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NETWORK THERMODYNAMICS: THE ANAL YSIS OF 
BIOLOGICAL SYSTEMS 

George F. Oster, Alan S. Perelson, and 
Aharon Katchalsky , 

Donner Laboratory and Lawrence Berkeley Laboratory 
University of California, Berkeley, California 94720 

INTRODUCTION 

1.1. Classical therITlodynaITlic approach 

The succe ss of equilibriuITl therITlodynaITlics in describing 

static phenoITlena has inspired ITlany atteITlpts to develop a rigor-

ous therITlodynaITlics of rate processes. 

Onsager (1931) proposed a forITlalisITl for dealing with cou-

pled irreversible processes. His theory was extended by Prigo-

gine (1947), Degroot (1951), Meixner (1941, 1942, 1943) and 

other workers, who developed it into an iITlportant tool for the 

treatITlent of coupled physical cheITlical processes. Onsager1s 

forITlalisITl relates therITlodynaITlic flows to their conjugate forces 

by linear algebraic equations. Sufficiently close to equilibriuITl 

the constitutive relations between flows and forces becoITlelinear 

and, as shown by Onsager, the ITlatrix of the coefficients is fre-

quently sYITlITletric (Truesdell, 1970). The ITlajor advantage of 

the Onsager theory for the analysis of experimental data derives 

frOITl this sYITlITletry condition, which plays the saITle role in the 

study of rate processes as that of the Maxwell relations in equi-

libriuITl phenoITlena: it perITlits the evaluation of flows or force s 
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which are difficult to obtain by direct measurement. 

Another approach, more compatible with rnoderncontin­

uurn mechanics, has been formulat~d by Truesdell and his co-

workers (Truesdell, 1970). This formalism is a true nonlinear 

field theory, developed with great attention to mathematical rig-

or; however, it seems more suited to the mechanics of continua 

than to the complex and heterogeneous structures encountered in 

the living cell. 

More recently, Meixner (1963) has proposed a nonequilib-

rium thermodynamictheoty based on the general theory of linear 

passive systems. The Meixner theory, like the, approach devel-

oped by the present authors, leans heavily on concepts first 

developed in electrical network theory. Meixner, however, has 

limited himself to linear processes, anq like the Truesdell 

school, his work deals primarily with the thermodynamics of 

materials, and not with the highly reticulated structure s of bio-

logical interest. 

In this PCtper, we propose a formalism which, we feel, is 

more appropriate for the phenomenological de scription of biolog­

ical systems. The thrust of modern bi'ology is toward the inves­

tigation of increasingly complex structures. It has become al-' 

most a cliche to acknowledge that living entities are extremely 

complicated, ~eterogeneous, nonlinear systems. They are based 

on a subtle interplay between the energetic rate proce sse s of 

( 

t, 

, ! 

,I i 
i' 
i' 

.. ..; ~ ! 
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transport, reaction and conformational change, on the one hand, 

arid cybernetic flows of information, whose regulatory effects 

are not proportional to their energetic level, on the other. The 

theory outlined in this paper is designed specifically for the 

treatment of coupled, nonlinear, time-dependent thermodynamic 

proce sse s in heterogeneous media and is also capable of incor­

porating nonenergetic, informational flows. The general formal­

ism employs a simple and intuitive graphical notation which em­

phasizes the topological relations of the system under consider­

ation. 

1.2. The network approach 

The prime function of physical theorie s is to organize our 

knowledge into a formal structure for ease in deduction and ma­

nipulation. Classical mechanics was the earliest prototype for 

the class of physical models now called "state determined sys­

tems". In recent years, the underlying mathematical unity of 

most dynamical theories of physics has been clarified (Sudarshan, 

1962; Hermann, 1971). The notion of dynamical systems has been 

formalized, and includes as special cases not only classical me­

chanics but also quantum mechanics, electromagnetism, hydro­

dynamics, elasticity, control theory and electrical circuit theory 

(Desoer, 1970). The principal purpose of this paper is to pro­

pose an extension of the thermodynamic model with a mathemat-
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ical structure inconformity with the existing dynamical theorie s 

of physics. We will not enter too dee ply into the m.athematical 

justification here; this would take" us too Jar afiel~ into the realm. 

of alge braic topology and differentiaLgeometry. We will lim.it 
. . 

ourselves to a detailed account of how network thermodynarl1:ics 
. '. . 

may be applied to s yst~rriS of inte re st in the bi~logical sCience s. 

There are several reasons for approa~hing irreversible 

thermodynamics from the point of view of network theory. The 

problem of analyzing biological systems using the c1assi~al field 

equations is analogous to attempting to describe a television set 

by integrating Maxwell's equa.tions. It is certainly possible !fin 

principle fr ; but in practice', too much irrelevant information is 

required to integrate over such a heterogen:eous, bbJect. Clearly, 

network theory is the correct ana,lyticJl tool for the study of such 

a system. The complexity of, say, a mitochondrion is more on 

the order of a television set than of an anisotropic continuum! 
, , 

An electrical network may certainly be considered anirre-

versible thermodynamic system.' However, the mathematical 

techniques developed by electrical engineers for dealing with cir-
, ' 

cuits appear at first glance to be quite foreign to the Classical 

metho_ds of thermodynamics. Nevertheless, we will show that 

the two disciplines are not, in fact, so incompatible, and t4at, 

by l1:).aking puitable modifications, we can draw upon the engineer-
\. 

ing literature in. modern network and control theory to deal with 

problems of biological complexity. 

. i 

" V"./ 
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A graphical representation for thermodynamic systems 

similar to the circuit diagram in electrical network theory will 

be introduced. Aside from being a pictorial representation of 

the system with obvious intuitive advantages, this graphical no-

tation will reve al the role of system topology in dynamic behav-

ior. It is clear that the organizational structure of biological 

systems is one of their characteristic features. How a televi-

sion set or a biological system is "hooked up" is as vital an in-

gredient to its proper functioning as the energetics of the thermo-

dynamic proce sse s. This aspect of thermodynamic systems has 

>!< 
only recently been considered explicitly. We will see that 

many characteristics of thermodynamic systems previously as-

cribed to energetic restrictions are more properly classified as 

"topological constraints", and, as such, are consequence s of the 

system structure rather than the laws of thermodynamics. 

We will present an algorithm for obtaining the dynamical 

equations directly from the graph, and consequently one may look 

upon the network graph as another notation for the differential 

equations thems.elves. However, since the graph reveals the 

system I S topology, it contains more information than the 

", 
-, Newman and Rice (1971) discuss topological constraints in bio-
chemical networks in relation to self-regulatory behavior, while 
Morowitz ct al. (1964) discus s the role of such constraints in 
determining th~ stability pf metC}bol,ic qet"Y0rk;s. Othmer and 
Sriven (1971) have also recently considered the network aspects 
of biological or ganization. 
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dynamical equations alone, 1. e., many systems with different 

topology are governed by the same dynamical equatioIi"S (Desoer,. 

1970; Oster and Desoer, 1971). 

A word of caution would be proper: one should not equate 

the methods pre sented here with the usual noti.on of "equivale"nt 

circuits". Although our vocabulary will be heavily laced with 

terminology drawn from electrical engineering, the concept~ 

apply equally well to a wide class of dynamical systems de­

scribed by ordinary differential equations (MacFarlane, 1970; 

Koenig et al. 1969). 

It should be noted that, in the network representation of 

. thermodynamic systems, one introduces a schematic separation 

of various reversible and irreversible processes which actually 

may proceed simultaneously at each point i~ the system. This 

reticulation of distdbutedproc"e sse s is merely a conce·ptual de­

vice which doe s not affe ct the .re suIting mathematical de scrip-

tion. Previously, this purely mathematical device has been em-

ployed mainly with reference to those systems where such a 

se par ation as sume s conc~ete form, as in ele ctrical rie'tworks, 
)'< 

hydraulic pipe systems, etc. '(MacFarlane, 1970; Koenig et al. 

" 1969; Shearer et aL1967). 

"Network analogs" for continuous systems have been a 

long-standing toolin enginee ring arid neurophysiology (Cole, 1968). 
* . .. . . 

However, Penfield and Haus (1967) have alsoeinployed this 
construction for continuum electrodynamics." 

" " 

, , 
t:' ; 

. ~. 



" -~ \ ,-, 

-7-

Kron (1943, 1944, 1945, 1946, 1948), in fact, devise.d,.network 

analogs for practically all the field theories of physics, includ-

ing the equations of Schroedinger, Maxwell, and Navier-Stoke s. 

The success of these analogs in emulating the dynamical behavior 

of continuum systems to any desired degree of accuracy seemed 

remarkable. However, it was soon realized that this success 

was no accident, but rather a natural consequence of the under-

lying unity of the mathematical structure s of network and fie ld 

theory. Roth (1955), and later, Branin (1962, 1966), demon-

strated that the operational structures of linear graph theory and 

the vector calculus were identical (a fact long known to algebraic 

topologists). Trent (1955) fir st demonstrated how an isomorph-

ism between a distributed physical system and a linear graph 

(network) could be constructed. Later authors further devel-

oped this technique; and presently, network methods for treat-

ing dynamical systems are beooming standard tools in engineer-

ing curricula (MacFarlane, 1970; Koenig et al. 1969; 

Shearer et al. 1967). In each instance, there are well defined 

criteria for determining the validity of the network approxima-

tion to the field equations; these conditions turn outto be equiv-

alent to the "local equilibrium" postulate of nonequilibrium 

the rmod ynami c s . We will se~, however, that not all network 

repre sentations arise- from a reticulation of the continuum. The \ 

most important example for our purpose will be chemical 
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reaction networks" which are ~ priori ",naturallydiscrete ". 

A major difficulty in extending the network te chnique to gen­

ered thermodynamic systems, aside from the ~athermatical ques-

tions, is one of notation. While the network approach offers ob­

vious advantages in treating complicated systems, the linear 

graph notation usually employed in engineering become s cumber-

some and devoid of intuitive content. Moreover, thermodynam-

ics is concerned principally with transduction of energy from'one 

form to another, e.g. mechanochemical, ,electrochemical, ther­

moelectric processes, etc. Linear graphs are not a suitable tool 

for such situations; but fortunately there exists an alternative no-

tation for energetic systems: * "bond graphs" .. These will prove 

admirably suited to, the purposes of irreversible thermodynam­

ics. The elucidation of the bond graph representation is one of 

the main objectives of this work. 

1.3. Thermodynamics and multiports 

1.3.1. 

The network approach developed herein requires that we 

view thermodynamics from a slightly different set of premises. 

Attention is focussed on measurable quantities, such as temper-, 

ature and pre s sure; and the thermodynamicpotentialfuflctions 

~< 
So-called because of their formal resemblance to chemical 

bond structure s. 

.\,.1. 
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'~1 ":I 

lose their primacy, emerging as derived quantities for certain 

systems. This approach was originally taken by Bronsted more 

than thirty years ago, but because of the great convenience of the 

thermodynamic potential functions for computing equilibrium 
-,-

conditions, it did not come into common use :" However, Bron-

sted's approach is implicitly followed by moderJ:'l axiomatic de-

velopments of circuit theory. To emphasize the difference in 

conceptual structure, we will briefly reexamine equilibrium 

thermodynamics from the "multiport" viewpoint. In Section 

VIII, we will return to these matters for a more rigorous inspec-

tion. 

1.3.2. 

Both network theory and thermodynamics can be regarded, 

as pointed out by Shottky, as the science of "black boxes". That 

is, we regard a thermodynamic system as a black box whose en-

tire internal constitution is characterized only by a set of exter-

nal measurements ("constitutive relations"). For example, con-

sider the familiar piston-cylinder arrangement shown in Fig. 

1.1a. 

This is a system capable of interacting with its environ-

ment via two energetic modes, thermal and mechanical. In 

>:< 
. A review of Bronsted's approach to thermodynamics, with ref-
erence s to the original literature, may be found in the article of 
LeMer et al. (1949). 
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general, we will refer to each such interaction ITlode as an ~-

ergy "port". The piston-cylinder is a therITloITlechanical two-port. 

Later, we will see that an energy port need not refe,r to a:ny phys­

ically distinct location but is siITlply a picture sque nOITlenclature 

for the interaction ITlod~ itself. (Indeed, an n-port ITlay , 

not be a physically distinct entity at all; shortly, we will give a 

precise definition of an n-port as a matheITlatical object.) 

As sociated with each porto! a therITlodynamic systeITl are 

a pair ofvaria:bl~s, theITleasureITlent of which deterITlines the 

constitutive. behavior of the systeITl. For exaITlple, the two-port 

in Fig. 1.1a has two constitutive planes, (p, V) and (T,S), where 

the ITlechanical andtherITlal response of the systeITl to external . 
ITlanlpulations is plotted. In general, the response curves at any 

one port will depend on the boundary conditions iITlposed at all of 

the othe r ports. 

To facilitate the graphical notation for interconnecting n-

ports to be introduced later, we will repre sent each port by an 

ideal energy bond, Fig. 1.1b. These bonds, a generalization of per-
, . 

fectly conducting wires or infinitely stiff rods, are assuITled to 

transmit energy instantaneously and without delay or loss between 

one systeITl and another. In the case of electrical device s, the 

ports a:re the terITlinal pairs, Fig. 1.1c. For other therITlO-

dynamic'systeITls, these are only scheITlatic reticulations of sys-

teITl inte rface s. 

• 
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The port variables come in pairs, for reasons to be dis-

cussed in Section VIII. However, of the 2n-port variables (e. g. 

p, V, T, S) not all are indep~ndeht. A selection of some subset 

serves. to fix the v;alues of the remaining ones.' For an ideal gas, 

(p, V) suffice to determine the state. If the cylinder in Fig. 1.1a 

contains a condensing fluid, (V, T) may be chosen as independent 

variable s. (In the usual case, specifying one variable from each 

port suffices to determine the state). 

The function mapping the inde pendent port variable s into 

the dependent port variables is called the constitutive relation, 

or equation of state, of the n-port. Formally, we will define an 

n-port via its constitutive relation. 

* DEFINITION: An n-port is a map IF which assigns to a 
set of n independent port variables the set of n conjugate 
variables: . 

x -.. y (x), ( 1.1) - - ""' 

where . . ** ~ and X are the vectors of port variables, e. g. 

(S, V, n.) ~ (T,-p, f.L.). 
1 1 

For simplicity, we shall assume that IF is sufficiently dif-

ferentiable. For example, the simple ele ctrical capacitor shown 

in Fig. 1.1c is a one-port whose constitutive relationis.simply: 

q ... ,.if (q), where q is the charge stored by the capaCitor and-tris the 

~:'This definition will be made more precise ih Section VIII. 
*~:.: 

lR n is simply Euclidean n-space equipped with the usual vector 
s pace structure. 
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voltage acros s the capaCitor plate s ~ 

1.3.3. 

'There IS an important difference in viewp()int between 

classical thermodynamics a:nd circuit theory regarding thercile 

of the port variables and ~'onstitutive relations. This difference 

is reflecte'd most strongly in the different methods used to com-

pute equilibrium or stationary states. 

The classical approach to equilibrium thermodynamics 

may be summarized sucCinctly in the following way (Callen, 

1960): A !!,state space ll is constructed, the coordinates of which . . . . 

are the relevant thermodynamic !Idisplacements II for the system 

under consideration. The displacements are, according to Gibbs, 

the 'iEixtensive II pr.opertie,s-entropy (S), vohune (V), number of 

moles of the jJ:h componen,~ (ni ), etc. Representing all the ,dis-

. T. . 
placements by a vector ~ = (S, V, n 1, n 2 ... ) , we may defIne 

'n 
a real-valued functiori on this state ~pace, U: lR -- lR: 

(1.2) 

It is now postulated that the equilibrium properties of the system 

are completely specified by the functiori U. For example, we may 

define the potentials, conjugate to the displacements, as the com-

~'-

ponents of DU, the gradient of U. " --
~'-

"We denote by D the differential operator (Jacobian), as in 
Fleming (1965). 
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aU aU au 
{a-s'aV'an' 

1 

~. (T, -p, ~1' 

.1 •• 

(1. 3) 
1-1<) . 

The matrix of second partial derivatives of U, i.e., the Hessian, 

is then trivially symmetric by the equality of mixed parital deriv-

atives. 

>:~ 
yielding the familiar reciprocal relations of Maxwell (Callen, 

1960) . 

In addition, the equilibrium configuration of a thermo-

dynamic n-port is computed by minimizing U (or the appropriate 

Legendre transform) subject to the appropriate boundary con-
\ 

straints (e. g. T = constant; V = constant) (Callen, 1960). 

Bronst~d's approach, however, takes as primitive quan-

titie s the experimentally measurable port variable s ~ and X, 

rather than the internal energy U. Without employing a poten-

tial function, the equilibrium state cannot be characterized by an 

extremum principle, but must be computed explicitly from the 

constitutiv~ relation and the boundary constraints. Maxwell 

reciprocity is not an automatic consequence of a differentiable 

potential function, but must now be viewed as an experimental 

~:<Roughly speaking, reciprocity implies that the input and output 
ports of a system may be interchanged without affecting the sys­
tem's "small signal" response to a given excitation. 
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property which place s an additional re striction on the constitutive 

re lation IF (. ). In Se ction VIII, we will inve stigate the nature of 
, ,... 

this re strictio'n further. This shift in viewpoint is necessary; 

for although reciprocity is usually assumed to be valid for all 

uniform equilibrium systems, we will frequently encounter non-

equilibrium processes that are, not reciprocal (e. g. transistors 

and chemical reactions) and whose constitutive relation there"': 

fore cannot be characterized by a potential function. 

The description of an n-port is, of course, considerably 

simplified when reciprocity holds. For when the Jacobian of IF ,... 

is sym.m.etric, , ,IF may be expressed as a gradient vector field 

n on ]R.. That is, all port constitutive relations are summarized 
--' .J '. 

by a single potential function and may be regained explicitly from 

*' , the components of DU (c.£., equation 1.3). 

:;!, 
For uniform fluid systems, another constitutive relation is 

usually postulated in addition to reciprocity: homogeneity. That ' 
is, given a reciprocal constitutive relation, one supposes that the 
fluid mass may be augmented by any desired amount without al­
tering the values of the intensive variables (T, p, etc.) Hence, 
the constitutive assumption takes the form UCA-x) =, AU (~), i. e. , 
U has the form of a generalized cone over ]R.n. ,... 

We will have occasion to use this constitutive assumption fre­
quently for processes occurring in uniform solutions. It is not 
a generally valid thermodynamic relation, but merely charac­
teristic' of a certain class of systems. For such systems, the 
Gibbs-D,uhem relation allows us to eliminate one of the extensive 
variables. 

- ; 
1 

! 

- I 
i 
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1.4. State variable s. 

1.4.1. 

The only dynamical "processes" permitted by classical 

thermodynamics are the reve rsible or "quasi- static" proce sse s, 

which are merely a parametrized sequence of equilibrium states. 

We cannot obtain a true dynamical theory by "dividing an equilib-

rium equation by dt". Consequently, we will start with a dynam-

ical theory and require that it reduce to the correct equilibrium 

theory. The basic procedure of network thermodynamics is as 

follows. 

If the overall system is continuous, it is first subdivided 

mentally into homogeneous subsystems; and, as previously men-

tioned, each,subsystem is further separated conceptually into 

reversible and irreversible parts. The reversible subsystems 

are assumed to store energy without loss, while the irreversible 

>!.: 
subsystems are assumed to dissipate energy without storage. 

Each of the se subsystems will be identified with an n- port. 

The fundamental thermodynamic quantity in this treatment 

is energy rate, or "power", instead of energy. Systems amen-

able to a network repre sentation frequently share one common 

property: the energy rate processes may be expressed as a 

*Irt electrical networks, this conceptual separation assumes 
concrete form: an ideal capacitor store s without dis sipation, 
an ideal resistor dissipates without storage, and they may be 
approximate d as se parate physical devi'ce s. 
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product of an e £fort or for ce variable e and a flow variable' f 

such that the power P = ef. (In electrical networks these are, 

of course, voltage and current.) Most thermodynarrii~ processes 

can be so characterized. Note that we are defi~ing effort an:d 
. .' 

flow as the primitive state variable s, rather than constructing 
; . . . 

them from the Gibbs equation, as is the usual practice; conse'-

quently, it is not necessary that their product have the units of 

power. 

The variablese and· f represent two types of I!measure-

ments" which may be carried out conceptually.on each ideal 
. . '" 

. . . : 

subsystem. Since much of our terminology and notation is 

borrowed from circuit and system theory, we will not hesitate 

to introduce a sorriewhatcolloquialbut descriptive vocabulary 

into our discussion. Indeed, tJ:1e' engineering terminology ero-

ployed to describe the conjugate variables eand f is that of 

across and through variables,suggesting that the potential 

variable or effort is a "two-point" measurement performed 

1/ acros s" the network. element (or between a point and some im-

plied reference state, e. g, voltage difference). The flow is 

imagined il).e asur~d "through" an appropriate instrument, e. g. 

an ammeter, and is a '''one- point" me.asurement. 

. . 

These terms will beclarifiedsubsequently,·· but here they 

serve to introduce, in an intuitive manner, some important 

. ~. 
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~~ 
topological notions. They will be illustrated by a simple ex-

ample from mechanics in Section II, which will also serve to 

introduce the topological graph notation. 

We have taken e (effort) and f (flow) as our basic dynam-

ical variable s. In 'ele ctrical network theory, one associate s a 

current and a voltage with each branch of the network. The cur-

rent is re quired to obey a local conservation law in the form of 

Kirchhoff's Current Laws (KCL), and the potential is required to 

be unique at each point of the network. This latter condition is 

just Kirchhoff's Voltage Law (KVL). 

Kirchhoff's l-aws are re statements of conservation and 

continuity re strictions and are therefore independent of the 

nature of the elements comprising a network. They constitute 

a set of line ar constraints on the instantaneous value s that the 

through and acros s variable s can attain. Since the form of the se 

constraints depends only upon the way in which the network ele-

ments are connected, Kirchhoff's laws are called topological 

constraints. Viewing a network as another notation for the dif-

ferential equations describing a system, Kirchhoff's laws are 

-'--.' The classification of "extensive" and "intensive" variables 
makes little sense for nonequilibrium systems, since all "ex­
tension variable s" must be reduced to local, or spe cific quan­
titie s, i. e., pe r unit mass or volume. Moreover, for the sys­
tems theory to be developed here, a quantity mayor may not be 
additive, depending on the system topology, e.g. the additivity 
of voltages on capacitors depends on whether they are connected 
in series or in parallel (Redlich, 1970). 
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seen to be nothing more than the boundary conditions each sub-

system imposes on its neighbors. 

We will impose a similar requirement on our effort and 

fiow variables:" the through variables are defined by the require­

ment of conservation through subsystem boundaries while the 

acrossvariables, by definition, are unique and continuous func-

tionsof position across the boundaries. We will refer to COIl- . 

served, or through, variables generically as KCL variables, 

and potential, or across, variables as KVL variables. 

1.4.2. 

Since, in the network representation, the e and f vari-.. ,.., 

abIes are primary concepts, the displacementsOi classical 

thermodynamics appear in our theory as new state variables de-

fined by integration. Thus, the genera'lized "displacement" 3 

is related to the flow f by the definition: ,.., 

f (t) dt. ( 1.5) ..., 

Similarly, a generalized "momentum'l (or "impulse") 1: 'may be 

defined by integration of the effort~: 

t 

~ ~(O) +S: 
..., 0 

(1-6) 'e(t)dt. ,.., . 

4' 

I 

,I, 

.x .' 
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'I 
I 

Thus, for example, the advancement of a chemical reaction g 

is a generalized displacement variable defined by: 

~ (t) 6. 

t 

g (O) + S 
° 

J- dt 
r ' 

whe re J • the rate of the chemical reaction, is the flow variable. 
r 

In electrical networks, the equivalent to the generalized momen-

tum ~ is the magnetic flux cj>, which is related to the voltage v 

~'< 
by an equation identical with 1. 6.' Note that, since f and e are 

through and across variables, respectively, the derived quanti­

tie s q and ~/ are also, re spectively, thrbugh and across vari­

ables. 

Table 1 lists the most common choices of through and 

!::< >:~ 
acros s variable s encountered in pr actice. 

1.5. Constitutive relations 

1.5.1 

Before the state functions (e, f,_ty, q) can be used to de­

scribe the behavior of a real system, we must introduce the 

physical properties of the system. This is done by defining 

functional relationships between the state variables, called 

~:<In mechanics, Newton's original definition of momentum was in 
the integral form, --1J--' =fVo + fFdt, i. e., a mas s store s energy 
by accumulating the net effect of an applied force. 

~t:* 
Note that mechanical force is a KCL variable since it obeys a 

"conservation" rule, i.e., d'Alemb~rt's Principle: LF- FI= 0, 
where FI is the "inertial force" mv. This apparent rever sal 
of role between effort and flow quantitie s arise s from the use of 
Lagrangian (moving) coordinate frame s in me chanics and 
Eulerian (stationary) frames in continuum theory (Trent, 1955). 



-20-

constitutive relations (equations ·of state, characteristic equations, 

etc.). These functions m.ustbe determ.ined either experimentally 

or from a "lowero'rder ll theory such as statistical m.echanics. 
. I 

Each constitutive relation relates a KGL variable (f or q) 

with a KVL variable feor ;tV). . There are four possible binary 

relations between the four state variable s. 

In paragraph 1.3.2, we defined a m.ultiport by i1:s constitu­

tive relation, IF: 1R
n 

,-+ 1R n. Since there are four dynamical 

variables available ,to us now, we define four basic multiport 

elem.ents by the following constitutive relations. The four pos-

sible constitutive relations are: 

(a) 2c (~, q) = 0 capacitance; 
,." ,.., 

(b) 2L~!) = 0 inductance; . 
(1. 7) 

(c) 2R (~, !) = 0 re sistance: 

(d) <PM(Jo/ q) = 0, mem.dstance. 
,..., ,(OW t"W 

Now there are three ways to integrate the basic energy r'ate 

equation, P = e . f: 

t 

(a) EC(t) = EC(O) + So e " 

" .' q(t) .. 

f dt = EC(O) + S"'" e(q) dq 
,.., . . q(O) ,..,,.., ,.., 

,.., 
"2{t) 

= E L(O) + S ,.., f'/V) d 12' 
"P10).'""' '""' '""' 

'""' 

* '.' . 
Note that ED(-oo, t) >0 is the passivity condition(Desoerand 

Kuh, 1969). '.' 

j 

i 
i 

~- i 

. I 
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The first integral (1.8a) represents "displacement" or capaci-

tive energy storage; in order to perform the integration, we re-

quire the constitutive function (1. 7a) in the form e (q). For a 
, ""' ""' 

linear electrical ckpacitor, this is just e = q/C. In an ideal 

mixture, the chemJcal potential of species i, fJ.i' is the effort 

variable and the mole number n. is the displacement variable. 
IfJ.. - fJ..O 

The constitutive relation is n i = V exp( lRTl ), where V is 

the volume of the element and fJ..O is the reference potential. 
1 

The incremental capacitance is defined as: 

aq 
D. ""' 

C=ae-= 
an. 

1 

(afJ..) V,T,n.' 
J J 

which, for an ideal mixture, gives 
n, 

1 
C. = 

1 RT 

(1. 9) 

The existence and uniqueness of the incremental capacitance C(e) 

is equivalent to the condition of "local equilibrium", which is the 

basic postulate underlying both network and conventional irre-

versible thermodynamics. 

Energy may also be stored as a result of relative motion 

of mass or charge (i. e., kinetic or electromagnetic energy). If 

we are given the constitutive relation (i. 7b) between 'f-' and f, 

the second integration (1.8b) may be carried out. This type of 

energy storage is called inductive, or kinetic energy, and the 

incremental inductance is defined by: 

L = (1.i0) 
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The .third integral. (1.8c) represents energy, dissipation. 

Time cannot be parametrized out of the integral, arid the "resis­

. tive" constituti~e relation (1.7c) between eand·/frnustbe sup-

plied. For example, the effort conjugate to a diffusional flow 

J isa chemical potential differenceb.\.l., and the incremental 

resistance is defined by: 

=8 (Ap.) 
8J 

The fourth constitutive relation (1. 7d) between integrated 

flow and integrated effort has not been employed in thermody-
. . , . . 

namics heretofore. Chua (1971) has given the nametlmemristance" 

to this relation, since it behaves dynamically like a displacement 

. controlled resistance: 

~1<2. -lJ; (q); P. = ~ (q) '1; t... toW f'"-' f"o.I ,...,._ 

ore = M(q) f, ,..., .. ,...,. ,..., ,.., 

where ~(W is the "incremental memristance". For the present, 

we merely: note that, from an axiomatic viewpoint, this constitu-

tive relation is as .fundamental as the other three and is en-

countered in engineering practice. Figure 1.2 is the "state di-

agram" illustrating tllese relation~hips. Thisdiagrarn sum-
. . ". '. 

marize sthe entire logical structure of the dynamical systems 

dealt withhere. 

Each methbd of integration or energy processing requires 

a constitutive relation: e(q) for the first; f(;o) for the second; ,.., ,.., 

,~' 
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and £(!) or !J£) for the third. We now int'roduce a symbolic 

shorthand for each process by defining ideal "elements", de-

noted by C, L, R, M, respectively. The process of energy 

storage and dissipation proceeds at each point in the system, 

but the elements C, L, R, M are to be regarded as conceptu-

-ally separate subsystems, which communicate energetically 

only via ideal energy bonds. This separation, which is purely 

conceptual, will always re gain in the appropriate limiting pro-

cess the correct continuum behavior. We emphasize that the 

symbols (R, L, C, M) are merely a symbolic shorthand for the 

constitutive relations determining the method of energy process-

~!< 
ing.· The manner in which these elements, or subsystems, are 

to be connected is determined by the system topology and will be 

the subject of Section II. 

The fact that each element may be characterized by a pair 

of conjugate variables with a unique constitutive relation between 

them is a fundamental postulate for our formalism. Physically, 

':< For convenience, we will also use separate symbols, E and F, 
to denote effort and flow sources, respectively. Sources are not 
new elements but may be viewed as nonlinear re sistor s. An ef­
fort source is a one-port resistor whose constitutive relation is 
e(f) = E = constant for all f, while a flow source is a~ne-port re­
sistor whose constitutive relation is f(e) = F = constant for all e. 
Alternatively, an effort source may be viewed as a cafacitor, 

with infinite capacitance, since for a capacitor ~; =:= C' and, if 
C -+ 00, e -+ E = constant. Similarly, a flow source may be viewed 
as an inductor with infinite inductance. 
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it says that it is possible to choose a volume element, small 

enough that its internal relaxation times are much shorter than 

those of the whole' system, yet large enough to make fluctuations 

in the state parameters negligible. 

The ideal elements R, L, C, M, E, F, plus one additional 

device to deal with energy coupling and transduction (introduced 

in Section II), are sufficient to represent, by ordinary differen­

tial state equations, most thermodynamic systems. 

. ; 
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II. TOPOLOGICAL GRAPH REPRESENTATION FOR SIMPLE 
SYSTEMS 

2.1. Representation of a mechanical model 

2.1.1 

In order to introduce the topological methods of repre-

senting physical systems, we shall consider a simple mechan-

ical example consisting of masses, springs and dashpots. Such 

a system is inherently discrete and will serve as a convenient 

illustration to introduce the topological notions needed for the 

analysis of more complex biological systems. We shall not 

deal to any great extent with linear graph theory since it is ad-

equately treated in the technical literature (Berge, 1962; Berge 

and Ghouila-Houri, 1965; Harary, 1969; Seshu and Reed, 1961). 

The example consists of two masses, two springs and a 

dashpot connected as shown in Fig. 2. 1a. 

According to Newton's second law, the sum of the forces 

acting on any element in this system must be equal to mv-; or 

I Fi - mv = 0, ( 2.1) 

which is d'Alembert's principle. Considering mv as an iner-

tial force, equation(2.1)has the same form as Kirchhoff's cur-

rent law at a node. Therefore, mechanical forces may be 

treated as "through" variables, i. e., as a conserved quantity 
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IIflowing" through the element. The state variable s of our sys-

tem corresponding to the generalized variables e, f, q'f2- are 

v', F, Xl and 1-' where v' is the relative velocity, F is the 

force, x' the relative displacement, and (/J the momentum. The 

relative velocity at any location in the system is a uniq,ue func-
. . 

tion of position, and therefore sums to zero around a closed 

loop. Hence. relative velocity is a KVL variable. In mechanical 

systems, power is expressed as P = Fv'; and is therefore a prod-

uct of a through and an across variable. 

: In mechanical systems force is a KCL v:ariable; in 

electrical or thermodynamic systems it is a KVL variable· This 

peculiar difference is due to a change in the choice of coordinate 

system. Electrical or thermodynamic systems are generally de-

scribed in a fixed or Eulerian coodinate system, while for 

mechanical systerTls it is more convenient to choose a Lagran-

gian coordinate system which moves with the particular element 

of the system. It is this difference in viewpoint which make s the 

mechanical forces KCL variables, while the electrical or thermo-

dynamic potentials are KVL variable s (Trent, 1955). [If, how-

ever, we generate the dual linear graph of a mechanical system, 

the forces become across variables and d' Alembert' s principle 

may be interprete~ as Kirchhoff's loop law. This leads to the 

. * usual "mass-inductance analogy" and demonstrates the 
". 
:"The mass~inductance correspondence, however, fails for non-
planar graphs (Shearer et al., 1967). 

I' 
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flexibility of the choice of KCL and KVL variables.] 

Now let us examine in some detail the characteristics of 

the elements composing the mechanical system. We wish to 

demonstrate that the masses, the springs and the dashpot can 

each be identified with the appropriate branch of a linear graph, 

or network, and so may be regarded as a one-port, or two-

terminal, element. A two-terminal element has two distinguish-

able ends or terminals, as is the case with an electrical resistor 

or mechanical spring. In a more abstract sense, a one-port el-

ement may be considered any element which can be described by 

a constitutive relation between a single through and a single 

acros s variable. This notion, as we have seen, can be general-

ized: an n- port element is de scribable by a constitutive relation 

between n-through and n- acros s variables repre sented geometri-

cally as an n-dimensional constitutive surface in a 2n-dimensional 

space. 

a). The ideal spring has no mass and the forces acting at 

each point of the spring must bala~ce; thus force is transmitted 

'tthrough" the spring. The force developed by the spring depends 

on Xl, the instantaneous displacement of its ends or terminals 

from the equilibrium position - , '-.-x, 1. e., x = x-x. Evidently Xl 

is an acros s variable. 

The spring is character'ized by a relation between one 

through and one acros s variable and is accordingly a two-
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terminal or one-port element. In a linear graph, the spring is 

rep:r,-esentedby a branch whose terminals ,cor,respond t() those of 

the spring itself. 

The spring may be considered as a generalized inductor 

'since its constitutive relation 

can be differentiated to yield 

dx' 
v' == 

dt 

(2.2) 

(2.3) 

If we denote dgL/dF by L, and identify the force F with the KCL 

variable f, and the across variable v' with e, equation (2.3) be-

comes 

which is isomorphic to the inductor equation. The energy stored 

by the spring at any instant of time is given by 

E = S Fdx' (2.4) 

, -1 
which, for a linear constitutive relation, F = g (x') = Kx', give;s ,L " 

the' quadratic form 

E = i K(x,)2. 

b). The ideal dashpot is a, purely dissipative element, a.n-

alogous to a generalized resistor, and is characterized by a 

, ! 
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constitutive relation between the force F and the velocity VI. 

The velocity VI is the relative velocity of the dashpot ends 

VI = vi - v2' where vi and v
2 

are the velocity of the terminals 

of the dashpot with respect to an arbitrarily chosen ground. The 

dashpot is clearly a two-terminal element and is represented in 

the linear graph by a branch. The constitutive relation of the 

F 
dashpot generates a state function, "the content" G == f vldF. 

o 
For linear constitutive relations, 

(2.5) 

G =' SF v'dF = .i. RF2. 
• 0 2 

(2.6) 

c). The mass is an element whose momentum obeys a 

"universal" constitutive relation 

2 -1/2 
v

2 
) 

c 
(2.7) 

In most applications, the velocity v of the mas s is so small, as 

compared to the velocity of light, that (2/ = mv is a valid approx­

imation. It is not obvious that the mass is a two-terminal object 

until one considers how its velocity is measured. The mass 

stores energy due to its motion relative to an inertial reference 

fr arne, i. e., v is actually VI = V - v, 
g 

where v is the velocity 
g 

of the "ground" (or inertial frame). To establish the mas s as a 

two-terminal element, we place one terminal on the mass itself 



-30-

and the other on the ground with resp~~t to which v' is measured. 

The constitutive relation for the mass ,is Newton's law, 

m(dv/dt) = F. If we note that F is a through variable (f) and v 

an acros s variable (e),' and identify m with the capacitance C, 

we see that a mass is isomorphic to a generalized capacitor: 

C de =' f. 
dt 

Let us now come back to the system of 2 mas se s, 2 springs 

and a dashpot represented in Fig. 2.1a. The Ifwiringlf diagram 

of the hypothetical instruments (lfacross meters lf ) required to 

continuousiy monitor the state of each element is shown ihFig. 

2.1b. Since the node s (b, c, e, 1) and (f, d, 2) have the same veloc-. 

ity, they may be identified and the system represented schemat-

ically as in Fig. 2.1c. Finally, by suppressing the element sym-

boIs, we arrive at the structure shown in Fig.2.1d, which is 

, called a linear graph, or topological graph. In this form, only 

the system connections, i. e., the topological relationships be-

tween elements, are displayed. 

If we append a set of arbitrary sign conventions to the graph, 

as shown in-the figure,we obtain a directed graph. Associated 

with 'each branchof the graph are two dynamical quantities, one 

obeying KCL and the other KVL: in this example they are the 

force and the velocity difference. 

2.1.2 

Let us now write Kirchhoff's laws explicitly using the 
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numbering and sign conventions on the graph. For the node laws 

(KCL), a branch will be considered positive if it is directed out 

of a node and negativ~ if it is directed into a node. For the loop 

laws (KVL), we number the m loops or "meshes" and define 

clockwise as the positive mesh direction, so that a branch bound-

ing a mesh is positive if it agrees with the mesh direction and 

negative otherwise. Hence, in Fig. 2.1d, 

Node A; F1 + F
2

+F
4

+F
S 

= 0 KCL: (2.8) 

Node B: F3 - F
4

-F
S

=0 

Node g: -F
1 

-F
2

-F
3

=0. 

Mesh a: -v + v = 0 
1 2 

KVL: (2.9) 

Mesh b: -v
2 

+ v3 + v = 4 
0 

Mesh c: -v 4 + v = S 
O. 

Note that only two of the three node equations are linearly' inde-

pendent; so, by convention, we may omit the ground node from our 

considerations. 

Equations (2.8) and (2.9) may be written in matrix form by 

introducing the state vector s ~ = (F l' F 2' F 3' F 4' F S), 

v = (vi' v2 ' v 3 ' v 4 ' v S)· 

n nOdes{[ ~ ~ l-!-! J F1 
F2 
F3 

b-branches F4 
FS 

m meshes 

[

. -1 1 0 0 0 JI 
0-1 1 1 0 

~ 
. b-branches 

= 0 or A F = 0 

or M • v = O. ...., 

(2.10) 

(2.11) 
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These matrices could have been obtained directly from. the graph 

by the following algorithm: 

a.. = 
IJ 

+ 1 

1 

0 

if hranch j is 

if branch j is 

otherwise 

directed out of node i 

directed into node i 

+ 1 if branch j 'bounds mesh k in the positive direction 
) 

~j = 1 if branch j bounds mesh k in the negative direction 

0 if branch j is not in me sh k 

The matrices A and M are called the connection matrices 

for the linear graph since they summarize how tile system is 
, , 

"hooked up, "i. e., its topology. It may be shown that, for 

continuum systems, A and M are related to the vector field. 

operators divergence and curl (Branin, .1962, 1966). 

The equations of motion for an arbitrarily complicated 

system can be written down simply and algorithmically by con'-

structing the linear graph for the system, writing the connection 

matrices and substituting in the constitutive relations for the 

elements (Desoer & Kuh, 1969). The mathematical role of the 

conservation and continuity conditions as embodied in KCL and 

KVL is to impose certain linear' restrictions on the possible 

behavior of each element in the system, i. e., the complete 2b-

dimensional space of states is restricted to a set of linear 

subspaces(the Kirchhoff subspace). In this fashion, the 

elements act as boundary conditions on one another , giving the 

'. , 

- I 
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entire assembly' a dynamical character which is quite different' 

from the subunit behavior. The connection matrices provide a 

simple and important method of coding the system topology in a 

three word code: (+1, -1, 0). Of course, the present system was 

conveniently discrete to begin with; however, the same technique 

can be applied to general thermodynamic systems by constructing 

the appropriate graphical representations. 

The fact that F acts as a conserved quantity and v is a unique 
~ . ~ 

function of position can be summarized in two alternate expres-

sions of Kirchhoff's laws. We define two new sta'te vectors as 

follows (Desoer & Kuh, 1969): 

(i) Since the velocity is a unique function of position, 

we may determine the velocity difference v' across each branch by 

measurements with respect to the common ground node g, (the 
, 

inertial frame), e.g. Vs = VB - VA = (vA - v
g

) - (vB - v
g

) . 
.... 

Therefore, if we define a new state vector v, whose components 

T .... 
v = A v. 
~ ~ ~ 

(ii) By assigning a flow to each mesh, of the linear graph, 

another state vector may be defined, F == (F, F
b

, F ). We may 
~ a c 

regard each branch flow to be a linear combination of mesh 

flows, e. g., F 4 =F b - F c . Then KCL may be written in the 

equivalent form: 
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( 2.13) 

The reader may easily verify by direct multiplication ,the follow­

ing crucial fact concerning the connection matrices ~ and ~: 

AMT = 0, (2.14) 

MAT = 0. 
'" '" 

These relations may be summarized as follows (Branin, 1962, 

1966): , 
MT A 

F .,. F '" • ° (KCL) 
I, 

M AT 
A 

° .- .. '" v (KCL) v 

mesh branch node 

Let us now examine the total power flowing in the system: 

T b 
F v = ~ F. v. 

i=1 1;t. 

From equations (2.10) and (2.12), r 

T TTA T" 
F v = F A v = (AF) v = 0. ,..., ,.... ,.... ,..., ,.... ,.." 

(2.16) 

The statement F T v = 0, or in general for any set of KCL and 

KVL variables 
(2.17) 

is known as Tellegen' s The.orem, and may be interpre~ed asap 

. orthogonality condition between the state vectors ~ a~d~in fFt2'b 

(Tellegen,- 1952; Brayton & Moser, 1964; Penfield et aL, 1970). 
. '. ~ 

In paragraph 8.7 we will derive several importa~t thermodynamic 

results from this theorem. It is important to realize that only 

.-

, . , 

. ! , 
! 

.~ .. 
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KCL and KVL were employed in the derivation of Tellegen' s 

Theorem; it is thus seen to depend only on the system topology 

and is completely independent of the nature of the elements 

represented by the branches (nonlinear, time dependent, etc.). 

2.2 Nonelectrolyte diffusion through a homogeneous membrane 

The extension of the linear graph concept toa continuous 

system such as membrane transport is a straightforward opera-

tion. The system we will consider consists of a homogeneous 

membrane and two bounding reserv~irs, Fig. 2.2a. The trans-

port of a chemical species acros s the membrane is accompanied 

by the loss of free energy stored in the chemical potential dif-

ference between the two reservoirs. In addition to transport, 

before a steady state is reached,the membrane acts as a rever-

sible capacitor, able to store some of the chemical species being 

transported. We will conceptually separate these processes 

and assume that the membrane consists of three regions. The 

central layer represents the membrane capacitance in which 

storage, but no dissipation, occurs, while the outer layers repre-

sent transition regions across which dissipation, but no storage, 

of free energy occurs. Our model may be made more accurate 

by partitioning the membrane into infinitesimal volume elements 

and then conceptually separating each of these volume elements 

into two subsystems, one of which represents the capacitance, 

and one the resistance, of the volume element (Fig. 2 .2b). In 
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paragraph' 3.3 we will show that in the lim.it this proc,es.s leads to 

the usual continuum equations. It is important to rea1iz~ that 

we are not assuming that the membrane is actually ~omposed of 

layers, but rather we are merely assigning individual elements 

to separate processes. 

The primary step in constructing an isomorphism between 

the physical syste~ and the topoiogical graph is the assignment 

of a branch to each element. We then associate with lea,ch branch 

a thermodynamic flow variable, f,and a force or effort 

variable, e, in such a way that an exact c'orrespondence is 

established between the network equations and the thermodynamic 

relations. 

- Consider first the transition regions of the membrane, as 

in Fig. 2'.2, which represent the dissipative processes associated 

with the transport of a nonelectrolyte through the membrane. We 

may represent each of these dissipative i'elements" by a branch, 

as shown in Fig. 2.3a. For the left transition region, we asso-

ciate its branch with the effort ~ f.l. = f.l. l' - f.l. and the flow J 1 
. m m. 

across this region. Similarly for the right transition region, we 

associate the effort (J.L -f.l.2) and the flow J2 
m .m 

Note that a 

reference direction has been chosen and that the product of the 

effort and flow variables is the power (free energy) dissipated 

ill each element. 

Next, consider the central layer of ' the membrane and the 

two bounding reservoirs,which are all compartments in which 

.. I 
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storage, but no dissipation, of free energy occurs. The repre-· 

sentation of these reversible elements requires additional con-

sideration since apparently no force of the nature of ~IJ. can be 

assigned to the reservoirs. In reality, however, the chemical 

potentials characterizing the reservoirs and the membrane com-
, 
partment are not uniquely determined unless they are referred 

to a standard reference potential, IJ.. The theory of potential 

measurement implies the explicit consideration of i7, which has 

the same value for the permeant in the reservoirs and the 
, , 

membrane. Thus the branch representing reservoir 1, for 

example, can be drawn as shown in Fig. 2.3b. Associated with 

this directed branch is the effort 1J.1 - i7 and the flow J l' One 

usually does not consider reservoir flows, but such a flow can 

be defined as dn./dt, where n. is the number of moles of the 
1 1 

permeant in the reservoirs. The product of the effort and flow 

variable, J 1 (IJ. 1 - i7)' is the power delivered by the reservoir 

to the membrane. 

The fact that it is usually permissible to assume that 

IJ. = 0 does not diminish the importance of the reference potential 

and its implied definition in the reversible forces of thermo-

dynamic systems. (We draw the part of the branch representing 

the capacitive elements as a broken line, to remind us that there 

is no actual flow into the reference nodes.) The analogous 

situation was encountered in the previous section, in representing 

the mass as a two-terminal element. (Note that the branches 

, 
", 



of the linear graph have no," geornetrical" significance here; e. g. 

the reversible flows are in no sense "perpendicular" to the plane 

of the rnembrane.) With these rernarks, and noting that reser­

v~irs 1 and 2 and the central mernbrane layer. are treatedsirnilar­

ly, the total m:ernbrane systern assumes the forrn sho~ in Fig. 

2.3c. 

It rnay be irn.rnediately noted that the reference nodes in 

, , . ',-

each cornpartment have the sarne value of jJ., i. e., they are 

characterized by the sarn~rnagnitude of the local pararneters of 

state. This observation is of irnportance to the network forrnula-, 

tion, for each node of a network is characterized by'a uniq~e I 

value of a state function, and hen~e the three'referEmce terrninals 

rnay be cornbined into a single node. Sirnilarly, we rnay connect 

the other terminals of equal chemical potential into single node,s 

as shown in Fig. 2.4. 

We see that the topological graph structure cornprises two 

meshes; (1) and (2), to which We have as signed, arbitrarily, a 

clockwise sign direction. L.et us now surn the forces operat~ng 

along the branches enclosing each of the rneshes. The forces 

,are regarded as positive when directed in the sarne direction 
" ,;' 

as the rnesh circulation and negative if directed in the opposite 
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sense. For mesh (1), the sum of the forces is: 

(fJ. -;) - (fJ. -;) - (fJ.1-fJ. ) = 0; and similarly for mesh (2): 
1 m m 

(fJ.m -i~:) - (f.l'2 -;:z) - (fJ.m -1J.
2

) = O. These are simple examples of 

Kirchhoff's Voltage Law for a thermodynamic system. The law, 

in its most general form, states that if thermodynamic potentials 

can be as signed uniquely to the nodes of a graph, the sum of the 

forces (taken with appropriate sign) around any mesh of the graph 

equals ze ro. 

The other restriction imposed on every node is Kirchhoff's 
, 

Current Law (KCL), which is an expression of the assumption 

that the flows passing a node are conservative; there is, by 

. * definition, no accumulation or depletion at the nodes. The 

static character of the nodes does not imply that the process is 

stationary, but o~ly that the nodes are abstract entities which 

have no capacity to store matter or charge, and hence are 

maintained at a steady state. Since the majority of thermodyna-

mic flows are conservative, or can be chosen to be conservative, 

*If we write the continuity equation for a volume element surround-

ing a node, it takes the form 

~='V. J 8 t . 

If we further assume that matter is neither accumulated nor 

depleted at the node, then 8p/8t = 0 and 'VJ. = O. In the discrete 
1. 

representation this implies that the sum of the flows of a given 

species at a node is zero, which is, of course, Kirchhoff's 

Current Law. 
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and since the thermodynamic state functions are defined uniquely, 

the thermodYI?-amics of flow processes can be readily fitted into 
I :. 

a topological graph representation. 

In order to, write the KCL equations" asigrt convention for 

the flows must be adopted. Although we can choose the directions 
, " 

of flow arbitrarily, we will retain the convention that a flow 

entering a node is' negative and a flow leaVing a node is positive. 

Having chosen a sign convention, we may now apply KCL 

to the four nodes of Fig. 2.4; doing so, we obtain the equations' 

J +J
1 = 0 

1 m 

_i1 + J + J2 = 0 
m m m 

_J 2 +J =0 
m 2 

, " 

-J - J - J :::: 0 
12m 

( 2.18) 

These equations are not linearly independent, and by convention 

we will exclude the equation for the reference node, leaving a 

set of three linearly independent constrairit equations on the 

branch currents. These equations reduce the number of inde­

pendent flows from five to two. GenerallY,J~, the influx into 

the membrane, and J2 , the outflux from the membrane, are m ' 

considered as the ,independent flows., The set of all thermodyna-

mic flows and thermodynamic forces constitutes a ve,ctor space; 

KCL and KVL are a set of linear ,constrairits and, as mentioned 

above; restrict the flows and forces to a set of hyperplanes in 

this space. ' 

• I 
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At this point it is advantageous to pause and consider the 

energetic aspects of the permeation process described above. 

According to the treatment of nonequilibrium thermodynamics, 

the dissipation function <p of the membrane system under iso-

thermal conditions is given by the sum of the products of the 

dissipative flows J1 and J2 and the forces across the resistive 
m m 

(2.19) 

On the other hand, the free energy change accompanying the 

charging or discharging of the reservoirs, dG/dt, may also be 

expressed as a sum of terms having the dimension of power: 

(2.20) 

Adding equations (2.19) and (2.20) and inserting the KCL require-

ments (2.18), we find that 

dG +,h = 0 
dt 't' . ( 2.21) 

This is a well known result of nonequilibrium thermodynamics: 

the dissipation is' measured reversibly by the drop in the free 

energy of the adjacent reservoirs, <p = - (dG/dt). 

In the present theory, however, equation (2.21) represents 

a special case of Tellegen I s theorem. Inserting (2.19) and (2.20) 

explicitly into (2.21), we find that 

J~(111 -11 m ) + J~(llm -112) + J1(fJ.1-~) + Jm(Jlm-;;)+J2(1l2-~ =0 

( 2.22) 
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Equation (2 .22) may be regarded as a scalar product of a general 

flow vector J and a general force vector X, the components of 

which are 

J = and X = (2.23) 

or 

x· J = O. 2.24 

Equation (2.24) has the same interpretation as equation (2.17): the 

full 2b-dimensional thermodynamic space of states is partioned 

into two fixed orthogonal subspaces - - the subspace of the flows 

and the: subspace of the forces. 

2.3 The relaxation time of a single permeation flow 

To consolidate our ideas about the network representation 

for membrane processes we shall consider a relaxation experi.., 

ment in which the flow across the membrane develops towards a 

steady state.· It is assumed that the membrane is initially free 

of permeant, and that at a given moment (t=O) it is put ihto 

contact with two reservoirs with chemical potential JI'1 

and 1.L2' respectively. The problem is to find the relaxation 

time for the 11 charging" of the membrane capacitance with the 

pertneant. 

". 
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As we did above for the reservoir flows, we define the 

membrane flow J = dn /dt. From Fig. 2.4 and equation (2.18) m m 

it is clear that the rate of permeaht accumulation in a membrane 

of unit area is 

~m 2 1 2 2 
-d- = J '1cm = (J -J ) 1cm . t m m m 

( Z.25) 

To make use of equation (2.25) we substitute for dn /dtits 
m 

equivalent in terms of chemical potential and capacitance, and 

relate Ji to its driving force by a suitable constitutive relation. 
m 

It is clear that 

dn /dt = (dn /djJ. )(djJ. /dt) m m 'm m 

or, with equation (1. 9), 

J = dn /dt = C (djJ. /dt). m m m m, 
( 2.26) 

The simplest dissipative relation between flow and force 

is the linear phenomenological relation of nonequilibrium 

thermodynamics 
. ..6. jJ.. 
1 1 

J =L . ..6.jJ.·=-R ' 
mIl . 

( 2.27) 
1 

which in the present case assumes the form 

= 
jJ.1 jJ.2 1 1 

( - + -) - jJ. (-+-). (2.28) 
R1 R2 m R1 R2 
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)', 
If we let R denote the total membrane resistance, ' then we can 

m 

associate half of this resistance with each of the membrane 

t];"ansition layers, i. e., R1 =R
2

=R
m

/2; equation (2.25) then takes 

the simple form. 

IJ.1+IJ.2 4 
2(R C ) - ( C R, (2.29) 

m. m m m 
. . 

By examining the hom.ogeneous part of equation (2 ;29);:' it-is clear 

that the relaxation time of the process is of the same form as in 

electrical networks: 
R C m m 

T = m 4 

Equation (2.29) may now be written in the form 

where 

(2.30 ) 

(2.31) 

>:< In nonequilibrium. thermodynamics we write a linear constitutive 

relation for the local flows and local forces J = L (-dIJ./dx), 

where for an ideal solution L = cD/R Tand D is the diffusion 

constant. Assuming L to be constant, the integration over a 

membrane of thickness .6.x gives, for a constant flow 
.6. x .6.fJ. 

J J dx = L J (-dIJ.) or J.6.x = L.6.IJ. . 
o 0 

Therefore, 

and R = . m 
RT.6.x 
c. D m rn 
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f,') o 

The solution of equation (2.31) for constant Tm is straightforward 

and need not be considered here. To get a feeling for the meaning 

of T it is worth noting that for the simple membrane transport 
m 

process we are discussing, 

R = R T.6. x/c D , 
m m m ( 2.32) 

where .6.x is the thic'kness of the membrane and D the diffusion m 

coefficient in the membrane. The capacitance of the membrane 

is given by 

c = 8 n /8 IJ. = c V /R T, m m m m 
(2.33) 

where for simplicity we have assumed that the constitutive rela-

tion between IJ. and n is that of an ideal solution. Since the 

membrane is being charged symmetrically from both sides, we 

must consider only the time for diffusion across half the membrane 

volume. Noting that the membrane volume per unit area is 

V = .6.x . 1cm
2 

and taking into consideration the symmetrical 

filling, we find, 

C = c .6. x/2R T . m m, 
(2.34) 

Inserting equations (2.32) and (2.34) into equation (2.31), we obtain 

R C 
m m = ,= 

Tm 4 
RTAx 
4c D 

m m 

c .6.x 
m 
2RT 

= (.6.x/2)2 
2D 

m 

which is identical with the well known equation of Einstein 

2D T = (.6.x)2 
mm 2 

i' 

(2.35) 
I ' 
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III. THE BOND c'RAPH REPRESENTATION 

3.1 Bond graph fundamentals 

3.1.1 

The next step in the network analysis of thermodynamic 

systems is the discussion of coupled flows. However, linear 

graph notation becomes cumbersome when applied to systems 

involving energy transductions: a separate graph is required for 

each energy domain and the energetic relationships are obscured. 

During the last few years, another method of representation, 

called bond graphs, has been developed which is more suitable 

than topological graphs for the description of physical systems 

(Paynter, 1961; Karnopp & Rosenberg, 1968). To introduce the 

method, we shall start again with a single permeation process 

across a homogeneous membrane and then proceed to more 

complex systems. 

The basic element of the bond graph is the "ideal energy 

bond." As pointed out in paragraph 1.3.2, a bond is regarded as a 

perfect conductor which transmits power instantaneously and 

without energy loss. In this respect it is an idealization similar 

to perfect electrical conductors or infinitely stiff rods. As in the 

case of topological graphs, we must assume some sign convention 

in order to apply Kirchhoff! slaws. This choice is for the most 

part arbitrary. We shall indicate bond orientations by appending 

to them a half-arrow ( ~ ). 

,1 
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The network eleITlents that we shall use in bond graphs are 

resistors, capacitors, inductors and effort sources (tr~nsduction 

will be discussed in Section N), which we represent by the 
. . . . 

generic sYITlbols denoting their constitutive relations: R, e,L and 

E. ' To eac;:h letter we adj oi~ a single line s'egITlent which repre­

sents an ideal energy bond. This bond replaces' the pair of wi res 

used in circuit representation, i. e., the branches of the linear 

graph. ,With each bond we associate an effort and flow variable, 

e 
e. g. -'-f- R. 

. 3.1.2 

In circuit theory, one can inprinciple choose independent 

reference directions for current and voltage. However, it is 

both custoITlary and convenient to choose associated reference 

directions; that is, one assumes the current flow is positive if it 

flows froITl the pbsitivelYITlarked terITlinal to the negatively 

ITlarked terITlinal. Both associated and nonassociated reference 

directions are illustrated in Fig. 3.1. In bond graphs, we shall 

adopt the convention that on bonds oriented into eleITlents the 

effort and flow have associated reference directions, e. g. 

----'-17 R 

~--R 

" 
denotes associated reference directions and 

denotes nonas sociated reference directions. 

i 
: 
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Notice from Fig. 3.1 that for a linear resistor"" = iR when 

associated reference directions are chosen, but that -v~ = -iR 

with nonassociated reference directions. Similarly in bond 

graphs 

e 
f 7 R implies e = Rf, while 

\ 

e 
R implies e = -Rf. 

" f 

The reader with a background in circuit theory is forewarned 

that in the following sections we shall have occasion to use non-

associated reference directions. 

When the product of the effort and flow variables has the 

dimensions of power, as will be the case in all that follows, then. 

the power delivered to any element will obey the following 

equation: 

P 
delivered 

= e f for associated reference directions 

-e f for nonassociated reference direc­
tions 

Thus we see that the half-arrow on an oriented bond indicates 

the reference direction for positive power flow. Power does not 

necessarily flow in the direction indicated by the half-arrow, but 

when power is flowing in this direction it is taken to be positive. 

Thus if power flows out of an effort source, we shall use the 

con ven tion E ~, while E c../ ___ denotes an effort sink. 

The useful innovations introduced by the bond graph method 
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are two ideal junctions: a parallel or "zero-junction" denoted 
, 12/' 

// 
as T 0 ~" and a series or "one -Junction" denoted as 

12/ 
T 1 /.''-n/· Each bond in the graph is numbered; and associated 

with the i' th bond is an effort e. and a flow f.. Occasionally, 
1 1 

and especially for simple bond graphs, the e' sand f' s will be 

, . 
Note that a sign convention has been chosen for this one-junction. 

Since power is neither stored nor dissipated at an ideal 

junction, the total power entering any junction must equal the , 

power leaving the junction: 
n 

. L
1
, O'.e.f. = 0, 

1 = 1 1 1 
(3.1) 

where cO', equals +1 if bond i is directed out of the junction and 
1 ' 

O'i= -1 if it is directed toward the junction. In a parallel array 

of elements, the forces on each element are equal. Thus' we 

shall define the zero-junction by the constraint condition 

e =e= . , . e == ,e 
1 '2n 

and bl equation (3.1): 

. E1 O'.f. = ° 1 = 1 1 

(3.2 ) 

(3.3) 
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Hence a zero-junction obeys Kirchhoff's Current Law and conse-

. * quently corresponds to a node of the topological graph. All of 

the efforts on the zero-junction are assumed tobe equal and thus 

necessarily have the same sign. The flows f then determine the 

direction of power flow, and their reference directions must 

agree with the sign convention assigned to the bonds incident on 

the ze ro - junction. 

On the other hand, a series arrangement of elements has a 

single flow, since f is conserved, and hence a one-junction will 

be defined by 

f = f =. . . f == f, 
1 2 n 

which lllpon insertion into equation (3.1) gives 

L <T.e. = 0, 
·11 

(3.4) 

( 3.5 ) 

i. e, KVL. This junction is a useful device for the grouping of 

all bonds having the same flow. 

Let us now redraw Fig. 2.4 and denote each branch of 

the topological graph by the symbols for the elements (Fig. 3.2a:)~ 

We can immediately translate Fig. 3.2a into a bond graph by 

assigning to every node of the figure a zero-junction, and 

to each resistor or capacitor a one-junction with three bonds 

* Alternatively, if the product e . f did not have the dimensions 

of power, we could simply define the zero-junction by 

equations (3.2) and (3.3). 
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which connect the twoadjacentze,ro-junctions to theele,m.ent 

itself. By {ollowing this procedure and then assigning reference 

direCtions to the bqnds, we arrive at Fig. 3.2b., It will be 

observed that every node of the topological graph is now a zero-

jUriction: The one ':'junctions have replaced the branches of the 

linear graph through which a unique' current flowed.· However, 

only the bond on the one -junction that connects to an elem.ent 

(i. e., the energy "po~t") represents a branch of the topological 

graph; the other bonds that connect the one-junction to the zero­

junction have no counterpart in topological graphs andm.ay be 

used to represent geornetricalquantities (dim.ertsions) in the 

physical system. 

Thus the m.eaning of, say, the combination of elem.ents 
R 
·m 

12 3 1 
--_\ .... 1 \ is that at this junction -f.l1 + f.l2 +f.l3 ='0 and the 

same flow J1 which enters the system passes the resistor 
m. . 

R 1; or that a flow J1 ,driven by a force (f.l1- f.l3) = 
m. m. 

regulated by a resistance R~. 

Alternatively, if we, had chosen the sign convention 1. 1 3 
---, ~ 

for the one ~junction, the driving force for the flowJ ~ would 

have been f.l1 + f.l3· Since physically the driving force is always 

a "drop" in potential, we shall adopt the form.er sign convention 

for one-junctions. 

• ! 

" . 

\ 
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The graph 3.2b is rather cumbersome and difficult to handle. 

It may, however, be simplified appreciably in the following way. 

First, we may assume that the reference potential j:;. == O. When 

;Z = 0, the power transmission along all bonds incident on the, 

ground node is zero, so they may be eliminated. The bond graph 

may now be drawn as in Fig. 3.2c, in which all bonds leading to 

the zero-junction of;Z are deleted. 

Both zero-junctions and one-junctions which have only two 

bonds incident in the same direction merely transfer power and 

may alsobe eliminated. For example, consider a zero-junction. 

By definition, e
1 

= e
2

; and by KCL, -f
1 

+f
2 

= 0 or f1 =f
2

· Hence 

the junction serves no purpose and may be removed from the 

graph. Similarly, for a one-junction there is, by definition, 

a common flow through the junction and f1 =f
2

. Applying KVL, 

we see that -e
1 
te

2 
= 0 or e

1 
=e2 ; and thus, the one-junction with 

only two bonds connected to it, both pointing in the. same direction, 

may also be deleted from the bond graph. 

When we apply these simplifications to Fig. 3.2c, the bond 

graph assumes its final form, as shown in Fig. 3.2d. It is 

readily apparent that Fig. 3.2d is very close to the physical 

representation (Fig. 2 .2a). 
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3.2 Causality 

The bond graph representation may be amplified by the 

introduction of another piece of information, called. "experi-
. . . 

mental causality." Consider, for example, the fillin,g of the 

membrane compartment by the perm~ant. The process is 

represented by equation (2.26) asCm(c4tm/dt) = J m . It is 
\ . . 

evident that IJ. m cannot change instantaneously (i. e. , 

dlJ.m./dt < co) unless the flow Jrn becomes infinite. Similarly, 

an electrical capacitor which obeys the equation C(dV /dt) = i, or 

any capacitive element- for which we may write C(de/dt) = f -

may change its effort e only according to the dicturrlof the flow 

variable· f. Th~ flow is therefore the "natural,i input (i. e., inde­

pendent) variable for a capacitive ele~ent. The converse is true 

for inductive elements, such as a mechanical or electrical induc-

tor, for) which the basic relation is L(df/dt) = e; Le., inductors 

have the effort e as their natural input, since an arbitrary flow 

(velocity) may not be imposed on the element (mass) as an initial 

condition. In the' case of a resistor, there is no independent 

variable of choice, since the relation between flow and effort 

contains no time derivatives. It should be clear that the recog­

. nition·of the independent variable, 1. e., the causal relation, is 

nontrivial, asinay be seen in the. example of an R constitutive 

.' 

.... 
I, 
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relation such as is encountered in a tunnel diode or nerve 

membrane (Fig. 3.3). 

Evidently, to any value of e there corresponds a single 

va,lue of f, while for a single value of f we may have three values 

of e. Thus it is important to know which is the independent 

variable, and the introduction of a suitable symbol for this 

notion is useful. Paynter (1961) has suggested appending to a 

bond a vertical bar, called a "causal stroke, II with the following 

meaning: an element adjacent to the vertical bar is governed 

by the effort variable. Therefore inductive elements are written' 

as L t---; on the other hand, when the causal stroke is placed 

at the opposite end of the bond, the element has the flow f as an 

independent variable, so that capacitive elements should be 

written as C ---II . Resistors may be of either type: R /1----

effort-controlled, or R ---II, flow-controlled. (An easy way to 

remember the causality convention is to think of R 1-1--- as a 

plunger exerting an effort on the resistor, and R -----I ,as an 

arrow <1--0 directing flow into the resistor.) The choice 

of the independent variable is not related to the sign conventions 

discussed above. Hence we may have C..L-.-I or C ~I ' 
where the half-arrow indicates the sign convention for positive 

power flow. With this definition of the causality symbol, we may 

immediately predict the organization of the symbols around the 
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zero-,or one-junction. It will be re'called that by KVL, all bonds 
, , , 

incident up~rt a zero-junction have the same effort value, 

e
1 

=e
2 

. . . = en . This means that upon choosing one of the e' s 
. ',. . 

as the independent variable," all the' rest become dependent on the 

first. This is represented in symbolic form in Fig. 3.4a. 

Similarly,' for the one-j~nction it i-s the equality of the flows 

(KCL) which characterize the beh.avior f1 =f2 ... = fn' hence 

the choice of a single independent flow makes the rest dependent. 

This is shown in Fig. 3.4b. Conversely, n~1 independent flo~s 
, " 

incident on a zero -junction determine the n' th flow, while for, a 

one-Junction, due to KVL, there are only n-1 independent efforts. 
, , , 

On ,the basis of these considerations we may now redraw' Fig. ' 

3.2d in: a more information-rich form (Fig. 3 .4c). Note that for 

convenience the sign conventions have peen chosen according to 

the assumed direction of power flow in the system. The assign­

ment of, causality toa borid graph ensures that the dyria~ic 

elements, Land C, cannot be given initial conditions which 

violate Kirchhoff's laws. That is, tl:le initial state, and h'ence 

the entire dynamic trajectory, is confined to the Kirchhoff sub-

space as discus sed in Section II. 

In concluding this section it is worth noting that the assigning 

of correct causality symbols to a bond graph is a rather sensitive 

criterion for the completeness of the physical model underlying 

the representation. 

Table 2 summarizes the basic" dictionary" of bond graphs 

elements, 
! 
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3.3 Transition to continuum equations 

Before beginning the analysis of more complex coupled 

permeation flows, it is useful to reconsider the bond graph 

representation from a more general point of view. As shown 

by Branin (1962, 1966), the operational structure of network 

theory is identical with vector calculus; hence networks can 

represent finite dimensional approximations to field equations. 

We shall illustrate this important statement in the case of 

membrane transport. Our analysis will be devoted to describing 

a limiting process which will convert the discontinuous network 

representation into the differential equations for the continuous 

membrane system. For simplicity, we will consider only linear 

constitutive relations. 

We will now introduce the transmission matrix T, which 

relates the output of a multiport element (or group of elements) 

to the input. For elements that are sequentially arranged, their 

transmission matrices multiply to give a matrix which relates 

the output of the sequence to its input. The concept is thus very 

useful for analyzing long chains of elements, as in a transmission 

line, from which its name derives. As an example, we will 

consider the transmission matrix of a series resistance R: 
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R 

12 
1 1 >" 

3 
>" 

Si~ce we assume that the resistor is linear, e 2 = Rf2' For a 

one -junction all the flows are equal (f
1 

=f
2 

=f
3

), and hence we 

may write e 2 =Rf3 , ApplyingKVL a~d replacing e Z by theexpres­

sion just derived, we find that e 1 =e 2 +e
3 

= Rf3+e
3

, The equations 

characterizing the series resistance may be combined into: 

(3.6) 

In a similar manner, we may determine the transmission matrix 

for a parallel capacitance C: 

C By definition e
1 

=e
2

=e
3 

and 

12 , 
0 ~ f 1=f2+£3' 1 3 

The constitutive relation of an ideal capacitive element is 

de2 
C CIT = f

2
, and hence 

e
1 
= e 3 or 

"f1 = C(de3 /dt) + f3 

where D
t 

is the operator dj,dt. 
(3.7) 

Finally, we consider the com.bination of a series resistor 

and parallel capacitor: 
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Using the transmissionrnatrix :R for the resistor, we arrive at 

the input as a function of the intermediate variables(e3' f3) while 

the transmission matrix !C' for the capacitor, gives the 

dependence of the output on these intermediate variables. Thus 

we see that the transmission matrix T for the combination of 

elements is the product of the transmission matrices Of the 

individual elements, i.e., ! = :R' :C· This expression is 

easily generalized, and hence the transmis sion matrix of any 

sequential chain of elements is the product of the transmission 

matrices of the single units. 

Let us now consider a membrane of unit area broken up into 

volume elements of thicknes s dx. Within each volume element 

diffusion occurs; this can be described by an RC bond graph, 

as depicted above, with a resistance given by the specific resis-

2 
tance R multiplied by the volume 1 . cm . dx, and a capacitance 

equal to the specific capacitance C multiplied by the volume 

1 . cm2 . dx. ~:< The bond graph representing diffusion through a 

* . Note: from equatlOns (2.32) and (2.33) we obtain for the ideal 

case R = R TlcD, while C = c/R T. 
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m.em.brane would thus be as shown in Fig. 3.5. 

The number of volum.e elem.ents that one chooses in a 

m.em.brane m.odel depends upon how accurate a m.odel is required 

and on the num.ber of data points one would like in a concentration 

or chem.iCal potential profile of the m.em.brane. In a m.odel with 

n volum.eelements there are n capacitors; and thus n values for 
, , 

the chem.ical potential can be obtained at n intervals 

within the, mem.brane. In the lim.it, as the num.ber of volum.e 

elem.ents tends to infinity, or as the thickness dx of each element 

approaches zero, the bond graph equations approach the partial 

differenti"al equations describing diffusion in a homogeneous 

mem.brane. 

Since the transmission m.atrix characterizes the properties 

of an RC chain, let us examine the transmission m.atrix for a 

given volume ele,ment as dx becomes very small. The input 

flow and effort that we consider here are f and e, while the output 

d 
is f + vf·dx and e + Ve· dx, where V =dx' 

It is clear that the total transmission matrix T is the product 

of ~,and :c as stated above, 

ffe]' ,= r, 0

1

., Ii· d4 r 
~ b 1 J lc . dx . D t 

or 

~ fe + Ve' dxl 

j ~ + vf· dxJ 

( 3.8 ) 

Carrying out the m.atrix niultiplicationand neglecting term.s of 
, 

order (dx) 
2

, we find 

( 3.9) 

• 1 
I 
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which upon insertion into equation (3.8), and multiplication, 

gives 
,.., 

\7e + R . f = 0 (3.10) 

and 
,.., 
C(de/dt) + \7f = 0, (3.11) 

in which second-order terms have 'again been neglected. Equa-

tion (3.11) may be readily transformed into the equation of continu­

ity for the permeant in the membrane. Sinc~ by equation (2.26) 

C 
= ---BL 

V 

and by definition f = J m' equation (3.11) can be rewritten as 

a c 
m 

dt 
=- V"J, 

m 

where c = n /V, which is the equation of continuity. If we 
m m 

identify e with IJ. ., equation (3.10) is seen to be the usual phenomeno­
m 

logical equation \7( -IJ. ) = RJ. 
m 

The interesting expressions (3.10) and (3.11) may betrans-

formed into two other equations. Upon differentiating equation (3.10), 

\72 e + f \7R + It \7 f = O. ( 3 .1 2 ) 

Inserting equations (3.10) and (3.11), we obtain 
,.., 

2 \7R ,..,,.., de = 
\7 e - R \7e - RC d to. 

Upon assuming ideality, we find 

RC = ~RT ~ (Cm
) =-1.. c D RT D 

m 

Further identifying e with IJ. gives m 

,.., 

and \7,..,R 
R 

\7c 
m 

c 
m 

(3.13) 

(3.14) 
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= 

whtch is the conventional form of Fick' s second law. 

(3.15) 

'This example demonstrates that, 'in the limit, the network 

treatmentinde~d reduces to the classical field equations of 

physical chemistry (Kron, 1943). 

3.4 TeUegen' s theorem for bond graphs 

In paragraph 2.1.2 we derived Tellegen' s theorem from the 

linear· graph representation. However, since the graphical 

representation that we shall use for the remainder of this. paper 

is b<:>nd graphs, it is important to demonstrat(;l that, Tellegen '. s 

theorem is valid for bond graphs. We sh.all assume that a 

sign convention has been chosen consistent with assoCiated 

reference directions, i. e., that bonds are directed into elements. 

Theorem 3·1. For a bond graph G composed of one-port 

elements and junctions, 

"'" e f. = o. L.J i 1 
elements 

Proof. Since all one -port elements are connected to either 

a zero-junction or a one -junction, one can count all the elements 

in a bond graph by counting the elements connected to each 

junction and then counting all the junctions. Making use of 

equations 

L 
elements 

(3.16) 

where NO and N 1 denote the total number of zero-junctions and 
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one-junction in G, respectively; and where G. and 13. denote 
J J 

h b f 1 t t d t the J
. th . t' d t e num er 0 e emen s connec e 0 zer.o-Junc Ion an 

.th . . f G . 1 J one-Junctlon 0 ,respectlve y. Introducing the Kirchhoff 

constraints, equations (3.3) and (3.5), and utilizing the assump-

tion that all bonds are directed into elements (associated refer-

ence directions), we have 

~·e.f. = 
L.....J 1. 1 

elements 

(3.17) 

where N 6 and N{ are the total number of bonds incident on the 

. th . . d . th .. t' f G . 1 Th J zero-Junctlon an J one-Junc Ion 0 ,respechve y. e 

only bonds that are counted in ~he summations of equation (3.17) 

are bonds that connect two junctions together ~ Each one of these 

bonds is counted twice - once on the junction it leaves and once 

on the junction it enters. The two terms in thesumm.ations that 

correspond to any bond connecting two zero-junctions or two 

one-junctions cancel, since their efforts and flows will be equal 

but (J will be +1 for one term and -1 for the other. The remaining 

terms in the summation correspond to bonds connecting a zero-

junction with a one-junction. Defining an "adjacency operator" 

o st = {+01 if junction sand t are bonded together 
otherwise (3.18) 

we may rewrite equation (3.17) in the form 

N1 NO 

",",e.£. = 
L-J 1 1 

elements 

NO N1 

-EE 
s=1 t=1 

e f (J 0 -",", ",",f e (J 0 . 
s st st st L.....J L.....J t ts tsts 

t= 1 s=1 

(3.19) 
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Noting that by their definitions, equations ( 3.1) and (3.18), 
~ . . 

E 
elements 

e.£. = 
.1 1 

(1 = - (1 . and 5 = 5 ,we have ts . > st ts st· 

N O"·N
1 

-I: ~ 
S=1 t=1 

5.(1 (ef -e f). 
st st s. st ts t 

(3.20) 

However, sirice the definitions of the junctions, equations (3.2) 

and (3.4), imply that 

then 

e s 

f t = f t s 

for all t such that 5 t = 1 and . s 

for all s such that 5 st = 1, 

~ e.f. = O. 
L.J 1 1 

elements 

(3.21) 

. Q~E.D. 

As emphasized in Section II, this theorem is a purely topological 

result depending only upon KCL and KVL, .not on the nature of the, 

bond graph elements . 

Corollary 3.1.1. For a bond graph G. composed of multipdrt 

elements and junctions, 

E e.f. = O. 
elements 1 1 

Proof. The assumption of associated reference directions 

implies ,that all port bonds of multiport elements are connected to 

a junction. For if two inultiports were b~nded together, it would 

be impossible to orient the bond so that it simultan~ously pointed 

into both multiports. Hence we have equation '(3.16), and the 

remainder of the proof follows from above . 

Q.E.D. 

. i 
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( 

As m.entioned previously, we shall have occasion to use 

nonassociated reference directions. In m.any cases this 

sim.plifies the bond graph by elim.inating junctions separating 

m.ultiport elem.Emts and sim.plifies m.any com.putations. However, 

when utilizing theoretical results from. network theory, such as 

Tellegen's theorem., it is necessary to choose associated 

reference directions. This will be the case in Section VIII. 
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IV. NETWORK REPRESENTATIONS OF COUPLED FLOWS 

4.1. Stationary flow of nonelectrolytes across a membrane 

4.1.1. 

In Sections II and ill, we derived the bond graph represen-

tation for the flow of a single nonelectrolyte across a membrane. 

It is clear that if many noninteracting nonelectrolytes are simul-

taneously permeating a membrane, the flow of each chemical 

species may be represented by a separate RC chain of the type 

discussed above. However, if the permeants interact, a new 

feature must be considered: the coupling between the flows. 

Provisionally, we can lump all the coupling effects into a new 

element which we shall call a coupling n-port, denoted as CPL. 

In paragraph 4.1.3, we will show how this new element is 

connected to a bond graph representing the permeation flows of 

components A and B through a membrane. ,Then we will retic-

ulate CPL into elementary bond graph structures. In order to 

accomplish this task, however, we must first introduce another 

ideal bond graph element, the transducer, which will permit the 

representation of thermodynamic coupling and energy conver-

sion. 
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4.1.2. 

The transducer is a two-port which converts energy with-

out loss from one form to another. In bond graphs we use the 
1 (r) 2 

notation - TD-'" to denote an ideal transducer, where r is 

the transducer modulus, or transfer ratio. Being a two-port, 

:::' 
the transducer requires two defining equations 

1 e = e
2 1 r 

or 

f1 = r f2 o = (! ~(::) 
Notice that the trans'ducer behaves very much like an ideal junc-

tion-its constitutive relation im.poses a set of linear constraints 

on its port variables, and it conserves power by scaling the port 

efforts and flows according to the modulus r. Also note that 

The TD may be thought of as a graphical representation for the 

area-preserving (i. e., power preserving) coordinate map 

(equation 4.1). 

The transducer also preserves causality and must have 

the form: 

----II TD or 1-1--- TD 1---

~'< 1 (r) ,2 
'Using associated reference directions -> TD -
equations are: 

the defining 

.. ) 
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4.1.3. 

The transducer modulus need not be a constant. A me-

chanical analog might be a simple lever rolling on a semicircle; 

r is then a function of e (see Fig. 4.1). Frequently, the mod-

ulus r will be a function of the state of another element in the 

system. We will return to this point in Section VII where sig-

nal flows will be introduced into our formalism. 

4.1.4. 

We are now in a position to describe the coupling between 

nonelectrolyte flows. First, we notice that the coupling exists 

only as long as flow continue s. Moreover, we realize that the 

existence of coupling manifests itself by the diversion of a por-

tion of the driving force for one species to affect another com-

ponent. These two considerations imply that the bond graph 

coupling element CPL must be attached to one-junctions. This 

is illustrated for the case of a two- component systetn in Fig. 

4.2. Note that by KVL some effort is diverted into the coupling 

structure; but, by KCL, no flow is diverted by introducing the 

coupling element. The assignment of causality, as shown in 

Fig. 4.2, is consistent with the definition of the one-junction, 

and means physically that the flow of A transmits an effort via 

the coupling two-port to the flow of B, and vice versa. 

Having e stablishe dthe general structure for coupled flows, 
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w'e now proceed to reticulate CPL into elementary bond graph 

structures. For illustrative purposes only, we will consider the 

two-component case. It is well established that the coupling is 

dissipative, so that CPL must be a resistive two-port. Since, the 

dissipation depends on the flow of A relative to B, a dissipative 

eleI11-ent RC must be attached to a zero- junction within CPL. 

Furthermore; i't is clear that it is not the flow of A itself, (J
A

), 

nor of B, (J B), which is involved in the coupling dissipation, but 

only the interaction of the flows. We may say that a transduction 

proce s s is involved, scaling the efforts and flows by the correct 

magnitudes, w~ich are then applied to RC' 

The complete bond graph representing all of the above in-

formation concerning coupled flows is illustrated in Fig. 4.3. 

4.1.5. 

For the sake of simplicity, it is convenient to begin the 

analysis of coupled permeation flows with a consideration of 

steady state transport. In this case, there is no flow on the 

membr ane capacitor s CAm and C B m, so that their conne ction 

to the bond graph becomes superfluous, The two-sided structure 

of Fig. 4.3 then condenses to the single structure shown in Fig. 

4.4, with resistances R
A

, R
B

, 
, '. R 

R 1,~ R 2 = 2 R 1 = R 2 
A - A 2 'B B 

and RC' for which we, assume 

RB , 1 2 RC = -2- and RC = RC - -2-

t' 
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Let us start our analysis at the middle zero-junction of 

the coupling element. A coupling force Xc rna y be as signed to 

this zero-junction; Xc is then related to the coupling flow J C 

by the constitutive relation of the coupling re sistance RC. In 

the linear case, 

(4.2) 

while, in general, 

(4.3) 

is an unspecified function of J
C

. Since all the forces on a zero­

junction are equal, and since the transducer moduli are r A for 

the A and r B for the B component, the force s entering the trans-
X 

ducers are, by equation (4.1), equal to ~ on the A- side and to 
X r A 

C on the B- side. 
I'B 

We now turn our attention to the one-junctions. By KVL, 

the sum of the forces on each junction vanishes; thus, for the 

one-junction of the A-'flow, we have 

1 2 Xc 
- iJ.A + XA + iJ.A +. r A = 0 

or 

( 4.4) 

where X
A 

is the driving force across the resistance R A' and 

~A is an externally measurable force. The constitutive relation 

for the diffusional resistance 1S X
A 

= R A . JAin the linear case, 

while in general 

(4.5) 
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In an identical manner we may write 

and 

The flows of A aildB after passing their 
. ". . JA 

ducers are, a1'i required by equation (4.1), -r-' 
A 

(4.6), 

respective trans­
J B and --. Since 
r

B 
the flows on the zero- junction of the coupling element are addi-

tive, we find that 

J 
J ::;. ~ + 
C :r A 

(4.8) 

It is now 'a. simple matter to write the relation between the exter-

nal flows and external forces. Inserting into equations (4.4) and 

4.6 the fa r ce - flow re lations (4.3). (4.5) and (4. ". we find 

1 
RC(JC)' r A 

(4.9) 

Equations (4.9) are a generalization of the phenomenological equa-

tion of Onsager and reduce to the conventional form used in non-

equilibrium thermodynamics if linear constitutive relations" are 

assumed. In the linear case, we obtain on the basis of equations. 

(4.8) and (4.9): 

"I , 
I 
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Be
2
) 

r
A 

R 
J A + ~J 

rArB B 

= (RA J A + (RAB J B ,. 

(RBA J A 

(4.10) 

where the script· (R IS denote Onsager coefficients. As expected, 

the matrix of the phenomenological coefficient is sy.mmetric for 

4.1.6. 

It is, however, remarkable that in the nonlinear case the 

system of equations is also symmetric. The condition for the 

reciprocity of a nonlinear function is the equality of the Jacobian 

and its transpose. In our case, this would impose the require-

ment that (a ~A/a J B) J should equal (a~B/a J A) J . 
A B 

To prove this important statement, we examine equations 

(4.8) and {4.9). we note that the derivative ~f R A (J A) with respect 

to J
B 

at constant J A is zero, and that the transduction factors 

r A and r
B 

are independent of flows and forces, so that 

(aJC/oJA)J = 1/rA and (aJC/aJB)J = 1/r B,Upon differ-
B A 

entiating equation (4. 9). we now find that 
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C~~A) 1 (a RC(JC)) 1 dRC(JctJCJ 
-;- - -- - -8J J

A 
r

A , 8 J B J A r A dJ
e 

8JB J A B . 

1 d 
Re(Jc ) = dJ

e rAr B , . 
and (4.11) 

(a~B ) 1 ( 8 RC(JC)) 1 dRC(Jd (8 Jc ) . 
aJA . J B 

- - = r
B 

8J
A 

J
B 

r
B dJe 8 J A· J B 

1 d 
Re(Je), = 

rAr B 
dJ

e 
so that 

(4.12) 

, 
Equation (4. 12) is similar to Onsager's theorem but was derived 

directly from network reasoning and applies in the nonlinear re-

gion. This result is based on the topology of the bond graph and 

the intrinsic reciprocity of the one - port network elements. 

This point will be discussed in more detail in Section VIII. 

4.1. 7. 

Equation (4. 10), for the linear case, leads to an interesting 

conclusion about the relation between phenomenologicalcoeffi-

cients determined in the pre sence and absence of coupling. Let 

us denote the coefficients in the absence of coupling as(ftA' and 

The se straight coefficients are simply the bond graph . . 

. .. ~ 
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resistances RA and R
B

, re spectively. From equation(4.10)we 

see that 

and 

Hence the coefficients are related by the equation 

(4.13) 

and the phenomenological coupling coefficient can be determined 

up to sign by the measurement of straight coefficients. 

4.1.8. 

To conclude this section, it is worth comparing the con-

elusions of the bond graph with the predictions that arise from 

considerations of the frictional parameters (Bearman and Kirk-

wood,1958), following the treatment developed by Spiegler (1958), 

Kedem and Katchalsky (1961), and others. It is known that the 

frictions may be written as follows: 

1 
.0. J.L A == c A [ cBS A B + cm SAm] J A - S A B J B' 

1 
L::..J.LB == -SABJA + c

B 
[cA SAB + cmSBm] J B , (4.14) 

where S.. is the partial binary frictional coefficientbetwee n 
1J 

species i and j. When c
B 

== 0 and J
B 

== 0, 
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so that RA = fAml c A where fAm is a constant .. Similarly, 

RB = fBrn/c B where fBm is constant. The compal"ison of equa­

tion(4.14) with equation(4.10) now leads to the following: 

RC 
-2 
r A 

c . 
B =--

c
A 

(4.15) 

Equations (4.15) do not permit a unique solution for R
C

' r A and 

1.-13 since they imply only rA/rB = - cAleB. A consistent solu­

tion is ,however, 

r A = c A' r B - - c B ; ( 4.16) 

and hence 

(4.17) 

This solution is· reasonable and could have been assutned a 

priori from physical reasoning. As was stated earlier, the dis-

sipation due to coupling is proportional to the relative velocities 

of thepermeants; since J A = cA v. A ~hile J B= c B vB' it is 

cleat that 

(4.18) 

Since the coupling resistance is dependent upon the hydrodynamic 

interaction of substances A and B, it is plausible that RC be 

proportional to the product of cA aild c B . 

i 
i 
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4.2. Nonstationary flows of nonelectrolyte s and their re laxation 
times 

4.2.1. 

For the evaluation of nonstatioriary behavior with the aid 

of bond graphs, it is convenient to invert the stationary equa-

tions (4.9) and re pr e se nt the flows as functions of the for ce s. In 

the linear case, we may write 

J~ = 1: A 6~A + d!!-AB ~B 
and (4.19) 

JS~ = cXBA 6~A + ~ B .6.·~B' 

where the superscript st denotes ,a stationary flow and where 

the conductance £... is related to the resistance by the expres-

sions 

£ =cf 
AB BA 

I <RI is the determinant of the matrix of the phenomenological 

re sistance s: 

RC RC 

~ <RAB -2 rAr B r
A 

RC 
RB + 

<RBA <RB 

rAr B 
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The explicit value s of the thermodynamic conductance s are 

£= B 

and ~AB (4.20) 

where 

The complete bond graph for the case of n6nsteady flow 

across a membrane is repeated iIi Fig. 4.5. It is readily recog-

nized that th~ graph is composed of t}V'o parallel linear parts 

connected by the capacitors . CAm and CErn. The parallel parts 

have a structure identical to that considered for the case of sta-

tionary flows. Indeed, it is the existep.ceof the intramembrane 

capacitors which allows for a nonsteady variation of the flows. 

On a priori grounds, R
A

1, RC 1 and RBi may differ from R.i., 

RC
2 

and RB2. For simplicity, however, we" will assume that 

R Ai = RA 
2 = RA/2, etc. It is now possible to use equation (4.19) 

for each flank of the bond graph and write 

and 

(4.21) 
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as well as 

and 

From the diagram, we recognize readily that J Ai is the 

influx of A into the membrane, while J;' is the outflow, and 

. '1 l' J 1 J in d J 2 J out C b" . t' (4 21) SImI ar y, B::: B an B::: B . om lnlng equa Ions . 

in pair s, we find 

J in + J out 
A A 

2 

But, this is the 
J in + J out 

expression for J
A

st 
in equation(4.i~'; hence 
J in + J out 

2 
::: J It and, similarly, B 2 B ::: J ;t. (4.22) A A 

Thus the average of the nonstationary influx and outflux flows is 

independent of time and equal to the stationary flow. It is evident 

that equations (4.22> are very useful experimentally and are closely 

related to the relaxation phenomena discussed below. 

4.2.2. 

Since we have assumed that the reservoirs bounding the 

membrane are "infinite", i. e., are sources of constant chemical 
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potential,· all relaxation process fakes place in t?e intramembrane 

capacitors. An inspection of Fig. 4.5 shows that the transient 
, . . . 

flow of~aterial into the membrane capacitor CAm is given by 

J m·· J. 1 J. 2 J in J out " .. " . h 1 f· A = A - A = A- A ; or Inserhng t e va ues rom equa-

tion(4.21} and letting 

and 

(4.23) 

and 

Upon reaching a steady state, both JAm and J ~ vanish,which 
. .st· st 

in this case implies (flAm) ::: (flA) and (flB
m

) = ( flB). 

Since the capacitive flow~ are relat~d "to the membran~ 

chemical pote nHals by theexpre ssions 

m 
m em dflB m . 

= J A and B dt = J B' 

. we may write the relaxation equations 

= 

m 
- fl } + 'A . 

. m 
- fl }+ 'A . 

....... 

m 
flB ), 

(4.24) 
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Since (flA> and (flB> are constants, it is advantageous to intro-

duce new variable s 

x = flAm - (flA> and Y 
m 

(flB>' = flB -

which transform equations (4.24) into 

(:) em (:) . -4 
A (4.25) == 

cZ B 

The relaxation times of the process, are given by T = 'A./4, where 

the eigenvalue s 'A. of the coefficient matrix are 

(cl.A ritB -tAB 

\ erne m 
A B 

(4.26) 

We shall not pursue this topic further here. However, it is im-

portant to realize that the relaxation times are completely deter-

mined by equilibrium and steady state measurements only,since 

the conductance coefficients o('A' ~ and £AB are determined 

when the system is at steady state, and the capacitance s GAm 

and e
B
m 

when the system is at equilibrium. Furthermore, it 

is worth noting that in the uncoupled case where ;( AB = 0, 
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m 
RB CA 

4 

where 7 A and 7 B are the relaxation times of, the independent 

flows of A and B. In the case of full coupling, which occurs 

when R -- 00 C 
.p 2 

and c:X.-A B = 
, £-

>- =2-+£B= 
1 C m em 

1 
47 ; >-2 = o. 

A B 
In this case, only one relaxation time exists, which is to be ex-

pected since the flows of A and B are no longer independent. 

4.3. Continuum equations 

In paragraph 3.3 we demonstrated how the differential equa­

tions describing the transport of a single nonelectr~lyte thruugh 

a continuum membrane could be generated from a bond graph. 

In this se ction we will illustrate a similar procedure for coupled 

flows. 

Let us ~onsider a membrane of unit area divided into vol-

ume elements of thickness dx. Within each volume element 

coupled diffusion occurs. Figure 4.6 shows the bond graph for 

such a volume element, where Rand C denote the specific 

re si~tance and capacitance. 

Calculating the transmission matrix as we did in paragraph 

3.3 will be somewhat tedious since in the prJ:~_sent case it is a 

, . 
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4X4 matrix. Moreover, the transmission matrix method is re-

stricted to systems in which the constitutive relations are linear. 

Therefore we shall follow an alternate procedure that is valid in 

the nonline ar re gime . 

Reading directly from the bond graph, or from equations 

(4.4), (4.3), (4.5) and (4.8), we find that 

!.J.A = R
A

( J
A

) dx + 1· Ii (J A + J B) dx 
r A C r A r B 

or 

"" 1 "" 
= RA(JA )+ - R 

r A C 
(4.27) 

Applying KCL on the zero- junctions at the capacitors yields: 

.., d 
J A = C A dx dt (!.J.A + 'V!.J.A . dx) + J A + 'V J A dx, 

or to fir st or de r in dx: 

In an identical manner we may write 

and 

.., 

'V (-!.J.B) = RB (J B) + 

- 'V J 
B 

Utilizing the definition of specific capacitance, 

( 4.28) 

(4.29) 

(4.30) 
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,.., c 
c = = .V-

1 on 
V ---aji , 

we'see that equations (4.28) and (4.30) are the familiar equations 

of cOhtinuity 

."\J • J; = 
1 

Gc. 
1 

at 

The nonlinear field equations (4.27) and (4.29) for thechem-

ical potential distribution reduce, in the case of linear constitutive 

re lations, to 

(itA + 

,.., ,.., 

R~) R 
"\J{- iJ.A) . = J A + ~J 

r
A 

rAr B B 

;..., ,.., 
= <RA J A + <RAB J

B 

and 

,.., 

(R~ \~j "\J{-iJ.B) 
RC 

J A + J
B 

= 
rAr B B 
,.., ,.., 

= <RBA J
A + <RB J

B
, 

whic:h are the local phenomenological equations of nonequilibriwn 

thermodynamics. 

4.4 .. Transport in ideal electrolyte solutions. 

4.4.1. 

While coupling in nonelectrolyte flows is based on hydro~ 

dynamic interaction, the flow of electrolytes provides another 

,. i 

, 
i 
I 0; 
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coupling possibility- through electrostatic interaction. Elec-

trolyte proce s se s encountered in biophysics are maintained very 

close to e Ie ctroneutral; thus the cationic and anionic flows are 

dominated by strong electrostatic coupling. In general, ionic 

flows may inter-act both hydrodynamically and electrically; in 

ideal solutions, however, the hydrodynamic interference may be 

neglected, and it is possible to consider only the dictum of elec-

troneutrality. 

Although the ideal case will not provide any new informa-

tion about electrolyte solutions, it will serve as a convenient in-

troduction to the bond graph representation of electrolyte trans-

port. In the next section we shall treat the more complex case 

of electrostatic and hydrodynamic interaction; and th~ last sec-

tion of this chapter will be devoted to the permeation of charged 

permselective membranes. As an initial example, we shall 

represent the behavior of a fully dissociated mono-monovalent 

salt in aqueous solution. Although we deal with a system of 

cations, anions, and water, the Gibbs-Duhem relation reduces 

the number of independent flows to two, so that only the ionic 

flows will be considered. 

Each ion is capabh:! of diffusing under the influence of a 

concentration difference; hence the bond graph must include a 

separate RC diffusion chain for both the anion and cation. 

Local ele ctrical interactions between the ions couple the se in-

dependent diffusion chains. 
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In order to deduce the coupling structure, note that the 

electrochemical pot~ntial of the ith ion with valence z. is 
- 1 

~. = Jl.. ° + RT ,en c. + z. -?i l\J, where l\J is the loc~1 electrical 
1 1 1 1 ' 

potential and .g:: is Faradayts constant. For the present pur-

ppse, we distinguish between the concentration dependent part 

Jl.i c = Jl.iO + R T £n c i ' which is repre sented by a chemical capac­

itor in theRC diffusion chain, and the electrical part z. j; l\J. 
1 

I 

SInce there is a unique ~lectrical potential at each po~nt in the 

solution, we assign a local electrical capacitor to each lump of 

... I 

the bond graph; then we connect this capacitor to transducers 

with moduli zi.q;. ~o that the contribution to the driving force 

of ion i due to electrical effects is z. 9i' .6.l\J. It should be 
1 

noted that the electrical capacitors, which repre sent the variable 

potential l\J, carry an'extrem~ly small amount of free charge 

since deviations £l'om electroneutrality are usually extremely 

small. Figure 4.7 illustrate s the arra,ngeme'nt of the concentra-

tion and e Ie ctrical capacitor s at points x and x +.6.x of an 

electrolyte solution, while Fig. 4.8 includes the transducers 

needed to represent cation flow. By KCL on the one-junction, 

or 

(4.31) 
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The driving force for the transport of a cation has the correct 

form, and consequently the bond graph in Fig. 4.8 adequately 

represents the forces ona cation in solution. 

In the linear case, the constitutive relation between the 

force X+ and the flow J + is 

(4.32) 

The complete bond graph representing the flow of both the 

cation and the anion is shown in Fig. 4.9. From the bond graph 

we obtain the equation 

1 .~ 
X = (IJ. - -::)1·tjJ ) 

- - 1 
(4.33) 

and the assumption of a linear constitutive relation for R 

implies 

(4.34) 

4.4.2. 

There is no difficulty in reconstructing all the classical 

expre s sions for ionic conductance, transference and diffusion 

from the bond graph. As an example, we shall derive only the 

liquid junction potential, which in the pre sent case is simply the 

difference in tjJ between points x and x + .6.x. In the determina-

tion of liquid junction potentials, the flow of electrical current 
.6.iJ. + .6.~ _ 

is assumed to be zero, i. e., J+ = J , or -- = -- (4.35) 
R+ R 
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Inserting the explicit values of the chemical potentials 

rr 
.;;. tJ. 4J, we find that: 

1 
R 

c 
tJ..J.1+ _1_ +_1_ 

R+ R 

However, it is readily shown that 

is the transferences number of the cation,while 

is the transference number of the anion, 

.(t + tJ..J.1 +c". * tJ.. 4J = -. (+1) + 

so that 

,(4.36) 

(4.37) 

= t 
._1_ +.c....L 
R+ R 

(4.38) 

which is a special case of the well-known equation for the liquid 

junction pote ntial. 

4.4.3. 

In concluding this section, it is worth noting that the flows 

on the bonds leading to the zero-junction of the electrical capaci-

tor are partial electrical currents, so that, for instance, the junc­

tion adjacent to C 1
l
· t carries the flows 1°+,1°,1+1, Ii which, by· 

e ec - -

KCL, combine to give the capacitive current IC: 

1° - 1° + I
i 

+ I
i 

+ I = ° .. + - + C 

or 

IC = (1° + 1°) - (I i + I i 
). + - +-

.. 

'. 

-I 
I 

I 

i 
I 
I 

I ! 
I. . 
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The capacitor equation is 

c 1 
elect 
~ 
dt 

-'I 
II 
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= (10 + 10) _ (Ii + Ii). 
+ - +-

Since electroneutrality makes (I~ + I~) - (I! + I~) approximately 

zero, the capacitance must be very small, as pointed out at the 

beginning of the se ction. It is, however, non- zero; and the in-

sertion of the electrical capacitor into the bond graph is imper-

ative for causal completene s s. 

4.5. The treatment of real electrolyte solutions 

After treating the ideal case, there is no difficulty in dealing 

with real electrolyte solutions in which both electrostatic and hy-

drodynamic coupling gover n the ionic flows. The bond gr aph will 

be a combination of Figs. 4.9 and 4.5, as shown in Fig. 4.10. 

Following the same alogrithm as before, we apply KCL and ob-

tain 

1 d?'- Z /)-' Xc 
- 1-1+ - 7 1 ljJ + X + 1-1+ + P ljJ + - = ° 1 + Z r+ 

or (4.39) 

1 f/( Z th-' ,.., Xc 
(1-1+ +j1 ljJ1) - (1-++ +F ljJZ) = D.1-1+ = X+ + 

r+ 

Assuming linear dependences between flows and fo.rces X+= R+J+ 

and Xc = RC J C' the coupling flow is as before 

J 

r 
(4.40) + 

Inserting the last equation into (1.39), we obtain 
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RC 
J +­

+ r +r_ 
J , 

R . ( R j .. 
= ....:£. J + ,R - + -.-£..' J . 

r r + - 2-+ ~ r . 

It is worth noting that even if one assumes nonlinear depen.,. 

dence of flows on forces, the Jacobian matrix is syrrlmetric and 

the system is reciprocal. If we write X+= R+(J+) and Xc=RdJd, 

we find with the aid of equation {4.39} that 

and 

{4.42} 

Partial differentiation with respect to the flows gives 

(4.43) 

4.6. Membrane permeability to electrolytes 

Consider the transport of a complete ley dissociated binary 

electrolyte through a membrane. Such a system comprises four 

compo'nents: membrane, water, anions and cations. Using the 

Gibbs;"Duhem relation we can eliminate the membrane component 
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and measure our flows with respect to the membrane as a fixed 

reference frame. The bond graph representation of a membrane 
.. 

being permeated by an electrolyte will thus consist of three RC 

: diffusion chains, one for the solvent, one for the cations and one 

for the anions, with an electrical capacitor tying the ionic chains 

together. If the electrolyte is present at finite dilutions, we must 

also include hydrodynamic coupling structures between each of the 

R<G chains. This bond graph is complicated and will not be drawn. 

If the membrane is uncharged, we may regard one section of the 

bond graph as the membrane phase and assign the appropriate dif-

fusional re sistance s as in Se ction II. The ele ctrical capacitor adja-

cent to the membrane section can be used to represent the double 

layer; and if one wishes, the unstirred layers adjacent to any 

membrane may be represented by RC chains adjoining the mem-

brane. In Fig. 4.11, the bond graph for a membrane permeation 

system in which the solvent flow and hydrodynamic coupling may 

be neglected has been drawn. If R + -1= R- , the graph predicts 
m m 

the rapid build up of a retarding membrane potential. +...L -If R rR 

in the bulk solution, a diffusion potential is generated~ In 

general, this representation appears to model all primary bulk 

electrolyte effects. 



o u I 

-93-

v. CHEMICAL PROCESSES 
\ 

5.1 Bond graph representation of chemical flows 

5.1.1 

In this section we shall consider chemical processes which 

occur in a closed reaction vessel with volume V. We shall 

assume that the reaction vessel is in contact with constant 

temperature and pressure reservoirs and exchanges thermal 

and mechanical energy with these reservoirs so as to maintain 

a constant internal temperature and pressure. The case of an 

open vessel, in which both diffusion and reaction take place, will 

be considered in the following section. Further, it is assumed 

that the reaction mixture is well stirred so that the rate of the 

reaction, or, as it is sometimes called, the "flow of reaction," 

is the same at every point in the vessel. (The flow of a chemical 

reaction -is thus a scalar quantity and differs in a fundamental 

way from the vectorial diffusional or electrical flows which 

represent directed movements through space. In a chemical 

process, the individual component is not conserved but undergoes 

a. dissipative transformation to a new substance, so that conserva-

tion of mass is obeyed only by the reacting system as a whole. 

From the point of view of network thermodynamics, the 

reaction mixture may be considered as a black box. However, 

since by sampling the contents of the ves sel one may determine 

the chemical potential lJ.i(t) and the rate of change in the number 
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of moles J. (t) for each component i, the black box may be partially 
1 

opened. Figure 5.1 illustrates the multiport representation of a 

chemical transformation in which the molecular species A, B, C 

and D participate. It will be our goal to open this black box and 

further reticulate this multiport model. 

The relationshiI> between the chemical potential and the 

number. of moles of each chemical species within the reaction 

mixture may be represented by a capacitor which is discharged 

if the component is a reactant and char ged if the component is a 

reaction product. 

inversely, 

or 

In general, IJ.. is a function of all the n.' sand, 
. 1 . J 

N· dIJ.. 
= ~ C .. --at 
. j= 1 1J· . 

i = 1, N ( 5.1) 

(5.2) 

where C .. is an element of the incremental capacitanpe matrix 
1J 

.for the system. In vector notation, the above equation takes the 

following form: 

J = C ~ " ( 5.3) 

where C represents a multiport capacitor. For ideal solutions, 

in which the components do not interact, this multiport capacitor 

may be reticulated into N capacitors, each r~presenting a single 

species. 

If n. 
IJ.i =IJ.f + R TIn ~ (5.4) 

'. 
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then we shall attribute the increITlental capacitance 

c.v 
1 

RT (5.S) 

h . th t h . th . f h . th to tel cOITlponen, were c. IS e concentrahon 0 tel 
1 

species in the reaction vessel, the cheITlical potential IJ.. is 
. 1 

regarded as the potential of the i th capacitor, and the capacitor 

flow is given by: 

5.1.2 

dn. 
1 

J i = dt = 
dn. 

1 

dlJ.i 

dIJ.. 
1 

dt = c. 
1 

dIJ.. 
1 

dt 
(S. 6) 

The conventional representation of a cheITlical reaction as 

vAA + vBB + 
reactants 

. - vee + vDD + ... 

reactant products (5.7) 

assigns to the stoichioITletric coefficients of the reactants a 

negative sign and to those of the reaction products a positive 

sign. In autocatalytic reactions such as 
, 

~ X + Y -.;:-- 2X (S.8 ) 

the stoichioITletric coefficient of X should be negative on the left-

hand side and posit~ve on the right-hand side, while the overall 

coefficient Vx = -1 + 2 = + 1 would fit equally well the reaction 
, ) 

Y ~X. To ITlake explicit such processes, as well as for reasons 

to be discussed later, we prefer to distinguish forward. stoichio­

ITletric coefficients v: froITl the coefficients of the rever se . 1 

process v~ , and to assign to all the coefficients a positive sign. 
1 , 

Thus, the general reaction scheITle for a single process will be 
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( 5.9) 

To be sure, many of the coefficients may be zero, as in scheme 

f f 
(5.7) where Vc = v

D 
f 

tic process, Vx = -1, 

v~ = 0; while for the autocataly­

it is readily seen that the con-

ventional stoichiometric coefficient vi is given by the expression 

5.1.3 

f r 
-v. = v. - v. 
III 

For a single reaction such as (5.7), 

or, generally, 

dnA 

vA 

dn. 
1 

v. 
1 

dn B dnC -- -, 
vB Vc 

= ds, 

dn D 
= --v ' 

D 

where dg is independent of i. The common factor S is the 

(5.10) 

(5.1 V 

advancement of the reaction; and its change with time is the 

reactiop rate (Aris, 1969), 

R_~ 
J - dt (5.12) 

The rate of change in the number of moles of the ith component 

is then 

dn. 
1 

crt 
R f 

= v.J = - (v. 
I 1 

r R 
- v· ) J . 

1 
(5.13 ) 

A substance which part icipates in several processes, with 

stoichiometric coefficient in the kth reaction, v
ik

' obeys the 

following: 

- i 
I 
I 

! 
I 
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(5.14 ) 

For the bond graph reticulation of chemical process, it will often 

be convenient to insert explicitly the forward and reverse stoichio-

metric coefficient and rewrite equation (5.14) as 

5.1.4 

dn. 
1 

--cu-
M f R M r 
~ v·kJk + ~ v

1
·k k=1 1 k=1 

( 5.15) 

A comparison of equations (5.6) and (5.13) or (5.14) shows that 

the reversible flow of the ith chemical capacitor was transformed 

into the dissipative flow of reaction. Although'the amount of 

substance discharged by the capacitor is equal to that flowing in 

the reactions, it should be clear that the nature of the capacitive 

and resistive flows is different, and an explicit representation of 

the transformation requires the introduction of a transducer (TD) 

which converts one flow into the other. The transducer is char-

acterized by a scaling factor (r) which, in the present case, is 

either v
1
.
f
k 

or _1_ ,depending upon the direction of the transforma­
vikr 

tion. In bond graph notation a 

IJ.. 
c. _-=-_1-.:0" 

1 J. 
1 

reactant will be 
f 

v ik 
TD 

while a product will be represented as 

depicted as 
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r 1/v.~ 
v'k I.L. J . I.L. 
J J~ TD J :::::. C., 
JR J. J . J 

where the constitutive relatlon of 
1 ~ TD 

2 ~ is 

(5.16) 

Note that the TD may be viewed as a map between capacitive flow 

and reaction flow. 

For a chemical component participating in several reactions, 

for instance the i th component being a reactant in the p th reaction 

th 
and a product of the q reaction, the capacitor C. is connected 

1 

to the two reactions through a zero-junction as shown in Fig. 5.2. 

The summation of flows at the ze;o-junction gives J. = J~ - J~ _ 
1 1 1 -

r R f 
v. J - v.· 

R 
J ,as expected; and' the chemical potential of 

p lq q lp 

component i is the same in both reactions. 

While the I.L. t s and the J \ t S are the externally measured 
11. 

, R 
port parameters, the rate of reaction J is an internal variable 

driven by an internal force. The driving forces of chemical 

processes have been studied extensively in the range close to 

equilibrium. We shall therefore start our discussion of the 

further reticulation of the reaction black box with the considera-

tion of affinities in this well investigated domain. 

5.2 Chemical kinetics close to equilibrium 

5.2.1 

The equation of Gibbs for a closed system, as considered 



1 
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U 

in this section, is 
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N 
TdS =dU + pdV - ~ 

i=1 
I-l.dn., 

1 1 

where all the dn. I s are due to chemical transformation 
1 

M 

dn. = ~ v l'kd Sk' 
1 k=1 

Inserting (5.18) into (5.17), we obtain 
M N 

TdS :i dU + pdV -~ (~v 'kl-l') d E= .• 
k= 1 i= 1 1 1 "k. 

(5.17) 

( 5 .18) 

( 5 .19) 

Following De Donder and Van Rysselberghe (1936), we denote the 

affinity of the kth reaction by 

obtaining 

N 

N 
TdS = d U + pdV + ~ Ak d Sk· 

k=1 

(5.20) 

(5.21) 

According to the formulation of nonequilibrium thermodynamics, 

dS = d S + d.S, where d S is the entropy exchanged with the e 1 e 

surroundings (given in the present case by Td S = dU + pdV), 
e 

while the entropy produced by chemical change is 

M 
Td.S = ~ Akd£k· 

1 k = 1 

The dissipation function for our system is therefore 

(5.22) 

diS M. d£k M R 
T cit =: <P = f=1 Ak cit = t=1 Ak Jk . (5.23) 

From equation (5.23),we see that the driving force conjugate to 

each chemical flow is the respective a££inity;(~quation 5.20). 
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5,2.2 

The relations between rates of reaction and affinities' are 

not uniqu~,as may be seen in the following consideration. Let 

us define a forward affinity of a single process 

and a reverse affinity 

f 
v. fJ. .. 

1 1· 

. N 
Ar == ~ r 

i= 1 vi fJ.i 

Evidently, the thermodYnamic affinity is 

f r N fr N 
A = A -A = ~ ( v. - v.) fJ.. = -.~ v.fJ. . 

i = 1 1 1 1 i= 1 1 1 

(S.24) 

( S.25) 

(S.26) 

Similarly, 

. .• f 
affinity AO 

it is advantageous to define a forward reference 

_ f 0 ' N 
- ~ v. fJ.. and a rever se reference affinity ArO\ =: ~ v·~ il 0

1 
' 

11 1=111"" 

whose difference is , according to clas sical thermodynan;l.ics, 

N 
A f _ A r = '" 0 RTl K . 

O "-' v·fJ.1 = n , o i= 11 eq 
(S.27) 

where K is the equilibrium constant of the reaction. Assuming eq . 

that fhe rate of the reaction follows a simple mass action con-

stitutiverelation, we may write 

R N f·N f 
J =k IT c.vi - k n c.vi (S.2S) 

f i=1 1 r i=1 1 

where k
f 

is the forward rate constant and k· is the rate constant of 
k r 

the reverse reaction. The ratio k
f is 

[ 
f r r 

Keq = exp (AO - AO)/RT] - (S.29) 

or 
(S.30) 

" 
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1£ we further assume ideal relations between concentration and 

chemical potentialc. = e (\.J.i -\.J.~) /R T, we obtain from equations 
1 

(5.28), (5.30) and (5.24) through (5.26) the following simple relation, 

used by Van Rys selberghe (1958): 

JR = k e -A~/R T e
Af 

/R T -k e -A ~/R TAr /R T 
f r e 

= K (eAf/ R T _eA r /R T). (5.31) 

Af f 
1£ we denote K exp RT as the-forward velocity v and 

Ar • 
K exp RT as the reverse velocity v

r
, equation (5.31) assumes the 

well-known and suggestive form 

R f r 
J = v - v . (5.32) 

, R 
It is now evident that J cannot be reduced to a function of 

f r 
the thermodynamic affinity A only, but depends on both A and A , 

which comprise all the concentration effects. It is only close to 

':;:: 
equilibrium that substantial simplification is obtained. 

5.2.3 

R -f _r " 
At equilibrium, J = 0; and therefore A = A , as well as 

A = 0, where the overbars denote equilibrium values. We may 

write equation (5.31) in the form 

f 
JR = K e A /R T (1 _ e -A /R T) ; 

and since close to equilibrium A/R T « 1, 

* The nonuniqueness is readily seen, even in the simplest case of 
A " B. When c A and c

B 
are doubled, JR is doubled --

"-
the affinity, however, remains unchanged. 
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.., [ K 
= . RT 

where the phenomenological coefficient 

- K • Xf/R T 'V f 
LR =RT e = itT 

( 5.33) 

( 5.34) 

is constant. 
R .. 

Thus, at equilibrium, J become s a linear, s ingle-

valued. of the affinity. This type of functional relation-

ship is characteristic of a linear on~-port resistor. Since all 

one-port elements are reciprocal; and as will be shown in Section . . 

VIII, the interconnection of reciprocal elements is reciprocal 

in the close-to-equilibrium regime discussed above, the rnulti-

port representing the reaction mixture is reciprocal and therefore 

may be characterized by a potential function - the entropy produc-

tion (Prigogine, 1967). 

A neces $ary and sufficient condition for reciprocity is the 

symmetry o~ the Jacobian matrix of the port flows and efforts. 

In the :eresent case, the Jacobian is the ~atrix of terms 
. raJ.] / 
DJ = ta fJ.

1
i . 

Making use of equation (5.13) for J., equation (5.26) for the affinity, 
1 

and equation (5.33) for the reaction rate-affinity relation, we find 

a J. aJR 8A 1 v.v.L
R ~ 

= v . 
. ~ 

= v. LRr = -
1 1 fJ.. 1 J 

J J J 

while 

a J . a JR _ ·a J . 
.--J. 1 
a = v. -a - - v .. v.LR = -a. ' 

fJ.i J fJ.'i J IfJ. j 
(5.35 ) 

which is the required relation. 

. , 
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5.2.4 

. It is now possible to complete the reticulation of the black 

box which characterizes a chemical proces s close to equilibrium 

by utilizing a one-port resistor, with conductance L
R

, to describe 

the dissipation due to the rea,ction. Figure 5.3 illustrates a 
\ 

causally correct bond graph for a typical chemical reaction. 

Examining trebond graph for the reaction 2A + 3B ~ C, 

we see that at the zero-junction all the flows are the same: 
J

A 
J

B - 2 /= - -3- = J c = J
R

, as required by equations (5.11) and 

(5.12). The sum of the forces at a zero-junction should be zero: 

-2fJ.A - 3fJ.B + fJ.C + A = 0 or A = 2fJ.A + 3fJ.B- fJ.C' in accord with 

equation (5.26). 

More complex cases are readily constructed by the same 

principle; and Fig. 5.4 represents the case of a three -flow system 

- - close to equilibrium. 

5.2.5 

Most biochemical reactions are very rapid; consequently, 

there is little interest in the study of quasi-equilibrium processes. 

However, the determination of the relaxation times of a chemical 

process, i. e., the time required for a system perturbed from 

equilibrium to return to 1 Ie of its equilibrium value, provides 

valuable information for the evaluation of the kinetic parameters 

describing the reaction. It will be shown that the treatment out-

lined above offers a useful approach to the computation of relaxa-

tion times. 
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all information about their behavior is obtained from measurements 

of flow-effort relations at external ports. Since it is pos sible 

in principle to determine the chemical potentials and the rates of 

change' of. concentration of the known constituents, the incremental 
, . _a J

i constitutive relations ~ which constitute the (N XN) conduc­
. jJ.j 

tance matrix for the n-port may be constructed. Earlier we used 

this Jacobian for consideration of reciprocity in chemical reactions. 
I 

Now we shall examine in some detail the information provided by 

this matrix on the nature and number of independent chemical 

processes in a given sy_stem .. 

In order to examine the significance of the conductance 

matrix, let us consider three possible reactions of components 

A, B an.d C, namely: 
. i. 

(a) A + B~C; 

(b) A--.!..B~C; and 

(c) the triangle reaction 

To evaluate the terms in each matrix, we use equation (5.44). 

Jacobian matrices to be: 

For case (a) For case (b) For ~,~se (c) 

f f 'r 
-y -v Vi 0 

i 
f i f f 

RT -v -RT Vi + Vz 

f r f -v
i

,"v
3 Vi 

1 f r f 
RT Vi v i-vZ' 

f f f r f 

f 
v3 

r 
V' 

Z 
·r f 

v v 0 Vz v3 . Vz -v· -v 
. Z 3 

•. 

. 

·1 
! 

j 

i 
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The relaxation time of a reaction T R is defined by the 

equation 
= ~ - t (5.36) 

where ~ is the advancement of a reaction at equilibrium, and 

f: - (= the small deviation under consideration. Close to equili-

brium, equation (5.33) is valid, hence 

(5.37) 

Expanding the affinity in a Taylor series close to equilibrium, we 

find that 

aA -
,A = X + (-~ )( S - S) + 

a _, 
= (a A) b. ~ a ~ - (5.38) 

since A = o. Inserting equation (5.38) into (5.37) and equating with 

(5.36) gives 

1 =L (ax) 
TR R ar ( 5.39' 

The factor ( ~ t ) can be made more explicit in terms of the 

capacitances of the components (equations 5.5 and 5.11): 
v.2 

1 aA ( a-r) = - ~ 
c. 

1 

and hence 
2 

1 v. = L ~._l 
TR R C. 

1 

Denoting the "relaxation time of a single component" by 

T. = C./LR = C.RR , 
III 

equation (5.41) assumes the suggestive form 

I' 

(5.40) 

( 5.42) 
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( 5.43) 

The significance of equation (5.43) can be shown by the following 

trivial example: _consider the reaction A~B. Here 
i c A 

LR = RT = k
f 

RT By equation (5.5), CA -= cA' V/RT 

and CB ="CB . viR T; hence, considering a unit volume for the 

reaction vessel, TA = CA/LR = 1/kf , TB = CB/LR = 1/kr , 

andTR = 1/(k
f 

+ k
n

), as is well-known in chemical ~inetics. 

5.3 Two-port representation of chemical dissipative processes. 

5.3.1' 

As pointed out in pa.rag-raplr~5.2 .2, chemical proces ses far 

from equilibrium ~annot be adequately described by a one-port 

representation for the reacti?n resistance. Such a representatio~ 

implies that: a) a unique relationship exists between the reaction 

rate and affinity; and b) the Jacobian matrix 22:!.. of the port 

efforts and flows is symmetrical. We shall show that in the far-

from-equilibrium case, this Jacobian is not symmetrical; and 

only near equilibrium, when the forward reaction velocity v
f 

approaches that of the reverse reaction v
r

, is symmetry regained. 

That is, there is an additional "dynamical" constraint on the 

constitutive relation for a chemical reaction: the experimental 

. fact of "nnnreciprocity. II Perturbations of reactant and product 

concentrations do 'not produce symmetric effects far from equili-

brium. 

, 

·1 
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a J. 
1 

Consider the general term -- of the incremental conduc­a fl. 
J 

tance matrix for any reaction system. Since, on ~ priori grounds, 

we regard the system as a black box in whichM reactions may take 

place, J
i 

should be written, according to equation (5.15), as 

R 
J(= ~ v

ik 
J k . Further, the dependence of each reaction rate on 

the fJ.. I S is through the forward and reverse afiinitie s, so that 
J 

a J. M aJR M K CA~ e 
Ai/RT aA~ A~/RT) 1 k 

a fl. 
= I: v -- = I: V

ik 1fT -~e 
k=1 ik a fl. k=1 a fl. fl· 

J J J J 

or 
aJ i _ 1 f f 
~ - RT I: v1·k(v

J
·k vk aLL. r J 

f 
It will be observed that (v

jk 

is a kind of modified rate of reaction, and 

a J. 
1 

a fl. 
J 

= 

Generally, a J ./a fl. 
1 J 

-f -r 
Vk = vk ' the value 

=1= a J ./a fl. ; however at equilibrium, 
J 1 . 

- - f f r 
of ~k becomes W jk = vk (vjk - v jk) = -

(5.44) 

which leads to a symmetry of the cross conductances as .obtained 

in 5.2.3: 

5.3.2 

1 M -f 
-- I; v v 

RT k=1 ik k 
(5.45) 

For chemical reactions proceeding far from equilibrium, 
\ 

the incremental conductance of a single chemical reaction 

aJ
R 

LR = a A is not a well-defined function of the thermodynamic 
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R f r 
affinity A since ,J depends on both A and A . Moreover j the 

extrathermodynamic constraint of non:reciprocity cannot be 
,,:~ 

accommodated by a, one-port representation. Therefore, we 

must conclude that the dissipation due to a chemical reaction_ 
, ' 

must be represented by a two-port resistor, which cannot be 

further reticulated except close to equilibrium. 

The general bond representation of the dissipation due to a , 

chemical process is shown in Fig. 5,.5. The ports are defined by, 

the forward and reverse affinities and an input and output flow of 

reaction (J~ and JR t)' C'onservatio'n of mass, in chemical 
In ' 'ou 

react:l.ons imposes ,the further constraint that the port flows are 

always equal to the rate of reaction: JR. __ ,JR R ':0:< = J . ' 
In out The 

overall force acting "across 11 the two-port is the thermodynamic 

affinity A = Af - A
r 

Near equilibrium, the two-port may be 

further reticulated into a one-junction and a one-port resistor 

,driven by A alone. 

5.3.3 

, The general representation of chemical processes is 

illustrated in Figs. 5.6 through 5.10. The case of a bimolecular 

reaction is shown in Fig. 5,6. For reactions with a common 

1 2 
component, the simples't case of A .:,='===~ B ;:=.===' C is shown 

" ~~ 

This constitutive constraint is analogous to the 11nonthermo-
dynamic 11 assumpti,..<?n of homogeneity for fluid systems which 
leads to the EuieF1;nd Gibbs - Duhem relations. (see tootnote, 
p.l't) , , 

~:<*Note that: 'J~ -+- ~f and 'JR =1= r In --r- out, v . 

I 

I 
• I 

i 



{1 
.... ; I u 

-109-

iIi Fig. 5.7. A more sophisticated case is the network of dependent 

reactions disscussed by Pings and Nebecker (1964) and shown in 

Fig. 5.8. 

A very important group of bond graphs are those representing 

enzymatic processes such as S + E~(ES)~E +'p (Fig. 5.9), 

where E denotes the enzyme, S the substrate, ES the enzyme-

substrate complex, and P the reaction product. Note that in this 

scheme the enzyme is confined to the portion of the bond graph 

enclosed by dotted lines, and thus may be viewed as a black box 

converting substrate into product. In ~he nonenzymatic reaction 

~. 
S·~ P, thls black box converter is replaced by a single two-port 

resistor. 

The simple autocatalytic process X + Y ~ 2X is shown in 

Fig. 5.10. It is worth noting that an autocatalytic reaction 

appears as a positive feedback loop, suggesting that such reactions 

may produce dynamic instabilities. 

5.3.4 

The last three figures (5.8, 5.9, 5.10) exhibit in a clear 

manner the topological properties of a chemical network. Indeed, 

every bond graph may be viewed as a topological object which 

may be treated formally from a general mathematical point of 

view. This appr oach will be pursued further in Section VIII. 

5.4 Analysis of chemical systems 

5.4.1 

The network approach to reacting systems assumes that 
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where the vi's represent the forward or revers.e velocities of the 

corresponding reactions. It will be noted that the ranks of these 

matrices are 1, 2 and 2, respectively. We readily discern the 

important fact that the number of independent rows equals the 

number of independent reactions in the system. In case (a), we 

have only one reaction; in case (b), there are two independent 

reactions, A - Band B --.... c. Although comprising three 

processes, case (c) contains only two independent reactions, 

corresponding to the rank of the conductance matrix. 

5.4.2 

This important observation leads to a general statement 

that the rank (p) of the incremental conductance matrix equals the 

number of independent chem.ical processes proceeding in the 

reaction vessel. The proof for the general case follows. 

It will be recalled that, in equation (5.15) , the total change 

In the number of moles of the ith component was related to the M 

reaction rates J~ through the stoichiometric coefficients v ik · 

The coefficients v ik constitute an N X M stoichiometric matrix. 

If the rank of this matrix is p, then there exist only p independent 

affinities and, as shown byDe Groot and Mazur (1962), 

(5.46) 

~R 

where the J
k 

are a set of indepeJident flows conjugate to the inde-
~~;-. 

~.-.- .~. 

pendent affinities. 

o i 
< 
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Since the cheITlical flows 1: are independent, 1: = <p(A
k

) is 

a function only of its conjugate independent affinity. By equation 

(5.46), the general terITl of the Jacobian is 

or, 

a J i p a J~ p 
=1: v =L a II. ik a Ii. 

r J k=1 r 1 k=1 

R T 
in matrix forITl, DJ = - vL v , 

,....." ,...,,.....,..... 

(5.4 7) 

(5.48) 

where L~ is the conductance of the kth independent cheITlical 

reaction. 

The ITlatrixv for the independent reaction flows is a 

n X P ITlatrix. 
. R 

The p X P ITlatnx L of conductances is diagonal since -
all the flows are independent. It is a standard result in linear algebra 

(c. f. Cullis, 1913) that the rank of the product of an a X p ITlatrix 9 

and a p X 13 ITlatrix P has the rank of Q if rank (P) = p, and has the rank 
- .. -.R - \ 

of P if rank (Q) = p. Therefore, rank (~1 ) = p, since rank (v) = p, 
~ _ N 

and furtherITlore, rank C~b R,!' T) = p, since rank (~T) = p also. Hence, 

the rank of the Jacobian: rank (~) = p. >:< (5.49) 

5.4.3 

A straightforward use of the previous result is the elucida-

Hon of "hidden" interITlediates which increase the nUITlber of 

independe. nt reactions. . f Consider, for exaITlple, the siITlple 
v . 

reaction A ,....::::. B, which should be characterized by a Jacobian r . 
v 

'f 
Ads and Mah (1963), using a siITlilar arguITlent, developed a 

. kinetic test for the nU:qlber of in,dependent reactions. 
". 
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1 f r 
of rank 1, ~=RT(-v v). However, if the process passes 

through an interm.ediate com.ponent X, it com.prises two rate 
f f 

processes A ~x ~B; and its Jacobian, based only on the 
""r ~ 

vi· Vz 
ieasurements of th: pro[:;rtie:rOf] species A and B, has rank two: 

~ = - RT o v 2 

In many applications" it is im.portant to distinguish between 

autocatalytic and nonautocatalytic reaction mechanisms. For 

example, consider the reactions: Ca) X + Y~ 2X, and (b) ypX. 

In case (a) , the Jacobian is 

[-:: 
f 

2vr] 
-v + 

1 DJ=- f .-..., RT 
2v

r 
v -

while·, in case (b) , 

t
vf 

-::] 1 
DJ=-
~ RT . f v . 

It is evident that with a set Of experimentally obtained num.erical 

values one could not distinguish between th~ two cases. Another 

test is required. 

For each externally measureable flow J1" the Hessian, i. e., 

the matrix,of second partial derivatives with respect to the 

chemical potentials, m.ay be computed. Differentiating equation 

(5.48), we obtain 

a jJ..8 jJ.. 
1 J 

1 M ajk 1 f f f r r r 
= RTk~1 V1'k a jJ.i=(RT}2 ~ V1'k( Vjk vik v k - Vjk vik vk ), 

(5.50) 
where! = 1, 2, .... n. 
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Thus, in the autocatalytic case (a): 

while in the nonautocatalytic case (b): 

1 =--.". 
(RT)2 

From an experimental determination of the Hessian, it is thus 

possible to distinguish between autocatalytic and nonautocatalytic 

reaction mechanisms. 

" 
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VI. THE COUPliNG OF CHEMICAL AND DIFFUSIONAL 
PROCESSES 

6.1. Bond graph repre sentation of coupled chemical and diffu­
sional processes 

The interaction of chemical and diffusional processes oc­

cur~ so ubiquitously in all biological systems that there is no 

need to stress its importance. If suffices to mention that both 

facilitated and active transport are typical example s of chemico­

diffusional cou.'pling, and there is no doubt that the cybernetic or-

ganization of cells and tissues is in part based on the functional 

relation between metabolic and transport proce sse s. Although 

facilitated transport has been considered from the point of view 

of nonequilibrium thermodynamics and analyzed frequently on 

the basis of different kinetic models, it is advantageous to re-

consider the field from another phenomenological point of view, 

which allows a more general treatment of nonlinear coupled 

flows. 

As discussed previously, one of the principal advantages 

of the bond graph notation is that it algorithmically accounts for 

conservation and continuity conditions via the definitions of the 

zero- and one-junctions. During diffusional flows, the total 

a:J;TIount of each chemical species remains constant, and so the 

conservation condition on the zero-junction (KCL) is clearly 

satisfied (see Fig. 3 .2d). However, if a chemical reaction 

, , 
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involving the diffusing substance is proceeding sirrlUltaneously, 

each species is not conserved. The reaction appears as a source 

or sink tertYl in the conservation equation for each reacting spe-

cie s: 

8 n. 
1 

at ( 6.1) 

However, by extending the bond graph representing diffusion to ' 

include chemical reactions the terms ~ v ik Jk R can be assigned 

to the appropriate bonds incident on the zero-junction, so as to 

transform equation (6.1)into KCL form. 

We shall iritroduce the analysis of coupled chemico-

diffusional proce s se s by considering the flow of two nonelectro-

lytes, A and B, through a membrane in which reaction proceeds 

during the transport process. 

The bond graph representing such a system is obtained by 

combining the structure s for diffusion and reaction de scribed 

previously. For simplicity, we will not include hydrodynamic 

coupling here, although such an inclusion is trivial. The bond 

graph structure shown in Fig. 6.1 suggests that an appropriate 

functional representation of i-dimensional diffusion-reaction 

processes would be an x vs ~. plot. The structure shown is a , 

"one-lump!! representation where single average concentrations 

of A and B are taken to represent the true concentration profile 
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r' within the membrane, and the sources E A and E B indicate that 

the reservoirs bounding the membrane maintain a constant chem-

ical potential. The transition to the continuum profile will be 

discussed below. We wish to emphasize that, strictly speaking, 

the bond graph displays only topological re lations. The bonds 

have no geometrical significance in themselve s. Howeve r, by 

taking advantage of the obvious similarities between the actual 

physical system and its bond graph, the bonds joining zero- and 

one- junctions in many case s may be ascribed an actual length, 

depending on the number of repeating units one employs to re pre-

sent the system. 

6.2. Port constitutive relations 

The orie-Iump model shown in Fig. 6.1 may be used to 

repre sent both uncoupled and coupled diffusion and reaction, de-

pending upon the port variable s used to de scribe the system. 

This is most easily seen by deriving the Onsager phenomenolog-

ical equations from the bond graph. Assuming the diffusional re-

sistors are linear, 

and 

I 
f.LA -

mi· 1 
f.LA = RA JA 

(6.2a) 

(6.2b) 

Adding equations (6.2a) and (6.2b) and assuming the bond graph 
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'1 ' 2 
resistances RA and RA are each one half the total diffusional 

resistance R
A

, we get 

where J A = 

Similarly, 

I 
= fJ.A 

II 
fJ.A = 

is an average diffusional flow. 

( 6.3) 

(6.4) 

where J = B 
As we have shown in paragraph 5.2, in' 

the near equilibrium the reaction dissipation may be represented 

by a one-port re sistor: Hence, 

(6.5) 

and the phenom'enological equations are uncoupled. DeSimone 

and Caplan (1972) have shown by a continuum. treatment that for 

a homogeneous membrane, choices other than the average dif-

fusional flow may lead to reaction diffusion coupling. For ex-

ample, as Katchalsky and Oste r (1969) demonstr ate, one may 

choose the diffusional flows on one side of the membrane, say 

J 1. and J i, and the affinity on the opposite side, say All, to 

describe the dissipative process. In steady state, 

J2 = J1 JR 
A A 

and J2 = B 
J1 

B 
JR. 

I I 

.' , 
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Therefore, 

RA R \ 

c.fJ.A 
1 = RAJA -J 

2 

(6.6) 

and c.fJ.B 
1 RB R 

= RBJB - -J 
2 

The affinity on side II of the :me:mbrane is given by 

. 2) ( :m 2) 
RAJA - fJ.B - RBJ B 

Therefore, 

(6.7) 

and equations (6.~ and (6. "i) represent a coupled Onsager sche:me. 

6.3. Relaxation ti:mes for che:mico-diffusional processes 

6.3.1. 

Utilizing the one-lu:mp bond graph :mo~el shown in Fig. 

6.1, one can calculate the relaxation ti:me s for che:mico-diffu-

sionalprocesses. In paragraph 2.3 we showed that the pure dif­

fusional relaxation ti:me 'T D equals ~C (equation 2.30); and in 

paragraph 5.2.5 we derived the relaxation ti:me 'T R for che:m­

ical proce sse s perturbed fro:m their equilibriu:m state. In this 

section we will consider a che:mical process :maintained at a 

far-fro:m-equilibriu:m steady state by diffusion. 
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The general time dependent state equations may be read 

dire ctly from the bond graph: 

J 1 
A 

(6.8) 

I Introducing the re sisti ve constitutive re lations and as surning 

R1= 
A 

results in the nonlinear state equations 

dfJ.A 
I II 

- 2fJ.A) 
2 

(fJ.A + fJ.A~ 
_ JR(Af , Ar) CA~ = 

RA 

and (6.9) 

dfJ.B 
. I II 

- 2 fJ.B) 
2 

(fJ.B + fJ..B 
_ JR(Af , A r ). CB~ = 

RB 

6.3.2. 

In order to study the relaxation time s of the system, we 

examine the tangent system about the steady state; i. e., let 

ss' ss 
,fJ.A = fJ.A + c5fJ.A and fJ.B= fJ.~S+c5fJ.B' where fJ. denotes the steady 

state value of the chemical potential. Inserting these perturba-

tions into equation (6.9) yields the following small signal equation 

! 
II 1 , 
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( 6.10) 

(6.11) 

where Q is a constant matrix and Lit _(a JR\ Lr_laJrj 
- a A tIs s' R - \a A rls s . 

Notice that, 

f 
v 

for the mass action constitutive relation, 

r 
v 

Lf = ~ 
R RT 

d L r . ss h . an R = RT ,were v IS a steady state velocity. , ss 

The eigenvalues, A, of Q determine the relaxation times 

of the system, and are given by the characteristic equation 

A 
2 

- A tr Q + det Q = 0, 

where the trace of Q is 

4 
tr Q = -

RACA 

and the determinant of Q is 

( 6.12) 

(6.13) 

(6.14) 

Since tr Q < 0 and det Q > 0, the steady state is asymptotically 

stable; and any perturbation will retur n to the stationary state. 

Solving the characteristic equation, we find that 
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and the relaxation times are given by T - -

6.3.3. 

1 
T· 

In the limiting case whe re there is no reaction, 

L f = L r =·0; and equation (6.15) sirrwlifie s to R R 

4 
>"'A = - RA C

A 

4 
>"'B = - RC 

B B 

1 = - --. 

( 6.15) 

(6.16) 

In the other limiting case, where there is no diffusion, R
A

, 

RB - 00; and the eigenvalues are 

1 ( 6.17) 

If will prove to be convenient to define two relaxation time s 

for a chemical process~ne for the forward reaction and one for 

the reverse reaction. Hence, we denote 

Lf 
1 ~-

L
r 

1 >... .~-~= >... 
R (6.18) - -f-; -- --f C

A 
r C B 

r 
TR T" 

R 

~ I 
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where (6.19) 

For the case of ITlass action kinetics, 
f 

L
f _ v 

R - RT= and 
r k c

B 
L; = ;T = ~T ; while, for ideal solutionsoi'unit voluITle, 

cA c B 
C A = R T and C B = R T • Under these re strictions, Af = -k

f 
and 

Ar = - k r ; hence, 'TR = 
1 

k +k ' 
f r 

which is the usual kinetic re suIt. 

6.3.4. 

Let us 'now reconsider the general case where both reaction 

and diffusion occur. Rewriting equation (6.15), we find: 

In the case when the diffusion constants of A and B are equal, 

i. e., when AA = AB= AD' equation (6.20) siITlplifies, and 

1 
- -::r' 

D 

A =A +A +A =_ (_1_+_1_). 
2 n r f 'Tn 'TR 

( 6.21) 

We ITlay also consider the case of unequal diffusion coeffi-

cients, when the reaction is ITluch faster than diffusion, i. e. , 

when IAf+ Ar 1 »1 AAI, 1 AB I. For this case, it is advantageous to 

>:< (v 1)2 Li . 
In the casi ~f Ifonunit stoichioITletry, Af = - and 

(vB) LR . ~A 
A 

r = C ; the re st of the analysIs reITlaInS the saITle. 
B 
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rewrite equation (6.15) in the form 

2(AA - ~)(Af- Ar) + 

(Af + Ar}2 

2 
(AA - AB) 

2 . 
(Af + Af) 

( 6.22) 

(
AA - AB)2 

Neglecting the term and expanding the square root in 
Af + Ar 

a Taylor series to first order yields 

and 

AA Af + ABAr 
A1 = (Af + Ar) +A

f 
+ Ar 

A = 2 

AAAr + ABAf 

Af + Ar 

( 6.23) 

which reduce to equation (6.21) when AA = A
B

. In terms of relax­

ation times, inserting equation(6.16}and(6.1'i? into(6.2~ yields 

-1 -1 i( -1 f- 1 -1 r-1 )-, 
T1 = TR +TR TA TR +T B TR 

= 7' R. 
_( 1 + 

T Tr.· 
AR 

6.4. Continuum equations 

6.4.1. 

( 6.24) 

The bond shown in Fig. 6.1 is a one-lump model of re-

action and diffusion processes. In this section, we will show 

that as the number of lumps in the model become s very large, 

. j­
. ! 
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the bond graph equations reduce to the usual continuum equations 

for sirrlUltaneous reaction and diffusion processes. 

Considering a bond graph composed of a large number of 

lumps, a typical subunit of length dx is the asymmetric lump 

"'" ..., 
shown in Fig. 6.2, where C and R denote the specific capac-

itance and re sistance. For a sufficiently large number of lumps, 

the chemical potential and flow on the right:-hand side of the lump 

may be expressed as a Taylor expansion of fJ., and of J o~_ the left-

hand side. Keeping only the first-order terms in the expansion, 

we see from the bond graph that on the diffusional resistors 

dfJ.A ..., (JA 
dJA ) 

-~ dx = RAdx + --dx 
dx 

dfJ.B ..., ( dJB d0 · -<IX dx = RBdx J B +dx 

or to first order in dx 

dJ.1A ..., dfJ.B 
..., 

-<IX = RA J
A

, <IX" = RB J B · (6.25) 

Equations (6.25)are the conventional nonequilibrium thermody-

namic continuum equations for diffusional flow. Considering the 

bond graph equations for the capacitors, we have 

..., dJ.1A 
C A dx err- = J A -

..., dfJ.
B

-
C B dx err- = J B -

(6.26) 
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where we have used the constitutive relation 

Rewriting equations (6.26), we find 

"-
• i 

dfJ.A dJ
A ,.., ·f Ar) .CAdt - - (IX - LR (A, 

dfJ.B. dJB "" f A
r

). C Bdt = ""dx"" + LR (A, 

Identifying 
,.., f r ~ 
LR (A ,A ) with the local reaction rate J , and 

. 8 c A 
. 

C = we see that equations t>~2 7) are nothihg 
A 8fJ.A' 

noting. that 

more than the continuity equations for the reaction diffusionsys-

tern 

8c. dJ. ~R 
8 t

1 = - d~ + vi J - . (6.28) 

Thus the lumped bond graph representation reduces to the basic 

equations of continua when driven to the limit of infinitesimal 

lump size. Notice that, as one would expect, this derivation 

was independeht of the form of the constitutive assurnption for 

the chemical reaction. 

We can combine the se local equations in the standard 
! 

fashion by differentiating equations (6.25) and inserting dJ/ dx 
. , 

into equations (6.2", obtaining 

" 
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2 -_ _ dl-J
A d fJ.A dlnR

A dfJ.A -...., f 
Ar) RA CA Cit = 

dx
2 dx d? - RALR (A , 

2 ...., (6.29) 
...., ...., dfJ. B d fJ.B dlnR

B dfJ.B ....,...., f 
A

r
). RB C B Cit = 

dx
2 dx "(l;( + R BLR (A , 

Equations (6.29) adequately describe the relaxation behavior of 

A and B in a membrane with reaction. 

Friedlander and Keller (1965) and Katchalsky and Oster 

(1969) have shown that in the near equilibrium regime, assuming 

constant diffusional resitances, equations (6.29) take a partic-

ularly simple form. Under conditions of steady flow, a field 

equation of the Helrnholz type for the affinity is obtained: 

(6.30) 

where A. = [L
R 

(ItA + R B)] -1/2 is a characteristic reaction diffu­

sion length proportional to the Thiele modulus for near equilibrium 

'reactions. For membranes of thickness .6. x , 

2(TD> 

where T R is the relaxation time of the reaction, 

= 

n 
\" 2 - i L· v. fJ. •• T D 
i=1 1 11 

n 2-
'"' V. II •• L 1 r 11 

i = 1 

is an average diffusional relaxation time, and fJ. .. 
11 

(6.31) 

( 6.32) 

a J.l. = __ 1 is the 
a c. 

1 
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change in chemical potential with concentration evaluated at 

equilibrium (Perelson and Katchalsky, 1972). When A < < .6. x , 

TR « (TD); and the reaction will corne to equi'librium near the 

sur face of the membr ane. On the other hand, for A» .6.x, 

(T D) < < T R; and:. the components 'diffuse through the membrane 

without corning to equilibrium. Hence A is a measure of the dis-

tance a reactant must penetrate the membrane before corning to 

e quili bri urn. 

The average diffusional relaxation time, which was de-

rived from a continuum treatment, contains the unusual weight-

ingfacfors However, from the network viewpoint, this 

average may be interpreted in a natural way. By removing the 

reaction resistance RR from Fig. 6.1 and adding a one- junction 

so that the flows on the adjoining bonds remain equal, we can 

create a port through which one can view the diffusional portion 

of the network. The resulting bond graph is illustrated in Fig. 

6.3. At steady state, when there is no flow into the capacitor, 

the incremental re si2tance as seen from this new port is 
TOT vA

2
R A + vBR B 

RD = 4 At equilibrium, when the diffusional 

flows are zero, the total capacitance seen from this newport 
v 2 v 2 

= ~ + ~ For a reaction diffusion system in 
CA C B 

/ 

which more than two components participate in a single re-

action, 
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n 

"1 
f 

'\ v. 2 R. 6 11 

i = 1 
4 

C TOT = .(! v~2 )-1 
i = 1 1 

( 6.33) 

Noting that 1-1 •• 
11 

~x i 
= C. and that T D 

R.C. 
1 1 = -4- (c. f. equation 2.30), 

1 

we may rewrite equation (6.31) as 

(Tn> = 

~ 2 (~x1' RiCi 
6 Vi c.' 4 

i = 1 1 
= 

n 2 

I
v. R. 

1 1 

4 
i = 1 

n 2 
'\ v. 

6-t.-
i=1 1 

( 6.34) 

The average diffusional relaxation time is thus simply the total 

steady state resistance multiplied by the total equilibrium ca-

pacitance as seen from the reaction resistance. 

6.5. Facilitated transport 

As a slightly more complex example of the bond graph 

technique, let us consider the case of facilitated transport 

through a membrane. The conventional model for facilitated 

transport assumes that the membrane contains a carrier C 

which reacts with a permeant substrate S to form a cOITlplex 

CS. Both Sand CS diffuse through the membrane. The CS 
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complex then dissociates rele'asing C and S at the other side of 

the membrane. S ,exits from the membrane and C is free to 

diffuse back across the membrane and combine with more sub-

strate. 

The bond graph representing this process,' shown in Fig. 
, ,/ 

6.4, is a combination of the previously examined bond graphs 

for reaction and diffusion. We have chosen for illustrative pur-

poses a two-lump model, which is the simplest representation 

that allows one to include chemical reactions occurring at differ-

e?t points in space. For greater accuracy we could, of course, 

represent the interior of the membrane by many lumps with a 

reaction occurring in each. The compartments external to the 

membrane are represented by the effort (chemical potential) 

source s E I and E II; R I and R II are the re sistance s the, sub-
s s s· s 

strate sees in entering lump 1 and exiting from lump 2 of the 

membrane model, respectively. R,R 
s c 

tances to diffusion within the membrane; 

reaction resistances; and C 1, C 2 
s s ' 

C 1 
c ' 

and Rare re sis­
cs 

1 ' 2 
RR and RR are the 

C 2 C 1 C 2 are 
c " cs' c s 

the capacitances of the substrate, carrier and carrier sub strate 

, complex on side s 1 and 2 of the membrane. In this model, we 

have assumed that the forward chemical reaction 

k 
C + S, f \ CS 

" k r 
occurs on side 1 and that the 'reverse, reaction takes place on 
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side 2 of the membrane. These two chemical reactions, plus 

the diffusion of the carrier and the carrier substrate complex, 

form a cycle which is characteristic of facilitated transport and 

which is clearly visible in the bond graph model. 

The steady state and the dynamical equations describing 

the transport system may be read directly from the bond graph. 

First consider the equations describing the steady state of this 

system when the reactions are assumed to be close to equilib-

rium. Under this assumption, we may use the one-port repre-

sentation for the dissipation due to a chemical process, as shown 

in Fig. 6.5. In order to be completely general, we shall assume 

nonlinear constitutive relations for the re sistor s. In the steady 

state analysis we concern ourselves only with the driving force 

across the membrane, the diffusional flow of A alone (called the 

shunt flow), and the flow of S due to the carrier circulation. 

The variables characterizing the circulation of the carrier may 
I 

not be experimentally accessible; therefore, we lump this por-

tion of the bond graph into a new two-port element, - CIR-, 

called a circulation two-port. This new two-port element repre-

sents the structure enclosed by dotted lines in Fig. 6.5. 

The steady state relationship between the input and output 

variables of -CIR- is easily read from the bond graph: 

( 6.35) 
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fJ. 2 = R. (J. ), 
s Clr Clr 

(6.36) 

where R. 
Clr 

R 1+R 2+R +R 
R R c cs 

(6.37) 

Also notice that J. = J = J ,a result derived kinetically by 
Clr c- cs 

Katchalsky and Spangler _ (1968). As one might expect, at steady 

state there is only one flow through the circulation two-port, 
"' ' . 

which we have denoted J . ; and the dr.iving force in the linear Clr _ 

case is equal to the total series resistan,ce, R
cir 

multiplied by 

J . 
Clr 

One of the goals in analyzing a facilitated transport model 

is to determine the relationship between the diffusional flow of 

Salone, J h t' and the flow of the CScomplex, J . . The s un _ . Clr 

bond graph in Fig. 6.5 shows that -CIR- is in parallel with the 

shunt resistance.R . Hence, the driving forces across both s 

elements are equal and 

R. (J.) = R (J h ). Clr Clr s s unt 
( 6.38) 

If either of the se re sistance characteristics is invertible, equa-

tion (6.38) yields the de sired relationship between the flows. 

In the linear case we simply have 

J . 
Clr 

J shunt 
= 

R 
s 

R. 
Clr 

( 6.39) 

The steady state force-flow relations observable in the com-

partments surrounding the membrane are also obtained directly 

I 
• I 
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from the diagr am: 

~ fJ. = (R I + R II + R - 1 + R . - 1) (J >* 
s s s s Clr s ( 6.40) 

and, in the linear case, 

~fJ. = J (R I+RII+ Rs R
cir l' s s s s R +R . 

s Clr 
( 6.4'1) 

I 
where ~fJ. = fJ. s s 

II I II 
= fJ. and J = J = J ; thus, we retrieve 

s s· s s 

the intuitive feeling that the substrate "sees·· some resistance 

in entering and leaving the membrane, and that the carrier pro-

vides a parallel method of substrate transport. From the di-

agram, it is clear that maximum diffusion enhancement occurs 

as RR ----7 0, i. e., for the equilibrium reaction (Friedlander 

and Keller, 1965). 

The bond graph not only gives us information about the 

steady state behavior of facilitated diffusion, but also generates 

the state equations for the system. Since not much attention 

has been given to the dynamics of facilitated trans port, we will , 

derive the general nonlinear equations that hold far from equi-

librium from the bond graph in Fig. 6.4: 

~;< 

Care must be taken in formulating nonlinear equations since 
all constitutive relations do not have inverses; e. g., for an 
autoc~talytic re?-ctio~ JR = f(A) doe s _~ot have c:n inver se. 
EquatIon (6.40) IS vahd only when Rand R f exist. s Clr 
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1 1 1 1 
- LR ( II. + 1I. ," ) rS rC rCS 

C 2 . 2 = J R + J .' . = J 2 2 ( 2 . 1 + 1) + L (1 2-
s fJ.s 2 shunt s = LR f..I.cs' f..I.s f..I.c s f..I.s - f..I.s ) 

_ L II (1I. 2 _ II) 
s rs f..I.s 

C 1. 1 = J.R 1 2 1 1 1 1 
II - J-.- = L (II - II ) - LR (II + 1I. ,II ) C rc c1 c rc rc rs rc rcs 

C 2 .' 2 -J R 
c f..I.c - 2 

J - L 2 ( 2' 2 2) l' 2 
C - R f..I.c s ,fJ. + f..I. - L (f..I. - II ) 

S C C C rc 

1 1 R __ L 1 (1 1 1 1 2 C Ii = J . - J II + II II ) - L (II - II ) CS rcs 1 cs R rs rc' rcs cs rcs rcs 

C 2,i2=J 
cs cs cs 

JR=L ( 1 
2 cs fJ.cs 

( 6.42) 

where L s (·)' L
c
(·)' L cs (·)' and LR (.) dehote arbitrary con­

ductance functions. In the case of linear diffusion, L I (fJ.I - f..I. 1), 
. I 1 s s s 

f..I.s - f..I.s 
for example, redu.ce s to R I 

s 

The reaction conductance 

for far-from-equilibrium reactions has the form 

R f Af/RT Ar 
/RT 

J. = LR (A , Ar) = K (e - e ), as was shown in 

Section V. 

! ., 

~ I' 
I 
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VII. SIGNAL FLOWS AND CON TROL PROCESSES 

7.1 Unilateral- energy transmission and activated bonds 

One of the most important aspects of network thermodyna-

mics is the possibility of treating control processes. In bio-

logical systems, it is common for an event to exert an influence 

out of all proportion to its energetic level. The minute energetic 

influence of an allosteric modifier on an enzyme can affect the 

entire energetic operation of a cell. The effects exerted by a 

hormone or neuromuscular transmitter substance are in no way 

related to the energetics of its interactions. In general, there 

may be no relation between the energy investment in a control 

mechanism and the energy released or inhibited by the controlling 

agent. 

Regulation and control of energetic proces ses therefore 

requires the ability to amplify signals. This, in turn, implies 

the necessity of introducing unilateral energy flows. For example, 

at a neuromuscular junction a small amount of energy is expended 

to produce transmitter substance; however, there is little or no 

back effect exerted on the nerve by the controlled muscular 

contraction. The nerve transmits energy unilaterally to the 

muscle, in contrast to the bilateral energy flows encountered 
\ 

previously. Similar phenomena characterize most control 

systems. 

To distinguish unilateral energy transmission from ordinary 

signals, we shall.append an arrow to the bond.. This is not to be 
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confused with the half-arrow employed for sign conventions 

(Fig. 7.1). An energy bond with an arrow appended,is called 

activated, since it appears as an active device, or source, to 

the downstream side of the bond. 

7.2 Signal flow bonds \ 

In many instances the power level on an activated bond is 

negligible compared with the other energy flows of interest. In 

such cases. the unilateral energy flow may be considered a pure 
, 

signal flow, This is indicated by drawing the activated bond as 

a broken line (Fig. 7 .1). Such bonds are called signal flow bonds. 

The way a control signal usually exerts its influence on energetic 

flows is by parametrically modulating the constitutive relation of an 

energetic n-port. For example, consider a chemical reaction 

catalyzed by the allosteric enzyme malate: TPN + oxidoreductase 

from Escherichia coli, which is activated byNH
3 

+ ions (Sanwal & 

Smando, 1969). The constitutive relation for the reaction, velocity 

versus affinity curves, is modulated by the concentration of the 

allosteric modifier. Figure 7.2 shows the effect of varying the NH3 + 

concentration on the velocity of the malic enzyme reaction. 

In manycases the parametric modulation of a constitutive curve 

can be represented explicitly with the aid of a transducer .If, for ex-

ample, we letRO denote the constitutive curve for malic enzyme when 

. + 
no NH3 is present, we can approximate the whole family of curves 

shown in Fig. 7.2bY f(NH
3
+}·R

O 
wheref(·} is somefunctibnofthe 

NH3+ concentration. This type of multiplicative modulation can 

be ~epresented in the bond graph for a near equilibrium reaction 

'I , 

• i 
i , 

.t', I 
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by letting ~ be the transducer modulus and connecting the TD 

to the resistor port, as shown in Fig. 7.3. The signal flow bond 

incident on the TD indicates that the modulus is a function of the 

H + . N 3 concentratIon. 

7.3 Unilateral energy transmission and reciprocity 

Another important aspect of unilateral energy transmission 

and signal flow concerns reciprocity. The constitutive relation 

of a reciprocal device can be characterized by a potential function; 

consequently, as we will show in Section VIII, the system will 

decay to a unique equilibrium set. The introduction of unilateral 

control processes, however, precludes the possibility of analyzing 

systems solely in terms of potential functions. Hence, in biological 

systems, where control processes presumably playa preeminent role, 

reciprocity is probably the exception rather than the rule, andpotential 

functions lose their ·pteeminent position in thermodynamics. 

7.4 Unilateral energy flow and dissipation 

Unilateral energy flows also arise in connection with dis sipa-

tion as a consequence of the second law of thermodynamics. 

Every n-port resistive element operating isothermally can be 

viewed as an (n+1)-port "converter," transforming work uni-

laterally into heat (= temperature X entropy flow). Figure 7.4 

illustrates this for a one-port resistor. The energy dissipated 

as heat usually passes from our universe of discourse because 

the system is considered to be either at constant temperature or 

temperature insensitive. 
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There are, however, instances· in which the heat generated 

during the operation of a process does, in fact, feed back and 

influence the dynamic behavior 'of the system. This can corne 

about, as mentioned above, by the parametric modulation of a 

constitutive relation. Indeed, all constitutive relations implicitly 

contain temperature as a parameter! An elementary example of 

this effect is the thermistor. This is an electrical resistance 

whose material properties are such that its resistance is of the 

form R( T) = RO exp( -BIT), i. e., with increasing temperature 

the electrical resistance decreases, coptrary to most electrical 

conductor s. (This effect is due to the thermal excitation of addi-

tional electronic charge carriers within the thermistor material. ) 

An electrical circuit containing this parametric feedback, which 

has been described elsewhere (Oster and Auslander, 1971), is 

shown in Fig. 7.5. 

Without the parametric thermal feedback this circuit would 

exhibit only monotone behavior. The unilateral coupling of the 

electrical and thermal systems, however, enables the entire 

system .to perform limit cycle oscillations about an operating 
, 

point (Smith, 1950). 

A similar situation can arise in a continuous flow stirred 

tank reactor·( CFSTR). The rate constants k for a 

chemical reaction are temperature sensitive since by the Arrhenius 

equation k = A exp (-E/R T), where E is the activation energy. 

. I 
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Consequently, the behavior of a CFSTR will resemble that of a 

thermistor circuit. Aris (1969), for example, demonstrates 

the existence of instabilities and the pos sibility of oscillations 

in such reactors. 

7.5 Nonlinear oscillations 

A more interesting example of parametric modulation is a 

device first constructed by Teorell (1962) as a model for certain 

biological periodicities. The system shown in Fig. 7.6 consists 

of a negatively charged membrane separating two salt .solutions 

of unequal concentration. A current is imposed acros s the 

membrane via reversible electrodes, and at a critical value of 

the current density the system exhibits a pronounced instability 

manifested by relaxation oscillations in the transmembrane 

potential and the hydrostatic pressure head in the two reservoirs 

(Oster and Auslander, 1971). 

The electrical current flow I, under conditions of constant 

pressure, is related to the volume flow J ('" water flow) by 13, the 
v 

electroosmotic permeability: J = 13I. 
v 

Consequently, under 

conditions of equal hydrostatic head across the membrane, the 

transmembrane potential 6. tjJ acts as a driving force for the 

volume flow J
v 

= L06.tjJ. In the bond graph of Fig. 7.6 (b), this 

effect is represented as a source of pressure head on the water 

system whose magnitude is modulated from the electrical system. 

The electrical system, in turn, sees a resistance whose magnitude 
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depends 10 part on the am.ount of salt'in capacitance c~. This 

effect is represented by resistance R 0 in the electrical systerp. m. 

m.odulated from the m.em.branecapacitapce. 

At this level of description we have abandoned, to som.e 

extent, purely energetic considerations in representing the 

couplingphenom.ena. The dotted m.odulation lines represent pure 

signal, or information flows; and the com.plete energy bookkeeping 

im.plied in a true therm.odynam.ic analysis has been surrendered. 

A m.ore detailed analysis would consider, am.ong other things, the 

ionic flows of the anion and cation, the electrode reactions and 

the m.em.bran.e charges. Many of the nonenergetic modulation cou-

plings could then be eliminated, and a totaI'ly thermodynamic model 

constructed. Needless to say, the large number of physical inter~ 

actions might tend to obscure the key control mechanism. 

For the case under consideration, the llfirst order!! 

phenom.enological m.odel shown in Fig. 7.6 suffices to understand 

the param.etric feedback mechanism giving rise to the oscillation. 

Fortunately, the differential equations obtained from this model 

repro<iuce the experim.entally observed m.agnitudes with suffiCient 

. ' 

accuracy so that an expanded m.odel is not required. 

The operation of the system can be under'stood by consider-

ing the following sequence of events: (i) Assume that at t=O the 

sait has established a steady-st~te diffusion profile within the 

m.em.brane. (Here represe!lted as a single average concentration).' 

With the electrode polarity shown, when the current is applied 

.. ; 

i ; 
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across the membrane, the electroosmotic force E induces a 
eo 

flow of solvent from the low concentration side (2) to the high , 

concentration side (1). (ii) This relatively large solvent flow 

distorts the concentration profile within the membrane, reducing 

the amount of salt in CS . (iii) With a smaller amount of electro­
m 

lyte in the membrane, the voltage drop across the membrane 

increases (Rm increases via TD
1

), thus inducing an even higher 

electroosmotic force on the solvent (via TD2 ), which ~ends to 

drive the water level in C ~ still higher. (iv) Ultimately. a 

steady head is obtained across the membrane depending on the 

strength of the electrical source. After a while, however, the 

much slower diffusion process from C~ to C~ will tend to restore 

the salt concentration in C to its original level. (v) As electro-
m 

lyte gradually reaccumulates in cS 
,R drops; therefore the 

m m 

electroosmotic force also decreases, initiating a flow of solvent 

from C:- to C ~ that is driven by the accumulated pressure head. 

(vi) As the solvent flow proceeds, salt from the high ,concentra- ; 

tion side (C
S
2

) is carried into cS ,decreasing R and the electro-
m m 

osmotic force still further. This positive feedback effect continues 

until a static head is built up on the other side. The relaxation 

of the new salt profile and pres sure head begins the cycle again, 
\ 

the salt profile in the membrane beginning to decrease again as 

, W W 
the salt is dragged by solvent flow from C 2 into C 1 . 

Relaxation oscillators frequently have the common property 

of possessing competing energetic processes that occur 
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with widely separated time scales. In this case, the diffusion 

of salt is much slower than the hydrodynamic flow of solvent. 
l 

Figures 7.7 and 7.8 show the liquid pressure-head difference 

and the membrane electrical resistance as measured by Teorell 

(1962), as well as the results computed from the bond graph 

(Oster and Auslander, 1971). Considering the simplicity of 'the 

model, the results are surprisingly good. Inclusion of a true salt 

profile within the membrane by introducing several more cS 
m 

greatly improves the fit. Our purpose here, however, was to 

illustrate how signal flows could be utilized in the network 

approach.-
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vm. THEORETICAL CONSIDERATIONS 

8.1. Introduction 

In this section, we shall briefly outline some technical as-

pects of network thermodynamics. It is intended that this secti(;n 

be read in parallel with Section I for those readers of a more the-

oretical bent. Some concepts previously introduced will be re-

stated in a broader context, and the mathematical level necessar-

ily will be somewhat higher. A more detailed treatment of the 

matters discussed herein will be presented in a later publication. 

8.2. Duality 

8.2.1. 

In Section I, we classified all thermodynamic quantities as 

either KCL or KVL variables, based on requirements of conser-

vation and continuity. These definitions corresponded to the oper-

ational notions of through and across measurements based on the 

recognition that most physical measurements can be classified as 

either 2-point measurements, like voltage, or i-point measure-

ments, like current. We noted that it was frequently the case that 

the inner product of the through and across variables had some 

physically meaningful interpretation, e. g. dimensions of power 

or energy. 

-:;:--------_\ '\~ 

"This is by no means a logical requirement for the formalism. 
Conjugate variables whose products have no such interpretation 
are frequently employed in traffic flow networks and economic,s. 
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The notion of conjugate variable s appears throughout the 

realm of classical physics, e. g. force and flow in irreversible 
I 

the rrrlOdynamics, extensive and intensive in equilibrium thermo-

dynamics, position and'momentum in mechanics~ etc. (slee Table 

1). 

The clue to this ubiquitous duality lie s .in noticing that the 

conjugate variables transform- either covariantly or contravar-

iantly under coordinate changes, suggesting that the distinction 

between the KCL and KVL variable s is the distinction between a 

vector space V and its dual V~:<, i.e., the space of all linear real-

valued functions on V (Loomis and Sternberg, 1968}. We shall 

briefly indicate the nature of this duality, since it plays a central 

role in the mathematical structure of our modeL 

For capacitive n-ports, conjugacy arises quite naturally. 

In Section I, we defined an n-port as the constitutive map 

n 
IF: JR, -.. JR, x -.. v(x), where the pair (x., y.) is associated with 
r- ,.w rl- row 1 1 

the ith port. Since equilibrium systems are pre sumedre cipro-

cal, the constitutive relations may be' summarized by a potential 

function, U: JRn -.. JR, as described in paragraph 1.3. Then, for 

example, if the intensive variables Yi are defined as the coordi­

nat~ functions of DU, the gradient vector field generated by the 
. ~ . 

potential function, they 'transform contravariantly while the x. 
1 

transform covariantly (Killingbe ck and Cole, 1971). (i. e., the 

gradient vec:tor itself is covariant). 
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It is: asim.ple generalizationto imaintain this duality be-

tween the x.and y. when we drop the assumption of reciprocity 
1 1 . 

for arbitrary n-ports. We may redefine the constitutive relation 

for an n-port as a covectorfield, i. e., a differential form: (Fleming, 

1~66) 
n n* 

W: lR - lR , x - W (x), 
. --

where (Xi' W(x
i
»are the pair of variables associated with the ith 

port. Although it may seem pedantic to maintain the distinction 

between vector and covector field"s on lR
n 

(especially in view of 

. n n >:< 
the global canonical isomorphism between lR and (lR) given 

by the Euclidean metric), confusion of the two spaces obscures 

the logical structure and ultimately leads to difficulties when 

dealing with nonlinear systems. Moreover, the distinction is 

crucial for the definition of reciprocity given in paragraph 8.3. 

8.2.2. 

The construction of a linear graph representation for sys-

terns composed of i-port elements was demonstrated in para-

graph 2.1. This construction may be easily extended to n-port 

systems in the following way. 

The port variable s corne in pairs (e
i
, f

i
), so the 2n­

dimensional state space for each n-port may be decomposed into 

the direct sum of constitutive planes: 

JRn x (]R.n)':< = JR 1 X (]R.1)* e· .. eIR1 x (JR 1)*. We as sociate with 

each constitutive plane of the n-port a single branch of a linear 
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graphwhich carries the port variables as branch variables. The 

collection of branches so formed is called the terminal graph for 

the n-port(Koenig et al., 1969; Martens and Allen, 1969). 

Figure 8.2 illustrates this for severaln-ports. Note that, when 

each port represents a different energy mode, the terminal graph 

is disconnected, forming a fore st of 1- branch graphs. 

We may now interconnect the ports of an n-port system in 

the usual way, as if ea,ch port were a separate circuit, as shown 

in Fig. 8.2b. The resulting system graph is disconnected, and 

the coupling between the ports is not explicitly repre sented. In 

some earlier treatments, port coupling was depicted by a dotted 

line. or loop, joining the ports. This is clearly unsatisfactory 

for large systems; and the bond, graph, which is mathematically 

equivalent, is a much clearer representation. 

A particularly important clas sof n- ports are the zero~junction 

\' and the one - junction. From the linear graph viewpoint, the se may 

be defined asconneciion n-ports, i.e., black boxe s containing only con­

nectiolns. as shown in Fig. 8.3. The terminal graphs corresponding 

to the zero- and one - junctions are also shown in Fig. 8.3. 

Tellegen's Theorem for an n-port network is obtained from 

each terminal graph separately: 

eTf = l eTf = l 0 = 0 (8.1) 
4""'Y 

'Y 'Y 

where the sum 'I .is taken ove r each graph of the fore st. 

i • I 
~ i ,... , 

f" 

,. 
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The definition of reciprocity given in Section I, i. e., the 

symmetry of the Jacobian matrix DF(x) at every point x € R n, is 
. ..-.....,..,- . ~ 

both a local condition and one that depends on the coordinate sys-

tern used to de scribe the constitutive relation. In the following 

paragraphs, we will generalize our definition of reciprocity and 

indicate the role that coordinate choices play in reciprocity. ; 

8.3.2'. 

In paragraph 8.1, we modified our definition of an n'-port 

constitutive relation to accomodate the notion of intrinsic duality 

between the port KCL and KVL variable s. An n-port was defined 

n . n n * as a covector field w on R , i. e., a map w: R - (R ). In 

terms of this definition, the condition for reciprocity is that w be 

closed, i. e., dw = 0, where d is the exterior derivative (Fleming, 

1966). Since w is .defined on R n, d w = 0 implie s w is exact, 

w = dU, for some potential function U: JR. n - JR.. Note, however, 

that this definition of an n-port is overly restrictive since we 

may be forced to employ hybrid coordinate s for the n-port. For 

example, the constitutive relation for a TD, (e
1
,f

1
)- (e

2
,f

2
), 

has no impedance or admittance representation. Therefore, a 

more general definition of an n-port would be to view the consti­

n . n * 2n tutive relation as a submanifold of JR. X (JR.) ::::: R ,the graph 

of w. In this section, we will employ this interpretation to 
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. . '. -

obtain a more general definition of reciprocity as. a prelude to 

deriving the canonical equations of motion for nonlinear n-port 

systems. 
,,:, : . . ... 

Remark: Classical thermodynamics usually considers rel- I 

atively simple system configurations, e. g. a system conne'cted to 

one or more reservoirs. When we allow more complex intercon-

ne ctionl;, certain pathologie s can arise. whereupon the constitu­

tive relation does not form a submanifold. For ex~mple, Chua 

has shown that interconnecting only rather elementary resistive 

e Ierne nts can pr oduce a compo site 1:" port who seconsti tuti ve re lation 

may consist of either a single point on thee-f plane, a dense set 

in the, e-f plane, several disconnected components, or even char­

acteristics with" self- crossings" like ,a figure eight! (Chua, 1971). 

8.3.3. 

The principal reason for viewing the constitutive rel~tion as 

a submanifold of lR2n lies in the fact that the embedding space can , 

be endowed with a, certain can9nical structure as a consequence of 

its even .dimensionality. The identical situation is encountered in 

classical mechanics. Recall that Hamilton's equations are also 

defined on an. even-dimensional manifold modeled ~n lR 2n, where 

they take theform,Jx = DH, where x= ,..,,.., ~ .,..,. 

,tbnian and J the "symplectic" matrix:' ,.., 

(Arnold and Avez, 1969); 

·/ .~ 

1,1 

, 
i' 



; '1 i lJ (J 'i, / j .' ~~; '-.1 .... L, .,) / f~) I 

-149-

The ordinary Euclidean inner product structure on 1R. 2n is 

simply (:s, V = :sT!.:r, where ~ and l are 2n-vectors and!. equals 

the identity matrix. We may define the symplectic (antisymmetric, 

or Hamiltonian) inner product by (Arnold and Ave.z, 1969): 

(8.2) 

Linear transformations which preserve this inner product are 

called symplectic (canonical) transformations for the Euclidean 

"::: 
inner product: 

Orthogonal 

I = OT I ° ,.., ,.., 

-1 1- 1 ° T I ° = 

SymElectic 

J = ST J S ,.., ,.,,., 

S-1 = J- 1 ST J (8.3) 

Now, just as we can define a quadratic surface to be the zero 

set of a symmetric bilinear function, {xl x T Qx= 0, Q= Qrr.> O}, 
. ,..., ,...., ,..,.,...., 

we define an isotroEic subspace of a vector space to be the set of 

;5' "t' which annihilate J: {x, y I x T Jy = 0, J = - JT} (Malcev, 
,., ,., 

1963). A Lagrangian subsEace of a vector space V is just an iso­

tropic subspace withdimension = 1/2 dim V (Arnold, 1967). 

Finally, we define a submanifold Me 1R. 2n to be Lagrangian if the 
I 

tangent plane at each point p f M, T M, is a Lagrangian sub­
p 

space, i. e. , 

x, y f T M, P E' M. ,., ,., p 
( 8.4) 

*The Poisson bracket of two functions is just the Hamiltonian inner 
product of the Jacobians: {f, g} = DfT JDg . 

....--......., .--~ 
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, 
Having defined an n-port a~ a submanifold, we make the 

following definiti~n of a reciprocal n- port. 
,t, -., 

DEFINITION: A reciprocal n-port is a Lagrangian sub-

e n' n * manifold M [R X (R ) J. In the' following paragraph we will 

show that this definition reduce s to the previous d~finitions when 

coordlnate sare int~oduced. 

8.3.4. 
.. , 

Let us now interpret this definition geometrically. Consider 

the the rmome chanical two-port in Fig. 1.1 with port variables 

(T, S, -p, V). We introduce the port sign conventions in the fol-' 

lowing way. CyCles traced clockwise on the constitutive planes 

correspond to energy delivered to the system ports, while cycles 

traced counterclockwise repre sent energy delivered Qy the port. 

Since we have taken energy into the port as positive by conve1ntion, 
. . 

this is tantamount to introducing an orientation onto the constitutive 

planes (Spivak, 1965). We can conveniently keep track of these 

orientations by introducing the antisymmetric (exterior) product of 

coordinate differentia.ls: 

dx
i A dy 1 = - dY1" dx

i 
.(8.5) 

y=(Y l' Y 2) are any two vectors on a That is, if ~ = (Xi' X2) and 

constitutive plane, 
t . . 
~ . . 

In DesO.er and Oster (1972), it is showri that M may also be char-
acterized as the extremal 'set ·of a certain real:"valued function on 
R2n. This function generalizes the free-energy functions of class­
ical thermodynamics and gives necessary and sufficient conditions 

. for global reciprocity. . 

.. 

, 
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." 

dx
i 1\ dy. (X, Y) 

1 ..... ..... 
= det (Xi Y 1) 

Xz YZ 
!I!< 

= oriented area spanned by X and Y. ,.., (8.6) 

Since this n-port is reciprocal, w = dU, which when expanded in 

the coordinate differentials is 

dU = I 
i. e., the Gibbs form 

~I 
ports 

i y. (x) dx 
I" ..... 

dU = TdS + ( -p) dV + ... . 

Applying the exterior derivative once again:<~:< we obtain 

d . d U = 0 = d T 1\ dS + d ( - p) IA d V. 

(8.7) 

(8.8) 

(8.9) 

The two-form on the right is just the coordinate differential ex-

pression for the bilinear form J.Thus, in general, the condition 
..... 

for the constitutive manifold M to be reciprocal (Lagrangian) is 

" **>:< 
the vanishing of the two-form on the tangent planes of M, 

p ~ I dy. A dx
i 

= o. 
1 

(8.10) 

ports 

* "i" i Note that dx 1\ dx = o. 
**, "" 

The Poincare identity d· d = 0 generalizes to the usual vector 
identities div . curl = curl· grad = 0, arid is related to Tellegen's 
Theorem. 
~!:: ~I~~< . ~ 

This definition was first proposed by Brayton (1969). 
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The two-form p measures the area spanhedby pai~s of vectors on 

T M .. For any two such vectors" 
p 

= sum of projected areas on constitutive ,. 
planes . 

. This is clearly an orientation requirernenton th~ tangent planes to. 

M. That is, Mmust be sitting "just right" in R 2n such that the 

algebraic sum of the tangent projections just cancel. Moreover, 

from this definition it is clear that reciprocity is not an intrinsic 

property of the n-port, in the us~al sense, but rather depends on 

the choice' of coordinate system for M. Arbitrary coordinate 

transformations will not preserve reciprocity. For example, a 

commonly employed coordinate set in n~twork theory is the' set of 

scattering parameters: 

s. ~ 
1 

i 
x +y. 

1 

2 I (8.12) 

A short computation shows that '~ dS. 1\ d". =f o .. In order to con-
I 1 

, " 
sider reciprocity as an intrinsic property. we must always refer 

the system back to some physically "preferred" coordinate set. 

(However, wemti.st recognize that no coordinate system has any 

special mathematical status. ) From the discussion in paragraph 

8:3.2, it is clear that the clas s of coordinate transformations (i.e., 

transforms of the em'bedding spa~e R 2n) which pre serve thepl'op-

erty of reciprocity are the canonical transformations. It is just 

! 

.1 
1 
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9 

this clas s of transformatioris that will also preserve the form of the' 

equations of motion derived in paragraph 8.4. 
\ 

Although the definition of a reciprocal' system as a Lagran-

gian submanifold is independent of coordinates, it is easy to verify 

that for various coordinate choice s, it reduce s to the more famil-

iar expre ssions. 

EXAMPLE: Let (~, X) = (Xi'···' "k' Yk+1'···' Yn) be any 

set of coordinate ·variables. The constitutive re lation is then: 

,.., ,.., 
whe re (z' ;:) = (y l' .. " Yk , "k+1'" .xn )· Then equation 8.10 be-

comes: 

T 
931 ~Z 

T £5'z ~ 1 = O. 

If the n-port has an impedance representation, (i.e., if k - 0), 

, T N1 =1. and N Z = Q!'Z' so that 

(8.13) 

and the Jacobian of the constitutiverelationis symmetrical at each 

point of M. 

EXAMPLE: Atransduce,r has no impedance or admittance 

representation, i. e., (e
1

, e Z) and/or (f
1

, fZ) are not admissible 

coordinate sets on the characteristic manifold. The constitutive 
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relation is: 

, . ·1 .. z '.. . . 
Clearly p = (dx (\ dy 1 + dx 1\ dyZ) = 0 when r is a constant. 

V!iewed as a map ~rom the input port to the output port, th~ consti-· 

tutive r~lation is area(i. e., power) preserving. That is, the TD 

is a canonical coordinate transformation. 

EXAMPLE: The two-port capacitance in Fig. 1.1 may also be 

viewed as. a map from one constitutive plane to another, 

This map is also area (energy) preserving, i. e., 
. a( V) 

de t (F) - - p , - 1· -a (T ,S) - , 

and hence. the two- port is reciprocal. This reduce s to the familiar 

thermodynamic identity, c - c =T4r (3/K, where/lf" is the specific p v· , 

volume and (3 and K are the isobaric and Isothermal compress-

* ibilities, respectively. 

EXAMPLE: The zer6- and one- junctions, defined as connec-

tion three-ports, have the terminal graph representation shown in 

Fig. 8.3. Sequences of connected junctions then become connec­

tion n- ports. Substituting the port relations (Kirchhoff i s laws) into 

the reciprocity two-form verifie s that connection n- ports are 

* i Notice that p :;::dYi 1\ dx = 0 for the two-port case is eqUivalent to 
requiring that dxi AdYi be invariant under F. In Classical mechan­
ics, F .is a canonical fransformatfon with generating function tJ, 
and dx1 1\ dy. is the Poincare integral invariant. 

1. 

, . 
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reciprocal. Note that we m.ust choose our sign convention such 

that all bonds are oriented into the junctions. This corresponds 

to choosing associated reference directions for the linear graph 

repre sentation. 

EXAMPLE: All one-ports are trivially reciprocal, since 

y = y(x), and p = dy A dx = t;: (x) dx I\dx = O. 

8.4. Potential functions for re ciprocal n- ports 

The potential functions for one-ports m.ay be represented 

graphically, as shown in Fig. 8.4. For re ciprocal n- ports, the se 

definitions generalize in a straightforward m.anner. 

The rever sible elem.ents, capacitor s and inductors, are re-

ciprocal according to the Maxwell relations of equilibrium. therm.o-

dynam.ics: 

I (8.14) 

ports 

as shown in the exam.ples above. By substituting the term.inal 

characteristics of a reversible m.ultiport, e = IjJ (q), into equation ,.., ....,...., 

8.14, the above reciprocity condition m.ay be written 

T 
DIjJ = DIjJ , 
"'"'--' ~ 

where !2j. is the Jacobian m.atrix of ~ . 

(8.15) 

For reciprocal irreversible elem.ents, we m.ay define another 

state function, the content, by 
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(8.16) 

where -:: = ~R(9 is the constitutive relation (Cherry, 1951); e. g. 
. f 

for a one-port resistor, G(f) = J edf. For linear constitutive 
. 0 

relations, G(f) is just one half the dissipation function (see Fig. 

8A). 

G(9 is a state function for the irrevel)sible elements; and 

the reciprocity condition is trivially satisfied for D~G = D~T, 

D ~R= D ±i. A one':"port R is trivially reciprocal, since 

. * 
Jacobian is a scalar. 

or 

its 

Another· point to bear in mind is that reciprocity has nothing 

to do with passivity. A transistor or :thermistor (see Section VII) 

are passIve, but not reciprocal. Conversely, it is easy.to synthe-

size reciprocal systems containing active elements. 

8.5 Interconnection of n-ports 

8.5.1:-

Using the definition of reciprocity, equation 8.21, Brayton 

* - -For the reversible elements the. coenergy, or free energy, is de-
fined via the Legendre transform, i. e. , 

E ( q) = f q e (q) T d q , 
,.., 0"""'" ,.., 

E~:< (e) = e T q - E (q) . 

Similarly, for the irreversible processes, we may define the 
cocontnet by a Legendre transform on the content: *. T G(e)=e f- G(e). 

I"W f'Oo,I,.,., ,..., 

/.~., , 
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proved the following important re suIt: 

THEOREM 8.1: (Brayton, 1969): Any n-port obtained by the 
~.-

interconnection of reciprocal n-ports is reciprocal. " 

th PROOF: Define the reciprocity two-form for the O! n-port, 

dx k 1\ dy O! 
O! . k Then, clearly, P = 0 

O! ' 

k = 1 O! 

since each n-port is assumed reciprocal. Using the notion of a 

connection n-port introduced in paragraph 8.3.4, this sum can be 

decomposed into a sum over those ports which remain after the 

interconnection, and those which do not (Fig. 8'.5): 

(a) I 
remain 

+ I -0; 
. connected -

if the interconnections create new ports, then 

(b) >. + 
:-1 conne cted 

'\' = 0, 6 new 

since connection n-ports are reciprocal. Since we have taken our 

positive sign convention into each n- port, when two ports are 

interconnected, there is a sign change on one set of port variables. 

Therefore, adding (a) and (b): 

I remain 
+ I new = 0 

QED. 

~:<As discussed in paragraph 8.3.2, the interconnection of n-ports 
may give rise to pathological situations; under such circum-
stance s this theorem is not valid. ' 
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Note that we have assumed that all of the connections are 

compatible. This may not be the case if, for example, an inter-

connection couples two effort sources with different effort vari-

abIes in parallel, i. e., violates causality. 

The entire network may be represented schematically as 

shown in' Fig. 8.5, where we have lumped all revers~ble, irre-

versible and junction elements. Note that the TD is defined 

with re ciprocal constitutive relations; and since it neither store s 

nor dissipates, it is equivalent to a (possibly) nonlinear constraint 

equation and so may be considered a junction stru~ture. By 

construction, therefore, we have demonstrated that for thermo-

dynamic systems representable by reciprocal elements 

(8.17) 

ports cap. res. 

\ 

An important special case of the above theorem is an inte.r-

connection of one-ports. Most of the bond graph models developed 

in Sections II and III were assembled from only one-ports and TD',s. 

The reciprocity of the overall system is assur,ed by the above the-

oreni; c(lnsequently, such systems possess potential functions. 

8.5.2. 

Several authors have noted that Onsager reciprocity may be 

derived from the Kelvin postulate of independent processes (Li, 

1958; Pitzer" 1961). That is, if one postulates that there exist 
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noninteracting "kinetically independent" proce sse s, 

and that any arbitrary flux J. is a linear combination of the 
1 

independent £luxe s, 

I 
Qt •• J. ' 

1J J 

(8.18) 

(8.19) 

then a reciprocity condition may be derived in te,rms of J
i 

and 

its conjugate force X.. Substitution of equation 8.19 into the dis-
1 

sipation function q> = ~ X. J. shows that the force conJ'ugate to 
ill . , 

J~ is given by 
J 

and he nce that 

I 
x. 

J 

J. 
1 

Testing for reciprocity, 

oJ. 
1 

o~ 

I = Qt •• X. 
1J 1 

( 8.20) 

i 

=I Qt •• gj(l: akj~)' 1J 

j k 
( 8.21) 

we note 

which is the nonlinear generalization of Pitzer's condition for 

reciprocity. Notice, h()wever, that the assumption of noninter-

acting independent proces se s, equation 8.18, is equivalent to 
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constructing the system out ·of one-.port-elements. Brayton's 

theorem than assures us that the total system will be reciprocaL 

Both this proof and Pitzer's, however, would not b,e valid fora 

system containing chemical reactions since, being nonreciprocal, 

chemical reactions cahnot be reticulated into one-port elements. 

8.6. Canonical form for the equations of motion 

8.6.1. 

One- of the convenient aspects of Hamiltonian mechanics, 

from a theoretical viewpoint, is that the equations of motion may 

be expressed as a symplecti~ gradient ve ctor field, i.e.,Jx =DH, (see 
""''''''.~ 

paragraph 8.3.3). That is, the vector field propelling the state 

point is derivable from a scalar potential function, H(q, p). ,.. ,.. 

For a large clas s of re ciprocal n-ports, Brayton and 

Moser (1964) have shown that the equations of motion may be 

cast into a canonical form. We will restrict our attention to RC 

, networks in which the capacitor efforts can be varied indepen­

dently Without violating Kirchhoff's laws, and in which they de-

termine either the effort or flow on each resistive port bond. 

We refer the reader to the literature for treatment of moregen-

eral cases. We begin with Tellegen's Theorem: 

+ "\ e.£. L 11 
( 8.22) 

C 
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where we denote by Land L. summation over the resistive and 
R C .\ 

capacitive ports, respectively. * 
Since e and f lie in fixed orthogonal subspaces, 

Introducing the 

I f. de. + I f. de. 
1 1 1 1 

R C 

capacitor co nsti tuti ve 

'\ C .. (eC)e.de. L 1J,.., J 1 

C 

= 0. 

relations, 

f. de. , 
1 1 

( 8.23) 

( 8.24) 

where ;,c is the vector of capacitor effects. Recalling the def­

inition of cocontent for the irreversible elements, we may define 

a potential function 

so that equation (8.24) becomes 

f. de. = 
1 1 

'\ C .. (e C· ) k. de. = dr? L 1J,.., J 1 

~!< 
G, (8.25) 

(8.26) 

Operating on both sides with the unit vectors,(O, ... , 1,·· .,0), we 

may write equation 8.26 in component form as : 

* We regard source s (reservoir s) as nonlinear re sistor s with 
constant e vs f characteristics. . 

~!<fn· the above treatment, we have employed associated sign con­
ventions throughout; thea."efore, we differ in sign from the equa­
tions derived by Brayton and Moser (1964). 
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'\ C .. (eC)e. = 6 IJ.... J 
8(/J/8e. 

1 
(8.27) 

C 
or 

C (e C) e C = D rJ . 
~ ~ ~ ~ 

(8.28 

The fact that the equations of ITlotion for a reciproc-al sys-

teITl ITlay be derive~ frOITl a potential function is a useful theoret-

ical result for discussing systeITl stability, as we will see in the 

. next paragraph. 

Smale (1972) has given the following geoITletric interpreta-

tion of the canonical equations: The cOITlplete state space is 

first re stricted by Kirchhoff's laws to a linear ·subITlanifold. 

Then the algebraic constraints of the resistive constitutive rela-

tic:>ns define a (nonlinear) subITlanifold of the Kirchhoff subspace. 

The energy storage eleITlents then provide a metric, just as in 

classical me chanics (MacLane,' 1968), which is seITlidefinite when 

both capacitive and inductive energy storage are present. The vec­
I 

tor field propelling the state point on t:p.is manifold, C(e)-1 Dp, is 
~ ~ ..--

a gradient flow in the reciprocal case. 

As mentioned in Section VII, reciprocity is the exception 

rather than the rule in biological systems; so, in general, the 

equations of motion will take the form 

C e = a, 
.... ,., 

where a is a nonintegrable differential form '(SITlale, 1972). 

These equations will be dealt with more fully in a further 
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publication. A lTIore detailed treatlTIent of the canonical equations, 
, 

including the extension to nonreciprocal systelTIs with inductive 

effects, can be found in SlTIale (1972), Desoer and Wu (1972), 

Brayton (1969), Brayton and Moser (1964). 

8.7. Stability of the steady state 

8.7.1. 

In this paragraph we will illustrate how the canonical forlTI 

of the equations of lTIotion and Tellegen' s TheorelTI lTIay be elTI-

ployed to derive in a unified lTIanner various dynalTIic stability 

criteria proposed by Glandsdorff and Prigogine. For silTIplicity, 

we will continue to neglect inertia-like effects (inductances) and 

consider only systelTIs with resistive and capacitive lTIultiports. 

FurtherlTIore, in the following treatment, we shall always as SUlTIe 

that the capacitive constitutive relations conform to the conditions 

of local therlTIodynalTIic stability i. e. , c > O. ,.., 

8.7.2. 

Glansdorff and Prigogine (1954) showed t.hat if the tilTIe . 
d.S 

variation of the entropy production dt
1 

= J ~ X. J. dv is split 
v 1.; 1 

into two parts, 

.k (diS\ 
o t dt) = SI 

v 

J. X. dv + 
1 1 

J. X. dv, 
l" 1 

(8.29 

v 
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then 

52 (8.30) 

v 

for time independent boundary conditions. This inequality, 

called a general evolutionary criterion by Prigogine, and Glands-

dorff, can also be proven for discrete systems via the network 

approach. 

The following theorem does not require the dissipative con-

stitutive relations to be reciprocal (Oster and Desoer,~ 1971). 

THEOREM 8.2: As sume that we are given a bond graph, 

a) which is driven by constant sources (time independent bound-

ary reservoirs), and b) whose capacitive constitutive relations 

obey the thermodynamic stability requirement C > O • 

. Then, along the state trajectory 

I e. f. ~ 0, 
1 1 

(8.31) 

R 

,equality holding only at the steady state. 

PROOF: From Tellegen' s Theorem, 

(8.32) 

therefore, 

(8.33) 

Since Kirchhoff's laws re strict the efforts and flows fo fixed ortho-

gonal subsp~ces, (e, f). = 0 and ,.., ,.., 

I 

, i 

I 
I 
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(8.34) 

The capaCitive constitufive relations are q = IF(e), when differ-,.., ,..,,.., 

entiated with respect to tilYle, yield 

ci = f ..., ;..IC 

Therefore, 

(8.35) 

By assUITlption (b), 

DlF(e) = C(e) >0 ..., ,.., ,.., 

so (8.36) 

8.7.3. 

The quantity <~, ,~) has been called the excess entropy 

.. * production by Glansdorff and Prigogine (1970, 1971). Intuitively, 

it would seelYl that variations about a stationary state that produce 

a net entropy reduction would not be favored in a therlYlodynam-

ically stable systelYl. For instance, in the one-port case, the 

instability as sociated with tunnel diode-like constitutive relations 

is falYliliar (Fig. 3.3). In the region where oe df < 0, we find un-

stable steady states (Katchalsky and Spangler, 1968). Glansdorff 

>'-
"This is perhaps a lYlisnolYler since: 

- T - -T- T .. T T 
(e + oe) (f + of) - e f = ·oe 6£ + oe f + e of. 

,.., -.-....- ,.., ~ "..; t'W .~ ""-" ~,..., ~~ 

.'::.~~~ 

? 
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and Prigogine (1970, 1971) have shown that f OJ. qX. dV can be 
. '. . V 1 1 

used to det.ermine the stability of a steady state in a continuous 

system. Here we will show that this result holds for multiport 

systems (Oster and Desoer, 1971). 

Let ~ and ..§J be tangent vectors to the constitutive man­

. ifold at the steady state to be investigated. We assume that the 

perturbations Oe, 6f obey KCL, KVL and the constitutive rela-
,""'- '""-"" 

tions. 

THEOREM 8.3: (i) If, for any pertubation about the steady 

state conforming to KCL and KVL, 

(8.37) 

the steady state is stable; (ii) if, for some such perturbation, 

(8.38) 

the ste ady state is unstable. 

PROOF: We pre sent here a sinrplified proof using Tellegen's 

Theorem. A more rigorous proof is given iIi Oster and Desoer, 

(1971). For the tangent system, 

aeTaf = \' oe. of. + \' ae. of. = o. -../ -...; L J J 6 J J 
(8.39) 

R C 

Inserting the smCill signal constitutive relations, ~ = ~ §i, for 

the resistors and Oe = S oq for the capacitors, where S = C 1 ,......... ""-. """-'"' . . ,..., ,...., 

Ii 

'. 
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is the incremental susceptance matrix, 

T T 
(~ ~ ~R + (~ ~?-.9 c = 0 

or 

( O,T RO ') + d [iOqTSOq]=O; ...3. .- ~R dt 2 - .----

and (oqT ~ oq)R = - tt ~c ( 8.40) 

where 'c (<i: ~I = i ~T ~ ~ is the "small-signal energy" 

about the steady state, 

If the steady state is unstable, the trajectory initially moves 

away from the origin oq = 0, Therefore, e c is increasing 
. .-' 

and 

or 

\' Oe. of. <0 L 1 1 

R 

(8.41) 

Q. E. D. 

This result has been used by Katchalsky and Spangler (1968.) 

to study the bistable properties of membranes, and by Glansdorff 

and Prigogine (1971) in discussing chemical instabilities, Moreover, 

in Oster and Desoer (1971), it is shown that the dissipative processes 

dominate the local stability properties, i. e" an unstable steady 

state cannot be stabilized by altering the capacitive constitutive 

relations, . 
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8.7'.4. 

Glansdorff a'nd Prigogine (1971) show that the second vari- ' 

ation of the entropy, 625, is a Liapunov function for the linearized 

system. 'In the discrete case, this can also be rigorously proven. 

The convexity as sumption on the capacitive constitllti ve re-

lations (local thermodynamic stability) means we can use the iIi-

cremental capacitance (or its inverse) as a metric. For example, 

the Hessian of the entropy, 5, for a diffusion system is 

6
2

5 a J.1. 
5 .. 1 > 0, = an. an. -~ 1J 

1 j J 

(8.42) 

inducing a positive-definite bilinear form on T(M) 

6 5 =,' S .. dn.1)(\ du .. 2 D. ~ L 
, ~ 1~ J 

( 8.43) 

, 
If we contract this bilinear form with two tangent vectors at 

the steady state, whose stability is to be determined, we obtain a 

real-valued function on th~ charac::teristic manifold M: 

<1>(.) T = 6q S 6q, 
.,...",. I"W 

6q € T M. 
...... P 

(8.44) 

Then, diffe,rentiating along the trajectory in the tangent system, 

we get 

dp(· ) 
dt 

But, from Tellegenls Theorem, equation 8.39, 

(8.45) 

( 8.46) 

" 
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1 ~ _ T 
2" dt - - (6e 6f)R' 

When the system is stable, the right-hand side'is negative definite, 

which is just the result obtained previously. Therefore, the cur-

vature of the entropy is a physically meaningful Liapunov function 

for local stability. 

8.7.5. 

So far, we have dealt only with local stability conditions. 

However, if the resistive constitutive relations are reciprocal, 

'then the Brayton-Moser mixed potential is a Liapunov function 

for the system. The equations of motion may be written . 
(8.4 7) 

Taking the inner product with ~, 

Mf- . A) 
dt - (~, ~(:» (8.48) 

= (e, C(e)e) 
,.., f"o,I row ,.., 

:::::- 0 (8.49) 

since C(e) > O. ,., ,.. 

Now, if -& tends radially to minus infinity as I el- 00 (which it 
, ,... 

usually does at large valu~s of thermodynamic efforts and flows 

as can be seen from equatiqn(8.25), then following Liapunov, no 

solution is unbounded, and all initial conditions generate solutions 

which lead to the equilibrium set of the potential (/J. 
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In general, nonlinear systems exhibit complex behavior_ 

they may settle down into one of several equilibrium sets. or they 

.may tend asymptotically toward certain oscillatory trajectories 

(limit cycle s). or they may grow without bound. It is an impor­

tant piece of qualitati~e information t,o choose between these 

classes ·of behavior. and not a trivial task for nonlinear systems . 

. For the case of reciprocal systems. we see that the mixed 

potential function can be used to deduce the existence of a con­

stant limiting set. which eliminates the possibility of os'cillatory 

behavior or unbounded solutions. That is. we can guarantee 

that the equilibrium set is globally asymptotically stable (Bray­

ton. 1969). 

8.8" Extremal ,principle s 

As mentioned in Section I. computation of the equilibdurn. 

configur ation of an n':"port with spe cified port (boundary) con­

straints is considerably simplified if the. system is reciprocal. 

The solution of a set of nonlinear algebraic equations may then 

be. replaced, by a more tractable minimiz:ation problem. That is. 

one may minimize the appropriate potential function subje ct to 

the port constraint of KCL and obtain the conjugate equilibrium 

condition. KVL. as an aiternative to merely solving the set of 

nonlinear constitutive equations subject to both KCL and KVL 

constraints. 

It is an easy exercise to show that of the three conditions. 

.. 
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KCL, KVL, and U extremal, any two imply the third. In our 

treatment, we have encountered nonre ciprocal thermodynamic 

systems. In such cases, it is imperative to choose the algebraic 

criterion for equilibrium, i. e., the equilibria of the constitutive 

vector field, rather than the extremal formulation which depends 

on re ciprocity. 

For example, in paragraph 8.4, the state function called 

content was shown to characterize the dissipative processes: 

T 
e df. 

We may inve stigate the extremal propertie s of this function 

>:< 
for a network operating at a steady state by introducing vari-

ations in the branch flows, f = I + a f, where I is the steady ,.., ,.., ~ 

state flow. If we require the se variations to obey KCL, then 

T T from Tellegen's Theorem, e f = 0, and e (f+§.!) = 0. Sub-
I"'oJ ,..., ~ r:-' 

tracting, we find eTaf =0; i.e., the variations in the flows are 
"" .--.--

also orthogonal to the efforts. Therefore, 

total content is stationary in a steady state (Millar, 1951). For 

the special case of linear constitutive relations, the above equa-

tion is equivalent to the familiar minimum entropy production 

principle proposed by Prigogine (1947), or Maxwell's minimum 

heat theorem. Although there is no new information contained in 

~:<Note that in a steady state the network is purely dissipative; 
therefore, the content characterizes the system. 
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such extremai principles that is not contained in KCL, KVL and 

the constitutive relations, they often simplify numerical' analysis 

and have a certain esthetic, appeal. A complete summary of such· 

extremum principles in network theory can be found in MacFarlane 

(1970). 

This work was done under the auspices of the U. S. Atomic 

Energy Commis sion. 
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Foundation for support in the form of a Graduate Traineeship~ 

/ 



" i .... J 
.' . 
.... J u 

-173-

IX. REFERENCES 

Aris, R. and Mah, R. H. S. (1963). Independence of chemical 
. \ 

reactions. Ind. Eng. Chern. Fund. 2, 901. 

Aris, R. (1969). Elementary Chemical Reactor Analysis. 

Englewood Cliffs, New Jersey: Prentice-Hall. 

Arnold, V. 1. (1967). Characteristic class entering in quantiza-

tion conditions. Functional Anal. Apel. 1, 1. -
Arnold, V. 1. and Avez, A. (1968). Ergodic Problems of Class-

ical Mechanics. New York: Benjamin. 

Bearman, R. J. and Kirkwood, J. G. (1958). Statistical 

mechanics of transport processes: XI. Equations of 

transport in multi-compoinent systems. J. Chern. Phys. 

28, 136. 

Berge, C. (1962). The Theory of Graphs and Its Applications. 

New York: Wiley. 

Berge, C. and Ghouila-Houri, A. (1965). Programming,Games, 

and Transportation Networks New York: Wiley. 

Blackwell, W. A. (1968). Mathematical Modeling of Physical 

Networks. New York: Macmillan 

Blumenthal, R. and Katchalsky, A. (1969). The effect of the 

\ 

carrier association-dissociation rate on membrane per-

meation. Biochim. Biophys. Acta 173, 357. 
:~ .~ 



'-174-

Branin, F. (1962). Machine analysis of networks and it s appli-

cations. IBM Tech. Rept. TR 00.855. 

Branin, F. (1966). The algebraic-topological basis for network 

analogie s and the vector calculus. In Procee~ings of the 

Symposium on Generalized Networks. Brooklyn, New 

York: Polytechnic Press of the Polytechnic Institute of 

Brooklyn. 

Brayton, R, K. and Moser, J. K. (1964). A theory Of nonlinear 

networks, I and II. Quart. Appl. Math. ~, 1; 22, 81-

Brayton, R. K. (1969). Nonlinear reciprocal networks. IBM 

Research Rept. RC 2606 (#12427). 

Callen, H. (1960). Thermodynamics. New York: ,Wiley. 

Cherry, C. (1951). Some general theorems for nonlinear sys-

terns pos se s sing reactance. Phil. Mag. 42, 1161. --
Chua., L. (1971). Memristor-the missing Circuit element. 

IEEE Trans. Circuit Theory CT-18, 507. 

Chua, L. O. and Lam, Y. F. (1971). Nonlinear n-ports. 

I: Characterization, classification, arid representation. 

Univ. of Calif., Berkeley, Electronics Research Labbra-

tory Memorandum ERL- M307. 

Chua,L. (1972). Foundations of Circuit Theory. (In prep-

aration) . 

Cole, K. (1968). Membranes~ Ions and Impulses. Berkeley: 

Univ. of California Press. 

. ' 

'. , 

i 
! 



o 

-175-

Cullis, C. E. (1913). Matrices and Determinoids, Vol. 2, 

p. 165. London: Cambridge University Press. 

De Donder, Th. and Van Rysselberghe, P. (1930). Affinity. 

'Stanford, California: Stanford University Press. 

De Groot, S. (1951). Thermodynamics of Irreversible 

Proce s se s. Amsterdam: North-Holland. 

De Groot, S.R. ,and Mazur, P. (1962). Nonequilibrium Thermo-

dynamics. Amsterdam: North-Holland. 

De Simone, J. A. and Caplan, S. R. (1972). Symmetry and the 

stationary state behavior of enzyme membranes. J. Theoret. 

BioI. (in press). 

Desoer, C. and Kuh, E. (1969). Basic Circuit Theory. New 

York: McGraw-Hill. 

Desoer, C. (1970). Notes for a Second Course on Linear Sys-

tems. New York: Van Nostrand-Reinhold. 

De soer, C. and Oster, G. (1972). Globally reciprocal station-

ary systems. IntI. J. Eng. Sci. (in press). 

Desoer, C. and Wu, F. (1972). Networks viewed as flows on 

manifolds. (To be published). 



-176-

- FleITling, W. (1965). Funhions of Several Variables. Reading, 

Mass. : Addison-Wesley. 

Friedlander; S. K. and Keller, K. H. (1965). Mass transfer 

in reacting systeITls near equilibriuITl. CheITl. Eng'. Sci. 

20,121. 

Glansdorff, P. and Prigogine, 1. (1954). Sur Ie proprie'tes 

diff(rentielles de la production d'entropie. Physica~, 

773. 

Glansdorff, P. and Prigogine, 1. (1964). On a general evolu-

tion criterion in ITlacroscopic physics. Physica 30, 351. -
Glansdorff, P. and Prigogine, 1. (1970). NonequilibriuITl 

stability theory. Physica 46, 344. 

Glansdorff, P. and Prigogine, 1. (1971). TherITlodynarnic~ 
I 

Theory of Structure, Stability and Fluctuations. 

l:0n:don: Wiley-Interscience. 

Harary,F. (1969). Graph Theory. Reading, Ma~s.: 

Addison- We sley. 

Harned, H. S. and Owen, B. B. (1950)~ The Physical CheITl-

istry of Electrolyte Solutions, 2nd edition. New York: 

Reinhold. 

HerITlann, R. (1971). Vector Bundles in MatheITlati'caL Physics, 

. Vois. I and II. New York: BenjaITlin. 

, . 

, . 
i 

• i 



].. t \l 

".F I,} " l 
". 

~) 

-177 -

Karnopp, D. and Rosenberg, R. (1968) .. Analysis and Sirn-

ulation of Multiport Systerns. Carnbridge, Mas s.: MIT 

Press. 

Katchalsky, A. and Curran, P. (1965) .. NonequilibriumTherrnody-

narnics in Biophysics. Carnbridge, Mass.: Harvard 

Unlverity Press. 

Katchalsky, A. and Oster, G. (1969). Chemico-diffusional 

coupling in biomembranes. In The Molecular Basis of 

Membrane Function, ed. D. C. Tosteson. Englewood 

Cliffs, New Jersey: Prentice-Hall. 

Katchalsky, A. and Spangler, R. (1968). Dynamics of mem-

brane processes. Quart. Rev. Biophys. 1, 127. -
Kedem, O. and Katchalsky,A. (1961). A physical interpreta-

tion of the phenomenological coefficients of membrane 

permeability. J. Gen. Physiol. ~, 143. 

Killingbeck, J. and Cole, G. H. A. (1971). Mathematical 

Te chnique s and Physical Applications. New York: 

Academic Press. 

Koenig, H., Tokad, Y., and Kevasan, H. K. (1969). Analysis 

of Discrete Physical Systerns., New York: McGraw-Hill. , 

Kron, G. (1943). Equivalent circuits to represent the electro-

magnetic field equations. Phys. Rev. 64, 126. 

r 



-178-

Kron, G. (1944a). Equivalent circuits of the field equations of 

Maxwell. Proc. lnst. Radio Engrs. 32, 289. --

Kron, G. (1944b). Equivalent circuits of the elastic field. 

J. App!. Mech. ~!: 149. 

Kron, G. (1945a). Equivalent circuit models of the Schrodinger 

, I 

equation. Phys.' Rev. 67, 39. -
Kron, G. (1945b). Equivalent circuits of compressible and in-

compressible fluid flow fields. J. Aeron. Sci. 12, 221. 

Kron, G. (1946). Electric circuit models for the vibration 

spectrum of polyatomic molecules. J. Chern. Phys. 14~ 19. -
Kron, G. (1948). Electric circuit models of partial differential 

equations. Elec. Eng. 67, 672. 

LaMer, V. K., Foss, 0., and Reiss, H. (1949). Some new 

procedures in the thermodynamic theory inspired by the 

recent work of J. N. Brcjmsted. Ann. N. Y. Acad. Sci. 

51, 605. 

Li, J. C. M. (1958). Thermodynamics for rlonisothermal sys-

terns. The classical formulation. J. Chern. Phys. 29, -
747. 

Loomis, L. H. and Sternberg, S. (1968). Advanced Calculus. 

'Reading, Mass. : Addison-Wesley. 

/ 

1 

• 1 

'I' 



· I 
\..1 ,:""~ l'-/ .. ) do 

-179-

MacFarlane, A. G. J. (1970). Dynamical System Models. 

London: Harrap. 

MacLane, S. (1968). Geometrical Mechanics. (Lecture Notes) 

Department of Mathematics, Univ. of Chicago. 

Mal'cev, A. 1. (1963). Foundation of Linear Algebra. 

San Francisco: Freeman. 

Martens, H. and Allen D. (1969). Introduction to Systems 

Theory. Columbus, Ohio: Merrill. 

Meixner, J. (1941). 2u:r thermodynamik der thermodiffusion. 

Ann Physik. 39, 333. 
---

Meixner, J. (1942). Rever sible bewegungen von flus sigkeiten 

und gasen. Ann. Physik,41, 409. 

Meixner, J. (1943). 2ur thermodynamik de r irreversiblen 

prozesse in gasen mit chemisch reagierenden, dissoziier-

enden und anregbaren komponenten. Ann. Physik 43, 244. -
Meixner, J. (1963). Thermodynamics of electrical networks 

and the Onsager-Casmir reciprocal relations. 

J. Math. Phys. ~.' 154. 

Meixner, J. (1964). On the theory of linear passive systems. 

Arch. Rational Mech. Anal. 17, 278. 

Meixner, J. (1965). Linear passive ~ystems. In Proceedjngs 

of the International Symposium on Statistical Mechanics 

and Thermodynamics, pp. 52- 68. Amsterdam: North-

Holland. 



-180-

Meixner; J. (1966a). Consequences of an inequality in non-

equilibrium thermodynamics. J. Apel. Mech. 33, 4~1. -
Meixner, J. (1966b). Network theory in its relation to thermo-

dynamics. In Proceedings of the Symposium on General-

ized Networks, pp. 13-25. New York: Polytechnic 

Pre s s of the Polytech,nic Institute of Brooklyn. 

Millar, W. (1951). Some general thE;0rems for nonlinear systems 

possessing resistance. Phil. Mag. 42, 1150. -
Morowitz, H. J., Higinbotham, W. A., Matthysse, S. W., and 

Quastler, H. (1964). Passive stability in a metabolic 

network. J. Theoret. BioI. 7, 98. 

Munster, A. (1970). Classical Thermodynamics. New York: 

-
Wiley-Inter science. 

Newman, S. and Rice, S. (1971). Modelforconstraintand 

. control in biochemical networks. Proc. Natl. Acad. Sci. 

(U. S.) 68, 92. 

Olson, H. (1958). Dynamical Analogies, 2nd ed. Princeton, 

New Jersey: D. Van Nostrand. 

Onsager, L. (1931). Re ciprocat relations in irrever sible 
.. 1 

processes, I and II. Phys. Rev. 37, 405; 38, 2265. -



·, , 
" : e . , 

;.) I 1 i .. .J ! ! 
t.~,; .; , ' ;~) '. ... ' ,! i ;;.) ,.) '" 

-181-

'l 
Oster, G. and Auslander, A. (1971). Topological representa-

tions of thermodynamic systems: 1. Basic concepts. 

J. Franklin Inst. 292, 1; II. Some elemental subunits 

for irreversible thermodynamics. ibid. 292, 77. 

Oster, G. and Desoer, C. (1971). Tellegenls theorem and 

thermodynamic inequalitie s. J. Theoret. BioI. 32, 219. 

Oster, G., Perelson, A., Katchalsky, A.(1971). Network 

thermodynamics. Nature 234, 393. 

Othrner, H. G. and Scriven, L. E. (1969). Interactions of 
I 

reaction and diffusion in open systems. Ind. Eng. Chern. 

Fund. 8, 32. 

Othrner, H. G. and Scriven, L. E. (1971). Instability and 

dynamic pattern in cellular networks. J. Theoret. BioI. 

32, 507. 

Paynter, H. (1961)· Analysis and Design of Engineering Sys-

terns. Cambridge, Mass.: MIT Press. 

Penfield, P. and Haus, H. (1967). Electrodynamics of Moving 

Media. Cambridge, Mass.: MIT Press. 

Penfield, P., Spence, R., and Duinker, S. (1970). Tellege n l s 

Theorem and Electrical Networks. Cambridge, Mass.: 

MIT Press. 

Perelson, A. and Katchalsky, A. (1972). The relationship 

between the thermodynamic and kinetic reaction diffu-

sion parameters. Chern. Eng. Sci. (in press). 



-182-

Pings, C. J. and Nebeker, E. B. (1964). Thermodynamics of 

chemical coupling. Ind. Eng. Chern. Fund. !, 376. 
,/ 

Pitzer, K. S.- (1961). Irrever,sible thermodynamics. Pure 

Apr!. Chern. ~, 207. 
. , ~ 

Prigogine, 1. (1947). Etude Thermodynamique des Phenomenes 

Irrever sible s. Liege: De soer. 

Prigogine,1. (1967). Thermodynamics of Ir,reversible 

Processes, 3rd ed. New York: Wiley-Interscience. 

Redlich, O. (1970). Intensive and extensive properties. 

J.Chem. Educ. 47, 154. 

Roth, J. P. (1955). An application of algebraic topology to 

numerical analysis: On the existence of a solution to the 

network problem. Proc. Nat!. Acad. Sci. (U. S.) 41,' 518. 

Sanwal, B. D. and Smando, R. (1969). Malic enzyme of 

Escherichia coli. J. Bio!. Chern. 244, 1817. 

Seshu, S. and Reed, M. (1961)" Linear Graphs and Electrica"I 

Networks. Reading, Mass.: Addison- Wesley. 

Shearer, J., Murphy, A. and Richardon, H. (1967). Introduc-

tion to System Dynamics. Reading, Mass.: Addison- i 
• I 

" 

Wesley. 

Smale, S. (1972). On the mathematical foundations of circuit 

theory. J. Diff. Geom. (in press). 



I .' 

-183-

Smith, O. J. M. (1950). Thermistor s: 1. Static characteristics. 

Rev. Sci. Instr. 21, 344; II. Dynamic characteristics 

ibid. 21, 351.· 

Spiegler, K. S. (1958). Transport processes in ionic mem-

branes. Trans. Faraday Soc. ~, 1408. 

Spivak, M. (1965). Calculus on Manifolds. New York: 

Benjamin. 

Sudarshan, E. C. G. (1962). The structure of dynamical 

theorie s. Brandeis Summer Institute, 1961. Le cture s 

in Theoretical Physics. Vol. 2. New York: Benjamin. 

Takakashi, Y., Auslander, D. and Rabins, M. (1970). Control. 

Reading, Mass: Addison-Wesley. 

Tellegen, B. D. H. (1952). A general network theorem, with 

applications. Phillips Res. Rept. !" 259. 

Teorell, T. (1962). Excitability phenomena in artificial mem-

branes. Biophys. J. ~, (2), part 2, 27. 

Trent, H. M. (1955). Isomorphisms between oriented line ar 

graphs and lumped physical systems. J. Acoust. Soc. Am. 

27, 500. 

True sdell, C. (1970). Rational Thermodynamics. New York: 

McGraw-Hill. 



r 

-184-

Vaidhyanathan, V. S. (19,66). Some theoretical aspects of bio­

logical transport. In Intracellular Transport, ed. K.· B. 

Warren, pp. 153-165. New York: Academic Press. 

Van Rysselberghe, P. (1958). Reaction rates and affinities. 

J. Chern. Phys. 29, 640. 

i 
j 
I 



· . 

Table 1. Common through and across variables. 



/ 

-186-

Table 2. Ideal system elements. 

Element 

0'- junction 

1- junction 

R . t . 1 .e SIS ance 

Capacitance 2 

3 
Inductance 

Memristance 

Symbol De fining e quations 

21' . 
--0-- ~O' f. = 0 e =e = ... = e 
1 n 11' 1 2 n 

21' , . 
--1-- LO'.e. =0, f

1
.=f

2
= ... =f 

1 nIl n 

-~., R <PR(e, f) = 0 

t--~> C <PC(e, q) = 0 

, 
> M <PM(p, q) = 0 

Transducer ~TD~ 

Effort source E--:>I e = constant 

Flow source F'_~ f = constant 

Remarks 

Generalized 
"parallel" 
connection 

Generalized 
"series" 
corine ction 

Ideal dissipa­
tive element 

Capacitive 
(di splaceme nt) 
energy storage 

Inducti ve (kinet;.. . 
ic) energy 
storage 

Displacement­
dependent 
dissipation 

Energy conver­
sion and signal 
modulation 

Ideal energy 
source(effort) 

Ideal energy 
source (flow) 

1The half-arrow is the sign convention: power is considered positive 
into all elements. ; 

2The causal stroke J--C indicates that the natural input (independent) 
variable is the flow variable, since for C, the dynamic equation is 
C ~; = f, and -the physical restriction P = ef < 00 prohibits step inputs 
of effort. 

3 The natural input (independent) variable for L is e. All other el­
ements are causally neutral. 

i 
I 
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FIG URE CAPTIONS 

Fig. 1.1. Thermodynamic multiports. 

Fig. 1.2. Relation of the state variables. 

Fig. 2.1. Topological graph for a mechanical system. The KCL 

requirement for the system gives F
1
+F

2
+F

4
+F

S 
= 0 for node 

A and F4+FS-F3 = 0 for node B, which is equivalent to the 

equations k1 xA +m
2

xA +k4 (x
B 

-xA)+b(x
B 

-xA ) = 0 and 

k 4 (xB -xA)+b(xB -xA ) - m3xB= O. 

Fig. 2.2 Membrane transport system. In (b) the processes of 

dissipation and storage are separated. 

Fig". 2.3. Assignment of linear graph elements to transport across 

a membrane. 

Fig. 2.4. Topological graph representation of nonelectrolyte 

transport across a simple membrane. 

Fig. 3.1. (a) Two-terminal element with associated reference 

directIons for current and voltage; (b) nonassoc~ated reference 

directions. 

Fig. 3.2. Bond graph representation of nonelectrolyte transport 

through a simple membrane. 

Fig. 3.3. The constitutive relation for a tunnel diode. 

Fig. 3.4. The causality convention in bond graph representation. 

Fig. 3.5. Diffusion chain and transmission matrices. 

Fig. 4.1. An angle dependent transducer. 

Fig. 4.2. Bond graph representation of coupled hydrodynamic flows. 

Fig. 4.3. The structure of the coupling element (CPL) in hydrodyna-

mic flow. 



-188-

Fig. 4.4. Stationary state hydrodynamic coupling between flows 

in a membrane. 

Fig. 4.5. Coupled nonstationary flows. 

Fig. 4.6. Bond graph representation of coupled diffusional flows 

within a volume element of length dX f?r a membrane of unit 

area. 

Fig. 4.7. Arrangement of concentration and electrical capacitors 
) 

at point x and x + Ll x of an electrolyte solution. 

Fig. '4.8. Transport of a univalent cation. 

Fig. 4.9., Bond graph representing the electrostatically coupled 

flow of a univalent anion and cation. 

Fig. 4.10. Bond graph representation of an electrolyte solution in 

which both electrostatic and hydrodynamic couplings govern 

the ionic flows. 

Fig. 4.11. Bond graph representation for the permeation of a binary 

electrolyte through a membrane. ·Solvent flow and hydrodynamic 

c'oupling not shown. 
# 

Fig. 5.1. Multiport representa,tion of a chemical transformation. 

Fig. 5.2. Component i is a reactant in the pth reactj.-on and a 

d . h th . pro uct In t e q reaction. 

Fig. 5.3. A causally correct bond graph for the near equilibrium 

chemical reaction 2A + 3B ~ C. 

Fig. 5.4. Bond graph representation of a system of near-equilibrium 

reactions: 

A+B~C 
C ~ 2D 

D+B~E 

..' I 
f 
I 
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7 

Fig_ 5.5. The dissipation due to a chemical process may be 

represented by a two-port resistor. 

Fig. 5.6. Bond graph for the reaction A + B ~C + D. 

Fig. 5.7. Representation of two reactions with a common 

~ --C:> component: A.;:--- B ~ C. 

Fig. 5.8. Representation of the coupled system of reactions: 

1 .-i..::. 
NO + "2 CIZ~ NOCI 

NOCI + i I Z ~NO + ICI 

1 1 ~ "2 I Z +"2 ClZ~ICI 

Fig. 5.9. Representation of an enzymatic reaction 

S + E ~ ES PE + P. 

Fig. 5.10. Representation of the autocatalytic reaction 

x+ Y·~ZX. 

Fig .. 6.1. Chemical diffusional coupling in the flow of two 

nonelectrolytes through a membrane. 

Fig. 6.Z. A subunit of length dx of the reaction diffusion bond graph. 

Fig. 6.3. Bond graph used to evaluate average diffusional relaxa-

tion time. 

Fig. 6.4. Facilitated diffusion. 

Fig. 6.5. Facilitated diffusion with near_equilibrium reactions. 

Fig. 7.1. Active, bilateral and signal flow bonds. 

Fig. 7. Z. The effect of NH 4 + on the activity of malic enzyme with 

malate as the varied substrate. Concentrations of TPN+ and 

MNCI
Z 

were 0.15 MM:and 1 MM, respectively. 'TIhe pH of the 

mixture was 7.5. (From Sanwal and Smando, 1969). 
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. Fig. 7.3. Modulation of constitutive relation for allosteric 

enzyme. 

Fig. 7.4. One-port resistor as a two-port thermal converter. 

Note the active bond on the thermal port, as required by the 

second law of thermodynamics. 

Fig. 7.5. (a.) Thermistor circuit 

(b) Bond graph 

Fig. 7.6. (a) Schematic diagram of the Teorell membrane 

oscillator. 

(b) One-lump bond graph representation. 

Fig .. 7.7. Experimental and simulated liquid head difference for 

the Teorell oscillator. 

Fig. 7.8 .. Experimental and simulated membrane electrical 

resistance for the Teorell oscillator. I 

. j 

Fig. 8.1. Potential function for capacitive n-port and its 

associated gradient vector field. 

Fig. 8.2. (a) A two-port capacitor represented as a terminal 
. . 

graph and as a bond graph. 

(b) Interconnection of multiports with bond graph and 

terminal graph representations. 

Fig. 8.3. Junctions, their connection n-port representations and 

terminal gra phs. 

Fig. 8.4, One -port potential functions. 

Fig. 8.5. N-port structure. 
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(0) Ther momechonical 2 - port 

T I l--vP o· oS· ~----'~ -

(b) 2 - port schematic 

1-'" -- q 
q~ q=C(nr) 

N' 

(c) Electrical t -port capacitor 

XBL 722 -2291 

Fig 1.1 
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APPENDIX A 

.A.1 In this appendix we briefly summarize some results from 

algebraic topology which 'underlie linear graph theory. The relation 

between the algebraic duality of the conjugate variables (effort, flow) 

and the topological duality of the conservation and continuity condi-

tions (KCL, KVL) is indicated. The reader is referred to the 

literature for details and proofs. 

A.2 A linear graph may be considered as a mathematifal object 

whose properties are abstracted from the actual system whose 

topology it represents. The linear graph consists of a collection of 

nodes (O-cells, O"~), branches (i-cells, f!,J~)' and, if the graph is 
-J 

planar, meshes (2 -cells, O"~) with appropriate orientations. It is 
"'J 

easy to turn the collection of k-cells into a vector space, C k , by 

defining linear combinations, called k-chains, S k' with the k cells, 

k b. 0" ., as a aSIS: 
-J 

=:E 
j 

k 
a.O" . 

J"'J 
(A.1) 

The dimension of the 0 and 1 chain spaces CO' C
1 

are the 

number of nodes and branches, respectively, in the graph. The most 

important linear operator on the k-chain vector spaces is the boundary 

operator. a k:C - C ,defined by its action on the basis vectors 
k k-1 

for a nodeaO~ 0 == .1, 
1 a O a 1 

for a branch a1~ = a (ao' a 1) = a 1 - a o' 0 ... 0 

2 
for a mesh a2~ = a (a O' ai' a 2) 
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/ 

and since Ok is a linear operator, 

'k k 
0kck=o~ a.O'. =~a.oO'. 

'" ~ J .... J LJ J "'J 
J j 

(A.2) 

The fundamental property of the boundary operator is 

(A.3) 

i. e., the ','boundary of the boundary" of any k-chain vanishes. 

Chains for which 0 k S k = 0 are called k-cyc1es. and the collection of 

all k-cyc1es forms a subspace of Ck , denoted, Zk' where Zk = kernel(o k)' 

K-chains obtairied from k + i-chains by a~plication of 0 k are called 

k-boundaries; and we denote by Bk the space of all k-boundaries, 

i. e., Bk' = (S k E S:k ISk = 0 k+i's k+i for some Sk+i E Sk+i)' 

Since the C
k 

are linear vector spaces, one can define in a 

natural way the scalar product < . , . > : C~ X . C k ~ fR by 

/' 

( c k ' c: > = ~ a .. a>~ , (A.4) 
. '" '" " J J 

where C~ is the space dual to Ck(cochain)* 

Using this structure on C k we can define the adjoint to 0 k in 

the usual way. 

(A.5) 

O~=i is called the coboundary operator and is a liilear map, 

>:< Since C
k 

is finite dimensional there is a natural isomorphism 

* .. 
between C

k 
and C

k 
(by the Euclidean inner product). However, as 

in paragraph 8.2, there are cogent reasons for maintaining the 

distinction between a vector space its dual. 

; ; 
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>!: 
---I~" C k . It is easily verified that 

,'< * 0"0 (')=0. 
k k-1 

* * * * (For (a kSk' a k-2 Sk-2) = (Sk' ak _1 a k-2 Sk-2> 

* ~. (a k-1 Ok ~k' ~k-2) = 0.) 

(A.6) 

By analogy with the definition of k-cycles, k-cochains for 

~:< * 
which Ok Sk = 0 are called k-cocycles; and the collection of all 

* * k-cocydes forms a subspace of Sc ' denoted by Zk' where 

~( ~:< 
Zk = kernel (a k)' K-cochains which are obtained from k-1 chains 

,'< 
via o~_1 are called k-coboundaries; and 

, >!< w * * 
is a k-cycle, an Z k = 0, and ~k a boundary, ~~ = a k-1 :k-1' then 

* * * * (~k'~) = (:k' a k-1 ~k-1) = (Ok:k' ~k-1) = 0, (A. 7) 

i. e., k-cycles annihilate (are" orthogonal" to) k-coboundaries. 

A .3 We will summarize without proof the following key results: 

Theorem A .1. Let Z 1 = ker (0
1

), the cycle subspace of C 1 ; 

* * * B1 = 1m (0
0

), the coboundary subspace of C 1 · 

Then, for a linear graph with b branches and n nodes: 

* 1) dim ~ 1 = b - n + 1; dim B 1 = n - 1. 

* '-'* >:< 2) (:1'~1) = OV~1 EB 1 , ~1 EZ 1 , i.e. (cycles, coboundaries) = O. 

>:< \c-I >',< >:< 
3) If (:1' ~1> = 0 V~1 E B 1 , then:1 EZ 1 ; i.e., a i-chain ortho-

gonal to every 1-coboundary is a cycle. 

>:< '--' >:< * >:< * 
4) If (~1' ~) = 0 V~1 E ~1' then S1 EB1 and -~ SO EC O such that 

* * * ~~ = -0 0 S ; i. e., a 1-cochain orthogonal to every i-cycle is a 

1-coboundary. 
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~:< )',< ,,'< 

5) ( ~1 ' 0 0 ~o) = (0 1 :'1 ' SO) . 

6) A chain has a unique decomposition as [cyCle] + [boundary]. 

A.4 Kirchhoff! s Laws are formulated as follows: Given a graph, 

G, with n nodes and b lJranches, we as sociate with each flow 

vector,t = (f
1

, ., f
b

) a flow i-chain 

b 
f =}: f.<T~ 
.... J"'J 

J=1 

and to each effort vector: = (e
1

, 

b 
>:< ~ 1 

e =£..je.<T .• 
... ...J J 

(A~9) 

e b ) an effort 1-cochain. 

(A.10) 

tf. 
Then the following two theorems give alternate forms for KC Land 

KVL, respectively. 

Theorem A.2 (KCL). The following statements are equivalent: 

1) fis orthogonal to all 1-coboundaries', 

2) f is ~ i-cycle, 

J 

3) : E ker (0 1) . 

The collection of all flows satisfying KCL forms a (b - n + 1) dimen-

. 2b { } sional subspace of 1R = f1' ei . 

Theorem A.3 (KVL). The following statements are equivalent: 

>~ 
1) e is orthogonal to any i-cycle, 

* 2) e isa 1-coboundary, 

*. ~:< 
3) :, Elm(oO). 

The collection of all efforts satisfying KVL forms an n-1 dimen­

sional subspace of JR. 2b. 

As a matter of fact, we may ,simply define the class of 

admissible flows and forces by the requirement (Smale, 1972) 

~ 
I ... ) 

'< 
\ 
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':< ':c 
Since ~1 € B1 ,by condition (2) of theorem A.3, it follows that 

* * ** >:< there exists a 0 ,..cochain .~ 6 such that ~1 = a O~O' where ~o 

represents the vector of node-to-dat~m potentials. 

A.5 In paragraph 2.1 the incidence matrices A and M may be ...., ...., 

viewed as the matrix representations of the boundary and co-

boundary operators. Tellegen I s Theorem is equivalent to (A.3) 

* * and/or (A.6), a· a = a . a = 0, which may be interpreted as 

an orthogonal partition of"R 2b into invariant s~bspaces. 

A.6. The duality between the topological structure described 

. above and the algebraic structure accompanying the dynamical 

variables e and f is established viaStokes I Theorem. The integral 

of k-form d w over la k-,dimensional domain D in a manifold is 

related to the integral of the k-1 form waver the k-1 dimensional 

boundary of D, a D, by (Spivak; 1965): 

~dw = ~w~ (A.11) 

If we regard the domain D as a linear functional on the space of k-

forms, we may write 

< aD, w) = < D, d w) 

In this fashion the space of k-forms has been put into duality with' 

the" space of k -domains!." whiCh, in turn, may be constructed 

from the k-chains described above. This relationship is the so-

called deRham cohomology. The identities d· d = 0 (Poincare 

Lemma) and a . a = 0 are in a definite sense isomorphic, and 

generalize the familiar vector identities, div . curl = curl· grad 
I 

= o. 
I I I 
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