate personalization and adaptation [8, 36, 38–40]. These systems achieved limited suc-

cess due to the ambiguity in the definition of context, and the lack of a system architecture

that enables the adaptation of signal processing and sensor fusion algorithms specific to the
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task of personalized activity monitoring.

To address the above-mentioned deficiencies, we propose: 1) A universal hybrid decision

tree classifier to reduce training efforts; 2) A novel architecture that provides context guided

personalized activity. Herein, context is separated from physical activities in order to produce

a first level hierarchy, and further achieves personalized activity classification. In addition,

our work presents four major contributions: 1) A tree classifier with flexibility of decision

rules, adaptation to a population-based model and reduction of training cost; 2) Accurate

detection of context with sensor fusion; 3) The integration of context to improve classification

accuracy and energy usage; and 4) The ability to target specific physical activities of interest

for a given context.

II System Overview and Architecture

Illustrated in Fig. 2.1, the system consists of three parts: sensor modules, an Android

device, and a backend server for offline training. Multiple sensor modules, each containing

three sensors (gyro, accelerometer and magnetometer), are attached to the body. Each sensor

module communicates wirelessly (dashed lines) with an Android device via Bluetooth.

The sensor modules sample data at a predefined rate, aggregate data from each sensor,

and then transmit to the Android device. In the training phase, after the user employs the

GUI to configure and turn on the sensors, the sensors generate and transmit data to the

Android device. Meanwhile, context sensors on the Android device collect environment data

such as Wi-Fi fingerprint, audio and time of day. The Android device stores these data

locally. The system then prompts the user to provide ground truth labeling for each activity

section and current context. When the collection of training data is done, both the sensor

data and annotation files are stored in the Android device.

These training data are then used to perform offline model training via the backend server,

which consists of two toolboxes. WHISFT is a suite of accurate classification methods for
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Figure 2.1: System architecture
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activities classification that has undergone extensive testing in diverse situations and clinical

settings [21]. It provides an end-to-end solution for inertial sensor data processing from raw

data to decision tree construction, model training and performance evaluation. The toolbox

is capable of performing multimodal hierarchical classification based on a set of classifiers

such as Näıve Bayes and Support Vector Machine [20]. The context toolbox is another tool

we developed that is able to process context data and build context classification models.

We used these two toolboxes to construct and train our classification model based on our

proposed algorithm. The models are then transferred to the Android platform for real-time

classification.

In the real-time testing phase, the Android App not only stores sensor data locally but

also caches data in a queue structure. It also loads the trained model into its classifier. A

queue structure is designed to implement a moving window for real-time data processing,

where new data is pushed onto the queue, and old data is popped out. The data from the

moving window is then fed into the classifier to make a classification decision. The context

decision is first determined and then fed into the context specific activity classification block.

Based on the context information, a specific activity model is selected to perform activity

classification on the inertial data. The classification results are finally made, and then fed

back to the user via the GUI.

III Methodology

III.1 Universal Hybrid Decision Tree

In this section, we present a universal hybrid decision tree classifier. This type of classifier

fuses various kinds of single-stage classifiers in its nodes, and can also adapt to new incoming

data with minimal training. The following shows how we achieve this.

First, a tree classifier T with l internal nodes can be thought of as a classifier consisting

of l single-stage classifiers, where each single-stage classifier has its own subset of classes,
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features and the decision rules for the node. Therefore we can write T as a combined set,

T = {C(t), F (t), D(t)} t = 1, ..., l (2.1)

where C is the subset of classes of node t, consisting groups of classes associating with that

node; F is the feature set used for node t; and D is the decision rule of that node. In this

research, the Näıve Bayes classifier and the support vector machine (SVM) were used as

possible types of decision rules of internal nodes. Compared to other tree classifiers where

only a single type of decision rule is used [41, 42], this hybrid approach takes advantage

of more appropriate statistical modeling of different activity classes and therefore achieves

higher classification accuracy.

Using this hybrid tree, we then find a classifier with a single structure that can classify

multiple subjects’ data. The reason behind this universal classifier is that we want to have

a model that with minimal additional training can be personalized to subjects. Therefore

when we generalize this model the amount of training effort, such as data collection and

labeling, can be greatly reduced. We do this by maintaining the structure, features used

and decision rules associated with the hybrid tree classifier, and only change the decision

thresholds corresponding to different subjects. Thus using only a small amount of additional

training we can personalize the classifier to each subject. This procedure can be stated as in

Fig. 2.2. This algorithm takes the differences among people into account while maintaining

a satisfactory error rate.

III.2 Context Detection

In pervasive computing, the definition of context by Dey [37] has been widely referenced. It

is a very broad definition that contains every characteristics of a given situation, in terms of

both the environment and the user. While useful for many applications, it is not suitable for

leveraging context in monitoring physical activities, since in many cases a context contains
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Figure 2.2: Algorithm of generalizing the hybrid decision tree
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physical activities that are underlying in the definition. Some alternative definitions offer

different selection of divisions such as external and internal contexts [43, 44] to narrow the

extent, but still contain a mix of physical activities with the external environment.

In this study, we address a context as: ”a subset of all attributes that characterizes an

environment or situation, external to the user.” This definition clearly distinguishes between

the user’s physical activities and external environmental attributes. With this refined def-

inition, the attributes associated with a context or with a physical activity can be easily

distinguished. For example, a ”cafeteria” environment is a context, and its characteristics

may involve certain sound profiles and a set of possible locations. In contrast, ”eating in a

cafeteria” is not a context, since it contains the user’s physical activity of ”eating”. Thus,

we can use context as a first level hierarchy to determine a set of activities of interest based

on the user’s current situation before carrying out activity classification [45].

Since our definition of context can describe many situations, it allows users to define their

context set of interest, identify the required characteristics to distinguish contexts and select

necessary sensors based on their objectives. Thus, this generalization requires the system to

take account of diverse types of data sources such as GPS coordinates, Wi-Fi fingerprint,

background audio noise, and illumination level.

To provide a reliable context decision, multiple classifiers should be employed based on the

nature of various data sources and trained separately. After training, the individual classifiers

are tested and assigned with voting weights (α) proportional to the perceived accuracies.

When an unknown class is encountered, a decision committee (Fig. 2.3) performs sensor

fusion as a linear combination of the individual classifiers. The context with the highest

vote is chosen. The committee approach also enables adaption to individuals with varying

habits. For example, a subject with a regular daily schedule might exhibit higher correlation

in time of day relating to context. Thus, we would increase the weight of the classifier based

on time-of-day during training, compared to a subject that is less habitual. We choose three

classifiers to form our context detection committee for most of the experiment: k-nearest
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Figure 2.3: Context classification committee

neighbors (kNN) with time-of-day as a feature; kNN with wireless MAC address and signal

strength as features; and AdaBoost with audio peak frequency, peak energy, average power

and total energy as features.

III.3 Integration of Contexts into Activity Classification

After inferring context from the committee, this information can be used to enhance activity

classification. We introduce the concept of context driven activity classification. Fig. 2.4

shows a high-level data flow diagram. The inertial data and context data go through a

signal-processing pipeline where a context is first determined. From the context we can

extract an activity model from a scenario. The activity model combined with the inertial

data gives us an activity classification result.

Based on this framework, there is no single list of comprehensive activities that needs

to be built into a monolithic classifier, compared with conventional activity classification.

Alternatively, only a small set of activities would be chosen in a specific context, and this

set can then be extended or reduced according to our objectives.

This approach brings a number of advantages. First, by pre-selecting the activities of

interest (or likely activities), the model complexity of the subsequent activity classification

stage can be reduced. This increases the accuracy, improves classification throughput and
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Figure 2.4: High-level decision flow

enables sensor operating time and data sample/transmission optimization. An example of

the context specific activity model we generated for the ”Cafeteria” context is shown in Fig.

2.5. The activities are on leaf nodes, laid out in a hierarchy. At each branch either a Näıve

Bayes or SVM classifier makes the branching decision using features in the model.

In addition, this approach also allows an activity set within a context to be customized

to fit a specific situation. To further illustrate this concept, Table 2.1 lists a few possible

activity models under different contexts in a clinical application. For example, in the con-

text of patient room, physicians may wish to monitor a patient’s mobility status to assess

the risk of bedsores and other problems. Another example is the rehabilitation context,

where physicians may wish to monitor the patient’s performance in exercises and to ensure

recommended daily activities are performed as instructed.
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Figure 2.5: Context guided model for cafeteria

Table 2.1: Example Scenarios
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IV System Evaluation

IV.1 Data Acquisition

In this study, we used SparkFun 9DoF IMU sensors and a Nexus 7 tablet to collect 14

datasets, where each set of data contains 13 activities in 8 different contexts1. The procedure

of data acquisition is as follows: 14 subjects each attached four 9DoF sensors on right wrist,

knee, ankle and mid waist. An assistant carried a Nexus 7 tablet running the Android client

to record sensor data and label the ground truth. Each subject spent 30 minutes in each

context, and performed every predefined activity under that context for at least 5 minutes.

The data were then separated into training (30%) and testing (70%) sets and 10-fold cross-

validation was performed to obtain the classification results. Table 2.2 summarizes the

collected activities corresponding to different contexts. In the table, the activity ”Walking

Around” refers to non-sustained walking segments that are typical of walking in confined

spaces, while ”Walking Normal” refers to sustained long distance walks typical of open space.

IV.2 Result

IV.2.1 Context Classification accuracy

The accuracies of correctly classified instances of individual classifiers in the committee

and the overall accuracies are shown in Table 2.3. We noticed that AdaBoost using sound

features yield high accuracies for most of the contexts. However, sound features are sensitive

to environment variation. There were some cases where misclassification occurred due to

vehicles driving nearby or long periods of silence. Time kNN depends heavily on the varied

nature of when subjects visit these contexts. Hence, it is also not sufficiently accurate in

cases of some spontaneous visit of contexts. Wireless kNN provides good accuracy for indoor

1Data collected according to a UCLA IRB approved protocol.
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Table 2.2: Scenarios

34



Table 2.3: Context Classifier Accuracies (Percentages)

contexts due to the stable wireless environment. However insufficient accuracies occurred

in some cases such as bus and outdoors. In the bus context, the classifier suffers from

unstable wireless signals or unseen wireless access points due to the route of the bus. For

the outdoor context case, the system tended to detect access points that belong to nearby

indoor locations. We observed this issue when walking near a building caused the context

to be classified as another context inside the building.

This experimental evaluation reveals the pros and cons of each individual classifier. How-

ever, by applying a committee approach that assigned an appropriate combination of each

classifier, the system is able to achieve high accuracy for all contexts.

IV.2.2 Activity Classification accuracy

In this section, we first evaluated the classification accuracy of the universal hybrid decision

tree classifier, and then verify the enhancement in classification accuracy of the context-

guided approach. For the universal hybrid decision tree, we first manually determined the

tree structure, and then used 30% of the data from all subjects as training data to select

features and classifier types that yield the highest accuracies. After a universal tree is

generated, we used the training data of each subject to determine decision thresholds for

internal nodes of the tree. The thresholds for each subject have to be determined individually

since properties of each set of data are different from other sets. For the case of context-guided
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classification, we first performed context classification and follow up by activity classification.

Table 2.4 summarizes classification accuracy in each context. The results indicate that

without context information, our proposed tree provides good accuracy in most of the ac-

tivities, except some activities involved with upper body movement. However, it can be

seen that with the integration of context information, there is an overall enhancement in

classification accuracy due to the reduction of search space and the size of each classifier.

In addition, for those activities involving upper body movement such as typing, writing and

eating, a large improvement is observed.

IV.2.3 Potential for Energy Saving

The context driven approach allows us to adjust sensor policy dynamically according to

detected context, and thus brings the potential to improve energy efficiency and operation

lifetime. Based on scenarios tested in Table 2.2, we formed a sensor requirement profile (Table

2.5), in which blank cells indicate sensors that can be safety turned off without affecting the

accuracy of a given context. We evaluated the improvement of system operation time by

adopting sensor activation schedules based on contexts. A subject’s typical daily schedule

on workday and weekend is shown in Fig. 2.6 and 2.7, with the x-axis starting at 8am.

Fig. 2.8 shows the comparison of total operation time of context driven sensor activation

and continuous sensor activation, which indicates the potential benefits of context driven

sensor energy management. This benefit would be more obvious in the situation where

many sensors are deployed but only some small subset is required in each context.

V Conclusion

In this study, we demonstrated the advantages of integrating the context and universal hybrid

tree classifier for activity classification. The proposed universal hybrid tree structure provides

flexibility at the expense of the use of intuition or domain knowledge in its construction.
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Table 2.5: Sensor Requirements

Figure 2.6: User profiles (workday)
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Figure 2.7: User profiles (residential)

Figure 2.8: Battery life comparison
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The effort is rewarded in relative ease of tuning it to new individuals with modest additional

training. For scaling to a large population, this could lead to a drastic reduction in effort.

In addition, the new context driven approach not only brings improvement in classification

accuracy, but also provides the capability of controlling the activation and selection of sensors

for energy saving. A number of future research directions are being pursued. Since our

context driven approach depends heavily on the quality of context decision, it is of interest

how to achieve precise context classification information without needing extensive training.

Remarks During this project, we collected a huge amount of motion data. We also at-

tached multiple motion sensors at different part of human body, and recorded all the required

activities with may repetitions. At the beginning it was quite fun, however, after we repeated

the same procedure for tens of subjects, include myself, my colleague, and many volunteers,

we realized that there could be a more efficient way to collect ground truth data. This led us

to the next project ”Virtual Inertial Measurements for Motion Inference in Wireless Health”,

where we present an efficient way to derive ground truth inertial data.
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CHAPTER 3

Virtual Inertial Measurements for Motion Inference in

Wireless Health

I Introduction

Many of the most urgent problems in health and wellness promotion, diagnostics and treat-

ment of neurological disease require accurate, reliable and detailed monitoring of human

motion. Video based motion capturing systems (e.g., Vicon-460 camera) provide a partial

solution. However, these expensive and fixed systems cannot be used for patients’ at-home

daily motion monitoring. Wireless motion sensors, including accelerometers, gyroscopes

and magnetometers, can potentially provide a low-cost, small-size, and highly-mobile op-

tion [46] [47] [48].

But, several problems must first be overcome. These issues are illustrated in Fig. 3.1(a).

Although high-precision sensing systems can provide low-noise data, they can cost several

thousand dollars each and are not affordable in most wireless health applications. On the

other hand, low-cost accelerometers are non-ideal as they are too noisy for double integration

to produce reliable position estimates, even when orientation is perfectly known. Low-cost

gyros have low error with appropriate filtering. Drift can be overcome if they are reset based

on identified events (e.g., stance phase of walking). Results in [25] [49] have demonstrated

high accuracy in reconstructing walking and upper body motions with such resets and when

41



Figure 3.1: Illustration of the existing issues (a) and the proposed framework (b).

each limb segment is instrumented. But, except in laboratory experiments, to instrument

one sensor per limb segment is infeasible in most applications. Hence, our challenge becomes

the reconstruction of human motion characteristics with only one inertial sensor on each

limb.

In addition to measurement noise, sensor misplacement problems, including misorienta-

tion and displacement, are common in at-home motion tracking. [50] proposed an orientation

calibration method based on opportunistic repetitive motions without the requirement of pre-

defined motions. A general approach to deal with various sensor impairments has not yet

been investigated.

To overcome these problems, a model and algorithms must be constructed from datasets

that reflect a broad set of impairments and for each of the motions of interest. Unfortunately,

such a large amount of data collection is prohibitively costly. Therefore, as shown in Fig.

3.1(b), we propose a virtual inertial measurements platform to convert the currently available

camera motion database (e.g., CMU MoCap [51]) into a noiseless and error-free inertial

measurements database.
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The main contributions of this research are as follows. An algorithm for converting cam-

era based motion databases into inertial measurements (both accelerometers and gyroscopes)

was developed. To verify the effectiveness of this method, a KINECT based test-bed was

constructed. On this test-bed platform, synchronized camera data and inertial sensor data

were collected simultaneously. Comparing the virtual inertial measurements estimated from

our algorithm with the real inertial sensor measurements, the effectiveness of our algorithm

was demonstrated.

II Inertial Sensor Measurement Modeling

To realize the virtual sensor experiments, we build a motion sensor measurement model. In

this model, we derive the motion information from an existing motion database, develop

appropriate processing algorithms for the motion data, build the observation model to map

the motion data to sensor measurements, and then derive the sensor measurements without

measurement noise. Some details follow.

II.1 Camera Motion Database

We employ the CMU motion capture database [51]. It contains 2605 different motion clips

of full body MoCap data performed by a total of 144 subjects. The subjects were asked

to wear 41 markers (Fig. 3.2) and perform a wide varieties of activities under the VICON

camera system. The Vicon motion capture system consists of 12 infrared MX-40 cameras,

each of which is capable of recording at 120 Hz with images of 4 megapixel resolution.

Motions are captured in a working volume of approximately 3m× 8m. Each marker’s three

dimensional position and rotation information with respect to its parent node were provided

in the database.
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Figure 3.2: CMU motion capture marker placement

II.2 Inertial Sensor Observation Model

II.2.1 Gyroscope measurement model

Gyroscopes measure angular velocity on three axes. [52] shows that angular velocity can be

captured by taking the time derivative of the rotation matrix (Equation 3.1). C(t) is the

rotation matrix (Equation 3.3) and Ω(t) contains the gyroscope measurements (Equation

3.2). Projections of the parent limbs’ angular velocity onto the local reference frame are

added to produce measurements with multiple moving segments.

Ċ(t) = C(t)Ω(t) (3.1)

Ω(t) =


0 −ωbz(t) ωby(t) 0

ωbz(t) 0 −ωbx(t) 0

−ωby ωbx(t) 0 0

0 0 0 0

 (3.2)

C(t) = Rz(t)Ry(t)Rx(t) (3.3)
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Rx(α(t)) =


1 0 0 0

0 cos(α(t)) −sin(α(t)) 0

0 sin(α(t)) cos(α(t)) 0

0 0 0 1



Ry(β(t)) =


cos(β(t)) 0 sin(β(t)) 0

0 1 0 0

−sin(β(t)) 0 cos(β(t)) 0

0 0 0 1



Rz(γ(t)) =


cos(γ(t)) −sin(γ(t)) 0 0

sin(γ(t)) cos(γ(t)) 0 0

0 0 1 0

0 0 0 1


II.2.2 Accelerometer Measurement Model

The accelerometer signal consists of linear acceleration and gravity. Linear acceleration can

be achieved by the second order differentiation of the position while gravity is a constant in

one axis. Adding these two components together, we can then project it back into the local

frame using gyroscope orientation information.

II.2.3 Data Smoothing

The basic problem with this dataset along with most other camera data is inaccuracy on the

cm scale (e.g., the KINECT has similar resolution issues). With rapid sampling of 120Hz,

such random position errors produce large apparent accelerations with double differentiation.

Thus, a smoothing technique is required to compensate the large gain on high frequency

caused by the double-differentiation. We have identified the locally weighted scatterplot
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Figure 3.3: Effect of LOWESS function. Double differentiation (virtual accelerator measure-
ment ) of (a) smoothed and (b) unsmoothed raw camera data.

smoothing (LOWESS) [53] as a suitable smoothing function for the CMU MoCap dataset

through a test-bed platform (more details in the later section) we developed. Instead of spec-

ifying a function to fit a model to all of the data in the sample, LOWESS has the advantage

that it only requires very few arguments (i.e., a smoothing parameter value and the degree

of the local polynomial.) Moreover, LOWESS is well-suited for modeling complex processes

for which no theoretical models exist. These advantages combined with the simplicity of

the method, make LOWESS a suitable smoothing algorithm for our application. Fig. 3.3

indicates that the LOWESS smoothing procedure attenuates the noise in position data and

yields better results for double differentiation.
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III Experiments and Results

In order to develop the proposed virtual sensor algorithm, we need both the video and inertial

data for validation purposes. Since the CMU motion data base contains only video data, we

developed a test-bed platform to collect synchronized motion data. We verified our virtual

sensor algorithm over the synchronized motion data and then applied the algorithm to the

CMU MoCap database.

III.1 A Test-bed Platform for Algorithm Verification

We integrated the Microsoft KINECT (Fig. 3.4) and inertial sensors to create a test-bed

platform for algorithm validation. KINECT is an affordable camera system that can provide

the position and orientation of 21 joints on the human body. Compared with the Vicon

system, KINECT has similar accuracy in position and acceptable accuracy in orientation.

This is enough for the purpose of algorithm development.

We collected synchronized motion data with KINECT and inertial sensors. We then

applied various smoothing algorithms to KINECT data and derived the virtual inertial

measurements. The resulting virtual inertial measurement was compared with the actual

measurements of the inertial sensors. With this test-bed platform, we were able to validate

the virtual sensor algorithm and search for a suitable smoothing function.

III.2 Collecting Synchronized Data using KINECT and Inertial Sensors

To collect synchronized motion data, we attached inertial sensors on the subject’s upper

limb and asked the subject to perform several predefined motions in front of the KINECT.

Fig. 3.5 shows the experimental setup. Fig. 3.6 and Fig. 3.7 show the examples of actual

and virtual inertial measurements generated from this test-bed platform. In the example,

the subject attached a sensor on his right wrist, and drew five circles in the air with pauses.

The smoothing function applied in this example is LOWESS. The result shows that both
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Figure 3.4: Microsoft KINECT controller
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Figure 3.5: Experimental setup of the test-bed platform.

the virtual gyroscope and accelerometer measurements are not satisfactory without applying

the smoothing function on the camera data. However, with the smoothing function applied,

there is a high similarity between the virtual and actual acceleration. The virtual and actual

gyroscope measurements have less agreement, although they share the same periodicity. The

lesser similarity is possibly due to the software and hardware limitation of the current version

of KINECT in detecting the orientation; we expect a better performance in the next version

of KINECT.

III.3 Further Validation with the Vicon System

We’ve verified our algorithm via the Kinect test-bed platform. However, the Kinect and

Vicon camera system have different noise profiles. As as result, we need to further verify

the proposed algorithm with the Vicon system. We conducted experiments in the Gait and
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Figure 3.6: Result of the virtual accelerometer measurement from the test-bed platform.
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Figure 3.7: Result of the virtual gyroscope measurement from the test-bed platform.

51



Figure 3.8: Gait and motion analysis lab

Motion Analysis Lab at the UCLA Rehab center (Fig.3.8). Our plan was to collect syn-

chronized motion data from both the body-mounted inertial sensors and the Vicon system,

and then compare those two measurements. We attached IMU sensor on both feet of the

subject and asked the subject to perform several pre-defined movements while the Vicon

system was recording. We applied the proposed algorithm to the Vicon system’s data and

converted them to a virtual inertial measurement. Results showed that the virtual inertial

measurement derived form the Vicon system matched the measurement from the inertial

sensors very well. Fig. 3.9 shows one set of results of the experiment. The agreement of the

IMU and Vicon data further confirms the validity of our proposed algorithm.
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Figure 3.9: Results: Gait and Motion Analysis Lab
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Figure 3.10: Virtual acceleration derived from CMU MoCap with LOWESS smoothing

III.4 Results of the Proposed Algorithm on the CMU Data

The experiment results from the test-bed platform support the validity of our virtual sensor

algorithm and indicate that LOWESS is a good candidate for the smoothing function. We

utilized Matlab’s LOWESS smoothing function with smoothing parameter set to 0.02 and a

first-order polynomial as the regression function. We then applied the same algorithm to the

CMU MoCap data and derived the virtual acceleration. Fig. 3.10 and Fig. 3.11 show that

both the virtual acceleration on the calf and thigh shows clear periodicity. These results

further indicate that the proposed virtual sensor approach is feasible and that the test-bed

platform is an efficient tool for searching suitable smoothing functions.

Based on what we learned form previous experiments, we cooperated with a group of

EE180D students and developed a Matlab toolbox (Fig. 3.12). The toolbox can systemati-

cally generate VIM from the MoCap database. It can also simulate sensors at 30 locations

with arbitrary orientation errors.

IV Conclusion

In this study, the virtual inertial sensor measurement was successfully derived from an ex-

isting MoCap database. A test-bed platform for algorithm verification was also developed.

With the data processing and sensor measurement models developed in this research, we are
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Figure 3.11: Virtual gyroscope measurements derived from CMU MoCap with LOWESS
smoothing

Figure 3.12: Matlab Toolbox: Virtual Inertial Measurement
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able to generate various virtual sensor measurements from the motion database.

Future work includes further validation of the feasibility of the proposed approach with

synchronized MoCap system and inertial sensor data, followed by systematic derivation of

virtual sensor measurements from the CMU MoCap database. With this sensor simulation

in hand, we can emulate sensor impairments as follows: orientation error can be represented

by multiplying a rotation matrix; position error can be modeled by changing the coordinate

values in the local frame. Combining with real data from human trials, we can further

derive a measurement noise model and adjust the robust inference algorithms accordingly to

enhance its performance when applied on real data.

Remarks Now, we know that the Kinect can provide low-cost ground truth. Can we

leverage this powerful tool? In the next project, we use the Kinect’s measurement as the

ground truth to detect and compensate IMU misplacement errors.
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CHAPTER 4

Opportunistic Calibration of Sensor Orientation using

the Kinect and Inertial Measurement Unit Sensor

Fusion

I Introduction

While wireless motion sensors, including accelerometers, gyroscopes and magnetometers,

have been proven to be a low-cost, small-size, and highly-mobile option [54] [55] for human

motion tracking and activity classification, sensor misplacement is an important issue that

needs to be taken into account when deploying such systems in the real world. This placement

error will degrade performance in motion classification and motion reconstruction. However,

most research assumes that sensor placements are well-defined and fixed over time [56].

These assumptions are impractical in many medical settings, since patients and clinicians

may not always follow instructions to place sensors correctly, and the sensor position may

also change over time due to attachment issues.

Attempts to solve sensor misplacement issues can be categorized into two approaches:

(1) finding orientation-invariant features [57] [58] [59] such as power spectral density or the

Fourier transform, and (2) calibration through a series of pre-defined gestures or move-

ments [60]. While the first approach could be successful for classification problems, they

cannot provide detailed motion inference such as motion tracking or motion reconstruction.
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The second approach might have limited application in the medical context due to the fact

that it requires certain problem-specific calibration motions to be performed. In reality, we

cannot rely on patients to perform such calibration motions, especially when the calibration

is complicated. Wu et al. [61] proposed an orientation calibration method based on oppor-

tunistic repetitive motions without the requirement of pre-defined movements. However,

this approach requires a training process to collect repetitive motion signatures, and hence

it is limited to the lower body. To address the above-mentioned deficiencies, we propose

a novel calibration process based on sensor fusion using the Microsoft Kinect and inertial

measurement unit (IMU) sensors. The goal of this study is to provide reliable motion data

in real-time, without the requirement of calibration activities, training processes and careful

placement of the wearable sensors.

The remainder of this chapter is organized as follows: in Section II, we will provide

background information on acquiring motion inference using IMU sensors and the Kinect.

Different types of sensor misplacement will also be discussed. In Section III, the system

architecture and each functional block will be presented. Finally, system verification and

an example that demonstrates orientation calibration for trajectory reconstruction will be

explained in Section IV.

II Technical Background

II.1 Motion Inference with IMU Sensors

Acquiring motion inference from IMUs has been of interest in the medical community for

many years. Many approaches [29] [30] exploit features from IMU data to achieve motion

classification. Others focus on motion tracking [62] [63] and utilize various techniques to

extract position and rotation information. While high-end IMUs can provide reliable mea-

surement, they are not suitable for large deployments due to costs. On the other hand, low

cost accelerometers are non-ideal as they are too noisy for double integration to produce
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reliable position estimates, even when orientation is perfectly known. Low cost gyroscopes

have low error with appropriate filtering. Drift can be overcome if they are reset based on

identified events (e.g., stance phase of walking). In addition to measurement noise, sensor

misplacement problems are common in at-home motion tracking. In this research, we used

the MUP-9250 motion sensor from InvenSense to explore sensor misplacement issues. The

sensor board is Bluetooth enabled and can provide 9-axis inertial data, which includes 3-axis

accelerometer, gyroscope and magnetometer.

II.2 Motion Tracking with the Kinect

The Kinect 2.0 is a motion-tracking device developed by Microsoft. It can track up to 6 full

skeletons in the view of its camera. For each skeleton, 24 joints are defined and the positions

and orientations can be tracked. The Kinect is also able to track the orientation of each joint

and output rotation quaternions with respect to the earth frame. In addition to tracking

joints, the Kinect is able to distinguish hand gestures in the following categories: inferred

(not tracked), closed/open hand, lasso, and unknown. The Kinect uses the orientation of

the thumb to help it track the wrist orientation. When the hand is open, a green circle is

drawn around the hand as illustrated in Figure 4.1. When a joint is inferred, the color of the

joint becomes yellow and the corresponding bone is drawn by a gray line instead of a bold

green line. As shown in Figure 4.1, the hands are open and the right foot is obscured.

Since the Kinect’s tracking algorithm has been trained with a large amount of data, it

provides highly accurate motion inference that can be considered as the ground truth [64].

However, the subject must be in front of the Kinect at all times due to the nature of its

camera-based motion tracking. In addition, the joints positions will contain spontaneous

jittering due to noise and inferred tracking states. Hence, inferred joints are less reliable than

visible joints. When using the Kinect’s data as the ground truth, appropriate smoothing and

filtering should be applied. In this research, we used the Kinect’s position and orientation

data to derive virtual acceleration as the ground truth. We also relied on joint’s tracking
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Figure 4.1: An example of skeleton tracking.

states and hand gestures to select calibration data.

II.3 Sensor Misplacement

Although misplacement has different forms, [61] shows that all misplacement within a limb

can be decomposed into the 3 cases shown in Figure 4.2, if we model a limb as a thin cylinder

and assume a sensor is always placed such that the x-y plane is firmly attached to the limb.

Misorientation is defined as when a sensor is placed at the correct position but with some

rotation around the z-axis (Figure 4.2(a)). In this case, signals at the z-axis are invariant.

Therefore, a rotation matrix in the x-y plane is sufficient to model this distortion. In a

rotational displacement case (Figure 4.2(b)), since the limb is modeled as a thin cylinder,

the displacement between the correctly placed sensor and the incorrectly placed sensor is

negligible. As a result, signals for the x-axis and z-axis can be modeled by a rotation

transformation, and signals for the y-axis are invariant. In the case of linear displacement

(Figure 4.2(c)), the orientation of the sensor is unchanged and only y-axis translation exists.

In this research, we aim to address misplacement with a combination of the first two cases.
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Figure 4.2: Definition of sensor misplacement. (a) Misorientation (b) Rotational Displace-
ment (c) Linear Displacement

II.4 Kinect-IMU Calibrator Application

We developed the Kinect-IMU Calibrator application to detect and compensate for sensor

misplacement. This application is capable of recording and visualizing motion data from both

the Kinect and IMUs, identifying the calibration window, calculating correction quaternions,

and applying correction to misplaced IMUs. Figure 4.3 shows a snapshot of the user interface.

III Method

III.1 System Architecture

Figure 4.4 shows the overall architecture of our system. The system receives real-time iner-

tial data from body-mounted IMUs with some degree of orientation error. This orientation

error is due to the compliance issue that the subject did not place IMUs on the nominal

position that was instructed. Thus, the measurement is distorted. Once the subject appears

in front of the Kinect and the Kinect identifies the subject’s skeleton with high confidence,

the calibration process is triggered. The system then collects a short segment of joint po-

sition data and generates corresponding virtual inertial measurements for calibration. By
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Figure 4.3: The user interface of the Kinect-IMU Calibrator.

comparing such virtual inertial measurement with the actual inertial measurements from the

IMUs, misplacement can be detected and compensated behind the scenes. Details of each

functional block will be discussed in the following sections.

III.2 Virtual IMU Algorithm

The Kinect reports position and orientation data for any joint, which serves as the ground

truth for motion inference. In order to compare this ground truth with the actual inertial

measurement from the IMUs, the position data must be converted to a comparable form

such as virtual acceleration.
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Figure 4.4: System architecture

III.2.1 Double Exponential Smoothing

Since the position data from the Kinect contains jittery noise, without proper data smooth-

ing, such noise will be hugely amplified during the double differentiation in the next step.

Double exponential smoothing is chosen because of its simplicity and low latency compared

with other existing algorithms [65] [66]. Double exponential smoothing is accomplished by

use of Eq. 4.1-3, where yt represents the input raw data and St represents the smoothed

data.

St = αyt + (1− α)(St−1 + bt−1), 0 ≤ α ≤ 1 (4.1)

bt = β(St − St−1) + (1 + β)bt−1, 0 ≤ β ≤ 1 (4.2)

S0 = y0; b0 = y1 − y0 (4.3)
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To determine the smoothing parameters [α, β] for our system, we collected a short segment

of motion data using the IMU and Kinect. A data set that contains five repetitions of hand

waving was recorded by the Kinect and correctly placed IMU at the wrist. The position data

from the Kinect was first smoothed with different smoothing parameters and then converted

to virtual acceleration data. The optimal [α, β] were determined by an exhaustive search in

increments of 0.01 for each parameter for the combination that minimized the error between

the correctly placed IMU’s acceleration reading and the virtual acceleration in a least-square

sense. As a result, we chose [α, β] = [0.35, 0.53] for our system.

III.2.2 Generating the Virtual Acceleration

The smoothed position data was differentiated twice with respect to time and yielded the

virtual linear acceleration. In order to generate the virtual acceleration that is comparable to

the IMU’s measurement, a virtual gravity vector was added to the virtual linear acceleration.

Since the position data and virtual acceleration are both in the Kinect’s reference frame,

it is required to transform the measurement from the Kinect’s frame to the frame of the

correctly placed IMU. For each joint, the Kinect reports a rotational quaternion with the

Kinect’s frame as the reference. The correct sensor position is given and can be represented

by a rotational quaternion qCorrect IMU
Kinect joint with the a specific joint’s frame as the reference.

Thus, the virtual acceleration can be transformed to the frame of the correctly placed IMU:

qCorrect IMU
Kinect ref = qCorrect IMU

Kinect joint ∗ q
Kinect joint
Kinect ref

accCorrect IMU = qCorrect IMU
Kinect ref ∗ accKinect ref ∗ qKinect IMU

Kinect ref

−1

III.3 Orientation Calibration

The orientation calibration process opportunistically compared the virtual acceleration with

the actual IMU data, detects mis-orientation and provides compensation.
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III.3.1 Identity Calibration Windows

When the Kinect detects a subject in its view, the calibration process is triggered. A

buffer will cache 2 seconds of high quality synchronized data for both the actual and virtual

acceleration. Since a patient would have the sensor in the same position for a relatively long

period of time and the calibration only needs a small amount of data, we can be very selective

about the data that we record to be used in the calibration algorithm. We implemented a

cherry-picking filter for data quality assurance, which passes data only when the Kinect

provides reliable measurements. To be considered as reliable data, the Kinect should have

an unobstructed view of the joint of interest and identify the joint as being tracked. In some

cases, the Kinect does not have a clear view of a limb and may report inferred position of the

limb, which is not an accurate measurement of the actual position. If the Kinect is inferring

or not tracking the position of the limb, then that data is not recorded in the buffer.

While the Kinect reports tracking state quite accurately, we noticed that in some cases,

the tracking state might be misleading and a tracked joint does not necessarily yield high

quality data. For example, the orientation of the wrist joint can only be accurately deter-

mined when the thumb is also visible. This provides an additional constraint to improve

the quality of the recorded data. If the limb being tracked is the right wrist, we only record

the data when the thumb is tracked and the hand is an open gesture. This ensures that

the Kinect can more reliably determine the orientation of the wrist for calibration. Figures

4.5 and 4.6 show a comparison of when the Kinect can determine the current rotation of

the wrist. In our experiments, we also observed that high acceleration tends to produce

unreliable calibration results. Hence, if either the virtual or actual acceleration is above 15

m/s2, we do not record that data into the buffer.
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Figure 4.5: Open hand: the wrist orientation can be reliably determined.

III.3.2 Calibration and Compensation

Once the calibration buffer is full, the system is ready to determine the orientation offset.

By examining the angle of acceleration vectors between the virtual and actual acceleration,

the orientation error of IMU sensors can be identified and thus compensated. In order

to find the rotation from the actual acceleration vector (IMU) to the virtual acceleration

vector (Kinect), we first acquire the axis of rotation by taking the cross product of the two

vectors. Then, the rotation angle is found by taking the inverse cosine of the dot product

of the two normalized vectors. The axis of rotation and rotation angle gives the axis-angle

representation of the rotation from the actual to virtual acceleration vectors. To convert from

an axis-angle representation to rotation quaternions, the following equations are used [67],

where (x, y, z) is the rotation axis, angle is the rotation angle, and (qw, qx, qy, qz) is the

equivalent rotation quaternion vector.

qw = cos (angle/2)

qx = x ∗ sin (angle/2)
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Figure 4.6: Closed hand: the wrist orientation cannot be reliably determined.

qy = y ∗ sin (angle/2)

qz = z ∗ sin (angle/2)

A typical 2-second calibration window contains about 60 such rotation quaternion vectors.

After taking the average of these vectors, we get a single quaternion vector which represents

the orientation error. Finally, this rotation quaternion vector can be used to calibrate sensor

orientation either in real-time or offline. Given a rotation quaternion q that describes the

rotation of the acceleration vector from a wrongly placed sensor (at orientation O1) to the

correctly placed sensor (at orientation O1), we can calibrate the sensor orientation as follows:

[0, aO1] = q ∗ [0, aO2] ∗ q−1, where aO2 and aO2 are the acceleration measurements from the

wrongly and correctly placed sensor, respectively.

IV Results

To verify our system, we designed the experiment setup as follows. We defined the correct

sensor orientation O1 at the right wrist as shown in Figure 4.7. An IMU sensor was attached

on the subject’s right wrist with orientation O2, which might have been different than O1

67



due to placement error. We asked the subject to perform some activity without being tracked

by the Kinect and then appear in front of the Kinect for a short amount of time until the

Kinect finished the calibration process.

Figure 4.7: IMU placement with correct sensor orientation O1 at the wrist joint.

IV.1 Virtual Acceleration as the Ground Truth

It is important to verify that the virtual acceleration provided by the Kinect is reasonably

accurate enough to simulate the acceleration measurement from a correctly placed IMU

sensor on the wrist. We placed 1 sensor at the correct orientation O1, and compared the

acceleration reading with the virtual acceleration from the Kinect. Figure 4.8 shows both

the actual and virtual x-axis acceleration readings for hand waving motions. As expected,

these two acceleration measurements matched very well. This indicates that the virtual

acceleration from the Kinect can serve as a reasonable ground truth to simulate correctly

placed IMU sensors.

Since the IMU sensor is in the correct orientation, we expect the calibration process to

report the rotation quaternion that describes the rotation from acccorrect to accvirtual to be

close to an identity rotation quaternion, which is [qw, qx, qy, qz] = [1, 0, 0, 0]. We performed 2

trials of calibration, and the results are listed in Table 4.1. As expected, for both trials, the

rotation quaternions were close to the identity rotation quaternion. Therefore, this indicates

that the calibration works for the case where the sensor is approximately placed in the correct
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orientation.

Table 4.1: Calibration results for the correctly placed sensor
qw qx qy qz

Trial 1 0.992 0.004 0.050 0.110
Trial 2 0.994 0.032 0.049 0.086

IV.2 Calibration Results from Misplaced IMU and Virtual Acceleration: (Sen-

sor Recovery Result)

IV.2.1 Compensated Misplaced IMU vs. Virtual Acceleration

The calibration data that describes the rotation between the raw IMU sensor data and the

virtual acceleration data were in the form of rotation quaternions. If we apply such rotation

quaternions to the raw IMU sensor data, we could expect that the rotated (rectified) IMU

sensor data will match the virtual acceleration data.

To verify this, we placed a sensor at the subject’s right wrist with some incorrect orien-

tation. The subject first performed some motion activity and then appeared in front of the

Kinect to trigger the calibration process. The application recorded both the raw IMU accel-
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eration and virtual acceleration, and reported the calibration result in the form of a rotation

quaternion. We applied the rotation to the raw IMU sensor acceleration and compared it to

the Kinect’s virtual acceleration data. We verified the compensation in two different cases:

stationary activity and motion activity.

For the first case, the subject stood still so the data contains only gravity. As shown

in Figure 4.9, the rotated acceleration data matched the Kinect’s virtual acceleration data.

For the second case, the subject perform repeating movements. As shown in Figure 4.10,

the rotated acceleration data also matched the Kinect’s virtual acceleration data. We had

3 subjects performe this calibration process for 5 trials, and we got similar results that

the algorithm is able to compensate the misplaced IMU. Note that sensor orientations are

arbitrary among subjects, and the orientations stayed the same during trials 1 to 5 for a

single subject. Table 4.2 shows the rotation quaternions calculated from the calibration

process for each subject and each trial, and the results are consistent among trials for a

single subject. Therefore, we conclude that the calibration process produces reliable results.

IV.2.2 Rectified Misplaced IMU vs. Correctly Placed IMU

To further verify the accuracy of the calibration mechanism, we placed two sensors at the

subject’s right wrist with different orientations. One sensor was placed with a correct ori-

entation O1, and the other was placed with an incorrect orientation O2. The sensor with

orientation O1 provided a baseline for evaluation purposes. Figure 4.11 shows an example

configuration of the two sensors. Ideally, when the calibration result is applied to the data

from the incorrectly placed sensor, the compensated data should match the data from the

correctly placed sensor.
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Figure 4.9: Comparison of the rectified and virtual acceleration data. (stationary)

Figure 4.11: Image of the two-sensor experiment setup.

We attached two sensors on the subject’s right wrist as described above, instructed

the subject to perform some random movements, and collected data from both sensors at

the same time. Then, without moving the two sensors, we used the application to obtain
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Figure 4.10: Comparison of the rectified and virtual acceleration data. (motion)

the calibration results in the form of a rotation quaternion. We then applied the rotation

quaternion to the data from the incorrectly placed sensor and compared it with the data

from the correctly placed sensor.

In one trial, we applied the rotation quaternion that we obtained from the calibration

results to the incorrectly placed sensor accelerations and compared them with the other

accelerations. Figures 4.12 shows comparisons among the incorrectly placed sensor acceler-

ations, rectified sensor accelerations using the rotation quaternion, and the correctly placed

sensor accelerations. As shown in these figures, the rotated data matched well with the

correct data for all 3 axes. The results that were obtained from other trials that are not
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shown were consistent with the results for the trial that are described here. Therefore, we

conclude that the calibration results from the calibration process is accurate.

IV.3 Example Application: Orientation Compensation for Upper Body Trajec-

tory Reconstruction

We designed an example to demonstrate an application of the proposed calibration method.

The goal was to reconstruct trajectories of the wrist joint using a misplaced IMU. Trajectory

reconstruction was achieved using the approaches described in [68] with zero-velocity update

[69] for sensor drift compensation.

Two sensors were mounted at the subject’s right wrist. One was attached at the correct

position shown in Figure 4.11 to serve as a baseline for comparison, and the other one at

an arbitrary orientation and rotational displacement. The subject was instructed to use his

right wrist to trace a mark of a 30x30 cm square on a table. After the drawing was done,

the subject walked into the Kinect’s view and triggered the calibration process while the

attachment of sensors remained unchanged. We then rectified the data of the misplaced

sensor and reconstruct trajectories. Here we defined the positive directions of x, y, and z

to be the right, front, and up directions of the subject, respectively. Figure 4.13 and 4.14

show the reconstructed trajectories for two different cases of misplacement. In both cases,

the reconstructed trajectories of the rectified sensor matched fairly well with the correctly

placed sensor.

V Conclusions

In this research, we demonstrate a system that can fuse the Kinect and IMU data to achieve

opportunistic calibration of sensor orientation. We considered sensor misplacement cases

with the combinations of misorientation and rotational displacement. We verified the validity

of the proposed system by comparing acceleration measurements between rectified sensors
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Figure 4.12: Comparison of the original, rectified and correct accelerations for the x-axis,
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Figure 4.13: Trajectory reconstruction with sensor misplacement: 45 degrees misorientation
around z.

and correctly placed sensors. We also showed an example of trajectory reconstruction with

misplaced sensors. The results indicate that our system can detect and rectify misplaced

sensors well.

Since there are no specific calibration postures or activities required during the calibra-

tion, this system is practical for deploying outside the lab environment. The outcomes of

this research will facilitate ground-truth collection in the clinic, and also provide reliable

motion inference for health monitoring in the community. Our study was however limited

to healthy subjects. In the future, we plan to investigate performance with patients in both

clinical and home settings.
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Remarks Earlier in this chapter, we mentioned that there are two types of sensor uncer-

tainties: sensor misplacement and sensor drift. Here we’ve provided a solution for sensor

misplacement, what can we do about sensor drift? We answered this question in Chapter

5, where we proposed a sensor fusion approach that deals with sensor drift for upper limb

motion tracking.
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CHAPTER 5

Robust Upper Limbs Motion Tracking using Sensor

Fusion of the Leap Motion Controller and IMUs

I Introduction

Upper body motion tracking is especially a top priority in health care, since it provides

crucial inference to assess the mobility of hands and digits with musculoskeletal and neural

disorders [70].

Much research has been conducted to enable robust trajectory reconstruction for up-

per limbs, and two of the most common sensing technologies are: (1) Vision-based system

and (2) MEMS inertial sensors. Vision-based systems include the Vicon system, Microsoft

Kinect, and Leap Motion controller. In [71], the Vicon system was used to study upper limb

kinematics for hemiparetic stroke. In [72], the Kinect camera was used to evaluate upper

extremity reachable workspace. These devices provide accurate tracking results, but they

either suffer from limited tracking range or are too expensive to be deployed outside of lab

settings.

On the other hand, MEMS inertial sensors are lightweight, portable and can be deployed

outside of the lab environment for remote motion tracking. However, without precautionary

measures, sensor drift will degrade tracking results. In [55], orientations of joints were esti-

mated using kinematic models and unscented Kalman filters under slow and fast motions.

However, the results were limited to simple arm movements. In [54], a continuous-wavelet-

transform based method was performed to analytically integrate accelerometer data to avoid
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integration drifts when integrating numerically. However, subjects in that study only per-

formed motions slowly, and some reconstructed patterns are only recognizable rather then

accurate.

In this research, we use complementary filters to fuse trajectory estimates from the Leap

Motion controller and IMUs to reconstruct upper limb trajectory. Our goal is to estimate

the trajectory of the upper limbs at any given moment with high accuracy.

The remainder of the chapter is organized as follows: in Section II, we will provide

background information on acquiring motion inference using IMU sensors and the Leap

Motion controller. Sensor fusion using complementary filters will also be discussed. In

Section III, the system architecture and each functional block will be presented. Finally,

experiment design, verification and trajectory reconstruction will be explained in Section

IV.

II Technical Background

II.1 Motion Inference with IMU Sensors

Acquiring motion inferences from IMUs has been of interest in the medical community for

many years. Many approaches [29] [30] exploit features from IMU data to achieve motion

classification. Others focus on motion tracking [62] [63] and utilize various techniques to

extract position and rotation information. While high-end IMUs can provide reliable mea-

surement, they are not suitable for large deployments due to costs. On the other hand,

low-cost IMUs have scalability but they provide non-ideal measurements. For example, a

low-cost gyroscope has floating bias and thus the orientation estimate will drift over time.

A common approach to reconstruct a motion trajectory from an IMU is to remove gravity

from the acceleration and doubly integrate the dynamic acceleration. Since the orientation

estimate from a low-cost gyro is not accurate, the gravity component cannot be perfectly

removed from the acceleration measurement. As a result, the residual of the gravity compo-
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nent will be greatly amplified during the double integration process, and yields tremendous

drift.

The zero-velocity update (ZUPT) is a commonly used technique to eliminate this drift

[69]. However, this process cannot perfectly remove the velocity drift because there are

uncertainties in detecting zero-velocity windows. As a result, the trajectory estimates from

low-cost IMUs will still drift over time.

In this research, we use the InvenSense MUP-9250 motion sensor to calculate position

estimation. The sensor board is Bluetooth enabled and can provide 9-axis inertial data,

which includes 3-axis accelerometer, gyroscope and magnetometer.

II.2 Motion Tracking with the Leap Motion

The Leap Motion controller is a motion-tracking device developed by Leap Motion. It was

designed as a gesture controller for computers. The device uses two monochromatic IR

cameras and three IR LEDs to observe a roughly hemispherical area, to a distance of about

2.5 to 60 cm. It can track hands, fingers and finger-like tools, and report discrete positions,

gestures and motion.

Since the Leap Motion controller’s tracking algorithm has been trained with a large

amount of data, it provides highly accurate motion inference that can be considered as the

ground truth. In [73], the overall average accuracy of the Leap controller was shown to be

0.7 millimeters. Compared with the Microsoft Kinect, the Leap Motion controller is more

suitable for our application since it provides more precise motion tracking for upper limbs.

However, the Leap Motion controller also has some limitations. Due to the nature of its

camera-based tracking approach, the joint being tracked must be in the view of the device

at all times. In addition, the joints positions will contain spontaneous jittering noise due

to inferred tracking states. Hence, inferred joints are less reliable than visible joints. The

device reports a score in the range of 0 to 1 to represent the confidence level of tracking
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states for each frame.

In this research, we use the Leap Motion controller’s position and orientation data to

estimate trajectories of joints of upper limbs. We also rely on the confidence score of tracking

states for sensor fusion.

II.3 Sensor Fusion and the Complementary Filter

In real-time motion tracking applications such as flight navigation or robotics orientation

estimation, the complementary filter is often used for its simplicity and efficiency [74] [75].

It fuses multiple estimation measurements that have noise of complementary spectral char-

acteristics [76].

For example, we can estimate the orientation of the sensor either using accelerometers

and magnetometers, or integrating the gyros. However, the result would suffer from long-

term drift when integrating the gyros, and instantaneous noise when using accelerometers

and magnetometers to estimate orientations. A complementary filter can be used to filter the

orientation estimation using accelerometers and magnetometers with a high-pass filter, and

the orientation estimation using gyros with a low pass filter. We then sum up the two filtered

signals to remove the corresponding noises and achieve a better estimate of orientation.

In this research, we apply the complementary filter to fuse trajectory estimates from the

Leap controller and the IMU.

III Method

III.1 System Architecture

Figure 5.1 shows the overall architecture of our system. The system receives real-time inertial

data from body-mounted IMUs and joint positions from the Leap Motion controller. We first

derive trajectory estimates from the IMU data, and then perform a rigid transform to match
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Figure 5.1: System architecture

the Leap’s coordinate system. After signal synchronization, a complementary filter fuses the

trajectory estimates from the IMU and Leap, and reconstructs robust trajectory estimates.

Details of each functional block will be discussed in the following sections.

III.2 Hardware Setup

We designed a 40 x 30 x 12 (cm) box with a piece of transparent acrylic on the top (Figure

5.2) to hold the Leap Motion controller. The controller sits at the center of the bottom of

the box and has clear view above the acrylic surface. There is a 20x20 (cm) ground truth

square marked on the acrylic surface, and its center has been calibrated to be aligned with

the Leap Motion controller’s origin.

III.3 Signal Processing

III.3.1 IMU Trajectory Reconstruction

The IMU reports acceleration and angular velocity in the IMU’s body frame. It also reports

rotation quaternions that describe the rotation between the initial orientation and current

orientation. Using this information, the acceleration measurement is first rotated back to

the initial coordinate frame, and then the gravity component can be removed. We apply

82



Figure 5.2: Leap sensing platform

ZUPT and double integration to get the reconstructed trajectory.

Figure 5.3 (IMU) shows an example of reconstructed trajectory of square drawings at nor-

mal speed. In most cases, ZUPT provides reliable results if stationary periods are correctly

detected and thus allows drift cancelation. However, if the motion is fast and stationary

periods cannot be clearly identified, drift will build up. Figure 5.4 (IMU) shows the recon-

structed trajectory of square drawings at fast speed.

III.3.2 Rigid Transformation

Since the initial relative orientation between the IMU and the Leap can be arbitrary, it is

necessary to transform them to the same coordinate system for further analysis. We assume

that the Leap controller is physically fixed and thus is our reference coordinate. During the

training process, the subject moves his wrist and follows the square marked on the box for

three repetitions. Given the training data, we calculate a rigid transform [77] which translates
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the IMU’s trajectory estimations from the IMU’s initial frame to the Leap’s reference frame.

III.3.3 Synchronization and Interpolation

We rely on an external signature for synchronization, since there is no handshake communi-

cation between the Leap Motion controller and the IMU. At the beginning and the end of

each measurement sessions, we ask the subject to lift his/her hands and tap the box for three

times to serve as significant signatures in the collected signals, which helps us to align the

measured data. The IMU used in this research is configured with a 200 Hz sampling rate,

whereas the Leap Motion controller has frame rate that varies from 20 to 200 fps depends

on the user’s settings and available computing power. Thus, linear interpolation is used to

deal with missing data of the Leap Motion controller.

III.3.4 Complementary Filter Sensor Fusion and Parameters Tuning

For our system, there are two types of trajectory estimates that have noise with comple-

mentary spectral characteristics. The trajectory estimate from the IMU sensors is accurate

in the short term but will suffer from long term drift. On the other hand, the Leap Motion

controller is immune from long term drift but has spontaneous jittering noise. In order to

remove the corresponding noises, we use the complementary filter to filter the IMU’s trajec-

tory estimates with a high-pass filter, and the Leap Motion controller’s position estimates

with a low-pass filter. We also take the trustworthiness of the Leap’s trajectory estimate

into account when applying sensor fusion. From our experience, a data frame reported by

the Leap with confidence score higher than 0.1 is considered as useable data. If the Leap’s

trajectory estimate is useable, Eq. 5.1 is applied for sensor fusion. Otherwise, Eq. 5.2 is

applied.

CFest.(t) = αIMUest.(t) + (1− α)Leapest.(t), 0 ≤ α ≤ 1 (5.1)
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CFest.(t) = IMUest.(t) (5.2)

To determine the optimal α for the complementary filter, we performed an exhaustive

search on the training data. We declare the optimal parameter when the mean square error

between the reconstructed trajectory and the ground truth squares is minimized.

IV Results

To verify our method, we designed the experiment setup as follows. We attached an IMU

sensor at the subject’s wrist with arbitrary orientation and asked the subject to place his/her

hand on the Leap box top. The subject first performed synchronization signature and

training patterns (three hand taps, and three square traces) before performing any of the

tasks. After that, the subject performed various pre-defined tasks and followed this by three

hand taps for synchronization signature.

IV.1 Trajectory reconstruction

In this experiment, we asked the subjects to perform 4 different tasks including 10 drawing

of squares and triangles, at both normal and fast speed. Figure 5.3, 5.4, 5.5 and 5.6 show

the reconstructed trajectory of each task from IMU’s estimation, Leap’s estimation and the

sensor fusion result of the complementary filter. The results show that the IMU’s estimation

produces a smooth trajectory but suffers from drift in fast motion. On the contrary, the

Leap’s estimation is immune from drift but contains much jitteriness, especially for those

regions with lower confidence scores. The sensor fusion result of the complementary filter

provides a nice blend of the two above-mentioned estimations. Table 5.1 shows the mean

square error of reconstructed trajectory for each method, where the error is defined as the

difference between reconstructed patterns and the ground truth.
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Figure 5.3: Reconstructed trajectory: square
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Figure 5.4: Reconstructed trajectory: square (fast motion)
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Figure 5.5: Reconstructed trajectory: triangle
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Figure 5.6: Reconstructed trajectory: triangle (fast motion)
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Table 5.1: Mean Square Error (in cm)
IMU Leap Complementary

Square 2.24 2.56 2.54
Square (fast) 83.71 2.91 2.85

Triangle 1.21 1.45 1.39
Square (fast) 1159.29 3.76 4.32
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Figure 5.7: Simulation of Leap blocking: 0%

IV.2 Trajectory Reconstruction with Leap Blocking

In the real world scenario, trajectory estimates from the Leap Motion controller might be

unavailable due to obstructions or exceeding the sensing range. To verify whether our system

can handle this situation, we designed an experiment to simulate Leap blocking. Instead of

physically blocking the view of the Leap Motion controller, we did a simulation by setting

a portion of the confidence score to zero. We corrupted the Leap Motion controller’s data

in steps of 10% starting from 0% to 90% and examined the error between our reconstructed

trajectory and the ground truth. Figure 5.7 shows the confidence score of a motion segment

where the wrist was always in the sensing range, while Figure 5.8 is a simulation of blocking

happening 40 % of the time.

Figure 5.9 and 5.10 shows the reconstructed trajectories for 0% and 40% blocking. The

87



0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation of Leap Blocking: 40% 

Sample Indices

L
e
a
p
 c

o
n
fi
d
e
n
c
e
 s

c
o
re

 

Figure 5.8: Simulation of Leap blocking: 40%
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Figure 5.9: Reconstructed trajectories (0% Leap blocking)

results show that even with 40% blocking, the complementary filter still performs fairly well.

For each trajectory estimate with different levels of blocking, we calculated the mean square

error to the ground truth square. Results in Figure 5.11 suggest that our method can provide

better trajectory reconstruction than using the IMU or the Leap Motion controller alone.

For further validation, we reconstruct the motion trajectory with Leap blocking due to

being out of the sensing range. The subject followed a ground truth guide and moved his

wrist from the box top to the table, back and forth for 10 times. Since the Leap has limited

sensing range, no trajectory estimate from the Leap was available when the subject’s wrist

moved out of the Leap’s view. Figure 5.12 shows the Leap’s confidence score becomes zero
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Figure 5.10: Reconstructed trajectories (40% Leap blocking)
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Figure 5.11: Percentage of Leap Blocking vs. MSE

when the wrist is out of sensing range. Figure 5.13 shows the reconstructed trajectory for

three types of trajectory estimates. The IMU’s estimate provides continuous motion tracking

but contains drift, whereas the Leap’s estimate doesn’t drift but has missing data. With

the complementary filter, we effectively eliminated the drift and achieved continuous motion

tracking.
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Figure 5.12: Leap confidence score

−20 −10 0 10 20 30 40 50 60
−5

0

5

10

15

20

25

30

35

IMU 

−20 −10 0 10 20 30 40 50 60
−5

0

5

10

15

20

25

30

35

Leap 

−20 −10 0 10 20 30 40 50 60
−5

0

5

10

15

20

25

30

35

Complementary Filter

Figure 5.13: Reconstructed trajectory

V Conclusions

In this research, we present a sensor fusion approach that tracks and reconstructs upper

limb motion using the Leap Motion controller and IMUs. We also designed and conducted

experiments to evaluate the performance. The results indicate that our method provides

a solution to address the integration drift of the IMU and the blocking issues of the Leap

Motion controller.

The outcomes of this research will enable low-cost means that benefit medical profession-

als and therapists who want to analyze human motion trajectories in detail. In addition,

it can also be included in the remote monitoring system for many medical purposes, e.g.,

a medical surveillance system which keeps track of patients requiring long-term care, or a
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system to see if the patients in rehabilitation have followed doctors’ directions to exercise

for a prescribed amount of time daily. Our study was however limited to healthy subjects.

In the future, we plan to investigate performance with patients in both clinical and home

settings.
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CHAPTER 6

Conclusions and Future Research

I Research Contribution

In this dissertation, we solved a series of problems that centered at enabling robust and

large-scale human motion inference with low-cost sensors.

We started from the implementation of a real-time activity classification system that

integrates universal hybrid decision tree and context information to deal with scalability

issues. We achieved advanced classification accuracy and energy efficiency. We realized that

collecting ground truth inertial data is a burden and sought for an efficient way to acquire

data. This led us to Project 2: ”Virtual Inertial Measurements for Motion Inference in

Wireless Health”.

In Project 2, we developed the virtual inertial measurement algorithm and validated

our method through both low-cost Kinect and high-end Vicon system. We also developed

a Matlab toolbox to systematically generate virtual sensor measurements from the CMU

MoCap database. The potential of using the low-cost Kinect as the ground truth inspired

us to dive into Project 3: ”Opportunistic Calibration of Sensor Orientation using the Kinect

and Inertial Measurement Unit Sensor Fusion”.

In Project 3, we proposed an elegant solution to deal with sensor orientation issues and

verified its validity. And then, we looked beyond the sensor orientation issues and moved one

step further to deal with sensor drift in project 4: ”Robust Upper Limbs Motion Tracking

using Sensor Fusion of the Leap Motion Controller and IMUs”.
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In Project 4, we presented and validated a sensor fusion approach to achieve robust upper

limbs motion tracking. We also overcame inertial sensor drift issues and enabled continuously

motion tracking when the Leap controller has obscured view.

In conclusion, all of the 4 projects are tightly connected with my research objective:

enabling robust and large-scale human motion inference with low-cost sensors. They

all used low-cost sensors, tried to solve issues in scalability, and aimed to provide robust

human motion inference.

II Future Research

Future work exists in integration of system in above-mentioned projects to enable continu-

ous whole-body motion tracking at a residential setting and interactive guidance for rehab

exercise.

To enable continuous whole-body motion tracking at a residential setting, the following

three challenges must be addressed: model complexity, user compliance (sensor attachment)

and sensor uncertainties (drift, sensing range). Based on the current research presented in

this thesis, we have provided solutions to these challenges.

For interactive guidance for rehab exercise, the Leap motion tracking box presented in

the Project 4 would be an effective tool for rehab purposes. For example, physicians can

prescribe rehab tasks such as reaching and grasping to patients. The motion data acquired

from the Leap motion tracking box will be used to determine the quantity and quality of

rehab tasks, and then provide timely feedback to both patients and physicians.
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