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Prenatal nicotine sex-dependently alters
adolescent dopamine system development
Jennifer B. Dwyer1, Anjelica Cardenas1, Ryan M. Franke1, YiLing Chen1, Yu Bai2, James D. Belluzzi1,
Shahrdad Lotfipour1,2 and Frances M. Leslie1,3

Abstract
Despite persistent public health initiatives, many women continue to smoke during pregnancy. Since maternal
smoking has been linked to persisting sex-dependent neurobehavioral deficits in offspring, some consider nicotine to
be a safer alternative to tobacco during pregnancy, and the use of electronic nicotine delivery systems is on the rise.
We presently show, however, that sustained exposure to low doses of nicotine during fetal development,
approximating plasma levels seen clinically with the nicotine patch, produces substantial changes in developing
corticostriatal dopamine systems in adolescence. Briefly, pregnant dams were implanted on gestational day 4 with an
osmotic minipump that delivered either saline (GS) or nicotine (3 mg/kg/day) (GN) for two weeks. At birth, pups were
cross-fostered with treatment naïve dams and were handled daily. Biochemical analyses, signaling assays, and
behavioral responses to cocaine were assessed on postnatal day 32, representative of adolescence in the rodent. GN
treatment had both sex-dependent and sex-independent effects on prefrontal dopamine systems, altering Catechol-
O-methyl transferase (COMT)-dependent dopamine turnover in males and norepinephrine transporter (NET) binding
expression in both sexes. GN enhanced cocaine-induced locomotor activity in females, concomitant with GN-induced
reductions in striatal dopamine transporter (DAT) binding. GN enhanced ventral striatal D2-like receptor expression
and G-protein coupling, while altering the roles of D2 and D3 receptors in cocaine-induced behaviors. These data
show that low-dose prenatal nicotine treatment sex-dependently alters corticostriatal dopamine system development,
which may underlie clinical deficits seen in adolescents exposed to tobacco or nicotine in utero.

Introduction
Many women continue to smoke tobacco during their

pregnancies despite well-publicized risks to the develop-
ing offspring1. Maternal smoking (MS) has been linked to
early-onset deficits in exposed infants, including low birth
weight, increased risk of spontaneous abortion, neonatal
withdrawal syndrome, sudden infant death syndrome, and
difficulty arousing infants from sleep2. In addition to these
early life deficits, MS is also linked to a set of delayed-
onset neurobehavioral disorders that emerge in childhood

and adolescence3. These include increased incidences of
neuropsychiatric disorders like attention deficit-
hyperactivity disorder (ADHD)4–6 and conduct dis-
order7, externalizing and aggressive behaviors8,9, low
IQ10,11, and substance use disorders4,12. The risk of these
neurobehavioral syndromes is influenced by sex, with
males showing greater incidences of ADHD and conduct
disorder, while females may be more at risk for substance
abuse4,13,14. The etiologies of both ADHD15,16 and sub-
stance use disorders17 are thought to involve significant
dysfunction of cortico-striatal-limbic circuits and their
regulation by dopamine (DA). These mesocorticolimbic
DA systems undergo substantial development during the
adolescent period18,19, and may do so in sexually
dimorphic ways20,21. We have suggested that in utero
exposure to tobacco smoke targets late-maturing
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catecholamine systems, and that behavioral deficits
relating to this exposure emerge only later in life as these
circuits mature2. Support for this hypothesis has emerged
from genetic studies suggesting that a polymorphism of
the dopamine transporter (DAT) interacts with MS to
further increase the risk of ADHD22–24, an interaction so
potent that it is even observed with second-hand smoke25.
It is not know whether these effects are mediated by
tobacco exposure or by nicotine, the major psychoactive
tobacco smoke constituent. Understanding the role
played by nicotine is critical as the use electronic-cigarette
nicotine delivery systems is on the rise, with up to 20% of
adolescents reporting use in 201826, and 5–9% of women
reporting use during pregnancy27,28.
Animal models have been integral to understanding the

mechanisms underlying MS effects. Most models have
focused on nicotine, which can both activate and desen-
sitize neuronal nicotinic acetylcholine receptors
(nAChRs)29. nAChRs are present in human and rodent
fetal brains30–32, and exhibit transient regional subunit
and receptor expression during sensitive periods of brain
development2. In rodents, gestational exposure to nico-
tine (GN) produces late-onset deficits in brain and
behavior that largely parallel the delayed clinical onset of
MS-related deficits. In particular, adolescent rats exposed
to GN exhibit altered locomotor33, stereotypic34, and
reward-related responses34,35 to indirect DA agonists such
as cocaine, consistent with altered function of DA sys-
tems. While there is evidence that GN alters DA content
in the forebrain36–39, no study has directly assessed sex
differences in the effects of GN on developing dopamine
systems in corticostriatolimbic circuitry during adoles-
cence. Thus, this study tests the hypothesis that GN sex-
dependently alters the organization and sensitivity of
these systems during adolescence as measured by
expression of monoamine transporters and DA receptors,
D2-like G-protein coupling, tissue catecholamine content
and turnover, and D2-like control of cocaine-induced
behavior.

Materials and methods
Animals and tissue collection
Sprague–Dawley rats were maintained in a tempera-

ture-(21 °C) and humidity-(50%) controlled room on a
12 h light/dark cycle (lights on 07:00 h) with unlimited
access to food and water. Pregnant rats (Charles River,
USA) were treated with nicotine (Sigma, St, Louis, MO)
or saline as previously described40. Each rat was given
either nicotine at a concentration of 3 mg/kg/day (con-
centration expressed as base) or saline via an osmotic
mini-pump (Alzet model 2002, flow rate 51 μl/day) from
gestational days 4 to 18. After birth, litters were culled to
ten and pups were cross-fostered to drug-naive mothers
to minimize the effects of abnormal maternal rearing

behaviors. Pups were weaned at postnatal day 21 (P21)
and were group-housed in groups of 2–4 by sex. Litter
was the experimental unit of analysis, and thus only one
animal per litter was tested for each experimental mea-
sure. Radioligand binding and [35S]GTPγS studies drew
from a total of 24 GS and 24 GN litters. Tissue catecho-
lamine experiments drew from 30 GS and 30 GN litters,
and behavioral studies drew from 30 GS and 30 GN lit-
ters. Please refer to the supplementary methods for more
details on our approach. All experiments were performed
in accordance with the Institutional Animal Care and Use
Committee at the University of California, Irvine, and
consistent with Federal guidelines.

Radioligand binding
Brains from both males and females were cryostat sec-

tioned at 20 μm thickness at −20 °C. Alternate sections
from the same brain were cut for dopamine (DAT),
norepinephrine (NET), and serotonin (SERT) transporter
binding. Alternate sections from different animals were
cut for D1, D2, and D3 receptor binding. Sections were
thaw mounted onto poly L-lysine-coated slides, dehy-
drated at 4 °C for 2 h, and stored at −20 °C until use. DAT
and SERT binding were measured using [125I] RTI-55, and
NET binding was measured by [3H] nisoxetine, as pre-
viously described41. D1 binding was measured using [3H]
SCH23390, D2 binding with [125I] Iodosulpiride, and D3
binding was measured by [125I]-7-OH-PIPAT42 (see
Supplemental Methods for detail). Following incubation,
slides were rinsed in ice-cold buffer and dipped in cold
distilled water, then blown dry and exposed to Kodak
Biomax film for 48 h with 14C standards of known
radioactivity.

G-protein coupling
A separate group of GS and GN males were taken

directly from the homecage and sacrificed via rapid
decapitation. Brains were removed and flash frozen in
−20 °C isopentane, then stored for no more than 5 days at
−70 °C. Quinelorane-stimulated [35S]GTPγS auto-
radiography was performed as previously described42.
Twenty micrometer coronal sections were thaw-mounted
onto Poly-L-lysine coated glass slides for the determina-
tion of basal and quinelorane-stimulated [35S]GTPγS
binding, as well as nonspecific binding (see Supplemental
Methods). Sections were apposed to Kodak MR films
together with [14C] standards for 3 days.

Quantitative analysis of autoradiograms
Autoradiographic images were quantified using a

computer-based image analysis system (MCID, Image
Research Inc., St Catharines, ON, Canada). Brain areas on
autoradiograms were identified with reference to adjacent
brain sections processed for cresyl violet stain43. Optical
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densities in discrete brain regions were measured and the
corresponding values of radioactivity were determined by
interpolation from a standard curve, generated from 14C
standards of known radioactivity30. In each brain region,
specific radioligand binding was quantified by subtracting
corresponding regional measures of basal binding or
nonspecific binding, for [35S]GTPγS or transporter and
receptor binding, respectively. Radioligand binding was
expressed as fmol/mg wet weight. Regional averages were
obtained from readings of the right and left hemispheres
from at least two comparable sections for each brain

region. Regions of analysis are displayed in Table 1. Not
all markers were expressed in all regions of interest. Areas
that showed no expression were not analyzed.

Tissue catecholamine levels
Brains collected from both males and females were

dissected on an ice-chilled rat brain matrix (Plastics One,
Roanoke, VA). One millimeter slices were taken that
contained the medial prefrontal cortex (PFC), caudate
putamen (CPu), nucleus accumbens (NAc), and the
basolateral amygdala (BLA), which were identified with
reference to a rat brain atlas43. Sections were quickly
frozen on dry ice and tissue samples were dissected
bilaterally using a 1 mm diameter tissue punch (Stoelting,
Wood Dale, IL, USA, Integra, York, PA, USA). Punches
were then expelled into 300 μl of ice-cold 0.1M perchloric
acid, and homogenized. Samples were centrifuged at
10,000×g for 10 min, and the resulting pellets were
resuspended in 100 μl of 0.1M NaOH before measuring
the protein content using a Bradford protein assay kit
(Bio-Rad, Hercules, CA). The supernatants were frozen at
−70 °C until their use for the measurement of catecho-
lamines and their metabolites using HPLC-ED.

Cocaine-induced locomotor behavior
All behavioral testing was conducted using four iden-

tical open-field activity systems (Med Associates, St.
Albans, VT) measuring 43.2 × 43.2 × 30.5 cm. Sixteen
evenly spaced infrared monitors located on two adjacent
sides of the chamber recorded horizontal locomotion.
Parameters determining ambulatory activity were adjus-
ted for the size of adolescent animals, using an infrared
box size of 4. On test days, GS and GN rats were placed
into the novel locomotor apparatus for a 10-min habi-
tuation period. In the first behavioral experiment, fol-
lowing habituation, rats were injected with saline or the
D2-like antagonist haloperidol (0.1 mg/kg, i.p.) (Sigma-
Aldrich). In the second experiment, following habituation,
rats were injected with vehicle (100% ethanol) or the
D2 selective antagonist L-741,626 (0.1 mg/kg, 1.0 mg/kg,
5.0 mg/kg, i.p.) (Sigma-Aldrich). In both behavioral
experiments, all animals received an injection of cocaine
(15 mg/kg) (National Institute of Drug Abuse) 20 min
following the first injection, and locomotor behavior was
recorded via computer-assisted data acquisition for
30min. All drugs were dissolved in physiological saline,
except L-741,626, which was dissolved in 100% ethanol.

Data analysis
Transporter and receptor radioligand binding
Each transporter and receptor was analyzed separately

via 3-way ANOVA for sex × gestational group × brain
region as a repeated measure (SPSS 24.0, Chicago, IL). If
there was a significant effect or interaction with brain

Table 1 Analyzed brain regions

Region Subregions

Prefrontal cortex (PFC) Cingulate (Cg1)

Prelimbic (PrL)

Infralimbic (IL)

Ventrolateral/orbital (VLO)

Striatum at rostral Caudate putamen (CPu)-r

Striatum at middle CPu-md

CPu-mv

CPu-mm

CPu-mc

Nucleus accumbens Core (NAcC)

Shell (NAcSh)

Caudal levels CPu-cm

CPu-cv

CPu-cd

Cpu-cc

Islands of Calleja (ICj)

Ventral pallidum (VP)

Olfactory tubercle (Tu)

Bed nucleus of the stria

terminalis (BNST)

Paraventricular nucleus of the

hypothalamus (PVN)

Amygdala Basolateral nucleus (BLA)

Central nucleus (CeA)

Medial nucleus (MeA)

Regions containing dopaminergic

cell bodies

Substantia nigra pars

compacta (SNc)

Reticulata (SNr)

Ventral tegmental area (VTA)

Locus coeruleus (LC)
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region, subregions were analyzed separately. Each region
was individually analyzed via 2-way ANOVA for sex ×
gestational group. If the effect of sex, or its interaction
with gestational group was significant, then GN effects
were analyzed separately in males and females using a
two-tailed Student’s t-test, with Bonferonni correction to
account for the multiple comparisons (three comparisons:
GS male versus GS female, GS male versus GN male, and
GS female versus GN female). If there was no effect or
interaction with sex, males and females were pooled and
gestational groups were compared via Student’s t-test.

[35S]GTPγS binding
Quinelorane-stimulated [35S]GTPγS binding was cal-

culated as the percent increase in optical density relative
to basal levels in each brain region (i.e., ((Quinelorane−
Basal)/Basal) × 100). Quinelorane-stimulated [35S]GTPγS
binding was analyzed via a two-way ANOVA with repe-
ated measures, with brain region as the within factor and
gestational group as the between factor. If there was a
significant within effect or interaction with gestational
group, GN-induced differences in each area were assessed
separately. GS and GN quinelorane-stimulated [35S]
GTPγS binding were compared using Student’s t-tests.
Data from all autoradiography experiments were expres-
sed as the mean ± SEM of each experimental group.

Tissue catecholamine content
Each catecholamine, metabolite, and metabolite ratio

was analyzed separately in each brain region. Data were
analyzed via 2-way ANOVA with sex × gestational group
as dependent variables. If there were significant effects of
sex of interactions of sex with gestational group, males
and females were analyzed separately. Differences
between GS and GN animals were determined via Stu-
dent’s t-test with Bonferroni correction for multiple
comparisons (three comparisons: GS male versus GS
female, GS male versus GN male, and GS female versus
GN female).

Locomotor behavior
In experiment 1, cocaine-stimulated ambulatory activity

was analyzed by 3-way ANOVA for sex × gestational
treatment × antagonist pretreatment, with Bonferroni
adjustment for multiple comparisons (three comparisons:
GS versus GN, GS saline versus haloperidol, and GN
saline versus haloperidol. In experiment 2, cocaine-
stimulated ambulatory activity was analyzed via 2-way
ANOVA for gestational treatment × antagonist dose. All
statistically significant effects or interactions were further
analyzed via one-way ANOVAs with Bonferroni-adjusted
post hoc comparisons comparing all four drug doses to
each other (vehicle, 0.1 mg/kg, 1 mg/kg, and 5mg/kg).

Differences were considered statistically significant at
p < 0.05.

Results
Prefrontal cortex
Tissue levels of DA and its metabolites were assessed in

the PFC of male and female GS and GN adolescents
(Fig. 1). PFC DA was significantly regulated by GN (Fig.
1a) (F(1,40)= 4.710, p= 0.036), but not by sex (F(1,40)=
0.259, p= 0.61) nor its interaction with GN (F(1,40)=
0.453, p= 0.505), with increased PFC DA content in GN
treated animals. Although the DA metabolite, homo-
vanillic acid (HVA) was higher in males than in females (F
(1,42)= 6.069, p= 0.018, Fig. 1b), it was not altered by
GN (F(1,42)= 0.250, p= 0.62) nor its interaction with sex
(F(1,42)= 0.077, p= 0.78). The turnover ratio of HVA to
DA (Fig. 1c) was significantly influenced by GN (F(1,36)
= 11.385, p= 0.002), and by the interaction of GN with
sex (F(1,36)= 4.725, p= 0.036), but not sex alone (F
(1,36)= 1.538, p= 0.22). GN reduced DA turnover to
HVA in males (p= 0.009), but not females.
Although GN sex-dependently altered Catechol-O-

methyl transferase (COMT)-dependent DA turnover to
HVA, monoamine transporter expression was altered in
both sexes. As previously reported44, DAT binding was
low in the PFC, and was not influenced by sex or GN
(Supplemental Results). In contrast, PFC NET binding
(Fig. 1d) showed more robust expression and was sig-
nificantly decreased by GN treatment (F(1,12= 12.470, p
= 0.004) regardless of sex (sex: F(1,12)= 0.623, p= 0.45;
interaction: F(1,12)= 0.114, p= 0.74). The medial PFC
showed a significant effect of subregion (F(3,36)= 93.149,
p < 0.001); however when analyzed separately, the Cg1, IL,
PrL and VLO subregions all showed reduced NET bind-
ing in GN animals (Fig. 1d, Supplemental Results). Con-
sistent with NET’s DA uptake function in the PFC45, there
was a trend towards GN regulation of transporter-
dependent DA turnover to 3,4-Dihydroxyphenylacetic
acid (DOPAC) (Fig. 1e). The turnover ratio of DOPAC to
DA showed no effect of sex (F(1,36)= 0.600, p= 0.443)
nor a sex by GN interaction (F(1,36)= 1.423, p= 0.241),
but there was a trend towards GN regulation (F(1,36)=
2.423, p= 0.128). Although there were no significant GN-
related differences in SERT or D1 receptor binding
(Supplemental Results), there was a trend of increased
quinelorane-stimulated [35S]GTPγS in GN-treated males
in the PFC (F(1,10)= 3.656, p= 0.085) (data not shown),
suggesting that D2 functional coupling may be enhanced
in this region.

BLA
GN did not influence transporter binding, DA receptor

binding, quinelorane-stimulated [35S]GTPγS, tissue DA
content, or turnover in the BLA (Supplemental Results).
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Tissue norepinephrine (NE) content was significantly
influenced by sex (F(1,49)= 4.226, p= 0.045) with higher
NE content in females compared to males by nearly 60%,
but there were no significant influences of GN (F(1,49)=
0.209, p= 0.650) nor its interaction with sex (F(1,49)=
0.761, p= 0.387) (data not shown).

Striatum
While DAT binding in the dorsal striatum and NAc

shell did not show significant treatment differences
(Supplemental Results), DAT binding in the NAc core
(Fig. 2a) was significantly influenced by sex (F(1,21)=
4.268, p= 0.051) and the interaction of sex with GN (F
(1,21)= 4.964, p= 0.034), but not by GN alone (F(1,21)=
1.529, p= 0.23). GN significantly decreased DAT binding

in females (p= 0.022), but not males. There were no
significant differences in NET or SERT binding due to GN
or sex (Supplemental Results), suggesting that GN effects
in this region are selective for the DA system.
GN treatment did not significantly alter D1 (Supple-

mental Results) or D2 binding (Fig. 2b) in dorsal striatal
(GN: F(1,24)= 0.014, p= 0.91), rostral NAc core (GN: F
(1,28)= 0.823, p= 0.37) and shell (GN: F(1,26)= 1.52, p
= 0.23), or midbrain regions (ventral tegmental area GN:
F(1,23)= 0.171, p= 0.67; substantia nigra GN: F(1,24)=
0.069, p= 0,80), although D2 binding was higher in
females than in males in the centromedian CPu (F(1,26)
= 7.945, p= 0.01) and the caudal segment of the NAc
core (F(1,26)= 8.462, p= 0.007). In contrast, D3 binding
(Fig. 2c) was significantly increased by GN treatment

Fig. 1 GN alters dopamine content, metabolism, and NET expression in the prefrontal cortex. a GN increases tissue dopamine content in male
and female adolescents. b HVA content is not altered by GN. c GN decreases COMT-dependent dopamine turnover to HVA in male, but not female
adolescents. *p < 0.05 GS versus GN, **p < 0.01, +p < 0.05 males versus females n= 9–12 per group. d Regardless of sex, GN decreases NET binding in
the medial prefrontal cortex. e There was a trend towards decreased transporter-dependent dopamine turnover to DOPAC in GN-treated animals in
the prefrontal cortex. **p < 0.01 GS versus GN; n= 8 GS and 8 GN per group (NET binding) and n= 9–11 per group (DOPAC/DA).
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regardless of sex in the rostral NAc core (GN: F(1,23)=
5.517, p= 0.028; sex (F(1,23)= 0.290, p= 0.60; interac-
tion F(1,23)= 0.540, p= 0.47), caudal NAc shell (GN: F
(1,24)= 8.452, p= 0.008; sex: (F(1,24)= 1.238, p= 0.28;
interaction: F(1,24)= 0.305, p= 0.59), and ventral palli-
dum (VP) (GN: F(1,24)= 6.020, p= 0.02; sex: (F(1,24)=
0.654, p= 0.43; interaction: F(1,24)= 1.825, p= 0.19).
Since there were minimal sex differences in D2 or D3
binding, quinelorane-stimulated [35S]GTPγS (Fig. 2d) was
examined in male animals, and was significantly influ-
enced by striatal subregion (F(3,30)= 15.027, p < 0.001)
and GN (F(1,10)= 11.175, p= 0.007). While there was
only a trend in the dorsal striatum (e.g., Cpu, p= 0.153),
GN significantly increased quinelorane-stimulated [35S]
GTPγS binding in the NAc core (p= 0.003), NAc shell (p
= 0.002), and the VP (p= 0.016). Despite the influence of
GN on DAT binding and D2-like receptor properties,
there were no effects of GN on overall catecholamine
content or turnover (Supplemental Results).

Cocaine-mediated behaviors
Since GN alters ventral striatal DAT binding in females,

sex differences in cocaine-induced locomotor activity
were assessed. Given the changes in D3 receptor expres-
sion and D2-like functional coupling, the roles of D2-like
receptors were assessed using haloperidol. Cocaine-
induced locomotion was significantly influenced by sex
(F(1,105)= 23.21, p < 0.001), with higher locomotor
activity in females (Fig. 3). While locomotion was not
significantly influenced by GN (F(1,105)= 1.31, p=
0.255), there was an interaction of GN with haloperidol
pretreatment (F(1,105)= 11.21, p= 0.001). When ana-
lyzed separately, male cocaine-induced locomotion (Fig.
3a) was significantly influenced by the interaction of GN
with haloperidol pretreatment (F(1,49)= 8.495, p=
0.005), with a trend of reduced cocaine-induced loco-
motion following haloperidol treatment in GN but not GS
males (p= 0.075). In females (Fig. 3b), cocaine-induced
behavior was also significantly influenced by the

Fig. 2 GN sex-dependently alters striatal DAT binding and alters D2-like binding and functional coupling. a GN decreased DAT binding in the
NAc core of females, but not males. *p < 0.05 GS versus GN of same sex; n= 4–10 per group. b GN does not alter striatal D2 binding in male or
female adolescents (because there were no sex differences, males and females were pooled). c GN increases striatal and pallidal D3 binding
regardless of sex. d GN treatment increases D2 functional coupling in the ventral striatum and pallidum. *p < 0.05, **p < 0.01 GS versus GN; n= 14–16
per group (D2 and D3 binding; males and females pooled); n= 6 per group ([35S]GTPγS binding in males only).
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interaction of GN with haloperidol pretreatment (F(1,56)
= 6.397, p= 0.014). GN females, however, had sig-
nificantly higher cocaine-induced locomotion compared
to GS females (p= 0.015), and were insensitive to halo-
peridol pretreatment. In contrast, haloperidol pretreat-
ment increased cocaine-induced locomotion in GS
females (p= 0.039).
Given the more robust behavior in females relative to

males, and the non-selectivity of haloperidol within the
D2-like family, female animals were pretreated with the
selective antagonist L-741,62646 prior to cocaine to
examine the role of D2 receptors (Fig. 3c). Cocaine-
induced locomotion was significantly influenced by the
interaction of antagonist pretreatment with GN (F(3,79)
= 5.441, p= 0.002). As observed in the first behavioral
experiment, vehicle pretreated GN females had greater
cocaine-induced locomotion compared to GS females (p
= 0.006). When analyzed separately, there was no effect of

L-741,626 pretreatment on cocaine-induced locomotion
in GS females (F(3,40)= 0.431, p= 0.732). In contrast,
GN females were sensitive to L-741,626 pretreatment (F
(3,39)= 11.121, p < 0.001), with inhibition of cocaine
induced locomotion at the 0.1 mg/kg (p= 0.002), 1.0 mg/
kg (p= 0.001), and 5.0 mg/kg (p < 0.001) doses.

Discussion
These data suggest that GN alters adolescent DA system

development in corticostriatal circuits in both sex-
dependent and sex-independent ways, largely consistent
with gender differences described in the clinical MS lit-
erature. GN increased PFC DA in both sexes, but its
COMT-dependent turnover to HVA47 was decreased only
in males (Fig. 1). Both sexes exhibited a decline in NET
transporter binding, with a trend towards decreased
transporter-dependent turnover to DOPAC (Fig. 1c, d).
Although males showed greater alterations in measures of

Fig. 3 GN alters D2-like receptor control of cocaine-induced locomotion. a GN does not significantly alter cocaine-induced locomotion in
adolescent males, although there is a strong trend for haloperidol decreasing cocaine-induced behavior in GN, but not GS, treated males. b GS
females have decreased haloperidol-sensitive cocaine-induced locomotion compared to GN females, who are haloperidol insensitive. c GN females
have greater L-741,626-sensitive cocaine-induced locomotion compared to GS females, who are L-741-626 insensitive +p < 0.05 GN versus GS, ++p <
0.01; *p < 0.05, **p < 0.01 antagonist versus saline/vehicle within gestational group; panels a and b n= 12–16 per group; panel c n= 9–13 per group.
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prefrontal DA function, striatal DAT binding was selec-
tively reduced in females, who also showed greater loco-
motor responses to cocaine. D1 receptor binding was
insensitive to GN treatment, whereas D2-like receptors
were more vulnerable. GN increased D3 binding in the
ventral striatum and pallidum of both sexes, and increased
quinelorane-stimulated [35S]GTPγS binding in the ventral
striatum of males, although coupling was not assessed in
females (Fig. 2). GN altered D2-like receptor control of
cocaine-induced locomotion in which GS females were
sensitive to haloperidol but not L-741,626, and GN
females were sensitive to L-741,626 but not haloperidol,
suggesting differing D2 and D3 mechanisms.

GN alters corticolimbic DA system development
Despite measuring markers of DA, NE, and serotonin

function in several brain regions, GN-associated changes
were primarily found within the DA systems in corticos-
triatal areas. Corticolimbic circuits mature throughout the
adolescent period48, and the present data suggest that DA
content and turnover in these circuits are sensitive to GN
treatment. GN increased PFC DA content in males and
females, suggesting that prenatal nicotine exposure fun-
damentally alters dopaminergic development regardless of
sex. In the PFC, DA is metabolized by a COMT-
dependent extracellular pathway, as well as by a
transporter-dependent and monoamine oxidase-
dependent intracellular pathway47. Since DAT levels are
very low in this region, NET is thought to provide the
primary means of DA reuptake45. GN decreased NET
levels in both males and females and there was a trend
towards reduced NET-dependent metabolism in both
sexes. However, GN reduced COMT-dependent turnover
in males, but not females. Prior studies have reported a
GN-induced decrease of DA to HVA turnover at P22 in
the male forebrain49, but female animals were not studied.
Thus, the present findings suggest that these effects are
sex-dependent and that males may be more sensitive to
GN-induced alterations in extracellular DA metabolism.
Human genetic studies implicate altered prefrontal
COMT function in the etiology of conduct disorder and
ADHD50, disorders whose risk is increased by MS expo-
sure, particularly in males4. The male-selective effect of
GN on COMT-dependent turnover may serve as a link
between early exposure to nicotine or tobacco smoke and
subsequent ADHD.

GN alters striatal dopamine system development
Dopaminergic markers in the dorsal and ventral stria-

tum were also sensitive to GN treatment, although
alterations were observed at the level of receptor expres-
sion and function, rather than in tissue catecholamine
content, consistent with some36,38 but not all37 previous
studies. GN treatment decreased DAT binding in the NAc

Core in females but not males (Fig. 2a). Human genetic
studies suggest that decreased DAT expression (9 repeat
(low expression) versus 10 repeat (high expression) DAT
allele) correlates with increased striatal reactivity to
rewarding stimuli, which may enhance susceptibility to
drug addiction51. Therefore, the selective GN-induced
reduction of striatal DAT in females could relate to the
enhanced vulnerability to substance abuse in women
exposed to MS13. GN treatment has been shown to
enhance cocaine intake in self-administration paradigms
in male adolescent rats, but females were not assessed34.
In this study, GN females showed increased locomotor
activity in response to cocaine compared to GS females
and both GS and GN treated males (Fig. 3). Future studies
should examine sex differences in cocaine reward.
Although the effects of GN on DAT expression were

sex-dependent, the effects of GN on D2 and D3 receptor
binding were sex-independent. GN did not alter striatal
D2 binding in males or females, but significantly increased
D3 binding in the ventral striatum and pallidum. While
the function of the D3 receptor is incompletely under-
stood, it has been heavily implicated in reward circuitry
and drug dependence52. For example, post-mortem ana-
lysis of human cocaine addicts reveals increased D3
expression in the nucleus accumbens53,54. However, ani-
mals treated chronically with cocaine also exhibit
increased D3 expression55, suggesting that upregulation is
a consequence of drug exposure, rather than a predis-
posing factor to drug seeking. Accumbens D3 expression
is controlled by brain derived neurotrophic factor (BDNF)
released from DA neurons, and upregulation of the
BDNF-D3 pathway is thought to facilitate the develop-
ment of behavioral sensitization56. Intriguingly, GN
upregulates BDNF expression in the nucleus accum-
bens57, and GN animals exhibit behavioral sensitization to
cocaine, while GS adolescents do not33. Thus, increased
D3 expression in GN animals may occur downstream of
alterations in growth factor expression, and may con-
tribute to enhanced behavioral plasticity to cocaine in GN
animals, a hypothesis requiring further testing.

GN alters D2-like function
Because there were no sex differences in D2 and D3

receptor binding, D2-like functional coupling was asses-
sed in males only. In male adolescents, GN increased
quinelorane-stimulated [35S]GTPγS binding in the NAc
Core, NAc Shell, and the VP, with a trend towards
enhanced binding in the CPu. While quinelorane has
affinity for D2, D3, and D4 receptors58,59, quinelorane-
stimulated [35S]GTPγS binding in the rat striatum is
thought to reflect D2 activation, as it is blocked by the
D2 selective antagonist L-741,62660. However selective
antagonists were not employed in this study, and thus the
possibility of a contribution of D3 receptors cannot be
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ruled out. Regardless of the relative contributions of D2
and D3, however, these data are the first to show that GN
alters signaling properties of D2-like receptors in DA
terminal fields, suggesting that developmental nicotine
exposure has long-lasting consequences on DA receptor
function.
Given the changes in D3 binding sites and the altera-

tions in D2-like functional coupling in the ventral striatal
circuitry regulating locomotor activity61–63, the con-
tributions of D2-like receptors to cocaine-induced loco-
motion were assessed. GS females showed enhancement
of cocaine-induced locomotion following haloperidol and
insensitivity to L-741,626, suggesting an inhibitory role for
D3 in locomotor behaviors in normally-developing ado-
lescents, consistent with its known roles in adults64. The
cocaine-induced locomotion effects following haloperidol
had similar trends in males. When looking at females, GN
animals showed insensitivity to haloperidol, but reduced
cocaine-induced locomotion following L-741,626 treat-
ment, suggesting an integral role for D2 receptors.
Whether similar effects would be observed in males to L-
741,626 treatment is not known, and could be evaluated
in future studies. Thus, GN females lack the D3 inhibitory
mechanisms seen in GS animals, but express higher
numbers of D3 binding sites in the ventral striatum. This
upregulation could result from impaired downstream
D3 signaling, and further study of D3 signaling mechan-
isms in GN-treated adolescents is warranted.
Taken together, these data show that prenatal nicotine

treatment markedly and often sex-dependently alters
adolescent DA system development, which is largely
consistent with sex differences observed in MS-related
deficits. These changes include altered COMT-dependent
metabolism in males, consistent with their associations
with conduct disorder and ADHD50,65, and alterations in
striatal DAT expression in females, consistent with its
purported link to altered reward sensitivity51. These data
also implicate selective changes in D2-like receptor
function, which warrant further exploration given the
important role of D2 in developmental psychopathologies
and its common use as a clinical drug target. It is critical
to note that these alterations in neurochemistry and
behavior are induced by brief treatment with moderate
doses of nicotine. It has been increasingly suggested that
nicotine replacement therapy, including electronic-cigar-
ettes, may be a safe alternative to smoking in pregnancy,
with some advocating higher nicotine replacement doses
for pregnant women in order to compensate for placental
metabolism66. These rodent studies argue against the
safety of even moderate-dose nicotine exposure during
pregnancy, and suggest that nicotine itself is a neuroter-
atogen, with important implications for prenatal health
counseling.
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