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NETWORK THERMODYNAMICS: THE ANALYSIS OF
. BIOLOGICAL SYSTEMS

.Georgé F. Oster, Alan S. Perelson, and
' "Aharon Katchalsky '

Donner Laboratory and Lawrence Berkeley Laboratory
University of California, Berkeley, California 94720

I. INTRODUCTION

1.1. Classical thermodynamic é.pproach

The success of equilibrium ’chermodynamics.in describing '
static phenomena has inspired many attempts to develop a rigor-
ous thermodynamics of rate processés. |

Onsager (1931) proposed a fojrmalisfn for dealing Witil céu-

pled irreversible processes. His theory was extended by Prigo-

‘gine (1947), Degroot (1951), Meixner (1944, 1942, 1943) and

othelf workers, who developéd it into an important tool for the
treatment of coupled physical chemical processes. Onsager's
formalism relates Ithermodynamic flows to their conjugate forces
by linear algebraic equatiohs. Sufficiently clése to equilibrium
the constitutive relations between flows and forces become liriear :
and, as shown by Onsager, the matrix of the coefficients is fre-
quently -symmetric (True sdell,. 1970). The'majbr advantagé of
the Onsager theory for the analysis of experimental data derives
from this symmetry condition, which plays the same rolé in the
study of rate processes as that of the Maxv&ell relations in equi.-

librium phenomena: it permits the evaluation of flows or forces



which are difficult to obtain by direct me_asurement.

Another approach,. more compatible with:mode'r_n contin-

uum'me chanicsv,' 'has:vhe_en formulated by Trne sde'll.:and his co-
w()rk'er‘s .(Trues'dell', 1970). This formallsm'is a true nonlinear
- fie 1d theory, deve 10ped w1th great atte ntion to mathemat1ca1 rig-
.or however, it seems more suited to the mechamcs of contlnua
than tofthe complex and heterogeneous structures encountered in
‘the 11v1ng cell. | . | - T " .

More recently, Me1xner (19'6.3) has proposse‘da nonequilib-
rium thermodynamic'theory- 'based on the generalvtheory of 1inear
passi‘v.e syStems The Me1xner theory, like the approach devel-
Oped by the present authors, leans heav1ly on concepts f1rst
develo"ped in ele ctrical network theory. , Meixner, however, has
limited-himself to linear p‘rocesses,‘ and like the True sdell

_ 's:chool,_.his' work deals primarily with the thermodynamics of
mater.ia"ls, | and not with the highly reticulated structures of bio-
logical interest.

In this paper.' we propose a formalism which we feél, is

more approprlate for the phenomenolog1cal descr1pt1on of b1olog-—

ical systems The thrust of modern biology is toward the inves-. .

t1gat1on of 1ncreas1ngly complex structures It has be come al’- :

most a chché to acknowledge- that living’ ent1t1es are extremely

c_omp_hcated, heterogeneous, nonlinear systems They are based

on a subtle interplay between the ene.r‘geti‘cv_rate pr-oce sses- of



transport, reaction and conformational change, on the one hand,
and cybernetic flows of information,‘b whose regulatory effects
are not proportional to their _ehérgetié level, on the other. >The
theory outlined in this paper is desvigned spe¢ifica11y for the
treatment of coupled, nonlinear, time-dependent thérmodynamic
processes in heterogeneous media and is also capable of '1r‘1cc.tr-‘
porating nonenergetic, informational flows. .The g\eneral formal-
ism employs a simple and intuitive graphical notation which vern-.

phasizes the topological relations of the syste.m under consider-

ation.

1.2. The network approach

The prime function of physical theories is to organize our
knbwledge into a formal structure for ease in deduction and ma-
nipulation. Classical mechanics was the earlieét prototype for
the cla'ss of physical models now caliéd ""state deterrﬁinéd sys-
tems''. In recent years, the underlying mathematical unity of
most dynamical theories of_physics has been clarified..(Sudarsha_n,
1962; Hermann, 1971). The notion of dynamicél systems has been
formalized, and inclﬁdes' as special cases not only V»cla.tssical me -
chanics but also qtianfurn mechanics, electromagnetism, hydro-
dynamics, elasticity', contifol theory and elgctrical circuit theor'y
(Desoer, 1970). The pr.incipal.pur_pose of this paper-is to pro-

pose an extension of the thermodynamic model with a mathemat-



ical strueture tn.confor_mity w1th the existing' dynam1ca1 theories
of phys1cs We Wlll not _enter. to,o deeply into the _mathemati"c._al
just'ific‘ati‘on here- t‘his’would take; us too ,far afield into 'the rea.lm
of algebralc tOpology and d1fferent1al geometry We will limit |
our selves to a detalled account of how network thermodynamlcs )

v may be applled to- systems of 1nterest in the b1olog1ca1 suences.

There are several reasons for approachlng 1rrevers1ble

'thermody‘namlcs from the pornt of view of network theory. The

' prOblem-of‘analyz'ing’ bioldgical 'systems'using the' classical field B

equat1ons is analogous to attemptlng to descr1be a’ telev131on set
by 1ntegrat1ng Maxwell's equat1ons It is certa1nly pOSSlble "in
'pr1nc1ple” but in practlce, too rnuch 1rre1evant 1nformat10n is

requ1red to 1ntegrate over such a he'terogeneous'object. Clear_ly,

network theory is the correct analytica‘l tool-fvor_‘-the Study of snch

a system The complex1ty of say, a m1tochondr1on is more on
the order of a television set than of an an1sotr0p1c contlnuum'
.-An electrical network may certainly be eonsidered anirre-

versible thermodynamic system. However, the mathemat1ca1

‘technlques developed by electrlcal eng1neers for deahng w1th c1r- '

cuits appear at first glance to be qurte fore_lgn .t_o the classmal‘
-methods of thermodynarrucs Nevertheless,‘ we will show that -
_the two d1sc1phnes are not, in faot so 1ncompat1ble, and that

by maklng sultable mod1f1cat1ons,‘ we can draw npon the englneer.-

v1ng hterature in modern network and control theory to deal w1th '

,problems of b1010g1ca1 complex1ty



A graphical repre.sent'ation for.the‘rrnodyna'rnic systems
simil.ar to the circuit diagram in electrical network _théory will
be introduéed-. Aside from being a pictorial representation of
1.;he system with obvious intuitive 'adv_antages, this graphical no-
tation wi.ll reveal the role of s.ystem topology in dynamic be.ha.v-.
ior. It is clear that the oi-g.anizational. structure of biological
systerri"s is one of their characteristic features.‘ How -a teievi-
sion set or a biological system is '""hooked up'' is as vital an in-
gredient to its proper functioning as the energetics of the thermo-
dynamic processes. This aspect of thermodynamic systems has
only reéen’cly been considere‘d explicitly. * We will see that
many characteristics of thermodynamic systems previbusly as-
cribed to energetic restrictions 'are.morve prope.rly classified as
"topological constraints', and, as such, are con_sequénces of the
system structure rather than the lavs}s of -fhermod.ynarnic.s.-

We Wlll present an algorithm for obta1n1ng the dynamical
equatlons d1rectly from the graph, and consequently one may look
upon the network graph as another notation for the differential
equations themselves. However, . since- the graph reveals the

system's topology, it contains more information than the

"<Newman and Rice (1971) discuss topological constraints in bio-
chemical networks in relation to self-regulatory behavior, while
Morowitz ct al. (1964) discuss.the role of such constraints in
determining the stability of metabolic qetworks Othmer and
Sriven (1971) have also recently consuiered the network aspects
of biological organization. !



dynam1ca1 equatlons alone, i.e., many systems w1th d1fferent
_topology are governed by the same dynamlcal equat1orrs (Desoer
_ '1970; Oster and Des‘oer, .1971). - o |

'_ A yv'ord' of caution would be prope'r:. one’ should not eqdatel .
‘the methods pre sented here With t;he llsllal notlon of "e.quivale.rlt
,. circﬁits"' Althoughour v‘ocabular‘y will 'be .he avily laced vyith
__term1nology drawn from ele ctrlcal eng1neer1ng, the concepts
apply equally well to a W1de class of- dynam1cal systems de-
~ scribed by ordinary d1ffere.nt1a1 equatlons -(MacFarlane,_ 1970;

Koenig et al. 1969).

”"I’t sho'uld'be noted that, in.the 'netyvork r.epresentatioh of -

' thermodynam1c systems, one 1ntroduces a schematlc separatmn

. of various reversible and 1rrevers1ble processes wh1ch actually

may proceed s1mu1taneously at each pomt in the system Th1s
ret1culat1on of d1str1buted processes is merely a conceptual de-

vice which does not affect the resulting mathematical de scr.1p—

“tion. Previously, this purely mathematical device has be'en.em—A

ployed mainly with reference to those systems' where such a

‘separation assumes concrete form, as in electrical networks,

Sk

hydraulic pipe systems,; etc. ‘ "(MacFarlane, 1970; Koenig_et al.

© 1969; Shearer et al. 1967).
""Network analOgs” for" contihﬁous systems'have. been a

long..standlng toolin eng1nee r1ng and neurophysmlogy (Cole 1968)

ok
However, Penf1eld and Haus (1967) have- also employed th1s
constructmn for continuum ele ctrodynam1cs

o

%]
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Kron (1943, 1944, 1945, 1946, 1948), in fact, devise_,.d‘.networ\k
analogs for practicaily all the field theories of physics, includ-
ing the equatioris 'of.Schroedinger, Maxwell, and Navier-Stokes.
The success of these analog-s in e_mulating the dynamical behavior
of continuum systems to any desired dégree of_aé'cur.acy éeéme,d
remarkable. However,' it was soon reali_zed that this success
was ho aéc'ident, but fé.ther a natural consequ'ence‘ of the bunde‘r-
lying unity of the mathematical structures of network and field
theory. Roth (1955), and later, Branin (1962, 1966), demon-
strated that the operational structures of linear graph theory and
the vector calculus were identical (a fact long knoWn to algebraic
topologists). Trent (1955) first demonstrafed how an isomofph—
ism between a dis’.cr'ibuted 'physical system énd a linear graph"
(network) could be constructed. v' Later autho.rs further devel—.
oped this technique; and presently", network methods for tréat-
ing dynam_i'bcal systems are beocoming standard tools in engineer-
ing curricula (MacFarlane, 1970; Koenig et él.. 1969;

Shearer et al. '196»7). In each instancé_, there are well defined
criteria for determining the validity of the netwc;rk approxima-
tion to fhe field equations; these conditions turn out to be equiv-
alent to the ''local equili’briufn" postulate of nonequilibrium

v thermodynamics.i We will see, however, that not all nefwork
repr.e se'ritations arise from a reticulation of the c._ontinuurn. The

- most important example for our purpose will be chemical



reacfioh .ne-tw‘dr'ks,: whlch are E:E_E.Lé__l:i ";naturallyr."discféte"'. |

A r.n‘ajor"di‘ffivculty in e.xtehding- the n‘etwo’lfk te chnique to gén-
eral fhérr'.nodynam.ib sysfems, as}'ide'fr'_or’rvl the friéthermaticalques__—
tions‘, is one of notation. Whilé the network ap;pi'oac-hb éffers ob-
vious 'dd\}ﬁnfagé s iri;btre"atibn’g' complicate'd‘. s'y.sterri.s,'} “’c‘he. lihear_
grva’pﬁ n‘ot.avti(“)n usﬁally employed iﬁ eng.ineeri-n_g becomes cufnbe.f-
some and devoid of intuitive .'content. Moreover.,' thermodynam-
4i‘c‘:s is bc'oﬁé-erhed pfiﬁcipally withvtransducﬁ'qn of énergy frdm*one
- form ‘4co._.'anvo't}.1er, .e. g. mechanocher'nical,.ele ctrochemic;l, ther-
moeleqfi‘_ic prvo‘ceVSSves,; etc. Lﬂinear. gi‘aphs a.i"e not a .suitabl.e toél
fo;' .such sifuations; '.but fbf.tunateigr there 'exi'sfs an alfefnét_i?e rio;-
tation fo‘.r .e.nergetic syétems:_ _'”bvc‘md_ gfaéhs". * .The:se wiil prove
adnﬁfébly-suited 1-20_. the .p‘urpc;s_e’z s 'o‘-f irrevéréible thei’mddy#é?nQ
~ ics. " The elucidat_ion of the bond graph vfepr'esrentatiqh.is one of
the main ijéc;tives of this work.

1.3. Thermodynamics and multiports"

1.3,
'I_‘Vbhe network 'apprc_)'a’ch d’e';f.e_lo’ped_ he reih’ _‘r.eq,ui're's that we -
view ’c.he‘;rmod'Srnamics- from a slightly different éét df.p;"e'mi_sevs‘:.. ..
Attention is focussed on méésﬁréb_le (i:luan.tviﬁe SV‘. such as témpe_'r.-‘"_.""

ature and pressure; an_c_i the thef_rriodyriamic,p_o"cer_1tia1 functions

3k

So-called because o‘.f'the'ii'_fOrmél resemblance to ¢hemical
bond structures. ' C ' S

.
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lose their pr‘imacy, emerging as derived quanﬁties for certain
systems. This approach was originally taken by Brﬁnstea more
than thirty years ago, but because of the great convenience of the
thermodynamic poténtial functions for computing'equilibrium' '
conditions, it did n_ot come into common use.* chb)wever, Brén-
sted's approach is implicitly follow.ed. by rr.lodernb axiomatic de-
velopments of circuit theory. To é,mphasizé the difference in
conceptual structure, we will briefly reexamine equilibrium
thermodynamics from the ''multiport" | viewpoint. In Section

VIII, we will return to these matters for a more rigorous inspec-

tion.

1.3.2.

v_ Both nethrk theéry and thei‘modynamics can be regarded,
as pointegi out 'by Shottky, as the scierice of "bléck boxes''. That
is, we regard a thermodynamic systc_em’ as a black Box whoée en-
tire internal constitution is chér'actérized only by a set of exter-
nal measurements (”constifutive relations'’). For example, con-
.sider the familiar piston-cylinder arrang.ément shown in Fi_g..
1.1a.

| This i.s‘.a system capable of'_interacting with its environ-

ment via two energetic modes, thermal and mechanical. In

sk ) ] : o ' »

"A review of Bronsted's approach to thermodynamics, with ref-
erences to the original literature, may be found in the article of
LeMer et al. (1949). :
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gener_e.l, we will refer to each such interaction mode as an en-
ergyr. "p’ ort" The plstonv cylinder is a the rmomechamcal tvvo-port
Later,‘ we will see that an energy port need not refer to any phys—
1ca11y distinct locatlon but is- 51mply a p1cture sque nomenclature
for the interaction rnod'e itself. (Indeed an n—port may

not be a phys1cally d1st1nct entlty at all; shortly,r we will give a

precise definition of an n-port as a mathematieai‘o"bject.‘)'

' Associated with each port of a thermodynamic system are

a 'pair of-'yarizi»bles; the measurement of whie_h determines 't:he

constitutive behav1or of the system For exampie, the two;aport

in Fig. 1 1a has two const1tut1ve planes, (p, V) and (T, S), where

the mechamcal and thermal response of the system to. external
'mampulatmns 1s plotted In general the r‘e5ponse curves at any

one port will depend on the boundary condltlons 1mposed at all of

the other ports.

| To facilitate the graphicél notation for inter connecting n- :

ports to be introduced later, we will represent _e'tavch port by an

videalen"erg_y-bond, F1g 1.1b. Th_ese bonds, a generalizationofpe'r—
fectly c.ondu.cting wires _o.r_ infinitely_st.iff"rods, are assumed to |
transmit ene rgy instantaneously 'a.nd \yithodt vdellay or. loss between
one system and another. Inth'e case of electrical devices, ‘the.
ports are the terminal pairs, Fig. 1:.1(:. . For other thermo-
dynarnic's_ysterns, fthese 'Iar.e only schernatic,‘reticulations of sys-

tem interfaces.

i

s T
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The port variables come in pairs, for r-easonsli_;o be dis-
cussed in Section VII‘I. Howeve.r, of the 2n-port variables (e. g.
p, V, _ Tv, S) not all are indepénde'nt. A selection of '.s_ome sﬁbéet
serves to fix the jalues of the remaining ones.” For an ideal gas,
(p, V) suffice tov determine the state. If the cyiinder in Fig. 1.1a
contains a condensing fluid, (V,T) may be chosen as independent
variables. (In the usual case, specifying one variable from each
port suffices to determine the state). |

The function mapping the independent port variables into
the dependent pbrt variables is called the constitutive relation,

or equ'ation of state, of the n- port. Formally, we will define an

n-port via its constitutive relation.

. % . '
DEFINITION:" An n-port is a map IF which assigns to a
~set of n independent port variables the set of n conjugate

variables: '

]F:]Rn—j RrR", x -~y (x), (1.1)

L~ ~

‘ . L3
where X and y are the vectors of port variables, e.g.
(S, Vv, ni) - (T,-p, p.i). -

For simplicity, we shall assurhe that IF is sufficiently dif-
ferentiable. For example, the simple electrical capacitor shown
in Fig. 1.1c is a one-port whose constitutive reiationis.simply:

q > (q), where q is the charge stored bythe capacitor and ¥7is the

“This definition will be made more precise in Section VIII.
ksl : o C : .

R™ is simply Euclidean n-space equipped with the usual vector
space structure. . ‘ S
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) vo_ltetge across the 'capax’:itor'plat_e's';‘
’T‘hére is .al;i important d"i'fferen'ce in Vie\xtp;int bétvtreen
-clas 51cal thermodynarrncs and c1rcu1t theory regard1ng the role
of the port varlables and const1tut1ve relations. Th1s d1fference
is kreflecte’d most stro_ngl‘y in the different methods used to com-
pﬁte equilibrium ér‘ 'stati'oﬁ‘ar‘y étatéé.-
| The classical approach to equilibriu’.nﬁ the'r-m.odynarntc‘sv |
may be s_um_niarized succirictly in the fbllowiﬁg \Qva'y. (C‘-allen,
1960).‘ A ''state spa,cev” s constructed the coord1nates of wh1ch‘

‘are the relevant thermodynamlc V”dlsplacements” for the system

-under consideration. The displacements are, accordlng to Gibbs,

the .”'é‘xte"nsive" pr'opert_leus—entropy (S),- voluxne (V), number of
moles of the _g:h cornponent (ni),- etc. Repre septmg all the ld_ls_.“
place._bmen'ts ‘by a vector JS’V: (s, V, ni;‘ né -‘ . .'..)T’, we"ma‘y definé
a'real-valuéd function on this state s\pace, U: R® — ]R_f

U =U(S, Vi ong ooomy). | _- (1.2)

It is now postulated that the equilibrium p'roperties of the system *

are é;om‘pletely._’spe cified by the function U. For'v'ex,ar'np_le, we may

define the potentials, conjugate to th,e' displacements, as the com-"

’ponents' of DU, the gradient of u.”

_ We de note by D the d1fferent1a1 operator (Jacobian), ‘as 1n
Flerrung (1965). o T
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rx) = DU = (55 5V 3a,” 7 ony)
(1.3)
AT, -py w7y )

The matrix of second partial derivatives of U, i.e., the Hessian,
is then vtrivially symmetric by the equality of mixed parital deriv-
atives. |
v = Dlu@’. (14
yielciing the familiar reciprocal relatiohs of Ma,x:\;vellﬂ< (Callen,
1960). |
In-addition, the equilibrium configuration of a thermo-
dynamic n-pért is computed .by minimiziﬁg U (or the appropriate
Legendre transform) subject ’.co.the appropriéte boundary con—"
straints (e. g. T = constant; V = constant) (Callen, 1960).
BrSnsted's approach, howevef, takes vas primitive quan-
tities the experimentally .meas.urable port variables x and y,
rather than the internal energy U. Wifhout empléying a pdten-
tial funcfion, the equilibrium state cannot bg characterized by an
extremum principle, but must be computed explicitly from the
constitutive relation ahd the boﬁhdéry coﬁstraints. - Maxwell
reciprocity is gﬁ an. automatic conéequence“of a differentiable

potential function, but must now be viewed as an experimental

>FRoughly speaking, re cipfocity irhplies that the input and output
ports of a system may be interchanged without affecting the sys-
tem's ''small signal'' response to a given excitation.
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propefx"ty which places an additional restriction on the constitutive

relation ']hlj‘(-‘ ). In Section VIII, We_ w111 investigate the nature of

this testrictio‘n further. This shift 1n viewpoint is nevce’ssary; :
for elthough reciprocity is 'uSuelly 'as‘so.rr.led to be valid for all
uniform'equilib.riorp systems, we will frequently encounter noo— '
e_quilibrium processes that are hot recipro_cal (ev. g.v_ transistors-ﬂ
aod chemical reatctions) end x;vv};orseVCOnstitutive relation'ther'e'é
fore eannot be charactemzed by a potent1a1 functmn

The descr1pt10n of an n- port is,’ of course, conmderabiy
S1mp11f1ed when reC1proc1ty holds For when the J'acob1an of IF
‘is symmetru:, ¥ may be expressed as a gradlent vector field
on IR . That is, all port const1tut1ve relatlons are sum‘rnanz.ed
by a s1ngle potent1a1 functlon and rna.y be rega1ned exp11e1tly frotn

the components of DU (c f s equatlon 1 3).

sk

For uniform fluid systems, another const1tut1ve relatlon is
usually postulated in addition to reciprocity: homogenelty ‘That "
is, given a reciprocal constitutive relation, one supposes that the
fluid mass may be augmented by any desired amount without al- "
tering the values of the intensive variables (T, p, etc.) Hence,
the constitutive assumptlon takes the form U()\x) AU (x), i.e.,
U has the form of a generalized cone over R, ' .

We will have occasion to use this const1tut1ve assumption fre-
quently for processes occurring in uniform solutions. . It is not
a generally valid thermodynamic relation, but merely charac-
. teristic of a certain class of systems. For such systems, the
Gibbs-Duhem. relation allows us to e11m1nate one of the extensive
variables.
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1.4. .. S£ate variables.
1.4.1. |

The only dynamical'”prdcesses” permitted by classical
thermodyna_mics are the reversible 01: ”quabsi— static'" processes,
which are merely a parémetrized sequence of equilibrium states.
We cannot obtain a true dynamical theory bjr '.'dividing an equilib-
rium equation by dt'. Conseq_ue'ntly‘, we will stért with a dynam-
ical theory and require that it reduce to the correct equilibrium
theory. The basic procédﬁre of network therkmodynamics is as
follows. |

If the overall sy‘stem is continuous, it is first subdivided
mentally into horﬁogen_eous subsystems; and, as previously men-
tioned, each,subsystem is further separated conceptually into
reversible and irreversible parts. 'i‘he re{rer';sible subsystems
are assumed to store energ?r without loss, while the irréversible
subsystems are assumed to dissipate energﬁr without storage. *
Each of these subsystems will be identified with an n-port.

The fundamental thermodynamic quéntit-y in this treatment
is ene‘rgy rate, or ""power'', instea(i of energy. Systems amen-
able to a network repre sentatibn frequéntiy share one common

property: the energy rate processes may be expressed as a

*In electrical networks, this conceptual separation assumes .
concrete form: an ideal capacitor stores without dissipation,

an ideal resistor dissipates without storage, and they may be
- approximated as separate physical devices.
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p‘roduc'.l: of an effort or fofce variable e vabn>d' aii_'Lo;\lv v,a.ria»b“le', f
such that the powér P =.‘ef.' (In ebléctrlicalb netwoﬂlrkvs‘: these ajre,
of cour sgi, vbltagé -'an& cur r.e'ﬁt; ) | Mo‘st‘ the rf_ndd?né.rh’ié: vpr.clacev’s ses
.c_aﬁ be s_"d.chavxfavc_:fer.izec_l'_.' Note that We a{re 'dtef:'[rﬁn‘g »e_fforxt_ and R
flow as the primitive state variables : ‘rather than constfucting )
therr\i:fir_orﬁ.th'e_ Gibbs equatiovri, as is the usual ;‘)fa(:tice:; 'c:c'ms'e.'.‘
quently, 1t is not ne cessary that their product Ah'ave ’the units of -
powe‘f. " | | B | |

The variables-e and f re'.p_res'e'n’c. two_ty_péé.'of".'mea"suré— '
ments" which r_naLy_' be car:‘ried out c.olnc_ebtua.llvy.{ori eaéh ide al
subéjrs_tei'n. .Si'I_.lce much of our terﬁiinoldgy‘ and ‘nét:aﬁo_n. is
: borfowebd fl_'o.mv circuit a"nd:. sy”‘s'térfi éh(a_ofy, vvwe wi‘llv not hesitate : o

‘to introduce a somewhat ¢olloquial but descriptive vocabulary

into our dis_cuséion. Ix_ld'eed',, the engineering ;término_l’ogy em- .
ployed to de‘s'cf'ibebthe conjugate »Va_riébles e and f is that of
_across and ‘through variables, ‘suggesting that the potential

vvariable or effort is a ”two-'p'o'int" rhéa_surveme'r_lt’ performed
; ‘ ".acr,o.s_s" the ne‘twafklelemefnf'(.o'r between a'pdint and some im- o

: pl.i.ed.ref,e.ren'.ce' sta't;a,_ e; g, Voltage_différence). ':'I:‘he flow is

: im_agined'me asured ';through'j‘l an ‘a;.)propri.ate 'in‘svtrument', e. g o

an ér‘.ri.rb_nvéte‘fi',-' a‘ﬂd ivs‘av,v";ohé-'p.oil‘r‘lt.". rfl'e,aéuremé__;’lt. e - . e

.'Th.e's_e terms will _be:;c:lari»fi»_edj 'é_u'bseql_ie‘ntly, -but here ﬁhey

serve to introduce, in an intuitive manner, some important =~ . X
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topdlo_gical notions. They will be illustratea By a simple ex-
ample from mechanics in Section II, which WillA.also serve to
introduce the topological graph notation. |

We have taken e (effort) and f (flow) as our ba'sicvdynam—
ical Qariables. In‘éleétrical network ’chebry, ohe éssociates a -
current and a voltage with each branch Vof thé network. The cur-.

‘rent is re q_uifed to:obey a local ccins_er&atio_n law in the form of
Kirchhoff's Current Laws (KCL), ‘and the potlential' is required t;) |
be u.nique at each point of the network. This latter condition is |
just Kirchhoff's Voltage Law (KVL). . -

Kirchhoff's laws are re staterﬁents of co.nvserva_tion and
continuity restr_ictioné and are therefore independent of the |
.nature of the elements éomprising a network. They constitﬁte
a set va linear const.raint‘s. on th¢ instantaneous values that the
thrqugh' and across variables can attain. Since the form of these
constraints d.eperids only upon the way in which the network ele-
ments are connected, Kirchhoff's laws are cé.lled topological
constraints. Viewing a network as another noté.tion for the dif-

ferential equations describing a system, Kirchhoff's laws are.

"\The classification of ""extensive'' and ''intensive'' variables
makes little sense for nonequilibrium systems, since all ""ex-
tension variables'" must be reduced to local, or specific quan-
tities, i.e., per unit mass or volume. Moreover, for the sys-
tems theory to be developed here, a quantity may or may not be
‘additive, depending on the system topology, e.g. the additivity
of voltages on capacitors depends on whether they are connected
in series or in parallel (Redlich, 1970). : '
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s:e_e_fn, to be nothing r_nore than the bou’vnd;ry 'cond:itiorl,_sv eaeh sub-
system imposes .on its neighbors |

| We will 1mpose a S1m1lar reqtnrernent on our effort and
fiow var1ables the through varlables are defined by the require-

rnent of conservatmn through subsystem boundar1es vvh11e the

across var1ab1es, by def1n1t10n, are un1que and cont1nuous func-

tions of p031t1on across the boundar1es We w111 refer to con-. "~

‘ served, or through, var1ab1es genermally as KCL var1ables,

and potent1al or across, var1ables as KVL variables.

1.4.2.

Since,' in the hetwork' re'presentation, the e 'and £ vari-.

“ables are pr1mary concepts, the dlsplacements of class1ca1

S

- thermodynamms appear in our theory as new state varlables de- -~

fined by 1ntegrat1on.- Thus, the generahzed ”d1sp1acement" q
‘is related to the ‘fl"owwf by the definition:
%(t) = %(0)- + g _£(t) dt.. | o (1.5)
L 0 - i

‘Similarly, a generalized "‘rnon‘ientum_"" (vor_ "impﬁlse")"f) \may be

- defined by inte gratiOn of the 'e‘ffofrt fg:”

.

0

, t 4v::_ - ..; .
70((0y+i§a‘s(£)a£; "';_J' (1.6)
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Thus, for example, the advancement of a chemical reaction §

is a generalized displacement variable defined by:

t

£(0) + g T dt,
0

>

£ (t)

where Jr, the rate of the chemical reaction, is fhé flow variable.
In electfical networks, t-he equivalent to the generalized momen-
tum %9 is the magnetic flux ¢, which is re.late.d to the voltage v
by an equation idéntical with 1.6.%‘< Note that, since f and e are
through and across variables, respéctively, the derived quanti-
ties q and f// are also, respectively, thr‘ough and across §arié
ables. o
Table 1 lists the most common choices of through and

Jo al,
skok

across variables encountered in practice.

1.5. Constitutive re lati.o.ns

1.5.1

Before the state functions (e, ‘f, 470/, q)} can be usedv to dé—
scribe the behavior of a real sys?tem; we rn_ust'introducevthe
- physical properties of the system. This is déne by de.fininlg

functional relationships between the state variab_les, called

o,

“In me chanics, Newton's original definition of momentum was in
the integral form,. p =/ + fFdt, i.e., a mass stores energy
by accumulating the net effect of an applied force.

Vs al :
skek

Note that mechanical force is a KCL variable since it obeys a
"conservation' rule, i.e., d'Alembert's Principle: ZF - Fi:'O,
where FI; is the ''inertial force' mv. This apparent reversal .
of role between effort and flow quantities arises from the use of
Lagrangian (moving) coordinate frames in mechanics and

Eulerian (stationary) frames in continuum theory (Trent, 1955).
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‘constitutive 'relatie'ns (equations of state, characteristic equations, -

etc.). These functlons must be determ1ned e1ther‘ experunentally
or from a "ower order” theory such as stat1st1cal mechamcs

Each const1tut1ve relatlon relates a KCL var1ab1e (f or q)
w1th a KVL var1ab1e (e or ﬂ) There are four posstble b_1nary
relatmns between the four state varlables

In paragraph 1. 3 2 we def1ned a rnult1port by its const1tu-
ti;re r‘elatlo.n, ']iE‘ ]R - ]R S_1nce ‘there- are four dynaml_cal f
variables_bavailable.to us nqw, w'e define four -b_a.sie nqu]l.tiporti
elements'by the folioW_ing cdnstitutive felatiens; The four pos- '

sible constitutive relations are:

1o

(a) $c (e, q) = capacitance; i

(b) ¢LW' f) =0 inductance;’

N B . (1.7)
(c) >¢R (e, £)='0 resistance; o

‘memristance..

/i.z
o
S

fl
10

(@ 2y | mrista
Now there are three ways to integrate the basic energy rate
equation, P = e - fr . .
| ot B q(t)

@ B =E.__C<0):+§O e C(O’,"qu(m e(q)dq

ik

t

to

) E @ =Eg 0+ e-fat =E;(0) + f qu)d?&
| () E, (0,1 2 S e-fat.
. . . 0

*Note that ED( -, t) >0 is the pass1v1ty cond1t1on (Desoer and
Kuh, 1969) ' o .
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The first integral (1.8a) represents displacement' or capaci-
tive energy storage; in order to perform the _integration, we re-
quire the constitutive function (1.7a) in the forrn_'s(c'lv). For a
lineaf electrical c{apacitor, this is jusf e =qg/C. In an ideal
mixture, the chemical potential of species i, By o is the effort
variable and the mole number ni is the displacement variable.

The constitutive relat’ion‘ is n, = A% exp(—lﬁl——),. where V is

0

the volume of the element and By is the reference potential.

The incremental capacitance is defined as:

C=%¢ ° Gu)v,m,n, (1.9)
~ J. ]
. n.
which, for an ideal mixture, gives Ci = R_lT .

The existence and uniqueness of the incremental capécitance C(e)
is equivalent to the condition of "local equilibrium'’, which is the
bésic postulate underlying both network and conventional irre-
versible thermodynamics. - |

| Energy may also be stored as a result of relative motion
of mass or charge (i.e., kinetic or electromagnetic energy). If
we are given the constitutive rélation (1.7b) between %’ and f,
the second integration (1.8b) may be éarried out. | 'T.his type 6f
energsr étorage is called inductive, or kinetic energy, and thé»

incremental inductance is defined by:

KV

of -

L = (1.10)
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The th1rd 1ntegral (1. 8c) repre sents energy d1ss1pat1on
" Time cannot be parametr1zed out of the 1ntegral and the ”res1s-
'-t1ve‘” const1tut1ve relatlon (1. 7c) between e__and f must be_sup-

phed For example, the effort con_]ugate to a diff_usional flow

J is a chem1ca1 potent1al d1fference Ap, and the incremental

resistance is d'e f1'ned- by-:

_R“é_."’S N 8(A|J.)
R= 37 53

The fourth constltutlve relatlon (1 7d) between 1ntegrated
flow and 1ntegrated effort has not been employed in thermody-
namics heretofore \ Chua (197 1) has glven the name. "memr1stanee"
to thls relatlon, ’51nce it behaves dynam1cally 11ke a d1sblacement

“controlled re s1stance:

: l\g(g) ,

~

/? ¢(q) 7Q QS'(q)q, ©or

e

where 'I\'(VI(%) is the ”1n<_:re'mental 'rner.nri.stan;c_e."7 For the pres:ent,k
'we merely nbte that, fr'om. an axfomatic vieWp"oint this constitu-
tive relat1on is as fundamental as the other three and is en;
countered 1n e,nglneerfng practloe'. Flgure 1.2 is the "state di- . -
: agram" 1llustrat1ng these relat10nsh1ps Th1s-d1agram sum- -,
mar1zes the ent1re 10g1ca1 structure of the dynam1ca1 systems |

" dealt with ‘here.

" Ea_ch method of integratton or’_‘ener-gy pr‘ocessinvg vre_quire_s' i

a constitutive relation: e(cj) for the‘ first;'. f(P) for the second;
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and e(f) or f(e) for the third. We now introduce a symbolic

shorthand for each process by defining ideal ""elements', de-

noted by c, L, R, M, respectively. The process of energy
storage and dissipation proceeds at each point in the systefn,

but the eiements C, L, R, M are to be regarded as conceptu-
-ally separate subsystems, which communicate energetically
only via ideal energy bondsv. This separation, which is purely
conceptual, will always regain in the appropriate limiting pro-
cess the correct continuum behavior. We erﬁphasize that j:he
symbols (R, L, C, M) are merely a symbolic shorthand for the
constitutive relations determining the method of energy precess-
ing. * The manner in which these elements, or subsystemsv, are

to be connected is determined by the system topology and will be
the s.ubject of Section II. |

The fact that each element may' be charac.terized'by a pair
~of conjugate variables with a unique constitutive relation between

them is a fundamental postulate for our formalism. Physically,

>'<F0r convenience, we will also use separate symbols, E and F,
to denote effort and flow sources, respectively. Sources are not
new elements but may be viewed as nonlinear resistors. An ef-
fort source is a one-port resistor whose constitutive relation is
e(f) = E = constant for all f, while a flow source is a one-port re-
sistor whose constitutive relation is f(e) = F = constant for all e.
Alternatively, an effort source may be viewed as a cagacitor,

sl s e s . . . de o
with infinite capacitance, since for a capacitor — = —=, and, if.
C >, e~ E = constant. Similarly, a flow source may be viewed
as an inductor with infinite inductance. : '
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it says that it is poééible to'choése a volume ele_rnént!small

:enough that its internal relaxation times are mu'ch‘ shorter than

" those o_f the whole system, yet largé enough 'to. make fluctuations

in the. state pafameters negligible. | | |
-VThAe ideal element_s R, L, C, M, E, F, plus one add_itio_nal

device to deal vwit_h energy coupling and tranéducﬁoh (intfoduced '

in Section II), are sufficient'tovrepr_‘esent, by ordinary differen- R

tial stateé equations, most thermodynamic syvster'ns.
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II. TOPOLOGICAL GRAPH REPRESEN TA TION FOR SIMPLE
SYSTEMS | NG |

2'17 .R'epre sentation of é me chanigal model |
2.1.1

In order to .‘intr__oauce the topological methods of repre-
senting physical systéms, we shall consider a simple mechan-
ical exémple consisting of mas.sc.as', sprihgs and dashpots. Such
‘a system is inherently discrete ana will serve as a converﬁent
illustration to introduce the topological notions needed for the
analysis of more complex biblogical systems. " We shall not
deal to any great extent with linevar graph theory since it is aa-
.equ‘atelyv treated in the technical literaturé (Bergé, 1962; Berg_eb
and Ghouila-Houri, 1965; Hax;éry, 1969; 'Se'shﬁ‘,and Reed, 1961).

The example consistSIOf two masses, two springs and a
dashpot connected as shdwn in F1g 2. 1a.

According to Newton's second law, thé sum of the forceé,

acting on any element in this system must be equal to mv; or

ZFi- mv = 0, (2.1)
which is d'Alembert's pi'inciple. Considering mv as an iner-
tial force, equation(Z.i)has the same form as Kirchhoff's cur-
rent law at a node. Therefore, me chanical forées may be

treated as '"through' variables, ie. , as a conserved quantity
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'."ﬂowin‘g'”j"chroﬁgh-the element. The "st-ate x}ariables of our sys- .
tem corresponding to the ’generaflized variables e, f, q,_/@ are
'if',_ ,F‘, x' and %\/ , where v! is.the rel‘aiv:ive velocity, F is the
foree, x' the relative aisplaeerﬁent, and ﬁ the mome:ntu‘rnf The
relatﬁive.'.’veloeity at vany' locatiorr in‘ the system is a uniqpe .fune-v‘
tion ‘.of' poSitiori, and 'fherefore' surns tob zer.o around a closed .
loop Hen'ee relative 'veiocity is a'KIVL ‘variavbie. | In mechanical
systems, power rs e)rpressed as P = Fv', and is therefore a prod-
uct of a through and an across varlable.
,'Ir_x_.mechani:c.:'al systemsA'f‘orce is ’a:.KCL' variable_; in ‘

“ele ctr‘i-cal or ‘thermodynarnvicv systems it is a KVL x./ariarble,- This
. peeuliar diff_erenoe is due to a c‘hav.hg'e‘iri ’che choice'of c:oordi'nate
systerh. .E'le ctrical or thermodynamic sy_s..te‘rns are generally de—
SCribed in a fixe'd or Eﬁlerian. c'oodinafe .sy'stern',. Whil_e'.for
rnechamcal systems 11: is rhore convement to choose a Lagran—
gls.n coord1nate system Whlch moves w1th the part1cular element
of the syster_n'. It 1s_th1s. difference in viewpoint which makes the
‘me chanicel forces KCL varie,bvles'-,» while.the‘e'le‘ctr':ica_l‘ or thermo-

‘dynamic potentials aré KVLvariables (Trent, 1955). [If, how-

.ever, we generate the dual iinear graph of a mechanical system,

‘the for_ces becomevaer_oss varbiables‘ and d'Alem_b'e‘rt' s principle A _
may be i"n'ter'p‘rete‘d as ‘K_irch‘ho'ff's loop law. This leads to the

ot

usual ”mass—inductance' analogy'' and demonstrates the

’ The mass-inductance correspondence, however fails for non--

'planar graphs (Shearer et al. '1967)



,{p»
Tamit
4.
o~
Naur
g
~F
N
-
-
.
it
g
'S4
L9

-27-

flexibility of the choice of KCL aﬁ_d KVL variables.]

| Now let us examine in some detail the characteristics of
the ‘elements composing the méchanical 3ystém.‘ We wish to
demonstrate that the masses, the spfing's and the dashpot can
each be identified with the appropriate branch of a linear graph,

or network, and so may be regarded as a one-port, or two-

terminal, element. A two-termihal elefnent has two distinguish-
able ends or terminais, as is the case with an electrical resistor
or mechanical spring. In a more abstract sense, a one-port el-
ement may be considered anﬁr element which éah be described by
a constitutive relation between a single through and a single
across variable. This notion, as we hav‘el seen, can be general-
ized: an n-port element is describable by a constitutive relation
betweeh. r.1—_t.hrough a.nd.n—across variables représented geometri-
cally as an n-dimensional constitutive surface in é Zh—dirﬁénsiénal

space.

a). The ideal spring has no mass and the fqrces écting at
each point of the spring must balance; thus forc'e is transmitted
""through" the‘ spring. The force devie10ped by the spr'ing debper_xdrs
on x', the instantaneous displacement of its ends dr-terfniria_ls
from the equilibrium po.siti'on X, i. e.‘, x' = x - § Evidentvly x!
is a'riacross variable. |

i The spring is cha_raéterized by a relation between one

through and one across variable and is accordingly a two-
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oo X

terminal or one—port;element. In a linear graph, the spring is

represented by a branch whose terminals correspond to those of

" the s_prihg' itself.
' The spring may be considered as a ge’néralized inductor
'since its constitutive relation
vxf::gL(F). | . (2.2)
can be differentiated to yield
'=———:‘.-——-—-—'-—_—b v .
ViSg TITFE ® (2.3)

If we denote dg‘L/dF-by' L, and identify the force F with the KCL

variable f, and the across variable v' with e, équation (2.3) be-

comes

df
= L aT .o
‘which is isomorphic to the inductor equation. The eherg’y stored

by the spring at any instant of time is given by

E' :S‘Fdxf o | (2.4)

which, fdr a'linear constitutive‘r'e'lation, F = g‘L1 (x')ﬂ = Kxt, g‘i‘vefs

the quadratic form

E = -%K(x')'zf

: b). The ideal dashpdt is a_,pu_rely dié.'si‘pa_,tive elerrié_'nt,_'vv_é;nv'- i

alogous to a generalized resistor, and is ch_aracte-rized by a
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constitutive relation between the force F and the velocity v'.
The velocity v' is the relative velocity of the'bdashpot ends

vi=v, - Vs where v, and v, are the velocity of the terminals

1 1 _
of the dashpot with re spect to an arbitfarily chosen ground. The
dashpot is clearly a two-terminal element and is represented in
the linear graph by a branch. The constitutive relation of the

: ' F
dashpot generates a state function, '"the content' G = [ v'dF.
-0

For linear constitutive relations,

gg(F) = RF ' (2.5)

v!

G (2.6)

"
S
H
<—o
o
o
I
N
w
Frj

c). The mass is an elf_emerit' Whose‘ mbmenturh obeys a

"universal' constitutive relation
2 -1/2 |
= myv(t - ) ' (2.7)
c

In rhost applications, the velocity v of the mass is so small, as
compared to the Velocify of light, that ﬁ/ = mv is a valid approx-
imation. It is not obvious that the mass is a tvv’o-lb’_cerminal objecf
unti‘l one considers how its velocity' is fneaéuréd. ‘The mass
stores .enex"gy due to its motion relative to an inertial reference
frap’ne, i, e*.. , v is actually \v! =V - _Vg., where vg is th§ velvocity'.
of the ."ground” (or iner’cial frame). To establish the rﬁass as a

two-terminal element, we place one termi_nal' on the mass itself



-30-
and’ the other on the vgrouhd w1th re spect to Wthh v'is measured
The const1tut1ve relatlon for the mass 1s Newton S law,
(dv/dt) F. | If we note that F is a through va‘ﬂr‘lable (f)- ahd‘ v
an across variable' (e), and irientify m with the 'eapacitance‘ C,
we see that a mass is isomorohie to a generalized‘capvacito’r: -

de _
A

Let.._u-s now eome:back to the _sy‘stem of .2 ma"ssves,' 2 sprihgs
and a dashpot represehted in Fig. 2.1a. The "Wirioé" diagram
of the hyhothetical inStruments ("across meters”) requ1red to
cont1nuously rnomtor ‘the state of each element is. shown in F1g
2.v'1'b. | Since the nodes (b, c,e, 1) and (f, 4, 2) have the same velOc-.,
ity, 'the'y may be vident'ifi_ed and the system .re.prese_nted schemat-
| ically as 1n F1g 2.'1c. Finally,_by Sui)pressing the element syrh—
.bols, we arrive at the structure shown in Fig. 2 1d, wh1ch is
'called a 11near graph or topolog1ca1 graph. In this form, only
the system connect1ons, i.e., the topolog1cal relat1onsh1ps be -

tween elements, are d1Splayed

- If'we append a set of arb1trary s1gn convent1ons to the graph,' '

‘v as shown in- the figure, we obtain a d1rected graph Assoc1ated

w1th ebach branch of the graph are two dynamlcal quantltles, one
obeying KCL and the -other KVL: in this ex‘ample they are the
force’_an& the velocity difference. | | | |
,2.1..2 .

_L.et us now write Kirchhoff' s laws explicitly using the
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numBering and sign conventioﬁs én the gra;;h.' _Fo;' the node ‘law.s
(KCL), a branch will b.é .considéred positive ifb it is directed out
of a node and negative if it is d‘irécted into é, nOde. For .the loop
laws (KVL), we number the m lvoolss or "meshes' and define
clock\_.:vi'se as the_positive mesh direc’t’io.n, so thafc. a branch bound-
ing a mesh'is positive if it agrees with the meshrdirection and

negative otherwise. Hence, in Fig. 2.1d,

KCL:  Node A; F1+'F2+-F4+aF5= 0 (2.8)
N-ode B: F3 - Fy - F5 = O.
Node.g:" —F1 —FZ-F3=O.
KVL: Mesh a: ' —v1+ v, = 0o (2.9)
Mesh b: -v2+v3+‘v4':0
N : Mesh c: , --v4+v5=0.

Note that only two of the three .npde equatioﬁs are linearly: inde-
pendent; so, By con\fention, we may omit the ground node‘f'rom o'ur
consideré.tions. .

| Equations (2.8) and (2.9) may be writté# in matrix form by

introducing the state vectors F = (F,, F,,

10 T Fyo Fp Fy,

17 Vo Var Vg v5)-

d 1101
n nodes 011
: ‘—"V—’J

b-branches

v = (v
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=0 orA.FE=0; (2.10)
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These x;nafrices 'c-oilld have been obtained directly .from‘ the‘ graph -
by the followmg algorithm: o )
"+ 1 if branch _] is d1rected out- of node i
a.ij == '1f branch _]»_J.s _d1rected into node i
0 otherwise
+ 1 if branch j bounds ﬁ}esh k in the positive direction
rilkj‘ =< - 1‘ if brénch:j bounds meéh.k in the negative di.l;.ect‘ion

0 1f branch j is not in mesh k

The matrices A and M a1"¢v.‘ called the c'onn,e.c‘tion fr;a;tr_iCes
for the linear graph‘ since fhey summarize how the.- system is.
“hbo'ked_ up, i.e., it.sv topology.: It may be shoWh t‘hat,' fc;f ‘
ébntinuum sySttja"ms., A andM are relé_.ted to fphe' vec’cof field:.

- operétOrs divefgence ahd curl (Branin, .1962', 1966)

o The equatmns of motlon for an arb1trar11y comphcated
system can be wr1tten down 31mp1y and algor1thm1cally by con-
vstructmg the lmear graph for the system, Wr1t1ng the connectlon
matrices. and subst1tut1ng in the qonst1tut1ve-re1at10ns_ for .the :
-velements (Desoer & Kuh 1969) The mathe-maticva.lv role pf the
conservation and contmulty condlt_ibns as embodied in KCL and
KVL is to impose certain 1inear"rvéétrictions on the possible |
behavior of each elerhent in the s':ys_t.efn., i.e., the complete 2b-
'dihlensihnal space of sta'tes.i.s r'_ve,stfi'c_:t.ed to a set v'o.fvline:avr
_ SﬁbSpajCes' (the Kirchhoff sdbspacé). - In this _fas'vhion,__th,ev“fl |

elements act as boundary conditions on one another, giv-ing the
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entiré aévsbevrr.lbly'a dynamical character.vwhich is Quité different -
f;.-om the _sx;.bunit Behévior. ’I‘hg connection rii_ati:icce‘s provide "Ea.
simble'and' important method of coding the us;rs.'t'em foi)ology in a
three word code: (+1, —1, 0). Qf course, fhe presenf system was
conveniently discréte to begin with; .h.ow_ever, the same techpiqué
can be é,pp.lied to general thérmodynaﬁnic_ systems by constructing
the appropriate graphical representations.

The fact that F acfé as a conserved guantity andz is a unique
functién of position can be summarizea in two alternate expres-
sions of Kirchhoff's l_awsv. ..We define two new. state vectors as
follows (Desoer & Kuh, 1.969): '

(i) Since the velocity is‘ a unique function of pésition;
we may determine the Velocity difference v' across eachbranch by
measurements with‘respeét to the common ground node g, (the
inertial frame_), e.g. v'5 VR T VAT (vA‘ - vg) - (‘.’B - vg).
Therefore, if we define a new state vector. v, whose componén’_cs
are the node to. ground vé;ldcity differences (;"k - _vg), KVL fnay
be written in the alternative form:

T

v=AT v. o (2.12) -

(ii) By assigning a flbw to each mesh. of the linear graph,
another state vector may be defined, E‘E (Fa-, F‘b’ FC'). We may

regard each branch flow to be a linear combination of mesh

flows, e.g., F4 = (Fb - Fc' Then KCL mdy be written in the

equivalent form:



-34-
=T I\~4T i (2 13) |
The readef may easﬁy verlfy by direct mu1t1pl1cat1on the follow-
ing cruc1a1 fact concernmg the connection matr1ces A and M | : T
| 'QI\QT:"O, o (z 14) . 7
Th.es.e revla';tvion'e rnay be sumrﬁarized as.ifolio'ws ,(-Bra_nin; -19_6?., |
1966):_»-\@, ) MT A.\ , o ) : S -
F — F ——» 0 (KCL) |
QL:"“ﬁ" v L) o o
~ mesh .~ 'branch ' - nede"" ' '
- .I..Jet"x’ls r;ov§(: examir;e;the tetal .p0wer‘. ﬂowi'n-ggi_n the system: : .
| ~~ gm0 _ (2.15)
»From equatlons (2 10) and (2.12), s | | v
Fly=F FTAT = (éL:)T§= 0. | (2.16) ’;
‘The stetement E‘T v = 0, or 'in’_ger_;eral for any set _ef KCL and - l
KVL variables ~ . S ‘
' STfN,i 0, . | - ‘ .(2.17) - b
is knoWn as Tellegeh" s ’I'heorem, and ma.y be ;tnterpreted as an o ‘ -
.orthogonahty cond1t10n between the state vectors F and v in RZb ' e K }
'(Tellegen, 1952 Brayton & Moser 1964 Penfleld et al. 1970). |
In par_agreph 8.7 we’ will d_er1ve seyeral 1_mportant_thermo_dynemie' |
rre.su.'lts frc‘)'rn‘ th"is theor.eth; It i_s iméertant to ;ealize tha_t'oniy
|
|
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KCL and KVL were employed in the derivation of Telleger_i' s
Theorem; it is thus seen to depend only on the system topology
and is.cbmpletely independent of the nature of the elements

r.epresehted by the branches (nonlinear, time dependent, etc.).

2.2 Nonelectrolyte diffusion through 2 homogeneous membrane

The extension of the linear graph concept to a continuous
é_ystem such as membrane tré.nsport is a straightforward opera-
tion. ‘The system we will consider consists of a homogeneous
rnembr'ané and two bounding reServpirs, Fig. 2.2a. The trans-
port of a chemical species across the membrane is accompanied
by the los_s of free energy stored in the chemiéal pdtential dif -
ference between the two reservoirs. In addition to tranéport,
before a steady state is reached, ._thé ‘me.,mb'rane’ acts é.s a rever-
sible capacitor, able to store some of the chemical speéies being -
transpo‘rted‘. We will conceptually separate ’.chese processes
and assume that the membrane consists of three regions. 'The
central l‘ayer represents the membrane capacitance in which
storagé, but no dissipation,bccurs, ..wl'lile Itvhe outer layers repre-
sent ti‘énéition regions across which dié'sipation, but no storage,
of free energy occurs. Our model may be made more acéuré.te
by paftitidning the membrane ihfo infinitesirhal volume elements
-aﬁd then conceptually separating each of ,these -volume elements
into two .éub3yst'ems, one of which represents the capacitance,

and one the resistance, of the volume element (Fig. 2.2b). In
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paragraph’3.3 ’vwe will show that in the limit this _p‘_ll'o"ces‘s leads to
t'he. usual _cbntinuum e,quations .. It is important to reélize that
we are ﬁot assuming that the membrane is actuall)'r composed of
layers, but rather we are merely as signing individual elements
to ééparaté processes. |

~The 'é.rimary \step_' in corisfrucf’mg an isondorphis-ni between

the physical syétérh and the topo‘l;og.i‘c"al graph is the assignment

of a branch to each element. We thenvas's_o'cia.te with each branch

‘a thermodynamic flow variable, f, and a force or effort

variable, e, in such a way that an exact correspondence is

established between the network equations and the thernﬁodynamic '

relations . _

- Cohsider first the:trar:‘t's.,‘ition regions of the membran_e,. as
in Fig. 2.2, which represent the dissipative processes associated
with»thé tfansport of a fionele'c_:tfol‘yte’ through the membrané.. “We
may ‘repr.e'sent‘-each of these dissipative ilelements" by a branch,
as shown in Fig. »2.3a.. For fhe left transition region, we asso-
ciate it s b;‘anch.with the effort Ap =p 17 F m and the flow Jril
across‘. this region. Similarly for th'e right transition region, we
associ_afe the effort (u_ -u,) and the flow Jri Note that a
reference direction has been -choéen and that the product of the
effo,r.tr* and f_low vari’ab'l_e»s is the power (free energy) dissipated
in each'évlement.

Next, considef the central iayér of~1‘:'he‘ mem‘brane and the

two bounding reservoirs, -Whiéh are all compartrrienté in which
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storage, but no dissipation, of free energy occurs. The repr.e-A
sentation of these reversible elements reQuir.eskadditional con-
si_d'e'ra.'tion since apparently no force of the nature of Ay can be
assigned to the reservoirs. In reality, however, .the chemical
potentials characterizing the reservoirs and the membrane com-
i)artme'ntb are not uniquely defermiried unless they are referred
to a standard reference potential, u. The thebry of potential
measurement implies the explic‘it- cc;nsideration of &, which has
the sa_rhe value for the permeant in the reservoirs and the
membi‘ar_xe. Thus the bfanch répresenting reservoir 1', for
example, can be drawn as shown in Fig. 2.3b. Associé,ted with
.this directed branch is the effort My - i and the flow Iy  One
usually does not consider reservoir flows, but vs'uc‘h a flow can
be defined as dni/dt, where n, is the number of moles of the
permeant in the reservoirs. The product of the effort and flow
Variable; Ji(p e r[), is the power delivered by the reservoir
to the membrane. |

The fact that it is usually permissible to assume that
=0 does not diminish the importance of the reference potential
and its implied definition in the reversible forces of thermo-
dynainic systems. (We draw the part of the brahch representing
the cépacitive elements as a broken line, to remind us that there
is no‘actual flow into the reference nodes.) The analogous

situation was encountered in the previous section, in representing

the mass as a two-terminal element. (Note that the branches
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of fhe iinear graph hgve. no ''geometrical" signif_ic_a_,nce here; e. g
therev‘er'sible flows are in no sense ‘»‘per‘pendi’cul'}ar“ _f':o'th“e pj.ane
of the. membrane. )  With fhese Arernark's',' and'noting’vtha"c're'ser—
voirs 1 ancvl' 2 and the cenfr'a‘l‘rnemhranezlayer‘ are ﬁrea’.t‘ed similar-
ly, the‘tot‘al rnemhrane’ s'ys':tern a'ssum'es‘ the forrn shoix{n' in Frg
2.3¢c. |

It ﬁiay' be im;med_iateiy ‘no't_ed that the reference nodes in -v
each co.m'pé,rt‘m_ent" have the ‘same value of i, i.e., they.;re’ K
characterized by the same "rna‘gni'tulde-' of the local pafainet"eré_ of
state ' ThlS observation is of vimpor.tan'ce to the 'ne"cv'v_o.rk formula-
-fion, 'for:each node of a network is characterizedv bya unigne 1 ‘.
value of a state functlon and hence the three’ reference termmals
may be combmed 1nto a smgle node. Slrn1lar1y, we may connect
the»other termmals of equal' chemrcal potential into single node,s _.

as shown in Fig. 2.4.

We see that the topolog1ca1 graph structure compr1ses two '

meshes, (1) and (2) to wh1ch we have ass1gned, 'a‘.rb1tra.r11y, a
clockwise sig’n direction. Let us now sum the forces operatmg
along the branches enclosrng each of the meshes ‘The forces
-are regarded as positi\’r(e when directed in rhe sa_,m’e direction.

as the mesh circulation and negative if directed in the opposite

L
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sense. For mesh (1), the sum of the forces is:
(p.1-p.) - (p.m_-p) - (p.1-pm) = 0; and similarly for mesh (2):
(1 —u) - (,_.,2—;_;) - (p —|J.2) = 0. These are simple examples of

"Lm m

Ki‘réhhqff' s Voltage Law for a thérmddynémic sysfem. The law,
in its rn-ost 'general form, states that if thermodynamic potentials
can be assigned uniquely to the nodes of a graph, the éum of thg
forces (taken with appropriate sign) around any mesh of the graph
equals zero. | |

The other restriction imposed on every node is Kirchhoff's
Cu‘rr‘e\nt‘ Law (KCL),which is an expression of the assumption.
that the flows passing a node are.conservative; there is, by
‘definition, no accumulation or depletioh at the n.odevs. * The
static character of the nodes doés not irnpiy that the process is
stationary, but oﬁly' that the nodes are abst.ract entities which
have no éapacity to store matter or charge, and hence are

maintained at a steady state. Since the majority of thermodyna-

mic flows are conservative, or can be chosen to be conservative,

% o . . ‘
If we write the continuity equation for a volume element surround-
ing a node, it takes the form
2p
ot

If we further assume that matter is neither accumulated nor

=v. 7.

depleted at the node, then 8p/0t = 0 and vJ, = 0. In the discrete
representation this implies that the sum of the flows of a given
sp’ecies‘ at a node is zero, which is, of course, Kirchhoff's

Current Law.
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~ ‘and sin_ce'the' thermod’ynarhic state functions are defined uniquely,
'thé thermodynamics of flow processes can be readily fitted into
a topoldéicél gr.a{ph‘ répresentation.-

In order to. write the KCL equations, a sign convention for

the flows vrr.mst be Yadopted. Although we'can ch.oose the directions

of flow ar-bitra'rily, we will retain the convention that a flow
entering a node is'negative and a flow leaving a node is positive.
Having chosen a sign convention, we may"now' apply KCL
to the four nodes of Fig. 2.4; doing so, we obtain the eq,ua.tions?
’ S ' '
Tyt I n=0
moomo L (2.18)

Ty g0

These eciuations' are not linearly indepéndérit,- and by cdn\_rehti_on
we will. <Vexclude'vthe _equat.ion fér the‘refere;‘;cé node, leaving a
se‘t of three lin‘earlyrindv.ependenf corisfraiﬁt equétionS-oﬁ tvhe‘v_
bran-ch currents. These equations reduce the nui'hber of inde-
perident flows fromfive to _t>wo. Ge_nelln'ally, Jirn’ the inflgx ir_ltoi
the membrane, vand an, the outflux from thé membrane, are “
consideféd as th_e independent flows.. ’I'he’set of -all thgi'rﬁodyné._’—
mic flowéfanvd thermodynamic forces constitutes é. vector sﬁac:e."
'KCL and KVL are a set of linear .cOnsf.rairits aﬁd, ’vas mentioned.
é.bdve,- _resvtrict the :’i_'low"s and _fof‘cés to e; sef of h}éﬁérpl-é;nejs: in.

~ this space. -
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At this point it is advantageous to pause and consider the
energetic aspects of the permeation process described above.
According to the treatment of nonequilibrium thermodynamics,
thev dissipation function ¢ of the membrane system under iso-
thermal condiﬁ_ons is given by‘the sum of the products of the
dissipative flows Jfﬁ and an .land thé forces across the resistive
elements oy =My and Mo Mo i.e., B
1 > (2.19)

¢=J (uy-n )+ T -uy) -
On the other hand, the free energy change accompanying the
charging oi‘ discharging of the reservoirs, dG/dt,, may also be

expressed as a sum of terms having the dimension of power:

G - .. - - - .
I3 (IJ-,I-]J,)J1 ol cWT Lt (- g, (2.20

Adding équations (2.19) and (2.20) and inserting the KCL require-
ments (2.18), we find that

dG _ .
‘Er+¢—0- (2.21)

This is a well known result of nonequilibrium therﬁodynamics:
the dissipation is' measured reve‘fs'ibly,by the drop in the free
energy of the adjacent réServoirs, ¢ = - (dG/dt). |

In the present theory, however, equation (2.21) represents
a special case of Tellegen's theorem. Inserting (2.19) and (2.20)
explicitly into (2.21), we find that | |

1 2 - ’ = =
Toaltg ~op) # Tl - o) £ Ty (o) + T (e ) T (kp ) = 0

(2.22)
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Equation (2.22) may be regarded as a scalar product of a general

~

flow vector J and a general force vector X, the components of

r~

which are

and X =

or

X-J =0 | : 2.24

Equation (2?24) has the same intei‘pretat_ion as équation (2.1'7)': the

full 2b-dimensional thérmodynamic space of states is partioned
into two fixed orthogonal éubépa.c,es »—;- the 'subAspace' _of the flows
and the’ s'ubspa.ce., of the forces. |

2.3 The relaxation time of a single permeation flow

To consolidate our ideas about the network represeﬂtation'

for membrane processes we shall consider a relaxation experi-

ment in which the flow across the membrane develops.towards a

steady state. It Iis assumed that the. membrane is vini;cially' free
of per'm'ean-t, and fhat at a given moment (t=0). it is put into

_ conta'ct with two reservoirs with v'chern.ical pofcential Py
avnd “'2; respectively. The 'I'Jroblem is to fipd thé relaxatioﬁ .'
time for the '‘charging' of the membrane capacitance' with the

permeant.
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As we did above for the reservoir flows, we define the
membrane flow Jrn = dnm/dt. From Fig. 2.4 and equation (2.18)
it is clear that the rate of permeant accumul'avtion in a membrane

" of unit area is

dn
m R 2 2
FTae =J , iem —(Jm—.]'m)1crn_ . (2.25)

To make use bf equation (2.25) we substitute for dnm/dt‘its
equivalent in terms of chemical potential and capacitance, and
relate Jin to its driving force by a suitable constitutive relation.
It is .clear that ‘

dnm/dt = (dn__/d p.vm)‘(_bd k,,/4t)

or, with équ_ation (1.9), |

T T o /dts Co(du /a0 (226

The simplest dissipative relation between flow and force

is the linear phenomenological relation of nonequilibrium

thermodyné.mics
i Al"'i -
Tm = B0 TR (227
which in the .present case assumes the form
Jm'me"( - ') (gt - e gtEs) (2.28)

1 v 2 - 1 2 172
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b3

If we let Rm denote the total membrane resistance, then we can
associate half of this r_e'sistance‘v_vith each of the membrane
transition iayers,' i.e., R1=R2=Rm/2; equation (2.25) then takes. .

the simple fprrh

dy e | o -
'&TIE:Z‘-'RLC_Z)'(‘R“}T)'“m' . (2.29)

By e:iar.hiningg the »horhogén»eo'us part of equvati‘onﬂ (2 129); it is clear

that the relaxation time of the process is of the same form as in
electrical networks:
T 1 : . o | (2.30)

- Equation (2.29) may now be written in the form

dp Byt ‘ '
m _MqTH2 |
T dt = 2 —H‘ -—- IJ,> -'H, e (2-31)

where pi-!—',pz
! = . 2

.7 In nonequilibrium thermodynamics we write a linear constitutive

relation for the local ﬂoWs‘and lot;al forces J = L (-d.|.;.'/c‘b‘:),'
where for an-ideal solution L = cD'/R'I'.'a.n_d D is the‘diffv.usiorlx .
constant.” Assuming L to be con_starﬁ;, the integration -o_ve'r a_'
membr.ane of thickness Ax gives, for a cdr;sfaht fl_u'ovir : |

WA 4 Ap : ' :
Jf dx=L[ (-dn) or JAx = LAp .
-0 0 o

. Therefore,

A ' ' , _ RTAx
vJ_RTAX7CD a'nd»Rm_ ce. D °
m m
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The solution of equatidn (2.3'1) for consfant 'rmié s_traightfor\&ard
and need nét be considefed here. To geta feeling for the meaning
of T it is worth noting; that for the simple membrane transport
process we are discussing, |

R _=RTAx/c D_, | ' _‘ (2.32)
where Ax is the thic‘knes_-s of the membrane and Dm theﬂ diffusion
coefficient in the membrane. The capacitance of.the membrane
is given by

C..= anm/apm= cmV/RT, . (2.33)

where for simplicity we have assumed'that the c_onstitutiye rela-
tion betw_eén p and n is that of an ideal solution. Since the
membrane is being charged symrhetrically from both sides, we
must consider only the time for diffusion across half the membrane
volume.  Noting that the mémbrane volume pef unit area is
V=Ax- '1cm2 and téking into consideration the symmetrical
filling, we find, |
C_=ec_Ox/2RT. - (2.34)
Inéerfiné equations (2.32) and (2.34) into equ‘ation~(2.3_1), we obtain
_ IEmcm _ RTéXx Cm[_'\‘x _ (Ax/Z)2
'm 4  T4c_D_ 2RT ~ "2D_

(2.35)

which is identical with the well known equation of Einstein

§ _ Ax.\2
,ZDme_ (—--—-—2 )
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III. THE BOND GRAPH REPRESEN TATION

3.1 Bond vgr:a’.p»h ’fun“darhentals
31 .1' | |

The next Stép in the network analysis éf tﬁ‘ermod.ynamicv
systevrns is the discuésion of coupléd flo_wé. Hox;vever; li‘near
graph notation becomes cumbersome when applied to systems
involving energy transductions: a separate graph is I;equired for
each energy domain and the energetic relationshipé are obscured.
During the last few year's', another method of representation,
called bond graphs, has been developed which ié more suitable
than topqlogit:al graphs for the déscrip’cién >of physical systems -
(Paynter, 1961; Karnopp &Rosénbervg, 1968). To'introdilcé the
method, we shall start again with a single permeation process
across a homoge'neous membrane and then .proceed to more
'complex systems. |

The basic element of the bond graph 1s ti’le '""ideal energy
bond." As pointed out in paragraph 1.3.2, a bondis re.gé,rded asa
perfect conductor which transmits power instantaneou‘sly and
without energy loss. .In this resp.ect it is Ian idealization similar
to perfect electrical conductors or infin'itely stiff rods. As in the
case of topological graphs, we must assum‘e some ‘sign convention
in order to apply Kirchhoff's laws. This choiée is for the most
part arbitrary. We shall indicate bond orientations by appénding

to them a half-arrow ( — ).
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The network elements that we shall use in bénd graphs are
resistqr_s, ’cap_acitor,s, inductors and effort so_u.rces (tr}an.sd\uction
w111 be diséusse'd in Section_.IV),' which ’;;ve represent by‘t1.1e
ger;ex_'.j;c. sym‘bols _dénoting their consfitut_ivé rela;t.idns: R, C', L ;nd
E.- Td_‘ééch 1étter we adjoin a single line segment .which. repre-
s‘énts an. -ideal,’éner.gy bond. This bond feplac'es’thep_a_ir_of“wires
used in.‘circuit represénfation, ie. , the branches of the_' linear
g'raph.ik ‘With each bond we assocri;,te an effort and flow var,iable,
e.g. —r% ‘R. |
'3.1.2

In circuit theory, one can in principle choose independent

reference directions for current and voltage. However, it is.

both customary and convenient to choose associated reference

. directions; that is, one assumes the current flow is positive if it
flows from the positively marked terminal to the negatively .

marked terminal. Both associated and nonassociated reference

directions are illustrated in Fig. 3.1. In bond graphs, we shall

adopt the convention that on bonds oriented into elements the
effort and flow have associated reference directions, e.g.
-——————7 R denotes associated reference: dlrgctlons and

< ‘R denotes nonassociated reference directions..
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Notice from Fig. 3.1 that for a linear resistor as = iR when
associated vreference directions are chosen, but that v = -iR

with nonassociated reference directions. Similarly in bond

graphs
--~§—-—7 R implies e = Rf, while \\\
q-—.—ez——-— R implies e = - Rf.

The reader with a background in circuit theory is forewarned
that in the following sections we shall have occasion to use non-
associated reference directions.

When the product of the effort and flow variables has the
dimensions of power, as will be the case in all that follows, then
- the power delivered to any element will obey the following
equation:

P = e - f for associated reference directions

delivered .

-e * f for nonassociated reference direc-
tions
Thus we see £hat the half-arrow on an oriented bond indicates
the reference direction for positive power flow. Power does not
necessarily flow in the direction indicated by the half-arrow, but
when power is flowing in this direction it is taken to be positive.
Thus if power flows out of an effort source, we shall use the

convention E —»———-\—‘*, while E &—n denotes an effort sink.

The useful innovations introduced by the bond graph method
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are two Ldeal Junctmns a parallel or v"zero-_]unctlon" denoted .

/

0 o - and a series or ""one -junction' denoted as

T i :rT Each bond in the graph is numbered .and assoelated
,with the 1. th bond rs an effort ei and a flow fi' Occas1ona11y,
and espec'vially for simple‘b_ond graphs, the e's and f's will be
written d1rect1y on the graph, e.g. b. |

Ff‘

f1 T

N

" Note that a sign convention has been chosen for this one-junction.

S'ih_ce’p_ov‘ver is heifher stored nor diss&pated at an i.deali
junct_ien; .the total power‘ entering any jun’cﬁbn must equ_al*the )
povvell'1 1ee§}ing the jﬁnct_i,oh: |

1?-:1 Oief =0, | (3
where O‘ equals +1 1f bond i is d1rected out.of the Junct1on and
A --1 if it is d1rected toward the Junctlon In a Earalle array
of elements, the forces on each element are equal Thus we
sha}_.l c_l_e__f__l_r_l_e the zero-junction by the constramt condltion o
e e, = e
ehd bX-vequation (3.1):

| 1;1” 0 , I - 3.3
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Hence a zero-junction obeys Kvirchh'off' s Current Law and conse-
qﬁently corresponds fo a node of the topological graph. * All of
the efforts on the .ze.ro—junction are assumed to 'bé_ equal and thus
necéésa‘rily have the same sign. The flows f then determine the

direction of power flow, and théir‘ reference directions must
agree ‘with the sign cor‘llventi»on assigned to the bonds incident on
the zerofjunction.

On the other hand, a series arrangement of elements has a
siﬁgle flow, since f is_conserved, and hence a one-junction will
be defined by

fi:fz:...fnzf, . : | (3.4)

which upon insertion into equation (3.1) gives

Yoe =0, - o (3.5)
i.e, KVL This juﬁction’ ié a uéeftil deviée_for the grouping of
all bonds having the same flow.. |

Let us now redraw Fig. 2.4 é.nd d_énote each branch of
the topological graph by the syfnbols for the elements (Fig. 3.2a).
We can immediately translate Fig. 3.2a into a bond graph by
assigning to every node of the figure a zero-junction, and

to each resistor or capacitor a one-junction with three bonds

Alternatively, if the product e - f did not have the dimensions
of power, we could simply define the zero-junction by

equations (3.2) and (3.3).



2

which connect the .tvvvboi-adj*acent ’z:e=rov-junctions to the element

itself. .By foll'o'w'i'_ng' 'this procedure and then assigning referenceb

dire'ctions"to thé bonds, we ar'ri\'re.a'.t Fig. _3.2b_.} .“It will'be
observed that every node of the topolog‘ioe-l graph‘ is now a zero-
j'unctiOn:. i_T‘h’e one ;jnnctionS' nave repleéed the ‘branches of the
linear g‘ra_Lphv through which a un.ique"cﬁrrent"f]'.'ow.ed.» H_ov;'e'\ier', o
only the bond on the one —junction that connects to an elern'e'nt
(i.e., the energy ''port') represents a branch of the topolog1cal
: gra.ph the other bonds that connect the one- Junctlon to the zéro-
junction _hav'e no counterpart in_t-opo_log'ical graphs and..may be
used to represent geometrieal 'qne'nt’ities (:dimensions) in the
physical system. '

Thus the meaning of, say, the combiné,tion of elements
R A .

N 4 —— N\ s that at this junction -yt pz+ H3 =0 and the

same flow Jrin wh1ch enters the system passes the resistor
1. .
R.m’ or that a flow J s dr1ven by a force (M1 93) p,z, is
1 -
regulated by a resistance R .« o /|2

AlternatiVely, if: wenhad chosen the'sign convention 1

~for tlre' one 7junction, ‘the driving 'forc‘e for'the' flow J;l would
" have 'been My + p.é. Since physically the driving force is alWays
a '-."dr'op'_' in potential, we sh'a'.llv adopt the forrr_ie_r sign convention

for one-junctions..
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The graph 3.2b is rather cumbersome and difficxilt to handle.
It may, however, be simplified appreciably in the following iiray.
First'; we may aséume that the reference potential p = 0. When
=0, thé power transmission along all bonds incident on the -
ground node is zero, so they may be eliminated. The bond graph
may now be drawn as in Fig. 3.2c, in which all bonds leading. to |
the zei'o-'junction-of o are deleted.

Both zero-junctions and orie-junct_ions which have ohly two
bonds 'inéidént in 4the same direction merely transfer power and

may also be eliminated. For example, consider a zero-junction

e, e,
L
By cieflnit1on, ey T ey and by K»CL,-f1+f2 =0 o:r f1=f2. Hence

the junction serves no purpose and may be removed from the
graph. Similarly, for a one-junction there is, by definition,

a common flow through the junction and f1=f Applying KVL,,

5
we see that -e1+e2 = 0 or e =ey; and thus, the one-junction with
only two bonds connected to it, both pointing in the sé,me direction,
may also be deleted from the bond gi'aph.

When we apply these simplifications to Fig. 3.2c,v-the bond
graph assum.es its final form, ‘as shown in Fig. 3.2d. It is
readily apparent that Fig. 3.2d is very close to the.physical

representation (Fig. 2.2a).

e
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3.2 Causality

‘The bond’ graph representatmn may be amp11f1ed by the
1nt.roduct1on of another p1ece of 1nformat1on, called "exper1- '
'mental ceusahty. " Cons:.der, for example,v the f1111rl;g of’the
m:_erribr;avne corrlpa;l'tment by the'peyr.:’rnea.n"t.v The process-is
fepfesented'by equation (2.26)'aé.__¢m(dgm/dt) = J'r-n.." It is
evident that u . cannot c’hengve inst’é.ritaheously (i.e.,
dp. /dt< ) unless the flow J becomes infinite. Sirhilarly,
an electr1ca1 capacitor wh1ch obeys the equat1on C(dV/dt) =1i, or
any capac1t1ve' elernent — for which We may wr1te C(de/dt-) =f —
rhay ('I:ha-ngev its e’ffo'rt e-_:o_nly accol'diné to the 'clicturh”o—f the flow
v;{‘riablg'-'f; The flow is therefore the "natural" 'inpu-t' (i.e., inde-

pendent) variable for 2 capacitive element. The converse is true

/

for inductive elements, such as a mechanical or electrical induc-

tor,_for,wh‘i.chnthe_ b-as_ic‘- r_e_latioh is L_(df/dt) =":e.' ie., kindvlctOrs '
have'the effort e as thelr natural.i‘nput since an arb1trary flow
(veloc1ty) may not be 1mposed on the element (mass) as an 1n1t1al
cond1t10n In the' case of a re51stor, there is no 1ndependent

| variable of choice, since the relat1on between flow and effort
:'conta1ns no.t1me' der1vat1ves» It should be clear that the recog-
‘n1t1on of the 1ndependent varlable, i.e., the causal relat1on, is

nontr1v1a1 as may be seen in the example of an R const1tut1ve

L
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relation such as is encountered in a tunnel diode or nerve
membrane (Fig. 3.3).
Evidently, to any value of e there corresponds a single

value of £, while for a single value of f we may have three values

of e. Thus it is important to know which is the independent

variable, and the introducfion of a suitable symbol fof this

notion is useful. | Paynfer ('1961) has 's'ugge-sted appending to a
bond a vertical bar, éalled a ""'causal stroke, ' with the following
meaning: an element adjacervltv to the vertical bar is'goverﬁed

by the effort variable. Therefore in(iuctive elements are written -
as L [-————— ; on the'o".cher hand, when the causal stroke ils placed

at thev opposité end of the bond, the element has the flow f as an

independent variable, so .that'ca'paci’cive elements should be

. written as C ——f . Resistors may be of either type: R b—ori

effort-controlled, or R ——], flow-controlled. (An easy way to
remember the causality convention is to think of Rf——as a
plunger exerting an éfort on the resistor, and R ——————| as an
arrow <J——{] directing flow into the resistor.) The choice

of the independent variable is not related to the sign conventions

‘discussed above. Hencé we may have C 4—| or C ——-\l ,

where"thé‘ half-arrow indicates the sign convention for positive
power flow. With this definition of the causality symbol, we may

immediately predict the 'organization of the symbols around the
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" zero”-' é'f one—junction-. It will be recalled that by KVL, all bonds_ ~

1n01dent upon a zero- Junctlon have the same effort value,
e e, . ':, L= 'eh. -Th1s means that upon choosing one of the e s
as”the in‘dependent V\vr'a-'r_iable,‘ all therest become 'depvendent on the
first. Th1s 1s revpresented in'-symbolic”fornl 1n F1g '3.4a.
Similarly, for the one-junction it is the,e‘qnal’-ity of the flows
(KCL) which character.ize the 10«311',':1mvi<>1~'f1 =f, = £, hence -
the choice of a single independent flow .m‘akes the rest dependent.
’.I'hi.s is lshown in -Fig'.v_3..4b. .Conv'ersel’y,“n—vi independent flows

. incident ‘on a zero-junction dete'r“mine' the n' th flow, w'hile' for a

one _]unctlon, due to KVL there are only n-1 1ndependent efforts..‘

On the bas1s of these con51derat1ons we may now redraw Flg
3.2d in a more 1nformat10n—r1ch forr_n (F1g'. 3.4c)._ Note that for

convenience the sign conventions have been chosen according to

the assumed direction of »power' flow in the systern.' The assign- -

ment"of..‘ca‘usal"ity to i.a "bo'n'd graph; ensures that_ the dynamlc '
'elem‘ents,. L and C, ca.nnot be g_ivven initial conditions which
violate Kirchhoff's laws. That is, the initial s_tate‘, and hence
the entire dyngmic trajectory, is c‘onfined to the Kirchhoff s.ub—.

space as discussed in Section 1I.

In concludmg thlS section 1t is worth noting. that the ass1gn1ng'

of correct causahty symbols to a bond graph is a rather sensitive
cr1ter1on for the completeness of the physmal model under1y1ng
the representat1on.

Table 2 summarizes the_' basic "diction‘ary*' 6f bond graphs

elements,
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3.3 Transition to continuum equations

Before beginning the anal}?sis of more comp_iex coupled
perfneatvion flows, it is useful to recorisidex; the bond graph
representation from é. more general point of view. As shown
by Branin (1962,. 1966),.the operational structure of network
th.e_o.ry is; identical with x.recto'r. calcﬁlusﬁ hence networks can
represent fin;te dimensional approximations tb field equations. ‘
We shall iilustrate this impbrtant statement in the case of
membrane transport. Our analysis will be devoted to describing.
a limiting process which will cofive‘rt the discontinuous network
fepresénté.tic;n into_the differential equationé for the continuous
memﬁrane system. For simplicity, we will consider .only linear
coﬁstitutive relations. |

‘We will now introduce the transmission matrix:."{, which
relates the output of a mﬁltipoft element (or group of elemeﬁts)
£o t.he input. For elements that ar; sequentially arranged, their
transmiésioﬁ matrices rﬁultiply to give Ia matrix which relates
the outpﬁt of the sequence to its input. The c’oncep.t is thus very
useful for analyzihg long chains of elements, as in a transmissvion

line, from which its name derives. As an example, we will

¢onsider the transmission matrix of a series resistance R:
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Since we assume that the resistor is linear, e, = RfZ. ~For a

one-junction all the flows are equal (f1=f ); and hence we

| 27'3
may write e2=Rf3. Applying KVL and replacing e, by the expres-

sion just derived, we find that e1=e2+'e3 = va3'+e3. The equations

characterizing the series resistance may be combined into:.

4 - e3 €3

T,
1 3| s

t
K

(3.6)

In a similar manner, we may determine the transmission matrix

- for a parallel capacitance C:

C P o
,] ) By definition e 7e, 7€, and
—_— S ’ = .
— O —=—. REPAEES

The constitutive relation of an ideal capacitive element is

o
[¢)]

2 _
C =t f., and hence ‘
e = e,- e 1 0 e e
1 3 : or ! ‘= . > = TC . ’ ’
kf1 s C(de3/dt) + 1, gy vCDt 1! _f3 ~Cl £

where D, is the operator d/dt.

Finally, we consider the combination of a series resistor

and parallel capacitor:




-59-

- R c
. :
1 0 E

AN \
1 3

Using the transmission matrix TR for the resistor, we arrive at

the input as a function of the intermediate variables {e ) while

3’f3

the transmission matrix T for the capacitor, gives the

Nc,

depéndence of the output on these intermediate variables. Thus

we see that the transmission matrix T for the combination of

~

elements is the product of the transmission matrices of the

individual elements, i.e., T = TR- TC. This expression is

easily generalized, and hence the transmission matrix of any

~

sequential chain of elements is the product of the transmission
matrices .‘of the singlefﬁnits.

Let us non cons.ider a membrane of unit area broken up into
volume elements of thickness dx. Within each volume element
diffusion occurs; this can be described by an RC bond graph,
as depicted aBove, with a resistance given 'by.the specific resis-

tance R multiplied by the volume 1 - cm2 - dx, and a capacitance

~

equal to the specific capacitance C multiplied by the volume

1 'cmz' dx

e
b2

The bond graph representing diffusion through a

Note: from equations (2.32) and (2.33) we obtain for the ideal

case R = RT/cD, while C = c/RT.
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,me_':mb“l."a.ﬁe_wvould tﬁus _be.asﬁshown in Fig. 3.5.

The number of “vollll'rne éiéments _thav.fc.one'chooses in é.
membrane model depends upon how accurate a quel is required
and on thebvb ﬁhmber of _dafa. points one would like “in a co"ﬁ'.centration
or 'che_fr;icﬂ:a}l potbentivay'l i)rofile_ of the memﬁré.i;e. In a model with
n volufne elements there are n capacitors; arnld“thus n \}valuéié for
the chemical potential can be obtained at n intervals

—

within théA membranev. In the limit, a_’s.' the number of volumé
elemeﬁts.tends to infinity, or as the Athickness“d;;__of each element
approaches zero, the bond graph equations approach the .partial
v c.i.iffer-'enti'.al equations describing diffusion in'a hérﬁogen_eous o
. membrane. . | | |

Sincev the transr‘niss,i'on’ma;tr‘ix cha.r'aéterizés the.px_‘ope’rtiéé
of an RC chain, let us examine the tré.hsrrﬁ'ssion matrix for a ‘

given volume el__e‘menf as dx bécomes very small. The input

flow and effort that we consider here are f an_d e, while the output

.is f + vf.dx and .e +‘Ve' dx, where Vv :éi-x.

It is clear that the total transmission matrix T is the produ_ct

‘of 'ER ;nd 'EC as stated above, or

~

R-dx] |1 O] |e+ ve dx _
| | (3.8)

1 ||c-ax-pD, 1 £+ vE- dx

Cav.r‘rying out the matrix mulf';'iplica'tion and ne_glecting terms of

order (dx)%, we find  [1 R -dx | |
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which upon insertion into equation (3.8), and multiplication,
gives |

Ve + R - f',= 0 | _ (3.10)
and . _

C(de/dt) + V£ = 0, o L (3.41)
in which second-order terms have again been neglected. Eqﬁa-
tion (3.11) may be readily transformed into the -equation of continu-
ity for the perméant vin the membrane. Since by equatioﬁ. (2.26)

1 dnm i} le dpm
V dt v dt

_ = de
=CF
and by definition f = Jm’ equatioh (3;11) can be rewritten as

9 c

m-—~ .
dt __- VJm’

where c = nm/V, which is the eq‘uation of éontinuitf. If we
iden.tify e with Moy equation (3.10) is seen to ‘pe the usual phenoﬁleno_
logical equation'v(—pm) = RJ. |

The interésting expressions (3.10) and (3._'11) may betrans-

formed into two other equations. Upon differentiating equation (3.10),

v?e + fvR + RVf=0. ' (3.12)

Inserting equations (3.‘1(5) and (3.11), we obtain
Vze-—v—;l:—{- Ve - Rh(':—q’g-»_: 0. _ (3.13)

R dt .

Upbn assuming ideality, we find

i RT m\ _ 1
RC = c D RT | D
m

Further identifying e with B gives
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de : 2 o '
= pvec_, o - (3.15)

dt
wh1ch is the conventional form of Fick' s secorvld law.
"This example cqlendonstrates'th'at,"'in:' the limit, the network
treatment indeed reduces to the classtcal f1e1d equatlons of

phys1ca1 chemlstry (Kron, 1943).

3.4 Tellegen s theorem for bond’ graphs

In paragraph 2.1.2 we derived Tellegenf s theofem from ‘the
1'ineia_1_':g>raph representation. However, since the graphical
repfes_entation that we eha_ll use for the remainder. ef this 'paper..
: i‘sv_ bond gtaphs, it ié important to. demonstratev'that. Tellelgeri ts
th__.e_or.er_n is valid for bond graphs. _We shall assume that a -

sign convention has been chosen consistent with associated

reference directions, i.e., that bonds are directed into elements.

Th’eorem' 3.1 . For a bond g‘raphbG composbed of_one-port

elements and junctions,

» E e.f.v=_ 0.
elements t2

Proof Since all ohe;port elements are connec'ted to either
a zero-junction or a .one Junctmn, one caﬁ coﬁnt all the elements
in a bOnd graph by eountlng the elemeénts connec’ted.to ea_ch
vjunction and then cdunting all the ju'n"ctic‘)ns. '_M.aking use of

equatio_nsv (3.2) alt\?d (3.4), we 'rrl\ll'ay_ then write:

elements

where NO and N1 denote the total numb_er of zero-junctions and

a .
w 4 T) ' :
E eifi _JZ_ eJ. E i +Jz: ;tj12~1; eji’ | S (3.16).
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one-junction in G, respectively; "and where ozj end [33. denote

the number of elements connected to the jth zer.o-junction and
jth one-junction of G, respectively. Introducing the Kirchnoff
constramts, equatlons (3.3) and (3.5), and utilizing the assump—

tion that all bonds are d1rected into elements (assoc1ated refer- -

ence directions), we have

N J. N i_g.

1
ZeJ Z z : ojbejb’ (3.17)
=1 b=1

b=1

,.x

elements
where Né and NJ1 are the total number of bonds incident on the
jth zer.o—junction and jth one-junction of G, respectwely The
only bonds ‘that are counted in the summatlons of equat1on (3.147)
are bonds that connect two junctions together." Each one of these
bonds is counted twice — once on the junction.it leaves and once
on the Ajunction‘itentervs. The two terms in the summations that
correspond to any 1.t)ond_ connecting two zero-junctions or two

one-junctions cancel, since their efforts and flows will be equal

but ¢ will be +1 for one term and -1 for the other. The remaining

terms in the summation correspond to bonds connecting a zero-

junction with a one-junction. Defining an "adjacency operator'

65t = {+1 if junction s and t are bonded together :
0 otherwise ' (3.18)

we may rewrite equation (3.17) in the form
N N ' N N

Z - 'Z: Z ¢ fstost st Z thet tsOts” (3.19)

elements: s=1 t= t=1 s=
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-No,ting». that by theiiﬁ ‘de"fi'nitions, e_quati‘oris _('3.'1'):' and (3.18), -

o-t = -0 and6t8=6

Og T 7 Oge st,_,wehav‘e' y

DI ?—': Bst Tstl®sfsr ~ ottt ' (3.20)
elements . s=4 t=1 . ,
However, since the definitions of the junctions, equations (3.2)

and (3.4), imply that

e = e . for all t such that 6 , = 1 and
s ts . : ' ~ st . S
ft = f,st | for ale s such‘thaft 6st =1, o | (3.21)
ten eeg-o. @ED
. : i .
‘ " elements '

As emphasized in Section II, this theorem is a purely topplogical
result dependihg only u’pon‘KCL and KVL, not on the ’riatui',e. of the -

bond .g;japh elements.

Corollary 3.1.1, For a bond graph G. ébmpbé’ed'of multiport
elements and jun;tiohs , -

Z ei'f, = 0.
elements = '

Proof. The assumptioﬁ of asso.éviaited' reference directions
impliés that all port bonds bof r.nﬁltip_ért e_leméﬁts ‘are connectéd to
a junction. For if two multiports were -bbnded'together,_ it would
be .impossi_]f).le' to orien’t the bond so that it sirriﬁltang'ously pointéd _
into both multipofts. Hénc‘e we havé equation ‘(3_.1 6), and the

remainder of the proof follows vf‘i'o_m'above.
e 'Q.E.D.
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As mentioned pre.viously, we shall have occasion to use
nonassociated reference directions. In many cases this
simpl{fieé the bond graph by eliminating junctions separating
multiport elem'eﬁts and simplifies many computations. However,

when utilizing theoretical results from network theory, such as

- Tellegen's theorem, it is necessary to choose associated

reference directions. This will be the case in Section VIIII.
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IV. NETWORK R.EPRESENTATIONS OF COUPLED FLOWS .

4.1. Stationafy flow of nonelectrolytes across a membrane

4.1.1,

| In Sections II and III, we derived the bofxd graph represen-
 tation fbr the flow of a: single nonelectrolyte. across a membrane.
It is clear fhat if many noninteracting nonelectrolytes are simul-
taneously permeating a membrane, the flow of each chemi_cal
speciés may be repre sénted by a separate RC chain of the type
vdiscu.s_s'e‘d above. However, if the permeants'interac_:t, a ne§v
- feature must be considered: the coupiing befweén the flows.
Provisionally, we can lump all the coupling.veffe cts into a new .
element‘ which we shall éall a coupling n—po.rt, denoted as CPL.

In paragraph 4.4.3, we will show how this new element is

connected to a bond graph repreéent’ing the permeation flows of
compbhents A and B thr.ough a membrane. -Then we will retivc—‘
‘ulate CPL into elem.e'n.tary‘bc;nd graph structures. In order to
vaccc_)_mplish this task, however, we r'nus‘t first introduce 'anothe‘r
ide al bond graph element, .the transducer, which wivll. pe rrﬁit the
rgépre sentation of ’c:hermody'namic coupiing .and el;xérgy conver-

sion.
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4.'1.2;.
The transducer is a two-port which converts energy with-

out loss from one form to another. In bond gra_,phs we use the

g (1)
notation == TD—~ to denote an ideal transducer, where r is

the transducer modulus, or transfer ratio. B_eing a two-port,
" o %

the tra_hsducer requires two defining equations :

. |
1 (4.)

1
Hoo e
®
®

f

H

1 2

Notice that the transducer behaves very much like an ideal jtin_c—

tion—its constitutive relation imposes a set of linear constraints

on its port variables, and it conserves power by scaling the port

efforts and flows accoréling to the modulus r. Also note that

Pin.: e'l»fi - (% e,) (r»fz) =e,fy = P-cn‘;t‘
The TD.may be thought of as a graphical'represéntation for the
area-preserving (i.e; , power preserving) cbdrdinate map
(equation 4.1). | \‘ |

The transducer avlso preserves causality and must have

the_forrh:

4 TD ——— or F _TD |

— : (r)
Using associated reference directions 4 TD 3 the defining

equations are:
e 1 e,
(7)) ()
0-r

ate
Y
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4.4.3.

The tfans_dﬁcer modulus need not be a constant. A me-
chanical analog rﬁight be a simple léver 1;olling on a semicircle;
r is fﬁen a function of 6 (see Fig. 4.1). Frequently, the mod-
ulus r will be a function of the_state of another _elemént in the
system. We Qill return to this point in Section VII where sig-

nal flows will be introduced into our formalism.

4.1.4.

We are now in a position to describe the coupling between

" nonelectrolyte flows. First, we notice that the coupling exists

only as 1_ong’ as flow continues. Moreover, we realize that the
exis_tehce of coupling manifests 'itse_lf by the diversion of a por-
tion of. the driving force for .one species to affect another com-
ponent. Theise two considerations implyv.'that the bond gré,ph
cou;plvingl element CPL must be attaéhed to one-junctions. This
is il.lu_,strated fqr the case of a twb-c‘on’qponent sysfem in Fig.
4.2. Note that by KVL some effort is diverted into the coupling
stru.cture; but, by KCL, no flow is. d'vivertet'i by ihtroducing the
coupliﬁg element. The ass‘igvnmént of .causality, as shown in
Fig. 4.2,. is consistent w1th the vdefi'nition.of th_e‘on‘e-junction,

and means physically that the flow of A transmité an effort via

‘the coupling two-port to the flow of B, and vice versa.

- Having established the genéral structure for coupled flows,
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we no_w pfoceed to reti‘cu,llate‘ CPL into elementary bond graph
s'tru.ct.vur‘es. For illustrative pul;poses only, we will consider bthe
two-cornéonent case. It is well established that the coupling is
diesipative, so that CPL must be a resistive t'.vvo-port. Since the
dissipation depends on the flow of A,relaﬁve to B, ‘a»dissipative
element R.C must be ettached to a ‘zerov-junction within‘CPL. |

Furthermore; it is clear that it is not the flow of A itself, (T4)

nor of B, (J which is involved in the coupling dissipation, but

B>
only the interaction of the flows. We may say thét a transduction
_process'is in.\.rolved scaiing tne effort's -and flows ‘_by the correct
magmtudes, which are then apphed to RC | |
The complete bond graph repre senting all of ‘the above in-

formatmn conce rmng co_upled flows is 111ustrated_1n Fig. 43

4.1.5.

For the sake of simpliéit}, it i.su convenient to begin the
analysis of coupled permeation flows with a consideration of‘
ste.ac‘ly state fcranspor't. vIn ‘t.his case, there is no flow on the
membrane capac‘ivtors' CAm and CBm, so that thei; connection

“to the bond graph becomes superfluons, ‘The tWo-"side-d structure
"of F1g 4.3 then condenses to the single structure shown in Fig.

4. 4 w1th res1stances RA’ RB’ and R for wh1ch we_assume

C’
- R R R
1.2 Ra 4 _ 2 Rpg 1.2 RBe
RA "Ry 7 7 - Rpg =Ry =3 and R, =Reg =7

L
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Let us start our analysié at the middle zero-junction of

" the coupling element. A éoupling force X _, may be assigned to

C
this zéro-junctic_m; XC' is then related to the éoupling flow JC
by the éonst_itutive relation of the coupling resistance R.C. " In
the linear case,

XC:RCJC : S (4.2)
while, .iri'general,

Xc =Rl o (4.3)
is an unspecified function of JC. Since all the forces on a zero-
junction are equ’ai, and since the transduce-f moduli are rA for
the A and rp for the B component, the forces entering the trans-
ducers are, by equation (4.1), equal to’ r_C on the A-side and to
XC : _ ' A :

7 on the B-side. '

We now turn our attention to the one-junctions. By KVL,
the sum of the forces on eaChI junction vanishes; thus, for the

one -junction of the A-flow, we have

x
1 2 C
- M +"XA+|J.A + = =0
, N
or - .
1 2 _ - el : .
P‘A. - -HA “AP"A = XA+ 'rA s ’ (44)

whe re XA

is the driving force across the resistance RA" and -
Dy is an externally measurable forc_e. ' The constitutive relation

for the diffusional resistance is. XA' = RA . JA in the linear case,

while in general

X  (4.5)

A~ Raldp)



=72~

"In an identical manner we may write -

X o
Apg = XB + o (4.6)
: : : B
and
Xp = Rp(Tp). (4:7)
The flows.of A and B after pa.s-.sing their respective trans-
T ' , - J J .
ducers are, as required by equation (4.1), ;-é- and - - Since
, : , : Iy v

‘the flows on the zero-junction of the co'ubpl_ing‘ele"ment are addi-

‘tive, we find that

(4.8)
It is now ‘a simple matter to write the relation between the exter-

nal flows and external forces. vIns'ertingv into equatibns 4.4)and

4.6 the force-flow felationé (4.3),“(4'.5) and@.?), we find

By =R, + = R0
Apg = =— Ro(To) +RpT. (4.9

Equations(4.9) are a generalization of the phe nomenological equa-

tion of Onsager and reduce to the conventional form used in non-

equilibrium thermodynamics if linear constitutive relations are

assumed. In the linear case, we obtain on the basis o‘f"equa',tionsw

(4.8) ana (4:9):
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R .. ' R
7 C : C
App = |Rp v =) Jot 7 Jp
r A B
A
= R, T4+ Ryp Ty (4.10)1
and
R R
- C C\
Bpg = T Jat |[Rgt =3 I
A B T
B
= (RBAJA+(R J;

B "B’
where the script ®'s denote Onsager c'oefﬁc_ients{ - As expected,
the matrix of the phenomenological coefficient is synimetric for

the coupling term (RA.B = (RBA = ‘R‘C/I;ArB' v

4.1.6.

It is, however, revmarkabl'e that in the -no‘nlin_e‘ar ce.se the B
sys'te_rn of eqﬁatibne is —ai.llso vsymmeti-i‘c.v The condition for the
' reciptocity of a nonlinear function is the equality of the Jacobian
“and its ttanSpose. In our case, this would ir'n‘po'se the require-

meht that (9 Ap.A/a J shoul_d equal ('aAp.B/E) J

B )
BT AJg
- To prove thlS 1mportant statement We examine equatlons

(4 8) and @.9), we note that the der1vat1ve of RA(JA) w1th reSpect

to JB at constant J is zero,. 'and 'that the transductmn factors v

i‘A and 'rB are 1ndependent of flows and forces, so that

(83./87,) J = 1/x, and (23 /3T = 'l/rB. Upon differ-
A | |

entlatlng equatlon @. 9), we now find that
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Bama) 1 [BRSUG) 4 RU [OT6)
EEIY R NN 5T, |1, T, AT \875)3,
1 d
- R (g
: _ ratg g C
and 8 | | | (411)
2o 1 aRc”c) S dRc(Jc) Ic
53, /7 "5 Ty I8 T g 57,7,
1 d |
= - (J)’
so that -
T Z?A 7 a._____?;B AT (4.42)
B /A A /7B

Eouation(4.1a is similar to'Onsa_ger's theorem but was derived

"~ directly fr_om network reasoning and applies in the: nonlinee_r’re-

gion. This result is based on the topology of the bond graph and .

the 'intri'nsic reeipro_city of the one—port network elements.

' This point will be discussed in more detail in Se ction VIII.

4.1.7.
' Equation-‘(4.'10.), for the linear cese, leads to an intere sting

conclusion about the relation b"etwe_e'n' phenomenological ‘coeffi-

cients determ-ined in the 'pre senee 'and 'absence”of coupling Let

" us denote the coeff1c1ents in the absence of couphng as (R and

(R ', The se stra1ght coeff1c1ents are 51mp1y the bond graph
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B

resistances R,A

af;d R, respe Ctix)ely{ From‘.equation(4.10)we,
'seé fhat' |
,(RA- (RA' _.R.C/rA.
and _ _ ‘ N '2
(RB- ®Ryg' = RC/rB .
Hence the coéfficients are related by the equation
@p- Ry ) (R - Bg') = —5—5 = (@ p)°s  (4.13)
: : TATh N _

and the phenofnenological coupling éoefﬁcient can be determined

up to sign by the measurement of straight coefficients.

- 4.1.8.

To. conclude this section, it is worth comparing the con-v
clusions of the bond graph with the predictions that é.ris_e from
c.onsii_de'rati‘o_ns of the frictional parametér’s (Bearman and Kirk-
§vood-,1958), following the treatment developed by Spiegler (1958),
Kedem and Katchalsky (1961), and others. It is known that .the

~ frictions may be written as follows:

, 1 _ . o
Aba T o] [cgtAB * Cmbaml Ta - SaB'H’
TR T | -
Apg = .chBJAf ch [CALAB te b Bm] T (4.14)

where g’ij is the partial bina'ry frictional coefficient between

speéies i and j. When c

B=Oand .IB=O,
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, . o
1 Am . -
Bpy = e _t, 17, =22
A Cp m Am- "A Cp A
‘SO that R /c where fAm is a co'nstant‘. ;Sir_nilarly,
RB é ] Brn‘/CB where me is constant.. The comparison of equa-

tion(4_. 14) with equation(4.10) now leads to the following:

Re _cB ¢ el :»_C_AQ ._E_<3_=;g . (4.5)
2 ¢, “AB’ 2 ¢ AB r,r AB’ ’
N A B B A B

Equations (4.15 do not permit a unique solution for RC’ r, and
rB sieee they irppl.y ‘only rA/_l,.‘B = - CA/-CB' A consistent seluv-
tioyn‘isv', ’:how;e'ver, _
(4.16)
and hence

R = (4.17)

Re = cpcpban
- This solution is.-reasonable and could hé.ve been assumed a
priori. from. phys1cal reasomng _As was stated earher the dis-
sipation due to coupling is pro\portlona.l to the relative velocities
of the permeants; since JA CA VA }zvh11_e JB: Cy Vg it is

clear that

A B __4A_ B _ v ;'_(4.1_8)

S1nce the couphng re s1stance is dependent upon the hydrodynarruc ‘

1nteract10n of substances A'and B, it is plausible that RC be

prop.ortmn‘al to the product of Cp and Cp- |
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4.2. Nonstationary flows of ndnelectrolﬁes and their relaxation
times '

4.2.1.

For the evalﬁat_ion of non‘staf;ioriary'behavior with the aid
of bond graphs, it is convenient to invevrt the stationary ebqua-—
tions(4.:9) and represent the flows as funct_iohs of the forces. In

the linear case, we may write

| | w = Lasuy + Lyptug |
and ' . (4.19)

o
|

st , _ » .
B = XBA Apgy * XB_A'”B’

where the superscript st denotes a stationary flow and where
the conductance &6 is related to the resistance by the expres-

sions

L% L% L L S
A R’ B I®]l ~AB ° BA . T®
L&l is the determinant of the matrix of the phe_noménological

_ resistances:
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- The explicit values of the therm_odyn'am'ic, conductances are

0{_ _fa g RgtR ¢ T lTa RA+RC)
A K ¢ g T ° N =
B r,r R : : -
o . o . TxtgRe , |
2 2 2

where AFr, rp" R R tr, RARC rs RBRC

"The- complete bond graph for‘thevcaée of nbnéteéd'}r.' i.'lb'\lév.
. ’acvr'ofsé a mémbrane is repe'ate'd in Fig. 45 .It is feadily recog-
nized that the graph is composed of two paré.llel l1near parts
co;me cted by the capacitors: CAm ar_xd CB . - The parallel parts
h.ave_' a strucfure_ ide_ntié-éivto that _cons.ider.ed'foi‘ the case of sta-
tionary f',lows‘.'_". In‘deed, 1t is fhe existeénce of the ihfré‘rn_émbfa—n’e
cv:apa_citorvis ‘vvhich allows for é nonsteady vafi;ation of the floV\/;s.

| 1 1 |

On a priori grounds,. RA_ , RC and RB : may differ from RA’
2

RC and RBZ. For simplicity, howe.ver, we  will assume that

R 1. R, 2 R,/2, etc. It is now possible to .use equation{4.19)
A TRA A/ e Ste W P , on

for each flank of the bond graph and write

1

2

J - -, ' _

A L 1 m o, L 1 m,
and IR o | | o

A e m.. 2y W ‘m 2 .
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as well as

T .
B _ , 2 “m 1 m
3 ‘O{AB(”A L XB(”B - kg )

and

7.2 =%

’ m 2 L oom 2

From t_he diagram, we recognize readily that JA1 is the
influx of A into the membrane, while JAZ is the outflow, and
1 _ _in 2 5 out

similarly, J_' = J ™ and J

B B B =Jp - ~ Combining e.quations (4.21)‘

in pairs, we find

;rA + T, =of.( uA)+0<0 (M 2

2 : _A B B)'
=OK«AA|~LA+ ABAHB'

But, this is the expression for JAsfC in equation (4.'19)'; hence

in. out n . out
Iao T4 gt g oo B i) 35t (4.22)
> : = Jp and, similarly, ————— =Jg" .

Thus the average of the nonstationary influx and outflux flows is
independent of time and equal to the stationary flow. It is evident
that equations @.22) are very useful experimentally and are closely

related to the relaxation phenomena discussed below.

4.2.2.
Since we have .assumed that the reservoirs bounding the

membrane are 'infinite'', i.e., are sources of constant chemical



'-_8‘0_': :

pote ntial,'_"all re laxation' -proceSs t"ak’es place ih the intramembrane
cap‘acitdrs An 1nspect1on of F1g 4 5 shows that the trans1ent

v flow of mater1al into the membrane capamtor C ™ is g1ven by -

JA = J A = JA ’ JA t; or inserting the vaiues from equa-
tion (4.21) and letting ‘
4 2 '. 1, 2
Ba T kA | ~ #p . tEp
.——-3_—— = <PA> | a,nd ————— = (gl
08 (( IJ-A> - HA ) + AB(< F’B) ) - (4.23)

anvdv
Jg-

m- ,
i - AB(<""A> Hp ). +‘7€ (<“B>' ”B ).

_ Upon reachlng a steady state both JA and J vanish, ‘which

in thls case 1rnpl1es (pA ) = <”A> and (pB ) (p.B).
S1nce the capac1t1ve flows are related to the membrane

chemical potentials by the _'expr,e ssions

. dp m - dp
‘m’ A . m m "B . .m

A - dt A

‘we may write the relaxation equations

'du.m 4o8 4of

___i_

A
& T g (<“A>‘“A )+ ‘<“B>'“B ),
' A A
o ' ye 24)
—x — (e - wp ).

dt
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Since (pA) and <”B> are constants, it is advantageous to intro-
duce new variables

m

-, m ' :
X‘P-A' "<H.A> and Y = ug <P’B>’
which transform equations (4.24 into
. Ly Fs
X CAm CAm X :
= -4 . (4.25)
Y R DfAB £ 4 Y
gt <p

The relaxation times of the process are given by T = \/4, where

the eigenvalues M\ of the coefficient matrix are

X =-21 <§%+£—> /i\ <:§;h— +O—<;-B->2 -4 <°XAXB—ZABZ).

B
o cm m

A B CA CvB .

(4.26)
We shall not pursbué this topic further here. Howevér, it is 1m- _
‘poftaﬁt to realize that the .relaxation times are cdrﬁpletely deter-
mined bgr equilibrium and steady state measurements only, 'since
thé-cdndﬁctance cqeff_iciehts O{ ’.OKB and AR 2Fe determined
when the .system is at steady state, and the capaéitanées CAm
and CBm when the system is at.equilibrium. Furtherrnore,‘- it

is worth noting that in the unc'o'upled case where XAB =0,
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0 m-_ m _;,i m _ m
,x1._c{i/cA = 1/R,C7, A = 5/Cp = 1/RCq
and ‘
m m . :
_ A% . _ X% - S
A 4 , B 4 ’ )
where Ta and Ty are the relaxation times of the independent

flows of A and B. In the case of full coupling, which occurs

'when RC-—>oo é,nd jABZ = XAI ;:.

_ Of‘q_ Of B _ . 1 .
: N, = + — = ; A, = 0.
‘ 1 c™ c.m 4T 2
o A B '
In this case, only one relaxation time exists, which is to be ex-

'.pe.ctéd since the flows of A and B are no longier independent.

4.3.  Continuum equations |

\

-

In paragraph 3.3 we demonstrated how the differential équa—

tions descfib’ing the tra'n.sportb of a single nohelectrqute through |

a continuum 'mémbrahe could be génerét\ed from a bond graph.
In this section we will illusffate a similar. procedure for coupled
flows. |
' 'Let us éo.hsid_er a membrane of unit arvea'. divided into vol-
urhe. elements of thickness dx; vWithi,nve:a.c_l'l' volume element
coupled diffusion océurs; Figﬁre 4.6 shows the bond graph for
“such a volume eierheht, Wh_ere ﬁ and C denote the specific
resistance and capacitance.
. Calculating the fr'ansfni-ss‘-io'n matrix as we did in paragraph

3.3 will be somewhat tedious since in the present case’'it is a
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4X4 matrix. Moreover, the transmissiqn rnatri:% method is re-
stricfed to systems in which the coﬁstitutive relétions are linear.
Therefore we shall follow an alternate procedure that is valid in
the nonlinear regime. |

Reading dire ctiy from the bond graph, or from equations

(4.4), (4.3), (4.5) and (4.8), we find that

J J
. 1 = A B
TN JA) dx + rA RC(I'A + rB> dx
o+ |J.A+ VpA'dx

or

| J J
= 1 = A B
V(-ppy) = Ry (T,) + e R (rA + rB> . (4.27)

Applying KCL on the zero-junctions at the capacitors yields:"

o d , _
JA—CAan‘t"(}.LA'*‘?p.A dx) + JA+VJAdx,
or to first order in dx:

dp

ot A
| —VJA- CA—--—dt . .(4.28)
In an identical manner we may write
J J
: g i 3 A B.
V(-pn) = Ru(Jgy) + R < + ) (4.29)
v .B B'"B rp C N rn
and
: ~ de
—VJB = CB T (4.30)

Utilizing the definition of specific capacitance,
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CEV TV By

- we'see that equations (4.128_) and (4.30) are the familiar equations

of continuity

aci
v .Jl = '—B"t— N

The nonlinear field equ‘.atio'ns (4.27) and (4.29) for the chem-

ical potential distribution reduce, in the case of linear constitutive

"relations, to

| _ C C
o VeRy) = (RA+ 2) Jat 7298
T A v A" B

and. -
R - R
: . C [~ _(_j_
Vi-pg) = T,r Tp ¥ (RB+ <2> Ig
: B r
B.
Rpp Tp + Gp Tp

‘which are the local phenorne-riojlogi'cal equations of nonequilibrium

thermodynamics.

: 44 ) ’I‘;‘»é;r;sport'in'ideal ele ctrdlyte solutions. .
4.4.1.
While coupling in nonele cti‘olyfe flows is based on hydro-

dyﬁémic interaction, the flkow of ele ctrolytes provides another
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coupling pos sibility~ through electrostatic interaction. Elec-
trolyte processes encountered in biophysics are maintained very
close to electroneutral; thus the cationic and anionic flows are
dominated by strong ele ctrostatic coupling. In general, ionic
flows may interact both hydrodynamically and electrically; in
ideal solutions, howe{rer, the hydrodynamic interference may be
neglbected, and it is possible to con«sider only the dictum of elec-
. troneutrality.

Although the ideal case will not pi‘ovide aﬁy new informa-
tion about electfolyte solutions, it will serve as a convenient in-
troduction to the bond graph representation of electrqute trans-
port. In the next section we shall treat the more complex case
of eléctrosfatic and hydrodynamic inte‘raction;‘and the last sec-
tion of this ch#ptef will be devoted to the permeation of charged
permselective membranes. As'a.n initial example, we shall
_ repreSent the behavior of a ful'ly dissociated mono-monovalent
salt in aqueous solufcion. Although we deal wi.th a system of
cations.', anions, and water, the Gibbs-Duhem relation rAeduces
the number of independent fl;)ws to two, so.vthat only the ionic
flows will be considered.

"Each ion is capabl: of diffusing under the influence of a
cohcentration difference; hence the bond gi"aph must include a
separate RC diffusion chain for both the anionrand cation.
Local electrical interactions between the ions couple these in-

dependent diffusion chains.
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In order to deduce the éoupiing structure, note that the
electrochemical pot/ential .of the ith ion with valence zi is

T pio + RT /n c, + zi % Y, where ¢ is the ‘local electrical

potential and 4/ is Faraday's constant. ~For the present pur= .

pose, we distinguish between the concentration dependent part

= .'O +RT fn c., which is represented by a chemical capac-
i My , i : : : :

itor in théﬁv-RC diffuéion chain',b and the electrical part z; ?; $.
Sihée"t}iere isa unique :aléctrical potential at each ‘point in the
éolutidnv, we aésigri a local electrical c.apacitOr: to each lum;; of
th'e'"b;)ria graph; thén we connect this vcapacitor to tfansducé_:fé
with moduli zlg so that the éontribiition to the driving foi’ce

of ion i due to electrical effects is z; % AV. Tt should be
notéd that thga electrical ‘capacitor s., which represent the ‘variable
- potential {, .car’ry an‘e'xtr(..amlel? small aifnoi._int of freg charge
since deviations from ele cti‘oneutrality are usually extremely
small. Figure 4.7 illustrates the arrangeme‘nt of the cbncéhti’a- ;'
tion and ele ct_i_‘iéal _capiaicitor's-at pbints x and x + Ax of an
electrolyte solution, while Fig. 4.8 includes the transd_ucers'

needed to represent cation flow. By KCL on the »one-vjunction,
1 2 g g

TRy T ?‘1’1 et .$-¢2 +_X+ "O_

or ' ' ‘ )

o X, = (uf +'§47_411) -' (pf +?ip2)"=_ pf- _p+2 : A:er. (4.31)
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The driving force for the transport of a cation has the correct
form, and consequently the bond graph in Fig. 4.8 adequately
represe,nts_.the forces on’a’cation in solution. |

In the liﬁeér case, the constitutive relation between the

force X+ and the flow J+ is

X, = Ap,= R T, (4.32)

The complete bond graph repre sénting the flow of both the
cation and the anion is shown in Fig. 4.9. From the bond graph

we obtain the equation
1 : ‘ 2 [P ~
X =l P - T ) =ahs (433)

and the assumption of a linear constitutive relation for R_
implies

X = Ap = R J. | (4.34)

4.4.2.

There is no difficulty; in’rec‘on,'Structing-all the classical
expressions for ionic conductance, transference and diffusion
frorﬁ the bond graph. As an example, we shall derive ohly the
liguid junction poten’ciél, which in the pre sent case is simply the
‘ diffe'rence in between points x and x + Ax. In the determina-
tion of liquid junction potenﬁals,_ the flow of,electrical current
. . ) Aﬁ_’__ ) Ap,_
is assumed to be zero, i.e., J, =J , or = — (4.35)

+7 0 R~ R_
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Inserting the explicit values of the chemical potentials
A;._,_ = Au_l_c + ;Z ALIJ and A;_ = Ap_c - -;ZJALP, we find that:

(

\(4.36)
- {4.37)
A
. , o o R
is the transferences number of the cation, while ‘1 i =t
. R v : _ N .
is the-.transference number of the anion, so that
- '<t+Ap'+C ,- t_“Ap_C) t |
Fav=-\Tmy ) (4:38)

which is a special case of the well-known eq'u,at.ion for the'liqui'd

junction potential.

4.4.3.
In concluding this section, it is worth noting that the flows
on the bonds leading to the zero-junction of the electrical capaci-

tor are partial electrical currents, so that, for instance, the junc-
'tion adjacent to Cv1 : carries the flows IOI 10, 1! Iv'l. whic':h"bY'
adj “elect ' 42T T T S ‘

KCL,. éombine_fo give the capacitive current IC: ,
00, A
-;+-I_ + ;++I; '-I'-"IC_o,

or

. BT R
| Io = (I + 1))~ (I, +1).
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The capacitor equation is

1 dy

1
e,lec_t dt + I- ).

0 0 1
= (I++I_) - (I+
Qs ' . 0 0 1 1 .

Since electroneutrality makes (I+ +17) - (I+ +17) approximately
zero, the capacitance must be very small, as pointed out at the
begi_nhing of the section. It is, however, non-zero; and the in-

sertion of the electrical capacitor into the bond graph is imper-

ative for causal completeness.

4.5. The treatment of real electrolyte solutions

After treating the ideal case, there is no difficult.y in dealing
with reé.l eléctrolyte solutions in which both electrostatic and hy-
drodynémic coupling govern the ionic flows. The bond graph will
be a combination of Figs.’ 4.9 and 4.5, as shown in Fig. 4.10.

Following the same alogrithm as before, we apply KCL and ob-

tain
L4 2 o %G
Sy - ’-L]J1+' X, tpu,t JL’L]J2+1_. =0
+
or _ . (4.39)
1 2 .~ X
(”++?_¢1)-" (by T570p) = A = X+ r,

As sﬁming l.i‘near' dependences between flows and forces X, 7R T, '

and X .. =R _.J

c cJer the coupling flow is as before

To=— = (4.40)

Inserting the last equation into #.39), we obtain
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and similarly,

: R. [  R.\
~ C , . - . C
4“_—;"_‘; J++<R_+ 2);_.

+ - r_

!

It is worth noting that even if one assumes nonlinee_:.r’debén,
dence of flows on for ce s, the Jacobian matrix is symmetric and
~the system is reciprocal. If we write X,= R.+'(J'+) and XC:‘RC(JC),

we find with the aid of equation(4.39) that

o~ , v'1 J+ o J_ \
Apy = R (T T, Re f+ +'= r_

and o . P

~ 1 I, I | R |
sk = FRel\FE f 7o) FRGL. (4.42)

Partial differentiation with respect to the flows gives

_ 5 A ’ T _ ~
< 4p+> _ 4 PRg ¥ 4 Ry faap )
NS T i O N 2 N

C +- %Yc 7
(4.43)

4.6. ‘Me_mbrvane_,pe rmveability to electrolytes .

Consider the transport of a completeley dissociated binary
" ele ctrolyte through a membrane. Such a system comprises four
cbrnpo'nents: membrane, water, anions and cations. Using f;he

- Gibbs*- Duhem relation we can eliminate the membrane componént
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and me'asure our flows with respect to the membrane as a fixed
reference frame. The bond graph representation of a membrane
being permeated by an eléctrolyte will thus consist of three RC
diffusion chainsv, one for the solvént, one for the'cations‘ ahd one
for t}'1e> anions, with an elecfricavl‘capacitor tying the ionic chains
togethér; If the electrolyte is present at finite dilutions, we must

" also include hydrodynafnic coupling structures 'bétweeh each of the
RE€. chains. This bond graph is complicated .and‘will not be drawn.
If the membrane is uncharged, we may regard one section of théb
bond graph as the membrane phase and assign the appropriate dif-
fusional resistances as in Section II. The electrical capacitor adja-
cent to the membrane section can be used to represent the double
layer; and i.f one wishes, the unstirred layers adjacent to any
membrane may be represented by RC Chairis adjoining the mem-
brane. . Ianig. 4.11, the bond graph for a membrane permeation
system in which the solvent flow and hydrodynamic coupling may
be néglected has been drawn. If R:;1 # R;n,v the graph predicts
the rapid build up of a retarding membrane potential. If R.+7é R
in the bulk solution, a diffﬁ.sion potential is generated, In
géneral,' this representation appéars fo model all primary Bulk

electrolyte effects.
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v. CHEMICAL PROCESSES

5.1 Bond graph representation of chemical flows

5.1.1

In this section we shall consider chemical prd;:ess'es v&hich
occur iﬁ a closed reaction v'essébl with volume V. We shall
as surn_e.that the reaction vessel is in contact with constant
térﬁpéra;turé and preséure reservoi'rs and exchanges thermal
and meché.nical energy wi:ch these reservoirs so as to maintain
a constant internal temperature and préssure. The'v case of an
'opeﬁ vessel,. in which both diffusion and reaction fa.ke place, will
be considefed in the following section. Further, it is assﬁmed
that the reaction mixture is well stirred so that the rate of the
reactiéﬁ, ‘ or, aé it is éometimes ‘called, the"'ﬂpw. of feactidn, 1"
is the same at every poiﬁt in the vessel. / The flow of a chemical
réaction is thus a scalar quantity.and differs in a fﬁhdamental ’
way from the vectorial diffusional or electrical flows which
represent ‘directed movements through space. In a chemical
process, the individual component is not conser\.red but undergoes.
a. diésipaﬁve transformation to a nex& substance, so that conserva-
tion of mass is obeyed only by the reacting system as a»whole.

From the point of view of netwofk th_ermodYna.rr.lics, the
‘reaction.mixture may be considered as a black box. However_,
sinc'e by sarripling the contents of the vessel one may determine

the chemical potential pi»(t) and the rate of change in the number
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of moles .Ji(t) for each corﬁponent i, tvhe' black box may be partially
opened. Figure 5.1 illustrates the rﬁultiport'representation of a
chemical transformationvin Which the molecular species A, B, C
and D participate. It’will be our goal fo open this black box and
further r.eticulate this multiport modelll.

The relatibnship between the chemical potential and the
number of moles of each chemical speciésvwithin the reacfioﬁ
mixture may’ be representeld by a capacitor which is disc‘harged
.if the-compoi;ent is a reactant and charged if fche éomponent is a

‘reaction product. In general, My is a function of all the nj" s and,

in'versely,,
dn _Z ﬂ—' dp.j i=41, ", N . (5.1)
=t J : : .
‘or - A
_ dn, N. dp. ' ' '
- J, ==L =3 c, 1 . (5.2)
1 ot =1 .

ij dt. 7’

where Cij is an element of the incremental capacitance matrix
_for the vsystem. In vector notation, the above equation takes the
following form:

J=Cpy . ‘ (5.3)
‘ \ v ~ ~ ‘ . .
where C represents a multiport capacitor. For ideal solutions,
in which the components do not interact, this multiport capacitor
may be reticulated into N capacitors, each réprésenting a single
species.

It b =pf + RTIn <, o (5.4)
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then we shall attribute the incremental capacitance

dn, n, c.V
i

C. = gt
i a“i

= 1 -
RT RT (5.5)
th

to the i h. component, where c; is the concentration of the i
species in the reaction vessel, the chemical potential M is
regarded as the potential of the i h capacitor, and the capacitor

flow is given by:

dn, dn,  du, - dp.
J, = —= = L L ¢, —t—~ . (5.6)

i dt du.. dt i dt

5.1.2

The conventional representation of a chemical reactionas

vah +vgB t+ - — vCC +_VDD+ :
reactants v reactant products (5.7)

aésigns to the stoichiometric coefficients of the reactahts a
negative sign and to those of the reaction prdducts a positive
sign. In autocatalytic reactions such as

| X+ Y =2X | (5.8)
the stoichiométric coefficient of X should Be negative on the left-
hand side and po_siti\y'e on the right-hand side, while thé overall

. coefficient v

x = -1+ 2 = + 1 would fit equally well the reaction

/

¢

‘Y\-‘}—X. To vmake explicit such processes, as well as for reasons
to be discusSéd later, we prefer t§ distinguish forward. stoichio-
metrié coefficients vi from the coefficients of the reverse
procéés vli ,. and to.assilgn to all the c0efficienté a positive sign.

Thus, the general reaction scheme for a single process will be
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f
C

f

f f. .. r r r r
vAA(+ v§3_+v C+vDD_> 1AA+VZBB+VCC+VDD+'

(5.9)
To be sure, many of the coefficients may be zero, as in scheme

.(5.7)'wh<?révé= V]t;) = .- 0= v;; = Vr
r

tic process, v}f<="_-1, vy = + 2, it is readily seen that the con-

B = 0; while fo‘r‘ the autocataly-

ventional stoichiometric coefficient Vs is given by the expression

-y, = vi -v. . (5710)

5.1.3

‘A VB VYc Vb
or, generally,
L= dg, o (5.14)
vy o : :

where df is independent of i. The common factor £ is ‘the
advancement of the reaction; and its change with time is the

reaction rate (Aris, 1969),

R 4 A
J -aé . | (5.12)

The rate of change in the number of moles. of the ith compohent '

is then

= vaR -l f o JunR ' (5.13)
A substance which part icipates in several processes, with
stoichiOrﬁetric’ coefficient in the kth féactioh, Vi obeys.th'e

followingf

as
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dn, M
i

R

Vika . {(5.14)

P
k=1
Fof the Bond graph reticulation of chemical pr‘oc‘es:s, it will often
be convenient to insertbe}’cplicitly the forward and reverse stoichio- .
metric coéfficient and rewrite equation(5.14) as

~ dn. M M
dtl --x W gRis

vr' JR
k=1 ik "k k=1 ik k

- (5.15)
5.1.4

A comparison of equations (5.6) and (5.13) or (5.14) shows that
the reversible flow of the ith ch'emi'cal-capacitor was transformed
into the‘dissipative flow of reaction. Although’thé amount of
substance discharged by the capacitor is equal tovth'at flowing.’_in
the reactions, it should be clear that the nature of the capacitive
and _reSiStive flows is different, and an explicit repfesentation of
thke transformation requires the introduction of a traﬂsducer (TD)

which converts one flow into the other. The transducer is char--

acterized by a scaling factor (r) which, in the present case, is

either vifk or ;—1——1. , depending ﬁpon the direction of the transforma-
ik ik 3 : : ‘

tion. In bond graph notation a reactant will be depicted as

: vf. f

[V ik Vae My

C.—1ts 7p 21 »
i J. JR :
i

while a product will be represented as
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1/vr

r )

SV M ik p. '

M) SHINEN ™D —ILl N C.,

~ J'R' Jj -l

whére the constitutive relation of 1> " TD ___E_; is

£ - 0 1/r £ . (5.16)

Note that the TD may be viewed as a map between c'apacitive flow

and reaction flow.

For a chemical component participating in several reactions,

s X . . . th .
“for instance the 1th component being a reactant in the p =~ reaction
and a product of the gq h reaction, the capacitor Ci is' connected

‘to the two reactions through a zero-junction as shown in Fig. 5.2.

The 'sﬁrﬁmatiOn of flows at the ze_fo-junction- gives Ji = Jiq - Jli):
R S vi JR , as expected; and the chemical potential of -
ig. "q " Vip “p | St

cvo'rrip'onent i is the same in both reactions.

| Wh1le the My 's and the Ji‘ 's"avre the externally .mea',sux"e_,d
porf ﬁara%rrieters, the rate of reaction JRF is an internal variable
driven by an internal force. The driving forces of chemical |
prdcess_es ha’.;/e been studied extensively in vth(}i range close to
equilibr_iﬁm. We éhall therefore start our discussion of the
further reticulation of the feaction black box with the considéra-

tion of affinities in this well investigated domain.

R

5.2 Chemical kinetics close to équilibrium
5.2.1

The equation of Gibbs for a closed system, as considered:
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in this section, is TdS =dU + pdV - Z p.idni, ' (5.17)
. ' i=1

where all the dni‘ s are due to chemical transformation

dni :kz;:1 vikd gk.; _ v (5.18)
Inserting (5.18) into (5.17), we obtain
' : M N
TdS =dU + pdV-Z (Z Vik“i) d gk (5.19)
k=1 "i=1 v '

Following De Donder and Van Rysselberghe (1936), we denote the

affinity of the k'* reaction by

Ak = —-_Z v"ikp,i' ‘ (5.20)
i=1
obtaining o
TdS =dU+ pdV +Z A, dE . (5.21)
k=1 k™ k

Accor'di'ng‘to the formulation of nonequilibrium thermodynamics,
ds = deS + diS, where deS is the entropy exchanged with the
surroundings (given in the present case by TdeS = dU + pdV),

while the entropy produced by chemical change is
M .
Td;S = & Akdgk. (5.22)
k=1 _
The dissipation function for our system is therefore
d.S M d§¢, M
- k-5 Aoy . (5.23)

s _k_
TIT=¢ & ATt "8y

From equation (5.23),we see that the driving force conjugate to

each chemical flow is the respective affinity:;(gqliation 5.20).
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5.2.2
The relations between rates of reaction and affinities are
‘nbt unique, as may be seen in the following consideration. Let

us define a forwair_d affinity of a single process

N ' :
Coaf=x S (5.24)
. i
i=1 . : :
and a reverse affinity
r _ r :
A —i221 ViR | o (5.25)

: Evidentiy,.-thé the,rmddjrnamic affiriity is
N ; N . |
A= = (v? - v"‘.f)p. =-Z v, . (5.26)
. i i’"7i i
i=1 i=1 . :

A = af

Similarly, it is advantageous to def_iﬁe a forward reference
affini:tyv Ag = ot w? and a reverse reference affinity A% =,f:‘, vip?,
i%i : : 0i=11i™
vw‘hos_e- "d‘ifference ‘is-' , according to classiéal the_r‘rnovdynarrllic_s,
Al AT - zN v® = RTInK . (5.27)
VI IR Peq’ o

where Keq is the equilibrium constant of the reaction. ‘As suming

[

‘tha_t.fhe rate of the reaction follows a simple mass action con-

stitutive relation, we may write

jR:kf ilrici"i - krlxli cl"f o R | (5.28)'
where kfls the forward rateb cohlft;nt and k is the 'r_a.té qonstanf of
the Iigvérsg lfeaction.' The ratio'-E‘-f—. is ﬁ. |

Ke'g = exp[(Af - AT)/RT] B R | (5.29)
°r K e-A(f)/RT _ e-Ar()/RT Ax._“. " | | ’(‘5.3.0)-(

f ,kr

‘
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If we further assume ideal relations between concentration and

. . . v
chemical potential ¢, = e(pi—pi)/RT, we obtain from equations
(5.28), (5.30) and (5.24) through (5.26) the following simple relation,

used by Van Rysselberghe (1958):

f £ T
JR - ke Bo/RT A /RT-kre'A o/RT AT/RT

f
BN r | |
_ K(eA__/RT_eA /RT). o (5.31)
af - £
If we denote « exp =T 28 the forward velocity v' and

T Y :
K exp _%-'f as the reverse velocity v', equation (5.31) assumes the

well-known and suggeStivé form

JR = vf - v, | | | (5.32)
‘ " It is now evidenf that JR- cannot be reduced to a function of
the thermodynamic affinity A only, but depends on both Af and Ar,
which compris.e all the concentration effeqts.' ‘It 1s only close to

E3

equilibrium that substantial simplification is obtained.
5.2.3
sraa e R_‘ —f =T .
‘At equilibrium, J = 0; and therefore A” = A, as well as
A = 0, where the overbars denote equilibrium values. We may
' write equation (5.31) in the form

f
R - x A /RT“. } e-A/RT);

and since close to équilibriurn A/RT <1,

The nonuniqueness is readily seen, even in the simplest case of

A ——> B. When c, and cg are doubled, JR is doubled --

S .
the affinity, however, remains unchanged.
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R~ |_x A“/RT|, _
= RT ¢ A= LKRA‘, o (5.33)

wh.erev the ph-eno_menological coefficient

K . ‘A/RT ;f
LR RT RT | (5.34)

is constant. Thns, et eqnilibriuni,, JR becomes ;'»a linear, single-__
Value‘d - of the affinity. This type of functional relation-
Shlp is characteristic of a 11near one- port res1stor Since all
one-port‘ elements are'rec1proca1; and ?s will be shown in Section
VIII, the interconnection of recipr.loca.l_ elemen-ts is reciprocal
in the cicse_—te—eqtiilibrium regime_ discussed above, the multi-
port representing t_he‘rea.ction rnijcture is, reciprocal and therefore
may ije‘ c}iaracterize'd by a potential,function — the entropy ‘produc-’
ti’on-(-Prigogine, 1967). | |

: A necessary and sufficient condition‘for recipr-ocity is the =
symmetry of the Jacobian matrix of the port flovvs and efforts.

In the resent case, the Jacob1an 1s the matrix of terms
. For,
DJ = -
L uJ

Making use of equation (5.13) fer‘Ji,' equation (5.26) for the affinity,

and-equation (5.33) for th‘e reacticn rate-affinity relation, we find

E——aJl =y BJR =IIIL —-—-—-8A_..'vVL
pe i 9p, o iR O, 0 i TR
o I Jo- ]
- while’ o
9J. 3;TR a'-Ji | ‘ :
ol i A e , (5.35)

which is the required relation‘. ;
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5.2.4 . o ' 1

It is now possible to complete the reticulation of the black

N N

box which characterizes a chemical process close to equilibrium

R’ to describe

the dis‘sipatibn due to the re_a_ctioh. , Figure 5.3 illustrates a

by utilizing a one-port resistor, with conductance L

causally correct bond graph for a typical cherniical reaction. .
- Examining the bond graph for the reaction 2A + 3B T—ﬁ C,

we see that at the zero-junction all the flows are the same:

_JA‘;: Ig o
) -3 e R’

(5.12). The sum of the forces at a zero-junction should be zero:

as required by equations (5.11) and -

“2u, “3ugtpet A=00rA=2p, +3p -, inaccord with
equation (5.26).

More complex cases are readﬂy constructed by the same
principle; and Fig. 5.4 representé the case of a three-flow system

-~ close to equilibrium. |

5.2.5

Most biochémical reactions are very rapid; consequently,
there is little interest in the study of quasi-equilibrium processes.
However, the determination of the relaxation times of a chemical
process, i.e., the time required for a system perturbed from
equilibrium to return to 1/e of its eqﬁilibi‘ium value, provides
valuabie information fvor the evaluation of the kinetic parameters
describing the reaction. It will be shown that the treatrnent‘-out—
lined abo.ve offers a useful approach to the. computation of ;‘elaxa-

tion times.
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all info_rmé;tiOn'about-theif Behavior 1s obtained from measurements
of flow-effort relations at external‘ ports. Since it is pos'sible

in priri_cipie to determine the cherﬁical potventialbsl apd thé r;.tes' of
chanéé'bf‘conééntr‘at‘iogl of the kppwn coh.stitue'_nts‘,- the incremental
consti_futive i‘elatioﬁg‘;ﬁ.— Which_cohstitut:e tlv'xe‘ (N XNY éond_ucé

tance matrix for the n-port may be con_structed.‘ Earlier we used

this Jacobian for consideration of reciprocity in chemical reactions.

Now we shall examine in sdme detail tl:l_e inf'orr;iation pvrovideéi. by .
this matrix on the nature and number of indei)endent che'mic_al.
proc.e_s.ses‘in a given sy‘ste"lh._" |
In order to exanﬁne the,sign'iﬁcaﬁce of the conductance
m#trix, vvlét us consider three p’ossible'r-:eactio_ns of cdmp'oné;nvts'
A, B and C, namely: |
| ;_:'A(a)' A+ B—E—-&C,

(b) A—>B—24C; and

(c) the triangle reaction o 7 \

To evaluate the terms in veach matri.s;,’ we use equation (5.44‘).
| Assummg‘ Ji = Ji(p.A,_ ;.LBf ,p,c),l =1, 2, 3, ‘we_ find the (3°X3)

Jacobian matrices to be:

: _f‘of case (a) For case (b) _ - For g'@'se_ (c)
f r ' ' - f r O f - f
vy vy 0 VYRV, Vg
R e L N R
Vi' YL T2 2.Y‘RT V1 V'l-'_VZ' v2
0 f r J o Vf oE-
AT V2, 3 V2

2
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The relaxation time of a reaction T

R is defined by the

equation

dé _ £-¢ ' (5.36)

where £ is the advancement of a reaction at equilibrium, and
£ - £ the small deviation under consideration. Close to equili-

brium, equation (5.33) is valid, hence.
T T LA (5.37)

Expanding the affinity in a Taylor series close to equilibriurh, we

find that
— A - : , o
A=K+ (ZZ)E-D+ oz At (5.38)

since A = 0. Inserting eqﬁation (5.38) into (5.37) and equating with
(5.36) gives
‘ -1 : .
-';E-{—LR(?E-)‘ | ~(5.39

The factor ( g—-‘g—‘-) can be made more explicit in terms of the -

capacitances of the components (equations 5.5 and 5.11):

—_ 2 .
A Yi :
( ) = - 2 - : (5.40)
9% T, | | '
and hence- . : , : o,
: 2
1 Vi L _
— =L T— . - ' (5.41)
R ¢ _ _ B v

i
- Denoting the ''relaxation time of a single component' by

R’ +(5.42)

T, = Ci/LR =CR

equation (5.41) assumes the suggestive form
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v.2

1 )
- i
w L R | (5.43)

The significance of equation (5.43) can be shown by the following

trivial example: _consider the reaction Aw_—-bB.- Here

f . . c : .
. v . A : — -
T e = et 3 5 5 , - = .V
Ly’ T ~ % ®RT - BY eduation (330 Cor=epr Vg

and 'CB =cg” V/RT-; hence, considering a u;nt volume for the

rgaC-tlon vessel, Ty = CA/LR = 1/kf, Ty = CB/LR = 1/kr,
and TR = 1'/(1(f + kn), as is well-known in Chemical kinetics.

5.3 "I‘v{ro:por't representation of chemical dissipative processes.

5.3.4

_Als'. 'p‘oi_nted' outl in I.)arév'gré,‘phif‘S..Z'.Z', -éhémiéé,l pfoces'ses far
f.rom.eqﬁilibrium cannot be ;dequatély deséribéd by a one_pért ‘
repres_}entat'ion for the reaction resist.:an‘c‘e. Such a représentation
ir\npli.es: that: a) & unique V'rellation.ship ekists between the reactvion
rate and affinity; and:b) the Jacobian matrix DJ of the port
‘efforts and flows is symmetrical. We..shall show that in the far-
from-__equilibrium case, this Jacobian is not symmetrical; and

only near equilibrium, when the fo‘rward reaction velocity vf_

approaches that of the reverse reactid_n v', is symmetry regained.

That is, there is an additional "dvynamicaztl" constr‘;azi‘nt on the
cohstif;utive relation for a chemical reaction: thé experimeht.al

. fact of_'_'n‘onreciprécity-. '"" Perturbations of reactant and prédufzf
concentrations de ‘notvproduce symmetric effects far'fromvequili..

brium.
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97J. _
Consider the general term —8——-; of the incremental conduc-
tance matrix for any reaction system. Since, on a priori grounds,

we regard the system as a black box in which M reactions may take

place, Ji- should be written, according to équation (5.15), as

- J.e= E v, JR. Further, the dependence‘ of each reaction rate on
i ik "k ]
the |.1,J.' s is through the forward and reverse affinities, so that
81, M I} M . [ oAl Af/RT DAL Al RT
— = v, k- 2 v, == k e k - —5-—-1§e k
8|_Lj k=q 1K 8|¢J k=1 = 11‘< RT a”j s
or
93, -1 =, (vf Vf r LT
] p.J RT ik’ jk 'k jk "k R.
: oJ
. o f f r r, _ k _
IF will be ébserved that (vjk vk - vjk vk) =3 FLJ' = °jk
is a kind of modified rate of reaction, and .
) Ji X
'é;j: BT £ ik 9k : » (5.44)

. Generélly, 3Ji/8 B = 8JJ./8 ”i : however at equilibrium, when

—f  f T —f

—f _ —r - _ -
the value of b.jk becomes ij = vy (vjk - vjk),_ - vjkvk

Yk T VK ¢

which leads to a symnietry of the cross conductances as obtained

in 5.2.3:
J, . M Cfer\ - : -5=
=i T v, v, v, ==} . 5.45)
9 p,J RT k=1 1k. k jk 3 My : ,
5.3.2

" For chemical reactions proceeding far f\rorn equilibrium,

the incremental conductance of a single chemical reaction

R
Lp = %%— is not a well-defined function of the thermodynamic
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TR : : 5

affvi‘nity A since JR ‘de‘pends’on both Af and AT, Moreo{re'r,' the
extrathevfmodynarn‘ic constraint of non'reciproc:ity cannot be
accommodated by a one- port representatmn.\:< Th'erefore', we
must conclude that the dlss1pat10n due to a chemical reactlon

must be represented by a two-port resistor, wh1ch cannot be

further reticulated except close to equilibrium.

The general bond representation of the dissipation due to a

chemical process is shown in Fig. 5.5. The ports are defined by

the forward and reverse affinities and an input and output flow of
‘reaction (Jil-:l and J%ﬁt)- ‘Conservation of mass. in chemical’

‘reactions imposes the further constraint that the port flows are

. L . R _ R _ Rk -
always equal to the rate of reaction: Jin =J out - J7. 7 The

overall force acting "across'' the t\;vo-port is the thermodynamic
affinity A = Abf'v-.A’-r. Near equilibrium, the two-port may be

further reticulated into a one-junction and a one-port resistor

driven by A alone.

5.3.3

.- The general representation of chemical processes is

illustrated in Figs. 5.6 through 5.10. The case of a bimolecular

. reaction is shown in Fig. 5.6. For reactions with a common

' N : : ' 1 2 '
component, the simplest case of A= > B > C is shown

Ja -

This const1tut1ve constramt is analogous to the '""nonthermo-
dynamic" assurnptlon of homogeneity for fluid systems which
leads to the Euler a‘nd Gibbs-Duhem relations.(see tootnote,

p-i4) : o ;
el T : B
Note that J # & and Jlj)'ut == v .

a v

s
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in Fig. 5.7. A more sophisticated case is the network of dependent
reactions disscussed by Pings and Nebecker (1964) and shown in
Fig. 5.8.

A very impoftant group of bond graphs are those representing

enzymatic prbcesse_s such as S + E\E\(ES)v—:E + P (Fig. 5.9),
where E denptes the énzyme, S the su_.bstrate; ES the enzyme-
substrate Complek, and P fhe reaction produét. Note that in this
scherhe the enzyme is confined to the portion of the bond graph
encloséd by dotted lines, and thus ma}} Be viewed as a black box
converting substrate into product. In the nonenzymatic reaction
S-@P,' this blaék box convertef is replaced by a single two-port
resistor. |

The simple autocatalytic process X + Y‘@ZX is shown in
Fig. 5. 10. It is worth noting that ban autocatalytic reaction
a_ppeérs as a positive feedback loop, suggesting that such reactions
may préduce dynamic instabilities.
5.3.4 |

The last.three figures (5.8', 5.9, 5.10) exhibit in a clear
fnanner the topological proper.ties of a chemical network. Indeed,
every bond graph may be viewed as a topologiqal object which
may be treated formaily frdm a genre'rbal rnathematical point of
view. This approach will be pursued further in Section VIII.

5.4 Analysis of chemical systems

5.4.1

The network approach to reacting systems assumes that
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where the -vi"s' represent.the forward 6r reverse velocities of the
corresponding reactions. It will be noted that the ranks o}f these
matriéeé aré 1, 2 and 2, respectively. We readily discern the
important fact that the numbér of independ_ent»zv'ows equals the
nufﬁbéi‘ of indepéndent reactions in the system. In case (a),‘ we

have only one rveactioh; in case (b), there are two indépendent '

reactions, A —= B and B C. Although comprising three
processes, case (c) contains only two independént reactions,
corresponding to the rank of the conductance matrix. »

5.4.2

"~ This important observation leads to a general statement

that the rank (p) of the incremental conductance matrix equals the

number of independent chemical processes proceeding in the

reactionvessel. The proof for the general case follows.

It will be’récalled that, in equation (5.153), the total change
in th‘e number of moles of the ith component was related to the M
_reactionv rates Jl.}( through the stoichiometric coefficients vik.
The coefficients Vik constitute an N X M stoichiometric matrix.
If tﬁe rank of this matrix is p, then there exist only p iﬁdependen_t

jatffinities_ and, as shown by De Groot and Mazur (1962),
dn, o ~
1 R
—a T Vikk (5.46)
where the Ji are a set of independent flows conjugate to the inde-

PEE

‘pendent affinities.
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A AN
Since the chemical flows JR are independent J11§= ¢(Ak) is
a funct1on only of 1ts conJugate 1ndependent affinity. By equation

(5.46), the general term of the Jacoblan is

801, P aJ p  03R 3Ak
- :2 Yik? Z Vik »aAk 9
My k=g T My k=1 k Ty
=Y v Ly Vi . (5.47)
k=1
or, in matrix form, DJ = - LT, : (5.48)

where LFI{{ ‘is the conduotance.of’ the kth independent chemical
vreaction.‘

The 'matr‘ix"x for the independent reaction flows is a
n Xp matrix. The p Xp matrix I:R of conductances is diagonal since
: all the ﬂows are 1ndependent It is"a. standard result in linear algebra
{c.f. Cullis, 1913) that the rank of the product of an o Xp matrix Q
and a p Xﬁ matrix l~3 has the rank of Q if rank (13) = p, and has the rank
of P if rank (9)'= p. Therefore, rank (,y,L;R) = p, since rank (v) = p,
and turthe'rmore, rank (3'I‘JIR'yT) = p, vsincve rank ('_gT) = p also. Hence,
the _i‘ank of the jacobian: rank (Q:,T) = p *. v (5.49)
5.4.3

A ‘strabigl'vltfo_rw_avrd use of the ‘pi'.evious result,' is the elucida- |
‘ti-on of "-hidden" intenmediates_ Whieh inerease th'e number of
dindep.ende_nt rfeactions C-onsider- for example the snnple

v
reaction A '—‘;be wh1ch should be characterlzed by a Jacobian
: -

Ar1s and Mah (1963), usmg a similar argument developed a
k1netlc test for the number of 1ndependent react1ons
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of rank 1, 99/ = —1—-—-( va ). However, if the process passes

through an 1ntermed1ate component X, it comprises two rate
f

v
processes  , 1. x V2 >B; and its Jacoblan, based only on the
’ B

vE T vl
1 2
measurements of the properties of species A and B, has rank two:

oo

v 0

In many applications, it is important to distinguish between

autocatalytic and nonautocatalytic reaction mechanisms. For

example, consider the reactions: (a) X + Y = 2X, a.nd (b) Ye=X.

In case (a), the Jacobian is , -
S . ‘-Vf ' —Vf + 2Vr.
1 |
'12‘1 " RT - f f r ’
: v A ".ZV :
whiie', in c‘aseb(b), . ’_vf o
, . . 1 _ ‘
%’— RT . f r
. ) ' _v . ‘ -V R

It is ev1dent that with a set of experimentally obtained numericai-
values one could not distinguish between the two cases. Another |
test is required. | o -

For each externally meesureable flow J,, the Hessian, i.e.,
'{he matrix of second partiai derivvative‘s with respect to the

chemical potentials, may be computed. Differentiating equation .

(5.48), we obtain

2 .
9~ .
oo X aﬁk: 1 W G LT LT
I “15 pj RTk=1 Ik O p (RT)Z E Lk Jk 1k k jk Yik Vk_ ’
‘ (5.50)
where £ =1, 2, n
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Thus, in the autocatalytic case (a):

E S

2. 1

DJ, =
—~—X ) 2
(RT) ‘-Vf _ -vf + 4vT

while in the nonautocatalytic case (b):
A

],D\ZJTX: ! >
- (RT) 0 v

From an experimental determination of the Hessian, it is thus
possible to distinguish between autocatalytic and nonautocatalytic

reaction mechanisms.
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VI. THE COUPLING OF CHEMICAL AND DIFFUSIONAL
' PROCESSES |

6.1. Bond graph representation of coupled chemical and'diffu—
sional processes '

‘The interaction of chemical and diffusional processes oc-
cur é so ubiquitously in all biological systems that there is no
need to stress its impor.tance. If suffices to m:ef;tion that both
facilitated and active transport are typical e_xarﬁples of chemico-
diffgsivonal 'cou'pling, and there is no doubt that the cybernétic or-
‘ganization of cells a'r.1d tissues is in part based on the functional
relatiq.n betWeen metabolic and'fré.nsport processes. Althéugh
- facilitated transport has beevn.considered from the point of view
of nonequilibrium thermodynamics and analyied frequently on
the basis of differént kinetic. modeis, it is advantageous to re-
consider the field from another phenomenological point of view,
which allows a more general treatme-nt of nonlinear coupled
flowsb.v -

As discussed previously, one of the principal advantages
of the bond graph notation is that it algorithmicélly accounts for
conservation and continuity conditions via the definitions of the
zero; and ohe-junctions. During di‘ffﬁsional flows, the total
amount of e;ch chérhica_l species remains constant, and so the
conéervation condition on the éero—junction (KCL) is clearly

satisfied (see Fig. 3.2d). Howeve.f, if a chemical reaction
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involving the diffusing substance is proceeding simultaneously,
each species is not conserved. The reaction appears as a source
or sink term in the conservation equation for each reacting spe-

cies:

9 ny : R :
v.:-vJ.+z vil Ty . (6.1)
K

However, by extending the bond graph representing diffusion to
include ‘chemical reactions the terms E Vik .]'kR can be assigned
to the.v:appropriate bonds incident on the zero—junction, so as to
transform equafion (6."1)into KCL fo;‘m.

‘We shall introduce the analysis of coupled cheinico-
diffusional processes by cons)idex"in'g the flow of two nonelectro-
lytes, A and B, through a membrane in whicvh reaction proceeds
ddring‘ the transport process.
| The bond graph representing such a system is obtained by
cc;mbining the structures for diffusion and reaction described
pre{riously.i For simplicity, we will not include hydrodynamic
. coupling here, althoﬁ’gh such an inclusion is trivial. The B_ond
_graph structure shown in Fig; 6.1 suggests tha;t an appropvr:iate
functior@_l re‘pre-sevnta.ti'c)n of 1-dimensional diffﬁsion—reactionv
proéesses would be an x vs § plot. The structure _svhown is a
!"one-lump" répre.sent'ai’cion where sin.gle ave-ra-'ée concentra’c_idns

of A and B are taken to represent the true concentration prdfile




-1147-

within the membré,ne, and the sburces E ., and EB indicate that

A
the reservoirs bounding the membrane maintain a constant chem-
ical potential. The transition to the continuum profile will be
discussed below. We wish to emphasize that, strictly speaking,

the bond graph displays only topological relations. The bonds

have no geometrical significance in themselves. However, by

takihg advantage of the obvious similarities between the actual
physical system and its bond gra‘ph,v the bonds joining zero- and
one-jﬁn’ctions in many cases may be ascribed an actual length,
depending on the number of repeating units 6ne_v employs to repre—v

sent the system. ' \

6.2. Port constitutive relations

' ‘The one-lump model shown in Fig. 6.1 ﬂlay be used to
represent vbo>th uncoupled and coupled diffusion and reaction, de-
pe_ndiné upon the port variables used to desc;ribe the system.

This is most easily seen by aeriving the Onsagevr phenomenolog- ’
ical equations'frbm the bond graph. Assurhing the diffusional re-

sistors are linear,

B m _ 1.1
Bao = By = R’A JA (6.2a)
. and '
m I _ 2 . 2
B -~ Mp = RA J, - (6.2b)

Adding equations (6.22) and (6.2b)and assuming the bond graph

~
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resistances RA1 and R‘AZ are each one half the total diffusional

resistance R,, we get

I - II =

Akp = By "By T Rpdp - (63
RN N -
where JA‘ S E— is an average diffusional flow.
' Simi‘l'arly,
Ap_B' = Ry JB o (6.4)
| N N e i
where JB = As we have shown in paragraph 5.2, in

“the near equilibrium the reaction dissipation may be represented

by a o_ne-pbrt resistor. Hence,
A=A"- A"= R_TJ ' (6.5)

and the phenomenological eq_uativons are uncoupled. DeSimone

and Caplan (1972) have shown by a continuum treatment that for

a hoi'nogeneous membrane, choices other than the average dif-

fusi_ohal flow may lead to reaction diffusion coupling. For ex-

b' ample, as Katchalsky and Oster (1969) demonstrate, one may

choose the diffusional flows on one side of the membrane, éay»
1 II

JA and JBi, and the affinity on the opposite side, say A, to

describe the dissipative process. In steady state,

J

W P

and -~ - J
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Therefore,
R \
= 1. A (R
Appy = Rpdp - 57
(6.6)
R
| - - 1 B .R
and ‘_.Ap.B—RBJB-———Z,J.
The affinity on side II of the membrane is giVén i)y
m I I, m 2 m . .2
A. - HA = P'B - (HA - RAJA) - (HB = ‘R‘BJB)
_, . m m, 1 A ' 1 R
= (ba” - wp) - Ry(I,0- 35 + Ry - %)
Therefore,
I _ 1 1, o R
AT =- RA;A +RpIg + (Rg +R, - R)T; (6.7)

and equations (6.9 and (6.7 represent a coupled Onsager scheme.

6.3. Relaxation times for chemico-~diffusional processes

6.3.1.

Utilizing the one-lump bond graph mod,i.e'-l shown in Fig.
6.1, one can calculate the relaxation times for chemico-diffu-
sional _‘processes. In paragraph 2.3: we shov&;ed that the pure dif-
fusional relaxation time ™ equals -BZC—: (equation 2.30); a.nd in
paragraph 5.2.5 we derived the relaxation time' TR for chem-
ical pfocesses perturbed from their equilibriﬁm state. In this
section we will consider a chemical process maintained at a

far-from-equilibrium steady state by diffusion.
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The general time dependent state equations may be read

directly from the bond graph:

dp | : '
A 1 2 S T
Ca"a “JA'JA'JR(A’A)'
(6.8)
dp ‘
c,—2 = 717524 R4L A7),

B dt B B
. Introducing the résist_ive constitutive relations and assuming
R ‘ R "

1 _ _ A _ R 2_
A= Rp= 5 and Rg=Ryg=

results in the nonlinear state equations

- | 1, 11 | o
o ea o (eatea - ZHA) Ral AT
. AT R - » A
| . Ra _ |
and | - (6.9)
: | I |
dp (gt py - 21p)
Cdpp gt kB - 2kp R, f ,r
°B@® ~* 7T Rg - JAL AT

6.3.2._'

In order to study the relaxation times of the system, we

examine the tangent system about the steady state; i.e., let

By = HZS+ 6pA and hg = “?35'+6“B’ where p,ssdenotes the steady
state value of the chemical potenti_al. Inserting these perturba-

tions into equation (6.9) yields the following small signalequatidn
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B | r
6 B 'R‘“A‘_ ) Ic;_R B = &
4 [ha CRaCa “a Ca N
= = 6.10)
dt f r (
: Sup ) Lr 4 Lr Sup
CB R‘BCB CB
ss
or '
d : ’ |
‘ R ' r\
where Q is a constant matrix and L; =<?—“I—-f-> , Lr___(B.Jr‘» .
' \8 A /ss R \8A 58
Notice that, for the mass action constitutive relation,
- f r
£ Vss r . Vss

Lp = g and Lp RT - Where v__is a steady state velocity.
"The eigenvalues, A\, of Q determine the relaxation times
of the systérn, and are given by the characteristic equation
N - AMrQ+det Q =0, (6.12)

where the trace of Q is

trQ = - R4C - R4C - CR _.CR <0 (6.13)
ATA B™B A B ’
and the determinant of Q is
- f T o o
det Q = 16 + R + TR >0 (6.14)
' R,R_C,C_ C R CACB : )

ARBCACE  RpBCACH A

Since tr Q < 0 and detQ >0, the steady state is asymptotically
stable; and any perturbation will return to the stationary state.

'Solving the characteristic equafion; we find that



f r
N2 ,_2 +.LR +LR
RACA RBCB ZCA ZCB
| v f r \2 : o f ry\
i('z K ,2+LR+LR> 4 (4+LR+LR)
/\.f‘RACA ReCp 2Cp 2Cp CCp Ya'B R Ra
’ (6:15)
and the relaxation times are given by T = - % . |

6.3.3.

‘ Inithe limiting case where there is no reaction,

Lé: LPi =0; and equation{6.15 simplifies to
N SEEN U
- TA R,C, Ta
(6.16)
)\ — 4 ) — 1 :
B RoCh s

In the other limiting case, where there is no ciiffusion,'RA,

RB—> ; and the eigenvalues are

f . r

L L . /

)‘R:'(CRJrcR):'l' (6.17)
A B

If will prove to be convenient to define two relaxation times

for a chemical process—one for the forward reaction and one for

the reverse reaction. Hence, we denote

o o
L L :
| 1
WS S SR WY S S T (6.18)
f CA Tf .r CB ’T"r : :
R R
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where )\R = )‘f + Xr" (6.19)
For £he case of mass action kinetics Lf = v'f = kaA nd
Lase of » “rT RT~ RT 2
LRr = 1¥T = Ii{TB ; while_, for idealI solutions of unit volume,
- SA nd €. = =B Under th icti \, =
_ CA = RT 2a° B~ RT " Up er t esg restrictions, £= -kf and
)\r = - kr; hence, TR = T(;:EE , which is the usual kinetic result.
6.3.4.

Let us'now reconsider the general case where both reaction

and diffﬁsion occur. Rewriting equation (6.15), we find:

A=

- - .\
(xA+xB+xf+>\r)ﬂ:(xA+>\f )‘B xr)/1+ 4 N
o 2 _ ‘ 2"
| LN )

In the case when the diffusion constants of A and B are equal,

(6.20)

i.e., when A, ,=\_= )\D’ equation (6.20) simpliﬁes, and

A™ "B
1
AN, = A= - ——,
1 D ™
Ny = A+ A+ A= - (71-— +;1——). (6.21)
D R

We may also consider the case of unequal diffusion coeffi-

cients, when the reaction is much faster than diffusion, i.e.,

when l')\f"‘ }\r'! >> | )\Al, I)\Bl . For this case, it is advantageous to

f2 - f
3 . ' . ( VA) LR
. In the casefe ff r}onunit stoichiometry, )‘f: - C and
' (v L : o A
A= - -——B——B—; the rest of the analysis remains the same.

r CB

~
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rewrite equation(6.19 in the form

:-_'()\A+)\B+ )\f+)\r)i()\f+)\r)/\/ i 'Z(KA_ )\B)()\f_)\r)-l- ‘()\A_ )\B)Z

N . ‘
2 2 2
_ ()‘f+ er) ()\f + )‘f)
(6.22)
: A : )\A- )\B 2 R ,
Neglecting the term SV and expanding the square root in
' : f r : : '
a Taylor series to first order yields
) [ NPR A 0 W N
T, = (N ) A+ At ? Bl
1 f r’’ N+
: S f r i
N : UMM AN (6.23)
and a oon, =2z Bf
: 2 RN ’
. \ f r

which reduce to equation(6.21 when )\Az' ‘)\B'. In terms of relax-

ation times, inserting eqﬁation(6.'16) and (6.17 into (6.23 yiellds

-1 -1 ( VR ok S r-i)
T =T +/'rR A TR ~+-TB’ TR ,

6.4. Continuum e qﬁatioris

6.4.1.
" The bond shown in Fig. 6.1 is a one-lump model of re-
action and diffusion processes. In this section; we will show

that as the number of lumps in the model become s very large,

) . (6.24)
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the bond grapﬁ equations reduce to the usual continuum equations
for sim_ultaneous reaction and diffusion processes.

: Considering a Bond graph composed of a large number of
lumps, a typical subunit of length dx is the asymmetric lump
shown in Fig. 6.2, where E and R denote the specific capac-
itance and resistance. For a sufficiently large number of lumps,
the chemical potential and flow on the right-hand side of the lump
may be expressed as a Taylor expansion of p, and of J on the left-
hand'sidé. Keeping only theb first-order terms in the expansion,

we see from the bond graph that on the diffusional resistors

' dp dJ
‘ A gy = F TA )
- Ix dx = RAdx <JA + e dx)
dp.B

dx

dx

. dJB
e Rde JB+——_-——-dx ,

_or to first order in dx

du dp ~ .
A _ T B _
- s RA JA, - - }RB JB . | (6.25)

Equations‘ 6.25)are the conventional nonequilibrium thermody-
namic continuum equations for diffusional flow. Considering the

bond graph equations for the capacitors, we have

~

du : a7J ..
A A ~ o f r
CAdX dt JA- (JA+ —é;{—dx) - LR<A , A\)dx

. duy ar B . | (6.26)
CBdXTt_— JB- (JB+ e dx +LR A, A} dx,

I

1)
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where we have used the constitutive relation

s J_R

~ f r
LR(A , .A ) dx .

Rewriting equations (6.26), we find

. dp dJ ‘ :
~ A - TTA ~ f r
. Ca~d " "ax - WriAA)
. ‘ (6.27)
dp dJ. : ‘
It B _ B |, = f r,.
-CBT = - 3= + LR(_A’ A7),
. pl. iy £ ,ry . S -
Identifying L-R(A » A”) with the local reaction rate J~°, and
v - ~ - De. i ) )
noting that C, = +=——, we see that equations $.27)are nothing
. ' A 0 KA . o - .

more than the continuity equations' for the reaction diffusion sys-
tem

[

8¢, a7, - :
i i |
STt TR, o (6.28)

Thué the lﬁmped bond graph representation reduces to the basic
equations of continua when driven to the limit of infinitesimal
lump size. Notice that, as one would expect, this derivation
was independent of the form of the constitutive assu'rnptidn’ for -
the chemical reaction.

“We can combine these local equations in’ the standard
fashion by differehtiating equations(é.ZS) and inserting. dJ/dx

into equations (6.27, obtaining
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d a2 dlnR, d
5 & o A A P R T (af AT
ACATE T Tz T & dx T RalrBA)
| 2 o~ ' (6.29)
- = dug  dug _dlnRy dug LT (Al aT)
BB At 4.2 ax dx BR o AN

_ Equvationsrl(6.29) adequé.tely describe the relaxation beha_wjor of
A and B in a membrane with reaction.

Friedlander and Keller (1965) and Katchalsky and Oster
(1969) héve shown that in the near equilibrium regime, assuming
constant diffusional resitances, equations (6.29) take a partic-
ularly simple form. Under conditions of steady flow, a field

equation of the Helmholz type for the affinity is obtained:

N vP A = A, (6.30)

where \ = [ER(§A+ ﬁB)]_1/2 is a characteristic reaction diffu-

sion length proportionaltothe Thiele modulus for near equilibrium

reactions. For membranes of thickness Ax,

2

) "R ’
—_ = , (6.31)
<Ax) 2<TD>

where 'rR is the relaxation time of the reaction,

Yi PiiTp
(6.32)

('rD> =

2

2
V.
i

=l

il

iT1
n
iZ"i

Q

. _ o
is an average diffusional relaxation time, and Mis = acl is the

-t e
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chahge in che‘rn:ica.l potential with éonéenfrafion evaluated at
eqﬁiiibrium (Perelson a‘nd Katchalsky, 1972). Wh§n N << Ax,
TR << <'TD>; and the reaction will come to e(iui"librium near the
surface of the membrane. vOn the othér hand, for \ >>Ax,
<’TD>.<< +R;, an&'. the cbmpbnentﬁs diffuse through the membrane
without coming to equilibrium. Hence \ is a measure of the dis-
tance a reactant must penetrate the mémbrane before comiﬁg to
~equilibrium.

| The average diffusional relaxation time, which was de-
rived from a continuum tre'atment; contains the unuéual weight-

ing factors 'viz Tmﬁ_ .

‘However, from the network viewpoint, this
average may be interpreted in a natural Way. By refrioving the

reaction resistance R, from Fig. 6.1 and adding a one-junction

R
so ."ch_a.t the flows én thé adjoining bonds remain equal, we can
create a port through which one can view the diffusional port.ion
of the network. The resulting bond graph is illustrated in Fig.
6.3. At steady state, whén there is no flow into the capacitor,
the incremental re siitgnce as seen from this new port is

vV,“R, +v _ .
RgOT - A A4 B B At equilibrium, when the diffusional

flows are zero,_the total capa’.ci'tance seen from this new port

S R VB e el .
is —x5m = + —=— . For a reaction diffusion system in
ct A B

which more than two COmpopeI/ltvS participate in a single re-

action,
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n
Z v.ZR
o ‘ i i
RDTOT - i=1 ,
(6.33)
n v 2\-1
TOT | i
i=1 »
- Ax i RiG
Noting that T o and that 'TD = Z (c.f. equation 2.30),
i
we may rewrite equation (6.31) as '
n | n 2
2 [ ax) RiCi vi By
Vi c] 4 2
i=1 i=1 TOT .TOT
(T = - = 25— =Ry C .
L2 [ax Vi
i Ci C.
T =y
(6.34)

The average diffusional relaxation time is thus simply the total
steady state resistance multiplied by the total equilibrium ca-

pacitance as seen from the reaction resistance.

6.5. Facilitated transport

As a slightly more complex example of the bond graph
technique, let us consider the case of facilitated transport
through a membrane. The conventional model for.facilitated‘
tran,spo.rt assumes that the membrane contains a carrier C
which reacts with a permeant substrate S to form a complex

CS. Both S and CS diffuse through the membrane. The CS
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complex the:n diéséciaté shr'ele”asing C and S at the other side o'f

the inerbnlbranef S exits from the membrane and C is free to

diffuse back across the membrane and combine with more sub-

strate. ’ , . o .
The bond graph repre‘senti‘n,g this process, shown in‘Fig. ‘ | o 1

6.4, is a cornl_)inatio;; of the pre.vioﬁsly e);amined bond graphs ‘

for reaction and. diffusion. ~ We have chosen for illustrative pur- |

pdséé_a two-lump model, which is the simplest representaﬁon

t:hét' allows one to include chemical reactions occurring at differ-

ef\rit poinfs in space. F_‘bf greater éccuracy we could, of course,

represent the in’teribf of the membrane by many lumps with a ‘

reaction occurring in each. The compartments external to the

membrane are repre seﬁted‘by the effort (chemical potential)

sour‘-'ces’ ESI and ESH;'RSI and RSII are fhe resistances the sub-

_ strate sees in entering lump 1 and exiting from lump 2 of the _

' membrane model, resvpec':tive.ly. Rg» Rc and chs are resis-

tance s.\to diffusion within the membrane; RRe'1 and RR2 are the

'reacfion resistances; and Csi, CSZ, Cci, CCZ, .Ccis, CCS2 are

the éapacitances of the substrate, carrier and ca;rrie.r sub strate-

- complex on sides 1 and 2 of the membrane. In this model, we

have ‘assumed that the forward chemical reaction

kf
‘ C +8S , CS
. S

r

occurs on side 1 and that the reverse, reaction takes place on
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side.Z of the membrane. These two chemical reactions, plus
the diffusion of the carrier and the carrier substrate complex,
form a cyéle which is characteristic of facilitated transport and
which is clearly visible in the bond graph model.

The steady state and the dynamical equations describing

' the transport system may be read directly from the bond graph.

First consider the equations descri.bing the steady state of this
system when the reactions are assumed to be close to equilib-
rium. Under this assumption, we may use the one-port repre-
sentation for the dissipation due to a chemicail process, as shown
in Fig. 6.5. In order to be completely general, we shall assume
nonlinear constitutive relations for the resistors. In the steady
state analysis we concern ourselves only with the driving force
across the membrane, the diffusional flow of A alone (called the
shuht flow), and the flow of S due to the callrier ’circulation.

The vaxl"iables characteiizing the circulation of the carrier may
not be experimentally accessible; therefore, we lump this por-

tion of the bond graph into a new two-port element, -CIR-,

called a circulation two-port. This new two-port element repre-

‘sents the structure enclosed by dotted lines in Fig. 6.5.

The steady state relationship between the input and output

variables of -CIR- is easily read from the bond graph:

st -2 -3, (6.35)
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’p.s - R = R . (J.)), (6.36)

S cir clr

1 2

where R, =R +Rp“+R_+R R (6.37)
_ » c cs '

Also notice that J ., =J =J , a result derived kinetically by
_ v cir c- cs o -
| Katchalsky and Spangler (1968). As one might expect, at steady
state there is only one flow through the circulation two-port,
which we have denoted Jcir; and the driving force in the linear
casé is equal to the total series resistance, Rcir multiplied by
T
cir * _

One of the goals in analyzing a facilitated transport model

s to determine the relationship between the diffusional flow of

, and the flow of the_ CS.cornplex, J . . The

S alone, J
: cir

shunt
bond graph in Fig. 6.5 shows that -CIR- is in parallel with the
shunt resistance 'Rs' Hence, the driving forces across both

~ elements are equal and

R, (J ) =R_(J ). © (6.38)

cir s ‘" shunt

If either of these resistance characteristics is invertible, equa-
tion (6:38) yields the desired relationship between the flows. )

In the linear case we simply have

Jncir ' s | |
= . . (6.39)
shunt ‘cir .

The steady state force-flow relations Qbservable’ in the com-

partments surrounding the membrane are also obtained directly
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from the diagram:
- I 1I -1 -1 K -
Dpg = (Rs tR -+ R +RCir ) (Js) (6.40)
and, in the linear case,
: : R R : ’
- I I s ~ cir A
Bbg = JS(RS tRe Y ‘R—+—R—'> (6.41)
: s cir '
where Ap_ = pn I j It and J =17 L. J H;' thus, we retrieve
s s s S S 'S :

the intuitive feeling that the substrate ''sees'' some resistance
in entering and leaving the memBrane, and that the carrier pro-
vides a parallel method of substrate transport. From the di-
agram, ‘it is clear that maximum diffusion enhancement occurs
as RR——> 0, i.e., for the equilibrium reéction (Friedlander
and Keller, 1965).

" The bond graph not only gives us information about the
steady state behavior of facilitated diffusion, but also generates
the state equations for the system. Since not much attention
has been given to ’the dynamics .of fa;ilitated JcAransport, we will
derive the general nonlinear equations that hold far from equi-

librium from the bond graph in Fig. 6.4:

% .
- Care must be taken in formulating nonlinear equations since
all constitutive relations do not have inverses; e.g., for an

autocatalytic reaction JR= f(A) does qlot have an inverse.

Equation (6.40) is valid only when R s and Rz exist.
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1.1 _ _1 , . I, 1 1 2
Cs By =g = Tohunt - T4 T Lg (g - mg7) ~Lg (kg - pg)
ndg s 4
R ‘Mg Pe » Pes
2.2 R,_. __2_ -2 4 1 1
Cs Ps T2 " shunt 75 T LR (Besr By _+Hc Y+ L (g —Hs?)

C.C’1 Hc:1 =Je - Jlil =-LC(H<;,1- he ) - Ly (p'si + p'ci’ ”céi)

Cc:2 "ch - JZR - Jc = LR '(-I‘Lcs g -p's + I“Lc_:z) - LC(_IJ-C1 - R)

C;si H'c:si - J:lR " Jes TLr (g™ + "Lci’ p'cs'l) B I"cs(pcsi - ”csz)

'C.csz':p'.czs “Jes " &ZR :.Lcs (I‘Lcsi B pcsz) - vLsz (pcs?.’ p’s_z ¥ P'cz‘)’ .
| | o ' (6.42)

where' Ls( ), Lc( ), Lcs( ), and LR( ) de'note arbitrary con-

ductance functions. In the case c1>f'linear diffusion, le(p‘;_ p.si),
wl- :

v . _ K M ‘

for example, reduces to —S-—-I—§— . The reaction conductance

' : : s
for far-from-equilibrium reactions has the form .

- f r
JR L Ly (Af’ AT) = K(eA/RT LA /RT

), as was shown in

Se.ction V.
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VII. SIGNAL FLOWS AND CONTROL PROCESSES

7.4 Unilateral energy transmission and activated bonds

One of the most importaht aspects of network thermodyna-
mics is the possibility of treaj:ing control pr;)ce‘sses. In bio-
logical systems, it is common for an event to exért an influence
out of all proportion to its energetic level. The minute energetic
influence of an allosteric modifier on an enzyme‘ can affect the
entire energetic operation of a cell. The effects exerted by a
~hormone or neuromuscular transmitter substance are in no way
related to the energetics of its interactions. In general, there
may be no relation between the energy investment in a control
mechénism and the energy released or inhibited by the controlling
agent.

Regulation and control of energetic processes therefore
requires the ability to émplify signals. This, in turn, impiies
the necessity éf int?oducing unilateral energy flows. For example,
at a neuromuscular junction a small amount of energy is expended
to produce transmitter substance; however, there is little of no
back effect exerted on the nerve by the controlled muscular
contraction. The nerve transmits energy unilaterally to the
muscle, ‘in confra.st to the bilateral energy flows éncountefed
previously. Similar phenomena characterize most control
systems.

-

To di'stinguish unilateral energy transmission from ordinary

signals, we shall ;av\ppe‘nd an arrow to the bond. This is not to be
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c.onfuksved with the half-_.-al.'row employed for sign conventions
(Fig. 7'1) An ene_rgy Bond with an arrow appended.is called

a'ctivatéa, sinee it appears as an active de\}ice, or source, to
the dewﬁstream side of the bond. |

7.2 Signal flow bonds '

In many instances the power lével on an activated bond is
negligible compared with the other energy flows of interest. In

such cases. the unilateral energvy flow may be considered a pure

¢

signal flow. This is bindivca'tedv by drawing the activated bond as

a broken line (Fig. 7.1). Such bonds are called signal flow bonds.

The way a control .signal u‘sually exerts its iriflue‘nce on energetic_

flows is by parametrically modulating fhe constitutive relation of an

energetic n-port. For example, consider a chemical reaction

'c.atalyzedby‘the allosteric enzyme malate : TPN+ oxidoreductase .

from Escherichia coli, whichis activated by NHB’Jr ions (Sanwal &

Sm‘an_do, 1969). The constitutive relation for the reaction, velocity
\}ersus'affinity curves, is modulated by the concentfation of the
allosteric modifier. Figure 7.2 shows the effectofvarying the NH:,’+
concentration on the velocity of the malic enzyme reaction.

| In many cases the parametric modulation of a constitutive curve
canbe represented explicitly-with the aid of a transducer.If, for ex-
arnple , we let'Ro denote the constitutive curve for malic enzyme when

Y
3.
- :

shown in Fig. 7.2 by f(NH3+) . R0 where f(* ) is some functiOn of the

no NH_ is present, we can approximate'v‘ﬁhe whole family of curves

'NH3,+ concentration. This type of multiplicative modulation can

be fepresented in the bond graph for a near equilibrium reaction
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by letting NI{(") be the transducer modulus and connecting the TD
vto the resistor port, as shown in Fig. 7.3. The signal flow bond
incident on thé TD indicates that the modulus is a function of the
NH * concentration.

3

7.3 Unilateral energy transmission and reciprocity

VAnother important aspect of unilateral energy transmission
and signal flow concerns reciprocity. The cohstitutive relation
of a reciprocal device can be characterized by a potential function;
consequently, as wé will‘ show in Section VIII, the system will
decay to a unique equilibrium set. The introduction of unilateral
control i)’rocesses, however, precludes the possibility of analyzing
systems solely in terms of potential functions. Hence, in biological
systern‘s,. where control processes presumably playa preeminent.role,
reciprocity is probably the exception rather than the rule, andpotential
functions lose their ‘pi‘eeminent position in th.e-r.rnodynamics.

7.4 Unilateral energy flow and dissipation

Unilateral energy flows also arise in connection with dissipa-
tion as a consequence of the second law of thermodynamics.
Every ri-port resistive element operating isothermally can be
viewed as an (n+1)-port "convert.er, "transforming work uni-
laterally into heat (= temperature X entropy flow). Figure 7.4
illustrates this for a one-port resistor. The energy dissipated
as heat usually passes from our universe of discourse because
the system is considered to be either at constant. temperature or

temperature insensitive.
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Thef‘e are, howéver, ins'tances;in ‘which the heat generated
during the operation of a process. does, in .fact, feed back and
iriﬂuéncé the dynamic béhévior“of thei system. This can come
aboﬁt, _aé .r_nen'tioned. above, by:the pérametric modulation of a

' consti.tutive relation. Inaeed, 9_1_1 constitutive relations implicitly
één’cain t‘erﬁperé.ture as a parameter! An elementary exémple of
this effect is thé therrﬁistor; This Vis an-electr_ical_resistance
whose'mz'a,ferialvproperties are such "tha..‘t_its resistance is of the
form R‘( T) = ’Ro exp(.-B/T), i.e., with increasing temperature
the electrical resistance decreases, contrary to'most electrical
Condu_c'tor's. (This effect is due to the thermalvéxvcitation of addi-
tional velé'ct'roxiqic charge:carrie_rs within the ther>rrk1vistor rnatéfial.)
An electrical circuit containing this. pafametriq feedback, which
ha..sv b'ev'en described elséwhére .('Oéter and‘Au_slander, 1971), Iis.
shown 1n F'ig.’ 7.5. | |

Without the paramefric thermal feeaback this circuit would
exhibit only monotone behavior. The un)ilvatera_l coupling of the
electrical and thérma_l systems, .however, enables the entire
system to perform limit cycle oscillations aBout an operafing

point (Si'r'1ith, 1'950).
| ‘A' 'si’milar sifﬁation can arise. in a continuous flow stirred-

tank reactor-(CFSTR). The rate constants k for a

chemical reaction are temperature sensitive since by the Arrhenius -

equation k = A exp (_-E/RT), where E is the activation energy.
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Conseqﬁently, the behavior of a CFSTR will resemble that of a
thermistor circuit. Aris (1969), for example, demonstrates
the existence of instabilities and the possibility of oscillations

in such reactors.

7.5 Nonlinear oscillations

A more interesting example of parametric modulation is a
device first constructed by Teorell (1962) as a model for certain
biological periodicities. The system shown in Fig. 7.6 consists
of a n'eg_atively charged membrane separating two salt solutions
of un'équa.l concentration. A current is imposed across the
membrane via reversible electrodés, and at a critical value of
the current density the system exhibits a pronounced instability
manifested by relaxation oscillations in the transmembrane
potential and the hydrostatic pressure head in the two reservoirs
(Oster énd Auslander, 1971).

The electrical current flow I, under conditions of constant
pressure, is related to the volume flow JV (~ water flow) by B, the
electroosmotic permeability: Jv = BI. Consequently, under
conditions of equal hydrostatic head across the membrane, the
transmembrane potential A q; acts as a driving force for the
volume flow Jv = LOALIJ. In the bond graph of Fig-. 7.6 (b), this
effect is ‘represented as a source of pressure head on the water
system whose magnitude is modulated from the electrical system.

- The electrical system, in turn, sees a resistance whose magnitude



';140~
depénclf'; in pai‘t oﬁ the arhquﬁ_t of salt!in_ capacitance Cfn' This
effect is l"e'prevsented by resistance an in the electrical systerh
rriodiilé.tedﬁ from the ;r:n"er'nbrane ;cap'aéita:n(.:e, |
va_t this level of descriptio_n we have abandbned_, 'to. some
extenfc,. purely energeti.c considefafcio‘ns in representing the

| coupling _phenor_nen:;).. »T'he dotted 'rirlodula.tion lines represent pure

signal, or ihvfovrmét‘.ion_'ﬂows; and the complete energy bookkéepiﬁg |

implied in a true thermodynamic anaiysis has been Surr'endered.
A more detailéd analysis would consider, ‘ among other things,' the
" ionic flows of the'a'n‘ion' and_ éatidn,' the electrode reactions and

" the membrane charges. Many of the nonenlerget‘ic modulation cou-

plings could then be eliminated, anda t_otaliir the’r’mod?namic model -

ébhstfugﬁted. Needless to say., the large number of physical inter~ '

acfiohé‘ rh'ight tend fo obscru.vre the key controll‘fnechanis:rh.

For the case under cori.:svideratvion, the "first order"
' pherivo_fnveno_iogical x‘nod“él'.s"hov}n in Fig. 7.6 éuffiées to understand
| the péfametric feedback fnechanism giving rise to the -gscillation,‘
Fortunately, the differential equations obtained from this model
reproduce the experimentally observed magnitudes with sufficient
vaccuraCy so0 that'an-' éxpanded model is not requiréd.

Th‘e operation of ;che \syvstem can be"undef‘sto§d by consider-

’in‘vgb thé"f_ol;l'ow‘ih'g seqliencé of events: (i) As sume 'tha.t at t=0 the

salt ha,sI established a steady-state diffusion profile"within the

'membrane. (Here represented as a single average concentration).-

With the electrode polarity shown, when the current is applied

-
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across the membrane, the electroosmotic force Eeo induces a
flow of solveﬁt from the low contentratioﬁ side (2) to th*e high
concentration side (1). (ii) This relatively large solvent flow
distorts the bconcentration profile within the membrane, reducing
the amount of salt in Cfn. (iii) Witﬁ a smaller arhount of electro-
lyte in the membrane, the voltage drop across the membrane
increases (R__ increases via'TDi)_,

electroosmotic force on the solvent (via TDZ),I which tends to

thus inducing an even higher

drive the water level in CVX still higher. (iv) Ultimately, a

steady head is obtained across the membrane depending on the

strength of the electrical source. After a while, however, the

S
2

the salt concentration in C_ to its original level. (v) As electro-

much slower diffusion process from CJ to Cf will tend to i‘estore

lyte gradually reaccumulates in Cfn, Rm drops; therefore the

electroosmotic force also decreases, initiating a flow of solvent

w
2

(vi) As the solvent flow proceeds, salt from the high concentra- .

from Cylv to C, that is driven by the accumulafed pressure head.
tion side (CSZ) is carried into Cfn’ decreasing Rrh and the electro-
osmotic force still further. This positive feedback effect continues
until a static head is built up on the other side. The relaxation

of the new salt profile and pressure head begins the cycle again,
the salt profile in the membrane beginning to decrease again as

W W

> into C 1

Relaxation oscillators frequently have the common property

the salt is dragged by solvent flow from C

of possessing competing energetic processes that occur
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with wideyly éeparated time _scaljes. In this case, the diffusion

of salt is much slower .than the hydrodynamic flow of solvent. -
’Figures 7. ‘7 ;uidk _7..8 show the liquid pressﬁrg—head difference

and the ._rrrlembra.,ne electrical resistance as measured by Teorell

(1962)‘.,- a;.s well as the results corn‘pute& from the bond graph

' _(O.sfer énci Auslander, 19.71).' Cdnsidéring the sifnplicity of the _

moc‘iell, -fhé ;'esultls are surprisingly good. inclusibn of a true salt

profile wifhin the membrane by introducing several more C m

A.great.ly in*iproves the fit. Ouf pﬁ.rpose here, however, was to

illustrate how signal flows could be utilized in the network |

approach.
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VII. THEORETICAL CONSIDERATIONS

8.1. Introduction

In this section, we shall brieﬂy outline some technical as-
pects of network theifmédynamicé. It is intended fhat this secticn
be read 1n parailél with Section Ivfovr those read_er‘s of 2 more the-
oretical bent. Some concepts pre;riéusly-introduced will be re-
stated in. a broader context, and fhe mathematical level necessar-
ily \%/ill be soméwhat higher. A more detailed .trevatment of the

matters discussed herein will be presented in a later publication.

8.2. Duality
8.2.4.

In Section I, we clas sified all thermodynamic quantities as
either. KCL or KVL variables, based on requirements of conser-
vation 'arid continuity. These definitions corre spoﬁded to the oper-
étioﬂél notions of through and acros.‘s meaéurements based on the
re cognition that most physical measurements can be classified as
'either.Z-poin't meésﬁreﬁlents, like voltage, or 1-point. measure-
ments, like current. We noted thaf it was frequently the cas_é that
the in'n_er ‘product of the th;o,ugh' and écros s-vafiables had somé

phyéiéally meaningful interpretation, e.g. dimensions of power
‘or energy.

A
\

. This is by no means a logical requirement for the formalism.
Conjugate variables whose products have no such interpretation
are frequently employed in traffic flow networks and economics.
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The notion of conjugate variables appears throughout the

i‘ealrn ofl¢lassica1 physics, e.g. force and flow in irreversible
therxjn@(‘iynamic's, extensivé and intensive in e:quilibrium thermo-
. dynanﬂi-?:s, position and momentum in me chanic’-s',“_'efc. (see Table
. : :

T:h‘e clﬁe t(; thié ubiquitous duality lies in noticing that the
c.onjug,afeIVariables traﬁsforfn—either cOvarianfiy- 61‘, contravar-
iantlyvu_nde:r coordinate changes, suggesting thé,t.the distinction
’ betwee'nvthe KCL and KVL variables is the dis_ﬁnétibn between a
ve ctof space V and its dual V*, i.e., the Spa;:e'..é_)f"all liﬁéar real-
valued funétions. on V {Loomis and Sternbervg,':1.96,8). We shall
briefly indicate thé nature of this duélity, 51nce1t plays a central
" role 1n thé mathéematical struc’ture of our mocviﬁefl/'.' :

For capaciti%re.n-p_orts, conjuéacy aris_eé quite naturally.
In Se éti_oh‘ I, we defined an n-port as the consf_ji’c_ﬁt-iﬂvev map
F: Rr" —'>‘.IR, '?5 - y(x), where the pair (x., v,) is associated with
thé _1th port.  Since equilibrium systems ar_e‘p.‘pe"sumed recipro-
cal, the constitutive relations may,be\ summariééd by a potential
function, U R" > R, as described in paragraph v1..3. Then, for
example, if the intensive variables y; are define_d as the coordi-
naté functions of DU, the gradient vector field géﬁerated by the
potential function, they 'tr‘ansforrn contravaria-ntiy while the X,
tranéf_ofm‘ covariantly (Killingbeck and Cole, :'1971). (1 e., the

gradient vector itself is covariant).

\
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It is'a s impie »genéral'i_z'a.tiorivto ! ma‘i__ntain this duavli‘t'y be -
twee.n'th>e' xii"‘and' Y; when .v'vev derp the as sumptiofl 6f. rbe‘cipr'ocity
for avrbit_rary n-?drts. Wev may re_de‘fi'ne the constitutive relation
for an n-port as a cO\.re'ctc;r'ﬁ‘eld,‘ 1 e..., a differential fofm:'(Fleming,

1966)

‘ . Rk
. w:]Rn—> Rr™” x > w(x),

where (xi,' .w('xi)) a%‘e the pair of variables as soci_ate__d wi’ch the ith
port. Although it ‘may seém pédaﬁtic'to maintain the distinction
bétwee__:ﬁ vector and covector fields oﬂ ]Rh k(e specially in view of
the global canonical iso‘morphisrr:‘l Between R" and (]Rn)>:< given
by the Euclidean metric), éonfusion of the two spaces obscu'res'
the ldgical éfru‘ctﬁre and ultimafely leads to difficﬁlties when

' dealing' \;vithv nonlinéér véy‘stem‘_s. Morédver, thé disﬁﬁétion ié

crucial for the definition of reciprocity given in paragraph 8.3.

8.2.2.

"The construction of a linear graph repfeéentation for sys-
.tem_s composed of -1-port él_ements' wa.s d;mo'n.strated‘in ﬁara-
gfaph_Z.i. This construction m.ay' be easily extended to n-port

s'y;ste'ms_in the following way.

‘The po.rt‘- vﬁrvar.iables comé _.i‘n pairs (e'i, f‘i)" so the 2n-
dimensi‘oﬁalv“staté. épéce for 'ea’cl.l n-port may be decomposed into
the 'divre ct .su.rn of-constitu..ti_ve‘ biahev_s:

R"x R"" = R'x (RN @0 R'x (R)".  We associate with

each constitutive plane of the n¥pd'rf a single branch of a linear
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graph which carries the port variables as branch variables. The

_collection of branches so formed is called the terminal graph for

the n-por“t (Koenig et al., 1969; Martens and Allé_n,‘ 1969).

- Figure 8.2 illustrates this for several n-ports. . Note that, when
each port represents a different e,nei'gy mode, the terminal gréph
is disconnected, forming a forest of 1-branch graphs. |

We may now interconnect the ports of an n-port system in
the usu_al way, as if each port Wer.e a separate vc'ircuit, as shown
in F1g 8.2b. - The resulting system graph is disconnected,\ and
the coﬁpling between the ports is not explicit‘ly.r\epvre sente'd_. In
some earlier treatments, port coupling was dé_‘p_icted by a do.tted
line, ovr'loop, joining the ports. This is cleai‘ly unsatisfactory
for large systems; and the bond graph, which 1s vm‘atl;lema;tically
equivalent, is a much clearer representation. |

V'A_pvarticularly important class of n-pbrts aré the zefo-gjunction

~and the one-junction. From the linear graph Viewpbint, these may

be defined as connecflon ﬁ—porfé, i.e., black boxes containing only con-
. nectio\ri_s, as shown in Fig. 8.3. The terminal graiahs corresponding
to the zero- and one-junctions are also shown iﬁ Fig. 8.3.

Te liégen's Theorem for an n-port network is obtained from

each terminal graph separately:

eTf:ZeTf :2 o=0 . (8.1)
~ = ~ =Y |
Y

Y

where the sum y is taken over each graph of the forest. .
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8.3. Recigfocity
8.3.4

The defilniti_onbof reciprocity given ivn Séctién I, i.e., the
symmefry of the Jacobian matrix P\E(ﬁ) at evéry pqiht XE€ ]R.n, is
both a local condition and one that c{epends on the coordinate sys-
tem us_ed to de s_cribe til_eb cénétituﬁye relation. In the ‘following
paragraphs, we will generalize éur defini’ti.on.of reciprocity and

indicate the role that codrdinate choices play in reciprocity.;

8.3.2.

In»paragr_av.ph. 8.1, we modified our definition of an n-port
constitutive relation'tovaccomod:ate the notion o.f.intrinsic duélity
between the port KCL and KVL variables. An n-pbrié was definéd
as a covéctdr field  on ]Rn,. i.e., a mép- >w‘:']Rn—> (]Rn)*. In
terms of this definition, the condition for reciprocity is that © be
closed, i.e., dw = 0,_ vs_/"heré'f d is the e:d_:érior defiv_ative '(Fléming,
1966). Since w is defined on R, do = 0 implies w is exact,

W = vdU, for some potential function U:]RI.1 -~ IR. Note, howévef,
that this definition of aﬁ n-port is overly re strictive since we
may be foréed to employ hybrid‘ goordiﬁafes for the n-port. - For
examvple, the constitutivg ‘relation for a TD, (ei’ i)~ (P fz), :
has no impedance or admittance répres_'enfatibn. Therefore, 4a
more general definition of an n-port would be to vie{av the consti-

2n

tutive relation as a submanifold of I_Rnx (Rn)* = R”", the graph

of w. Inthis section, we will employ this interpretation to
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obtam a more general def1mt10n of re crproc1ty as‘ a ’prelude to
der1v1ng the canon1cal equatlons of mot1on for. nonhnear n- port
systems. | |
'R'emark? Classmal thermodynamms usually con31ders rel-
at1ve1y simple system conflgura.tmns, e.g. a system conne cted to
one or more reservoirs. When we allow more complex intercon-
nect1ons, certa1n patholog1es can arise, | u/hereupon the const1tu-.
.t1ve relat1on does not form a submamfold For example, Chua ‘.

has shown that 1nterconnect1ng only rather elementary re s1st1ve

elements can. produce a compos1te 1—port whose const1tut1ve relat1on'

rnay cons1st of either a S1ng1e p01nt on the e- f plane,' a dense set
'1n the e-f- plane, several dxsconnected components, or even char-

acter1st1cs w1th ”self-cr0551ngs”l1ke a f1gure e1ght' (Chua, '1971)

8.3.3..

_ The principal reason for viewing the constitutive 'relation a's :

~a submanifold of lRZ.n lies in the fact'that the 'embedding_ space can
_ be endowed with a. certa1n canonical structure as a consequence of
its even d1mens1ona11ty The 1dent1ca1 S1tuat1on is encountered in
A '-clas S1cal mech-amcs Recall that Ham11ton 's equatlons are_alsvov
deﬁned on an even d1mens1ona1 mamfold modeled on IRZv ,. where
. they take the form Jx = /D\Ii Where X = (g, zf) H is the Ham11-‘ |

jtoman and .1 the ?'symple_ctlc” m_atr1x J (I 0) '{2 £2n
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The ordinary Euclidean inner product structure on len is
simply (x, y) = §T£X., where % and x are 2n-vectors and I equals
the identity matrix. We may define the symplectic (antisymmetric,

or Hamiltonian)inner product by (Arnold.and Avez, 1969):
AT
Yy =2 Iy - (8-2)

" Lineéar transformations which preserve this inner product are

called symplectic (canonical) transformations for the Euclidean

' 5k
inner product:

Orthogonal : Symplectic
1o=0"10 1 =sTis
oot - rteTr st - 18Ty (8.3)

Now, just as we can define a qua_.dratic surface to be the zero
set of a symmetric bilinear function, {}.5' }'ET 93’5= 0, Q= QT,> 0},
we defiﬁé an isotropic subspace of a vector space to bé the set of ‘
X, ¥, which annihilate g: {'}5, y | }iT ,‘I~Y =0, {= - {T } (Malcev,’ '.

1963). A Lagrangian subspéce of a vector space. V is just an iso-

tropic subspace w’ith'dimension'z 1/2 dim V (Arnold, 1967).
Finallf, we define a submanifold MC ]RZn vto be Lagrangian if the
tangent plane at each point P € M, Tp M, is a Lagrangianb sub-
spacé,’ i.e., - |

xTry =0 x,y € T, M, pC M. - (8.4)

~ o~

*The Poisson bracket of two functions is just the Hamiltonian inner
product of the Jacobians: {f, g} = Df T JDg.

A
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Havrng deflned an n- port as a submamfold we make the
_ followmg def1n1t1on of a rec1proca1 n-port
\ DEFINITION‘ . A rec1proca1 n- port is a Lagrangran sub—
mamfold MC [Rn X (R ) “]. In the follow1ng paragraph we w111
show that this def1mt10n reduces to the prevmus def1n1t1ons when

coord1_nate s are 1ntroduced.

8.3.4.
' Let us now 1nterpret thls deflmtmn geometr1cally Consid‘e'r\
the thermomechamcal two- port in F1g 1. 1 w1th port var1ab1es
‘(T’ S -—p, V) We 1ntroduce the- port s1gn convent1ons in the fol-
low1ng way. Cycles traced clockw1se on the const1tut1ve planes
corre spond to energy delivered to the system ports, while: cycles
traced counterclockvv1se represent energy dellvered _y the port
S1nce we have taken energy 1nto the port as. pos1t1ve by conventmn,
vth1s 1s tantamount to 1ntroduc1ng an or1entat1on onto thev const1tut1ve
planes (Spiyak, 1965). " We: can convemently_ keep track of these
‘ orientations byvintrodu_cin'g the antisymmetric (exteriorl) product of
coordinate differentials° | _ | _
| | dxAdyi--dyil\dx.:_ B (85)
'That is, if X = (X'l’ XZ) ‘and Y— (Yi’ YZ) are any two vectors on a

const1tut1ve plane, '

In Desoer and Oster (1972), 1t is shown that M may also be char-
acterized as the extremal set of a certain real-valued function on
R21, This function generahzes the free-energy functions of class-
. ical thermodynamics and gives necessary and suff1c1ent conditions

for global rec1proc1ty
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X, Y,

. 1 71
dx' A dy; (X, ¥) = det
| %2 Y2
= oriented area Spanne_d by X and v. " (8.6)-

Since this n-port is reciprocal, w = dU, which Whe.n expanded in

the coordinate differentials is

au :Z i’.lj.i axt @ Z y; (%) dst , (8.7)
ox ports ' '

i.e., the Gibbs form

dU = TdS + (-p) dV + ... . - (8.8)

als ol
Sksk

Applying the exterior derivative once again, we obtain
d-dU=0=dT A dS +d(-p) Adv. - . (8.9)

The two-form on the right.is just the coordinate differential ex-

pression for the bilinear form J. Thus, in general, the condition

~

for the constitutive manifold M to be reciprocal (Lagrangian) is

' ' - ek
the vanishing of the two-form on the tangent planes of M,

>

Zmdyi/\dxieo; (810
ports ' » v :

* Note that dx' A dx' = 0. _
>'\"‘The Poincaré identity d-d = 0 generalizes to the usual vector
-identities div - curl = curl - grad = 0, and is related to Tellegen's
Theorem. o - :

B33

This definition was first proposed by Brayton (1969).
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The two-form p measures th_e- area.spanned by pa,ilrs of vectors on’
N ’ o v . ! ' T : . . .

. TPM;; For any two such Vectors

T

T

sum of projected areas on cons'titu'tive
planes. _

This is clearly an orientatiOn requlrement on the tangent plane sv"to.
M. That is, M. must be s1tt1ng "Just r1ght” in R” 2n such that the |
algebra1c sum of the tangent prOJect1ons Just cancel. Moreover, _
from th1.s definition it is clear that rec1proc1ty 1s not an'int:rins"ic
property.of the n- port, in the usual sense, but rather depends on
the cho1ce of coord1nate system for M. Arb1trary coord1nate N
transformatlons will not preserve reC1proc1ty For example, a K

commonly employed coord1nate set in network theory is the set of

scatte -rmg- par ameters:

i o _
_ X -+yi . x -__yi L ‘

> -

A short comjputation s_how‘s that b> dgik/‘\v'di’]i # 0. In or.der to con-
sider reciprocity as an intrinsic /property, we must always r’efer
the systern back to some phys1ca11y ”preferred” coord1nate set
‘(However we must recogmze that no coord1nate system has any

special mathemat1c'al status.) From the dlSCllS sion in paragraph.

8:3' 2, it is clear that the class of cOordinate trans"forrnations (i.e.,
transforms of the embeddlng space R ) wh1ch preserve the prop-

‘_erty of rec1proc1ty are the canomcal transformatmns It is just

Z dy /\dx (Y X) =X JY (8.11)
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th‘ivs class of transforinat:ioﬂris that will. also preserve the fo"rm of the_'
equations of motion derivéd in paragrai)h 8..4.' |

AlthSugh the definition of a recipfbcal'sfstem as a Lagran-
gian submanifold is independent of coordinates, it is .easy to verify
that for various coordinate choices, it r_educes to the mo-z.'ev famil-
iar expressions.

EXAMPLE:  Let (% 5') = (x1 e Xk Viesar "+ ¥g) be any

set of coéi’dinate ‘variables. The constitutive relation is then:

F
—>

e

F, v@ »_._

ey
W e

whe.re (X" ’)5) = (Yi’ KR o X0 .xn). Then equation 8.10 be-

comes:

DE,'DF, - RE, DF, - 0.

. If the n—pd_rt has an impedance representation, (i.e., if k = 0), -

T
2

, so that.

o\T [ey\
+5) = \v% | (8.13)

and the Jacobian of the constitutive relation is symmetrical at each

DF
—~

1:}’an'dDUF =DFE

2

poinf of M.
EXAMPLE: A transducer has no impedance. or admittance
representation, i.e., (éi’ ez) and/or (f1, f2) are not admissible

coordinate sets on the characteristic manifold. The constitutive
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relation is:

AN ARSI
) 1
y 0 BEIREVARNE

B ‘C’1e'a14"‘1y p = (dx /\ dy1 + dx /\dyz) =0 when r is a constant
V1ewed as a map from the 1nput port to ‘the output port the consti-
tutive relat1on is area,(,l.e.t, power.) preserv1ng., Tha,t is, the TD

is a canonical coordinate transformation.

EXAMPLE: The'two—port capacitance in Fig. '1.“1'__rnay also be.

P

viewed as a map from one constitutive plane to another,

(g)l'—’-%("g) .,

“This map is also area (energjr‘)'presevrving, i.e., det (F) = 2p. V) .

3 (T,S)

and hence the two-port is reciprocal. This reduces to the fam111ar '

_ ther‘r’nodg.rnamic identity cp_— c: ‘= Tasr B/x, Where /V is the spec1f1c

volume and B and « are the 1sobar1c and isothermal compress-

- ibilities, respectlvely.*v E : - ‘}
EXAMPLE: The zero- and one-junctions, defined as connecv—

tion three-ports, have the tefminal graph 'represe'ntation-shown tn

Fig. 8.3. '_ Sequences of connected junctions then become~ connec-

tion n-"povrts. S"ub_-stituti‘n_'g the port relations (Kifchhoff's _laws)‘int.o

the reciprocity -tv:)o-form verifies that connection n-ports are

Not1ce that p =:dyj A dx* =0 for the two- -port case is equ1va1ent to
‘requiring that dxl A'dy; be invariant under F. In ¢lassical mechan-
ics, F is a canonical transformation with generating function: U
and dx* A dy is the Poincaré€ integral 1nvar1an’c

1;.
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reciprocal, Note that wé mﬁ_st choose our sign convention such
that allibonds are oriented info the junctions. . This corresponds
to choosing associéted reference directions for the linear graph
represéntation.

EXAMPLE: All one-ports are trivially reciprocal, since

y = y(x), and p = dy/\dx = %%:(x) dx Adx = 0.

~ 8.4.. Potential functions for reciprocal n-ports

The potential functions for one-ports may be represented
gfaphicall'y, as shown in Fig. 8.4. For reciprocal n-ports, these
definitions generalize in a straightforward manner.

The reversible elements, capacitors and inductors, are re-

ciprocal according to the Maxwell relations of équilibrium thermo-

dynamics:
z dg'Ade, =0, | (8.14)
- ports ‘
as shown in the examples above. . By substituting the terminal

characteristics of a reversible multiport, e =y (q), into equation

8.14, the above reciprocity condition may be written
Dy = Dy, ' (8.15)
where Dy is the Jacobian matrix of y .-
e’ ) ~ .

For reciprocal irreversible elements, we may define another

state fu‘nction, the contenf, by
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G@=tgsT¥?i§h3@49:  | (8.16)
where S = fR-(f«) js the c-onstitutiVe re.lation (Cher:ry, 1951); e. g.
for a one-port vresistor_, G(f) = | edf. For li‘ne’ar.con'stitutive
relations, G(f) is just one half the dissipation function (see Fig.
8.4). |
f C,;‘r(f).is a state'fnnction“ for‘vthe irre-veri'sible elernent's; and )
the rec1proc1ty cond1t10n is tr1v1ally satlsfled for DZG DZGT
. or 'DqJR' = DqJR A one- port R 1s tr1v1a11y rec1procal, since
its Jacoblan is a scalar o | |
Another point to bear in rnind is the,t reciprocit‘y has»nothing
to do with passivity. A trnnsisto'r ori\thermistor. (eee Se ct_ion VII)
nre oaeéi’ve, but not rec'iprooal.- Converseiy, itki'si'_e.asy_to synthe-

size reciprocal systems containing active elements. =

8.5 Interconnection of n-ports

8.5.1.

| Using the definition of reciproc_ity, equation 8.’2.'1, Brayton ‘

For the reversible elements the coenergy, or free energy, is de-
f1ned v1a the Legendre transform, i.e.,

E(q) —fq e(q)Tdq,

E'(e) = eTq E(q). |

S1m1larly, for the 1rrevers1ble processes, we may defme the
cocontnet by a Legendre transform on the content :
E3N T .
G (e) e f- G(e).

.o
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proved the foilowing important result:
THEOREM 8.1: (Brayton, 1969): Any n-portobtained by the -
interconnection of reciprocal n-ports is reciprocal. *

PROOF: Define the reciprocity two-form for the ch n-port,

pa : z dxi(A dYka . Then, qlearly’ zpa = 0’
k=1 " v : o o

since each n-port is assumed reciprocal. Using the notion of a
connéctibn n-port introduced in ‘paragraph 8.3.4, this sum can be
decomposed into a sum over those ports which remain after the

1nterconnect10n, and those which do not (F1g 8. 5)

(2 ) ) - 0;
remain connected

if the intérconnections create new ports, then
oS Y
“~/connected new
since cbn.nection n—porfs are reciproic':al. Since we have taken our .
' positive sign convention into eaph n-port, when two ports are
interconnected, there is a sign charrge on one vsef of porf variables.

Therefore, adding (a) and (b):

remain ' ‘new .

QED.

*As discussed in paragraph 8.3.2, the 1nterconnect1on of n- ports
may give rise to patholog1cal situations; under such circum-
stances this theorem is not valid.
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. Note that Qve have assumed that 'ail of fhe :.connections are
cdﬁlpa’tib.le.A 'I‘his'ni’ay not be the case if, for example, an inter-
conne cti(‘)bn couples two effért sourcés with diffe_ijént effort vari-
ables in parallel, i.e., violates _ca;usé.lity. o |

_'I‘Ihe e'ntiré ne»t‘vv‘or.kr rr;asr be represénte-d. schematically as
shown in Fig. 8.5, vs;here we have lhniped all_ revers_ible, iri'e'..
veréible and _.jun'ction el_ernentsf Note thé.t .the TD is defined |
W1th ré cip_roc;al constitutive relations; and siflce it:neith'ef stéres
nor dis_sipates, it is eqﬁivalent toa (possibly).x_lonlinear constra,int
équation.and so ﬁay be c,o_nsi.déred a junction structure By

' constrﬁctio’n, there'foré, We. have derﬁons.tl;até-& tkhat fy;')r'fhéi'mp-
dynamic systems representable by recipr;)cal elefneni:s

r

Z - de, /\:dfi +_Z ‘dej /\dfj + Z qek_Ad_fk =0.  (8.47)
ports = ‘cap. res. o e

An important special case of _t\he~.above theorem is an inter-

connection of one-ports. Most of the bond graph models developed

in S_ec-tidns IT and III were as sembled from only one-portsand TD's.

The reciprocity of the overall system is assured by the above the-

orem; consequently, such systems possess potential functions.

8.5.2.
vSev‘erval authors liave noféd.--that Onsager reciprocity may be

derived from the Kelvin pos'tu‘late' of independent processes (Li,

' 1958; Pitzer,. 1961). That is, if one postulat_evs'_t_hat there exist
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noninte facting ""kinetically independent' processes,

1

‘TJ' = gJ'(

. :
Xj ) (8.18)
and that any arbitrary flux Ji 1s a linear combination of the

indepehdent fluxes,

T s z o T _ - (8.19)
i ij “j ‘ .

then a reciprocity condition may be derived in terms of Ji and
its conjugate force Xi' Substitution of equation 8.49 into the dis-

sipation function & = 2 Xi Ji shows that the force conjugate to

1

: .TJ is given by

1 ' y
X = Z a.. X. (8.20)
J 1 1 ,

and hence that

I3 =Z “;j gj(z "‘ijk)" o (8.21)

Testing for reciprocity, we note

.;' 5T,
g"‘k; X,

which is the non11near generahzatlon of Pitzer's condition for
reciprocity. Nohce, however that the assurnptlon of noninter- _

acting independent processes, equatlon 8.18, is equivalent to
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constructing tﬁe system out of on;a-,por*c,-elerrﬁents. ‘Brayton's
th_e'ore:mvthan assures us 'thé,t the total system will be reciprocal.
. ‘Bov'.ch this proof énd P'itzer"s, howe.velz‘, .w.o.uldvnot‘, be valid for-a
systé;n_ cbntaining chemical reactions ‘s_i;ace, Being nonreciprocal,

chemical reactions. cannot be reticulated into one-port elements.

 8.6. Canonical form fdr the equations of motion

8.6.1.
| One of the convenient éépe cts of Hamiltonian mec_:ha.nics',:
frdm’a theoretical Viewpoint;' is that the equatidns of motion may
be e}.:pres.séd. as a symple.ctit‘:.gradieinﬁx'rector fielci, i.e., g%:]_)l—}, (see
paragraph 8.3.3). - That is, the vector field propelling the state
point is dériyable from a scalé;r‘ po;cential' function, H(%, B)' |
-“Fo’r a 1argé class of reciprocal ’n—portsv‘, Brayton and |
' Mos‘ef ('-'1_964)vhav.e ‘'shown that the equations of motion may be
cast into a canonical form. We will'restrict‘ our attentic;n to RC_
‘networks in which the capacitor efforts can be varied indepen-
dently without Violating Kirchhoff's lav;/s',v and in whi(:h they de-
termine either the effort or flow on each resistive port bond.
We refer the reader.fo the liter_ature for »‘treatn_lent >o'f' more gen-.

eral cases. We bégin.with'Téllegen's Theorem:

R C ‘




TV

where we denote by Z and z summation over the resistive and
’ oo R C A
capacitive ports, respectively. *

Since e and f lie in fixed orthogonal subspaceé,’

Z £ de. + Z f.de, = 0. | (8.23)
1 1 1 1
R C |

Introducing the capacitor constitutive relations, -

Z Cij(SC) eJ. dei = - Z fi de’i , (8.24)
C S R

where - e C is the vector of capacvitor effects. Recalling the def-
inition of cocontent for the irreversible elements, we may define

a potential function

e.

i > | .

R O

so that equation (8.24) becomes
Z Cij(‘ic) e de, = d - ‘ (8.26)

Operating on both sides with the wunit vectors\ 0,..-,1,...,0), we
C ' sesk .
may write equation 8.26 in component form as

We regard sources (reservoirs) as nonlinear resistors with
constant e vs f characteristics. o

- fn— the above treatment, we have employed associated sign con-
ventions throughout; therefore, we differ in sign from the equa-
tions derived by Brayton and Moser (1964).
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Z Cyfle )¢ = 0P /0, (8.27)
C : :
or. :
Clegic 0O e
'I‘he fact that the equations of motion for a reciprocal sys-
temn may be derived from a potential function is a useful theoret- -

ical result for discussing system stability, as we will see in the

‘next paragraph.

Smale (1972) has given the follovwing géome»tric interp'zv'ebta—
tion of the canonical equa.tixéns.“ bThe completé state spaéé is
firs.t" restricted by Kirchhoff's laws to-a linea.r'submanifold. |
Tﬁen the algeBraic constraints of t}‘1e‘r.e sistive édnsfsitutiye rela--
tions define a (novnli‘near). submanifold of the Kirchhoff subspace.
The é\nergy storage elements then provide.ka metfic_, just as in
cl‘aséicél mechanics (MacLane, ; 1968), which is semidefinite when
both capaéifive and inductive énergy storage aré pr.es‘ent. 'I“'he vec-
tor field propelling the state point onthis manifold, C(e)” 1 DP, is
a gradient flow in the reciprocal case.

As mentioned in Sectién VII, reciprbcity is the exception
rathe._r;t.han’the rule in biolo_gi;alvsystevrnsjl so, in general, the

equations of motion will take the form
Cé =: oz,-
whé_re a 1is a nonintegrable differential form ,(Smale', 1972).

These equations will be dealt with more fully in a further
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publication. A more detailed tréatment of thex canonical equations,
inlciuding the éxtension to nonreciprocal "sys.tems with inductive
effects, can be found in Smale (1972), Desoer and Wu (1972),

Brayton (1969), Brayton and Moser (1964).

8.7.- _Stability of thé. steady sté.te

8.7.1.

In this éarvagraph.we will illu’stfate how the canonical form
of the equations of motion and Tellegen's Theorem fnay be em-
ployed té de.l;ive in a unified manner various dy.narnic‘ stability
-critefia préposed by Glandsdorff énd Prigogine. For simplic‘i’gy,
we will continue to neglect inertia-like effects (inducténces) and
consider ohly systems with resistive.and cai)acitive multiports.
Furthefmo.re, in the following treafrn‘ent, we éhall always’.z.l.ssume.
that the Capa‘citive consﬁtﬁtive _i‘elations ‘conform to the conditions

of local thermodynamic stability i.e., C > 0.

8.7.2. _
Glansdorff and Prigogine- ('19'54). showed that if the time -
‘ ' d.S ' :
variation of the entropy production. —_— =fv = Xi ~Ji dv is split

dt
into two parts, |

N

8<dis) : o - |
el LT J. A |
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then

- ‘g'zg I, X, av.< o (8.30)
for time independept bouhda_ry COnditions. | This inequality,
called ‘a général ev,o_luti-oriary cri_terion by Prigogine. and Glands-
_dorff,_ .ca1;1 also be proven for discrete vs'_.ysterns vié, the 'n.etwork
approach. |

The following theorem does not requirevtﬁé dissipative con-
. stitutive reiatioﬁé fd be reciprocal (Osfer and Desoér,‘. .1971).

THZEOR.-EMv 8.2: Assume that we ar-e_'giv_env.a bond graph,

a) which is driven by cbnstant sources (time independent 'bound- '

ary re’éervoirs), ‘and b) whose capacitive éonstituti've rela;tivons
obey the thermodynamic stability réquirement CcC>0.
-Then, along the state trajectory
Z e.f. €0, . B - (8.31)
i1 - _ = Ge
T . S i
-equality holding only at the steady state.

PROOF: From Tellegen's Theorem,

~

0=(e, ) = (e *+ (& Hes (8.32)

f_hefefore,

(e»f)g =- (e, By . (8.33)

Since Kirchhoff's laws restrict the efforts and flows to fixed ortho- -

gonal subspaces, (é, f) =0 and
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(¢ D= (&0 (8:34).

The capa'citivé constitutive relations are q =IF(e), wheh differ-

-eritia’ced with respect to time, yield

Therefore, A
C(eHg - (BREE@S (835

. By assurhption (b),

so (&g <o (8.36)

8.7.3.

The quantity (535, 6f) has been called the excess entropy

 production by Giansdprff and Prigogine (1970, ‘..1971). * Intuitively,
it would éeem that yariations about a stationary state that produce

- a net entropy reduction would not"be favored ih a thermodynam-
icvally stable system. For instance, in the one-port case, the

'~ instability associated with tu}me.l.' diode—liké coﬁsfitutive relations

is familiar (Fig. 3.3). In the region where 6é df < 0, we find un-

stable steady states (Katchalsky and Spangler, 1968). Glansdorff

Fr s " .
This is perhaps a misnomer since:

(g+5e)T (T+5) - € " T

T= 06 6f+0e £ +el6f o

e
~
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énd Pr._igogine (1_“?701, 1971) hax}e shnwn ‘-that»fvbé'J'i §Xi dV can be
used to determine the stability ef a steady state in a continuous
sy_stem.. Here we will show that th‘is result holds fof multipott
systems (Oster and Desoer, 1971)

| Let 8e and 5f be tangent vectors to the constitutive man-
‘i'fo'.l_d at the steady state tc_)-be inve sti‘gated. __We as‘sume_ that the
pertui‘bations ,§£' Eivobey KCL, KVL and the eqnstitutive tela—.
tions. o | o

THZEOREM 8.3: (i) If for any pertubatwn a.bout the steady

state conformlng to KCL and KVL

Z Se, 6, >0, i (8.37)

- the steady state is b"stable; (ii) if, b.fo'r some such perturbation,
Z (S'ek 6fk <o, . S '(8.3_8)

R

. the steady state is unstahle

PROOF: We present here a 51mp11f1ed proof usmg Tellegen s

Theorern A more rigorous proof is g1ven in Oster and Desoer,

(1971). For- the tangent system,A' 4

Selsf = Z be. 6. + Z e.6f. = 0. (8.39)

Inserting the small signa.l constitutive relations,_ 6e‘ =R § for -

—

~

the resistors and 6e = S 6q for the capac1tors, where S = C'1
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is the incremental susceptance matrix,

T T _
(57R 895 + (897 5 80 = O
or
d 1 T
- —_ - 6 -~ ;
(84" R 8@)p * 3¢ {2.53 s~~} 0
.T o d
and _ | (6" R 5q)3 = - T3 50 ' (8.40)
h £ (q, 8q ! = 16qT s 6q is the ''small-signal energy"
where .19 221= 72723 222

. about the steady state.
If the steady state is unstable, the tr"ajectory initially moves

aWay from the origin i% = 0. Therefore, éC is increasing

and
(83 R 8d) < 0

or o
Z eseiszQ1 <0 - (8.41)
R ' Q.E.D.

This résult has been used by Katcilalsky and Spangl'er (1968)
to bstudy the bistable properties of mémbranes; and by Glansdorff
and Prigoéihe (1971) in discussing chemical instabilities. Moreover,
in Oster é.nd Desoer (1971), it is shown that the dissipative processes
dominaté the local stability properties, i.e., én unstable steady
state cannot be stabilized by altering the capacitive .constitutive'

relations. -



_168-

8.7';4_.

. C:.}lians.dor‘ff‘_a"nd .P:i‘i_gbogineb (-1971) shq_w,that the "second .vari-f‘
ation of the e'ntrop‘y.,' 625, is a Liapunov fi:l.nction. for the 1inearized
systeﬁ. In the di.écfete'casé, thi»sv can aiso be rig_()rously;proven.

» vThe convex_ity as s_um:ptio_,n on the -c_apac_itive' constitutive re-
latiohs (local thermodynamic stability) meians we can use fhe v'iri_.-
creniérital capacitance (or its ih.ve_rse) as a metric. For e_xainple;

the Hessian of the entropy, S, for a diffusion system is

2 2 '
. 8°s K
ij~ &m, 0n - Ba, 0 0 (8.42)
| i 3 , ,
inducing a positive-definite bilinear form on T(M)
| §°s 2 Z Sijdni® dng . (8.43)

If we- céntra,ct this bilinear fo.rm with two tangerﬂ: __v_é ctor; at
the -stea"dy state, whose stability is to be determined, we ,obfain a

: rea'lFValued function on the characteristic rhanifo_ld M:

$() =6q758q, 6q € T, M. (8.44)

"Then, differentiating along the tr'ajecto“ry in the tangent system,

we get _
_ "ddt'. = 28qTS8G o - (8.45)
= Z(EETE)C' (8.46)

But, from Tell_egen"s. Theorem, equation 8.39,
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4 d¢ _ T :
5 9 - (6e 6f)R.

When the system is stable, the right-hand side is negative definite,
which is just the result obtained previously. Therefore, the cur-
vature of the entropy is a physically meaningful Liapunov function

for local stability.

8.7.5.

So far, ‘we have déal’c only with local stability conditions..
Howe’v'ef,v if thé resistive constitutive relatiohsare reéiprocal,
“then the Bray‘tog- Moser m'ixled.pote'n'tial is avLia'p‘unOV function

for the system. The equations of motion may be written
ci =l (8.47)

Taking the inner product with ¢,

af

dt

(~é, JQ_\O/Q(e_.)) | (8.48)

(€, Cle)e )

WY

o : (8.49)
sinée 9(3) > 0. | | _ _

Now, if, @ fends radiallsr fo minus."in‘ﬁnity as lgl-’ o (which it
usually does at large Qalueé of‘.thermbdynamic efforts and Vfiov.zs

as can be seen from equafiq_n(&ZS), then follovving Lié.pun_ov, .no

‘ solution“is unboﬁhded, an'd‘ all iﬁitial cbnditions' ge’bne‘rate solutions

which lead to the equilibrium set of the potential m
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-in genefal; nenlineaf systerns exhibi’c comp‘lex Behavior-.’..
'they may settle down into one of several equ111br1um sets, or they
: may tend asymptotmally toward. certain osc111atory trajectories
(11m1t cycles), or they may grow without -bound.- ‘ It is an impor-
tant piec':e ovf.vqua‘lifta;t‘iv‘e inf_oi'matibn 't,o_cheose between these |
' classes of behaviur and net a trivial "’;:ask for nonlinear systems

Forvthe case of rec1procal eystems, we see that the m1xed
potenflal functmn can be used to deduce the ex1stence of a con-
stant 11m1t1ng se’c wh1ch e11m1nates the poss1b1hty of oscillatory
behav1or or unbounded solut1ons That is, we can guarantee

that the equ111br1um set is globally asyrnptotlcally stable (Bray-
ton, 1969)

8.:8.:' Extremal _princg,"p‘ .lesl |

As rnentibned in Seetion I, computation of fhe eQuilibriurh
cbnfi_gurafion of an n%peft' with _spe‘c_:‘ified peft (boundarY) con-
_str‘ainté is considerably eifnplified if the»syete‘vrn‘is reciprocal.
The solution of a set of nonlinear élgebraic equaﬁonsl may then
be_replacedrby a more traefable minimiZiati;Qn prublern. That is,
one may rninimize the appropriate pofential funt:ﬁo_n subje cf >tov
the port constraint of KCL. and obtain t1.1ev co"njugate equilibrium |
- condition, KVL, as an elte'.l'natiVe to merely ‘éolving the setjof'
nonlinear ;conSfc.ituti.vevequa.tions .s:ubje ct to both KCL and KIVL
constraints. - | |

It is an easy exercise to 's_._how that of the three eonditions,
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KCL, KIVL, and U extremal, any two imply the third. In our
treatment, we have encounteréd nonreciprocal thermodynamic
éystems. In such cases, it is imperative to choose the algebraic
c,rite»riOn for equilibrium, i.e., the equ.ilibria of the constitutive
- vector field, rather than the extremal formulation which depends
oh reéiprocity.

For example, in paragraph 8.4, the state function called

content was shown to characterize the dissipative processes:

We maly investigate the extremal properties of this function
for a ne_twdrk operating at a steady sta.teﬂ< byvintroducing vari-
ations in the branch flows, £= '_f: + 8f, where f is the steady
sfate flow. If we require these variations to obey KCL, then
from Tellegen's Theorem, ST£ = O,v and ST(£+§£) = 0. Sub-‘
tracting, we find ETQ; =0; i.e., the variations in the flows are
als_o orthogonal to the efforts. Therefore; 0G = €T§j = 0; the
total content is stationary in a steady éta’;e (Millar, 1951). For
the special case of linear constitutive relations, the above equa-
tionis eQuivalent to the familiar minimum entropy production

principle proposed by Prigogine (1947), or Maxwell's minimum

heat theorem. Although there is no new information contained in

Note that in a steady state the network is purely d1s51pat1ve
therefore, the content characterizes the system.
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suclil e_i.ctrelmlall‘ pr;néi;p'l_‘es that is not contained in KCL, KVL and
1:‘he co'nstitufive-rg]:ationé, they ofte‘n sin;lplifyb nurin.er'ical'vanalysis
and have a certai.n es.t'hetic_:’\‘appéal. A complete su;rlmary of such’
extremurn principles in network_."theory can be found in MacFarlane

'(1970)‘.

This work was done under the auspices of the U. s. "Atomic
Energy Commission. v
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Table 1. Common through and across variables.

Integrated

(rotational)

w

tum H

Energy domain Through variable Across Variable Integrated
through variable across variable
(generalized (generalized
displacement) " momentum)

Electrical Current i Voltage ~r Charge q Flux ¢

Fluid Volume flow Q Pressure p Volume V Pressure

: _ momentum I’
Diffusion Mass flow Ji Chemical Mass m, -
{(or molar flow) potential My No. of rholes n,

Chemical Reaction rate J© Affinity"Az -Zv.u. Advancement§ -

reaction : v

Mechanical Force F . Velocity v Momentum 73/ Displacement x

{translational)

Mechanical - Torque 7 Angular velocity Angular momen- Angular

displacement 6

-G8T1-
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~ Table 2. Ideal system elements.

Element Symbol _ Defining equations L Remarks
2 l .
0-junction ——0— Zo0,f.=0,e,ze =-+-=¢ Generalized
v 1 n 171 1 72 n "o .
: parallel
> ' . connection
1—ju'ncvtbion et 20' e, =0,f,=f,= -« =f Generalized
. o1 n 1 2” _ n " T
' series

connection

R.esista.n'ce1 —>R ¢1§(e, f) =0 Ideal dissipa-
: ‘ tive element

[
Q

Capacitive
(displacement)
energy storage.

Capacitancez —>cC d)C(e, Q) =

Inductance?’ g —ﬂ_L c|>L(p', fy=0 ~ Inductive (kinet-"
' . " o ' ~ ic) energy :
storage
Memristance ———> M bp(Ps @) =0 ' -~ Displacement-
o : dependent
dissipation

Transducer ’—-QTD(———Q €y 1r 0] e, o Energy conver-
' : 'f1 ~10-r|. f2 - sion and signal
' ' modulation

constant Ideal energy
sour ce(effort)

I

Effort soﬁr’ce E_—__>| e

constant Ideal energy

/ Flow source F'__> f
: source (flow)

The half-arrovv is the sign convention: power is considered pos1t1ve :

into all elements. ,

2The causal stroke —C indicates that the natural input (in_dependent-)
variable is the flow variable, since for C, the dynamic equation is
C<E =1, and the physical restriction P = ef < proh1b1ts step inputs
of effort.

The natural input (independent) varlable for L is e. All other el-
- ements are causally neutral. .
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FIGURE CAPTIONS
Fig. 1.1. Thermodynamic multiports.
Fig. 1.2. Relation of the state variables.
Fig. 2.1. Topological graph for a mechanical sYstem. 'The KCL

requirement for the system gives F1+F2+F4+F5 = 0 for node

A and 13‘4£+F5-F‘3 = 0 for node B, which is équivalent to the

equations k X +m2xA+k4(xB A)+b( B" A) = 0 and

A)‘ 3B‘O'

Fig. 2.2 Membrane transport system. In (b) the processes of

k4(xB —xA)+b(xB -

dissipation and storage are separated.

Fig. 2.3. Assignment of linear graph elements to transport across
a membrane. |

Fig. 2.4. Topological graph representation of n‘onelec’crolyte
transport across a simple membrane.

Fig. 3.1. (a) Two-terminal element with associated reference
directions for current and voltage; (b) nonassociated reference

\ '

directions. a

Fig. 3.2. Bond graph representation of nonelectrolyte transport
through a simple membrane.

Fig. 3.3. The constitutive relation for a tunnel diode.

Fig. 34 The causality convention in bond graph represehtation.

Fig. 3.\5. Diffusion chain and transmission matrices.

Fig. 4.1.. An angle dependent transducer.

Fig. 4.2. Bond graph representation of coupled hydrodynarﬁic ﬂdws.

Fig. 4.3. The structure of the coupling element (CPIL) in hydrodyna-

mic flow.
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. 4.4. ’Stationary state hydrodynamic coupling between flows

in a mémbréne.

4.5. Coupled nonstationary flows.

.4.6‘.( Bond graph repreéentation of coupled diffusional flows
{x;ithin a volume element of length dx for a membrane of unit

area.

. 4.7. Arrangement of éoncentration and electrical capacitors

—

at point x and x + Ax of an electrolyte solution.

."4.8. Transport of a univalent cation.

. 4.9.. Bond graph i‘epresenting the electrostatically coupled

flow ‘Qf a univalent anion and cation.

4.10. E";ond-graph represenfatidn of an eléctrolyte solution in-

: Whiéh both electrostatic and hydrodynamic éouplings govern
t'he ionic flows. | |

411 Bond graph representation for the permeation of a binary

N

velevc.trolyte th’rough a membrane. .Solvent flow and hyd'rodynamic” -

coupling not shown.
!

5:1. 'Multiport representation of a chemical transformation.
'5.2". Component i is a reactant in the pth reaction and a |
pfoduct in the qth'reaction_. |

5.3. A causally qorrve‘ct bénd graph for fhe near edqilib-rium '

chemical reaction 2A + 3B &==C.

~5.4. Bond graph represehtation of a system of near.equilibrium
reactions:
A+Bc—C
C “—A\——— 2D

D+ B=E




-189-

Fig. 5.5. The dissipation due to a chemical process may be
represqnted by a two-port resistor.

Fig. 5.6. Bond graph for the reaction A + B==C + D.

Fig. 5.7. Representation of two reactions with a common
corhponent: A#BE——_}C.

Fig. 5.8. Reéresentation of the coupled system of reactions:

bMy+%c5;é%Noc1
NOCI + %IZV—Z———BNO + IC1
| %124-%cn2€§£1c1

F1g 5.9. Representation of an enzymatic reaction
s+Eé£Esé£E+Ia |

Fig. 5.10. Representation of the autocatalytic reaction
X+ Y& 2X.

Fig. 6.1. Chemical diffusional coupling in the floW of two
nonelectrolytes through a membra.nev. |

Fig. 6.2. A subunit of length dx of the reaction diffusion bpnd graph.

Fig. 6.3. Bond graph used to evaluate avéragé diffusional relaxa-

tion time.

Fig. 6.4. Facilitated diffusion.

Fig. 6.5. Facilitated diffusion with near-equilibrium reactions.

Fig. 7.1. Active, bilateral and signal flow boﬁds; |

Fig. 7.2. The effect of NH4+ on the activity of malic enzyme with
malate as the varied substrate. Concentrations of TPNJr and
MNC1., were 0.15 MM and 1 MM, respectively.‘ The pH of the

2

mixture was 7.5. (From Sanwal and Smando, 1969).
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7.3. Modulation of constitutive relation for allosteric
enzyme.
7.4. One-port resistor as a two-port thermal converter.

Note the active bond on the thermal por't, as required by the

second law of thermodynamics.

7.5. (a) Thermistor circuit
(b) Bond graph
7.6. (a) Schematic diagram of the Teorell membrane
oscill#tor.
(b) One-lump bond graph representé.tion.'
7.7. "Expe»rimental and éirmilafed liquid head dif’ference for

N

the Teorell oscillator.
7.8. ;EXperimental and \simulated ﬁembrane electrical
re.Sist'\ance for the Teorell oscillator. ,

8.1.° Pot‘e.ntiai function for capacitivej n-port and its
associated gradient vec’éor field.

8.2. (a) A two-port capacitor reﬁresentéd as a terminal
graph and as a bond grai)h.

(b) Interconnection of multiports with bond graph and

terminal graph representations..

8.3. Junctions, their connection néport representations and

terminal graphs.

. 8.4, One-port potential functions.

-

. 8.5. N-port structure.
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APPENDIX A

‘A.1 In this appendix we briefly summarize some results from

algebraié topology which underlie linear graph theory. The relation
between the algebraic duality of £he conjugate variables (effort, flow)
and the topological duality of the conservation and continuity condi-
tibné (KCL, KVL) is indicated. The reader is referred to the
literature for detaiis and proofs. |

A2 A lineér graph may be considered as a mathema_ti‘cal object
whose properties are abstracted from the actual systerﬁ whose
tonl_ogy it represents. The linear graph consists of a collection of
nodes (0-cells, o). branches (1-cells, gji), and, if the graph is
planar, meshes (2-cells, gJ.Z) ‘with approp.riate orientations. It is
easy to turn the collection of k-cells into a vector spa.cev, Ck’ by
defining linear combinations, called k-chains, €1 with the k cells,
01.<, as a basis:

~

k
c = a.o. a.e R A1
~k JE i~3 J : j ( . )

The dimension of the 0 and 1 chain spaces Co C1 are the
number of nodes and branches, respectively, in the graph. The most

important linear operator on the k-chain vector spaces is the boundary

operator, 9 k:Ck —— Ck e defined by its action on the basis vectors
N :

o.:
~J]

for a node '800° =1, | _

ool o %0 24
for a branch 81'(5 = a(go,ai) =a, -2a, o—=0
2 _
for a2 mesh 82{ = a(ao,ai,az)
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= (3y,3,) - (3g:3) * (aga,) - A’
= (aO’ai) + (a'1 "a"z)\ + (a'AZ:a'_OA),; -

» 0 1
and since ak is a linear operator, ‘
A k _¢ k- - '
9,.c. =05 a0, =Y a. 90, . . ' A2
kST O %575 Z I~ ' ' 42
The fundamental property of the boundary operator is
'ak-i. 8k(-) =0; . ' (A.3)

i.e., the .','boun'daryv of the boundafy" of é.ny" k';chain vanishes.

'Chains for which 8 = 0 are called k-éxcles: and the collection. of

k Sk |
all k-cycles forms a subspace of Ck, denoted,Zk, where Zk

K-chains obtaired from k + 1-chains by application of ak are called

,k—boundafies; and we denote by,BI; the space of all k-boundaries,
i.e., By = (Skegk o = 9111814y fOr some i1 €Ciq):

Since the C, are linear vector spaces, one can define in a

k
: . % :
natural way the scalar product ( -, ) : Ck X .Ck —p R by
| | c ,c:,=k = ‘a.:éﬂf . : A.4) -
- sl =225 -
where .CI; is the space dual to Ck(cochain)

‘Using this structure on C, we can define the adjoint to 9, in

k
the usual way. ! '
. - . | >:< >:< ) >’.<v . V o . . | ..
<3kSk’_Sk_1) =€ &g Spi)s (A.5)
8;;1 is called the coboundary operator and is a lihear map,
* Since C, is finite dimensional there is a natural isomorphism

k

between Ck and C;: (by the Euclidean inner product). However, aAsb

i'nvp"a'ragraph 8.2, there are cogent reasons for maintaining the

distinction between a vectorvspace its dual.

= kerriel(a

<‘\)
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a”li._i; C:i-i —B C, . Itis easily verified that
ES % .
o) -+ 8, _,()=0. o (A.6)
Sk E3 S ES . k
(For (3, ¢, ak-z Sr-20 T (S 19k 28k

= (Ol S ~k 2 =0
By analdgy wit'h the definition of k-cycles, k-cochains for
WhiCh 81'{ S;: = 0 are called k-cocycles; and the collection of all
k-cocydbes forms a subspace vof CI: , depoted by Z;i , where

*s kernel (9 K-cochains which are obtained from k-1 chains

k k)
b

via 8k 1 are called k-coboundaries; and

* # % kK * % '
By = (g €Sk | x =%%.1 Sko1 for some ¢ 4 G ). k.
%

. - - >|l< N *_ * 0
is a k_,—cy_cle, ank ='0, and lg_ka boundary, Ek_ 3k_1 C_q’ then

*
z 3 C

* k
B T (e g G T B Seg) 7O (A7)

i.e., k-cycles annihilate (are "orthogonal'' to) k-coboundaries.

A .3 We will summarize without proof the following key results:

Theorem A.1. Let Z = ker (8 ), the cycle subspace of C‘ ;

%
B1 Im ( ), the coboundary subspace of C :

Then, for a linear graph with b branches and n nodes:

1) dimZ, =b-n+ 1;dirnB>; =n -1,

. sk %k %

2) <Ei’,131> = O\V/b1 €B1, Z €Zi, i.e. (cycles, coboundarles) = 0.
3) If <Si’ OVb € B then 31621; i.e., a 1-chain ortho-

gonal to every %1-coboundary is a cycle.

-

% L %k % -
4) If(gki,*g) =0 516%1, thenc eB1 and FIE €C0 suchthat:
‘ S: = ’805 ; i.e., a 1-cochain orthogonal to every 1-cycle is a

i -coboundary.
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»  >}: sk '* . .
3) (248 202 = BySyr g0l -

. 6) A IChairi has a unique decomposition as [ cycle] + [ boundary].

A .4 Kirchhoff's L.aws are formulated as follows: Given a graph,

G, with n nodes and b branches, we associate with each flow

vect?riz (fi’ <y, fb) a flow 1-chain
b 1 | - .
£ 22 f.o , o . (A9)
~ T, I o : ‘
j=1 :

and to each effort vector e = (ei', <o, eb) an effort 1-cochain.
% b 1 } : ‘ '
e =) eo, . . : {A.10)

. _ |
. . ) ) 4!
- Then the following two theorems give alternate forms for KCL and

KVL, respectively.

" Theorem A.2 (KCL). The following statements are equivvalen't:
1) fis ortho.gonal to all 1-cob<‘)un:'daries‘_,
2) fis :a_. i-cyéle,

.

3) feker (3,

The c'élllec_tion-of all flows satisfying KCL forms a (b - n + 1) dimen-

sional subspace of R b . {fi’ e‘i}.

Theorem A.3 (KVL). The following statements are equivalent:

1) e is orthogonal to any 1-cycle,

v * ’

2) ‘e is’'a 1-coboundary,

. .

3) e eIm(ao).

'The collection of all efforts satisfying KVL forms an n-1 dimen-
o o 2D |
sional subspace of IR .

As a matter of fact, we may simply define the class of

admissible flows and forces by the requirement (-Srné.lé, : 1972)

“ (4]
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* %
feker(ai), e e_Irn(ao‘).
>:< ~ ~

) ok
Since e, €By» ‘by condition (2) of theorem A.3, it follows that
. ' . * k% *
there exists a O~cochain e . such that e, = 9 e., where e
represents the vector of node-to-datum potentials.
A.5 In paragraph 2.1 the incidence matrices A and M may be
viewed as the matrix representations of the boundary and co-

f

boundary operators. Tellegen's Theorem is equivalent to _(A.3)
and/or (A.6), 8.8 = IR 0, which may be interpreted as
an or.thogo‘nal partition _ofR 2b into invariant spbspaces.
A.6. 'i‘he duality betw;:eﬁ the topb‘logical structure described
‘above and the algebraic structure accompanying fhe dynamical
variables e and f is established \\riaStokes' Theorefn. The integral
of k-form dw over 'a k-_‘dimens'ion;l domain D in a manifold is
related to the intégral of the k-1 form wover the k-1 dimensional
boundary of D, 3D, by (Spivak, 1965): S ‘

/dw—f . o (A-11)
If we regard the domain D as a linear functional on the space of k-
forrhs, we .méy writé

(0D, w) =(D, dw

- In this fashion the space of k-forms has been put into duality with
“'the "’space Qf. kv-dornainsi-" WhiCh, iﬁ turn, may be constructed
from the k-chains described ab‘jove. This révlavtionship is the so-
called deRham cohomology. Tl_'le identities d-d = 0 (Poincaré
_Lemmé,) and -9 =0 are in a definite sense isomorphic, and
- generalize the familiar vector identities, div - curl = curl - grad

= 0.
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