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Abstract

Lagrangian and Eulerian Forms of Finite Plasticity

by

Giorgio Tantuan De Vera

Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor James Casey, Co-chair

Over the past half century, much work has been published on the theory of elastic-plastic
materials undergoing large deformations. However, there is still disagreement about certain
basic issues. In this dissertation, the strain-based Lagrangian theory developed by Green,
Naghdi and co-workers is re-assessed. Its basic structure is found to be satisfactory. For
the purpose of applications, the theory is recast in Eulerian form. Additionally, a novel
three-factor multiplicative decomposition of the deformation gradient is employed to define
a unique intermediate configuration. The resulting theory of finite plasticity contains an
elastic strain tensor measured from the intermediate stress-free configuration. The consti-
tutive equations involve the objective stress rate of the rotated Cauchy stress, which can be
expressed in terms of the rate of deformation tensor. In their general forms, the Lagrangian
theory can be converted into the Eulerian theory and vice versa. Because the Green-Naghdi
theory has a strain measure that represents the difference between total strain and plastic
strain, rather than representing elastic strain, it does not lend itself to a physically realistic
linearization for the case of small elastic deformations accompanied by large plastic defor-
mations. The proposed theory is well suited to describe this case as it can be linearized
about the intermediate configuration while allowing the plastic deformations to be large.
Differences between the linearized Green-Naghdi theory and the new theory are illustrated
for uniaxial tension and compression tests.
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Chapter 1

Introduction

1.1 The Classical Theory of Plasticity: Infinitesimal

Deformation

The origins of classical plasticity can be traced back to the experiments of Henri Tresca,
first published in 1868. He established that when metals reach a critical value of shear
stress, they begin to flow like a fluid. Thus, he introduced the first yield condition, now
called the Tresca yield condition. In 1870, Barré Saint-Venant used Tresca’s criterion to
present a set of equations for the problem of plane deformations. These are now identified
as a special finitely deforming rigid-perfectly plastic incompressible material. In the same
year, Saint-Venant’s student Maurice Lévy extended these results to the three-dimensional
case. Because of inherent mathematical difficulties, the Saint-Venant-Lévy theory had no
application for many years. In 1913, Richard von Mises, who accepted Tresca’s condition
as an experimental fact, presented a similar set of equations with a simpler yield criterion,
which involves an analytic function of the stress. The Mises yield criterion was used in the
development of equations for rigid-perfectly plastic materials, now known as Saint-Venant-
Lévy-Mises equations.

In 1924, Ludwig Prandtl established a connection between the Saint-Venant-Lévy equa-
tions for the plane problem and the description of incremental elastic behavior. In 1930,
András (Endre) Reuss extended the theory to three dimensions. Thus were born the cel-
ebrated Prandtl-Reuss equations, which give a relationship between the rate of deviatoric
stress τ and the rate of deviatoric strain γ. In modern notation, these equations can be
written as

τ̇ = 2µ

(
III − 1

2K2
τ ⊗ τ

)
γ̇, (1.1)
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where µ is the shear modulus, III is a fourth order identity tensor, and K2 is a measure of
work hardening, which is obtained from the yield criteria. The Prandtl-Reuss equations are
generally accepted over the entire range of purely elastic response to initial loading to plastic
response, provided that the deformation gradients are small. References to the original works
of Prandtl and Reuss, as well as those of Tresca, Saint-Venant, Lévy, and Mises, can be found
in [36].

Beginning in the late 1940s, William Prager provided extensions of the Prandtl-Reuss
theory. Adopting the additive decomposition of strain into elastic and plastic parts, he used
arbitrary yield functions, various flow rules and hardening rules to extend the Prandtl-Reuss
theory for infinitesimal deformations [35]. Also, in an effort to provide realistic methods of
determining safety factors and technological forming processes, Prager and P.G. Hodge ap-
plied the Prandtl-Reuss theory and the Saint-Venant-Lévy-Mises theory to perfectly-plastic
materials and solved various statically determinate problems such as the torsion of cylindrical
and prismatic bars and problems with plane plastic strain [36].

1.2 Finite Plasticity: Theories and Issues from the ’60s

A major movement of plasticity theory occurred in the 1960s. As P.M. Naghdi men-
tioned in his review paper [28] on stress-strain relations in plasticity in 1960, the foundation
of the theory of plasticity was not yet firmly in place. The scope of the various survey papers
at the time were different and the points of view of different authors did not agree with each
other.

Then in 1965, with the theory of nonlinear elasticity completely available to them,
Green and Naghdi formulated a general thermodynamical theory of finite plasticity [18,19].
They used total strain E, plastic strain Ep and a work hardening parameter κ as primitive
kinematical variables. The constitutive laws are of the rate-type, and the formulations are in
stress space. Influenced by the development of infinitesimal plasticity, they took a geometri-
cal point of view. They used yield surfaces, loading criteria, flow rules, and hardening rules
for stress rates. The Green-Naghdi theory has been expanded upon by the same authors
and their collaborators during the past 50 years. A Lagrangian strain space formulation
was introduced by Naghdi and Trapp in 1975, showing that there are disadvantages in using
the stress space formulation [33]. A natural characterization of hardening, softening, and
perfectly plastic responses was then demonstrated by Casey and Naghdi in 1981 [9].

Today, there are still many areas of disagreement about specific aspects of finite plastic-
ity. Among these are the prescriptions of strain measures, admissibility of strain hardening
variables, invariance requirements, yield criteria, stress space and strain space formulations,
flow rules and hardening rules, and Lagrangian and Eulerian descriptions [29].
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1. Prescription of strain measures

There are several approaches to defining a measure of plastic strain in finite plasticity.
Green and Naghdi regarded the plastic strain Ep as a primitive quantity, not defining it
explicitly, but relegating its identification to special assumptions. For example, Ep can be
specified as the value of total strain upon removal of all stress components [19]. Another pre-
scription is the process of maximal unloading, which involves taking the stress point closest
to the origin in stress space but within the yield surface and measuring the corresponding
plastic strain [15].

Thus, Green and Naghdi used the total strain E and the plastic strain Ep as primi-
tive variables in finite plasticity. Although an “elastic” tensor might be thought of as the
difference between E and Ep, it is not the usual elastic strain tensor except in some special
cases.

On the other hand, some authors defined plastic strain using an intermediate stress-free
configuration. This configuration is associated with the multiplicative decomposition of the
deformation gradient into an elastic part and a plastic part:

F = FeFp. (1.2)

(See Figure 1.1.) The corresponding elastic strain and plastic strain are then defined by

Ee =
1

2

(
FT

e Fe − I
)
, Ep =

1

2

(
FT

pFp − I
)
. (1.3)

Introduced by Kröner in 1960, the decomposition (1.2) was popularized by E. H. Lee in the
late 1960s [23]. It was also used in Lee and Liu in the context of plane wave analysis [25].
This convenient concept of the separation of the reversible elastic part and irreversible plastic
part is perhaps why this decomposition is popular.

There are some limitations, however, to using the multiplicative decomposition (1.2)
and an intermediate stress-free configuration. One is the fact that the stress at a point
can be reduced to zero without changing the plastic strain only if the origin in stress space
remains in the region enclosed by the yield surface. For some special hardening rules such
as isotropic hardening, the origin does remain enclosed by the yield surface (Figure 1.2).
However, for kinematic hardening, the decomposition will not work since the yield surface
can move around in a general manner (Figure 1.3). This limitation does not exist if the
plastic strain is defined as a primitive variable, as in the Green-Naghdi theory, since no
special kinematical relation is used to obtain Ep [20].

Further, even if the stress can be reduced to zero at each point of the body, the resulting
configuration, in general, cannot be pieced together to form a global configuration, rather it
will only be a collection of local configurations.
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x

p

Figure 1.1: Multiplicative decomposition of the deformation gradient F. Fp denotes the
plastic deformation, and Fe is the elastic deformation.

4



Figure 1.2: Isotropic hardening. The yield surface in E
3 expands equally in all directions.

Figure 1.3: Kinematic hardening. The yield surface keeps the same size but translates. A
general hardening rule allows for distortion and a general motion of the yield surface.
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2. Invariance requirements

Physical considerations dictate that variables such as Ep must satisfy invariance prop-
erties under superposed rigid body motions. Since the intermediate stress-free configuration
is just another configuration, then, by the same physical reasoning, it must satisfy invariance
requirements. However, many authors who use Lee’s decomposition introduce additional as-
sumptions that violate invariance requirements. For Lee, the unstressed state is only used
as a thought experiment to devise convenient variables for the elastic-plastic theory, and de-
manding invariance on the intermediate configuration is regarded by him as redundant [24].

3. Lagrangian and Eulerian descriptions

The choice between Lagrangian and Eulerian descriptions of finite plasticity is still in
question. The arguments usually begin with the choice of stress tensor for the constitutive
equations. Lagrangian formulations usually involve the symmetric Piola-Kirchhoff stress S.
Some Eulerian formulations involve the Cauchy stress tensor T.

For expressions of flow rules, some authors who prefer the Eulerian formulation first
consider the additive decomposition of the velocity gradient L or the rate of deformation
tensor D into elastic and plastic parts. A constitutive equation for the plastic part Dp is
then prescribed in terms of an objective rate of T. The partition of the rate of deformation
D into elastic and plastic parts is still in question today. It is also of note that the choice of
objective rates is another area of disagreement.

Casey and Naghdi (1988) examined the Lagrangian and Eulerian formulations of finite
plasticity with respect to rigid plastic materials. They concluded that the Lagrangian and
Eulerian formulations are equivalent for such materials, and that the choice of objective rate
is immaterial [14].

Lubarda (2004) presented a review article of the applications of the multiplicative
decomposition [26]. These include thermoplasticity, elastoplasticity, crystal plasticity, and
surface growth in biomechanics. Lubarda concluded that to a large extent, the use of the
multiplicative decomposition is optional in thermoplasticity and crystal plasticity. However,
when the plastic deformation affects the initial elastic properties of a material, as in damage
elastoplasticity, the multiplicative decomposition can be employed.

Bammann and Johnson (1987) sought a way to unify the rate-type theory of Green
and Naghdi with that of an intermediate stress-free configuration and the multiplicative
decomposition. Thus, they introduced a three-factor decomposition, in which the subfactors:
a left stretch tensor, a right stretch tensor, and a rotation tensor, are all uniquely determined
by destressing at a material point [1]. Associated with this decomposition are two stress-free
configurations, which differ by a unique rotation.

6



An alternative form of the three-factor decomposition of Bammann and Johnson was
recently proposed by Casey [7]. It employs a right stretch tensor U∗, which does not change
under superposed rigid motions. It introduces a unique intermediate configuration, which
can be used as an evolving reference configuration.

This dissertation employs this new multiplicative decomposition and the resulting
unique intermediate configuration κ∗ as a basis for expressing finite plasticity in the Eu-
lerian form. Using the structure in the strain-based Lagrangian theory developed by Green
and Naghdi and an elastic strain tensor furnished from the intermediate configuration, con-
stitutive equations involving the objective rate of the rotated Cauchy stress are formulated
to present a recast version of the Lagrangian theory into an Eulerian form.

All relevant elements of κ∗, including stress measures, elastic and plastic strains, yield
functions and yield criteria, are first established. Then a set of constitutive equations (6.60)
involving stress rates and strain rates are formulated. In theory, all four equations in (6.60)
could be used to express finite plasticity. That is, in their general forms, the Lagrangian stress
measures can be converted into their Eulerian versions and vice versa. While the Lagrangian
theory is expressed using the Piola-Kirchhoff stress tensor S, the proposed Eulerian theory
involves the rotated Cauchy stress T̃.

Because the Lagrangian theory employs a strain measure that takes the difference
E−Ep between total strain and plastic strain, rather than representing elastic strain, it does
not lend itself to a physically realistic linearization for the case of small elastic deformations
accompanied by large plastic deformations. The proposed Eulerian theory is well suited to
describe this case as it can be linearized about κ∗ while allowing the plastic deformations to
be large. This difference is illustrated when the two theories are applied to a uniaxial stress
test, both in tension and compression.

The relevant fundamental features of a general three-dimensional continuum are pre-
sented in Chapter 2. The Green-Naghdi rate-type rate-independent plasticity theory for
finite deformations are presented in Chapter 3. Three multiplicative decompositions of the
deformation gradient, including that of Lee, are summarized in Chapter 4. In Chapter 5,
different forms and variables involving the stress response are developed. These equations
are based on the intermediate configuration κ∗. They are then used in Chapter 6 to formu-
late Eulerian forms of the constitutive equations. We find that the Cauchy stress rate can be
written as a linear function of the rate of deformation tensor. General objective rates of the
rotated Cauchy stress tensor and the back stress tensor are also presented. Finally, Chapter
7 features some special cases, including linear responses between the stress and strain mea-
sures and their rates. That is followed by a simple example to demonstrate the differences
between the Green-Naghdi theory and this new Eulerian theory of finite plasticity.
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Chapter 2

Deformable Continua

After some mathematical preliminaries, the mechanics of a three-dimensional deformable
continuum are summarized. The content is based on the works of Naghdi [28–33] and Trues-
dell and Noll [39]. In addition, the basic features of a nonlinear elastic solid is presented.

2.1 Mathematical Preliminaries

A second-order tensor A is a linear transformation on a vector space V that assigns to
each vector u a vector Au. It is invariant under a change of coordinate system. The set of
2-tensors is called Lin. The tensor product of two vectors a and b ∈ V is denoted by a⊗ b

and is defined by
(a⊗ b) u = (b · u) a, (2.1)

for any vector u ∈ V. If the inverse of a tensor A exists, it is denoted A−1. The transpose
of A is AT , and (a ⊗ b)T = (b ⊗ a). A symmetric tensor is equal to its transpose. A
skew-symmetric tensor is equal to the negative of its transpose. The trace and determinant
of A are trA and detA, respectively. The inner product between two tensors A and B is
defined by A · B = tr(ABT ) = tr(ATB). We recall that (a ⊗ b)(c ⊗ d) = (b · c)a ⊗ d,
(a ⊗ b) · (c ⊗ d) = (a · c)(b · d), A(c⊗ d) = (Ac) ⊗ d, and (c · d)A = c ⊗ (ATd), where
c and d are also vectors. If ei, (i = 1, 2, 3), is an orthonormal basis for V, then ei ⊗ ej ,
(i, j = 1, 2, 3), is an orthonormal basis for Lin. Thus, ei · ej = δij, where δij is the Kronecker
delta and

(ei ⊗ ej) · (ek ⊗ eℓ) = δikδjℓ, (2.2)

where all indices range from 1 to 3. Thus we can write A as

A = Aijei ⊗ ej, Aij = ei ·Aej = A · (ei ⊗ ej), (i, j = 1, 2, 3), (2.3)

8



where the summation convention is used for i and j. The expression a = Ab can be written
in index notation as ai = Aijbj . The identity tensor I transforms a vector u into itself
(u = Iu), and has a representation

I = δijei ⊗ ej = ei ⊗ ei. (2.4)

The scalar triple product of three vectors a, b, c, denoted by [a,b, c], is defined by

[a,b, c] = a · (b× c). (2.5)

The determinant of a tensor A can be written as

detA =
[Aa,Ab,A, c]

[a,b, c]
, (2.6)

where {a,b, c} is an arbitrary set of basis vectors, and [a,b, c] 6= 0. Suppose that A is
invertible. The time derivative of detA is given by

˙detA = tr
(
ȦA−1

)
detA. (2.7)

A fourth-order tensor L is a linear mapping that assigns to each second-order tensor
A a second-order tensor B = L [A], with A,B ∈ Lin. This can be written in index notation
as

BKL = LKLMNAMN . (2.8)

The tensor product a⊗ b⊗ c⊗ d = (a⊗ b)⊗ (c⊗ d) is defined by

(a⊗ b⊗ c⊗ d)[u⊗ v] = a⊗ b(c⊗ d) · (u⊗ v) (2.9)

for all u,v ∈ V. The 4-tensor L has a representation

L = Lijkℓei ⊗ ej ⊗ ek ⊗ eℓ, (2.10)

where

Lijkℓ = (ei ⊗ ej) ·L[ek ⊗ eℓ] = ei ·L[ek ⊗ eℓ]ej , (i, j, k, ℓ = 1, 2, 3). (2.11)

The fourth-order identity tensor I has a representation

I = δikδjℓei ⊗ ej ⊗ ek ⊗ eℓ = ei ⊗ ej ⊗ ei ⊗ ej . (2.12)

It can further be decomposed into
I = III +JJJ , (2.13)

9



where, in component form, III and JJJ are

Iijkℓ =
1

2
(δikδjℓ + δiℓδjk), Jijkℓ =

1

2
(δikδjℓ − δiℓδjk). (2.14)

The transpose L
T of L is defined by its action on two A,B ∈ Lin:

A ·L[B] = B ·LT [A]. (2.15)

Also,
(a⊗ b⊗ c⊗ d)T = c⊗ d⊗ a⊗ b. (2.16)

We define an operation ⊙ between two fourth-order tensors by

(a⊗ b⊗ c⊗ d)⊙ (e⊗ f ⊗ g⊗ h) = (c · f)(d · h)(a⊗ b⊗ e⊗ g). (2.17)

Applied to a tensor product u⊗ v, it gives

(a⊗ b⊗ c⊗ d)⊙ (e⊗ f ⊗ g ⊗ h)[u⊗ v] = (c · f)(d · h)(a⊗ b⊗ e⊗ g)[u⊗ v]

= (c · f)(d · h)(e · u)(g · v)(a⊗ b).
(2.18)

We also define another operation ⊡ between two fourth-order tensors by

(a⊗ b⊗ c⊗ d)⊡ (e⊗ f ⊗ g ⊗ h) = (b · e)(d · f)(a⊗ c⊗ g ⊗ h) (2.19)

Applied to u⊗ v,

(a⊗ b⊗ c⊗ d)⊡ (e⊗ f ⊗ g ⊗ h)[u⊗ v] = (b · e)(d · f)(a⊗ c⊗ g ⊗ h)[u⊗ v]

= (b · e)(d · f)(g · u)(h · v)(a⊗ b).
(2.20)

Define a fourth-order tensor J by

J = ei ⊗ ei ⊗ ej ⊗ ej = I⊗ I. (2.21)

We then have the following properties of ⊙ and ⊡:

AAA⊙J =AAA, J ⊡AAA =AAA, (2.22)

where AAA is any fourth-order tensor.

2.2 Kinematics and Field Equations

Consider a deformable body B. A configuration of B is the region of the three-
dimensional Euclidean space E

3 that the body occupies at time t. Let X be any particle of

10



B. Choose a fixed origin in E
3, and denote by X the position vector of X in a fixed reference

configuration κ0. Let x be the position vector of X in the configuration κ at time t. We
can use the rectangular Cartesian components XA (A = 1, 2, 3) and xi (i = 1, 2, 3) as the
coordinates of X and x, respectively.

A motion of B is a smooth one-parameter family of configurations such that

x = χ̄(X, t) = χ(X, t) = χt(X), (2.23)

where the mapping χ depends on the choice of reference configuration, while χ̄ does not.
For fixed t, the mapping χt is invertible. Its inverse is given by

X = χ−1
t (x, t). (2.24)

The velocity and acceleration of the particle are

v = ẋ =
∂χ

∂t
, a = v̇ =

∂2χ

∂t2
, (2.25)

where the superposed dot indicates a material time derivative. The deformation gradient
relative to the reference and its determinant are

F =
∂χ

∂X
(X, t) =

∂xi
∂XA

ei ⊗EA, J = detF > 0. (2.26)

where ei and EA are fixed orthonormal bases in E
3. The polar decomposition theorem

provides two decompositions of F into unique factors,

F = RU = VR, (2.27)

where U and V are symmetric positive definite tensors called the right and left stretch
tensor, respectively, and the rotation tensor R is proper orthogonal. The right and left
Cauchy-Green tensors C and B are

C = FTF = U2, B = FFT = V2 = RCRT . (2.28)

The Lagrangian strain tensor is given by

E =
1

2
(C− I) , (2.29)

where I is the identity tensor.

The material time derivative of F is

Ḟ = LF, (2.30)

11
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Figure 2.1: Reference and current configurations of a deformable continuum

where

L =
∂v

∂x
=
∂vi
∂xj

ei ⊗ ej (2.31)

is the velocity gradient of the body in its current configuration. The tensor L can be
decomposed into its symmetric part and skew-symmetric part:

L = D+W, (2.32)

where

D =
1

2

(
L + LT

)
= DT (2.33)

is the rate of deformation tensor and

W =
1

2

(
L− LT

)
= −WT (2.34)

is the vorticy tensor. The Lagrangian strain rate can be expressed in terms of the rate of

12



deformation tensor and the velocity gradient by

Ė = FTDF. (2.35)

The Cauchy stress tensor is denoted by T, the non-symmetric Piola-Kirchhoff tensor is P,
and the symmetric Piola-Kirchhoff tensor is S. They are related by

JT = PFT = FSFT . (2.36)

We also introduce the rotated Cauchy stress tensor T̃:

T̃ = RTTR =
1

J
USU, (2.37)

and a rotated form D̃ of the rate of deformation tensor:

D̃ = RTDR. (2.38)

Note that
T ·D = T̃ · D̃. (2.39)

Let ρ0 and ρ denote the mass density of B in the reference and current configurations,
respectively. Also, let b be the body force field per unit mass acting on the current config-
uration. The local forms of the conservation of mass and balance of linear momentum may
be expressed by

ρ0 = ρJ,

divT+ ρb = ρv̇.
(2.40)

The balance of angular momentum implies the symmetry of T.

2.3 Invariance Requirements

Consider a motion χ+ of B which differs from χ by a rigid motion and maps particles
into a configuration κ+ at time t+ = t+ a, where a =constant:

x+ = χ+(X, t) = Q(t)x + c(t), (2.41)

where Q(t) is a proper orthogonal tensor that represents rigid rotation and c(t) is a vector
that represents rigid body translation. Thus the deformation gradient F+ and its determi-
nant J+ are

F+ =
∂χ+

∂X
= QF, J+ = detF+ = J. (2.42)
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It follows that

C+ = C, U+ = U, R+ = QR, V+ = QVQT , B+ = QBQT , (2.43)

and
E+ = E, Ė+ = Ė. (2.44)

Also, L, D, and W become

L+ = QLQT +Ω, D+ = QDQT , W+ = QWQT +Ω, (2.45)

where Ω = Q̇QT is the angular velocity tensor due to the superposed rigid motion. Further,
in the absence of internal constraints, the stress measures T, T̃, P and S become

T+ = QTQT , (T̃)+ = T̃ P+ = QP, S+ = S (2.46)

under superposed rigid body motions.

2.4 Elastic Solids

A nonlinearly elastic solid possesses a strain energy function ψ = ψ(F) such that

ρψ̇ = T ·D. (2.47)

Invariance requirements imply that ψ is a function of E. The Cauchy stress tensor and the
symmetric Piola-Kirchhoff stress tensor may be expressed as

T =
1

2
ρF

∂ψ

∂E
FT , S = ρ0

∂ψ

∂E
, (2.48)

where the tensor ∂ψ/∂E is understood to be symmetric, i.e.,

∂ψ

∂E
=

1

2

[
∂ψ

∂E
+

(
∂ψ

∂E

)T
]
. (2.49)

We note that since S = Ŝ(E), the stress rate is

Ṡ =
∂S

∂E
[Ė] = LLL [Ė], (2.50)

where LLL is a symmetric fourth-order tensor. The Lagrangian form of the stress rate Ṡ is a
linear function of the strain rate, and the rate itself is objective. The Eulerian form Ṫ is not
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objective. A commonly used objective rate for the Cauchy stress is the Jaumann stress rate:

O

T = Ṫ−WT+TW. (2.51)

In addition, the upper and lower convected rates are

∇

T = Ṫ− LTT−TL
∆

T = Ṫ+ LT+TLT =
O

T+TD+DT
(2.52)

Also, the “box” rate,
�

T, is given by

�

T = Ṫ+TWR −WRT

= R
˙̃
TRT ,

(2.53)

where
WR = ṘRT = −WT

R (2.54)

is the spin associated with the local rotation R. Finally, the Truesdell rate is

t

T = Ṫ− LT−TLT + (trD)T =
1

J
FṠFT . (2.55)

Also, we have the transformation laws

O

T+ = Q
O

TQT ,
∇

T+ = Q
∇

TQT ,
∆

T+ = Q
∆

TQT ,
�

T+ = Q
�

TQT ,
t

T+ = Q
t

TQT .
(2.56)
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Chapter 3

The Green-Naghdi Theory of

Elastic-Plastic Materials

The main elements of a purely mechanical rate-type theory of a finitely deforming
elastic-plastic solid are summarized in this chapter. This constitutive theory of classical
plasticity was first proposed by Green and Naghdi in 1965 [18] and expanded upon by them
and their various collaborators during the ensuing years.

In addition to the Lagrangian strain tensor E, we assume the existence of the plastic
strain Ep, which is a symmetric second-order tensor, a scalar measure of work hardening κ,
and a symmetric shift or back stress tensor αR. The constitutive equation for the stress S

is defined in terms of a stress response function given by

S = Ŝ(E,U ), (3.1)

where U is shorthand notation for the plastic parameters

U = (Ep,αR, κ). (3.2)

The response function Ŝ depends upon the choice of reference configuration, κ0, which can be
taken arbitrarily. Under superposed rigid body motions, the variables in (3.2) are assumed
to be unaltered, i.e.,

(Ep)
+ = Ep, (αR)

+ = αR, κ+ = κ. (3.3)

Alternatively, the stress response may also be expressed mathematically in the form

S = S̄(E− Ep,U ). (3.4)
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The elasticity of the elastic-plastic material is described by the fourth-order tensor

LLL =
∂Ŝ

∂E
(E,U ) =

∂S̄

∂(E− Ep)
(E−Ep,U ). (3.5)

More details about this alternative version are presented in Section 3.4 in page 22.

Note that for each fixed value of U , the stress response Ŝ has the same form as an
elastic material. Thus, an elastic-plastic material can be viewed as a parametrized family
of elastic materials. For fixed values of U , it is also assumed that the stress response is
smoothly invertible to give

E = Ê(S,U ). (3.6)

Similarly, (3.4) can be smoothly inverted to

E− Ep = Ê(S,U )− Ep = Ē(S,U ). (3.7)

We also define a fourth-order compliance tensor by

MMM =
∂Ê

∂S
(S,U ). (3.8)

3.1 The elastic regions in strain space and stress space

Now we admit the existence of a scalar-valued function g(E,U ), called a yield or
loading function. For fixed values of U , the equation

g(E,U ) = 0 (3.9)

represents a smooth orientable five-dimensional hypersurface ∂E enlosing an open region E
in strain space (Figure 3.1). The hypersurface ∂E is called the yield surface in strain space.
The points on the surface are called elastic-plastic points. The open region E is the elastic
region. The yield function g < 0 for all points in E . Corresponding to a motion χ, for each
particle of the body, we can associate a smooth orientable curve Ce, which is parametrized
by time t. The curve Ce is called a strain trajectory. The strain trajectories in strain space
are restricted to lie initially in the elastic region or on its surface. The notation

ĝ =
∂g

∂E
· Ė (3.10)

is used for the inner product of the outward normal vector ∂g/∂E to the yield surface and
the tangent vector Ė to the strain trajectory.
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∂g

∂E

Ė

Ce

∂E (g = 0)

E (g < 0)

g > 0

Figure 3.1: The yield surface in strain space

The yield function f(S,U ) in stress space can be constructed from g using the response
functions for stress and strain:

g(E,U ) = g(Ê(S,U ),U ) = f(S,U ). (3.11)

For fixed values of U , the equation

f(S,U ) = 0 (3.12)

represents a five-dimensional hypersurface ∂S , called the yield surface, delineating the elas-
tic region S in stress space (Figure 3.2). For all points in S , f < 0. The yield surface
and the elastic region in stress space have the same topological properties as those in strain
space. Clearly, from (3.11), a point in strain space belongs to the elastic region E if, and
only if, the corresponding point in stress space belongs to the elastic region S . Likewise, a
point in strain space lies on the yield surface ∂E if, and only if, the corresponding point in
stress space lies on the yield surface ∂S . We use the notation

f̂ =
∂f

∂S
· Ṡ (3.13)

for the inner product of the normal to the yield surface in stress space and the tangent
vector to the stress trajectory Cs. Recalling (3.5), the normal vectors to the yield surfaces
are related by

∂g

∂E
= LLL T

[
∂f

∂S

]
. (3.14)
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∂f

∂S

Ṡ

Cs

∂S (f = 0)

S (f < 0)

f > 0

Figure 3.2: The yield surface in stress space

3.2 Loading criteria

Adopting the strain space formulation as primary, we state the loading criteria defined
relative to the yield surface ∂E in strain space as

(a) g < 0 Elastic state

(b) g = 0, ĝ < 0 Unloading from an elastic plastic state

(c) g = 0, ĝ = 0 Neutral loading from an elastic plastic state

(d) g = 0, ĝ > 0 Loading from an elastic plastic state.

(3.15)

In an elastic state, the strain trajectory lies entirely in E , and the yield surface ∂E
remains stationary. During unloading, the strain trajectory intersects the yield surface and is
pointing towards the elastic region. The function g is decreasing, and ∂E remains stationary.
During neutral loading, the strain trajectory lies on the yield surface and stays on the yield
surface. The yield function remains zero, and ∂E remains stationary. During loading, the
strain trajectory intersects the yield surface and is directed outwards.

The implied conditions in stress space for the elastic state, unloading and neutral
loading can be deduced from those in strain space. However, the strain space criterion for
loading is not equivalent to the loading criterion in stress space. Thus, f̂ cannot be used
alone in the loading criteria.
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3.3 Strain hardening response, flow rules and harden-

ing rules

The material derivative of the stress tensor S is given by

Ṡ = LLL [Ė] +
∂Ŝ

∂Ep

[Ėp] +
∂Ŝ

∂αR

[α̇R] +
∂Ŝ

∂κ
κ̇. (3.16)

If the strain trajectory lies in the elastic region, or if unloading or neutral loading occurs, it
is assumed that

Ėp = 0, α̇R = 0, κ̇ = 0. (3.17)

In other words, the plastic parameters are assumed to remain constant. This means that the
elastic regions in stress space and strain space remain the same, and the material behaves
like an elastic solid.

If loading occurs, we assume that the material time derivatives of the plastic parameters
are linear to the strain rate Ė. Following a procedure used by Green and Naghdi [18], the
flow and hardening rules are given by the rate-type constitutive equations

Ėp = πĝρ, α̇R = πĝβ, κ̇ = πĝλ, (3.18)

where ρ, β and λ are constitutive functions of the parameters E and U , and π is a scalar
multiplier.

Thus, during loading, the stress rate can be written as

Ṡ = LLL [Ė] + πĝσ, (3.19)

where

σ =
∂Ŝ

∂Ep

[ρ] +
∂Ŝ

∂αR

[β] +
∂Ŝ

∂κ
λ. (3.20)

Further, with the use of (3.10) and (3.14), the stress rate can be written as

Ṡ = KKK LLL [Ė], (3.21)

where

KKK = III + πσ ⊗ ∂f

∂S
, (3.22)

is a fourth-order tensor, and the fourth-order identity tensor III is defined by

III =
1

2
(δKMδLN + δKNδLM) eK ⊗ eL ⊗ eM ⊗ eN . (3.23)
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The yield surfaces ∂E and ∂S do not move if g < 0 or if (g = 0, ĝ ≤ 0). However,
during loading (g = 0, ĝ > 0), it is assumed that as the strain trajectory tries to cross the
yield surface ∂E , the surface is locally carried along with the trajectory. That is, loading
from an elastic-plastic state always leads to another elastic-plastic state. This is Prager’s
consistency condition. Hence,

g = 0, ĝ > 0 ⇒ ġ = 0. (3.24)

And by virtue of (3.11), this also implies that ḟ = 0. Taking the material derivative of g
and using (3.18),

0 = ġ = ĝ +
∂g

∂Ep

· Ėp +
∂g

∂αR

· α̇R +
∂g

∂κ
· κ̇

= ĝ

[
1 + π

(
∂g

∂Ep

· ρ+
∂g

∂αR

· β +
∂g

∂κ
· λ
)]

.

(3.25)

Thus, π cannot vanish, and it is taken to be positive, without loss of generality. Then we
have

1

π
= −

(
∂g

∂Ep

· ρ+
∂g

∂αR

· β +
∂g

∂κ
· λ
)
> 0. (3.26)

The multiplier π can be calculated when the constitutive functions are specified. Similarly,
taking the material derivative of (3.11), and employing the consistency condition,

0 = ḟ = f̂ +
∂f

∂Ep

· Ėp +
∂f

∂αR

· α̇R +
∂f

∂κ
· κ̇,

= f̂ + πĝ

(
∂f

∂Ep

· ρ+
∂f

∂αR

· β +
∂f

∂κ
· λ
)
.

(3.27)

It follows from (3.27) and (3.26) that during loading,

f̂

ĝ
= −π

(
∂f

∂Ep

· ρ+
∂f

∂αR

· β +
∂f

∂κ
· λ
)

=

∂f

∂Ep

· ρ+
∂f

∂αR

· β +
∂f

∂κ
· λ

∂g

∂Ep

· ρ+
∂g

∂αR

· β +
∂g

∂κ
· λ

= Φ.

(3.28)

The quotient f̂ /ĝ can be defined by a single dimensionless function Φ, which can also be
expressed as

Φ = 1 + π

[(
∂g

∂Ep

− ∂f

∂Ep

)
· ρ+

(
∂g

∂αR

− ∂f

∂αR

)
· β + λ

(
∂g

∂κ
− ∂f

∂κ

)]

= 1 + π
∂f

∂S
· σ

(3.29)
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with the use of (3.27)3, (3.28)1, (3.20), and (3.11).

The yield function g is positive during loading, while f can be positive, negative, or
zero. Thus, the function Φ may be positive, negative or zero. To distinguish between the
three cases, Casey and Naghdi [9] proposed a classification of strain-hardening behavior into
three distinct types:

(a) Φ > 0 hardening

(b) Φ < 0 softening

(c) Φ = 0 perfectly plastic

(3.30)

The yield surface in stress space moves outward locally if Φ > 0, inward if Φ < 0, and remains
stationary if Φ = 0. The loading criteria in strain space and stress space are equivalent when
the material is hardening.

It can be shown that the fourth-order tensor KKK is related to Φ by [13]

detKKK = Φ. (3.31)

During perfectly plastic behavior, detKKK = 0, meaning the stress rate in the form (3.21) is
not invertible. Thus, perfectly plastic behavior can only be described in strain space.

3.4 An equivalent set of kinematical measures

In the Green-Naghdi theory, we may also represent the constitutive equation for S in
terms of an equivalent set of kinematical measures in the form

S = S̄(E− Ep,U ), SMN = S̄MN(EKL −EpKL, EpKL, α
R
KL, κ). (3.32)

Both direct notation and index notation are included here for convenience.

In this section we explore the results of the previous section in terms of these new
variables. Thus, using the chain rule of differentiation and from (3.1), (3.6), and (3.32), we
have

∂S̄

∂(E −Ep)
= LLL ,

∂S̄

∂Ep

= LLL +
∂Ŝ

∂Ep

,
∂S̄

∂αR

=
∂Ŝ

∂αR

,
∂S̄

∂κ
=
∂Ŝ

∂κ
,

∂S̄MN

∂(EKL − EpKL)
= LMNKL,

∂S̄MN

∂EpKL

= LMNKL +
∂ŜMN

∂EpKL

,

∂S̄MN

∂αR
KL

=
∂ŜMN

∂αR
KL

,
∂S̄MN

∂κ
=
∂ŜMN

∂κ
.

(3.33)
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We introduce a second-order tensor by

σ̄ =
∂S̄

∂Ep

[ρ] +
∂S̄

∂αR

[β] +
∂S̄

∂κ
λ = σ +LLL [ρ],

σ̄MN =
∂S̄MN

∂EpKL

ρKL +
∂S̄MN

∂αR
KL

βKL + λ
∂S̄MN

∂κ
= σMN + LMNKLρKL.

(3.34)

Then with the use of (3.34)2 and (3.14), the dimensionless function Φ from (3.29)2 becomes

Φ = 1 + π
∂f

∂S
· σ̄ − π

∂g

∂E
· ρ. (3.35)

The stress rate Ṡ can be written as

Ṡ = LLL [Ė− Ėp] +
∂S̄

∂Ep

[Ėp] +
∂S̄

∂αR

[α̇R] +
∂S̄

∂κ
κ̇,

ṠMN = LMNKL(ĖKL − ĖpKL) +
∂S̄MN

∂EpKL

ĖpKL +
∂S̄MN

∂αR
KL

α̇R
KL +

∂S̄MN

∂κ
κ̇.

(3.36)

In an elastic state, during unloading or during neutral loading, the flow rules (3.17) apply,
and the stress rate reduces to

Ṡ = LLL [Ė], ṠMN = LMNKLĖKL. (3.37)

During loading, the flow rules (3.18) are assumed and

Ṡ = LLL [Ė− πĝρ] +
∂S̄

∂Ep

[πĝρ] +
∂S̄

∂αR

[πĝβ] +
∂S̄

∂κ
πĝλ

= LLL

(
III − πρ⊗ ∂g

∂E

)
[Ė] +

(
πσ̄ ⊗ ∂g

∂E

)
[Ė],

(3.38)

where we have used (3.10) and (3.34)1. Introducing a new fourth-order tensor

LLL ′ = LLL

(
III − πρ⊗ ∂g

∂E

)
, L ′

MNPQ = LMNKL

(
IKLPQ − π

∂g

∂EPQ

ρKL

)
, (3.39)

then the stress rate becomes

Ṡ =

(
LLL ′ + πσ̄ ⊗ ∂g

∂E

)
[Ė],

ṠMN =

(
L ′

MNPQ + σ̄MN

∂g

∂EPQ

)
ĖPQ.

(3.40)

It is easy to see that by substituting (3.34)2 into (3.22) and also by using (3.14), that equation
(3.21) would generate the same coefficient of strain rate in (3.40). That is, (3.21) and (3.40)
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are equivalent representations of the stress rate Ṡ.

3.5 A class of elastic-perfectly plastic materials

Consider the special constitutive equations

S = LLL [E− Ep], f = f̄(S)− κ, κ = K2, λ = 0, (3.41)

where K is a positive constant and LLL is a constant fourth-order tensor. By (3.41)1 and
(3.34)1, we have

σ̄ = 0. (3.42)

Also, from (3.29)1, and (3.41)2,4, it is clear that

Φ = 0, (3.43)

By the classification of strain-hardening behavior given in (3.30), this means that the material
only exhibits perfectly plastic behavior. Thus the constitutive equations (3.41) describe a
class of elastic-perfectly plastic materials with a stress response that is linear in E− Ep.

The stress rate (3.40) reduces to

Ṡ = LLL [Ė− Ėp] = LLL ′[Ė],

ṠMN = LMNKL(ĖKL − ĖpKL) = L ′

MNPQĖPQ,
(3.44)

where (3.39) has been used. We will further discuss this special case in Chapter 7.
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Chapter 4

Multiplicative Decompositions of the

Deformation Gradient

In this chapter, we discuss three useful multiplicative decompositions of the deformation
gradient. The first was presented by Lee [23]. The second was formulated by Bammann and
Johnson [1]. The third and the most recent was introduced by Casey [7]. The last two
decompositions contain three unique factors of F.

4.1 Lee’s decomposition

By the mid 1960s, the scope of classical plasticity had not included the treatment of
elastic-plastic deformation with finite strains. Two limiting cases were assumed: infinitesimal
strains when both the elastic and plastic strains are of the same small order, and rigid-
plastic analysis when the elastic strains are considered negligible in comparison to large
plastic strains. However, there are many applications that call for the treatment of finite
strains with no inherent assumptions. For example, plane waves in metal plates occur due
to detonations of contact explosives. The pressure in these metals reach a sufficiently high
value that finite elastic and plastic strains are produced [25]. In 1969, Lee presented a
theory of elastic-plastic deformation at finite strains, which modified the previous classical
plasticity theory to provide a more general form [23]. It replaced the usual assumption that
the total strain is the sum of its elastic and plastic parts, as was used in infinitesimal theory,
by the multiplicative decomposition F = FeFp. He considered the rate of expenditure of
work in elastic deformation completely uncoupled from the rate of plastic work, which led
to a form of yield condition for finite elastic strain. In addition, emphasizing that the elastic
characteristics are insensitive to plastic flow, he expressed T as a function of the elastic
deformation gradient only. He also presented a decoupling of the rate of strain tensor, in
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order to define a law governing the rate of plastic flow, which demands irreversibility. Lee
described this finite strain theory as follows.

After an elastic-plastic deformation as shown in Figure 4.1, the configuration of the
body is defined by the mapping

x = χ(X, t), (4.1)

where X and x are the position vectors of a material point X in the reference κ0 and the
deformed configuration κ. The local deformation in the neighborhood of X is expressed in
terms of the deformation gradient F (detF = 0). If Z (detZ = 0) is any tensor function of
X and t, then F = (FZ)Z−1 with det(FZ) > 0. Thus F can always be decomposed into two
factors with positive determinants. In his plasticity theory, Lee used the decomposition

F = FeFp, (4.2)

with detFe > 0 and detFp > 0. Let dX be an arbitrary material line element in a neigh-
borhood N (X) of X . Let dX and dx = FdX be the corresponding line elements in the
configurations κ0 and κ. We have

dp = FpdX. (4.3)

Then, by Lee’s decomposition (4.2),

dx = Fedp. (4.4)

By considering all material elements that are in the neighborhood N (X), a local configura-
tion can be formed from the elements dp. For some range of deformations from the current
configuration κ, the material in N (X) behaves purely elastically. The collection of these
local configurations is the intermediate stress-free configuration κp (Figure 4.2). In general,
Fe and Fp do not satisfy the compatibility conditions FiA,B = FiB,A, and the collection of
intermediate local configurations cannot be used to create a compatible configuration.

As part of the definition of κp, it must be required that for each x, the portion of the
body that corresponds to the neighborhood N (X) be reduced to a state of zero stress. That
is, there is some value Fp of F such that at X , F = Fp means T = 0. In general, T does
not vanish for particles other than X that belong to the neighborhood N (X).

Substituting the decomposition (4.2) into the equation for the Lagrangian strain, we
obtain

E =
1

2

(
FTF− I

)
= FT

pEeFp + Ep, (4.5)

where Ee and Ep are the Lagrangian strain measures in terms of the respective deformation
gradients:

Ee =
1

2

(
FT

e Fe − I
)
, Ep =

1

2

(
FT

pFp − I
)
. (4.6)
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dX

dx

F

κ

N (X)N (X)

X x

κ0

Figure 4.1: The neighborhood N (X) in the reference κ0 is mapped by F into a neighborhood
in the current configuration κ.

Fe

F

κ0

κ

κp

Fp

X

x

p

Figure 4.2: Lee’s decomposition: F = FeFp.

It is clear from (4.5) that
E− Ep = FT

pEeFp. (4.7)
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We see that the assumption in infinitesimal plasticity that the total strain is the sum of elastic
and plastic parts is not valid for this finite strain theory. Also, as part of the definition of
κp, we note that the plastic strain Ep has the same value for X in κp and κ.

Substituting the decomposition into the velocity gradient L,

L = ḞF−1 = ḞeF
−1
e + FeḞpF

−1
p F−1

e . (4.8)

Using the definitions
Le = ḞeF

−1
e , Lp = ḞpF

−1
p , (4.9)

Lee defines the rate of elastic strain De and the rate of plastic strain Dp as the symmetric
parts of Le and Lp respectively.

Furthermore, emphasizing that the elastic properties of the material are not appreciably
influenced by the plastic flow, Lee assumed the form of the stress as

T = 2ρ0Fe

∂ψ

∂Ce

FT
e / detFe, (4.10)

where ψ = ψ(Ce) is the Helmholtz free energy.

Lee’s decomposition includes several further restrictions that limit its use to initially
isotropic materials, lead to the non-uniqueness of κ̄ due to a rotational arbitrariness, and even
result in the possible non-existence of the decomposition. Green and Naghdi [20] and Casey
and Naghdi [8] discuss some issues concerning the use of Lee’s decomposition as follows:

(1) Existence. The stresses can only be reduced to zero, without changing the plastic
strain, if, and only if, the origin in stress space stays inside the yield surface. Since this is
not true in general, a restriction must be imposed on possible deformations and constitutive
relations. The stress-free configuration and thus the decomposition (4.2) will not always
exist if there are no imposed restrictions.

(2) Uniqueness. Two stress-free intermediate configurations that correspond to the
same current configuration κ are unique only to within a proper orthogonal tensor Q, so that
FeQ

T and QFp also satisfy the decomposition (4.2). Thus the intermediate configuration is
unique only to within an arbitrary rigid rotation.

(3) Invariance. Physical considerations require that fields and functions be invariant
to superposed rigid body motions that take the configuration κ into another configuration
κ+. Since the intermediate configuration κp is locally another configuration, independent
rigid body motions that take κp into another stress-free configuration κ+

p similarly require
the invariance of fields and functions. The transformations are then

F+ = Q(t)F = F+
e F

+
p , F+

e = Q(t)FeQ
+
p (t), F+

p = Q+
p (t)Fp, (4.11)
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where the proper orthogonal tensors Q(t) and Qp(t) represent the rigid motions that take
κ → κ+ and κp → κ+

p , respectively. The superposed rigid motions are shown in Figure 4.3.
Under these superposed rigid motions we have the transformations

E+ = E, E+
p = Ep, κ+ = κ, S+ = S. (4.12)

The invariance will not be satisfied unless there is nonuniqueness in the rotation Qp. That
is, a unique κp cannot be chosen simply among the possible stress-free configurations. For
example, if Fe is chosen to be symmetric positive definite, then the transformation (4.11)2
does not result in a symmetric positive definite tensor F+

e unless Q(t) = Qp(t). Similarly,
choosing Fp to be symmetric positive definite and assuming F+

p is also symmetric positive
definite would, in general, violate the invariance requirements. In [23], the consequences of
choosing Qp(t) = I were avoided because of the additional limitation that the material is
isotropic.

Fe

κ

κ+

N (X)

N (X)

Fp

QQp

X

x

κ0

κp

κ+
p

Figure 4.3: Invariance under superposed rigid body motions. The configuration κ is rotated
by the tensor Q into κ+. Similarly, the rotation tensor Qp transforms the stress-free config-
uration κp into another stress-free configuration κ+

p . In general, Q and Qp are independent
rotations.
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4.2 A three-factor decomposition of F

It has been shown that Fe and Fp and the stress-free configurations associated with
them are not unique. That is, there is a rotational arbitrariness in the factors of Lee’s
decomposition. An alternate approach is to consider a configuration within the entire family
of stress-free configurations that is uniquely defined, while giving a convenient multiplicative
decomposition of F.

Consider the polar decompositions of Fe and Fp:

Fe = ReUe = VeRe,

Fp = RpUp = VpRp,
(4.13)

where Re and Rp are proper orthogonal tensors and Ue, Up, Ve and Vp are symmetric,
positive definite tensors. The corresponding Cauchy-Green tensors are

Ce = FT
e Fe = U2

e, Cp = FT
pFp = U2

p,

Be = FeF
T
e = V2

e , Bp = FpF
T
p = V2

p,
(4.14)

We may superpose a rigid body rotation Qp on the neighborhood N (X) in κp, inde-
pendent of any rotation that may be superposed on κ. In accordance with invariance require-
ments, we can transform Fp into F′

p = QpFp. The corresponding elastic factor in the mul-
tiplicative decomposition is F′

e = FeQ
T
p . In addition, the stress becomes T′ = Qp0Q

T
p = 0.

Thus Fe and Fp and the stress-free configurations associated with them are not unique. In
order to make sure that Fp only has this rotational arbitrariness, we impose a condition that
the right stretch tensor Up be uniquely determined at X in κp(X). The other factors in the
polar decompositions of F′

e and F′

p are

R′

p = QpRp, R′

e = ReQ
T
p ,

U′

e = QpUeQ
T
p , V′

p = QpVpQ
T
p , V′

e = Ve.
(4.15)

We note that the left stretch tensor Ve and the product of the rotations

R∗ = ReRp (4.16)

are uniquely determined:
R′

∗
= R′

eR
′

p = R∗. (4.17)

Also,
R+

∗
= QR∗. (4.18)
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Thus, the deformation gradient F possesses a unique decomposition

F = VeR∗Up, (4.19)

which was first formulated by Bammann and Johnson [1]. This decomposition is illustrated
in Fig. 4.4. The local stress-free intermediate configuration that is obtained by mapping the
neighborhood N (X) using Up is denoted by κ∗. The rotation R∗ maps κ∗ into another
stress-free configuration κ̃.

For a neighborhood around a material point X , the line element dX in κ0 is mapped
successively as follows:

dx∗ = UpdX, dx̃ = R∗dx∗, dx = Vedx̃, (4.20)

where dx∗ and dx̃ are the line elements in κ∗ and κ̃ respectively.

κ0

κ∗(X)

κ

N (X) N (X)R∗Up

Ve

X

Figure 4.4: The decomposition of the deformation gradient F due to Bammann and Johnson.
A right stretch tensor Up is followed by a rotation tensor R∗ and a left stretch tensor Ve.
Each factor is uniquely determined.

Invoking invariance under superposed rigid motions of the configurations κp and κ,

F+
e = QFeQ

T
p , R+

e = QReQ
T
p , U+

e = QpUeQ
T
p , V+

e = QVeQ
T

C+
e = QpCeQ

T
p , B+

e = QBeQ
T

F+
p = QpFp, R+

p = QpRp, U+
p = Up, V+

p = QpVpQ
T
p

C+
p = Cp, B+

p = QpBpQ
T
p .

(4.21)

With regards to the configuration κ∗, we can rewrite the plastic strain as

Ep =
1

2
(U2

p − I). (4.22)
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Clearly, this still has the same value as the plastic strain (4.6)2 in κ. The strain associated
with the configuration κ∗ is taken by Bammann and Johnson [1] to be

Ēe =
1

2

(
RT

∗
V2

eR∗ − I
)
= U−1

p (E− Ep)U
−1
p = RT

pEeRp. (4.23)

Further, using the same thermodynamic procedure as Green and Naghdi, the symmetric
Piola-Kirchhoff tensor associated with κ∗ is

S̄ =
1

detUp

UpSUp = ρ̄
∂ψ̄

∂Ēe

, (4.24)

where ρ̄ = ρ0/ detUp and ψ̄ = ψ̄(Ēe).

4.3 An alternate three-factor decomposition

An alternative decomposition was recently presented by Casey [7]. It employs a unique
right stretch tensor U∗, which is invariant under superposed rigid body motions. This
subfactor of F serves as a convenient variable for describing the elastic response of a material
from its evolving stress-free configuration κ∗.

Rewriting the decomposition (4.19) as

F = F∗Up, (4.25)

where
F∗ = VeR∗ = R∗U∗, detF∗ > 0, (4.26)

another unique decomposition arises:

F = R∗U∗Up, (4.27)

which is illustrated in Fig. 4.5. The Cauchy-Green tensors associated with F∗ are

C∗ = FT
∗
F∗ = U2

∗
= RT

pCeRp, B∗ = F∗F
T
∗
= V2

e = Be. (4.28)

It follows from (4.14)1 and (4.28)1 that

U2
∗
=
(
RT

pUeRp

) (
RT

pUeRp

)
, (4.29)

where the factor RT
pUeRp is symmetric and positive definite. By the uniqueness of a positive

definite square root,
U∗ = RT

pUeRp, (4.30)
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which has an equivalent form
U∗ = RT

∗
VeR∗, (4.31)

where use has been made of (4.13)1 and (4.16).

Under superposed rigid motions, F∗ transforms by

F+
∗
= F+(U+

p )
−1 = QF∗. (4.32)

It then follows that
C+

∗
= C∗, U+

∗
= U∗. (4.33)

κ0

κ∗(X)

F∗

F

κ

N (X) N (X)

Up

R∗

U∗

X

Figure 4.5: Decomposition of F into a right stretch tensor Up followed by a right stretch
tensor U∗, followed by a rotation R∗. Each factor is uniquely determined by F.

With the decomposition (4.27) in mind, we want to consider how the neighborhood
N (X) is brought elastically from an intermediate local configuration to its current configu-
ration κ. We choose the unique configuration κ∗(X) as a fixed reference configuration.

Consider a one-parameter family of deformations

F(X, τ) = F∗(X, τ)Up(X), (4.34)

where τ can be taken to have the physical dimension of time. We may express the strain
energy per unit mass as

ψ = ψ∗(F∗(X, τ)). (4.35)

Applying invariance requirements, the strain energy can also be expressed as a function of
U∗ or C∗.

ψ = ψ∗(U∗) = ψ̄∗(C∗). (4.36)
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Differentiating (4.34) by τ , we have

∂F

∂τ
(X, τ) =

∂F∗

∂τ
(X, τ)Up(X). (4.37)

The corresponding velocity gradient is

L(X, τ) =
∂F

∂τ
(X, τ)[F(X, τ)]−1 =

∂F∗

∂τ
(X, τ)[F∗(X, τ)]

−1, (4.38)

whose symmetric part we denote by D(X, τ). In view of (4.28)1, we can differentiate

C∗(X, τ) = FT
∗
(X, τ)F∗(X, τ) (4.39)

to get
∂C∗

∂τ
(X, τ) = 2FT

∗
(X, τ)D(X, τ)F∗(X, τ). (4.40)

We know that for a Green-elastic material,

ρ(X, τ)
∂ψ∗

∂τ
= T(X, τ) ·D(X, τ). (4.41)

We can then deduce that the Cauchy stress tensor at (X, τ) is given by

T(X, τ) = 2ρ(X, τ)F∗(X, τ)
∂ψ̄∗

∂C∗

FT
∗
(X, τ). (4.42)

Employing a Piola-Kirchhoff stress tensor S∗ that is referred back to the configuration κ∗,
we have

T(X, τ) detF∗(X, τ) = F∗(X, τ)S∗(X, τ)F
T
∗
(X, τ). (4.43)

Then, (4.42) can be written in the simpler form

S∗(X, τ) = 2ρ∗(X)
∂ψ̄∗

∂C∗

, (4.44)

where
ρ∗(X) = ρ(X, τ) detF∗(X, τ). (4.45)

We can deduce from (4.25) and (4.28)1 that the Cauchy-Green tensor can be written
as

C = UpC∗Up. (4.46)

Then by (4.14)2,
C−Cp = Up(C∗ − I)Up. (4.47)
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Using the definition of the Lagrangian strain measure

E∗ =
1

2
(C∗ − I), (4.48)

we can rewrite (4.47) as
E∗ = U−1

p (E− Ep)U
−1
p . (4.49)

Equation (4.49) is used by Naghdi and Trapp [30] as a strain tensor with no reference to a
multiplicative decomposition. Specifically, E∗ is considered as a variable of the Helmholtz
free energy function, which is used to develop constitutive equations for ductile metals. Also,
E∗ is equal to the strain tensor Ēe employed by Bammann and Johnson [1]. See Equation
(4.23).

Substituting the form of F in (4.25) into the velocity gradient L,

L = Ḟ∗F
−1
∗

+ F∗(U̇pU
−1
p )F−1

∗

= L∗ + F∗L̄pF
−1
∗
,

(4.50)

where we have set
L∗ = Ḟ∗F

−1
∗
, L̄p = U̇pU

−1
p . (4.51)

The symmetric part of L is

D = D∗ +
1

2

(
F∗U̇pU

−1
p F−1

∗
+ F−T

∗
U−1

p U̇pF
T
∗

)
, (4.52)

where D∗ is the symmetric part of L∗. We will also consider the symmetric part of L̄p,
denoted D̄p:

D̄p =
1

2
(U̇pU

−1
p +U−1

p U̇p). (4.53)

Then from (4.28)1 and (4.51)1,
Ċ∗ = 2FT

∗
D∗F∗. (4.54)

We have discussed three multiplicative decompositions of the deformation gradient:

F = FeFp,

F = VeR∗Up,

F = R∗U∗Up.

(4.55)

We will use the third decomposition and the elements associated with the intermediate
configuration κ∗ and combine them with the strain-space formulation of the Lagrangian
theory to construct an Eulerian form of finite plasticity.
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Chapter 5

Fields and Functions on the

Intermediate Configuration κ∗

With the intermediate configuration κ∗ properly defined, we can explore the fields and
functions that depend on this intermediate configuration. There are now several versions of
the yield function, each of them dependent on a different stress measure. Thus, there are
different versions of the yield criteria. The stress measures now take on a distinct dependence
on new variables. These elements will help us develop new Prandtl-Reuss type equations for
the Eulerian form of plasticity.

5.1 Yield functions and loading criteria

Recall that the constitutive equation for the second Piola-Kirchhoff stress tensor S is
defined in terms of a response function Ŝ:

S = Ŝ(E,Ep,αR, κ). (5.1)

The Piola-Kirchhoff stress S∗ defined in (4.43) is

S∗ = S̄∗(E∗,Ep,αR, κ) (5.2)

Now recall the yield function g in strain space

g(E,Ep,αR, κ) = 0. (5.3)
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It can be transformed into a another yield function that depends on E∗ by using the relation
(4.49):

g = g(E(E∗,Ep,αR, κ),Ep,αR, κ)

= g∗(E∗,Ep,αR, κ).
(5.4)

Also, using the inverse of (5.2),

g = g∗(E∗(S∗,Ep,αR, κ),Ep,αR, κ)

= f∗(S∗,Ep,αR, κ).
(5.5)

We have now also transformed g into a yield function f∗ that depends on S∗.

Recall the loading index

ĝ =
∂g

∂E
· Ė. (5.6)

For elastic states and during unloading and neutral loading, we assume the flow rules (3.17):

Ėp = 0, α̇R = 0, κ̇ = 0. (5.7)

During loading, we assume that the rates are each linear in Ė with coefficients that are
functions of E and U :

Ėp = πĝρ(E,Ep,αR, κ), α̇R = πĝβ(E,Ep,αR, κ), κ̇ = πĝλ(E,Ep,αR, κ). (5.8)

The constitutive functions ρ, β, and λ can be expressed in Eulerian form, using the rela-
tionships involving E, E∗, or S∗ if expressed in stress space:

ρ = ρ(E,Ep,αR, κ) = ρ(E(E∗,Ep,αR, κ),Ep,αR, κ)

= ρ
∗
(E∗,Ep,αR, κ) = ρ

∗
(E∗(S∗),Ep,αR, κ)

= ρ̂
∗
(S∗,Ep,αR, κ).

(5.9)

Similar relationships apply to β and λ.

Also, the plastic strain rate can be expressed using the velocity gradient L̄p in (4.51)2
or its symmetric part D̄p given in (4.53).

Ėp =
1

2

(
U̇pUp +UpU̇p

)

= Up

[
1

2

(
U̇pU

−1
p +U−1

p U̇p

)]
Up

= UpD̄pUp.

(5.10)
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In S∗ space, we consider the yield function f∗ as obtained in (5.5)2:

ḟ∗ =
∂f∗
∂S∗

· Ṡ∗ +
∂f∗
∂Ep

· Ėp +
∂f∗
∂αR

· α̇R +
∂f∗
∂κ

κ̇ = 0

= f̂∗ +
∂f∗
∂Ep

· Ėp +
∂f∗
∂αR

· α̇R +
∂f∗
∂κ

κ̇,

(5.11)

where we have used the consistency condition ġ = ḟ∗ = 0, and a loading index

f̂∗ =
∂f∗
∂S∗

· Ṡ∗. (5.12)

During loading, we assume

Ėp = πĝρ, α̇R = πĝβ, κ̇ = πĝλ, (5.13)

the first of which we can express as

D̄p = πĝU−1
p ρU−1

p = πĝρ̄. (5.14)

There are similar expressions for α̇R and κ̇ that employ the Eulerian form of β and λ. Thus,

0 = ḟ∗ = f̂∗ +
∂f∗
∂Ep

· πĝρ+
∂f∗
∂αR

· πĝβ +
∂f∗
∂κ

πĝλ

= f̂∗ +
∂f∗
∂Ep

·UpD̄pUp +
∂f∗
∂αR

·Up ˙̄αRUp +
∂f∗
∂κ

πĝλ

= f̂∗ +Up

∂f∗
∂Ep

Up · πĝρ̄+Up

∂f∗
∂αR

Up · πĝβ̄ +
∂f∗
∂κ

πĝλ.

(5.15)

Solving for f̂∗,

f̂∗ = −πĝ
(
Up

∂f∗
∂Ep

Up · ρ̄+Up

∂f∗
∂αR

Up · β̄ +
∂f∗
∂κ

λ

)
. (5.16)

Dividing by ĝ and using (3.26),

f̂∗
ĝ

= Φ̄∗ =

Up

∂f∗
∂Ep

Up · ρ̄+Up

∂f∗
∂αR

Up · β̄ +
∂f∗
∂κ

λ

∂g

∂Ep

· ρ+
∂g

∂αR

· β +
∂g

∂κ
· λ

(5.17)

Note that ĝ is always positive during loading, and f̂∗ can be positive, negative or zero. We
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propose the classification of strain-hardening behavior:

Φ̄∗ > 0 hardening

Φ̄∗ < 0 softening

Φ̄∗ = 0 perfectly plastic.

(5.18)

Note that this classification is not the same as the one presented in Equation (3.30) on page
22.

We propose a similar criterion for the yield function g∗. It will later be explained that
in general, ĝ∗ cannot be used as a loading index. As such, during loading,

0 = ġ∗ =
∂g∗
∂E∗

· Ė∗ +
∂g∗
∂Ep

· Ėp +
∂g∗
∂αR

· α̇R +
∂g∗
∂κ

κ̇

= ĝ∗ +
∂g∗
∂Ep

· πĝρ+
∂g∗
∂αR

· πĝβ +
∂g∗
∂κ

πĝλ

= ĝ∗ +
∂g∗
∂Ep

·UpD̄pUp +
∂g∗
∂αR

·Up ˙̄αRUp +
∂g∗
∂κ

πĝλ

= ĝ∗ +Up

∂g∗
∂Ep

Up · πĝρ̄+Up

∂g∗
∂αR

Up · πĝβ̄ +
∂g∗
∂κ

πĝλ

= ĝ∗ + πĝ

(
Up

∂g∗
∂Ep

Up · ρ̄+Up

∂g∗
∂αR

Up · β̄ +
∂g∗
∂κ

λ

)
.

(5.19)

Dividing by ĝ and using (3.26), we get

ĝ∗
ĝ

= Φ∗ =

Up

∂g∗
∂Ep

Up · ρ̄+Up

∂g∗
∂αR

Up · β̄ +
∂g∗
∂κ

λ

∂g

∂Ep

· ρ +
∂g

∂αR

· β +
∂g

∂κ
· λ

. (5.20)

In general, the elasticity of an elastic-plastic material is described by the fourth order
tensor

LLL ∗ =
∂S∗

∂E∗

(E∗). (5.21)

Then
∂g∗
∂E∗

=
∂f∗
∂S∗

∂S∗

∂E∗

= LLL T
∗

[
∂f∗
∂S∗

]
, (5.22)
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and

ĝ∗ =
∂g∗
∂E∗

· Ė∗ = LLL T
∗

[
∂f∗
∂S∗

]
· Ė∗

=
∂f∗
∂S∗

·LLL ∗

[
Ė∗

]

=
∂f∗
∂S∗

· ∂S∗

∂E∗

[
Ė∗

]

(5.23)

As a special case, consider LLL ∗ to be a constant tensor. We can then write

ĝ∗ =
∂f∗
∂S∗

·LLL ∗

[
Ė∗

]
=
∂f∗
∂S∗

· Ṡ∗ = f̂∗. (5.24)

We can also express the yield function as a function of the rotated stress as follows.

f∗(S∗,Ep,αR, κ) = f∗(Ŝ∗(E∗,Ep,α, κ),Ep,αR, κ)

= f∗(S∗(F∗,T,Ep,α, κ),Ep,αR, κ)

= f̄∗(T,F∗,Ep,α, κ),

(5.25)

where we have used (5.2) and the relations

J∗T = detF∗T = F∗S∗F
T
∗
= J∗RT̃RT . (5.26)

Invoking invariance, we get the yield function f̃ :

f̄∗(T,F∗,Ep,α, κ) = f̄∗(QTQT ,QF∗,Ep,QαQT , κ)

= f̄∗(R
TTR,RTF∗,Ep,R

TαR, κ)

= f̄∗(T̃,U,Up,Ep, α̃, κ)

= f̃(T̃,Ep, α̃, κ).

(5.27)

Alternatively, using the inverse of (5.48)3,

g(E,Ep,α, κ) = f̃(T̃,Ep, α̃, κ). (5.28)

By the consistency condition,

0 = ġ = ˙̃f =
∂f̃

∂T̃
· ˙̃
T+

∂f̃

∂Ep

· Ėp +
∂f̃

∂α̃
· ˙̃α+

∂f̃

∂κ
κ̇

= ˆ̃f +
∂f̃

∂Ep

· Ėp +
∂f̃

∂α̃
· ˙̃α+

∂f̃

∂κ
κ̇.

(5.29)
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Again, during loading, we use the constitutive relations

Ėp = πĝρ, ˙̃α = πĝβ̃, κ̇ = πĝλ. (5.30)

We can express the previous flow and hardening rules using the Eulerian forms of ρ and β̃.

D̄p = πĝU−1
p ρ

∗
U−1

p = πĝρ̄ = U−1
p ĖpU

−1
p ,

˙̄α = πĝU−1
p β̃

∗
U−1

p = πĝβ̄ = U−1
p

˙̃αU−1
p .

(5.31)

Thus (5.29) becomes

0 =
˙̃
f =

ˆ̃
f +

∂f̃

∂Ep

· πĝρ+
∂f̃

∂α̃
· πĝβ̃ +

∂f̃

∂κ
πĝλ

=
ˆ̃
f +

∂f̃

∂Ep

·UpD̄pUp +
∂f̃

∂α̃
·Up ˙̄αUp +

∂f̃

∂κ
πĝλ

= ˆ̃f +Up

∂f̃

∂Ep

Up · D̄p +Up

∂f̃

∂α̃
Up · ˙̄α+

∂f̃

∂κ
πĝλ

(5.32)

Solving for
ˆ̃
f ,

ˆ̃
f = −πĝ

(
∂f̃

∂Ep

· ρ+
∂f̃

∂α̃
· β̃ +

∂f̃

∂κ
λ

)
. (5.33)

Dividing by ĝ and substituting (3.26):

ˆ̃
f

ĝ
= Φ̃∗ =

∂f̃

∂Ep

· ρ+
∂f̃

∂α̃
· β̃ +

∂f̃

∂κ
λ

∂g

∂Ep

· ρ+
∂g

∂αR

· β +
∂g

∂κ
· λ
. (5.34)

A different classification of strain-hardening behavior can then be proposed for the function
Φ̃∗, analogous to (5.18).

Next we show that for yield functions of the form

f(S,U ) = f1(T,U ) = f̃(T̃,U ), (5.35)

we have

f̂ =
∂f

∂S
· Ṡ =

∂f1
∂T

·
t

T =
∂f̃

∂T̃
·

t

T̃, (5.36)

such that for criteria where f̂ is featured, we have some freedom as to the stress measures
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and stress rates that we use in the theory. First, in index notation,

∂f1
∂Tij

=
∂f

∂SAB

∂SAB

∂Tij
. (5.37)

With the use of (2.36)2,

SAB = JXA,mXB,nTmn → ∂SAB

∂Tij
= JXA,iXB,j. (5.38)

Thus,
∂f1
∂T

= JF−T ∂f

∂S
F−1 → ∂f

∂S
=

1

J
FT ∂f1

∂T
F. (5.39)

Then,

f̂ = tr

[(
∂f

∂S

)T

Ṡ

]

= tr

[
1

J
FT

(
∂f1
∂T

)T

F JF−1
t

TF−T

]

=
∂f1
∂T

·
t

T,

(5.40)

where we have used (2.55)2. Also, since

∂f1
∂T

=
∂f̃

∂T̃

∂T̃

∂T

= R
∂f̃

∂T̃
RT ,

(5.41)

we have
∂f1
∂T

·
t

T = R
∂f̃

∂T̃
RT ·

t

T

=
∂f̃

∂T̃
·RT

t

TR

=
∂f̃

∂T̃
·

t

T̃,

(5.42)

where
t

T̃ = RT
t

TR =
1

J
UṠU. (5.43)

Similarly, if we were to take the rotated stress as our primary stress measure, the loading
index would be

ˆ̃
f =

∂f̃

∂T̃
· ˙̃
T =

∂f1
∂T

·
�

T. (5.44)
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Of course, the loading index formulated here is not related to the criteria presented in (3.30).

Different strain hardening criteria, for example, would have to be constructed for
ˆ̃
f .

5.2 The rotated Cauchy stress T̃ and its rate

Using (3.1) and (2.36), we can write the Cauchy stress tensor T in terms of a response
function T̂:

T =
1

J
FŜ(E,U )FT = T̂(F,Fp,α, κ), (5.45)

which satisfies the invariance requirement

T̂(F,Fp,α, κ) = QT T̂(QF,QpFp,QαQT , κ)Q

= RT̂(U,Up,
1

J
UαRU, κ)R

T

= RT̃(E,Ep,αR, κ)R
T

= RT̃(E,U )RT ,

(5.46)

where we have used (4.11)1, (4.21)7, and

α =
1

J
FαRF

T , α+ = QαQT . (5.47)

Thus, as in (2.37), we define a rotated Cauchy stress T̃:

T̃(E,U ) = RTTR =
1

J
USU. (5.48)

The material derivative of the rotated stress is

˙̃
T =

∂T̃

∂E
[Ė] +

∂T̃

∂Ep

[
Ėp

]
+

∂T̃

∂αR

[
α̇R

]
+
∂T̃

∂κ
κ̇. (5.49)

Define a fourth-order tensor

L̃LL =
∂T̃

∂E
. (5.50)

Then the first term on the right hand side of (5.49) can be written as

∂T̃

∂E

[
Ė
]
= L̃LL

[
Ė
]
, L̃MNKLĖKL

= L̃LL
[
FTDF

]
, L̃MNKLFiKFjLDij.

(5.51)
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For the second term, which is the term that involves Ep, we know that

Ėp = UpD̄pUp. (5.52)

During loading, we assume
Ėp = πĝρ, (5.53)

so that
D̄p = U−1

p ĖpU
−1
p = πĝU−1

p ρU−1
p = πĝρ̄. (5.54)

Then
∂T̃

∂Ep

[
Ėp

]
=

∂T̃

∂Ep

[
UpD̄pUp

]
=

∂T̃

∂Ep

[
πĝρ

]
. (5.55)

Similarly, for the third and fourth terms of (5.49),

∂T̃

∂αR

[
α̇R

]
=

∂T̃

∂αR

[
πĝβ

]
,

∂T̃

∂κ
κ̇ =

∂T̃

∂κ
πĝλ.

(5.56)

Recalling the form (3.19) introduced in Chapter 3, we can write the rate of change of T̃ in
a similar way:

˙̃
T = L̃LL

[
Ė
]
+ πĝσ̃, (5.57)

where

σ̃ =
∂T̃

∂Ep

[
ρ
]
+
∂T̃

∂α

[
β
]
+
∂T̃

∂κ
λ. (5.58)

We now attempt to extract a linear dependence of the rotated stress rate to the rate of
deformation D. We can write (5.57) as follows:

˙̃
T = L̃LL

[
Ė
]
+ πĝσ̃,

= L̃LL
[
FTDF

]
+ π

(
∂g

∂E
· Ė
)
σ̃.

(5.59)

In the first term, the transformation L̃LL is linear. Thus, we can define a new fourth-order
tensor M̃MM . Let

L̃MNKLFiKFjL = M̃MNij (5.60)

so that
L̃MNKLFiKFjLDij = M̃MNijDij . (5.61)

There is symmetry in the indices MN from L̃LL and symmetry in ij from D. In direct
notation,

L̃LL
[
FTDF

]
= M̃MM

[
D
]
. (5.62)
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We observe that

ĝ =
∂g

∂E
· Ė

=
∂g

∂E
· FTDF

= F
∂g

∂E
FT ·D

= F
∂f̃

∂T̃

∂T̃

∂E
FT ·D

= FL̃LL T

[
∂f̃

∂T̃

]
FT ·D, L̃MNKL

∂f̃

∂T̃KL

FiKFjLDij .

(5.63)

Then the second term in (5.57) becomes

πĝσ̃ = πFL̃LL T

[
∂f̃

∂T̃

]
FT ·D σ̃

=

(
πσ̃ ⊗ FL̃LL T

[
∂f̃

∂T̃

]
FT

)
[
D
]

=

(
πσ̃ ⊗ L̃LL T

[
∂f̃

∂T̃

])
[
FTDF

]

=

(
πσ̃ ⊗ ∂f̃

∂T̃

)
L̃LL
[
FTDF

]

=

(
πσ̃ ⊗ ∂f̃

∂T̃

)
M̃MM
[
D
]
.

(5.64)

Putting it all together, we can rewrite (5.57) as

˙̃
T = M̃MM

[
D
]
+

(
πσ̃ ⊗ ∂f̃

∂T̃

)
M̃MM
[
D
]
. (5.65)

Further, we define a new fourth-order tensor ÑNN :

ÑNN = I + πσ̃ ⊗ ∂f̃

∂T̃
. (5.66)

Then,
˙̃
T = ÑNN M̃MM

[
D
]
. (5.67)

Note that the form of (5.67) is analogous to (3.21) on page 20.
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5.3 The second Piola-Kirchhoff stress tensor S∗ and its

rate

Consider the rate of the second Piola-Kirchhoff stress tensor S∗ expressed in (5.2),

Ṡ∗ =
∂S∗

∂E∗

[Ė∗] +
∂S∗

∂Ep

[Ėp] +
∂S∗

∂α
[α̇] +

∂S∗

∂κ
κ̇. (5.68)

Define a fourth order tensor L∗ by

LLL ∗ =
∂S∗

∂E∗

, (5.69)

so that the first term in (5.68) is

∂S∗

∂E∗

[Ė∗] = LLL ∗[Ė∗]. (5.70)

During loading, we have the relations

Ėp = πĝρ, α̇R = πĝβ, κ̇ = πĝλ. (5.71)

Thus, the last three terms in (5.68) can simplify to πĝσ∗, where

σ∗ =
∂S∗

∂Ep

[ρ
∗
] +

∂S∗

∂α
[β] +

∂S∗

∂κ
λ. (5.72)

In an effort to obtain a nice form of the stress rate analogous to (5.67), recall that

E∗ = U−1
p (E− Ep)U

−1
p . (5.73)

In index form,
E∗AB = U−1

pKA(EKL − EpKL)U
−1
pBL. (5.74)

Differentiating with respect to E,

∂E∗AB

∂EMN

=
1

2

(
∂E∗AB

∂EMN

+
∂E∗AB

∂ENM

)

=
1

2

[(
U−1
pKAδKMδLNU

−1
pBL + U−1

pKAδKNδLMU
−1
pBL

)]

=
1

2

(
U−1
pMAU

−1
pBN + U−1

pANU
−1
pBM

)
.

(5.75)
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Then
∂g

∂EMN

=
∂g∗

∂E∗AB

∂E∗AB

∂EMN

=
1

2

(
U−1
pMA

∂g∗
∂E∗AB

U−1
pBN + U−1

pAN

∂g∗
∂E∗AB

U−1
pBM

)

= U−1
pAM

1

2

(
∂g∗

∂E∗AB

+
∂g∗

∂E∗AB

)
U−1
pBN .

(5.76)

In direct notation,
∂g

∂E
= U−1

p

∂g∗
∂E∗

U−1
p . (5.77)

Then

ĝ =
∂g

∂E
· Ė

= U−1
p

∂g∗
∂E∗

U−1
p · FTDF.

(5.78)

With the use of (4.25) and (4.52), we can write

FTDF = FT

[
D∗ +

1

2

(
F∗U̇pU

−1
p F−1

∗
+ F−T

∗
U−1

p U̇pF
T
∗

)]
F

= UpF
T
∗
D∗F∗Up +

1

2

(
UpF

T
∗
F∗U̇pU

−1
p F−1

∗
F∗Up +UpF

T
∗
F−T

∗
U−1

p U̇pF
T
∗
F∗Up

)

= UpĖ∗Up +
1

2

(
UpC∗U̇p + U̇pC∗Up

)

= UpĖ∗Up +
1

2

(
Ċ−UpĊ∗Up

)
.

(5.79)
Multiplying both sides by U−1

p ,

FT
∗
DF∗ = Ė∗ +

1

2

(
C∗U̇pU

−1
p +U−1

p U̇pC∗

)

= Ė∗ +
1

2

(
U−1

p ĊU−1
p − Ċ∗

)
.

(5.80)

Thus, from (5.78),

ĝ =
∂g∗
∂E∗

· FT
∗
DF∗. (5.81)

In the case of no plastic loading, U̇p = 0, and ĝ reduces to

ĝ =
∂g∗
∂E∗

· Ė∗. (5.82)
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In this case, we can write

Ṡ∗ = LLL ∗

[
Ė∗

]
+

(
πσ∗ ⊗

∂g∗
∂E∗

)[
Ė∗

]

= LLL ∗

[
Ė∗

]
+

(
πσ∗ ⊗

∂f∗
∂S∗

∂S∗

∂E∗

)[
Ė∗

]

=

(
I + πσ∗ ⊗

∂f∗
∂S∗

)
LLL ∗

[
Ė∗

]

= KKK ∗LLL ∗

[
Ė∗

]
.

(5.83)

The complete general form for the stress rate Ṡ∗ can be obtained directly from (5.68),
without making any assumptions. Thus,

Ṡ∗ = LLL ∗[Ė∗] +

(
πσ∗ ⊗

∂g∗
∂E∗

)
[FT

∗
DF∗]

= LLL ∗

[
Ė∗

]
+

(
πσ∗ ⊗

∂g∗
∂E∗

)[
Ė∗ +

1

2

(
C∗U̇pU

−1
p +U−1

p U̇pC∗

)]

= LLL ∗

[
Ė∗

]
+

(
πσ∗ ⊗

∂g∗
∂E∗

)[
Ė∗

]
+

(
πσ∗ ⊗

∂g∗
∂E∗

)[
1

2

(
C∗U̇pU

−1
p +U−1

p U̇pC∗

)]

=

(
I + πσ∗ ⊗

∂f∗
∂S∗

)
LLL ∗

[
Ė∗

]
+

(
πσ∗ ⊗

∂g∗
∂E∗

)[
1

2

(
C∗U̇pU

−1
p +U−1

p U̇pC∗

)]

= KKK ∗LLL ∗

[
Ė∗

]
+

(
πσ∗ ⊗

∂g∗
∂E∗

)[
1

2

(
C∗U̇pU

−1
p +U−1

p U̇pC∗

)]
.

(5.84)
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5.4 Application of the von Mises criterion to the ex-

pression of stress rates

The von Mises yield criterion can be represented using the different yield functions as
follows:

f1(T) =
1

2
T ·T− κ2

=
1

2
RT̃RT ·RT̃RT − κ2,

f̃(T̃) =
1

2
T̃ · T̃− κ2

=
1

2

1

J
USU · 1

J
USU− κ2,

f(S) =
1

2J2
S ·CSC− κ2.

(5.85)

To express the von Mises criterion in terms of the yield function f∗(S∗), we start with the

relation (5.26) to get an expression for T̃ as a function of S∗.

J∗T = F∗S∗F
T
∗

J∗RT̃RT = F∗S∗F
T
∗

T̃ =
1

J∗
RTF∗S∗F

T
∗
R

=
1

J∗
RTFU−1

p S∗U
−1
p FTR

=
1

J∗
UU−1

p S∗U
−1
p U.

(5.86)

We then have

f∗(S∗) =
1

2J2
∗

UU−1
p S∗U

−1
p U ·UU−1

p S∗U
−1
p U− κ2

=
1

2J2
∗

U−1
p S∗U

−1
p ·CU−1

p S∗U
−1
p C− κ2.

(5.87)
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To apply the von Mises criterion to the stress rates Ṡ,
˙̃
T, and Ṡ∗, we need the partial

derivatives of f , f̃ , and f∗. We formulate them below using index notation.

∂f̃

∂T̃mn

=
1

2

(
∂f̃

∂T̃mn

+
∂f̃

∂T̃nm

)

=
1

2

[
∂

∂Tmn

(
1

2
T̃ijT̃ij

)
+

∂

∂Tnm

(
1

2
T̃ijT̃ij

)]

=
1

2

[
1

2

(
δimδjnT̃ij + T̃ijδimδjn

)
+

1

2

(
δinδjmT̃ij + T̃ijδinδjm

)]

=
1

2

[
1

2

(
T̃mn + T̃mn

)
+

1

2

(
T̃mn + T̃mn

)]

= T̃mn.

(5.88)

Thus,
∂f̃

∂T̃
= T̃. (5.89)

Next,

∂f

∂SMN

=
1

2

(
∂f

∂SMN

+
∂f

∂SNM

)

=
1

2

[
∂

∂SMN

(
1

2J2
SABCACSCDCBD

)
+

∂

∂SNM

(
1

2J2
SABCACSCDCBD

)]

=
1

4J2

[
(δAMδBNCACSCDCBD + CACSABCBDδCMδDN)

+ (δANδBMCACSCDCBD + CACSABCBDδCNδDM)
]

=
1

4J2
[CMCSCDCND + CAMSABCBN + CNCSCDCMD + CANSABCBM ]

=
1

J2
(CAMSABCBN) .

(5.90)

Thus,
∂f

∂S
=

1

J2
CSC. (5.91)
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Finally,

∂f∗
∂S∗

=
∂

∂S∗

(
1

2J2
∗

U−1
p S∗U

−1
p ·CU−1

p S∗U
−1
p C

)
,

∂f∗
∂S∗MN

=
1

2

(
∂f∗

∂S∗MN

+
∂f∗

∂S∗NM

)

=
1

2

[
∂

∂S∗MN

(
1

2J2
∗

U−1
pAKS∗ABU

−1
pBLCRKU

−1
pCRS∗CDU

−1
pDQCLQ

)

+
∂

∂S∗MN

(
1

2J2
∗

U−1
pAKS∗ABU

−1
pBLCRKU

−1
pCRS∗CDU

−1
pDQCLQ

)]

=
1

4J2
∗

(
δAMδBNU

−1
pAKU

−1
pBLCRKU

−1
pCRS∗CDU

−1
pDQCLQ

+ δCMδDNU
−1
pAKS∗ABU

−1
pBLCRKU

−1
pCRU

−1
pDQCLQ

+ δANδBMU
−1
pAKU

−1
pBLCRKU

−1
pCRS∗CDU

−1
pDQCLQ

+ δCNδDMU
−1
pAKS∗ABU

−1
pBLCRKU

−1
pCRU

−1
pDQCLQ

)

=
1

4J2
∗

(
U−1
pMKU

−1
pNLCRKU

−1
pCRS∗CDU

−1
pDQCLQ

+ U−1
pAKS∗ABU

−1
pBLCRKU

−1
pMRU

−1
pNQCLQ

+ U−1
pNKU

−1
pMLCRKU

−1
pCRS∗CDU

−1
pDQCLQ

+ U−1
pAKS∗ABU

−1
pBLCRKU

−1
pNRU

−1
pMQCLQ

)
.

(5.92)

Taking advantage of the symmetries, we find that all four terms are equal. Simplifying, we
have

∂f∗
∂S∗

=
1

J2
∗

(
U−1

p CU−1
p S∗U

−1
p CU−1

p

)
. (5.93)

Further, in view of (4.46),
∂f∗
∂S∗

=
1

J2
∗

(C∗S∗C∗) . (5.94)

Thus, after application of the von Mises criterion, the stress rates Ṡ,
˙̃
T, and Ṡ∗, re-

spectively, are

Ṡ =

(
I + πσ ⊗ ∂f

∂S

)
∂S

∂E

[
Ė
]

=

(
I + πσ ⊗ 1

J2
CSC

)
LLL
[
Ė
]
,

(5.95)
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˙̃
T =

(
I + πσ̃ ⊗ ∂f̃

∂T̃

)
∂T̃

∂E

[
FTDF

]

=
(
I + πσ̃ ⊗ T̃

)
M̃MM
[
D
]
,

(5.96)

Ṡ∗ =

(
I + πσ∗ ⊗

∂f∗
∂S∗

)
∂S∗

∂E∗

[
Ė∗

]
+
∂S∗

∂E∗

[
1

2

(
C∗U̇pU

−1
p +U−1

p U̇pC∗

)]

=

(
I + πσ∗ ⊗

1

J2
∗

C∗S∗C∗

)
LLL ∗

[
Ė∗

]
+LLL ∗

[
1

2

(
C∗U̇pU

−1
p +U−1

p U̇pC∗

)]

=

(
I + πσ∗ ⊗

1

J2
∗

C∗S∗C∗

)
LLL ∗

[
Ė∗

]
+LLL ∗

[
D̄p + E∗U̇pU

−1
p +U−1

p U̇pE∗

]
.

(5.97)

5.5 The yield function in E∗ space

In this section, we make the assumption that the Piola-Kirchhoff stress S∗ depends only
on one intermediate variable, namely E∗. This helps us obtain the relationship between the
original Lagrangian strain space that depends on E and this new strain space that depends
on E∗. Thus, the stress is given by

S∗ = Ŝ∗(E∗), (5.98)

and its rate is
Ṡ∗ = LLL ∗[Ė∗], (5.99)

where

Ė∗ = FT
∗
DF∗ −

1

2

(
C∗U̇pU

−1
p +U−1

p U̇pC∗

)

= FT
∗
DF∗ −

(
C∗L̄p

)
sym

.
(5.100)

The subscript “sym” denotes the symmetric part of the tensor inside the parentheses. The
equation for Ė∗ is helpful for our purposes since the first term on the right hand side gives
us the rate of deformation D, and the L̄p gives D̄p, which we can get from a flow rule that
only involves D. And Ė∗, of course is the rate of the strain measured from the stress-free
configuration κ∗. So in this sense, we do not have to refer back to the reference configuration
to get a Prandtl-Reuss type equation for Ṡ∗ or Ṫ∗. The ultimate goal is to formulate a
Prandtl-Reuss type equation for the Eulerian theory.

Now, the loading index ĝ that is used in the Green and Naghdi flow rule for Ėp (and
ultimately for D̄p) still requires us to refer back to the reference configuration. We can
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∂g

∂E

Ė

Ce

D

g < 0

g = 0

Γ

g > 0

Figure 5.1: The yield surface in E space. The loading index ĝ = Γ ·D.

rewrite ĝ as

ĝ =
∂g

∂E
· Ė

=
∂g

∂E
· FTDF

= F
∂g

∂E
FT ·D

= Γ ·D.

(5.101)

See Figure 5.1. At first glance, we can see that this may give us a loading index that depends
on D. However, the reference configuration is still prominent in the tensor

Γ = F
∂g

∂E
FT . (5.102)

If we look closely, however, we can interpret Γ̄ as a push-forward of
∂g

∂E
. Thus, with the

help of (4.49), we can transform the tensor Γ̄, which depends on the reference configuration,
to a new tensor Γ, which depends on the stress-free configuration κ∗:

Γ = Γ̄(E,Ep,αR, κ) = Γ∗(E∗,Ep,αR, κ). (5.103)
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The tensor Γ is the push-forward of the normal to the yield surface
∂g

∂E
. Now we can consider

the loading index ĝ as
ĝ = Γ∗(E∗,Ep,αR, κ) ·D. (5.104)

We note that the invariance requirement for Γ is

Γ+ = F+ ∂g
+

∂E+

(
FT
)+

= QF
∂g

∂E
FTQT = QΓQT . (5.105)

A∗

Ė∗

C∗ D

g∗ < 0

g∗ = 0

Γ

g∗ > 0

Figure 5.2: The yield surface in E∗ space.

Recall the yield surface in Lagrangian strain space. The normal to this surface is
∂g

∂E
and the tangent to the strain path is Ė. The loading index is the dot product of the two.
Now we have

Γ = F
∂g

∂E
FT , D = F−T ĖF−1. (5.106)

So in strain space, we can transform
∂g

∂E
and Ė into Γ and D and still get the same loading

index ĝ. This transformation can involve rotating and stretching, depending on F.

If we then consider the strain space of E∗, we can map certain things from the strain
space of E. Certainly, at a fixed value of Ep, we can map the yield surface ∂E into another
surface ∂E∗ in E∗ space. This new surface would thus describe a yield surface in E∗ space,
with an elastic region enclosed by its boundary and a plastic region outside of its boundary.
The elastic region is given by g∗ < 0. See Figure 5.2. With the aid of (4.49), this new surface
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can be described by a function g∗ = 0:

g(E,Ep,α, κ) = g∗(E∗,Ep,α, κ) = 0, (5.107)

with the usual consistency condition (ġ = ġ∗ = 0) in place. Note that in general,

Γ ·D 6= ∂g∗
∂E∗

· Ė∗. (5.108)

Consider a point A on the strain path C in E that coincides with the yield surface. At
fixed Ep, that point can be mapped to another point A∗ in E∗. As the material continues to
yield, we can follow the strain path C, and for each of those points, we can map a series of
points in E∗, keeping Ep fixed. This would give us a path C∗ in E∗ space. It has a tangent
vector Ė∗.

The yield surface in E can be mapped into a yield surface in E∗, but this new surface

will not in general give us suitable loading criteria in terms of
∂g∗
∂E∗

and Ė∗. Further, the

tensors Γ and D can be mapped into the E∗ space, keeping its inner product ĝ intact.

The behavior of the yield surface in E∗ space is analogous to its equivalent surface in
stress space. A strain path and a yield surface would only go as far as defining the elastic
region, but yield criteria cannot be implemented.

Note that because we are considering the space E∗, it can be useful to express the
loading index in terms of E∗ or in terms of D∗:

0 < ĝ = Γ ·D
= ΓO

∗
· Ė∗ + ΓO

∗
·C∗U̇pU

−1
p .

= ΓO
∗
·
(
Ė∗ +C∗U̇pU

−1
p

)
,

(5.109)

where

ΓO
∗
= F−1

∗
ΓF−T = Up

∂g

∂E
Up. (5.110)

5.6 The loading index in other spaces

In E space, we define the rotated rate of deformation tensor

D̃ = D̃(E,U ) = U−1ĖU−1 = RTDR. (5.111)
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We also define a rotated form of Γ:

Γ̃ = Γ̃(E,U ) = U
∂g

∂E
U = RTΓR. (5.112)

We thus have another representation for the loading index:

ĝ = Γ̃ · D̃. (5.113)

For a particular yield point, we can then construct the two tensors Γ̃ and D̃ without reference
to a deformation gradient, while keeping the value of the inner product ĝ. Using appropriate
stress-strain relations, Γ̃ and D̃ can then be mapped into various stress and strain spaces
while still retaining the value of ĝ.

Using the inverse relation of the rotated Cauchy stress T̃(E,U ), we can write

D̃ = D̃(E(T̃,U ),U ) = D̃(T̃,U ), (5.114)

and
Γ̃ = Γ̃(E(T̃,U ),U ) = Γ̃(T̃,U ), (5.115)

which gives us another representation of the loading index, this time in T̃ space:

ĝ = Γ̃ · D̃. (5.116)

Further, using the expression (4.49), we can write E as a function of E∗. Thus,

D̃ = D̃(E(E∗,U ),U ) = D̃∗(E∗,U ),

Γ̃ = Γ̃(E(E∗,U ),U ) = Γ̃∗(E∗,U ).
(5.117)

In this chapter, we have introduced the yield functions and stress measures associated
with the intermediate configuration κ∗. We have also mentioned the various forms of the von
Mises yield condition and the loading index. These elements will be used in the formulation
of stress rates in the next chapter.
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Chapter 6

Stress Measures, Their Rates, and

Constitutive Equations

With the κ∗ configuration established, the choice of an appropriate stress measure
to describe the elastic-plastic material still remains. A selection of stress tensors and their
dependent parameters are further explored in this chapter. For each of these stress measures,
an objective stress rate is formulated, and each is expressed in terms of the strain rate or
the rate of deformation tensor D. We also develop a class of objective rates for the rotated
Cauchy stress tensor.

6.1 The symmetric Piola-Kirchhoff stress tensor S

Recall that the material derivative of S, which is given in (3.1), is

Ṡ = LLL [Ė] +
∂Ŝ

∂Ep

[Ėp] +
∂Ŝ

∂αR

[α̇R] +
∂Ŝ

∂κ
κ̇, (6.1)

where

LLL =
∂Ŝ

∂E
(E,Ep,α,κ). (6.2)

Since Ė = FTDF, we can rewrite the first term of (6.1) in index notation as

LKLAB (FiADijFjB) = FiALKLABFjB (Dij) . (6.3)
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Using (2.17), we can rewrite (6.3) as

(
LKLABEK ⊗ EL ⊗EA ⊗ EB

)
⊙ (FiMei ⊗EM ⊗ FjNej ⊗ EN) [D]

= LKLABFiMFjNδAMδBN (EK ⊗ EL ⊗ ei ⊗ ej) [D]

= LKLABFiAFjB (EK ⊗ EL ⊗ ei ⊗ ej) [D]

= FKLij (EK ⊗EL ⊗ ei ⊗ ej) [D]

= FFF [D].

(6.4)

In direct notation, the fourth-order tensor FFF is

FFF = LLL ⊙ (F⊗ F) = FFF (F,E,Ep,α,κ) (6.5)

so that the first term of (6.1) can be rewritten as

LLL [FTDF] = LLL ⊙ (F⊗ F)[D] = FFF [D]. (6.6)

Finally, using (3.21), we write

Ṡ =

(
III + πσ ⊗ ∂f

∂S

)
LLL ⊙ (F⊗ F) [D]

= KKK LLL ⊙ (F⊗ F) [D].

(6.7)

Alternatively, we can simply write

Ṡ =

(
∂Ŝ

∂E
+ πσ ⊗ ∂g

∂E

)
⊙ (F⊗ F) [D]. (6.8)

6.2 The rotated Cauchy stress tensor T̃

Recall that the material derivative of T̃, which is given in (5.48), is

˙̃
T =

∂T̃

∂E
[Ė] +

∂T̃

∂Ep

[
Ėp

]
+

∂T̃

∂αR

[
α̇R

]
+
∂T̃

∂κ
κ̇. (6.9)

Using
Ė = FTDF, ĖAB = FiADijFjB, (6.10)

and the flow rules (during loading)

Ėp = πĝρ, α̇R = πĝβ, κ̇ = πĝλ, (6.11)
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we have
˙̃
T =

∂T̃

∂E
[FTDF] +

∂T̃

∂Ep

[
πĝρ

]
+

∂T̃

∂αR

[
πĝβ

]
+
∂T̃

∂κ
πĝλ. (6.12)

We observe that the first term of (6.12) can be written in index form as

∂T̃KL

∂EAB

(FiADijFjB) = FiA

∂T̃KL

∂EAB

FjB (Dij) , (6.13)

which, with the use of (2.17), can be rewritten as

(
∂T̃KL

∂EAB

EK ⊗ EL ⊗ EA ⊗EB

)
⊙ (FiMei ⊗ EM ⊗ FjNej ⊗EN) [D]

=
∂T̃KL

∂EAB

FiMFjNδAMδBN (EK ⊗ EL ⊗ ei ⊗ ej) [D]

=
∂T̃KL

∂EAB

FiAFjB (EK ⊗ EL ⊗ ei ⊗ ej) [D]

= F̃KLij (EK ⊗ EL ⊗ ei ⊗ ej) [D]

= F̃FF [D].

(6.14)

In direct notation, the fourth-order tensor F̃FF is

F̃FF =
∂T̃

∂E
⊙ (F⊗ F) (6.15)

so that the first term of (6.12) can be written as

∂T̃

∂E
[FTDF] =

∂T̃

∂E
⊙ (F⊗ F)[D] = F̃FF [D]. (6.16)

The last three terms of (6.12) can be expressed in the compact form

πĝ

{
∂T̃

∂Ep

[
ρ
]
+

∂T̃

∂αR

[
β
]
+
∂T̃

∂κ
λ

}
= π (Γ ·D) σ̃

= π (σ̃ ⊗ Γ) [D],

(6.17)

where we have used (5.104), (5.102), and the definition

σ̃ =
∂T̃

∂Ep

[
ρ
]
+

∂T̃

∂αR

[
β
]
+
∂T̃

∂κ
λ. (6.18)
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Recall that
E∗ = Ê∗(E,Ep) = U−1

p (E−Ep)U
−1
p ,

E∗MN = Ê∗MN(EKL, EpKL) = U−1
pKM(EKL − EpKL)U

−1
pLN .

(6.19)

Keeping the parameters E and Ep independent of each other, we can differentiate E∗ with
respect to E. In index form,

∂Ê∗MN

∂EAB

=
1

2

(
∂Ê∗MN

∂EAB

+
∂Ê∗MN

∂EBA

)

=
1

2

[(
U−1
pKMδAKδBLU

−1
pLN + U−1

pKMδBKδALU
−1
pLN

)]

=
1

2

(
U−1
pAMU

−1
pBN + U−1

pBMU
−1
pAN

)
.

(6.20)

Also, using (6.19), we can recast the rotated stress as

T̃(E,Ep,αR, κ) = T̄(E∗,Ep,αR, κ) = T̄(E∗,U ). (6.21)

Applying (6.20)3 to
∂T̃

∂E
, we get

∂T̃KL

∂EAB

=
∂T̄KL

∂E∗MN

∂Ê∗MN

∂EAB

=
1

2

(
U−1
pAM

∂T̄KL

∂E∗MN

U−1
pBN + U−1

pBM

∂T̄KL

∂E∗NM

U−1
pAN

)

= U−1
pAM

∂T̄KL

∂E∗MN

U−1
pBN ,

(6.22)

where the symmetry of E has been utilized. From (6.13) and using (6.22) and

F∗ = FU−1
p , F∗iM = FiAU

−1
pAM , (6.23)

we get

FiA

∂T̃KL

∂EAB

FjB(Dij) = FiAU
−1
pAM

∂T̄KL

∂E∗MN

U−1
pBNFjB (Dij)

= F∗iM

∂T̄KL

∂E∗MN

F∗jN(Dij),

(6.24)

or in direct notation,

∂T̃

∂E
[FTDF] =

∂T̄

∂E∗

⊙ (F∗ ⊗ F∗)[D] = F̃FF [D]. (6.25)
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Recall that the yield function g can be expressed in either of the two strain spaces as

g = g(E,U ) = g∗(E∗,U ). (6.26)

Thus, by the chain rule,

∂g

∂E
=

∂g∗
∂E∗

∂E∗

∂E
,

∂g

∂EAB

=
∂g∗

∂E∗MN

∂Ê∗MN

∂EAB

. (6.27)

Applying (6.20)3 we find that

∂g

∂EAB

= U−1
pAM

∂g∗
∂E∗MN

U−1
pBN , (6.28)

or, in direct notation,
∂g

∂E
= U−1

p

∂g∗
∂E∗

U−1
p . (6.29)

Substituting (6.29) to the tensor Γ in (5.102),

Γ = FU−1
p

∂g∗
∂E∗

U−1
p FT = F∗

∂g∗
∂E∗

FT
∗
,

Γij = FiAU
−1
pAM

∂g∗
∂E∗MN

U−1
pBNFjB = F∗iM

∂g∗
∂E∗MN

F∗jN .

(6.30)

Thus, after combining all terms, the rate of rotated stress is

˙̃
T =

∂T̄

∂E∗

⊙ (F∗ ⊗ F∗)[D] + π (σ̃ ⊗ Γ) [D]

=

{
∂T̄

∂E∗

⊙ (F∗ ⊗ F∗) + πσ̃ ⊗ Γ

}
[D]

=

{
∂T̄

∂E∗

⊙ (F∗ ⊗ F∗) + πσ̃ ⊗ F∗

∂g∗
∂E∗

FT
∗

}
[D]

=

{
∂T̄

∂E∗

⊙ (F∗ ⊗ F∗) + π

(
σ̃ ⊗ ∂g∗

∂E∗

)
⊙ (F∗ ⊗ F∗)

}
[D]

=

(
∂T̄

∂E∗

+ πσ̃ ⊗ ∂g∗
∂E∗

)
⊙ (F∗ ⊗ F∗) [D].

(6.31)
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Rewriting (6.31) in index form,

˙̃
TKL = F∗iM

∂T̄KL

∂E∗MN

F∗jNDij + πσ̃KLΓijDij

= F∗iM

∂T̄KL

∂E∗MN

F∗jNDij + πσ̃KLF∗iM

∂g∗
∂E∗MN

F∗jNDij

=

(
F∗iM

∂T̄KL

∂E∗MN

F∗jN + πσ̃KLF∗iM

∂g∗
∂E∗MN

F∗jN

)
Dij

=

(
∂T̄KL

∂E∗MN

+ πσ̃KL

∂g∗
∂E∗MN

)
F∗iMF∗jNDij .

(6.32)

We now verify the invariance of this rotated stress rate under superposed rigid body
motions. First, in index form,

˙̃
T+
KL =

(
∂T̄+

KL

∂E+
∗MN

+ π+σ̃+
KL

∂g+
∗

∂E+
∗MN

)
F+
∗iMF

+
∗jND

+
ij

=

(
∂T̄KL

∂E∗MN

+ πσ̃KL

∂g∗
∂E∗MN

)
QikF∗kMQjℓF∗ℓNQirDrsQjs

=

(
∂T̄KL

∂E∗MN

+ πσ̃KL

∂g∗
∂E∗MN

)
QirQikF∗kMQjsQjℓF∗ℓNDrs

=

(
∂T̄KL

∂E∗MN

+ πσ̃KL

∂g∗
∂E∗MN

)
δkrF∗kMδℓsF∗ℓNDrs

=

(
∂T̄KL

∂E∗MN

+ πσ̃KL

∂g∗
∂E∗MN

)
F∗rMF∗sNDrs

=

(
∂T̄KL

∂E∗MN

+ πσ̃KL

∂g∗
∂E∗MN

)
F∗iMF∗jNDij

=
˙̃
TKL.

(6.33)

Thus, in direct notation,

˙̃
T+ =

(
∂T̄+

∂E+
∗

+ π+σ̃+ ⊗ ∂g+
∗

∂E+
∗

)
⊙
(
F+

∗
⊗ F+

∗

)
[D+]

=

(
∂T̄

∂E∗

+ πσ̃ ⊗ ∂g∗
∂E∗

)
⊙ (QF∗ ⊗QF∗) [QDQT ]

=

(
∂T̄

∂E∗

+ πσ̃ ⊗ ∂g∗
∂E∗

)
⊙
(
QTQF∗ ⊗QTQF∗

)
[D]

=

(
∂T̄

∂E∗

+ πσ̃ ⊗ ∂g∗
∂E∗

)
⊙
(
F∗ ⊗ FT

∗

)
[D]

=
˙̃
T.

(6.34)
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In addition, we have the representation of the box rate of Cauchy stress, which was
also used by Green and McInnis [17]:

�

T = R
˙̃
TRT

= R

{(
∂T̄

∂E∗

+ πσ̃ ⊗ ∂g∗
∂E∗

)
⊙
(
F∗ ⊗ FT

∗

)
[D]

}
RT .

(6.35)

This satisfies the invariance requirement

�

T+ = Q
�

TQT . (6.36)

It is therefore an objective rate. In index form,

�

Tmn = RmK
˙̃
TKLRnL

= RmK

{(
∂T̄KL

∂E∗MN

+ πσ̃KL

∂g∗
∂E∗MN

)
F∗iMF∗jNDij

}
RnL.

(6.37)

6.3 An alternate rotated Cauchy stress T∗ as a function

of E∗

Recall that we can write the Cauchy stress in the form

T =
1

J
FŜ(E,U )FT = T̂(F,Fp,α, κ). (6.38)

The function T̂ must satisfy the invariance requirement (2.46). Choosing QT = R∗, we have

T̂(F,Fp,α, κ) = Ť(F∗,Up,α, κ)

= QT Ť(QF∗,Up,QαQT , κ)Q

= R∗Ť(RT
∗
F∗,Up,R

T
∗
αR∗, κ)R

T
∗

= R∗Ť(U∗,Up,α∗, κ)R
T
∗

= R∗T̄(E∗,Ep,α∗, κ)R
T
∗
,

(6.39)

where we have used (4.11)1, (4.21)9, (5.47)2, and defined

α∗ = RT
∗
αR∗. (6.40)

We can then introduce an alternate rotated stress field

T∗ = RT
∗
TR∗ = T̄∗(E∗,Ep,α∗, κ). (6.41)
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which is related to S∗ by

J∗T∗ = RT
∗
F∗S∗F

T
∗
R∗ = U∗UpS∗UpU∗. (6.42)

We can treat T∗ as the recast version of the stress field T̃. It is invariant under superposed
rigid body motions, because

T+
∗
=
(
RT

∗

)+
T+R+

∗

= RT
∗
QTQTQTQR∗

= RT
∗
TR∗

= T∗,

(6.43)

and thus its rate is also invariant. This material derivative is

Ṫ∗ =
∂T̄∗

∂E∗

[Ė∗] +
∂T̄∗

∂Ep

[
Ėp

]
+
∂T̄∗

∂α∗

[
α̇∗

]
+
∂T̄

∂κ
κ̇. (6.44)

We first examine the strain rate Ė∗. From (4.48), (4.52), and (4.54),

Ė∗ = FT
∗
DF∗ −

1

2

(
C∗U̇pU

−1
p +U−1

p U̇pC∗

)
. (6.45)

Note that we can write Up as a function of Ep:

Up = Ûp(Ep), UpRS = ÛpRS(EpKL), (6.46)

such that

U̇p =
∂Ûp

∂Ep

[Ėp], U̇pRS =
∂ÛpRS

∂EpKL

ĖpKL. (6.47)

Then, in index form, the strain rate Ė∗ is

Ė∗MN = F∗iMDijF∗jN − 1

2

(
C∗MR

∂ÛpRS

∂EpKL

ĖpKLU
−1
pSN + U−1

pMR

∂ÛpRS

∂EpKL

ĖpKLC∗SN

)

= F∗iMDijF∗jN − 1

2

(
C∗MR

∂ÛpRS

∂EpKL

U−1
pSN + U−1

pMR

∂ÛpRS

∂EpKL

C∗SN

)
ĖpKL

= F∗iMDijF∗jN − ZMNKLĖpKL,

(6.48)

where we have defined the components

ZMNKL =
1

2

(
C∗MR

∂ÛpRS

∂EpKL

U−1
pSN + U−1

pMR

∂ÛpRS

∂EpKL

C∗SN

)
. (6.49)

In direct notation,
Ė∗ = FT

∗
DF∗ −Z[Ėp]. (6.50)
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Substituting into the stress rate (6.44) and rearranging,

Ṫ∗ =
∂T̄∗

∂E∗

[
FT

∗
DF∗ −Z[Ėp]

]
+
∂T̄∗

∂Ep

[
Ėp

]
+
∂T̄∗

∂α R

[
α̇R

]
+
∂T̄∗

∂κ
κ̇

=
∂T̄∗

∂E∗

[
FT

∗
DF∗

]
− ∂T̄∗

∂E∗

Z[Ėp] +
∂T̄∗

∂Ep

[
Ėp

]
+
∂T̄∗

∂α R

[
α̇R

]
+
∂T̄∗

∂κ
κ̇

=
∂T̄∗

∂E∗

[
FT

∗
DF∗

]
+

(
∂T̄∗

∂Ep

− ∂T̄∗

∂E∗

Z

)
[Ėp] +

∂T̄∗

∂α R

[
α̇R

]
+
∂T̄∗

∂κ
κ̇.

(6.51)

Recalling the flow rules (3.18) during loading,

Ṫ∗ =
∂T̄∗

∂E∗

[
FT

∗
DF∗

]
+

(
∂T̄∗

∂Ep

− ∂T̄∗

∂E∗

Z

)
[πĝρ] +

∂T̄∗

∂α R

[
πĝβ] +

∂T̄∗

∂κ
πĝλ

=
∂T̄∗

∂E∗

[
FT

∗
DF∗

]
+ πĝ

{(
∂T̄∗

∂Ep

− ∂T̄∗

∂E∗

Z

)
[ρ] +

∂T̄∗

∂α R

[
β] +

∂T̄∗

∂κ
λ

}

=
∂T̄∗

∂E∗

[
FT

∗
DF∗

]
+ πĝσ̃∗,

(6.52)

where

σ̃∗ =

(
∂T̄∗

∂Ep

− ∂T̄∗

∂E∗

Z

)
[ρ] +

∂T̄∗

∂α R

[
β] +

∂T̄∗

∂κ
λ. (6.53)

Recalling the loading index

ĝ = Γ(E∗,Ep) ·D = F∗

∂g∗
∂E∗

FT
∗
·D. (6.54)

Then

Ṫ∗ =
∂T̄∗

∂E∗

[
FT

∗
DF∗

]
+ π

(
F∗

∂g∗
∂E∗

FT
∗
·D
)
σ̃∗

=
∂T̄∗

∂E∗

[
FT

∗
DF∗

]
+ πσ̃∗

∂g∗
∂E∗

· FT
∗
DF∗

=
∂T̄∗

∂E∗

[
FT

∗
DF∗

]
+

(
πσ̃∗ ⊗

∂g∗
∂E∗

)[
FT

∗
DF∗

]

=

(
∂T̄∗

∂E∗

+ πσ̃∗ ⊗
∂g∗
∂E∗

)[
FT

∗
DF∗

]

=

(
∂T̄∗

∂E∗

+ πσ̃∗ ⊗
∂g∗
∂E∗

)
⊙ (F∗ ⊗ F∗) [D] .

(6.55)

The invariance requirement for Ṫ∗ can be shown in a similar way as (6.34).

65



6.4 The Piola-Kirchhoff stress S∗ as a function of E∗

Recall the Piola-Kirchhoff stress

S∗ = S̄∗(E∗,Ep,αR, κ). (6.56)

In a similar fashion to the previous section, we can formulate the stress rate Ṡ∗ in terms of
D. Thus,

Ṡ∗ =
∂S̄∗

∂E∗

[Ė∗] +
∂S̄∗

∂Ep

[
Ėp

]
+
∂S̄∗

∂αR

[
α̇R

]
+
∂S̄∗

∂κ
κ̇

=
∂S̄∗

∂E∗

[
FT

∗
DF∗ −Z [Ėp]

]
+
∂S̄∗

∂Ep

[
Ėp

]
+
∂S̄∗

∂αR

[
α̇R

]
+
∂S̄∗

∂κ
κ̇

=
∂S̄∗

∂E∗

[
FT

∗
DF∗

]
− ∂S̄∗

∂E∗

Z [Ėp] +
∂S̄∗

∂Ep

[
Ėp

]
+
∂S̄∗

∂αR

[
α̇R

]
+
∂S̄∗

∂κ
κ̇

=
∂S̄∗

∂E∗

[
FT

∗
DF∗

]
+

(
∂S̄∗

∂Ep

− ∂S̄∗

∂E∗

Z

)
[Ėp] +

∂S̄∗

∂αR

[
α̇R

]
+
∂S̄∗

∂κ
κ̇

=
∂S̄∗

∂E∗

[
FT

∗
DF∗

]
+

(
∂S̄∗

∂Ep

− ∂S̄∗

∂E∗

Z

)
[πĝρ] +

∂S̄∗

∂αR

[
πĝβ] +

∂T̄

∂κ
πĝλ

=
∂S̄∗

∂E∗

[
FT

∗
DF∗

]
+ πĝ

{(
∂S̄∗

∂Ep

− ∂S̄∗

∂E∗

Z

)
[ρ] +

∂S̄∗

∂αR

[
β] +

∂S̄∗

∂κ
λ

}

=
∂S̄∗

∂E∗

[
FT

∗
DF∗

]
+ πĝσ∗,

(6.57)

where we have used (6.50), (3.18), and defined

σ∗ =

(
∂S̄∗

∂Ep

− ∂S̄∗

∂E∗

Z

)
[ρ] +

∂S̄∗

∂αR

[
β] +

∂S̄∗

∂κ
λ. (6.58)

Further, using (5.104) and (2.17),

Ṡ∗ =
∂S̄∗

∂E∗

[
FT

∗
DF∗

]
+ π

(
F∗

∂g∗
∂E∗

FT
∗
·D
)
σ∗

=
∂S̄∗

∂E∗

[
FT

∗
DF∗

]
+ πσ∗

∂g∗
∂E∗

· FT
∗
DF∗

=
∂S̄∗

∂E∗

[
FT

∗
DF∗

]
+

(
πσ∗ ⊗

∂g∗
∂E∗

)[
FT

∗
DF∗

]

=

(
∂S̄∗

∂E∗

+ πσ∗ ⊗
∂g∗
∂E∗

)[
FT

∗
DF∗

]

=

(
∂S̄∗

∂E∗

+ πσ∗ ⊗
∂g∗
∂E∗

)
⊙ (F∗ ⊗ F∗) [D] .

(6.59)
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This stress rate follows the invariance requirement Ṡ+
∗
= Ṡ∗.

In summary, we have the following four objective stress rates:

Ṡ =

(
∂Ŝ

∂E
+ πσ ⊗ ∂g

∂E

)
⊙ (F⊗ F) [D],

˙̃
T =

(
∂T̄

∂E∗

+ πσ̃ ⊗ ∂g∗
∂E∗

)
⊙ (F∗ ⊗ F∗) [D],

Ṫ∗ =

(
∂T̄∗

∂E∗

+ πσ̃∗ ⊗
∂g∗
∂E∗

)
⊙ (F∗ ⊗ F∗) [D],

Ṡ∗ =

(
∂S̄∗

∂E∗

+ πσ∗ ⊗
∂g∗
∂E∗

)
⊙ (F∗ ⊗ F∗) [D].

(6.60)

Each of the stress rates above have the same form: a fourth-order tensor acting on the rate
of deformation tensor D. All of them can be used for finite elastic-plastic deformations.

We can rewrite the stress rates (6.60)1,2 using their work conjugates as follows:

Ṡ =

(
∂Ŝ

∂E
+ πσ ⊗ ∂g

∂E

)
[Ė]

= AAA (E,U )[Ė],

(6.61)

˙̃
T =

(
∂T̄

∂E∗

⊙ (U∗ ⊗U∗) + πσ̃ ⊗ Γ̃

)
[D̃]

= AAA ∗(E∗,U )[D̃]

(6.62)

6.5 General objective rates of the rotated Cauchy stress

In a 1988 paper, Casey and Naghdi [14] developed a relation between two objective
rates to demonstrate that the Eulerian and Lagrangian descriptions of finite rigid plasticity
is form-invariant under arbitrary transformations of any objective stress rate. We develop a
similar form in this section for objective rates of the rotated stress tensor.

Let Σ be a kinetical tensor associated with the present configuration of the body. We
can define a transform π̃ that takes Σ into its rotated form Σ̃ by

Σ̃ = π̃{Σ} = RTΣR. (6.63)
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Conversely, we can define Σ in terms of its rotated form by

Σ = π̃−1{Σ̃} = RΣ̃RT . (6.64)

Under superposed rigid body motions, both Σ and Σ̃ are objective because

Σ+ = QΣQT , Σ̃+ = Σ̃. (6.65)

Clearly, the material time derivative of Σ̃ is objective, while that of Σ is not.

For any two objective rates
b

Σ and
a

Σ of a kinetical tensor Σ, we suppose that

b

Σ =
a

Σ+BBBb,a(Σ)[L], (6.66)

where BBBb,a is a fourth-order tensor function of T,F∗, κ and Σ acting on the velocity gradient.
If we take Σ to be the Cauchy stress tensor, we then have the relation

b

T =
a

T+BBBb,a(T)[D], (6.67)

where, again, BBBb,a is a function of T, F∗, and κ. By invariance requirements under super-
posed rigid body motions, the fourth-order tensor now acts on the symmetric part of the

velocity gradient. Let’s take
b

T to be the box rate
�

T, given in (6.35). Thus,

�

T =
a

T+BBB�,a(T)[D]. (6.68)

From here, we can obtain a similar relation to establish a class of objective rates for the
rotated stress T̃. Using (6.35)1 and (6.68),

˙̃
T = RT

�

TR

= RT
{ a

T+BBB�,a(T)[D]
}
R

= RT
a

TR+RT
{
BBB�,a(T)[D]

}
R.

(6.69)

In component form,
˙̃
TKL = RmK

�

TmnRnL.

= RmK

(
a

Tmn + B�,a
KLijDij

)
RnL

= RmK

a

TmnRnL +RmKB�,a
KLijDijRnL.

(6.70)

The last term in (6.69)3 can be rewritten using a fourth-order tensor

AAA �,a(T̃)[D] = RT
{
BBB�,a(T)[D]

}
R

= {(R⊗R)⊡BBB�,a(T)}[D],
(6.71)
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which has components
A �,a

mnij = RmARnBB�,a
KLijδAKδBL. (6.72)

We have used the operation ⊡ in formulating the tensor A �,a. Thus,

˙̃
T = RT

a

TR+AAA �,a(T̃)[D]. (6.73)

Let
a

T̃ = RT
a

TR. (6.74)

This objective rate of the rotated Cauchy stress is the π̃ transform of any objective rate
a

T

of Cauchy stress. Using (6.63), we then have the following:

T̃ = π̃{T} = RTTR,
�

T = π̃{Ṫ} = RT ṪR,
a

T̃ = π̃{
a

T} = RT
a

TR.

(6.75)

Also, under superposed rigid body motions,

( a

T̃
)+

=
(
RT

a

TR
)+

=
(
RTQT

) (
Q

a

TQT
)
(QR)

= RT
a

TR

=
a

T̃.

(6.76)

Thus,
˙̃
T =

a

T̃+AAA �,a(T̃)[D]. (6.77)

Also, for any two objective rates
a

T̃ and
b

T̃ of the rotated stress,

b

T̃ =
a

T̃+AAA b,a(T̃)[D], (6.78)

where
AAA b,a(T̃) = AAA �,a(T̃)−AAA �,b(T̃)

= AAA b,�(T̃)−AAA a,�(T̃).
(6.79)

We can therefore adopt an equation of the form

a

T̃ = GGG a[D], (6.80)
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where GGG a is a fourth-order tensor which in addition to depending on T̃, F∗, U , also depends
on the choice of objective rate. This dependence is indicated by the superscript a. Thus,
under transformation of objective rate, the equation above is form-invariant because we can
easily transform it into

b

T̃ = GGG b[D], (6.81)

where
GGG b = GGG a +AAA b,a(T̃). (6.82)

Some examples are presented here to demonstrate this class of objective rates using
some common rates of T.

(i) Rotated Jaumann rate

j

T̃ = RT
O

TR

= RT{Ṫ−WT+TW}R
= RT ṪR−RTWTR+RTTWR.

(6.83)

(ii) Rotated convected rate of stress

c

T̃ = RT
∆

TR

= RT{Ṫ+ LTT+TL}R
= RT ṪR+RTLTTR+RTTLR.

(6.84)

(iii) Material time derivative of rotated stress

˙̃
T = RT

�

TR

= RT{Ṫ−ΩT+TΩ}R
= RT ṪR−RTΩTR+RTTΩR

= RT ṪR+ ṘTTR+RTTṘ.

(6.85)

We can relate the three rates above using (6.78) or (6.77). Thus,

AAA j,c(T̃)[D] = RTWTTR+RTTWR−RTLTTR−RTTLR

= RT{
(
WT − LT

)
T+T (W − L)}R

= RT{−DT−TD}R,
(6.86)

AAA j,�(T̃)[D] = RTWTTR+RTTWR−RTΩTTR−RTTΩR

= RT{
(
WT −ΩT

)
T+T (W −Ω)}R,

(6.87)

70



AAA c,�(T̃)[D] = RTLTTR+RTTLR−RTΩTTR−RTTΩR

= RT{
(
LT −ΩT

)
T+T (L−Ω)}R.

(6.88)

6.6 Strain hardening criteria and objective rates

When using a general objective rate, however, we note that certain quantities depend
upon the choice of rate. An important example is the strain hardening criteria, which is
defined using the quotient Φ = f̂ /ĝ. Recall that the yield index is defined by

f̂ =
∂f

∂S
· Ṡ, (6.89)

and that the strain hardening classification was defined in (3.30).

Using a different objective rate for S, the yield index would be

f̂a =
∂f

∂S
· Sa. (6.90)

If we were to characterize all our stress measures using the objective rate denoted by the
superscript a, we will need to define a new strain hardening classification using a function

Φa =
f̂a

ĝ
. (6.91)

We can then propose three distinct types of strain hardening behavior:

(a) Φa > 0 hardening

(b) Φa < 0 softening

(c) Φa = 0 perfectly plastic

(6.92)

This classification is clearly not equivalent to the one given in (3.30). In fact, even if the
index ĝ is also modified into say, ĝa, using the same objective rate as in f̂a, the strain
hardening classification would still be different in general.

6.7 The back stress tensor α

In a similar manner as the general objective rates for the rotated Cauchy stress, we
can describe general objective rates for the back stress tensor α, which has its own form of
evolution equation. Let the kinetical tensor Σ be that back stress tensor α in the current
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configuration. Its corresponding form in the reference configuration is αR. Thus,

α = π{αR} =
1

J
FαRF

T . (6.93)

If we adopt an evolution equation of the form

a
α = HHH a[D], (6.94)

where HHH a is a fourth-order tensor which, in addition to depending on T̃, F∗, α, and κ,
also depends on the choice of objective rate. The latter dependence is again denoted by the
subscript a. Thus, under transformation of the objective rate, we have

b
α = HHH b[D], (6.95)

with
HHH b = HHH a +AAA b,a(α)[D], (6.96)

where we have used
b
α =

a
α+AAA b,a(α)[D], (6.97)

which is analogous to (6.67). Also, (6.96) is analogous to (6.66).
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Chapter 7

Special Constitutive Equations

Different classes of materials can be described through special assumptions of the con-
stitutive equations presented in the previous chapter. In this chapter we introduce some of
these specialized forms of the stress measures and their rates. The viability of these consti-
tutive equations and the assumptions that led up to them are also discussed. Further, we
suggest which stress measures are applicable when smallness assumptions are made. This
leads us to conclude that after linearization, both the Green and Naghdi theory and the E∗

theory work very well for small strains, while the new theory is a better choice for large
plastic strains.

7.1 The Piola-Kirchhoff stress tensor S and a special

class of materials

Recall the symmetric Piola-Kirchhoff stress tensor given as

S = Ŝ(E,Ep,αR, κ). (7.1)

Also recall that S can be recast as a function of an equivalent set of kinematical measures
in the form

S = S̄(E−Ep,Ep,αR, κ), (7.2)

whose rate is

Ṡ =
∂S̄

∂(E− Ep)
[Ė− Ėp] +

∂S̄

∂Ep

[Ėp] +
∂S̄

∂αR

[α̇R] +
∂S̄

∂κ
κ̇. (7.3)

Now consider the special case where S is independent of the last three arguments Ep,

73



αR, and κ, such that
S = S̄(E−Ep). (7.4)

The time rate of stress can then be written as

Ṡ =
∂S̄

∂(E −Ep)
[Ė− Ėp] = LLL [Ė− Ėp], (7.5)

where (3.33)1 has been used.

Let us further suppose that the stress response (7.4) takes the form

S = LLL [E−Ep] , (7.6)

and that LLL is a constant tensor. Also consider the special constitutive equations

f = f̄(S)− κ, κ = K2 = const, (7.7)

where f is the yield function in stress space, and κ is a measure of work hardening. The
stress and strain measures can be decomposed into their spherical and deviatoric parts. For
convenience, we use index notation. Thus,

SKL = τKL + S̄δKL, S̄ =
1

3
SMM ,

EMN = γMN + ĒδMN , Ē =
1

3
EKK ,

EpMN = γpMN + ĒpδMN , Ēp =
1

3
EpKK.

(7.8)

Assuming an isotropic elastic-plastic material, we write the components of LLL as

LKLMN = 2µIKLMN +

(
k − 2

3
µ

)
δKLδMN , (7.9)

where µ is the shear modulus and k is the bulk modulus of elasticity. We can then write the
stress equation (7.6) as

SKL = LKLMN (EMN − EpMN) ,

τKL + S̄δKL =

{
2µIKLMN +

(
k − 2

3
µ

)
δKLδMN

}(
γMN + ĒδMN − γpMN − ĒpδMN

)
,

(7.10)
which results in the two equations

τKL = 2µ (γKL − γpKL) , S̄ = 3k
(
Ē − Ēp

)
. (7.11)
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We now use the von Mises yield function

f(SKL,U ) =
1

2
τKLτKL −K2. (7.12)

In strain space, using (7.11)1, this is expressed as

g(EKL,U ) = 2µ2 (γKL − γpKL) (γKL − γpKL)−K2. (7.13)

The appropriate partial derivatives for f and g are

∂f

∂SMN

=
∂f

∂τMN

= τMN

∂g

∂EMN

=
∂g

∂γMN

= 4µ2 (γMN − γpMN) = 2µτMN .

(7.14)

At yield, f = g = 0, and from (7.12),

τKLτKL = 2K2. (7.15)

During loading, we have

f̂ = ḟ =
∂f

∂τMN

τ̇MN = τMN τ̇MN = 0,

ĝ =
∂g

∂γMN

γ̇MN = 2µτMN γ̇MN > 0.

(7.16)

Also, we assume the flow rule

γ̇pMN = ψ
∂f

∂τMN

= ψτMN , ψ =
τKLγ̇KL

2K2
, (7.17)

such that during loading, the time derivative of (7.11)1 becomes

τ̇KL = 2µ

(
γ̇KL − τMN γ̇MN

2K2
τKL

)

= 2µ
(
IKLMN − τKLτMN

2K2

)
γ̇MN .

(7.18)

Equation (7.18) are the Prandtl-Reuss equations for elastic-perfectly plastic materials.

As mentioned in Section 3.5, for the specialized constitutive equations presented in
this section, since f̂ = 0, the scalar function Φ = 0. According to the strain hardening
criteria (3.29), this means the material only exhibits perfectly-plastic behavior. Thus, the
constitutive equations in (7.6) and (7.7), along with the special assumptions used in this
section, describe a class of elastic-perfectly plastic materials with a stress response linear
in E − Ep. While similar to the infinitesimal theory of plasticity, no assumption regarding
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the smallness of plastic deformation is made here. Thus, theoretically, these equations still
apply to large deformations.

7.2 The rotated Cauchy stress T̃

Now recall the rotated stress given as a function of E∗:

T̃ = T̄(E∗,Ep,α, κ). (7.19)

Consider the special case where T̄ does not depend on Ep, α and κ, such that

T̃ = T̄(E∗). (7.20)

We can write the stress rate as either

˙̃
T =

∂T̄

∂E∗

[Ė∗] (7.21)

or
˙̃
T =

(
∂T̄

∂E∗

− π
∂T̄

∂E∗

ZZZ[ρ]⊗ ∂g∗
∂E∗

)
[FT

∗
DF∗]

=

(
∂T̄

∂E∗

− π
∂T̄

∂E∗

ZZZ[ρ]⊗ ∂g∗
∂E∗

)
⊙ (F∗ ⊗ F∗) [D],

(7.22)

depending on which strain rate argument is required. We have used equation (6.45) to
express (7.22) from (7.21).

Using (5.5),

˙̃
T =

(
∂T̄

∂E∗

− π
∂T̄

∂E∗

ZZZ[ρ]⊗ ∂f̃

∂T̃

∂T̄

∂E∗

)
⊙ (F∗ ⊗ F∗) [D]

=

(
III − π

∂T̄

∂E∗

ZZZ[ρ]⊗ ∂f̃

∂T̃

)
∂T̄

∂E∗

⊙ (F∗ ⊗ F∗) [D]

= K̃KK L̃LL [FT
∗
DF∗],

(7.23)

where

K̃KK =

(
III − π

∂T̄

∂E∗

ZZZ[ρ]⊗ ∂f̃

∂T̃

)
, L̃LL =

∂T̄

∂E∗

. (7.24)

While equation (7.23)3 is analogous to (3.21), they do not come from the same assumptions.
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It is obvious from (7.22)1 that
˙̃
T can also be written as

˙̃
T =

∂T̄

∂E∗

(
III − πZZZ[ρ]⊗ ∂g∗

∂E∗

)
[FT

∗
DF∗]. (7.25)

If the von Mises criterion were applied to the stress rate (7.23)2, and using (5.89),

˙̃
T =

(
III − π

∂T̄

∂E∗

ZZZ[ρ]⊗ T̃

)
∂T̄

∂E∗

⊙ (F∗ ⊗ F∗) [D]. (7.26)

This specialization of the constitutive equation still applies to non-linear elastic materials.
No smallness approximation has been made yet.

It is also helpful to decompose the rotated stress T̃ and E∗ into their spherical and
deviatoric parts:

T̃KL = τ̃KL + T̃ δKL, T̃ =
1

3
T̃MM ,

E∗MN = γ∗MN + γ̄∗δMN , γ̄∗ =
1

3
E∗KK .

(7.27)

We assume a stress response of the form

T̃ = L̃LL [E∗], (7.28)

where L̃LL is a constant tensor, and an isotropic elastic-plastic material, so that

L̃KLMN =
∂T̃KL

∂E∗MN

= 2µIKLMN +

(
k − 2

3
µ

)
δKLδMN , (7.29)

This results in the two equations

τ̃KL = 2µγ∗KL, T̃ = 3kγ̄∗. (7.30)

7.3 The Piola-Kirchhoff stress tensor S∗

Next, we recall the Piola-Kirchhoff tensor in the κ∗ configuration:

S∗ = S̄∗(E∗,Ep,αR, κ) = S̄∗(E∗,U ). (7.31)

Again, we consider the special case where S∗ does not depend on Ep, αR and κ. Thus,

S∗ = S̄∗(E∗). (7.32)

77



We further suppose that S∗ is a linear function of E∗. That is,

S∗ =
∂S̄∗

∂E∗

[E∗] = LLL ∗[E∗]. (7.33)

Are we able to assume that the fourth-order tensor LLL ∗ is a constant tensor? To answer
this, first we differentiate with time to get

Ṡ∗ = LLL ∗[Ė∗]. (7.34)

By (4.49), we know that Ė∗ involves the time derivative of Up. That is, we must take the
rate of plastic deformation into account. Suppose we fix the value of E∗ and let Up change.
According to the assumption that LLL ∗ is constant, if Ė∗ is zero, then Ṡ∗ must zero. However,
Ṡ∗ cannot be zero in general because the configuration κ∗ changes as dictated by the change
in Up. If κ∗ changes, then the stress S∗ must change as well. Therefore, from a physical
standpoint, the tensor LLL ∗ cannot be assumed as constant. This limits the use of S∗ as a
stress measure for Eulerian plasticity, even when the deformation is small. Note that this
complication does not affect the use of the rotated stress T̃ as a function of E∗ because the
configuration κ∗ has no effect on T̃.

7.4 Linearization and its physical validity

In finite plasticity, all three strain variables: total strain E, plastic strain Ep, and
elastic strain E∗, play important roles, even though only two of them can be independently
specified. The strain difference E−Ep involves both elastic strain and plastic strain.

In this section, we will observe what happens when the constitutive equations for S

and T̃ are linearized. We further discuss which of these linearized equations make sense for
different situations in which small deformations are applicable. We will first suppose that
‖E∗‖ is small, linearizing the rotated stress about E∗ = 0, while allowing for ‖Ep‖ to be
large. Then we will assume that ‖E − Ep‖ is small, while allowing for ‖Ep‖ to be large.
We keep in mind that small ‖E − Ep‖ does not necessarily imply that ‖E∗‖ is small, so
the two assumptions are not equivalent. This begs the question: which stress measure is a
better representative for Eulerian plasticity? In the general case, any stress measure would
be a good option. However, when linearity is considered, the better stress tensor is not so
obvious.
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7.4.1 Rotated stress T̃

First, consider the constitutive equation for T̃. Using a Taylor expansion about E∗ = 0,
the rotated stress T̃ becomes

T̃ = T̄(E∗ = 0) +
∂T̄

∂E∗

(0) [E∗] + · · · . (7.35)

Assuming T̄(0) = 0, and neglecting the higher order terms,

T̃ =
∂T̄

∂E∗

(0) [E∗] = L̃LL [E∗] . (7.36)

We now attempt to make the same assumptions as in section 7.1, in order to obtain a

Prandtl-Reuss type equation. Thus, suppose the coefficients
∂T̄

∂E∗

are constant and that the

material is isotropic. We have, in index notation, the constant coefficients

∂T̃KL

∂E∗MN

= 2µIKLMN +

(
k − 2

3
µ

)
δKLδMN . (7.37)

The von Mises yield criterion is

f̃ =
1

2
T̃ · T̃−K2. (7.38)

We also assume that
F∗ = I+H∗ (7.39)

with ‖H∗‖2 ≃ 0. Thus,

FT
∗
DF∗ = (I+H∗)

T
D (I+H∗)

= D+HT
∗
D+DH∗ +HT

∗
DH∗

≃ D+HT
∗
D+DH∗.

(7.40)

Thus, using (7.23)3,
˙̃
T = K̃KK L̃LL [D+HT

∗
D+DH∗]. (7.41)

Also, using (7.24)1,2, (7.40), the von Mises criterion, and the isotropic material assumption,
we can write in index notation

K̃KLCD = IKLCD − π

(
2µIKLPQ +

(
k − 2

3
µ

)
δKLδPQ

)
ZPQRSρRS T̃CD,

L̃CDAB = 2µICDAB +

(
k − 2

3
µ

)
δCDδAB,

F∗iADijF∗jB = δiADijδjB +H∗iADijδjB + δiADijH∗jB.

(7.42)
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Let T̃ be decomposed into its spherical and deviatoric parts:

T̃KL = τ̃KL + T̃ δKL, T̃ =
1

3
T̃MM . (7.43)

From (7.41), (7.42)1,2,3 and (7.43), the deviatoric part of
˙̃
T is

˙̃τKL = 2µIKLAB (δiADijδjB +H∗iADijδjB + δiADijH∗jB)

− π4µ2ZKLRSρRST̃AB (δiADijδjB +H∗iADijδjB + δiADijH∗jB)

− π2µ

(
k − 2

3
µ

)
ZKLRSρRS T̃CC (δiADijδjB +H∗iADijδjB + δiADijH∗jB) .

(7.44)

If we were to further assume that the rotated stress is purely deviatoric, we are left with a
Prandtl-Reuss type equation:

˙̃τKL = 2µ (IKLAB − 2πµZKLRSρRS τ̃AB) dAB, (7.45)

where dAB is the deviatoric part of (7.40)3. In direct notation,

˙̃τ = 2µ (III − 2πµZZZ [ρ]⊗ τ̃ ) [d] . (7.46)

For the rest of the chapter, we will retain the form of the rotated stress given in (7.36).

Decomposing T̃ and E∗ into spherical and deviatoric components, and using (7.37), we have

τ̃KL = 2µγ∗KL, T̃ = 3kγ̄∗, (7.47)

which are similar to the forms given in (7.30), except that they are now linearized.

7.4.2 Piola-Kirchhoff stress tensor S

Now consider the constitutive equation for S, given in (7.2). Using a Taylor expansion
about E = Ep,

S = Ŝ(E = Ep) +
∂Ŝ

∂E
[E− Ep] + · · · . (7.48)

If we assume that Ŝ(Ep) = 0 and neglect the higher order terms,

S =
∂Ŝ

∂E
[E− Ep]

= LLL [E−Ep] .

(7.49)
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In this case, we are assuming that ‖E−Ep‖ is close to zero, but we are allowing for the plastic
strain Ep to be large. We assume that the tensor LLL is constant and that the material is
isotropic. We also use the Mises criterion (7.12) and the flow rule (7.17). The Prandtl-Reuss
equations can then be derived for small ‖E−Ep‖ in the same manner that it was derived in
Section 7.1, where the Prandtl-Reuss equations apply for the more general non-linear case.
Thus,

τ̇KL = 2µ
(
IKLMN − τKLτMN

2K2

)
γ̇MN . (7.50)

The form is similar to the non-linear version in Equation (7.18), but they are not necessarily
the same theory since we have made smallness assumptions here.

7.5 Comparison of stress measures

Using either S or T̃ as the stress measure is valid for any loading situation. In finite
plasticity, one stress measure can be converted into the other. The linearized form of T̃ and
the linearized form of S do not result in the same theory. That is, due to the smallness
assumptions on the two different strain measures, E∗ and E − Ep, the linearized theory

involving the rotated stress T̃ is not equivalent to the linearized theory involving S. To see
this more explicitly, recall from (4.49) that

E∗ = U−1
p (E− Ep)U

−1
p . (7.51)

With the use of the Green-Saint-Venant strain tensors

E =
1

2

(
U2 − I

)
, Ep =

1

2

(
U2

p − I
)
, E∗ =

1

2

(
U2

∗
− I
)
, (7.52)

we can rewrite E∗ as

E∗ = U−1
p

[
1

2

(
U2 − I

)
− 1

2

(
U2

p − I
)]

U−1
p

= U−1
p

[
1

2

(
U2 −U2

p

)]
U−1

p

=
1

2

(
U−1

p U2U−1
p − I

)
.

(7.53)

Now consider a bar in uniaxial stress. Let the stretches in the three principal directions be
{λ1, λ2, λ3}. Let the plastic stretch in the 1-direction be λp and the stretch associated with
E∗ in the 1-direction be λ∗. Also, there is no plastic volume change, meaning detUp = 1.
Expressed on the eigenbasis, we have the corresponding stretch tensors in matrix notation
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as

U =




λ1 0 0
0 λ2 0
0 0 λ2



 , Up =



λp 0 0
0 1√

λp

0

0 0 1√
λp


 , U∗ =




λ∗1 0 0
0 λ∗2 0
0 0 λ∗2



 , (7.54)

such that (7.53)3 becomes

E∗ =
1

2








1

λp
0 0

0
√
λp 0

0 0
√
λp








λ21 0 0
0 λ22 0
0 0 λ22








1

λp
0 0

0
√
λp 0

0 0
√
λp



−




1 0 0
0 1 0
0 0 1









=
1

2



λ21/λ

2
p − 1 0 0
0 λ22λp − 1 0
0 0 λ22λp − 1


 .

(7.55)

In the first principal direction, we have

1

2

(
λ2
∗
− 1
)
=

1

2

(
λ21
λ2p

− 1

)
,

λ2
∗
=
λ21
λ2p
,

λ∗ =
λ1
λp
.

(7.56)

Consider first a simple tension test of a bar where all the stretches in the first principal
direction are greater than 1. While allowing for λp ≫ 0, assume that λ1 − λp = o(ǫ). Thus,
from (7.56)3

λ∗λp = λ1,

λ∗λp − λp = λ1 − λp,

λp (λ∗ − 1) = o(ǫ),

λ∗ − 1 = o(ǫ),

λ∗ = 1 + o(ǫ).

(7.57)

So a small λ1 − λp implies a small λ∗ in a simple tension test. The reverse, however, is
generally not true. Let’s assume that λ∗ = 1 + o(ǫ). Thus,

1 + o(ǫ) =
λ1
λp

o(ǫ) =
λ1 − λp
λp

.

(7.58)

Since we are allowing for λp to be large, the size of λ1 − λp is actually arbitrary. The two
assumptions are thus not equivalent.
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On the other side of the spectrum, consider the case of large compressive loading. This
means that we are allowing λp to tend to zero. First, assume that λ1 − λp = o(ǫ). Then
using (7.56)3,

o(ǫ) = λp (λ∗ − 1) . (7.59)

Because λp → 0, λ∗ could be as large as possible. Now assume that λ∗ = 1− o(ǫ). By using
(7.56)3, this results in

o(ǫ) =
λp − λ1
λp

. (7.60)

Again, λ1 − λp can have an arbitrary size.

We can then conclude that if ‖E∗‖ is small, which is a good physical assumption, then
‖E − Ep‖ is not necessarily small for large Up. The converse is also true. An assumption
that ‖E − Ep‖ is small does not mean that ‖E∗‖ is small because we are allowing for Up

to be large. Niether of the small approximations implies the other for any general loading
situation. However, if further linearization is done by assuming ‖Ep‖ to be small, then the
two theories would coincide (i.e., for classical infinitesimal plasticity).

7.5.1 Uniaxial tension and compression using the new Eulerian

theory

We will use the example of a uniaxial tension test to further demonstrate the differences
between the Green-Naghdi theory and the new theory involving E∗. First, we apply the new
Eulerian theory and observe the behavior of the stress and strain measures. Consider a
homogeneous deformation of a steel bar under uniaxial tension, where the rotated Cauchy
tensor T̃ (= T, now) is given by

(T̃KL) = (TKL) =



σ̃ 0 0
0 0 0
0 0 0


 . (7.61)

The spherical and deviatoric parts give

T̃ =
1

3
σ̃ > 0, τ̃KL =

1

3
σ̃cKL, (7.62)

where cKL are components of the constant tensor

(cKL) =



2 0 0
0 −1 0
0 0 −1


 . (7.63)
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Let the stretch tensor be

(UKL) =



λ1 0 0
0 λ2 0
0 0 λ2


 , (7.64)

where λ1(t) is the axial stretch and λ2(t) is the transverse stretch. Since there is no rotation,
UKL = FKL and J = detF = detU = λ1λ

2
2. Thus, using the relation JT = FSFT , the

11-component of S and its deviatoric part are

S11 =
λ22
λ1
σ̃, τ11 =

2

3

λ22
λ1
σ̃. (7.65)

The Lagrangian strain is

(EKL) =
1

2




λ21 − 1 0 0

0 λ22 − 1 0
0 0 λ22 − 1



 , (7.66)

whose deviatoric part is

γKL =
1

6

(
λ21 − λ22

)
cKL. (7.67)

The rate of γKL is

γ̇KL =
1

3

(
λ1λ̇1 − λ2λ̇2

)
cKL. (7.68)

Similarly, let the stretch tensor U∗ be

(U∗KL) =



λ∗1 0 0
0 λ∗2 0
0 0 λ∗2


 . (7.69)

The corresponding strain tensor E∗ is

(E∗KL) =
1

2



λ2
∗1 − 1 0 0
0 λ2

∗2 − 1 0
0 0 λ2

∗2 − 1


 , (7.70)

whose deviatoric part is

γ∗KL =
1

6

(
λ2
∗1 − λ2

∗2

)
cKL. (7.71)

Also, from (6.19)4,

E∗11 =
1

2

(
λ21
λ2p

− 1

)
, E∗22 =

1

2

(
λ22λp − 1

)
. (7.72)
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Thus,

γ∗11 =
1

3

(
λ21
λ2p

− λ22λp

)
, γ∗22 = −1

6

(
λ21
λ2p

− λ22λp

)
= −1

2
γ∗11. (7.73)

In this problem, we will assume that the uniaxial stress σ̄(t) is accompanied by a homogo-
neous deformation specified by the axial strain E11(t).

In the elastic region, we assume that

τ̃KL = 2µγ∗KL = 2µγKL, T̃ = 3kĒ = 3kĒ∗. (7.74)

We also have the equations from linear elasticity

σ = EE11, E22 = −νE11,

τ̃11 =
2

3
σ̃ = 2µγ11, T̃ = 3kĒ = k (E11 + 2E22) ,

(7.75)

where E is Young’s modulus, ν is Poisson’s ratio, µ is the shear modulus, and k is the bulk
modulus. We assume that initial yield occurs at time t = t0 when the tensile stress σ̃ reaches
the yield strength σ̃0. We use the von Mises criterion in the form

f̃ =
1

2
τ̃KLτ̃KL −K2 = 0, (7.76)

which in strain space becomes

g∗ = 2µ2γ∗KLγ∗KL −K2, (7.77)

where (7.74)1, (5.5), (5.4) has been used. At initial yield, f̃ = g∗ = 0. Thus, using (7.76),
(7.62), (7.77), (7.71), and (7.47)1,

σ̃2 = 3K2 = σ̃0, τ̃KL = 2µγ∗KL. (7.78)

During loading, (f̃ = g∗ = 0, ĝ > 0),

σ̃(t) = σ̃0 = const., τ̃KL(t) = 2µγ∗KL(t) = const, (t ≥ t0). (7.79)

Thus, the rotated Cauchy stress, and therefore the strain tensor E∗ are both constant tensors
during loading. Specifically, (7.61), (7.62), (7.72), and (7.73) are all constant during loading.
Differentiating (7.72)1,2 results in two differential equations:

λ̇1
λ1

=
λ̇p
λp
, −2

λ̇2
λ2

=
λ̇p
λp
. (7.80)
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Therefore,
λ̇1
λ1

= −2
λ̇2
λ2
. (7.81)

From (7.76) and (7.77), we obtain

τ̃KLτ̃KL = 2K2,
∂f̃

∂T̃MN

= τ̃MN ,

∂g∗
∂E∗MN

=
∂g∗

∂γ∗MN

= 4µ2γ∗MN = 2µτ̃MN .

(7.82)

Recall from (3.10), and using (5.102) and (6.30)2, that

ĝ = Γ(E∗,U ) ·D

= F∗

∂g∗
∂E∗

FT
∗
·D

(7.83)

In our example of uniaxial tension, F = U, F∗ = U∗ and L = D = U̇U−1. Thus,

ĝ = U∗

∂g∗
∂γ

∗

U∗ · U̇U−1

= 2µ
2

3
σ̄

(
λ2
∗1

λ̇1
λ1

− λ2
∗2

λ̇2
λ2

)

= 2µ
2

3
σ̄
λ̇1
λ1

(
λ2
∗1 +

1

2
λ2
∗2

)
.

(7.84)

Recall the constitutive equation
ĖpKL = πĝρKL. (7.85)

By the normality condition,

ρKL =
∂f̃

∂τ̃KL

= τ̃KL. (7.86)

Ensuring an isochoric plastic deformation, we take detFp = 1. The stretch tensor Up

is given by

(UpKL) =



λp 0 0

0 1/
√
λp 0

0 0 1/
√
λp


 , (7.87)

where λp is the plastic stretch. The plastic strain is

(EpKL) =
1

2



λ2p − 1 0 0

0 1

λp
− 1 0

0 0 1

λp
− 1


 . (7.88)

86



Since there is no plastic volume change, the spherical part of Ep retains its zero value at
initial yield. Therefore,

γp11 = Ep11 =
1

2

(
λ2p − 1

)
. (7.89)

Also, the flow rule (7.85) becomes

γ̇pKL = πĝρKL. (7.90)

Differentiating (7.89) gives
γ̇p11 = λpλ̇p. (7.91)

Using (7.91), (7.84), and (7.86), the 11-component of the flow rule (7.90) gives a differential
equation for λp:

λpλ̇p = π

[
2µ

2

3
σ̃

(
λ2
∗1

λ̇1
λ1

− λ2
∗2

λ̇2
λ2

)]
2

3
σ̃. (7.92)

Using (7.73)1,3 we can write the strain space yield criterion as

g∗ = 3µ2γ2
∗11 −K2, (7.93)

which can be converted into a yield function of the stretches as

g(λ1, λ2, λp) =
1

3
µ2

(
λ21
λ2p

− λ22λp

)2

−K2. (7.94)

The partial derivatives are

∂g

∂λ1
=

2

3
µ

(
λ21
λ2p

− λ22λp

)
2λ1
λ2p

,
∂g

∂λ2
= −

λ2λ
3
p

λ1

∂g

∂λ1
,

∂g

∂λp
= −

λ2p
2λ1

∂g

∂λ1

(
2λ1
λ3p

− λ22

)
.

(7.95)

During loading (g = 0, ĝ > 0), the consistency condition applies:

ġ = 0 =
∂g

∂λ1
λ̇1 +

∂g

∂λ2
λ̇2 +

∂g

∂λp
λ̇p. (7.96)

Using (7.95)1,2,3, (7.81), and (7.92), and the consistency condition, we solve for the multiplier
π:

π =
λ2p[

2µ4

9
σ̃2
(
λ2
∗1 +

1

2
λ2
∗2

)] . (7.97)

Substituting back into the flow rule (7.92) results in

λ̇p
λp

=
λ̇1
λ1
. (7.98)
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Using the initial condition (λp(t0) = 1), we have an equation for λp(t):

λp(t) =
λ1(t)

λ1(t0)
, (7.99)

which allows us to solve for the plastic strain Ep11(t). It also means that

E11 − Ep11

λ21
=

1

2

(
1− 1

λ21(t0)

)
= const. (7.100)

In other words, E − Ep is not constant. Further, the solution to the differential equation
(7.81), namely

λ1(t)λ
2
2(t) = λ1(t0)λ

2
2(t0), (7.101)

allows us to solve for the transverse stretch λ2(t) and tells us that detU is constant during
loading, retaining its value at initial yield.

For a steel bar, we use the elastic constants

E = 200 GPa, ν = 0.32, σ̃0 = 260 GPa, (7.102)

and calculate the shear modulus and bulk modulus using

µ =
E

2(1 + ν)
, k =

E

3(1− 2ν)
. (7.103)

Let the total axial strain be linear in time:

E11(t) = 0.01t. (7.104)

Using MATLAB, a tension test and a compression test are run for t = 20 seconds each.
Initial yield occurs at t0 = 0.13 seconds, when E11 = 0.013. During loading, T̃11 and E∗11

remain constant, retaining the values they had at initial yield.

The results are shown in Figure 7.1 to Figure 7.8. The elastic region is nearly identical
in both theories. During loading, S11 decreases. For small plastic strains, since the stretches
are close to 1, the two stress measures are close to each other. That is, for strains of the order
of the elastic strain, the stresses are essentially the same. The Cauchy stress remains within
10% of the yield strength up to a strain of E11 = 0.0364. S11 further decreases until reaching
a value of S11(20) = 157 GPa when Ep11 = 0.1982. Therefore, the Green-Naghdi theory
agrees with the new theory for small Ep and for small E∗, but they are in disagreement
when plastic strains are large. As can be seen from Figure 7.8, the Eulerian theory allows
for the plastic deformation to be large, while keeping the elastic deformation small.
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Figure 7.1: Stress and strain for the uniaxial stress test. The elastic part for both tension
and compression is linear. Initial yield occurs at T̃11 = 260 GPa and E∗11 = 0.0013. Both
T̃11 and E∗11 become constant during loading, retaining their values at initial yield.
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Figure 7.2: The resulting Piola-Kirchoff stress and total strain. The elastic part is linear.
During loading, S11 decreases in both tension and compression.
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Figure 7.3: Comparison of strain measures. E∗11 remains constant while the strain difference
E11 − Ep11 increases with time both in tension and compression.
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Figure 7.4: A comparison of stress measures in tension for small E11. For strains of the order
of the elastic strain, the stresses are essentially the same. The Cauchy stress remains within
10% of the yield strength up to a strain of E11 = 0.0364.
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Figure 7.5: Comparison of stresses in tension for large strains. The difference between S11

and T̃11 becomes significant at large strains.
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Figure 7.6: Comparison of stresses in tension for small plastic strain. For plastic strains
of the order of the elastic strain, the stresses are essentially the same. The Cauchy stress
remains within 10% of the yield strength up to a strain of E11 = 0.035.
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Figure 7.7: Comparison of stresses in tension for large plastic strains. The difference between
S11 and T̃11 becomes significant at large plastic strains. For Ep11 = 0.01982, the stress S11

has decreased to 157 GPa.
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Figure 7.8: Comparison of strains in tension for large plastic strains. The elastic strain E∗11

remains constant as Ep11 increases while the strain difference E11−Ep11 increases with Ep11.
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7.5.2 Uniaxial tension and compression using the Green-Naghdi

theory

For comparison, we also applied the Lagrangian theory to the uniaxial stress example.
Again, consider a homogeneous deformation of a steel bar under uniaxial stress. The Piola-
Kirchhoff stress tensor is given by

(SKL) =




σ 0 0
0 0 0
0 0 0



 . (7.105)

The rotated Cauchy stress can be calculated from the Piola-Kirchhoff stress using (2.36).
Thus,

T̃11 =
λ1
λ22
σ, τ̃11 =

2

3

λ1
λ22
σ. (7.106)

Decomposing SKL into its spherical and deviatoric parts, we have

S̄ =
1

3
σ > 0, τKL =

1

3
σcKL, (7.107)

where cKL are the components of the constant tensor c, given in (7.63). The stretch and
strain tensors, U and E, are

(UKL) =




λ1 0 0
0 λ2 0
0 0 λ2



 , (EKL) =
1

2




λ21 − 1 0 0

0 λ22 − 1 0
0 0 λ22 − 1



 . (7.108)

The deviatoric part of E is

γKL =
1

6

(
λ21 − λ22

)
cKL, (7.109)

and its rate is

γ̇KL =
1

3

(
λ1λ̇1 − λ2λ̇2

)
cKL. (7.110)

In the elastic region, the stress response is given by Hooke’s Law, which furnishes

τKL = 2µγKL, S̄ = 3kĒ. (7.111)

Analogous equations from linear elasticity are given in (7.75). We assume that initial yield
occurs at time t = t0 when the tensile stress σ reaches the yield strength σ0. We use the von
Mises yield function given in (7.12) and (7.13). At yield, f = g = 0 and

τKLτKL =
2

3
σ2 = 2K2. (7.112)
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During loading (g = 0, ĝ > 0), we assume the flow rule (7.17). The 11-component of
γ̇p is

γ̇p11 =
τKLγ̇KL

2K2
τ11

=
2

9

σ2

K2

(
λ1λ̇1 − λ2λ̇2

)

=
2

3

(
λ1λ̇1 − λ2λ̇2

)
,

(7.113)

From (7.110) and (7.113)3, we note that

γ̇p11 = γ̇11. (7.114)

From the Prandtl-Reuss equations (7.18), this means that τ11 is constant during loading.
Integrating γ̇p11 and using the initial condition γp11 = 0 at yield, we obtain

γp11 =
1

3

[(
λ21 − λ22

)
−
(
λ210 − λ220

)]
, (7.115)

where λ10 and λ20 are the values of λ1 and λ2, respectively, at initial yield. The strain
difference is therefore

γ11 − γp11 =
1

3

(
λ210 − λ220

)
= γ11(t0), (7.116)

which is a constant. Given explicitly as a function of time, we write

γp11(t) = γ11(t)− γ11(t0). (7.117)

From (7.11)1, (7.116), and since the stress remains constant during loading, we also have

τ11(t) = 2µ (γ11(t)− γp11(t)) = 2µγ11(t0). (7.118)

Since there is no plastic volume change, EpMM = 0, EpKL = γpKL, and

γp11 = Ep11 =
1

2

(
λ2p − 1

)
. (7.119)

Equating (7.119) with (7.115), and using (7.117), results in an equation for the plastic stretch
λp:

λ2p = 1 + 2 [γ11(t)− γ11(t0)] . (7.120)

Further, S̄ retains its constant value at initial yield:

S̄ = 3kĒ = k (E11(t0) + 2E22(t0)) . (7.121)
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We therefore have an equation relating the axial and transverse strains:

E22(t) =
1

2

(
3Ē − E11(t)

)
. (7.122)

Using (6.19), (7.88), (7.120), (7.122), and the specified axial strain component E11, we can
then calculate the components of the strain E∗, namely

E∗11 =
1

λ2p
(E11 − Ep11) , E∗22 = λp (E22 − Ep22) . (7.123)

The 11-component of γ
∗
is thus

γ∗11 =
2

3
(E∗11 − E∗22) . (7.124)

Let the axial strain be linear in time:

E11(t) = Ė11 t, Ė11 = 0.01 s−1, (7.125)

and run the tension test for t = 20 s. The yield strength σ0 is reached at t0 = 0.13 seconds,
at which point, the flow rule (7.113) goes into effect. Thus, during loading, S11 remains
constant, retaining the value it had at initial yield. A uniaxial compression test is also
run for t = 20 s. Initial yield also occurs at t0 = 0.13 seconds, and S11 remains constant
afterwards.

The result of the calculations for the simple tension and compression tests are shown
in Figure 7.9 to Figure 7.15. In the elastic region, the stretches λ1 and λ2 remain close to 1.
Thus the difference between T̃11 and S11 in the elastic region remains small (with a difference

of less than 0.1%). During loading, while S11 is constant, T̃11 increases. For plastic strains on

the order of the elastic strain, the stress measures are essentially the same. T̃11 stays within
10% of S11 up to E11 = 0.03. It further increases until it reaches a value of T̃11 = 384 GPa
at t = 20 s. For both tension and compression, the difference E11 − Ep11 remains constant,
while E∗11 decreases, but not by a significant amount.

We can therefore see that when both E∗ and Ep are small, the Green-Naghdi theory
agrees with the new theory. For large plastic strains, the two theories do not agree. In this
case, while the Prandtl-Reuss equations are satisfied, the equation τ̃ = 2µγ

∗
is not. Also,

as can be seen from Figure 7.15, for large plastic strains, the Green-Naghdi theory allows
for the elastic measure E∗11 to decrease. That is, for the case of small elastic deformations
accompanied by large plastic deformations, the Green-Naghdi theory does not furnish a
realistic linearization.
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Figure 7.9: Stress and strain for the uniaxial stress test. The elastic part is linear and small.
In tension, initial yield occurs at S11 = 260 GPa, which corresponds to E11 = 0.0013. In
compression, initial yield occurs at S11 = −260 GPa, when E11 = −0.0013. From the flow
rule and thus the Prandtl-Reuss equations, S11 is constant during loading.
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Figure 7.10: The resulting rotated Cauchy stress T̃11 and strain E∗11 for the uniaxial tension
test during loading. The elastic part is linear and is the same as in the elastic part in Figure
7.9. Both the stress T̃11 and strain E∗11 are not constant during loading. Stress increases
and strain decreases with time.
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Figure 7.11: The rotated Cauchy stress T̃11 and strain E∗11 for the uniaxial compression test
during loading. Both the stress T̃11 and strain E∗11 are not constant during loading. The
strain decreases with time. The elastic part is linear and is the same as in the elastic part
in compression in Figure 7.9.
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Figure 7.12: The strain difference E11−Ep11 remain constant for both tension and compres-
sion tests. In the tension test, the strain E∗11 decreases with time, but not by a significant
amount, going from E∗11(t0) = 0.0013 to E∗11(20) = 0.00093. In compression, E∗11 decreases,
becoming more negative.
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Figure 7.13: A comparison of stress measures in tension for small E11. Since the difference
E11 − Ep11 is constant. This plot also corresponds to small Ep11. For plastic strains on the
order of the elastic strain, the stresses are essentially the same. The Cauchy stress remains
within 10% of the yield strength up to a strain of E11 = 0.03. A similar behavior, with
negative values, occurs for the compression test.
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Figure 7.14: A comparison of stress measures in tension for large strains. The Cauchy stress
increases until it reaches a value of T̃11 = 384 GPa at t = 20 s. Clearly, the two theories do
not agree for large plastic strains. A similar behavior occurs for the compression test, with
T̃11 tending towards zero, while S11 remains constant.
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Figure 7.15: A comparison of strain measures in tension for large plastic strains. The strain
difference E11−Ep11 remains constant, and the elastic strain E∗11 decreases as Ep11 increases.
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Chapter 8

Summary and Conclusions

Starting with the Green-Naghdi Lagrangian theory of finite plasticity, and using a
novel multiplicative decomposition of the deformation gradient, a new Eulerian form of
finite plasticity has been constructed. The combination of strain space formulation in the
Lagrangian theory and the decomposition of F in a three-factor form (F = R∗U∗Up) leads
to this powerful Eulerian theory. The decomposition is presented in Section 4.3 and again
illustrated below.

κ0

κ∗

F∗

F

κ

Up

R∗

U∗

Figure 8.1: The decomposition F = R∗U∗Up.

The new Eulerian theory involves a new strain tensor E∗, which is related to the strain
difference E− Ep by the inverse of the plastic stretch tensor Up.:

E∗ = U−1
p (E− Ep)U

−1
p .

This tensor is measured from the unique intermediate configuration κ∗, which is mapped
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from the reference configuration by Up. An appropriate stress measure for this new theory

is the rotated Cauchy stress T̃ = RTTR, which is expressed as a function of E∗. The

constitutive equation involves the objective stress rate
˙̃
T, which can be expressed in terms

of the rate of deformation tensor D or its rotated form D̃.

˙̃
T =

(
∂T̄

∂E∗

+ πσ̃ ⊗ ∂g∗
∂E∗

)
⊙ (F∗ ⊗ F∗) [D],

=

(
∂T̄

∂E∗

⊙ (U∗ ⊗U∗) + πσ̃ ⊗ Γ̃

)
[D̃]

= AAA ∗(E∗,U )[D̃].

The Eulerian theory provides physically reasonable results for small elastic strains
and for both small and large plastic strains. For comparison, we have linearized the stress
measures T̃ and S about E∗ = 0 and E − Ep = 0, respectively. After linearization, we
found that the Green-Naghdi theory agrees with the new theory when both E∗ and Ep are
small. However, when the plastic strains are large, the Green-Naghdi theory and the new
theory do not agree. Since the Green-Naghdi theory has a strain measure that represents the
difference between total strain and plastic strain, rather than representing elastic strain, it
does not furnish a physically realistic linearization for the case of small elastic deformations
accompanied by large plastic deformations. The proposed theory is better suited to describe
this case as it can be linearized about the intermediate configuration while allowing the
plastic deformations to be large.
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